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Miguel Ángel Mart́ınez del Amor
Gheorghe Păun
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Miguel Ángel Mart́ınez del Amor
Gheorghe Păun
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Editors





Eighth Brainstorming Week
on Membrane Computing

Sevilla, February 1-5, 2010
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Preface

These proceedings contain the papers emerged from the Eighth Brainstorming
Week on Membrane Computing (BWMC), held in Sevilla, from February 1 to
February 5, 2010, in the organization of the Research Group on Natural Computing
from the Department of Computer Science and Artificial Intelligence of Sevilla
University. The first edition of BWMC was organized at the beginning of February
2003 in Rovira i Virgili University, Tarragona, and the next six editions took place
in Sevilla at the beginning of February 2004, 2005, 2006, 2007, 2008, and 2009,
respectively.

In the style of previous meetings in this series, the eighth BWMC was conceived
as a period of active interaction among the participants, with the emphasis on
exchanging ideas and cooperation. Already last year the number of presentations
had the tendency to increase, and this was true also for the 2010 edition: there were
31 talks. Actually, also the number of participants was significantly greater than
in 2009 – see the list in the end of this preface. However, in the style of the of this
series of meetings, these presentations were “provocative”, mainly proposing new
ideas, open problems, research topics, results which need further improvements.
The efficiency of this type of meetings was again proved to be very high and the
present volume prove this assertion.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of the papers from these volumes will be considered for publication
in a special issues of Romanian Journal of Information Science and Technology
(published by the Romanian Academy). After the first BWMC, a special issue
of Natural Computing – volume 2, number 3, 2003, and a special issue of New
Generation Computing – volume 22, number 4, 2004, were published; papers from
the second BWMC have appeared in a special issue of Journal of Universal Com-
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puter Science – volume 10, number 5, 2004, as well as in a special issue of Soft
Computing – volume 9, number 5, 2005; a selection of papers written during the
third BWMC have appeared in a special issue of International Journal of Founda-
tions of Computer Science – volume 17, number 1, 2006); after the fourth BWMC
a special issue of Theoretical Computer Science was edited – volume 372, num-
bers 2-3, 2007; after the fifth edition, a special issue of International Journal of
Unconventional Computing was edited – volume 5, number 5, 2009; a selection
of papers elaborated during the sixth BWMC has appeared in a special issue of
Fundamenta Informaticae – volume 87, number 1, 2008; finally, after the seventh
BWMC, a special issue of International Journal of Computers, Control and Com-
munication was published – volume 4, number 3, 2009. Other papers elaborated
during the eighth BWMC will be submitted to other journals or to suitable con-
ferences. The reader interested in the final version of these papers is advised to
check the current bibliography of membrane computing available in the domain
website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Alhazov Artiom, Hiroshima University, Japan,
aartiom@yahoo.com- tele-participation

2. Campora Daniel Hugo, University of Sevilla, Spain
danielcampora@gmail.com

3. Castellanos Juan, Polytechnical University of Madrid, Spain
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4. Cecilia Canales José Maŕıa, University of Murcia, Spain
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5. Cienciala Ludek, Silesian University, Opava, Czech Republic
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45. Rodŕıguez-López Raquel, University of Sevilla, Spain,
raqrodlop@alum.us.es

46. Rogozhin Yurii, Institute of Mathematics and Computer Science,
Chisinau, Moldova,
rogozhin@math.md
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Gandy-Păun-Rozenberg Machines
A. Obtu lowicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Linking Bistable Dynamics to Metabolic P Systems
R. Pagliarini, L. Bianco, V. Manca, C. Bessant . . . . . . . . . . . . . . . . . . . . . . . 205

Solving Problems in a Distributed Way in Membrane Computing:
dP Systems
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On Communication Complexity
in Evolution-Communication P Systems

Henry Adorna1, Gheorghe Păun2,3, Mario J. Pérez-Jiménez3

1 Department of Computer Science (Algorithms and Complexity)
University of the Philippines-Diliman
1101 Quezon City, Philippines
hnadorna@dcs.upd.edu.ph

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

3 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: gpaun@us.es, marper@us.es

Summary. Looking for a theory of communication complexity for P systems, we con-
sider here so-called evolution-communication (EC for short) P systems, where objects
evolve by multiset rewriting rules without target commands and pass through mem-
branes by means of symport/antiport rules. (Actually, in most cases below we use only
symport rules.) We first propose a way to measure the communication costs by means
of “quanta of energy” (produced by evolution rules and) consumed by communication
rules. EC P systems with such costs are proved to be Turing complete in all three cases
with respect to the relation between evolution and communication operations: priority
of communication, mixing the rules without priority for any type, priority of evolution
(with the cost of communication increasing in this ordering in the universality proofs).

More appropriate measures of communication complexity are then defined, as dy-
namical parameters, counting the communication steps or the number (and the weight)
of communication rules used during a computation. Such parameters can be used in
three ways: as properties of P systems (considering the families of sets of numbers gen-
erated by systems with a given communication complexity), as conditions to be imposed
on computations (accepting only those computations with a communication complexity
bounded by a given threshold), and as standard complexity measures (defining the class
of problems which can be solved by P systems with a bounded complexity). Because
we ignore the evolution steps, in all three cases it makes sense to consider hierarchies
starting with finite complexity thresholds. We only give some preliminary results about
these hierarchies (for instance, proving that already their lower levels contain complex –
e.g., non-semilinear – sets), and we leave open many problems and research issues.
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1 Introduction

Although membrane computing can still be considered as young branch of natural
computing, [11], the theory of P systems is well developed (see details in [15] and
at the area website from [19]). In particular, many research efforts were devoted to
complexity issues related to P systems. First, all results dealing with the number
of membranes, with normal forms, with various static parameters (estimating the
size of P systems from various points of view) can be considered as contributing
to the descriptional complexity of P systems (this was a much investigated topic in
formal languages theory, see, e.g., [5]). Much more coherently developed, forming
an explicit theory, is the computational complexity of P systems, where the main
complexity parameter is time, the number of steps of a computation. In this frame-
work, several specific complexity classes were defined, elaborate relations with the
P 6= NP conjecture were found, as well as many other related results; we refer to
the recent survey [17] and to the corresponding chapter of [15] for details. Recently,
also a space complexity theory for P systems was initiated – see, e.g., [18].

What is still almost not at all considered is the communication complexity of P
systems, in spite of the fact that this was suggested as a research topic several times
(for instance, in [3] and [13], but without any hint about a possible definition). A
related measure is discussed in [4] for symport/antiport P systems, the so-called
“communication difference”, denoted Comdif , defined as the difference of numbers
of input and output objects in an antiport rule, but this is again a static measure,
defined for rules of a P system.

We address this issue here, with several basic proposals, but our preliminary
results indicate that this is a non-trivial research direction – especially if we want
to get close to the classic theory of communication complexity, as synthesized, e.g.,
in [7]. Roughly speaking, the classic framework deals with a distributed/parallel
computing device and complex problems which are split into subproblems and
the parts are distributed to separate “processors”, which cooperate in solving the
general problem; to this aim, the processors need to communicate and the num-
ber of bits used to this aim gives the communication complexity of the solution.
P systems are distributed and parallel devices, but we do not have an explicit
protocol for solving problems in a distributed manner, after introducing subprob-
lems of a problem in various subsystems; we have various tools for communication
among membranes, but the amount of communication was not yet explicitly and
systematically investigated.

The present paper mainly calls once again the attention to this research di-
rection, as we do not propose yet a way to solve problems in a distributed way
using a P system, so that a framework as that in [7] to be obtained. Instead, we
first go back to a sort of a descriptional complexity measure, defined for evolution-
communication (EC for short) P systems as introduced in [1] which was then inves-
tigated in a series of papers, e.g., in [8]. In these systems, the evolution of objects
is separated from their communication across membranes: the evolution is done
by means of multiset rewriting rules and the communication by symport/antiport
rules. In order to evaluate the communication effort, we consider a cost of using a
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communication rule, in the form of a quantity of “energy” consumed by that rule.
Specifically, we consider a special object, e, called “quantum of energy”; evolution
rules can produce amounts of energy, which is consumed by the communication
rules. Three types of EC P systems are investigated: with priority of communica-
tion on evolution, with steps where rules of the two types are non-deterministically
mixed, and with priority of evolution on communication. In all cases, universality
results are obtained (this was known only for the intermediate case, of no priority
among the two types of operations), but, interesting enough, the cost of commu-
nication increases in the order we have mentioned the three cases: one quantum
per rule, three quanta per rule, and five quanta per rule, respectively, are used in
the corresponding proofs.

We note that P systems with the use of rules controlled by energy were con-
sidered already, e.g., in [16], [9], [10], but in different frameworks (other types of
P systems, different goals).

A natural step is then to pass from this kind of a static measure to some
dynamical ones, with natural definitions: count the communication steps, or the
communication rules, or all quanta of energy used during all steps of a halting
computation. An infinite cost (hence infinitely many communication rules used
during the computation) leads to universality, but also considering only a finite
number of communication steps (of communication rules used during a computa-
tion) makes sense. Actually, counting only the number of communication steps is
nothing else than the length of the computation (the time complexity) . . . ignoring
the evolution steps. This means that the computation can be arbitrarily complex
in terms of evolution steps (we however use here only non-cooperative evolution
rules), what is counted are the communication rules. Such a parameter can be in-
vestigated from three points of view: as a property of P systems, as a condition for
selecting only certain computations as acceptable, as the effort to solve (decision)
problems. In all cases, we can start with finite thresholds (no communication step,
one communication step, and so on), hence infinite hierarchies are expected. We
only give some hints about the possible proofs of the infinity of these hierarchies,
as well as examples showing that already the lower levels of the hierarchies con-
tain complex sets of numbers (e.g., non-semilinear). Thus, besides definitions and
preliminary results, we provide here mainly open problems and research topics.

2 Some Prerequisites

Before introducing the class of P systems we investigate in this paper, let us fix
some notation and terminology.

The free monoid generated by an alphabet V is denoted with V ∗ and its neutral
element (the empty string) is denoted by λ; the set V ∗−{λ} (of non-empty strings
over V ) is denoted by V +. For a ∈ V, x ∈ V ∗, |x| denotes the length of x, and |x|a
is the number of occurrences of symbol a in the string x.

The families of semilinear and of recursively enumerable sets of vectors of
dimension k ≥ 1 of natural numbers are denoted by SLINk and NkRE, respec-
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tively; if k = 1 (hence we deal with numbers, vectors of one dimension), then the
superscript is omitted.

In the proofs of our universality results we use the notion of a (non-
deterministic) register machine, which is a device M = (m,B, l0, lh, R), where
m ≥ 1 is the number of registers, B is the (finite) set of instruction labels, l0 is the
initial label, lh is the halting label, and R is the finite set of instructions labeled
(uniquely identified, with each label being associated with only one instruction)
by elements from B. The labeled instructions are of the following forms:

– li : (ADD(r), lj , lk), 1 ≤ r ≤ m (add 1 to register r and go nondeterministically
to one of the instructions with labels lj , lk),

– li : (SUB(r), lj , lk), 1 ≤ r ≤ m (if register r is not empty, then subtract 1 from
it and go to the instruction with label lj , otherwise go to the instruction with
label lk).

A register machine generates a set of natural numbers in the following manner:
we start computing with all m registers empty, with the instruction labeled l0; if
the label lh is reached, then the computation halts and the value of register 1 is the
number generated by the computation (without loss of generality, all other registers
can be assumed to be empty at that time). The set of all natural numbers generated
in this way by M is denoted by N(M). It is known that non-deterministic counter
machines (with three counters) can generate any set of Turing computable sets of
natural numbers. If the contents of several registers is taken into consideration in
the end of a computation, then vectors of natural numbers are generated.
Convention: When comparing two number generating devices, number 0 is omit-
ted.

3 Evolution-Communication P Systems

Although the notions we work with are introduced below, it would be useful if the
reader has some familiarity with basic facts of membrane computing.

The class of P systems which we investigate in this paper is that of EC P
systems introduced in [1]. Such a system is a construct of the form

Π = (O, µ,w1, . . . , wm, R1, R
′
1, . . . , Rm, R′m, iout),

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes, organized in a hierarchical manner, hence with the membrane structure
described by a tree, and given as an expression of labeled parentheses; in this def-
inition, like in most cases in the paper, the membranes are labeled with natural
numbers, but any alphabet of labels may also be used), w1, . . . , wm are (strings
over O representing) multisets of objects present in the m regions of µ at the begin-
ning of a computation, R1, . . . , Rm are finite sets of evolution rules associated with
the regions of µ, R′1, . . . , R

′
m are finite sets of symport/antiport rules associated
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with the membranes of µ, and iout is the label of the output membrane. (Note that
the evolution rules are associated with the regions and the communication rules
are associated with the membranes.) The number m of membranes in µ is called
the degree of Π. The evolution rules are of the form a → v, where a ∈ O, v ∈ O∗

(hence non-cooperative and without target indications in the right hand side, as
usual in transition P systems), while the symport/antiport rules are of the stan-
dard forms used in symport/antiport P systems ((u, in), (u, out) for symport rules
and (u, out; v, in) for antiport rules, where u, v ∈ O+; the length of u in a symport
rule and the maximum of |u|, |v| in an antiport rule is called the weight of the rule,
with the maximum degree over all rules being called the weight of the system).

The weight of symport and antiport rules gives already an indication on the
communication complexity of the system. Here we stress this, in the following way.
We allow only minimal symport and antiport rules, hence with the multisets u, v
above consisting of single objects in O, and, moreover, we add to the system a
special object, e, which does not belong to O and can appear in rules as follows.
The evolution rules can be of the form a → v, with a ∈ O, v ∈ (O∪{e})∗, and the
symport/antiport rules can be of the forms (aei, in), (aei, out), where a ∈ O, i ≥ 1,
and (aei, out; bej , in), where a, b ∈ O and i, j ≥ 0, i+j ≥ 1. Note that the “quantum
of energy” e can be produced by evolution rules and that no communication can be
done without involving an amount of “energy”. Actually, this energy is consumed
by the communication rules: after using a symport or antiport rule, the objects
of O are transported across the membrane with which the rule is associated and
the occurrences of object e are lost, they do not pass from a region to another
one. In the proofs from the next section we will discuss in some detail the way the
communication rules are applied, so we do not give here any example.

In a symport rule as above, the number i is called the energy of the rule, while
in an antiport rule as above the sum i + j is called the energy.

In [1] (and [8]), the rules of an EC P systems are used in a non-deterministic
maximally parallel way, without any separation of evolution and communication
operations. Here we consider three cases (we call them modes): (i) communication
has priority over evolution (indicated by CPE) – if a communication rule is ap-
plicable in any membrane of the system, then at this step only communication
rules are used (in the non-deterministic maximally parallel way), and no evolution
rule is applied in the system; (ii) communication and evolution rules are applied
together, mixed (indicated by CME), as in [1]; (iii) evolution has priority over
communication (indicated by EPC) – if any evolution rule can be used in the sys-
tem, then only such rules are used at that step, and no communication operation
is performed.

Using the rules in the non-deterministic maximally parallel way, in one of
the three modes suggested above, we obtain transitions among configurations of
the system, then computations and halting computations as usual in membrane
computing. In the next section we consider the set Nmode(Π) of numbers gen-
erated by a P system Π, by counting the objects of O present in region iout in
the halting configuration of computations in Π, performed in the in the mode
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mode ∈ {CPE, CME, EPC}. The family of sets of numbers Nmode(Π) generated
in this way by EC P systems with at most m ≥ 1 membranes, symport rules of
maximal energy p ≥ 0 and antiport rules of maximal energy q ≥ 0, is denoted by
NmodeECPm(symp, antiq); when one of the parameters m, p, q is not bounded, we
replace the respective subscript with ∗.

4 The Power of EC P Systems with Energy

We start by pointing out some inclusions which directly follow from the definitions:

Lemma 1. NmodeECPm(symp, antiq) ⊆ NmodeECPm′(symp′ , antiq′) ⊆ NRE,
for all 1 ≤ m ≤ m′, 0 ≤ p ≤ p′, 0 ≤ q ≤ q′, and mode ∈ {CPE, CME, EPC};
each of m′, p′, q′ can also be equal to ∗.

Actually, most of the inclusions above are equalities.

Theorem 1. NCPEECPm(symp, antiq) = NRE, for all m ≥ 4, p ≥ 1, q ≥ 0.

Proof. We only prove the inclusion NRE ⊆ NCPEECP4(sym1, anti0), and to
this aim we use the characterization of NRE by means of register machines with
three registers. Let M = (3, B, l0, lh, R) be such a machine. We construct an EC
P system

Π = (O, e, [0[1 ]1[2 ]2[3 ]3 ]0, w0, w1, w2, w3, R0, R
′
0, R1, R

′
1, R2, R

′
2, R3, R

′
3, 1),

with

O = {l, l′, l′′, l′′′, l̄ | l ∈ B} ∪ {a, #},
w0 = l′0, w1 = w2 = w3 = λ,

and the sets of rules consist of the rules mentioned in the following tables, which
show the way the system Π simulates the instructions of M (note that initially
we have the primed version of the initial label of M present in the skin region and
nothing else in the whole system).

For any ADD instruction of the form li : (ADD(r), lj , lk) in R, we perform
the following five steps in Π (we indicate for each step the rules associated with
membranes/regions 0 and r):

Step R0 Rr R′r
1 l′i → lie – –
2 – – (lie, in)
3 – li → l̄iae –
4 – – (l̄ie, out)
5 l̄i → l′s, s = j, k – –
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We also add the rules
l̄i → #, # → #

to Rr (they are used in steps 5 and 6 (and then # → # forever) if in step 4 one
uses the rule (ae, out) which is present in R′r if there are SUB instructions for this
register – see below).

The simulation of the ADD rule is obvious – and the fact that the communi-
cation has priority over evolution plays no role here as only one (type of) rule can
be applied in any step.

The simulation of a SUB instruction li : (SUB(r), lj , lk) in R is more intricate.
We first indicate the rules present in sets R0, Rr, R

′
r:

R0 : l′i → lie,

l′′′i → l′j ,

l′′i → l′k,

Rr : li → l′ie,

l′i → l′′i ,

l′′i → l′′′i e,

R′r : (lie, in),
(ae, out),
(l′′′i e, out),
(l′′i e, out).

The way these rules are used for simulating the SUB instruction in the case when
the register r is non-empty is shown in the next table:

Step R0 Rr R′r
1 l′i → lie – –
2 – – (lie, in)
3 – li → l′ie –
4 – – (ae, out)
5 – l′i → l′′i –
6 – l′′i → l′′′i e –
7 – – (l′′′i e, out)
8 l′′′i → l′j – –

The simulation of the SUB instruction in the case of an empty register r is indicated
below:

Step R0 Rr R′r
1 l′i → lie – –
2 – – (lie, in)
3 – li → l′ie –
4 – l′i → l′′i –
5 – – (l′′i e, out)
6 l′′i → l′k – –
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The first three steps are identical. If register r is non-empty, hence membrane r
contains objects a, then, because the communication has priority, one copy of a
is removed from membrane r and the rule l′i → l′′i is used in the next step. If the
register is empty, then the rule l′i → l′′i is used already in step 3; because the copy
of e remained unused in membrane r, now l′′i can exit, and it introduces l′k in the
skin region. If e was consumed in step 3, then l′′i can evolve to l′′′i and only now it
can leave membrane r, introducing l′j in the skin region.

The simulation of the SUB instruction is correct. The simulation of ADD and
SUB instructions can continue until introducing the object l′h, which cannot evolve,
the computation stops. The contents of membrane 1 corresponds to the contents
of register 1, hence N(M) = NCPE(Π); the observation that we use only symport
rules with energy 1 completes the proof.

The priority of communication is a useful “programming tool”; in its absence,
the system has to use more energy quanta.

Theorem 2. NCMEECPm(symp, antiq) = NRE, for all m ≥ 4, p ≥ 3, q ≥ 0.

Proof. Consider a set Q ∈ NRE and take Q′ = {n − 1 | n ∈ Q}. If 1 /∈ Q,
then we proceed as follows. We take a register machines with three registers,
M = (3, B, l0, lh, R), generating the set Q′ and we construct the EC P system

Π = (O, e, [0[1 ]1[2 ]2[3 ]3 ]0, w0, w1, w2, w3, R0, R
′
0, R1, R

′
1, R2, R

′
2, R3, R

′
3, 1),

with

O = {l, l′, l′′, l′′′, l̄ | l ∈ B} ∪ {a, #},
w0 = l′0, w1 = w2 = w3 = #,

and the sets of rules constructed as indicated below.
For any ADD instruction of M we use the same rules as in the proof of the

previous theorem.
For a SUB instruction li : (SUB(r), lj , lk) in R we consider the following rules:

R0 : l′i → lie,

l′′′i → l′j ,

l′′i → l′k,

# → #,

Rr : li → l′ie
2,

l′i → l′′i e,

l′′i → l′′′i ,

R′r : (lie, in),
(ae2, out),
(l′′i e3, out),
(l′′′i e, out),
(#e3, out).
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The simulation of the SUB instruction proceeds as follows. Object li enters
membrane r, produces here two quanta of energy and passes to l′i. Because of the
maximal parallelism, if register r is not empty, in the next step both rules l′i → l′′i e
and (ae2, out) are used, hence we have to pass further to l′′′i , which, in the next step,
exits to the skin membrane, where it introduces l′j . If the register r is empty, then
no rule can use the two quanta of energy introduced by the rule li → l′ie

2. By using
the rule l′i → l′′i e, in step 4 one further occurrence of e is introduced in membrane
r. In step 5, three rules can be used: l′′i → l′′′i , (l′′i e3, out), and (#e3, out); if the
first rule is used, then the trap-object # exits the membrane and the computation
never halts, because of the rule # → # from R0. Thus, the only continuation
which can lead to a halting computation is to use the rule (l′′i e3, out), and thus l′k is
introduced in the skin region. In both cases, the simulation of the SUB instruction
is correct, hence we obtain NCME(Π) = Q: in membrane 1, besides copies of
object a corresponding to the value of register 1 in the halting configuration of M ,
we also have a copy of object #.

If the set Q contains the number 1, then Q′ contains 0 instead, which is ignored
when considering a register machine for Q′. However, number 1 can be generated
separately: consider an additional object, b, present initially in the skin membrane,
and the rules b → λ and b → l′0. In the first case, the computation stops with only
one object in membrane 1, in the later case we start simulating the computations
in the register machine M which generates Q′.

We conclude the proof by observing that the system Π uses symport rules with
maximal energy equal to 3.

Somewhat surprising, the priority of the evolution rules over the communica-
tion rules seems to be a weaker feature than using the communication rules with
priority, and this can be “explained” by the fact that communication moves ob-
jects from a region to another one, hence changes the rules to be applied to the
moved objects; in general, the localization (of objects and of rules) is known to be
a powerful feature of P systems. As a consequence, a larger number of membranes
and amount of energy is needed in this case.

Theorem 3. NEPCECPm(symp, antiq) = NRE, for all m ≥ 7, p ≥ 5, q ≥ 0.

Proof. We start again from a register machine M = (3, B, l0, lh, R) and construct
an EC P system Π simulating it. This time, the components of Π are indicated
in a graphical form, in Figure 1. We explicitly mention the rules associated with
an ADD instruction and a SUB instruction operating on register r; specifically,
the rules of Π which simulate the ADD instruction are written in the left hand
of the figure, under the instruction ADD, and the rules which simulate the SUB
instruction are written in the right hand of the figure. The rules associated with the
other two registers – denoted in the figure with s and t (hence {r, s, t} = {1, 2, 3})
– are not mentioned.

The simulation of the ADD instruction is obvious, so we only explain the way
a SUB instruction is simulated. Object li “guesses” whether or not register r is
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li : (SUB(r), lj , lk)

l′i → l+i e

l′i → l0i e

l̄i → l′j
l′′i → l′′′i e

(l+i e, in)

(l0i e, in)

(l̄ie
2, out)

(ae3, out)

(l′′i e, out)

(l′′′i e, in)

(l′ke2, out)

l+i → l̄ie
5

l0i → l′′i e2

l′′′i → l′ke

(#e3, in)

(ae, in)

# → #

a → #

Fig. 1. The P system from the proof of Theorem 3

empty, that is it non-deterministically passes to one of l+i and l0i . Any of these
objects enters membrane r. If l+i was produced and the register was empty, then
the computation will enter an infinite cycle. Similarly, if object l0i was produced
and the register is not empty the computation will never stop.

Let us assume that we have object l+i in membrane r. It produces here five
quanta of energy and passes to l̄i (remember that li uniquely labels an instruc-
tion, hence there is no ambiguity in using the bar notation, as in the simulation
of the ADD instruction). No evolution rule can be used in the system, hence
we are allowed (and we have) to apply communication rules. If any of the rules
(#e3, in), (ae, in) from R′r′ are used, then the trap object # will evolve forever
in membrane r′. This can be avoided only if the rules (l̄ie2, out), (ae3, out) of R′r
are used, and this is possible if the register is non-empty; otherwise, no object
a is present in membrane r, hence, because of the maximal parallelism, the rule
(#e3, in) will bring the trap-object in membrane r′ and the computation never



On Communication Complexity in EC P Systems 11

halts. If l̄i arrives in the skin region, then it introduces here l′j , which is the correct
continuation of the computation in M .

Assume now that object l0i was produced and introduced in membrane r. By
rule l0i → l′′i e2 we introduce two quanta of energy. One of them can be used by the
rule (l′′i e, out) from R′r. If the membrane contains no copy of a, hence the “guess”
made in the first step was correct, i.e., the register is empty, then the rule (ae, in)
from R′r′ cannot be used, otherwise the computation never stops (because of the
maximal parallelism, this rule must be used in parallel with (l′′i e, out); of course,
the rule (ae, in) can be used even twice, with the same result, the infinite run of
the computation). The copy of e waits inside membrane r until l′′i evolves in the
skin region to l′′′i and this object enters membrane r. It produces here one further
copy of e and exits in the form of l′k, thus completing this branch of the simulation.

In both cases, the simulation of the instruction SUB is correct (the computation
in Π never ends if an incorrect guess is made or a “wrong” rule is used). The system
Π generates the same set of numbers as the register machine M , always augmented
by 1: the object # remains in membrane 1 in the end of the computation. Like in
the proof of Theorem 2, we can now make sure that we generate the set Q ∈ NRE
we want, number 1 included if it belongs to Q, and this completes the proof.

Several open problems can be formulated with respect to these three results,
concerning the parameters involved in them: Can the number of membranes be
decreased? Can the energy of rules in Theorems 2, 3 be decreased? Does the use
of antiport rules help in this respect? (P systems with minimal symport/antiport
rules are already universal – sometimes with some “garbage” objects remaining in
the output membrane, see, e.g., the corresponding chapter from [15] – hence the
energy can be completely removed if powerful enough communication rules are
used.)

5 Dynamical Communication Complexity Measures

Let us now proceed to defining communication complexity parameters starting
from computations, not from the (rules of the) system. There are (at least) three
basic possibilities: (i) to count the number of steps of a computation when com-
munication operations are done, (ii) to count the total number of communication
rules used during a computation, and (iii) to consider the sum of the weights of all
communication rules used during a computation (or the energy involved in these
rules, in the case of EC P systems with a cost of communication, as considered in
the previous sections).

More formally, let δ : w0 =⇒ w1 =⇒ . . . =⇒ wh be a halting computation
in a given EC P system Π, with w0 being the initial configuration. We inter-
pret/represent the configurations as strings, specifying the multisets of objects
placed in the regions of a membrane structure written as a string of labeled match-
ing parentheses, hence we can speak about the number of occurrences of a symbol
in such a string/configuration. Then, for each i = 0, 1, . . . , h− 1 we can write:
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ComN(wi =⇒ wi+1) =
{

1, if a communication rule is used in this transition,
0, otherwise

ComR(wi =⇒ wi+1) = the number of communication rules used
in this transition,

ComW (wi =⇒ wi+1) = the total energy of the communication rules used
in this transition.

These parameters can then be extended in the natural way to computations,
results of computations, systems, sets of numbers: for ComX ∈ {ComN, ComR,
ComW} we define

ComX(δ) =
h−1∑

i=0

ComX(wi =⇒ wi+1), for δ : w0 =⇒ w1 =⇒ . . . =⇒ wh

a halting computation,
ComX(n, Π) = min{ComX(δ) | δ : w0 =⇒ w1 =⇒ . . . =⇒ wh

is a halting computation in Π with the result n},
ComX(Π) = max{ComX(n,Π) | n ∈ N(Π)},
ComX(Q) = min{ComX(Π) | Q = N(Π)}.

In this way, we have the possibility to assess the communication complexity
of sets of numbers with respect to EC P systems; actually, the class of systems
can be changed, as communication plays an important role in many classes of P
systems, so that we can write ComXCL(Q), where CL is a particular class of P
systems, and in this way, we can compare the complexity of a set of numbers with
respect to various types of systems generating it.

Now, we can also consider families of sets of numbers of a given maximal
complexity:

NFComX(k) = {Q ⊆ N | ComX(Q) ≤ k},
for given k ≥ 0, with NFComX(fin) being the union of all these families, and
NFComX(∞) the family of all sets of numbers computed by P systems of a given
type. As in most cases, this family is equal to NRE, while non-cooperative P
systems without communication generate only semilinear sets, [12], hence we can
write

SLIN ⊆ NFComX(0) ⊆ NFComX(1) ⊆ . . .

. . . ⊆ NFComX(fin) ⊆ NFComX(∞) = NRE.

Many open problems and research topics arise in this context. First, the previ-
ous definition refers to EC P systems (hence to symport/antiport communication
rules), but not to the way of using the rules, in the sense of the relation between
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evolution and communication operations – remember that in the previous sections
we distinguished three possibilities in this respect.

This can be very important for the results we obtain: let us consider the system
Π whose initial configuration is indicated in Figure 2, and define transitions in
the mode CPE, hence with priority of communication over evolution (the output
membrane is the skin one).

'
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$

%

1

cb2

c → bbcc

c → e

2

c → c(ce, in)

Fig. 2. An EC P system generating a non-semilinear set of numbers

Using the rule c → bbcc, the number of copies of b and c increases exponentially.
The number of objects b will always be twice the number of objects c in membrane
1. If in a given step we use both the rule c → bbcc and the rule c → e, then we
have at the same time both objects c and e in membrane 1. Hence the rule (ce, in)
can be used, with priority. In this case, the computation never stop, since the rule
c → c can be used forever in membrane 2. Therefore, we either use only the rule
c → bbcc or only the rule c → e. After n finite number of steps, the computation
will stop with 3 ·2n objects in region 1, for some n ≥ 0 (the value n = 0 is obtained
if we use the rule c → e in the first step). This means that the system generates a
non-semilinear set of numbers.

If we go back to our definition, we can extend it to other classes of P systems. A
direct passage is via P systems with active membranes, where we have in and out
rules much similar to the symport rules (but used in a sequential way, one in each
membrane). Also transition P systems have communication commands, which can
be counted when defining communication complexity parameters as above.

Then, more technically, we ask the folowing: is the previous hierarchy of com-
plexity classes infinite? We conjecture that for many types of P systems (we believe
that this is the case for EC P systems, with or without energy associated with com-
munication rules, without a priority relation between evolution and communication
operations) we have the following relations:

SLIN = NFComX(k) = NFComX(fin) ⊂ NFComX(∞) = NRE,
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for all k ≥ 0. Interesting enough intrinsically, such a result would make non-
interesting (showing that they are not sensitive enough) the complexity measures
themselves. Since only two complexity classes are distinguished, sets of finite com-
plexity and sets of infinite complexity. (This should be contrasted, for instance,
with the results related to the index of context-free languages – see details in [5]
– which have a somewhat similar definition, but leads to an infinite hierarchy of
languages.)

A natural extension is from sets of numbers to sets of vectors of numbers.
Sometimes this makes differences between families generated.

An interesting idea is also to relate the communication complexity, defined in
any given way, with the number computed, i.e., to consider measures of the form

ComX ′(n) =
ComX(n,Π)

n
,

where n ∈ N(Π). Such “relativized” measures are not at all frequent in membrane
computing, although the relation with (the length of) the result of a computation
looks appealing.

From our definitions, it directly follows that we have the relations ComN(α) ≤
ComR(α) ≤ ComW (α), for all possible α – step of a computation, computation,
system, etc. It would be interesting to study, e.g., the family of numbers generated
by systems Π for which the previous relations are equalities.

6 Communication Complexity as a Computation Regulator

In the previous section, we have considered the “amount of communication” as a
property of computations and computing devices. An attractive idea would be to
change the perspective and consider (the value of) this parameter as a condition
to be imposed to computations in a given system. Instead of considering the set
of numbers computed by all computations, we consider only a subset of all such
numbers which can be obtained in the end of computations with a bounded com-
munication complexity. Specifically, we can define Nmode(Π,ComX ≤ k) to be
the set of numbers which can be generated by an EC P system Π (with energy
associated with the communication rules) by means of computations δ such that
ComX(δ) ≤ k, for k ≥ 0.

In what follows, we consider only the measure ComN (the number of steps
when communication rules are used). Like in the previous section, an example is
given proving that, at least for modes CPE,CME, systems with a small com-
munication complexity can generate already non-semilinear sets. The example is
given in Figure 3. For this system Π, we have

Nmode(Π, ComN ≤ 1) = {2n | n ≥ 1},

for mode ∈ {CPE, CME} (the output membrane is the internal one).
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Fig. 3. An EC P systems with restricted communication complexity

It is clear from Figure 3 that the computation can stop only after using the rule
a → ee, and without using the rule (#e, in). If any copy of e is introduced, then a
communication must be done, irrespective whether communication has priority or
not (in the CME case, because of the maximal parallelism, the rule (#e, in) must
be used if the rule (ae, in) is not used). This means that after a number n ≥ 0 of
steps, where only the rule a → aa is used (hence 2n+1 copies of a are produced),
then we use the rule a → ee.

If we have the same number of copies of a and of e, then all these objects are
used by the rule (ae, in), and the computation stops – with only one communica-
tion step. The number generated is of the form 2m, for some m ≥ 1. If we have
more copies of e than that of a, then the rule (#e, in) must be used. In this case,
the computation never stops. If we have more copies of a than that of e, then
either we use the rule (#e, in) or the rule (ae, in). Using rule (#e, in) will result
to a computation that never ends. While all copies of e will be consumed by the
application of the rule (ae, in). The remaining copies of a should evolve further.
Thus, in a subsequent step we have to use again the communication rules. This
means, the computation will have more than one communication steps, hence it is
not accepted. Thus, (halting) computations with at most one communication step
generate all and only the powers of 2.

Like before, a more systematic study of using the communication complexity as
a tool to regulate computations remains to be done. We could ask several questions
which are similar to those formulated in the previous section: Which is the power
of finite communication? Does the communication thresholds induce an infinite
hierarchy? What about other complexity measures, what about the mode EPC?

7 Communication Complexity of Solving Problems

In this section, let us consider our communication complexity measure as a stan-
dard complexity measure in solving problems. As we have already noticed, the
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measure ComN is nothing else but the parameter time (number of computation
steps) when we ignore the evolution steps and counting only the steps when at
least one communication rule is used. This implies that the whole range of ques-
tions dealt within the theory of time complexity, [17], can be adopted for the new
measure. Whether or not anything of interest can be obtained in this way remains
to be explored. On the other hand, we could start with what it means to solve
a problem Q using a class CL of P systems, and take “for free” the definition of
complexity classes with a given communication effort.

In this context, we may start by having a problem Q, characterized by a size
parameter size taking values from the natural numbers, and the set of instances
IQ taking Boolean values (true and false). We say that a family Π(n), n ≥ 1,
solves (uniformly) the problem Q if (i) each system Π(n) is constructed starting
from Q and n (hence not from the instances of size n of the problem), and (ii)
introducing a code cod(iQ) of an instance iQ of size n as a multiset in the skin
region of system Π(n), the computation halts if and only if iQ is true (hence the
family Π(n), n ≥ 1, is sound and complete with respect to Q).

Note that we have said nothing here about the complexity of solving the prob-
lem, that is why we have said nothing about the complexity of constructing the
systems Π(n), n ≥ 1, starting from Q and n, neither on the complexity of comput-
ing cod(iQ) starting from iQ, nor on the complexity of the halting computation in
Π(n). All these have natural definitions in the case of time complexity, especially
when dealing with complexity classes at least polynomial: all these computations
should be performed in at most polynomial time.

Here we have a problem: we want also to investigate complexity classes defined
according to finite thresholds: such a class contains all problems which can be
decided making use of a given number of communication steps, a natural number
k ≥ 0. The construction of the systems Π(n), n ≥ 1, and the computation of
cod(iQ) are done by a Turing machine, and for Turing machines we do not know
what communication complexity means.

Therefore, we will ask, as usual questions in time complexity area, to have the
systems Π(n), n ≥ 1, constructed by a Turing machine in a polynomial time. The
polynomial restriction, however, seems to be too permissive for the computation
of the code of the problem instance: in a polynomial time, we can already solve the
problem, hence cod(iQ) can be a single bit, 1 if the instance is true and 0 otherwise.
This is not acceptable, and we do not have a general solution to this issue, that
is why below we only consider problems whose true instances are described by
numerical relations.

For instance, for a relation relk ⊆ Nk, for some k ≥ 2, we consider the problem
Qrelk whose instances are of the form iQrelk = (n1, n2, . . . , nk), where ni ∈ N,
1 ≤ i ≤ k, with

iQrelk(n1, . . . , nk) = true iff (n1, n2, . . . , nk) ∈ relk.
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In such a case, for an instance of size k we input in the skin region a multiset
of the form an1

1 an2
2 . . . ank

k , and we expect that the system Π(k) halts if and only
if the instance has the value true.

Another issue appears here, concerning the way the system is working: de-
terministically, non-deterministically, confluently. In the previous definition, the
system is supposed non-deterministic, the instance of the problem is decided to be
true if there is a computation which halts, irrespective of how many computations
starting in the initial configuration do not halt. Of course, this can be changed,
working only with deterministic systems.

In this setup, we say that the problem Q belongs to the complexity class
FComX(s), s ≥ 0, if each instance of size k of Q which is true leads to a halting
computation δ of Π(k) which has ComX(δ) ≤ s, for each X ∈ {N, R,W} (as in
Section 5). Note that in Section 5 we have considered families of sets of numbers
which can be generated by EC P systems with the communication complexity
bounded – more precisely, with at least one computation having the communica-
tion complexity bounded – while here we consider classes of problems associated
with numerical relations, with the relation itself “recognized” by the system by
means of computations with a bounded communication complexity. Of course, the
classes FComX(s) should also indicate the class of P systems used, but here we
always consider EC P systems with quanta of energy, as in the previous sections
(in particular, with minimal symport and antiport rules, moving only one object
in a direction, with the help/consumption of a quantum of energy).

In what follows, we only briefly investigate the measure ComN , i.e., the number
of steps when a communication rule is used.

According to the definitions, we have the inclusion FComN(s) ⊆ FComN(s+
1), for all s ≥ 0, and it is expected that these inclusions are strict.

We can prove this for the first inclusion, making use of the problem associated
with the equality relation,

eqk = {(n, n, . . . , n) | n ≥ 0} ⊂ Nk,

for k ≥ 2.
Actually, we believe that this problem can be used in order to prove that

the hierarchy FComN(s), s ≥ 0, is infinite. The constructive part is easy. We
start by giving the system which decides Qeq2, in order to make clear the general
construction.

The system Π(2) is given in Figure 4. The system contains only one object, d;
the computation starts by introducing an1

1 an2
2 in the skin region. Immediately, all

objects a1 are transformed into quanta of energy and all a2 are primed. If n1 > n2,
then at least one copy of e remains unused by the rule (a′2e, in), hence the rule
(de, in) must be used and the computation never stops, because of the rule d → d
in R2. If n2 > n1, then, after consuming the n1 copies of e, at least one a′2 remains
to evolve forever by means of the rule a′2 → a′2 in R1. If we have n1 = n2, then the
computation can stop after two steps, with all copies of e consumed, all copies of
a′2 introduced in membrane 2, and object d remaining idle in the skin region.
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Fig. 4. An EC P system which decides Qeq2

Thus, Qeq2 ∈ FComN(1). Note that the previous reasoning is valid for both
modes CPE and CME, and below we will also work in these modes (with this
semantics of our systems).

The fact that Qeq2 /∈ FComN(0) is obvious: the evolution rules we use in
our systems are non-cooperative, they cannot compare numbers, hence we need at
least one communication step.

The relation Qeqk ∈ FComN(k − 1) can be proved in general. The system
Π(k) used to this aim is given in Figure 5.
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Fig. 5. An EC P system deciding Qeqk
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This system halts if and only if n1 = n2 = . . . = nk, and this is done by means
of a computation which has k− 1 communication steps. In a sequence, one checks
whether or not n1 = n2, n1 = n3, and so on until n1 = nk, and each of these
subproblems is solved in the way already shown in the case of k = 2 in Figure 4:
rules associated with a1 generate continuously copies of e; if their number is equal
to the number of copies of a

(j)
i produced at the same time, then the computation

can continue without producing the trap object # and without introducing the
object d in membrane 2 (in both cases, the computation would continue forever).
This means that for each comparison we have a communication step, in total k−1,
which shows that Qeqk ∈ FComN(k − 1).

We conjecture that Qeqk /∈ FComN(k − 2), hence that the hierarchy
FComN(k), k ≥ 0, is infinite.

A more systematic investigation of classes FComN(k), k ≥ 0, remains to be
carried out, maybe starting with further decision problems based on relations
among numbers (hopefully, for one of them the strictness of the hierarchy will be
obtained). Which problems can be decided in finite time? Which is the relation
between usual complexity classes, with the time/space related by a function to the
size of the input problem, and classes defined in a similar way for communication
complexity measures?

What about considering other parameters than ComN , for instance, ComR?
In some sense, counting the rules used in each communication step corresponds to
the definition of so-called Sevilla carpet, see [2], [6]. Can this connection be made
more precise?

These and many other questions remain to be answered. Then, all these prob-
lems – as well as those formulated in the previous sections – can be extended to
other classes of P systems, as communication rules/tools appear in all of them.

8 Closing Remarks

Communication plays an essential role in P systems, so that it is rather natu-
ral to investigate this feature more carefully, in particular, to define parameters
measuring the communication efforts of a computation, hence of a system. This
question is also motivated in view of the fact that P systems are distributed par-
allel computing devices, hence a classic theory of communication complexity [7]
is plausible in this framework. The present paper contributes only preliminarily
to this research direction, by considering the effort of communication in EC P
systems (in the form of quanta of energy consumed by the communication rules),
and by proposing some dynamical communication complexity measures (and some
problems and conjectures about them). In some sense, the main aim of this paper
was to call the attention to this research area, almost untouched in membrane
computing, and we hope that the reader will take this challenge and fill in this
gap.
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A direct continuation of the present paper is [14], where so-called dP systems
are introduced and dP automata are briefly investigated; they are a natural frame-
work for investigating communication complexity issues, thus proposing an answer
to this question formulated in the present paper.
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eds.), Technical Report 01/04 of Research Group on Natural Computing, Sevilla
University, Spain, 2004, 354–365.
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Summary. The aim of this paper is to introduce the class of languages generated by
the transitional model of membrane systems without cooperation and without additional
ingredients. The fundamental nature of these basic systems makes it possible to also
define the corresponding class of languages it in terms of derivation trees of context-free
grammars. We also compare this class to the well-known language classes and discuss its
properties.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed multiset
processing. It has been introduced by Gheorghe Păun in 1998, and remains an
active research area, see [6] for the comprehensive bibliography and [3],[4] for a
systematic survey.

The configurations of membrane systems (with symbol objects) consist of mul-
tisets over a finite alphabet, distributed across a tree structure. Therefore, even
such a simple structure as a word (i.e., a sequence of symbols) is not explicitly
present in the system. To speak of languages as sets of words, one first needs to
represent them in membrane systems, and there are a few ways to do it.

• Represent words by string objects. Rather many papers take this approach, see
Chapter 7 of [4], but only few consider parallel operations on words. Moreover,
a tuple of sets or multisets of words is already a quite complicated structure.
The third drawback is that it is very difficult to define an elegant way of
interactions between strings. Polarizations and splicing are examples of that;
however, these are difficult to use in applications. In this paper we focus on
symbol objects.
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• Represent a word by a single symbol object, or by a few objects of the form
(letter,position) as in, e.g., [1]. This only works for words of bounded length,
i.e., one can speak about at most finite languages.

• Represent positions of the letters in a word by nested membranes. The cor-
responding letters can be then encoded by objects in the associated regions,
membrane types or membrane labels. Working with such a representation, even
implementing a rule a → bc requires sophisticated types of rules, like creating
a membrane around existing membrane, as defined in [2].

• Consider letters as digits and then view words as numbers, or use some other
encoding of words into numbers or multisets. Clearly, the concept of words
ceases to be direct with such encoding. Moreover, implementing basic word
operations in this way requires a lot of number processing, not to speak of
parallel word operations.

• Do all the processing by multisets, and regard the order of sending the objects
in the environment as their order in the output word. In case of ejecting mul-
tiple symbols in the same step, the output word is formed from any of their
permutations. This paper is devoted to this way.

Informally, the class of languages we are interested in is the class generated
by systems with parallel applications of non-cooperative rules that rewrite objects
and/or send them between the regions. Surprisingly, this language class did not yet
receive enough attention of researchers. Almost all known characterizations and
even bounds for generative power of different variants of membrane systems with
various ingredients and different descriptional complexity bounds are expressed in
terms of REG, MAT , ET0L and RE, their length sets and Parikh sets (and much
less often in terms of FIN or other subregular classes, CF or CS). The membrane
systems language class presents interest since we show it lies between regular and
context-sensitive classes, being incomparable with well-studied intermediate ones.

2 Definitions

2.1 Formal language preliminaries

Consider a finite set V . The set of all words over V is denoted by V ∗, the con-
catenation operation is denoted by • and the empty word is denoted by λ. Any
set L ⊆ V ∗ is called a language. For a word w ∈ V ∗ and a symbol a ∈ V , the
number of occurrences of a in w is written as |w|a. The permutations of a word
w ∈ V ∗ are Perm(w) = {x ∈ V ∗ | |x|a = |w|a∀a ∈ V }. We denote the set of all
permutations of the words in L by Perm(L), and we extend this notation to classes
of languages. We use FIN , REG, LIN , CF , MAT , CS, RE to denote finite,
regular, linear, context-free, matrix, context-sensitive and recursively enumerable
families of languages, respectively. The family of languages generated by extended
(tabled) interactionless L systems is denoted by E(T )0L. For more formal language
preliminaries, we refer the reader to [5].



The Membrane Systems Language Class 25

Throughout this paper we use string notation to denote the multisets. When
speaking about membrane systems, keep in mind that the order in which symbols
are written is irrelevant.

2.2 Transitional P systems

A membrane system is defined by a tuple

Π = (O,µ, w1, · · · , wm, R1, · · · , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of m membranes, bijectively labeled by 1, · · · ,m,

the interior of each membrane defines a region;
the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

The rules of a membrane systems have the form u → v, where u ∈ O+, v ∈
(O × Tar)∗. The target indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m}
are written as a subscript, and target here is typically omitted. In case of non-
cooperative rules, u ∈ O.

The rules are applied in maximally parallel way: no further rule should be
applicable to the idle objects. In case of non-cooperative systems, the concept of
maximal parallelism is the same as evolution in L systems: all objects evolve by
the associated rules in the corresponding regions (except objects a in regions i
such that Ri does not contain any rule a → u, but these objects do not contribute
to the result). The choice of rules is non-deterministic.

A sequence of transitions is called a computation. The computation halts when
such a configuration is reached that no rules are applicable. The result of a (halting)
computation is the sequence of objects sent to the environment (all the permuta-
tions of the symbols sent out in the same time are considered). The language L(Π)
generated by a P system Π is the union of the results of all computations. The
class of languages generated by non-cooperative transitional P systems with at
most m membranes is denoted by LOPm(ncoo, tar). If the number of membranes
is not bounded, m is replaced by ∗ or omitted. If the target indications of the form
inj are not used, tar is replaced by out.

Example 1. To illustrate the concept of generating languages, consider the follow-
ing P system:

Π = ({a, b, c}, [
1

]
1
, a2, {a → λ, a → a boutc

2
out}, 0).

Each of the two symbols a has a non-deterministic choice whether to be erased
or to reproduce itself while sending a copy of b and two copies of c into the
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environment. Therefore, the contents of region 1 can remain a2 for an arbitrary
number m ≥ 0 of steps, and after that at least one copy of a is erased. The other
copy of a can reproduce itself for another n ≥ 0 steps before being erased. Each
of the first m steps, two copies of b and four copies of c are sent out, while in each
of the next n steps, only one copy of b and two copies of c are ejected. Therefore,
L(Π) = (Perm(bccbcc))∗(Perm(bcc))∗.

3 Context-free grammars and time-yield

Consider a non-terminal A in a grammar G = (N,T, S, P ). We denote by GA the
grammar (N, T, A, P ) obtained by considering A as axiom in G.

A derivation tree in a context-free grammar is always a rooted tree with leaves
labeled by terminals and all other nodes labeled by non-terminals. Rules of the
form A → λ cause a problem, which can be solved by allowing to also label leaves
by λ, or by transformation of the corresponding grammar. Note: throughout this
paper by derivation trees we only mean finite ones. Consider a derivation tree τ .

The n-th level yield yieldn of τ can be defined as follows:

We define yield0(τ) = a if τ has a single node labeled by a ∈ T , and
yield0(τ) = λ otherwise.
Let k be the number of children nodes of the root of τ , and τ1, · · · , τk be
the subtrees of τ with these children as roots. We define yieldn+1(τ) =
yieldn(τ1) • yieldn(τ2) • · · · • yieldn(τk).

We now define the time yield Lt of a context-free grammar derivation tree τ ,
as the usual yield except the order of terminals is vertical from root instead of left-
to-right, and the order of terminals at the same distance from root is arbitrary.
We use

∏
to denote concatenation in the following formal definition:

Lt(τ) =
height(τ)∏

n=0

(Perm(yieldn(τ))).

The time yield Lt(G) of a grammar G is the union of time yields of all its derivation
trees. The corresponding class of languages is

Lt(CF ) = {Lt(G) | G is a context-free grammar}.

Example 2. Consider a grammar G1 = ({S, A, B, C}, {a, b, c}, S, P ), where

P = {S → SABC,S → ABC, A → A,B → B, C → C, A → a,B → b, C → c}.

We now show that Lt(G1) = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c > 0} = L.
Indeed, all derivations of A are of the form A ⇒∗ A ⇒ a. Likewise, symbols B, C
are also trivially rewritten an arbitrary number of times and then changes into a
corresponding terminal. Hence, Lt(G1A) = {a}, Lt(G1B) = {b}, Lt(G1C) = {c}.



The Membrane Systems Language Class 27

For inclusion Lt(G) ⊆ L it suffices to note that S always generates the same
number of symbols A, B,C.

The converse inclusion follows from the following simulation: given a word
w ∈ L, generate |w|/3 copies of A,B,C, and then apply their trivial rewriting in
such way that the timing when the terminal symbols appear corresponds to their
order in w.

Corollary 1. Lt(CF ) 6⊆ CF .

4 Membrane class via CF derivation trees

We first show that for every membrane system without cooperation, there is a
system from the same class with one membrane, generating the same language.

Lemma 1. LOP (ncoo, tar) = LOP1(ncoo, out).

Proof. Consider an arbitrary transitional membrane system Π (without coopera-
tion and without additional ingredients). The known technique of flattening the
structure consists of transforming Π in the following way. Object a in region asso-
ciated to membrane i is transformed into object (a, i) in the region associated to
the single membrane. The alphabet, initial configuration and rules are transformed
accordingly. Clearly, the configurations of the old system and the new system are
isomorphic, and the output in the environment is the same.

Theorem 1. Lt(CF ) = LOP (ncoo, tar).

Proof. By Lemma 1, the statement is equivalent to Lt(CF ) = LOP1(ncoo, out).
Consider a P system Π = (O, [1 ]1, w, R, 0). We construct a context-free grammar
G = (O′ ∪ {S}, O, S, P ∪ {S → w}), where S is a new symbol, ′ is a morphism
from O into new symbols and

P = {a′ → u′v | (a → u vout) ∈ R, a ∈ O, u, v ∈ O∗}
∪ {a′ → λ | ¬∃(a → u vout) ∈ R}.

Here vout are those symbols on the right side of the rule in R which are sent out
into the environment, and u are the remaining right-side symbols.

The computations of Π are identical to parallel derivations in G, except the
following:

• Unlike G, Π does not keep track of the left-to-right order of symbols. This
does not otherwise influence the derivation (since rules are context-free) or the
result (since the order of non-terminals produced in the same step is arbitrary,
and the timing is preserved).

• The initial configuration of Π is produced from the axiom of G in one additional
step.
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• The objects of Π that cannot evolve are erased in G, since they do not con-
tribute to the result.

It follows that Lt(CF ) ⊇ LOP (ncoo, tar). To prove the converse inclusion, con-
sider an arbitrary context-free grammar G = (N,T, S, P ). We construct a P system
Π = (N ∪ T, [1 ]1, S, R, 0), where R = {a → h(u) | (a → u) ∈ R}, where h is a
morphism defined by h(a) = a, a ∈ N and h(a) = aout, a ∈ T . The computations
in Π correspond to parallel derivations in G, and the order of producing terminal
symbols in G corresponds to the order of sending them to the environment by Π,
hence the theorem statement holds.

We now present a few normal forms for the context-free grammars.

Lemma 2. (First normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′.

• the axiom does not appear in the right side of any rule, and
• if the left side is not the axiom, then the right side is not empty.

Proof. The technique is essentially the same as removing λ-productions in classical
theory of context-free grammars. Let G = (N,T, S, P ). First, introduce the new
axiom S′ and add a rule S′ → S. Compute the set E ⊆ N of non-terminals that
can derive λ by closure of

(A → λ) −→ (A ∈ E),
(A → A1 · · ·Ak), (A1, · · · , Ak ∈ E) −→ (A ∈ E).

Then replace productions A → u by A → h(u), where h(a) = {a, λ} if a ∈ E and
h(a) = a if a ∈ N ∪ T \ E. Finally, remove λ-productions for all non-terminals
except the axiom. Note that this transformation preserves not only the generated
terminals, but also the order in which they are generated.

The First normal form shows that erasing can be limited to the axiom.

Lemma 3. (Binary normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′.

• the First normal form holds,
• the right side of any production is at most 2.

Proof. The only concern in splitting the longer productions of G = (N,T, S, P )
in shorter ones is to preserve the order in which non-terminals are produced. The
number

n = dlog2

(
max(A→u)∈P |u|

)e
is the number of steps sufficient to implement all productions of G by at most
binary productions. Each production p : A → A1 · · ·Ak, k ≤ 2n, is replaced by
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A → p0,0,

pi,j → pi+1,2jpi+1,2j+1 for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2i − 1,

pn,i−1 → Ai for 1 ≤ i ≤ k,

pn,i → λ for k ≤ i ≤ 2n.

these productions implement a full binary tree of depth n, rooted in A with new
symbols in intermediate nodes, and leaves labeled A1, · · · , Ak, all remaining leaves
labeled λ (the first and last chain productions are given for the simplicity of the
presentation). It only remains to convert the grammar obtained to the First normal
form. Indeed, the derivations in the obtained grammar correspond to the derivation
of the original one, with the slowdown factor of n + 2, and the order of producing
terminal symbols is preserved. Obviously, converting into the First normal form
does not increase the size of the right side of productions.

The Binary normal form shows that productions with right side longer than two
are not necessary.

Lemma 4. (Third normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′.

• the Binary normal form holds,
• G′ = (N,T, S, P ′) and every A ∈ N is reachable,
• either G′ = ({S}, T, S, {S → S}), or G′ = (N,T, S, P ′) and for every A ∈ N ,

Lt(G′A) 6= ∅.
Proof. Consider a context-free grammar in the Binary normal form. First, compute
the set D ⊆ N of productive non-terminals as closure of

(A → u), (u ∈ T ∗) −→ (A ∈ D)
(A → A1 · · ·Ak), (A1, · · · , Ak ∈ D) −→ (A ∈ D).

Remove all non-terminals that are not productive from N , and all productions
containing them. If the axiom was also removed, then Lt(G) = ∅, hence we can
take G′ = ({S}, T, S, {S → S}). Otherwise, compute the set R ⊆ N of reachable
non-terminals as closure of

(S ∈ R),
(A ∈ R), (A → A1 · · ·Ak) −→ (A1, · · · , Ak ∈ R).

Remove all non-terminals that are not reachable from N , and all productions
containing them. Note that all transformations preserve the generated terminals
and the order in which they are produced, as well as the Binary normal form.

The Third normal form shows that never ending derivations are only needed to
generate the empty language.
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5 Comparison with known classes

Theorem 2. LOP (ncoo, tar) ⊇ REG.

Proof. Consider an arbitrary regular language. Then there exists a complete finite
automaton M = (Q,Σ, q0, F, δ) accepting it. We construct a context-free grammar
G = (Q,Σ, q0, P ), where P = δ ∪ {q → λ | q ∈ F}. The order of symbols accepted
by M corresponds to the order of symbols generated by G, and the derivation can
only finish when the final state is reached. Hence, Lt(G) = L(M), and the theorem
statement follows.

Theorem 3. LOP (ncoo, tar) ⊆ CS.

Proof. Consider a context-free grammar G = (N,T, S, P ) in the First normal form.
We construct a grammar G′ = (N ∪ {#1, L, R, F,#2}, T, S′, P ′), where

P ′ = {S′ → #1LS#2, L#2 → R#2,#1R → #1L, #1R → F, F#2 → λ}
∪ {LA → uL | (A → u) ∈ P} ∪ {La → aL, Fa → aF | a ∈ T}
∪ {aR → Ra | a ∈ N ∪ T}.

The symbols #1, #2 mark the edges, the role of symbol L is to apply productions
P to all non-terminals, left-to-right, while skipping the terminals. While reaching
the end marker, symbol L changes into R and returns to the beginning marker,
where it either changes back to L to iterate the process, or to F to check whether
the derivation is finished.

Hence, L(G′) = Lt(G). Note that the length of sentential forms in any deriva-
tion (of some word with n symbols in G′) is at most n + 3, because the only
shortening productions are the ones removing #1,#2 and F , and each should be
applied just once. Therefore, Lt(G) ∈ CS, and the theorem is proved.

We now proceed to showing that the membrane systems language class does
not contain the class of linear languages. To show this, we first define the notions
of unbounded yield and unbounded time of a non-terminal.

Definition 1. Consider a grammar G = (N,T, S, P ). We say that A ∈ N has an
unbounded yield if Lt(GA) is an infinite language, i.e., there is no upper bound on
the length of words generated from A.

It is easy to see that Lt(GA) is infinite if and only if L(GA) is infinite; decidability
of this property is well-known from the theory of context-free grammars.

Definition 2. Consider a grammar G = (N, T, S, P ). We say that A ∈ N has
unbounded time if the set of all derivation trees (for terminated derivations) in
GA is infinite, i.e., there is no upper bound on the number of parallel steps of
terminated derivations in GA.

It is easy to see that A has unbounded time if L(GA) 6= ∅ and A ⇒+ A, so decid-
ability of this property is well-known from the theory of context-free grammars.
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Lemma 5. Let G = (N,T, P, S) be a context-free grammar in the Third normal
form. If for every rule (A → BC) ∈ P , symbol B does not have unbounded time,
than Lt(G) ∈ REG.

Proof. Assume the premise of the lemma holds. Let F be the set of the first
symbols in the right sides of all binary productions. Then there exists a maximum
m of time bounds for the symbols in F . For every such symbol B ∈ F there also
exists a finite set t(B) of derivation trees in GB . Let t = {∅} ∪⋃

B∈F t(B) be the
set of all such derivation trees, also including the empty tree. We recall that t is
finite.

We perform the following transformation of the grammar: we introduce non-
terminals of the form A[τ1, · · · , τm−1], A ∈ N ∪ ∅, τi ∈ t, 1 ≤ i ≤ m− 1. The new
axiom is S[∅, · · · , ∅]. Every binary production A → BC is replaced by productions

A[τ1, · · · , τm−1] → yield0(τ)yield1(τ1) · · · yieldm−1(τm−1)
C[τ, τ1, · · · , τm−2] for all τ ∈ t(B).

Accordingly, productions A → C, C ∈ N are replaced by productions

A[τ1, · · · , τm−1] → yield1(τ1) · · · yieldm−1(τm−1)C[∅, τ1, · · · , τm−2],

and productions A → a, a ∈ T are replaced by productions

A[τ1, · · · , τm−1] → a yield1(τ1) · · · yieldm−1(τm−1)∅[∅, τ1, · · · , τm−2].

Finally, ∅[∅, · · · , ∅] → λ and

∅[τ1, · · · , τm−1] → yield1(τ1) · · · yieldm−1(τm−1)∅[∅, τ1, · · · , τm−2].

In simple words, if the effect of one symbol is limited to m steps, then the choice
of the corresponding derivation tree is memorized as an index in the other symbol,
and needed terminals are produced in the right time. In total, m indexes suffice.
It is easy to see that underlying grammar is regular, since only one non-terminal
symbol is present.

Lemma 6. L = {anbn | n ≥ 1} /∈ LOP (ncoo, tar).

Proof. Suppose there exists a context-free grammar G = (N,T, S, P ) in the Third
normal form such that Lt(G) = L. Clearly, there must be a rule A → BC or
A → CB ∈ P such that both B and C have unbounded time (by Lemma 5, since
L /∈ REG) and C has unbounded yield (since L /∈ FIN).

Clearly, languages generated by any non-terminal from N must be scattered
subwords of words from L, otherwise G would generate some language not in L.
Thus, Lt(GB), Lt(GC) ⊆ {aibj | i, j ≥ 0}. It is not difficult to see that GC must
produce both symbols a and b. Indeed, since the language generated from C is
infinite, substituting derivation trees for C with different numbers of one letter
must preserve the balance of two letters. We now consider two cases, depending
on whether Lt(GB) ⊆ a∗.



32 A. Alhazov et al.

If B only produces symbols a, then consider the shortest derivation tree τ
in GC . Since B has unbounded time, some symbol a can be generated after the
first letter b appears in τ , so Lt(G) generates some word not in L, which is a
contradiction.

Now consider the case when B can produce a symbol b in some derivation tree
τ in GB . On one hand, a bounded number of letters a can be generated from B
and C before the first letter b appears in τ ; on the other hand, C has unbounded
yield. Therefore, varying derivations under C we obtain a subset of Lt(G) which is
infinite, but the number of leading symbols a is bounded, so Lt(G) contains words
not in L, which is a contradiction.

Corollary 2. LIN 6⊆ LOP (ncoo, tar).

Lemma 7. The class LOP (ncoo, tar) is closed under permutations.

Proof. For a given grammar G = (N, T, S, P ), consider a transformation where the
terminal symbols a are replaced by non-terminals aN throughout the description
of G, and then the rules aN → aN , aN → a, a ∈ T are added to P . In a way similar
to the first example, the order in which terminals are generated is arbitrary.

Corollary 3. Perm(REG) ⊆ LOP (ncoo, tar).

Proof. Follows from regularity theorem 2 and permutation closure lemma 7.

The results of comparison of the membrane system class with the well-known
language classes can be summarized as follows:

Theorem 4. LOP (ncoo, tar) strictly contains REG and Perm(REG), is strictly
contained in CS, and is incomparable with LIN and CF .

Proof. All inclusions and incomparabilities have been shown in or directly follow
from Theorem 2, Corollary 3, Theorem 3, Corollary 2 and Corollary 1 with The-
orem 1. The strictness of the first inclusions follows from the fact that REG and
Perm(REG) are incomparable, while the strictness of the latter inclusion holds
since LOP (ncoo, tar) only contains semilinear languages.

The lower bound can be strengthened as follows:

Theorem 5. LOP (ncoo, tar) ⊇ REG • Perm(REG).

Proof. Indeed, consider the construction from the regularity theorem. Instead of
erasing the symbol corresponding to the final state, rewrite it into the axiom of
the grammar generating the second regular language, to which the permutation
technique is applied.

Example 3. LOP (ncoo, tar) 3 L2 =
⋃

m,n≥1(abc)mPerm((def)n).
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6 Closure properties

It has been shown above that the class of languages generated by basic mem-
brane systems is closed under permutations. We now present a few other closure
properties.

Lemma 8. The class LOP (ncoo, tar) is closed under erasing/renaming mor-
phisms.

Proof. Without restricting generality, we assume that the domain and range of
a morphism h are disjoint. For a given grammar G = (N, T, S, P ), consider a
transformation where the terminal symbols become non-terminals and the rules
a → h(a), a ∈ T are added to P . It is easy to see that the new grammar generates
exactly h(Lt(G)).

Corollary 4. {anbncn | n ≥ 1} /∈ LOP (ncoo, tar).

Proof. Assuming the contrary and applying morphism defined by h(a) = a′, h(b) =
b′, h(c) = λ, and then a morphism removing primes, we obtain a contradiction
with L = {anbn | n ≥ 1} /∈ LOP (ncoo, tar) from Lemma 6.

Corollary 5. LOP (ncoo, tar) is not closed under intersection with regular lan-
guages.

Proof. By Example 2, L = {w ∈ T ∗ | |w|a = |w|b = |w|c > 0} belongs to the
membrane systems language class. However, L ∩ a∗b∗c∗ = {anbncn | n ≥ 1} does
not, by Corollary 4.

Theorem 6. LOP (ncoo, tar) is closed under union and not closed under inter-
section or complement.

Proof. The closure under union follows from adding a new axiom and productions
of non-deterministic choice between multiple axioms. The class is not closed under
intersection because it contains all regular languages (Theorem 2) and is not closed
under intersection with them (Corollary 5). It follows that this class is not closed
under complement, since intersection is the complement of union of complements.

Lemma 9. L =
⋃

m,n≥1 Perm((ab)m)cn /∈ LOP (ncoo, tar).

Proof. Suppose there exists a context-free grammar G = (N,T, S, P ) in the Third
normal form such that Lt(G) = L. Clearly, there must be a rule A → BC or
A → CB ∈ P such that both B and C have unbounded time (by Lemma 5,
since L /∈ REG) and C has unbounded yield (since L /∈ FIN). By choosing as
A → BC or A → CB the rule satisfying above requirements which is first applied
in some derivation of G, we make sure that all three letters a, b, c appear in words
of Lt(GA).

Clearly, languages generated by any non-terminal from N must be scattered
subwords of words from L, otherwise G would generate some language not in
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L. Thus, Lt(GB), Lt(GC) ⊆ {a, b}∗c∗. We now consider two cases, depending on
whether Lt(GB) ⊆ {a, b}∗.

If B only produces symbols a, b, then consider the shortest derivation tree τ
in GC . Since B has unbounded time, some symbol a or b can be generated after
the first letter c appears in τ , so Lt(G) generates some word not in L, which is a
contradiction.

Now consider the case when B can produce a symbol c in some derivation tree
τ in GB . On one hand, a bounded number of letters a, b can be generated from B
and C before the first letter c appears in τ ; on the other hand, C has unbounded
yield. Therefore, varying derivations under C we obtain a subset of Lt(G) which
is infinite, but the number of leading symbols a, b is bounded, so Lt(G) contains
words not in L, which is a contradiction.

Corollary 6. LOP (ncoo, tar) is not closed under concatenation or taking the mir-
ror image.

Proof. Since
⋃

m≥1 Perm((ab)m) ∈ Perm(REG) ⊆ LOP (ncoo, tar) by Corollary 3
and c+ ∈ REG ⊆ LOP (ncoo, tar) by Theorem 2, the first part of the state-
ment follows from Lemma 9. Since

⋃
m,n≥1 cnPerm((ab)m) ∈ REG•Perm(REG) ⊆

LOP (ncoo, tar) by Theorem 5, the second part of the statement also follows from
Lemma 9.

7 Conclusions

In this paper we have reconsidered the class of languages generated by transitional
P systems without cooperation and without additional control. It was shown that
one membrane is enough, and a characterization of this class was given via deriva-
tion trees of context-free grammars. Next, three normal forms were given for the
corresponding grammars. It was than shown that the membrane systems language
class lies between regular and context-sensitive classes of languages, and it is in-
comparable with linear and with context-free languages. Then, the lower bound
was strengthened to REG • Perm(REG).

The membrane systems language class was shown to be closed under union,
permutations, erasing/renaming morphisms. It is not closed under intersection, in-
tersection with regular languages, complement, concatenation or taking the mirror
image.

The following are examples of questions that are still not answered.

• Clearly, LOP (ncoo, tar) 6⊇ MAT . What about LOP (ncoo, tar) ⊆ MAT?
• Is LOP (ncoo, tar) closed under arbitrary morphisms? The difficulty is to han-

dle h(a) = bc if many symbols a can be produced in the same step.
• Look for sharper lower and upper bounds.
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Summary. Array grammars have been studied in the framework of Membrane Comput-
ing by using rewriting rules from transition P systems. In this paper we present a new
approach to dealing with array grammars by using tissue-like P systems and present an
application to the segmentation of images in two dimensional computer graphics.

1 Introduction

Array grammars can be considered as a straightforward extension of string gram-
mars to two dimensional pictures. Such pictures are sets of symbols placed in the
points with integer coordinates of the plane. They have been widely studied and
have a large tradition in the literature (see, e.g. [2, 6, 16, 22]).

Recently, Membrane Computing has also approximated to array grammars by
setting bridges between both areas (see, e.g. [1, 14, 20]). The basic idea in such
approaches is considering an array (i.e., a finite set of objects placed in points of
the plane with integer coordinates) as a P system object and using rewriting rules
of the type used in transition P systems [13] for replacing it. The type of rule used
is x → y(tar) where x → y is a context-free rule and tar ∈ here, out, in is the
target which indicates the membrane where the generated object will be placed.
Such rewriting rules capture the idea of array production p : A → B with A and
B arrays.

In this paper we present a new approach for linking Membrane Computing to
array grammars. Instead of using transition P systems to handle the arrays we
propose to use tissue-like P systems. This approach allows us to use the power
of symport-antiport rules for designing Membrane Computing algorithms which
deal with array objects. In such P system model, the rules are of type (i, u/v, j)
with the following interpretation: If the multiset u occurs in a membrane with
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label i and the multiset v occurs in a membrane with label j, both multiset can
be interchanged. We consider an extension of this type of rules. We will consider
that two arrays A and B can appear (respectively) in the multisets u and v. The
semantics of such rule will be explained below, but the intuition is that the arrays
in the membranes i and j will be partially modified.

As a case study, we present an application of array tissue-like P systems to the
Segmentation Problem in computer vision.

Segmentation in computer vision (see [8]), refers to the process of partitioning a
digital image into multiple segments (sets of pixels). The goal of segmentation is to
simplify and/or change the representation of an image into something that is more
meaningful and easier to analyze for an human. Image segmentation is typically
used to locate objects and boundaries (lines, curves, etc.) in images. More precisely,
image segmentation is the process of assigning a label to every pixel in an image
such that pixels with the same label share certain visual characteristics.

In the literature, there exists different techniques to segment an image. Some of
them are clustering methods [23], histogram-based methods [21], Watershed trans-
formation methods [25] or graph partitioning methods [24]. Some of the practical
applications of image segmentation are medical imaging [23], the study of anatom-
ical structure, locate objects in satellite images (roads, forests, etc.) [19] or face
recognition [7] among others.

The paper is organized as follows: First we briefly recall some basic definitions
related to graphs and multisets and introduce our definition of pixel and array.
Next, we introduce a new P system model called Array tissue-like P systems on
the basis of tissue P systems. In Section 4, this P system model is used to find a
solution to the segmentation problem in Digital Image.

2 Definitions

An alphabet, Σ, is a non-empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (of length 0) is
denoted by λ. The set of strings of length n built with symbols from the alphabet Σ
is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset of Σ∗. A mul-
tiset over a set A is a pair (A, f) where f : A → N is a mapping. If m = (A, f) is a
multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0} and its size is
defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its support is the empty

set (resp. finite). If m = (A, f) is a finite multiset over A, then it is denoted by
m = a

f(a1)
1 a

f(a2)
2 · · · af(ak)

k , where supp(m) = {a1, . . . , ak}, and for each element
ai, f(ai) is called the multiplicity of ai. An undirected graph G is a pair G = (V, E)
where V is the set of vertices and E is the set of edges, each one of which is an
(unordered) pair of (different) vertices. If {u, v} ∈ E, we say that u is adjacent to
v (and also v is adjacent to u). The degree of v ∈ V is the number of adjacent
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vertices to v. In what follows we assume that the reader is already familiar with
the basic notions and the terminology underlying P systems3.

Next, we give a formalization of the arrays considered in this paper.

Definition 1. Given a finite set V , called an alphabet of colors, a pixel on V is a
pair 〈x, v〉 such that x ∈ Z2 and v ∈ V . An array on V , A, is a finite set of pixels
such that if 〈x1, v1〉, 〈x2, v2〉 ∈ A and v1 6= v2 then x1 6= x2. Finally, the support
of the array A is the set supp(A) = {x ∈ Z2 | ∃v ∈ V such that 〈x, v〉 ∈ A}.

Given an array A and z ∈ Z2, we will denote by A + z the set

A + z = {〈x + z, v〉 | 〈x, v〉 ∈ A}
Example 1. Let V = {R, G,B} be the alphabet of colors and A the array on V
A = {〈(3, 2), R〉, 〈(3, 3), G〉, 〈(5, 5), G〉}. Let us consider z = (−2, 1) ∈ Z2. The
array A + z is {〈(1, 3), R〉, 〈(1, 4), G〉, 〈(3, 6), G〉}.

If there are no confusion about the alphabet of colors, we will omit it and we
talk about pixels. As usual, we will denote by V ∗2 the set of all two dimensional
arrays over V .

3 Array Tissue-like P Systems

In the initial definition of the cell-like model of P systems [12], membranes are hi-
erarchically arranged in a tree-like structure. Its biological inspiration comes from
the morphology of cells, where small vesicles are surrounded by larger ones. This
biological structure can be abstracted into a tree-like graph, where the root repre-
sents the skin of the cell (i.e. the outermost membrane) and the leaves represent
membranes that do not contain any other membrane (elementary membranes).
Besides, two nodes in the graph are connected if they represent two membranes
such that one of them contains the other one.

In tissue P systems, the tree-like membrane structure is replaced by a general
graph. This model has two biological inspirations (see [9, 10]): intercellular com-
munication and cooperation between neurons. The common mathematical model
of these two mechanisms is a net of processors dealing with symbols and commu-
nicating these symbols along channels specified in advance. The communication
among cells is based on symport/antiport rules, which were introduced as commu-
nication rules for P systems in [11]. In symport rules, objects cooperate to traverse
a membrane together in the same direction, whereas in the case of antiport rules,
objects residing at both sides of the membrane cross it simultaneously but in op-
posite directions. Formally, a tissue-like P system of degree q ≥ 1 with input is a
tuple of the form

Π = (Γ,Σ, E , w1, . . . , wq,R, iΠ , oΠ),

where
3 We refer to [13] for basic information in this ares, to [15] for a comprehensive presen-

tation and the web site [26] for the up-to-date information.
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1. Γ is a finite alphabet, whose symbols will be called objects,
2. Σ(⊂ Γ ) is the input alphabet,
3. E ⊆ Γ (the objects in the environment),
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration,
5. R is a finite set of communication rules of the following form: (i, u/v, j), for

i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗,
6. iΠ ∈ {0, 1, 2, . . . , q},
7. oΠ ∈ {0, 1, 2, . . . , q}.

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells (each one
consisting of an elementary membrane) labeled by 1, 2, . . . , q. We will use 0 to refer
to the label of the environment, iΠ and oΠ denote the input region and the output
region (which can be the region inside a cell or the environment) respectively.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We interpret that E ⊆ Γ is the set of objects placed in the environment,
each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labeled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules.

In order to understand how we can obtain a computation of one of these P
systems we present an example of them:

Consider us the following tissue-like P system

Π ′ = (Γ, Σ, E , w1, w2,R, iΠ , oΠ)

where

1. Γ = {a, b, c, d, e},
2. Σ = ∅,
3. E = {a, b, e},
4. w1 = a3 e, w2 = b2 c d,
5. R is the following set of communication rules

(a) (1, a/b, 2),
(b) (2, c/b2, 0),
(c) (2, d/e2, 0),
(d) (1, e/λ, 0),

6. iΠ = 1,
7. oΠ = 0
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We can observe the initial configuration of this system in the Figure 1 (a). We
have four rules to apply. First rule is (1, a/b, 2). The rule can be applied whenever
an object ’a’ is founded in cell 1 and one copy of ’b’ appear in cell 2. This rule sends
’a’ to cell 2 and ’b’ from cell 2 to cell 1. Rule 2 is (2, c/b2, 0) and implies that when
symbol ’c’ present in cell 2 then this rule takes two copies of ’b’ from environment
and sends ’c’ to the environment (i.e. cell 0). Rule 3 is similar to rule 2. Rule 4,
(1, e/λ, 0), sends the object ’e’ to the environment. So, as we have 3 copies of ’a’
and 1 copy of ’e’ in cell 1 and 2 copies of ’b’, one copy of ’c’ and two copies of ’d’
appear in cell 2. Then, all the rules can be applied in a parallel manner. Figure
1(b) show the next configuration of the system after applying the rules. If reader
observes the initial elements in the environment of a tissue-like P systems (in this
case a, b), one can observe the number of the copies of these elements always appear
as one, because we have an arbitrary large amount of copies of them. The only
objects changing its number of copies in the environment during a computation
are the elements were not appear there initially. In this example, d has two copies
because it is not an initial element of the environment.

Fig. 1. (a) Initial Configuration of system Π ′ (b) Following Configuration of Π ′

(a) (b)

Next, we introduce a modification of this model in order to deal with arrays.
An array tissue-like P system of degree q ≥ 1 with input is a tuple of the form

Π = (Γ, V, E , w0, w1, . . . , wq, A1, . . . , Aq,R, iΠ , oΠ),

where

1. Γ is a finite alphabet, whose symbols will be called objects,
2. V is the alphabet of colors verifying V ∩ Γ = ∅.
3. E is a finite subset of arrays on V .
4. w0, w1, . . . , wq are strings over Γ representing the multisets of objects associ-

ated with the cells at the initial configuration,
5. A1, . . . , An are arrays on V , placed on the corresponding cells at the initial

configuration.
6. R is a finite set of communication rules of the following form: (i, uiWi/ujWj , j),

for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, ui, uj ∈ Γ ∗ and Wi,Wj two arrays on V .
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7. iΠ ∈ {0, 1, 2, . . . , q} is the input cell.
8. oΠ ∈ {0, 1, 2, . . . , q} is the output cell.

In a similar way to tissue-like P systems, an array tissue-like P system of degree
q ≥ 1 can be seen as a set of q cells (each one consisting of an elementary mem-
brane) labeled by 1, 2, . . . , q. We will use 0 to refer to the label of the environment,
iΠ and oΠ denote the input region and the output region (which can be the region
inside a cell or the environment) respectively.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We interpret that w0 is the set of objects placed in the environment,
each one of them available in an arbitrary large amount of copies.

For each i ∈ {1, . . . , q}, each Ai is an array placed in the cell i in the initial
configuration and E is the set of arrays placed in the environment, each one of
them available in an arbitrary large amount of copies. The empty array ∅ always
belongs to E . For all the non-empty copies, we will consider that the leftmost pixel
of the bottom row in the array corresponds to the coordinates (0, 0).

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered), regardless if the
environment is involved or not. In one step, each object in a membrane can only be
used for one rule (non-deterministically chosen when there are several possibilities),
but any object which can participate in a rule of any form must do it, i.e, in each
step we apply a maximal set of rules.

The main difference with respect tissue-like P systems is related to the appli-
cation of the rules.

Definition 2. Let us consider two index i, j such that i 6= 0 6= j and two non-
empty arrays Wi and Wj. The communication rule (i, uiWi/ujWj , j) is applicable
over two cells labeled by i and j if the following conditions are verified:

• ui is contained in cell i and uj is contained in cell j
• There exist two arrays, Ai in the cell i and Aj in the cell j and two pairs

z1, z2 ∈ Z2 such that
(a)Wi + z1 ⊆ Ai

(b) Wj + z2 ⊆ Aj

(c) supp(Wi) ∩ supp(Wj) 6= ∅
(d) supp(Ai − (Wi + z1)) ∩ supp(Wj + z1) = ∅
(e) supp(Aj − (Wj + z2)) ∩ supp(Wi + z2) = ∅
The application of this rule means that the objects of the multisets represented

by ui and uj are interchanged between the two cells. The arrays, Ai in the cell i
and Aj in the cell j are substituted by A′i and A′j respectively, where

A′i = (Ai − (Wi + z1)) ∪ (Wj + z1) A′j = (Aj − (Wj + z2)) ∪ (Wi + z2)

Note that if either Ai or Aj is the empty array, then the rule is not applicable.
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Example 2. Let us suppose that we have two cells with labels 1 and 2 with the fol-
lowing objects and arrays, [ z2c3A1 ]1 and [ d3k3bA2 ]2, with z2, c3, d3, k3, b objects
and A1, A2 arrays over {R, B,G}

A1 = {〈(1, 1), G〉, 〈(1, 2), G〉, 〈(2, 2), R〉, 〈(2, 3), B〉}
A2 = {〈(5, 5), G〉, 〈(6, 5), G〉, 〈(6, 6), G〉}

Let us consider the rule r1 ≡ (1, z2W1 / d3k3W2, 2) where W1 and W2 are the
arrays

W1 = {〈(7, 0), G〉, 〈(7, 1), G〉, 〈(8, 1), R〉}
W2 = {〈(7, 1), G〉, 〈(8, 1), G〉}

We will check that r1 is applicable to the cells 1 and 2

• z2 is contained in the cell 1 and d3k3 is contained in the cell 2.
• Let us consider z1 = (−6, 1) ∈ Z2 and z2 = (−2, 4) ∈ Z2

(a) W1 + z1 = {〈(1, 1), G〉, 〈(1, 2), G〉, 〈(2, 2), R〉} ⊆ A1

(b) W2 + z2 = {〈(5, 5), G〉, 〈(6, 5), G〉} ⊆ A2

(c) supp(Wi) ∩ supp(Wj) = {((7, 0), (7, 1), (8, 1)} ∩ {(7, 1), (8, 1)} 6= ∅
(d) A1 − (W1 + z1) = {〈(2, 3), B〉} and W2 + z1 = {〈(1, 2), G〉, 〈(2, 2), G〉}. By

considering their supports we have supp(A1 − (W1 + z1)) = {(2, 3)} and
supp(W2 + z1) = {(1, 2), (2, 2)}, then

supp(A1 − (W1 + z1)) ∩ supp(W2 + z1) = ∅

(e) A2 − (W2 + z2) = {〈(6, 6), G〉} and W1 + z2 = {〈(5, 4), G〉, 〈(5, 5), G〉,
〈(6, 5), R〉}. By considering their supports we have supp(A2− (W2 +z2)) =
{(6, 6)} and supp(W1 + z2) = {(6, 4), (5, 5), (6, 5)}, then

supp(A2 − (W2 + z2)) ∩ supp(W1 + z2) = ∅

The rule r1 is applicable to the cells 1 and 2, and the result of applying the
rule is [ d3k3c3A

′
1 ]1 and [ z2bA

′
2 ]2 where

A′1 = (A1 − (W1 + z1)) ∪ (W2 + z1)
= {〈(2, 3), B〉, 〈(1, 2), G〉, 〈(2, 2), G〉}

A′2 = (A2 − (W2 + z2)) ∪ (W1 + z2)
= {〈(6, 6), G〉, 〈(5, 4), G〉, 〈(5, 5), G〉, 〈(6, 5), R〉}

Next, we define the applicability of a rule if one of the regions involved is the
environment and the arrays are not empty.

Definition 3. Let us consider an index i 6= 0 and two non-empty arrays Wi and
W0. The communication rule (i, uiWi/u0W0, 0) is applicable over two cells labeled
by i and 0 if the following conditions are verified:

• ui is contained in cell i and u0 is contained in cell 0
• There exist an array Ai in the cell i and two pairs zi, z0 ∈ Z2 such that
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(a)Wi + zi ⊆ Ai

(b) supp(Wi + zi) ∩ supp(W0 + z0) 6= ∅
(c) supp(Ai − (Wi + zi)) ∩ supp(W0 + z0) = ∅
The application of this rule means that the objects of the multisets represented

by ui is removed from the cell i and substituted by the multiset represented by u0.
The arrays, Ai in the cell i is substituted by A′i where

A′i = (Ai − (Wi + zi)) ∪ (W0 + z0)

Example 3. Let us suppose the cell 1 with the following objects and arrays,
[ z3

2c3A1 ]1 and A1 the array over {R,B, G}

A1 = { 〈(5, 2), R〉, 〈(6, 2), B〉, 〈(7, 2), G〉, 〈(8, 2), B〉}
〈(9, 2), R〉, 〈(6, 1), B〉, 〈(8, 1), B〉}

Let us consider the rule r1 ≡ (1, z2W1 / d2W0, 0) where W1 and W0 are the arrays

Wi = {〈(3, 3), B〉, 〈(3, 4), B〉}
W0 = {〈(0, 0), R〉}

Let us suppose that d2 belongs to w0 and W0 belongs to E . In order to prove that
r1 is applicable, first we check that z2 is contained in the cell 1 and, according to
the previous claim, d2 is contained in the environment.

We have several possibilities to choose the pair zi, z0. The different choices show
the no determinism of the system. We also apply the rule with maximal parallelism.
In this case we take the following option: the pair zi, z0 with zi = (3,−2) and
z0 = (6, 1) for the first application of the rule and the pair z∗i , z

∗
0 with z∗i = (5,−2)

and z∗0 = (8, 2) for the second application.

(a) W1 + zi = {〈(6, 1), B〉, 〈(6, 2), B〉} ⊆ A1

(a) W1 + z∗i = {〈(8, 1), B〉, 〈(8, 2), B〉} ⊆ A1

(b) supp(Wi + zi) ∩ supp(W0 + z0) = {(6, 1), (6, 2)} ∩ {(6, 1)} 6= ∅
(b) supp(Wi + z∗i ) ∩ supp(W0 + z∗0) = {(8, 1), (8, 2)} ∩ {(8, 1)} 6= ∅
(c) supp(Ai − (Wi + zi)) ∩ supp(W0 + z0) = {(5, 2), (7, 2), (8, 2), (9, 2), (8, 1)} ∩

{(6, 1)} = ∅
(c) supp(Ai − (Wi + zi)) ∩ supp(W0 + z0) = {(5, 2), (6, 2)(7, 2), (9, 2), (861)} ∩

{(8, 2)} = ∅
The rule r1 is applicable and the result of applying the rule twice is [d2

2z2c3A
′
1 ]1

where

A′1 = (A1 − (W1 + z1)− (W1 + z1)∗) ∪ (A0 + z0) ∪ (A0 + z∗0)
= {〈(5, 2), R〉, 〈(7, 2), G〉, 〈(9, 2), R〉, 〈(6, 1), R〉, 〈(8, 2), R〉}

Finally, let us consider the case in which one of the regions involved in the
rule is the environment and the array considered in the environment is the empty
array.
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Definition 4. The communication rule (i, uiWi/u0, 0) is applicable over two cells
labeled by i and 0 if the following conditions are verified:

• ui is contained in cell i and u0 is contained in cell 0
• There exist an array Ai in the cell i and a pair zi ∈ Z2 such that Wi + zi ⊆ Ai

The application of this rule means that the objects of the multisets represented
by ui is removed from the cell i and substituted by the multiset represented by u0.
The array Ai in the cell i is substituted by A′i where A′i = (Ai − (Wi + zi))

Example 4. Let us suppose the cell 1 with the following objects and arrays,
[ z3

2c3A1 ]1 and A1 the array over {R,B, G}

A1 = { 〈(5, 2), R〉, 〈(6, 2), B〉, 〈(7, 2), G〉, 〈(8, 2), B〉}
〈(9, 2), R〉, 〈(6, 1), B〉, 〈(8, 1), B〉}

Let us consider the rule r1 ≡ (1, W1 / d, 0) where W1 is the array Wi =
{〈(3, 3), B〉}. Let us suppose that d belongs to w0. In this case, we have four
possibilities to choose zi. They are (3,−2), (3 − 1), (5,−2), (5,−1). It is trivial to
check that the rule is applicable. It will be applied with maximal parallelism, so
the rule will be applied four times and the result of applying the rule twice is
[d4z3

2c3A
′
1 ]1 where

A′1 = {〈(5, 2), R〉, 〈(7, 2), G〉, 〈(9, 2), R〉}

4 Using Array Tissue-like P Systems in Digital Image

In digital image terminology, given a finite alphabet of colors V and a blank object
# such that # 6∈ V , a two-dimensional (2D) digital image is a pair (S, AS), where
S ⊂ N2 and AS : S → V ∪{#} is an array on S. The size of V , |V |, is the number
of its elements. Moreover, we can introduce an order of colors in an image. We
define the ordered alphabet associate to an image like a pair (V, <V ), where <V is
an order in the set V .

The definition of pixel is associated with arrays, i.e., with equivalence classes
of arrays. In this way, it makes sense that we study the adjoining relation of two
pixels of generic positions (i, j) and (i′, j′) by exploring the relation among these
generic coordinates. For the sake of simplicity, we write the pixel < (i, j), a >
as aij . There exists two natural way of defining adjacent pixels: 4-adjacency and
8-adjacency [17, 18].

In the first case, given a pixel Kij , the list of adjacent pixels to this is
{Kij−1,Kij+1,Ki−1j ,Ki+1j} i.e.; the adjacent pixels to any pixel Kij are just
north, south, west, east of this (no in the diagonal respect to considered pixel).
In the second we consider the pixel Kij (where K = B ∨ K = W ), the list of
adjacent pixels to this is {Ki−1j−1,Ki−1j ,Ki−1j+1,Kij−1,Kij+1, Ki+1j−1,Ki+1j ,
Ki+1j+1} i.e.; the adjacent pixels to a any pixel Kij are just up, down, right and
left of this and, moreover, we consider the diagonal objects.
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We will consider to work in this paper with 4-adjacency (for 2D images), be-
cause from a membrane computing point of view is more complex to design systems
using this adjacency.

In this paper, we want to segment a 2D digital image. For this, we obtain
the boundary of the different regions dividing the image. If we want to draw (or
highlight) the boundaries we can follow two paths: edge-based segmentation and
region-based segmentation. In the first option, we want to draw border line of the
regions. In the second, we want to eliminate (or draw in white) and keep the resting
pixels of the regions.

4.1 Segmenting 2D images

In this paper, we have decided to segment 2D digital images using array tissue-like
P systems based in the first method: edge-based segmentation

Edge-based segmentation

We must find the border points of the regions (with different color) present in an
image. So, we look for the pixels aij with some adjacent pixel of different color. We
consider an input 2D digital image, and the color alphabet of the image ordered.
So, for each image with n × m pixels (n,m ∈ N) we define an array tissue-like
P system whose input is given by an array codifying the input image. For the
answer stage we use a counter z̄i, whose number of copies initially is dr1/27e,
where r = max(n, m) because segmentation takes place in a constant number of
steps.The output of the system is given by the objects appear in the output cell
when it stops.

So, we can define an array tissue-like P systems to do the edge-based segmen-
tation to a 2D image. For each n,m ∈ N we consider the tissue-like P system with
input of degree 2

Π = (Γ, Σ, V, E , w0, w1, w2, A1, A2,R, iΠ , oΠ),

defined as follows

(a) Γ = Σ ∪ {a′ij : a ∈ CS , 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {z̄1},
(b) Σ = {aij : a ∈ CS , 1 ≤ i ≤ n, 1 ≤ j ≤ m},
(c) V = N

(d) E = {a′ b , b a′ ,
a′

b
,

b
a′ ,

a′ b
a′ a′ ,

a′ a′

a′ b
,
a′ a′

b a′ ,
a′ a′

b a′ : a, b ∈ V ∧ a < b},
(e) w0 = {z̄i : 2 ≤ i ≤ 9},

w1 = z̄
dr1/27e
1 , where r = max(n,m),

w2 = z̄
dr1/27e
1 ,

(f) A1, A2 = ∅
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(g) R is the following set of communication rules:

1. (j, z̄i/z̄2
i+1, 0), for i = 1, . . . , 8, j = 1, 2

In this rule, we are working with a counter that it is used in the output of the
systems.

2.

(1, a b / a′ b , 0), for a, b ∈ C, a < b.

(1, b a / b a′ , 0), for a, b ∈ C, a < b.

(1,
a
b

/
a′

b
, 0), for a, b ∈ C, a < b.

(1,
b
a

/
b
a′ , 0), for a, b ∈ C, a < b.

These rules are used when image has two adjacent pixels with different associ-
ated colors (border pixels). Then, the pixel with less associated color is marked
(edge pixel).

3.

(1,
a′ b
a a′ /

a′ b
a′ a′ , 0), for a, b ∈ C, a < b.

(1,
a′ a
b a′ /

a′ a′

b a′ , 0), for a, b ∈ C, a < b.

(1,
a a′

a′ b
/

a′ a′

a′ b
, 0), for a, b ∈ C, a < b.

(1,
b a′

a′ a
/

b a′

a′ a′ , 0), for a, b ∈ C, a < b.

The rules mark (write in capital letters) the pixels which are adjacent to two
pixels with same color and which were marked before. But, with the condition
that the marked objects are adjacent to other pixel with a different color.

4.
(1, z̄9a

′
ij/z̄9, 2), for a ∈ C, 1 ≤ i ≤ n, 1 ≤ j ≤ m

With these rules system sends the edge pixels to the output cell.

(h) iΠ = 1
(i) oΠ = 2.
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An overview of the Computation: A 2D image is codified by the input
array that appear in the input cell and with them the system begins to work.
Rules of type 1 initiate the counter z̄. In a parallel manner, rules of type 2 identify
the border pixels and mark the edge pixels. These rules need 4 steps to mark all
the border pixels. From the second step, the rules of type 3 can be used with the
first rules at the same time. So, in other 4 steps we can mark the rest of the (edge)
pixels adjacent to two edge pixels and other border pixel with a different color to
the other three pixels. System can apply the types of rules 2 and 3 simultaneously
in some configurations, but it always applies the same number of these two types
of rules because this number is given by edge pixels (we consider 4-adjacency).
Finally, the fourth type of rules are applied in the following step on the system
finish to mark all edge pixels in the cell 1. So with one step more we will have
all the edge pixels in the output cells. Thus we need only 9 steps to obtain an
edge-based segmentation for an n×m digital image.

Examples

Fig. 2. (a) Input Image (b) Initial configuration

We show here some examples to see how our system does the edge-based seg-
mentation of 2D images. We work with the images given by Figure 2 (a) and Figure
4 (a).

Initially, we consider an 8× 8 image given by Figure 2 (a). A codifying of the
initial configuration to segment this image is shown in Figure 2 (b). The order of
the colors is the following: green, blue and red. Remember, we apply the rules in
a maximally parallel manner where the pixels used by the rules are shown with
different colors in the Figure 3 (a).

After nine steps, the output configuration is obtained and shown in Figure 3
(b).

Next, we segment the image of size 12 × 14 given by Figure 4 (a). In this
example, we take the colors in the following order: Red, green, brown, orange,
black, blue and light blue. The output image is shown in Figure 4(b).
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Fig. 3. (a) Process (b)Output Configuration

Fig. 4. (a) Input Image (b)Output Configuration

5 Final Remarks

This paper can be seen as a first attempt of formalizing the bridges between
Membrane Computing and Algebraic Topology presented recently by Cristinal et
al. [3, 4, 5].

The starting point is that problems from Digital Images, treated by techniques
of Algebraic Topology, can be suitable for Membrane Computing techniques. The
basis is that such problems can be treated locally by a set of processors, the
information can be expressed as (multi)sets of pixels and other auxiliary objects,
and the transformations can be processed by re-writing-type rules.

Many research lines are open. From the Membrane Computing point of view,
we wonder whether tissue-like models is the most suitable or not, or in which
way this formalization can be improved. From the Algebraic Topology point of
view, the question is to find new representations and new problems which can be
expressed and dealt with Membrane Computing techniques.
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Summary. In this paper we present a tissue-like P systems model with cell division
the environment has been replaced by an extra cell. In such model, we present a uni-
form family of recognizer P systems which solves the Subset Sum problem. This solution
establishes a new frontier for the tractability of computationally hard problems in Mem-
brane Computing, since it proves that NP-complete problems can be solved without an
arbitrarily large amount of objects in the environment.

1 Introduction

In Membrane Computing, the environment is the spatial location where the P
system is placed. It appears in the description of all P system models in an explicit
or implicit way. In this paper, we focus on its role in the framework of tissue-like
P systems.

In cell-like models, it is defined as a region surrounding the skin (and therefore
the whole P system) with no rules associated. Its role is inactive. It consists ex-
clusively on holding objects, generally sent out by the P system. Occasionally, the
objects in the environment can be sent into the P system if the skin has associated
a send-in rule, but this is not the usual situation. If we consider the membrane
structure of a cell-like P systems as a tree with the processor units (the mem-
branes) on the nodes, the environment can be seen as a new node, linked uniquely
with the skin and able to contain multisets of objects, but no rules.

The most common point of view is considering the cell-like P system as a black
box where the computation takes place and where an external observer has no
access. Such observer can only watch the skin and the surrounding region from
a point out of the P system. Bearing in mind this point of view, the resulting
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product of the computation must be expelled to the environment in order to be
observed.

In Spiking Neural P system, the environment is also considered the region
surrounding the whole system. It does not belong to the formal description of the
system, but it is implicitly considered, since one neuron is marked to send spikes
out of the system.

In spite of the membrane structure of a SN P system is a general graph instead
of a tree as in the cell-like model, they share a common property with respect to the
environment. In both models only one membrane (neuron, in the usual terminology
of SN P systems) is linked to the environment: In cell-like models, it is the skin and
in the spiking model, it is the output neuron. Beyond this similarity, the role of the
environment is even more restrictive in the case of the SN P systems. According
to this model, the information is encoded in time, so the important question is to
consider the moment in which the spikes are sent out by the output neuron. Such
spikes are not stored and can be forgotten.

The role of the environment changes in tissue-like P systems [13, 14]. In such P
systems, the cells are placed in a general graph3, and, potentially, all of them can
trade objects against the environment. The main feature of the environment is the
arbitrarily large amount of objects placed in it. These objects can participate on
the computation according to the symport/antiport rules associated to cells of the
system. The biological inspiration it is clear, a living tissue can take from outside
as much oxygen and nutrients as it needs without limitation.

This arbitrarily large amount of objects in the environment has been widely
exploited in the design of efficient solutions to NP-problems by recognizer tissue-
like P systems with cell division (see, e.g., [4, 5, 6]). In such designs, the initial
resources of the devices are polynomial in the size of the input and the number
of objects taken from the environment along the computation is not considered in
the initial description.

From this starting point, it is natural to wonder if this singularity can be
avoided. In other words, we wonder if tissue-like P systems in which environment
is empty on the input can also solve NP-problems.

In this paper we give a positive answer to this question. We present a tissue-like
P systems model with cell division where environment is supplied by a cell. To do
this, we divide this cell so many time as we need. In this manner, we generate so
copies of initial objects of this cell as we want.

In such model, we present a uniform family of recognizer tissue-like P systems
which solves the Subset Sum problem. This solution establishes a new frontier for
the tractability of computationally hard problems in Membrane Computing [8],
since it proves that NP-complete problems can be solved without an arbitrarily
large amount of objects in the environment.

Bearing in mind these considerations, if the initial amount of objects in the
environment is fixed in a similar way to the cells, then the environment can be
3 In fact, a virtual graph, as we will see below.
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seen as a new cell w0. The particular feature of this distinguished cell is that it
cannot be divided.

The paper is organized as follows: In Section 2 we recall some basic concepts
which will be used later. In Section 3 we present the model of tissue-like P systems
without environment and cell division and in Section 4 a solution to the Subset Sum
problem is this framework is shown. The paper finishes with some final remarks
and comments on the future work.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is
the length of the string, and it is denoted by |u|. As usual, the empty string (with
length 0) will be denoted by λ. The set of strings of length n built with symbols
from alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a
subset from Σ∗.

A multiset over a set A is a pair (A, f) where f : A → N is a mapping. The
set of all multisets on A will be denoted by M(A). If m = (A, f) is a multiset
then its support is defined as supp(m) = {x ∈ A | f(x) > 0} and its size is defined
as

∑
x∈A f(x). A multiset is empty (resp. finite) if its support is the empty set

(resp. finite). If m = (A, f) is a finite multiset over A, then it will be denoted as
m = {{af(a1)

1 a
f(a2)
2 · · · af(ak)

k }}, where supp(m) = {a1, . . . , ak}, and for each ele-
ment ai, f(ai) is called the multiplicity of ai. If f(ai) = 1, we will write ai instead
of a1

i . In what follows we assume the reader is already familiar with the basic
notions and the terminology underlying P systems4.

3 Tissue-like P Systems without Environment

Tissue P systems were defined in [13, 14] under two biological inspirations: intercel-
lular communication and cooperation between neurons. The common mathemat-
ical model of these two mechanisms is a net of processors dealing with symbols
and communicating these symbols along channels specified in advance. From the
initial definition, several research lines have been developed and other variants
have arisen (see, for example, [2, 3, 7, 11, 12, 18]). Based on the cell-like model of
P systems with active membranes, Gh. Păun et al. presented in [16] a new model
of tissue P systems endowed with cell division. The biological inspiration is clear:
alive tissues are not static network of cells, since cells are duplicated via mitosis
in a natural way. In this model, the tissue (of cells) is formed by the cells and a
region called environment containing all of them. Moreover, this model deals with
4 We refer to [15] for basic information in this ares, to [17] for a comprehensive presen-

tation and the web site [19] for the up-to-date information.
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an arbitrarily large amount of objects in the environment, and it can not divided
along a computation.

Next, we present a variant of this model, in which we drop one ingredient: the
arbitrary large amount of objects in the environment. The key idea is to consider
a set of initial cells w1, . . . , wn plus an extra cell w0. This extra cell will have the
same behavior as the other ones, but it will assume the role of the environment.
As we pointed out above, the resources in this cell will be also computed as initial
resources and must be polynomially generated.

Formally, a tissue-like P system without environment (or simplifying tissue-like
P systemWE+D) of degree q ≥ 1 is a tuple of the form

Π = (Γ, env, w1 . . . , wq,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. env(= w0), is a string over Γ representing the multisets of objects associated

with the environment in the initial configuration.
3. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration.
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i 6= j, u, v ∈ Γ ∗

and 0 represents to the environment.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, . . . , q} and a, b, c ∈ Γ . Note

that the environment (labeled by 0) cannot divide.
5. i0 ∈ {0, 1, 2, . . . , q} denotes the output region, which can be the environment

(i0 = 0) or the region inside a cell (1 ≤ i0 ≤ q).

In tissue-like P systems, the graph structure of the cells is not given in an
explicit way. The links between regions are provided by the set of symport/antiport
rules. It is known as a virtual graph. In such way, two cells are linked if and only
if there is a rule that allows the interchange of objects between them. In a similar
way, any cell can trade objects against the environment if there exists a rule for
this purpose. Notice that the rules are associated to the labels. In such way, the
graph is dynamical, since new nodes can appear produced by the application of
division rules.

The application of rules in this new model is the same as in usual tissue-like P
systems with cell division:

• The communication rule (i, u/v, j) can be applied over two regions i and j such
that u is contained in cell i and v is contained in region j. The application of
this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells.

• The division rule [a]i → [b]i[c]i is applied over a cell i ∈ {1, . . . , q} containing
object a. The application of this rule divides this cell into two new cells with
the same label. All the objects in the original cell are replicated and copied in
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the new cell, with the exception of the object a, which is replaced by the object
b in the first one and by c in the other one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction when a cell is divided, the division rule
is the only one which is applied for that cell in that step; the objects inside that
cell cannot be communicated in that step.

The cells obtained by division have the same labels as the original cell and if a
cell is divided, its interaction with other cells is blocked during the mitosis process.
In some sense, this means that while a cell is dividing it closes the communication
channels with other cells.

A configuration is an instantaneous description of the system Π, and it is
represented as a tuple (w0, w1, . . . , wq). Given a configuration, we can perform
a computation step and obtain a new configuration by applying the rules in a
parallel manner as it is shown above. A sequence of computation steps is called
a computation. A configuration is halting when no rules can be applied to it.
Then, a computation halts when the system reaches a halting configuration. In the
literature, the output of a computation is collected from its halting configuration
by reading the objects contained in the output cell.

3.1 Recognizer Tissue-like P SystemsW E+D

Complexity classes within Membrane Computing have been usually studied in the
framework of decision problems. Let us recall that a decision problem is a pair
(IX , θX) where IX is a language over a finite alphabet (whose elements are called
instances) and θX is a total boolean function over IX .

In order to study the computational efficiency for solving NP-complete decision
problems, a special class of P systems were introduced in [1]: recognizer P systems.
The original definition corresponds to cell-like P systems, but it was extended in
a natural way in [16] to tissue-like ones.

Recognizer cell-like P systems are the natural framework to study and solve de-
cision problems within Membrane Computing, since deciding whether an instance
of a given problem has an affirmative or negative answer is equivalent to deciding
if a string belongs or not to the language associated with the problem.

In the literature, recognizer P systems are associated with P systems with input
in a natural way. The data encoding to an instance of the decision problem has to
be provided to the P system in order to compute the appropriate answer. This is
done by codifying each instance as a multiset placed in an input membrane. The
output of the computation (yes or no) is sent to the output region, in the last step
of the computation.

A recognizer tissue-like P systemWE+D of degree q ≥ 1 is a tuple
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Π = (Γ, Σ,w0, w1, . . . , wq,R, iin, i0)

where

• (Γ, w0, w1, . . . , wq,R, i0) is a tissue-like P systemWE+D of degree q ≥ 1 (as
defined in the previous section), M(σ) is a string over Γ \ Σ, for each σ ∈
V ∪ {w0}.

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets.

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the output region, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a config-
uration of the form (w0, w1, w2, . . . , wiin

∪ wi, . . . , wq), that is, after adding the
multiset w to the contents of the input cell iin.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue-like P
systemsWE+D if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

We denote by PMCTD−E the set of all decision problems which can be solved
by means of recognizer tissue-like P systemsWE+D in polynomial time. This class
is closed under polynomial reduction and under complement.
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4 A Solution for the Subset Sum Problem

The Subset Sum problem is very well-known. It can be settled as follows: Given
a finite set V , a weight function, w : V → N, and a constant k ∈ N, determine
whether or not there exists a subset B ⊆ V such that w(B) = k.

Next, we prove that the Subset Sum problem can be solved in a linear time (in
{n, log k}) by a family of recognizer tissue-like P systemsWE+D. An instance u =
(V, w, k) of the Subset Sum Problem with V = {v1, v2, . . . , vn} will be represented
by u = (n, (w1, . . . , wn), k), where wi = w(vi), for each i (1 ≤ i ≤ n). Such
an instance will be encoded as the multiset cod(u) = {{vj

i : w(Ai) = j ∧ i ∈
{1, . . . , n}}} ∪ {{qk}}.

Next, we present a family of recognizer tissue-like P systemsWE+D with cell
division where at the initial configuration each system of the family has four regions
(labeled by 0,1,2 and 3).

We will address the resolution via a brute force algorithm, which consists in
the following stages:

• generation stage: all possible subsets of V are generated by successive applica-
tion of division rules;

• pre-checking stage: the weight of each subset of V is calculated;
• checking stage: It is check if there exists a subset of V with weight equal to k;
• output stage: an affirmative or negative answer to the problem is given, accord-

ing to the results of the previous stage.

For each (n, k) ∈ N2 we will consider the system

Π(n, k) = (Γ, Σ, V, env, L, M,R, E , iin, i0),

where

• Γ = Σ ∪ {Ai, Bi : 1 ≤ i ≤ n}
∪ {Gi : 1 ≤ i ≤ n + dlog(k + 1)e − 2}
∪ {ai : 1 ≤ i ≤ 2n + dlog ne+ 2dlog(k + 1)e+ 9}
∪ {c̄i : 1 ≤ i ≤ n + dlog(k + 1)e − 1}
∪ {ci : 1 ≤ i ≤ n + 1}
∪ {di : 1 ≤ i ≤ dlog ne+ dlog(k + 1)e+ 3}
∪ {ei : 1 ≤ i ≤ dlog ne+ 1}
∪ {Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ dlog(k + 1)e+ 1}
∪ {α, b, D, p, q, g1, g2, f1, T, S,N, yes, no}

• V = {σ1, σ2, σ3} ∪ {env}
• Σ = {vi : 1 ≤ i ≤ n} ∪ {q}
• L(σ1) = 1, L(σ2) = 2, L(σ3) = 3, L(env) = 0
• M(σ1) = a1 b c̄1 yes no
• M(σ2) = D A1 . . . An
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• M(σ3) = {{G1 . . . Gn+dlog(k+1)e−2 c2
2 . . . c2

n+1 e1 e2
2 . . . e2

dlog ne+1

d1 . . . ddlog ne+dlog(k+1)e+3 pk T S N g1 g2 f1}}
∪ {{Bi1 1 ≤ i ≤ n}}
∪ {{B2

ij 1 ≤ i ≤ n ∧ 2 ≤ j ≤ dlog(k + 1)e+ 1}}
• M(env) = a2 . . . a2n+dlog ne+2dlog(k+1)e+9 c̄2 . . . c̄n+dlog(k+1)e−1 c1

• R is the following set of rules:
1. Division rules:

r1,i ≡ [Gi]3 → [α]3[α]3 for i = 1, . . . , n + dlog(k + 1)e − 2
r2,i ≡ [Ai]2 → [Bi]2[α]2 for i = 1, . . . , n

2. Communication rules:
r3,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , 2n + dlog ne+ 2dlog(k + 1)e+ 8
r4,i ≡ (1, c̄i/c̄i+1, 0) for i = 1, . . . , n + dlog(k + 1)e − 2
r5 ≡ (1, c̄n+dlog(k+1)e−1/c1, 0)
r6,i ≡ (1, ci/c2

i+1, 3) for i = 1, . . . , n
r7 ≡ (1, cn+1/D, 2)
r8 ≡ (2, cn+1/d1e1, 3)
r9,i ≡ (2, ei/e2

i+1, 3) for i = 1, . . . , dlog ne
r10,i ≡ (2, di/di+1, 3) for i = 1, . . . , dlog ne+ dlog(k + 1)e+ 2
r11,i ≡ (2, edlog ne+1Bi/Bi1, 3) for i = 1, . . . , n
r12,i,j ≡ (2, Bij/B2

ij+1, 3) for i = 1, . . . , n, j = 1, . . . , dlog(k + 1)e
r13,i ≡ (2, Bidlog(k+1)e+1vi/p, 3) for i = 1, . . . , n
r14 ≡ (2, pq/λ, 0)
r15 ≡ (2, ddlog ne+dlog(k+1)e+3/g1f1, 3)
r16 ≡ (2, f1p/λ, 0)
r17 ≡ (2, f1q/λ, 0)
r18 ≡ (2, g1/g2, 3)
r19 ≡ (2, g2f1/T, 3)
r20 ≡ (2, T/λ, 1)
r21 ≡ (1, bT/S, 3)
r22 ≡ (1, Syes/λ, 0)
r23 ≡ (1, a2n+dlog ne+2dlog(k+1)e+9b/N, 3)
r24 ≡ (1, Nno/λ, 0)

• iin = 2, is the input cell
• i0 = 0, is the output cell

4.1 An Overview of the Computation

First of all, we recall the polynomial encoding of the Subset Sum problem in the
family Π constructed in the previous section. Let u = (n, (w1, . . . , wn), k) be an
instance of the problem, s(u) =< n, k > and cod(u) = {{vj

i : w(Ai) = j ∧ 1 ≤
i ≤ n}} ∪ {{qk}}.

Next, we describe informally how the recognizer tissue P system with cell di-
vision Π(s(u)) with input cod(u) works. Let us start with the generation stage.
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Recall that if a division rule is triggered, the communication rules cannot be si-
multaneously applied. In this stage we have three parallel processes:

• The first one occurs in the region labeled by 1, where we have two counters:
ai, which will be used in the answer stage, and c̄i, which will be used to delay
the start of the communication rules.

• The second one occurs in the region labeled by 2, where the second group of
division rules are applied. For each object Ai (which codifies a member of the
set V ) we obtain two cells labeled by 2: One of them has an element Bi and
the other one has an object α. Such object will not be used any more in the
computation.

• The third one occurs in the cell labeled by 3, where the first group of division
rules are applied for n + dlog(k + 1)e − 2 steps. For each object Gi, we obtain
two cells labeled by 3: both of them have an object α.

When all divisions have been done, we will have 2n cells with label 2, in which
each one of them will contain the encoding of a subset of V and 2n+dlog(k+1)e−2

cells with label 3.Then c̄n+dlog(k+1)e is replaced by c1 in cell 1. After this step, ci

will be multiplied until getting exactly 2n copies in n steps. At this moment, the
generation stage ends and the pre-checking stage begins.

For each cell 2, an object D is traded against a copy of the counter ci. In this
way, 2n copies of D will appear in the region 1 and, in each cell labeled by 2 there
will be an object cn+1. The occurrence of such object cn+1 in the cells 2 will bring
two counters:

(a) The counter di lets the checking stage start, since it produces the occurrence
of the objects g1 and f1 in cells 2.

(b) The counter ei will be multiplied for obtaining n copies of edlog ne+1 in the step
n + dlog ne + 5 from cell 3. Then, we trade objects edlog ne+1 and Bi against
Bi1 for each element Ai in the subset codifying a possible solution associated
with the membrane. After that, for each 1 ≤ i ≤ n we get k + 1 copies of
Bidlog(k+1)e+1 from cell 3. Then for each element Ai, we get wi copies of object
p, in the step 2n + dlog ne+ 2dlog(k + 1)e+ 3.

The checking takes place in the step 2n + dlog ne+ 2dlog(k + 1)e+ 4, when all
pairs of objects p and q from any cell labeled by 2 are sent to the environment.
In this way, if the weight of the subset associated with a cell is equal to k, then
no object p or q remains in this cell in the next step. Otherwise, if the encoding is
not exactly of weight k, then at least one object p or q will remain in the cell. In
the next step the answer stage starts. Two cases must be considered for each cell:

• If no object p or q remains in the cell, the object f1 keeps in the cell, g1 evolves
to g2, and in the step 2n+ dlog ne+2dlog(k +1)e+6 the objects f1 and g2 are
traded against T from the cell three. In the next step T is sent to the cell 1, and
in the step 2n+dlog ne+2dlog(k+1)e+8, the objects T and b are sent to the cell
labeled by 3 traded against S. Finally in the step 2n+dlog ne+2dlog(k+1)e+9
the objects S and yes are sent to the environment.
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• If any object p or q remains in the cell, such object is sent to the environment
together with the object f1. This causes that the object b still remains in the
cell 1 after the step 2n + dlog ne + 2dlog(k + 1)e + 8. In this way, the objects
b and a2n+dlog ne+2dlog(k+1)e+9 are traded against the object N with the cell
labeled 3, and in the step 2n + dlog ne+ 2dlog(k + 1)e+ 10 the objects N and
no are sent to the environment.

4.2 Some Technical Considerations

In order to establish that the family Π is polynomially uniform by deterministic
Turing machines we firstly note that the sets of rules associated with the systems
Π(n, k) are recursively defined. Hence, it suffices to justify that the amount of
necessary resources for defining the systems is polynomial in max{n, dlog ke}.
• Size of the alphabet: n · dlog(k + 1)e + 8n + 5dlog(k + 1)e + 3dlog ne + 30 ∈

O(n · log k)
• Initial number of cells: 4 ∈ θ(1).
• Initial number of objects: 5n + 3dlog ne+ 3dlog(k + 1)e+ 31 ∈ θ(n).
• Number of rules: n·dlog(k+1)e+6n+3dlog(k+1)e+3dlog ne+27 ∈ O(n·log k)
• Maximal length of a rule: 3.

So, we can claim the following result.

Theorem 1. SS ∈ PMCTD−E

Taking into account that SS is an NP–complete problem, and that the class
PMCTD−E is closed under complement, the following is deduced.

Corollary 1. NP ∪ co−NP ⊆ PMCTD−E

5 Conclusions and Future Work

The search of biologically inspired frontiers for tractability has been an active
research area in the last years. Since the problem P vs. NP is still open and
it seems that will remain open for a long time, the research faces the problem
of finding new frontiers between these classes of problems. Current research on
complexity in Membrane Computing focuses on looking for the minimum amount
of ingredients of a P system model able to solve a NP-complete problem.

One of these steps was the discovery of the role of the dissolution rules (a rule
apparently innocent) as the key stone for solving NP-complete problems in the
framework of P systems with active membranes [10, 9].

In this paper we give a new step in the same direction. We have prove that the
use of an arbitrarily large amount of objects in the environment can be removed
from tissue-like P systems with cell division in order to solve NP-complete prob-
lems. The next steps in this research area will try to reduce the initial ingredients
in order to make the frontier of tractability thinner and thinner.
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tala, D. Wotschke and Gy. Vaszyl (eds.) Proceedings of DCFS 2003, (2003), 284–294.

2. Alhazov, A., Freund, R. and Oswald, M. Tissue P Systems with Antiport Rules ans
Small Numbers of Symbols and Cells. Lecture Notes in Computer Science 3572,
(2005), 100–111.

3. Bernardini, F. and Gheorghe, M. Cell Communication in Tissue P Systems and Cell
Division in Population P Systems. Soft Computing, 9(9), (2005), 640–649.

4. Dı́az-Pernil, D. Sistemas P de Tejido: Formalización y Eficiencia Computacional.
PhD Thesis, University of Seville, (2008).
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division. In Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez and F. Sancho-Caparrini
(eds.), Second Brainstorming Week on Membrane Computing, (2004), 380–386.
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Summary. We introduce the concept of a P colony automaton, an automata-like con-
struct combining properties of finite automata and P colonies. We present some prelimi-
nary results on the accepting power of several variants of these extremely simple language
recognizing devices, and propose problems for future research.

1 Introduction

P colonies are particular variants of very simple tissue-like membrane systems,
modeling a community of very simple cells living together in a shared environment
(for P colonies, see [12, 13], for membrane computing we refer to [15, 16]. In the
basic model, the cells, the basic computing agents, are represented by a collection
of objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to
be inside any cell during the function of the system. Number k is said to be the
capacity of the P colony. The rules of the cells are either of the form a → b,
specifying that an internal object a is transformed into an internal object b, or
of the form c ↔ d, specifying the fact that an internal object c is sent out of
the cell, to the environment, in exchange of the object d, which was present in
the environment. Thus, after applying these rules in parallel, a cell containing the
objects a, c will contain the objects b, d. With each cell, a set of programs composed
? Research supported in part by the Czech Science Foundation, “GAČR”, project
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of rules is associated. In the case of P colonies of capacity k, each program has k
rules; the rules of the program must be applied in parallel to the objects in the
cell.

The cells of a P colony execute a computation by synchronously applying their
programs to objects inside the cells and outside in the environment. When a halting
configuration is reached, that is, when no more rules can be applied, the result of
the computation is read as the number of certain types of objects present in the
environment.

P colonies have been extensively examined during the years: among other
things, it has been shown that these extremely simple constructs are computa-
tionally complete computing devices even with very restricted size parameters and
with other syntactic or functioning restrictions [1, 2, 3, 4, 5, 6, 9, 10].

In the generic model, the environment is a multiset of objects, and thus its
impact on the behavior of the P colony is indirect. To describe the situation when
the behavior of the components of the P colony is influenced by direct impulses
coming from the environment step-by-step, the model is augmented with a string
put on an input tape to be processed by the P colony. These string corresponds to
the impulse sequence coming from the environment. In addition to their rewriting
rules and the rules for communicating with the environment, the cells have so-
called tape rules which are used for reading the next symbol on the input tape.
This is done by changing one of objects inside the cell to the object corresponding
to the current input symbol on the tape. The symbol is said to be read if at least
one agent applied its corresponding tape rule. It is easy to observe that the model,
called a P colony automaton or a PCol automaton, resembles to standard finite
automata and P automata [7], furthermore, to colonies of formal grammars [11].

PCol automata may work in several computation modes: for example, at any
step of the computation a maximal set of components may be active and each
component (at least one component, or a maximal number of components) should
perform a tape rule. These computation modes are the so-called t, tmin, and tmax
modes. In some other cases, transitions, i.e., simultaneous applications of non-tape
rules are also allowed. These cases are the so-called nt, ntmin, ntmax, and initial
computation modes. The P colony automaton starts working with a string on its
input tape (the input string) and with initial multisets of objects in its cells. The
input string is accepted if it is read by the system and the P colony is in an
accepting configuration (in an accepting state).

Due to their extreme simplicity, it is a challenging question how much accepting
power can be obtained by the different variants of PCol automata. In this paper
we present some preliminary results. Among other things, we show that PCol au-
tomata working in any of the nt, ntmin, or ntmax computational modes are able
to recognize every recursively enumerable language over any alphabet (thus over
any unary alphabet as well). Notice that P colonies are able to generate/accept
any recursively enumerable set of numbers, which set can be represented as the
length set of words of a recursively enumerable language over a unary alphabet.
The large recognizing power of PCol automata working in these modes is due to
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the unbounded “workspace” provided by the symbols sent to the environment by
the components while performing n, nt, ntmin, or ntmax-transitions, respectively.
In the case of t-mode, we have some preliminary results. It is shown that PCol au-
tomata are able to accept any regular language (over any alphabet). Furthermore,
there is a PCol automaton which recognizes the non-context-free context-sensitive
language {anbncn | n ≥ 1}. In the case of initial mode, we provide a PCol automa-
ton which accepts the language L = {a2n}. Finally, we propose some research
areas for future study.

2 Preliminaries and definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and
let ε be the empty word. We denote the number of occurrences of a symbol a ∈ V
in w by |w|a.

If the set of non-negative integers is denoted by N, then a multiset over a set
V is a mapping M : V → N which assigns to each object a ∈ V its multiplicity
M(a) in M . The support of M is the set supp(M) = {a | M(a) ≥ 1}. If V is a
finite set, then M is called a finite multiset. A multiset M is empty if its support
is empty, supp(M) = ∅. We will represent a finite multiset M over V by a string
w over the alphabet V with |w|a = M(a), a ∈ V , and ε will represent the empty
multiset which is also denoted by ∅.

We say that a ∈ M if M(a) ≥ 1, and the cardinality of M , card(M) is defined
as card(M) = Σa∈MM(a). For two multisets M1,M2 : V → N, M1 ⊆ M2 holds, if
for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as (M1 ∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆ M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a)−M2(a) for all
a ∈ V .

Now we define the notion of a PCol automaton.

Definition 1. A PCol automaton of capacity k and with n cells, k, n ≥ 1, is a
construct Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) where V is an alphabet, the
alphabet of the PCol automaton, its elements are called objects; e ∈ V is the
environmental object of the automaton; wE ∈ (V − {e})∗ is a string representing
the multiset of objects different from e which is found in the environment initially;
(wi, Pi), 1 ≤ i ≤ n, is the i-th cell; and F is a set of accepting configurations of the
PCol automaton.

For each cell, (wi, Pi), 1 ≤ i ≤ n, wi is a multiset over V , it determines the
initial contents of the cell, and its cardinality |wi| = k is called the capacity of the
system; Pi is a set of programs, where every program is formed from k rules of the
following types:

• tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and commu-
nication tape rules, respectively; or
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• nontape rules of the form a → b, or c ↔ d, called rewriting (nontape) rules and
communication (nontape) rules, respectively.

For each i, 1 ≤ i ≤ n, the set of tape programs is denoted by PT
i , they are formed

from one tape rule and k − 1 nontape rules, the set of nontape programs which
contain only nontape rules, is denoted by PN

i , thus, Pi = PT
i ∪PN

i , PT
i ∩PN

i = ∅.
The computation of a PCol automaton starts in the initial configuration, and

the configurations are changed by the cells with the application of some of their
programs. The programs either change the objects inside the cells (with rewriting
rules) or exchange them for other objects with the environment (with communica-
tion rules). During the computation, the PCol automaton processes an input word.
The leftmost symbol of the yet non-read part of the input word is read during a
configuration change if at least one cell applies a tape program which introduces
the same symbol inside the cell as the symbol to be read either by rewriting or by
communication.

A configuration of PCol automaton is an (n+2)-tuple (u; uE , u1, . . . , un), where
u ∈ V ∗ is the unprocessed (unread) part of the input string, uE ∈ (V − {e})∗
represents the multiset of objects different from e in the environment, and ui,∈
V ∗, 1 ≤ i ≤ n, represents the contents of i-th cell. The initial configuration is
given by (w;wE , w1, . . . , wn), the input word to be processed by the system and
the initial contents of the environment and the cells. The elements of the set F of
accepting configurations are given as configurations of the form (ε; vE , v1, . . . , vn).

To describe the computation process formally, we introduce the following no-
tation. For any rule r we define four mappings as follows. Let X ∈ {T, ε}, and if
r = a

X→ b, then let left(r) = a, right(r) = b, export(r) = ε, and import(r) = ε; if
r = a

X↔ b, then let left(r) = ε, right(r) = ε, export(r) = a, and import(r) = b for
b 6= e, or import(r) = ε for b = e. Let us extend this notation also for programs.
For α ∈ {left, right, export, import} and for any program p, let α(p) =

⋃
r∈p α(r)

where for a rule r and program p = 〈r1, . . . , rk〉, the notation r ∈ p denotes the fact
that r = rj for some j, 1 ≤ j ≤ q. Moreover, for any tape program p containing
the tape rule r ∈ p, we also define the mapping read(p) as read(p) = right(r) if r
is a rewriting tape rule, or read(p) = import(r) if r is a communication tape rule.

Let the programs of each Pi be labeled in a one-to-one manner by labels from
the set lab(Pi), 1 ≤ i ≤ n, lab(Pi)∩ lab(Pj) = ∅ for i 6= j. In the following, for the
sake of brevity, if no confusion arises, we designate programs and their labels with
the same letters, thus, for a label p ∈ lab(Pi), we also write p ∈ Pi.

Let c = (u; uE , u1, . . . , un) be a configuration of a PCol automaton Π. We call
a set of programs, Pc, applicable in configuration c, if the following conditions hold.

• If p, p′ ∈ Pc, p 6= p′ and p ∈ Pi, p
′ ∈ Pj , then i 6= j;

• for each p ∈ Pc, if p ∈ Pi then left(p) ∪ export(p) = ui;
• for each p ∈ Pc, if p is a tape rule, then read(p) = a where u = au′;
• ⋃

p∈Pc
import(p) ⊆ uE .
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A configuration c = (au; uE , u1, . . . , un), a ∈ V , is changed to a configuration c′ =
(u′;u′E , u′1, . . . , u

′
n) by applying the set Pc of applicable programs if the following

properties hold:

• If there is a p ∈ Pc such that p ∈ Pi, then u′i = right(p)∪ import(p), otherwise
u′i = ui, 1 ≤ i ≤ n;

• uE = uE −
⋃

p∈Pc
import(p) ∪⋃

p∈Pc
export(p); and

• if there is a tape program p ∈ Pc with read(p) = a, then u′ = u, otherwise
u′ = au.

We say that a set Pc of applicable programs is maximal (with respect to a
certain additional property), if for any p′ ∈ ⋃n

i=1 Pi (having the same additional
property) such that p′ 6∈ Pc, the set of programs Pc ∪ {p′} is not applicable.

Based on the properties of Pc, the set of programs applied to a configuration
c = (au; uE , u1, . . . , un), a ∈ V , we distinguish the following types of transitions.
Let the configuration obtained after the application of Pc be denoted by c′ =
(u′;u′E , u′1, . . . , u

′
n). We have a

• t-transition, denoted by ⇒t, if u′ = u and Pc is maximal set of programs with
respect to the property that every p ∈ Pc is a tape program with read(p) = a;

• tmin-transition, denoted by⇒tmin, if u′ = u and Pc is maximal set of programs
with at least one p ∈ Pc, such that p is a tape program with read(p) = a;

• tmax-transition, denoted as ⇒tmax, if u′ = u and Pc = PT ∪PN where PT is a
maximal set of applicable tape programs with read(p) = a for all p ∈ PT , the
set PN is a set of nontape programs, and Pc = PT ∪ PN is maximal;

• n-transition, denoted by ⇒n, if u′ = au and Pc is maximal set of nontape
programs.

A PCol automaton works in the t (tmax, tmin) mode of computation if it uses
only t- (tmax-, tmin-) transitions. It works in the nt (ntmax or ntmin) mode if at
any computation step it may use a t- (tmax- or tmin-) transition or an n-transition,

A special case of the nt mode is called initial, denoted by init, if the compu-
tation of the automaton is divided in two phases: first it reads the input strings
using t-transitions and after reading all the input symbols it uses n-transitions to
finish the computation.

Let us designate M = {t, nt, tmax, ntmax, tmin, ntmin, init}. The language
accepted by a PCol automaton Π as above is defined as the set of strings which
can be read during a successful computation:

L(Π, mode) = {w ∈ V ∗|(w; wE , w1, . . . , wn) can be
transformed by Π into (ε; vE , v1, . . . , vn) ∈ F

with a computation in mode mode ∈ M}.
Let L(PColA, mode) denote the class of languages accepted by PCol automata

in the computational mode mode ∈ M , and let RE denote the class of recursively
enumerable languages.

Now we demonstrate the above defined notions by an example.
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Example 1. Let Π = ({a, b, c}, e, wE , (w1, P1), (w2, P2), (w3, P3), F ) be a PCol au-
tomaton, where the sets of programs are defined as

P1 P2 P3

p1 : 〈e T→ b; e ↔ a〉, pA : 〈e T↔ a; e ↔ a〉, pI : 〈e T→ a; e ↔ a〉,
p2 : 〈e T→ a; e → a〉, pB : 〈e T↔ b; e ↔ a〉, pII : 〈e T→ a; e → b〉,
p3 : 〈e ↔ a; e ↔ e〉, pC : 〈e → a; e ↔ e〉, pIII : 〈e → a; e ↔ e〉,

and c = (w; aa, ee, ee, ee) is the current configuration of Π.
If w = bw′ for some b ∈ V, w′ ∈ V ∗, then Π can execute a t-transition by

applying the set of programs Pc = {p1, pB} since the third cell has no applicable
tape program. For a tmax-transition, Π can apply the set Pc = {p1, pB , pIII},
in this case the third cell can use its applicable nontape program. For a tmin-
transition, Π has to choose one from three possible sets of programs {p1, pB , pIII},
{p1, pC , pIII}, or {p3, pB , pIII}. For an n-transition, Π has to use the set Pc =
{p3, pC , pIII}.

If w = aw′, a ∈ V, w′ ∈ V ∗, then the sets of applicable programs for the
different transition types are given in the following table.

transition types applicable sets of programs
t, tmax {p2, pA, pII}

{p2, pA, pIII}, {p2, pC , pI}, {p2, pC , pII .}, {p2, pC , pIII},tmin {p3, pA, pII}, {p3, pA, pIII}, {p3, pC , pI}, {p3, pC , pII}
n {p3, pC , pIII}

If w = cw′, c ∈ V, w′ ∈ V ∗, then there is no cell with an applicable tape
program. The only set of applicable programs is the set Pc = {p3, pC , pIII} for an
n-transition.

Example 2. Let L ⊆ Σ∗ be a regular language, and let M = (Σ, Q, δ, q0, F ) be a
finite automaton with L(M) = L, with alphabet Σ, set of states Q, initial state
q0, set of final states F , and transition function δ : Σ ×Q → Q.

It is not difficult to see that the PCol automaton Π = (Σ ∪Q, e, (w, P ), F ′) of
capacity two simulates the computation of M , with initial cell contents w = aq0

for some a ∈ Σ, set of rules

P = {〈x T→ a, q → q′〉 | for all x ∈ Σ such that δ(x, q) = q′ for some q, q′ ∈ Q},

and set of final configurations

F ′ = {(ε; ε, xqf )|for all x ∈ Σ, and qf ∈ F}.

Since P contains only tape programs, Π cannot execute any n-transitions, and
since it has only one cell, L(Π, t) = L(Π, tmax) = L(Π, tmin) = L(M).
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3 PCol automata computing in the modes with n-transitions

In this section we show that if we consider the functioning modes which allow n-
transitions at arbitrary points of the computational process, then PCol automata
characterize the class of recursively enumerable languages. First we recall the no-
tion of a two-counter machine which will be used in the proof.

A two-counter machine, see [8], M = (Σ ∪ {Z, B}, E, R, q0, qF ) is a 3-tape
Turing machine where Σ is an alphabet, E is a set of internal states with q0, qF ∈ E
being the initial and the final states, and R is a set of transition rules. The machine
has a read-only input tape and two semi-infinite storage tapes which are used as
counters. The alphabet of the storage tapes contains only two symbols, Z and B
(blank), while the alphabet of the input tape is Σ ∪{B}. The symbol Z is written
on the first, leftmost cells of the storage tapes which are scanned initially by the
tape heads. An integer t can be stored by moving a tape head t cells to the right
of Z. A stored number can be incremented or decremented by moving the tape
head right or left. The machine is capable of checking whether a stored value is
zero or not by looking at the symbol scanned by the tape heads. If the scanned
symbol is Z, then the value stored in the corresponding counter is zero.

Without the loss of generality, we assume that two-counter machines check
and modify only one of their counters during any transition, thus, the rule set R
contains transition rules of the form (q, x, ci) → (q′, e) where x ∈ Σ ∪ {B} ∪ {λ}
corresponds to the symbol scanned on the input tape in state q ∈ E, and ci ∈
{Z, B}, i ∈ {1, 2} correspond to the symbols scanned on the ith storage tape. By
a rule of the above form, M enters state q′ ∈ E, and the ith counter is modified
according to e ∈ {−1, 0, +1}. If x ∈ Σ ∪ {B}, then the machine was scanning x
on the input tape, and the head moves one cell to the right; if x = ε, then the
machine performs the transition irrespective of the scanned input symbol, and the
reading head does not move.

A word w ∈ Σ∗ is accepted by the two-counter machine if starting in the initial
state q0, the input head reaches and reads the rightmost non-blank symbol on the
input tape, and the machine is in the accepting state qF . Two-counter machines
are computationally complete; they are just as powerful as Turing machines.

Theorem 1.

L(PColA, X) = RE, where X ∈ {nt, ntmax, ntmin}.

Proof. Let L ∈ Σ∗ be an arbitrary recursively enumerable language, and let M =
(Σ, Q, q0, qf , T r) be a two-counter machine as above with L = L(M).

Let us construct the PCol automaton Π = (V, e, wE , (w1, P1), (w2, P2), F )
where V = Σ ∪ Q ∪ {t, t′, t′′, t′′′ | t ∈ Tr} ∪ {c1, c2, A}, w1 = q0e, w2 = ee,
F = {(ε; u, qfe, ee) | u ∈ V ∗}, and the sets of programs are defined as follows.

For any α ∈ {B, Z}, β ∈ {−1, 0,+1}, we define the disjoint sets of transitions
Trα,β ⊆ Tr as follows: t ∈ Trα,β , if and only if, t : (q, x, i, α) → (w, β), x ∈ Σ∪{ε},
i ∈ {1, 2}. Thus, Tr = TrB,−1 ∪ TrB,0 ∪ TrB,+1 ∪ TrZ,0 ∪ TrZ,+1.
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Now we define the sets of programs as

P1 =
⋃

t∈Tr

P1,t and P2 =
⋃

t∈Tr

P2,t,

where for t ∈ (TrB,−1 ∪ TrB,0) we have

P1,t = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ ci; rt,2〉, pt,3 : 〈t′ → t′′; ci → e〉,
pt,4 : 〈t′′ → e; e ↔ t′′′〉, pt,5 : 〈t′′′ → s; e → e〉},

where rt,1 and rt,2 are the rules e
T→ a and a → t′, respectively, if t ∈ Tr is such,

that x = a ∈ Σ, otherwise, if x = ε, then rt,1 = e → e and rt,2 = e → t′.
If t ∈ TrB,+1, then we have

P1,t = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ ci; rt,2〉, pt,3 : 〈t′ → t′′; ci → ci〉,
pt,4 : 〈t′′ → e; ci ↔ t′′′〉, pt,5 : 〈t′′′ → s; e → e〉}

with rt,1 and rt,2 as above.
For these types of transitions, the set P2 is defined as follows. If t ∈ TrB,−1,

then we have

Pt,2 = {pt,6 : 〈e ↔ t; e → e〉, pt,7 : 〈t → t′′′; e → e〉, pt,8 : 〈t′′′ ↔ e; e → e〉},

otherwise, if t ∈ (TrB,0 ∪ TrB,+1), then

Pt,2 = {pt,6 : 〈e ↔ t; e → ci〉, pt,7 : 〈t → t′′′; ci ↔ e〉}.

Now, if t ∈ TrZ,0, then we have in P1

Pt,1 = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ e; rt,2〉, pt,3 : 〈e ↔ ci; t → A〉,
pt,4 : 〈t′ → e; e ↔ t′′〉, pt,5 : 〈e ↔ e; t′′ → s〉}

where rt,1 and rt,2 are the rules e
T→ a and a → t′, respectively, if the transition

is such, that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt,1 = e → e
and rt,2 = e → t′.

If t ∈ TrZ,+1, then

Pt,1 = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ e; rt,2〉, pt,3 : 〈e ↔ ci; t → A〉,
pt,4 : 〈t′ → ci; e ↔ t′′〉, pt,5 : 〈ci ↔ e; t′′ → s〉}

where rt,1 and rt,2 are as above.
The set P2 contains only two programs in both cases, these are defined as

Pt,2 = {pt,6 : 〈e ↔ t; e → t′′〉, pt,7 : 〈t → e; t′′ ↔ e〉}

for all t ∈ (TrZ,0 ∪ TrZ,+1).
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The PCol automaton Π simulates the work of the two-counter machine M
by reading the input symbols with its tape programs and keeping track of the
contents of the ith counter as the number of ci, i ∈ {1, 2} objects present in the
environment.

Each transition of M is simulated separately. One of the symbols inside the
first cell of Π is from Q, it corresponds to the internal state of M during the
simulation process. This symbols is changed through a series of programs into the
symbols s ∈ Q if and only if, M can also change its state from q to s while the
counter contents are also checked and modified with an interplay of programs from
the two cells of Π.

The reader may check that the PCol automaton Π may reach a final con-
figuration after reading the whole input, if and only if the simulated two-counter
machine is able to reach the internal state qf after processing the same input string
using its transitions from Tr.

4 The other computation modes

First we consider the power of the t, tmax, and tmin computation modes. Note
that a PCol automaton working in these modes reads one input symbol in every
computational step, thus, the length of the computation cannot be more than the
length of the input string.

As we have seen in Example 2, any regular language can be accepted by a PCol
automaton with one cell. Now we present an example showing that the class of
languages characterized by PCol automata in the t, tmax, or tmin modes contains
non-context-free languages.

Example 3. There exists PCol automaton accepting language L = {anbncn | n ≥
0} in any of the computation modes t, tmax, or tmin. To see this, we construct
Π = ({a, b}, e, ε, (w, P ), F ) where w = ea,

P = {〈e T→ a; a ↔ e〉, 〈a T→ b; e ↔ a〉, 〈a T→ b; b ↔ a〉,
〈a T→ c; b → b〉, 〈b T→ c; c ↔ b〉},

and F = {(ε; u, cb), (ε;u, ea) | u ∈ {c}∗}.
To see how Π works, consider a computation for the input word aabbcc.
After the last step, the input tape is read and the automaton is in the final

state (ε; c, cb). It is not difficult to see that Π can only reach a final state if the
input is of the form {a}∗{b}∗{c}∗ with an equal number of each type of symbols.

Since P contains only tape programs, Π cannot execute any n-transitions, and
since it has only one cell, L(Π, t) = L(Π, tmax) = L(Π, tmin) = L
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step cell environment unread part of tape applied program

1. ea ε aabbcc 〈e T→ a; a ↔ e〉
2. ae a abbcc 〈e T→ a; a ↔ e〉
3. ae aa bbcc 〈a T→ b; e ↔ a〉
4. ba a bcc 〈a T→ b; b ↔ a〉
5. ba b cc 〈a T→ c; b → b〉
6. cb b c 〈b T→ c; c ↔ b〉
7. cb c ε

Now we consider the initial mode. This time, although the computations can
be of arbitrary length, n-transitions can only be executed after the whole input
string is processed. The next example demonstrates that the class of languages
characterized by PCol automata in the initial mode contains non-semilinear lan-
guages.

Example 4. There exists a PCol automaton Π, such that L(Π, init) = {a2n}. To
see this, consider the PCol automaton Π = (V, e, ε, (ee, P1), (ee, P2), F ) where
V = {a, b, B, c, c′, d, d′, f, f ′, g, g′, i, i′, i, i, i′, i′, x, x′, x′′, x′′′, x, x, xh, y, y′, y′′, z, u,

u′, u′′, u′′′, u, u, v, v′, v′′}, F = {(ε; ε, xhe, ee)}, and

P1 = P1,in ∪ P1,div ∪ P1,b ∪ P1,B ∪ P1,tran ∪ P1,fin, and P2 = P2,b ∪ P2,B

where the set of programs are defined as follows.

P1,in = {p1 : 〈e T→ a; e → b〉, p2 : 〈a T→ a; b ↔ e〉, p3 : 〈a T→ a; e → b〉}.
Using these programs, the first cell reads the input symbols and puts one object b
into the environment after reading two as.

After reading the input, the cells may replace two bs by one B, or two Bs by
one b. This is achieved by the programs:

P1,div = {p4 : 〈a → c; e ↔ b〉, p5 : 〈c → d; b → e〉, p6 : 〈d → f ; e ↔ b〉,
p7 : 〈f → g; b → B〉, p8 : 〈g → i; B ↔ e〉, p9 : 〈i → c; e ↔ b〉,
p10 : 〈i′ → c′; e ↔ B〉, p11 : 〈c′ → d′; B → e〉,
p12 : 〈d′ → f ′; e ↔ B〉, p13 : 〈f ′ → g′; B → b〉,
p14 : 〈g′ → i′; b ↔ e〉}.

After exchanging the bs to Bs or reversely, the cells have to control if there is
any remaining bs or Bs and only in the negative case an the computation continue.
This is done by the interplay of the programs

P1,b = {p15 : 〈e → x′; x ↔ e〉, p16 : 〈e → x′′;x′ ↔ e〉p17 : 〈x′′ → x′′′; e ↔ e〉,
p18 : 〈x′′′ → x; e ↔ e〉, p19 : 〈x → x; e ↔ e〉, p20 : 〈x → i; e ↔ y′′〉,
p21 : 〈x → i′; e ↔ y〉, p22 : 〈y′′ → i; i ↔ e〉, p23 : 〈y → z; i′ ↔ e〉,
p24 : 〈e → i′; z ↔ i′〉, p25 : 〈i′ → i′; i′ ↔ e〉},
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P2,b = {p26 : 〈e → y; e ↔ x〉, p27 : 〈x → y′; y ↔ x′〉, p28 : 〈x′ → y′′; y′ ↔ b〉,
p29 : 〈b → b; y′′ ↔ y〉, p30 : 〈y → e; b ↔ e〉, p31 : 〈x′ → e; y′ ↔ z〉,
p32 : 〈z → e; e ↔ e〉},

for checking bs, and the programs

P1,B = {p33 : 〈e → u′;u ↔ e〉, p34 : 〈e → u′′; u′ ↔ e〉, p35 : 〈u′′ → u′′′; e ↔ e〉,
p36 : 〈u′′′ → u; e ↔ e〉, p37 : 〈u → u; e ↔ e〉, p38 : 〈u → i′; e ↔ v′′〉,
p39 : 〈u → i; e ↔ v〉, p40 : 〈v′′ → i′; i′ ↔ e〉, p41 : 〈v → w; i ↔ e〉,
p42 : 〈e → i; w ↔ i〉, p43 : 〈i → i; i ↔ e〉},

P2 = {p44 : 〈e → v; e ↔ u〉, p45 : 〈u → v′; v ↔ u′〉, p46 : 〈u′ → v′′; v′ ↔ B〉,
p47 : 〈B → B; v′′ ↔ v〉, p48 : 〈v → e; B ↔ e〉, p49 : 〈u′ → e; v′ ↔ w〉,
p50 : 〈w → e; e ↔ e〉},

for checking Bs.
The following programs are used for connecting the different phases of the

functioning of the system,

P1,tran = {p51 : 〈i → x; e ↔ e〉, p52 : 〈i′ → u; e ↔ e〉},

and for finishing the computation

P1,fin = {p53 : 〈d → xh; e ↔ e〉, p54 : 〈d′ → xh; e ↔ e〉, p55 : 〈a → xh; b → e〉}.

5 Conclusion

P colony automata are very simple language recognizing devices, with strong for-
mal resemblance to finite automata. Especially interesting are those cases when
the function of these constructs is governed by the use of their tape rules, i.e.,
the computational modes t, tmin and tmax. The description of the exact compu-
tational power of these variants of PCol automata is a challenging problem. We
guess to obtain language classes of very low complexity.
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Summary. Sudoku is a very popular puzzle which consists on placing several numbers in
a squared grid according to some simple rules. In this paper we present an efficient family
of P systems which solve sudoku puzzles of any order verifying a specific property. The
solution is searched by using a simple human-style method. If the sudoku cannot be solved
by using this strategy, the P system detects this drawback and then the computations
stops and returns No. Otherwise, the P system encodes the solution and returns Yes in
the last computation step.

1 Introduction

Sudoku is currently one of the most famous puzzles in the world. The most popular
version consists on a 9×9 grid made up of 3×3 subgrids, but the general case, an
n2×n2 grid with n×n subgrids is considered. Some cells contain numbers, which
can be considered as input data. The goal is to fill in the empty cells, one number
in each, so that each column, row, and subgrid contains the numbers 1 through 9
exactly once (numbers 1 to n2 in the general case). If the input data are correct,
the sudoku has one and only one solution.

The creator is believed to be Howard Garns [6]. He is likely to be the inventor
of a puzzle called ”Number Place” that appeared in New York in 1979. The puzzle
was introduced in Japan by the publishing company Nikoli in the paper Monthly
Nikolist in April 1984 as Suji wa dokushin ni kagiru [7], which can be translated
as the numbers must occur only once or the numbers must be single. Later, the
name was abbreviated as sudoku, where su stands for number and doku stands for
alone. Later Wayne Gould from New Zealand discovered the puzzle on a trip to
Japan and wrote a program to generate new puzzles. He convinced The Times of
London to publish Sudoku puzzles in 2004.

In addition to its undoubted success in entertainment, sudoku has important
properties from a mathematical point of view. The first natural question is to won-
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der about is the number of all possible sudoku grids. The answer to this question is
not an easy matter. A valid sudoku solution is also a Latin square. A Latin square
is an n×n table filled by using numbers from 1 to n in such way that each symbol
occurs exactly once in each row and exactly once in each column. The number of
9× 9 Latin squares is about 5.525× 1027.

Sudoku imposes the additional constraint on subgrids, so from the previ-
ous number we need to remove the Latin squares which do not satisfy the
condition. The number of valid sudoku solution grids for the standard 9 × 9
grid is 6,670,903,752,021,072,936,960. This number is equal to 9! × 722 × 27 ×
27, 704, 267, 971, the last factor of which is prime. The result was derived through
logic and brute force computation. The details can be found at [1]. Other impor-
tant property is that it has been proved that the general problem of solving sudoku
puzzles on n2 × n2 grids of n× n boxes is known to be NP-complete [5].

Nonetheless, the number of possible solution grids is not the object of study
of this paper nor the complexity of finding the solution. In this paper we study
the problem of solving sudoku by using Membrane Computing techniques. In the
first part of the paper, we develop a theoretical study about the use of brute force
algorithms to solve it, based on a well-known solution for the SAT problem. As
we will see below, the number of elementary membranes for a usual 9× 9 sudoku
exceeds the number of atoms of the observable universe, so we have a good reason
for looking for a different strategy.

In the second part of the paper, we present a family of P systems {Π(n)}n∈N
such that Π(n) is a P system with input. Such an input is, of course, the input
for one sudoku puzzle encoded as a multiset. The solution is searched by using a
human-style method based on looking for squares where only one candidate can
be placed. This method is good enough to find the solution for a large amount of
sudokus, but not all the sudokus can be solved by using this method. An origi-
nal control method in the design of the algorithm is that the P system stops if
the sudoku cannot be solved, i.e., instead of going into a non-ending search, the
P system detects the drawback and halts. If the solution can be reached, the P
systems stops, sends out an object Yes to the environment and provides the so-
lution encoded on the skin. Otherwise, if the P system detects that the solution
cannot be reached then it halts and sends No to the environment in the last step
of computation.

The paper is organized as follows: first we explore a theoretical brute force
algorithm based on a Membrane Computing solution for the SAT problem. After
showing the practical drawback of such a solution, we present our efficient family
of P systems for solving a large amount of sudokus. We illustrate the behavior of
this family with an overview of the computation and, finally, some final remarks
are presented.
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2 A Brute Force Algorithm

A sudoku square of order n consists of n4 constants (usually n2 copies of the
numbers 1, 2, . . . , n2), arranged into an n2 × n2 grid which comprises n2 subgrids
of size n × n (also called boxes). Such a grid verifies that the entries in each
row, each column and each box are all different. A sudoku problem consists on
a partial assignment of the variables in a Sudoku square. The target is to find a
completion of the assignment which extends the partial assignment and satisfies
the constraints.

The first idea for solving a sudoku problem is to consider it as a constraint
problem. In fact, we are looking for one assignment of numbers to squares which
satisfies a finite amount of restrictions. The set of constraints of a sudoku problem
can be expressed as a logic formula in conjunctive normal form. Following [3], a
sudoku square of order n can be represented as an instance of the SAT problem
with n6 propositional variables. For each entry in the n2×n2 grid, we will consider
n2 variables. Let us use the notation sxyz to refer to variables. Variable sxyz is
assigned true if and only if the entry in the row x and column y is number z. In
this way, if the variable s753 takes the value true, then it means that the number
3 is placed at position (7, 5) of the grid. According to this notation, the different
constraints for the sudoku problem can be represented as the following formulae:

• There is at least one number in each entry:

ψ1 ≡
n2∧

x=1

n2∧
y=1

n2∨
z=1

sxyz

• Each number appears at most once in each row:

ψ2 ≡
n2∧

y=1

n2∧
z=1

n2−1∧
x=1

n2∧
i=x+1

(¬sxyz ∨ ¬siyz)

• Each number appears at most once in each column:

ψ3 ≡
n2∧

x=1

n2∧
z=1

n2−1∧
y=1

n2∧
i=y+1

(¬sxyz ∨ ¬sxiz)

• Each number appears at most one in each box:

ψ4 ≡
n2∧

z=1

n−1∧
i=0

n−1∧
j=0

n∧
x=1

n∧
y=1

n∧
k=y+1

(¬s(ni+x)(nj+y)z ∨ ¬s(ni+x)(nj+k)z)

ψ5 ≡
n2∧

z=1

n−1∧
i=0

n−1∧
j=0

n∧
x=1

n∧
y=1

n∧
k=x+1

n∧
l=1

(¬s(ni+x)(nj+y)z ∨ ¬s(ni+k)(nj+l)z)

The conjunction of these five formulae Φ ≡ ψ1

∧
ψ2

∧
ψ3

∧
ψ4

∧
ψ5 is a for-

mula in conjunctive normal form and each truth assignment which makes it true
represents a right arrangement of n2 copies of 1, 2, . . . , n2 according to the sudoku
constraints.
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Once expressed the sudoku as such a formula, finding a solution to the puzzle
can be considered as the problem of finding a truth assignment which satisfies the
formula. This is exactly the satisfiability (SAT) problem.

Any truth assignment which makes it true represents a right arrangement of
n2 copies of 1, 2, . . . , n2 according to the sudoku constraints over an empty sudoku
grid of order n, but we are not interested in finding such solutions. In fact, a sudoku
puzzle should have a certain amount of numbers placed in the right position as
input in such way that there exists a unique possible assignment which represents
the solution to the problem. Given a sudoku puzzle, we will call Input to the set

Input = {〈x, y, z〉 : z is placed on the square (x, y) of the grid}

In order to deal with the input, it is enough to add the corresponding values
to the formula Φ as follows:

Φin ≡ Φ ∧
∧

〈x,y,z〉)∈Input

sxyz

Given a sudoku problem and its associated formula Φin, finding the solution to
the problem is equivalent to finding a truth assignment which satisfies the formula.

In [2], a family of P systems with active membranes to solve the SAT problem
was presented. It was based on the solution presented in [4]. The main difference
was that the solution from [4] only provides Yes or No as answers to the problem.
The solution in [2] found and stored all the truth assignments which satisfy the
formula, if there exists.

By considering the encoding of a sudoku problem as a CNF formula on one
side and the family of P systems which provides solutions for SAT on the other
side, we have a Membrane Computing solution for all sudoku problems.

This nice theoretical solution has an insurmountable obstacle from a practical
point of view: The number of elementary membranes in one configuration of one P
system from the family reaches 2N , where N is the number of variables of the CNF
formula. For a sudoku of order n, the number of variables is n6, and so the number
of elementary membranes is 2n6

. For a usual sudoku of order 3, 2729 elementary
membranes are simultaneously handled. Estimates of the matter content of the
observable universe indicate that it contains on the order of 1080 atoms1, so the
brute force algorithm is only a fine calculus for Membrane Computing theory.

3 A New Solution

In this section we present a family of P systems P = {Π(n) : n ∈ N} such that
Π(n) solves sudokus of order n. The P system Π(n) receives as input the initial
data placed in a sudoku puzzle. It is designed to solve sudokus which satisfy a
property which will be described below. If the sudoku satisfies the property, the
1 http://en.wikipedia.org/wiki/Observable universe
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P system computes the solution, it sends an object Yes to the environment in the
last step of computation and encodes the solution to the sudoku as a multiset in
the skin of the halting configuration. Otherwise, the P system detects that the
property is not satisfied and halts by sending an object No to the environment in
the last step of computation.

The property is the following: In all partial solutions of the sudoku, there exists
at least one square (i, j) with a unique candidate.

We will call partial solution of a sudoku to a sudoku grid where some new
numbers have been placed and all of them are in the right position. A number p is
a unique candidate for the square (i, j) if for all q ∈ {1, . . . , n2}, p 6= q, q has been
previously placed in the same row, the same column or the same box of (i, j). For
example, if we consider the sudoku of order 2 of Figure 1, number 4 is a unique
candidate for the square (1, 2), since 1 is in the same row, 2 is in the same column
and 3 is in the same box.

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1

3

1 2

Fig. 1. A sudoku problem of order 2

Many sudokus satisfy this property. It is in the base of many human strategies
for solving sudokus. Nonetheless, sometimes it is not enough to solve the sudoku
and more sophisticated methods are necessary.

3.1 A Family of P Systems

Next, we present a family Π = {Π(n)}n∈N for solving any sudoku of order n
verifying the property stated above. Each P system Π(n) only depends only on
the order n of the sudoku and it does not increase the number of membranes along
the computation. The used rules are of the following types:

• Enzymatic rules: [¬in u −−→
cat

v]e. The multiset u evolves to the multiset v in
the membrane with label e. The rule is applied if in the same membrane the
objects from the set cat are present (catalysts) and none of the objects from the
set in are present (inhibitors). The catalysts and the inhibitor are not modified
by the application of the rules and cat, in and v can be empty.

• Dissolution rules: [u ]e → o. The multiset u causes membrane e to dissolve and
produces the object o.
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• Send-out rules: [ a ]e → [ ]e a. The object a is sent out of the membrane with
label e.

As usual, all the rules are applied in parallel and in a maximal manner. In
one step, one object of a membrane can be used by only one rule (chosen in a
non deterministic way), but any object which can evolve by one rule of any form,
should evolve. If a membrane is dissolved, its content is left free in the surrounding
region. If there are objects in this membrane which evolve by means of enzymatic
rules and a membrane h is dissolved at the same time, then we suppose that first
the enzymatic rules are used and then the dissolution is produced. Of course, this
process takes only one step. We will also use priorities among sets of rules.

The input will be provided as a set of objects zijn by denoting that the number
n is placed at the square with row i and column j. The initial configuration will
also contain information about the box corresponding to each square. In such a
way, objects boxijk with i, j ∈ {1, . . . , n2} are place in the initial configuration and
k is the box corresponding to the square (i, j), i.e., if i = αn+ β and j = γn+ δ
with α, γ ∈ {0, . . . , n− 1} and β, δ ∈ {1, . . . , n} then k = αn+ γ + 1.

The initial configuration also contains the objects fix, cjx, bkx, sqij with
i, j, k, x ∈ {1, . . . , n2}. The occurrence of fix in the configuration denotes that
the number x is not placed in any square of the row i yet and then, the number x
can be eventually placed in such a row in the future. Analogously, cjx denotes that
x is not placed in the column j and bkx that the object is not placed in any square
of the box k. The objects sqij are witnesses of the existence of the corresponding
square. Finally, n2 copies of each object rij with i, j ∈ {1, . . . , n2} are also placed
in the initial configuration.

The idea of the design is to develop a sequence of two stages: The checking
stage and the reset stage. In the checking stage, the P system looks for squares
with a unique candidate. If such squares are found, the candidates are placed in
them. After the stage all the auxiliary objects are recalculated in the reset stage
and then we start again the checking stage. This checking-reset cycle ends when
all the squares are filled and the sudoku is solved or if in a checking stage no new
squares with unique candidates are found.

Formally, the P system of order n with input that solves the sudokus with the
property claimed above is a construct

Π(n) = 〈Γ,H, µ,we, ws, i0, R1, R2, R
a
3 , R

m
3 , R

d
3, R4, . . . , R11, R

1
12, R

2
12〉

with the priorities R1 > R2 > Rq
3 > R4 > . . . R11 > Rx

12 with q ∈ {a, r,m} and
x ∈ {1, 2} where

• The alphabet Γ = {sijx, zijx, boxijk, sqij , fix, cjx, bkx, aij , rij : i, j, k, x ∈
{1, . . . , n2} } ∪ {k0, k1, w}

• The set of labels H = {e, s}
• The membrane structure µ = [ [ ]e ]s
• The initial multisets we = {k1} ∪ {boxijk, sqij , fix, cjx, bkx, r

n2

ij : i, j, k, x ∈
{1, . . . , n2} } and ws = ∅.
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• i0 = e, i.e., the input membrane is e.

We also consider the following sets of rules2

R1 ≡ [ zijx → sijx p ]e for i, j, x ∈ {1, . . . , n2}.

Each input object zijx produces an object sijx and one object p. In any
configuration we will have as many objects p as numbers are correctly placed on
the sudoku. After applying these rules, we have as many objects p as numbers are
placed as input.

R2 ≡


[fix −−→

sijx

λ]e

[cjx −−→
sijx

λ]e

[bkx −−−−−−−→
sijx boxijk

λ]e

 for i, j, k, x ∈ {1, . . . , n2}.

The object sijx represents that the number x is placed in the square (i, j).
When such an object is generated the objects fix, cjx and bkx must disappear.

Rm
3 ≡ [¬dmijx −→

k1
λ]e

Ra
3 ≡ [¬d aij −→

k1
λ]e

Rr
3 ≡ [¬d rij −→

k1
λ]e

 for i, j, x ∈ {1, . . . , n2}.

R4 ≡ [¬d¬rijsqij −→
k1

sqij r
n2

ij d]e for i, j ∈ {1, . . . , n2}.

Before starting with the checking stage, we ensure that the markers (mijx)
and counters (aij and rij) are reset. First, we remove all the copies of aij , mij

and rij . In the next step we add n2 copies of each object rij to membrane e.

R5 ≡ [k1 → k0]e

The reset stage ends when object k1 (used as catalyst in the previous sets of
rules) evolves to k0.

R6 ≡ [¬mijx rij −−−−−−−−−−−→
fix cjx bkx boxijk

mijx aij ]e for i, j, x ∈ {1, . . . , n2}.

The checking stage starts with the set R6. We know that if objects fix cjx bkx

are present in membrane e in one configuration, then the number x is a candidate
to be placed in the square (i, j), since x has not been placed yet in the row i, the
column j or the box k. The question is to know if x is the unique candidate. This
is checked by rules from set R6. Before applying these rules, we have checked
that for all square (i, j) we have n2 copies of rij in membrane e and zero copies
of aij . If fix cjx bkx are present in the membrane (they act as catalyst), then the

2 We write ¬ before the object a if a acts as an inhibitor.
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corresponding rule is applied. The application of the rule removes one copy of rij
and produces one copy of aij . The occurrence of mijx ensures that the rule is
applied once.

R7 ≡ [¬sijq r
n2−1
ij aijfix cjx bkx −−−−−→

d boxijk

sijx pw]e i, j, x, q ∈ {1, . . . , n2}.

If there exists only one aij and n2 − 1 copies of rij (and the square (i, j) is
empty) then the square (i, j) has a unique candidate. The rules delete the objects
fix cjx bkx and introduce the objects sijx, p and w. The object sijx corresponds
to a number and a square in the solution of the sudoku, p denotes that a new
number has been placed in the solution (when p reaches n2 copies, the cycle
reset-checking stops) and w is a witness of the application of the rule.

R8 ≡ [w k0 → k2]e

R9 ≡
{

[w → λ]e
[k0]e → No

If an object w has been produced, it means that at least one of the rules
from the set R7 has been applied. In other words, a new number has been placed
on the solution of the sudoku and the reset-checking cycle must go on. In this
case, objects w and k0 are consumed by the rule from R8 and a new object k0 is
produced. If k0 has not been consumed by the rule from R8, then no new number
has been placed on the sudoku. This means that it does not make sense going on
with the reset-checking cycle, since the next checking stage will have the same
configuration that this one. In order to prevent an infinite sequence of cycles,
object k0 dissolves membrane e and the remaining objects w (if any) are removed.

R10 ≡ [pn6
]e → Yes

The copies of p denote the number of squares correctly filled. When it reach
n6 copies, the membrane e is dissolved.

R11 ≡
{

[d→ λ]e
[k2 → k1]e

This set of rules marks the end of the checking stage. The inhibitor d is
removed and the catalyst k1 is produced so rules from R3 can be triggered and
the reset stage starts again.

Notice that membrane e is dissolved anyway. If the sudoku is not completed,
but no more numbers can be placed, then the rule [k0]e → No is applied
and the object No appears in membrane s. Otherwise, if the sudoku is com-
pleted, [pn6

]e → Yes is applied and Yes appears in membrane s. In the last step
of computation, the corresponding object Yes or No is sent out to the environment.



A Cellular Sudoku Solver 85

R1
12 ≡

{
[Yes]s → [ ]s Yes
[No]s → [ ]s No

Also in the last step, the auxiliary objects are removed from membrane s

R2
12 ≡


[p→ λ]s [mijx → λ]s [aij → λ]s
[fix → λ]s [d→ λ]s [rij → λ]s
[cjx → λ]s [boxijk → λ]s [k2 → λ]s
[bkx → λ]s [sqij → λ]s

4 An Overview of the Computation

We will give some hints on the computation by following the computation of
the example of order two showed in Figure 1. We start with a sudoku prob-
lem with 4 numbers placed. Such an input is encoded in the multiset Input =
z311 z322 z213 z141. The initial configuration C0 has two membranes [ [ ]e ]s. Mem-
brane s is empty and membrane e contains the input plus the objects k1 and
fix cjx bkx sqij boxijk, r

4
ij for i, j, k, x ∈ {1, . . . , 4}.

From this configuration C0, rules from sets R1, Rr
3 , R5 and R6 can be applied.

Due to priority, rules from R1 are applied and we obtain configuration C1. The
objects zijx are removed and replaced by the corresponding sijx. Four copies of
object p also appear. This means that four numbers are correctly placed in the
sudoku.

Rules from R1 will nor be applied any more, since no rule pro-
duces objects zijx. From C1 rules of set R2 are applied and the objects
f31 c11 b31 f32 c22 b32 f23 c13 b13 f11 c41 b21 are removed from membrane e and we
obtain configuration C2.

Next, rules from Rr
3 are applied (obtaining C3) and then we apply rules from

R4 (obtaining C4). This is the first time that we reset the system, so C4 is identical
to C2, but with new objects d.

Since membrane e contains objects d, none of the rules from sets R∗3 nor from
R4 are applicable. The next application of the rule corresponds to R5. The object
k1 evolves to k0 and the checking stage begins. The new configuration C5 contains
k0. Since no object mijx has been created yet, for each triplet (i, j, x) such that the
number x can be placed in the square (i, j), one of the rules from R6 is triggered,
reaching configuration C6. The application of one of these rules removes one copy
of the corresponding rij and produces one copy of aij . Each rule only can be
triggered once due to object mijx. After the application of these rules, the number
of objects aij denotes the number of possible candidates to be placed in the square
(i, j). In the next step, two rules from R7 are triggered and the objects s124 and
s414 are produced and configuration C7 is reached. After the application of rules
from R6, the number of objects aij for squares (1, 2) and (4, 1) was exactly one.
This means that for these squares, the candidate is unique. The current partial
solution for the sudoku is shown in Figure 2.
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

4 1

3

1 2

4

Fig. 2. Partial solution at configuration C7

The application of rules from R7 has produced two copies of the object w in the
configuration C8. One of these copies, along with k0 produces k1 (Configuration
C9). In the next step the remaining w is deleted (Configuration C10). The checking
stage finishes with the application of the rule from R10. Object d is removed and
the configuration C11 is reached.

The object d is a strong inhibitor. Since it has disappeared, rules from R3 can
be applied and the reset stage starts again. We go on with this new reset stage and
the application of three rules from R7 produces the objects s221, s423 and s112.
This means that three new numbers can be placed on the sudoku (see Figure 3).

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

2 4 1

3 1

1 2

4 3

Fig. 3. Partial solution at configuration C16

The checking-reset cycle goes on and in C24, the objects s133 and s442 are
added. In C32, s431, s334 and s244 are added, and finally in C40, the objects s232
and s343 are generated. Figure 4 shows the solution of the sudoku according to the
objects sijx in membrane e.

The P system follows with the computation and in C42 there are 16 copies
of objects p in membrane e. The rule from R10 is triggered, the membrane e is
dissolved and all the objects go to membrane s. In the next step, one objects
Yes is sent out and the remaining objects (but sijx) are deleted, so the final
configuration has an object Yes in the environment and one membrane where the
solution is encoded.
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

2 4 3 1

3 1 2 4

1 2 4 3

4 3 1 2

Fig. 4. Solution at configuration C40

As pointed above, it is possible that for some sudokus there no exist squares
with unique candidates. In such cases, when the checking stage is reached, no rule
from R7 is applied and no object w is produced. Since we do not have objects
w, the rule from R8 is not applied, and according to priority, the dissolution rule
from R9 is applied. An object No is sent to membrane s, the reset-checking cycle
is stopped. In the next step an object No is sent out and the computation ends.

Notice that we have chosen an example of order 2 for illustrating the process,
but the computation is similar for a sudoku problem of any order.

5 Final Remarks

P systems have showed many times to be versatile enough to represent many
different situations, from real life or from more abstract scenarios. In parallel with
a very expressive representation system, Membrane Computing also provides a
friendly set of tools for dealing with the information. Besides the computational
power of the expressiveness, the research in a new computational model also needs
to face a problem of efficiency. In this paper we provide a first theoretical solution
for the problem of finding a solution to a sudoku problem. It is based on an
appropriate representation of the problem as a formula and a well-established
solution of the SAT problem. The solution works from a theoretical point of view,
but it does not make sense form a practical one.

In the second part of the paper, we have designed a solution for solving sudoku
problems in an effective way. It solves all the sudokus which verifies a very common
property, by following a strategy close to human-style solutions. One of the main
original contributions of the design is the checking to avoid infinite loops. The
implemented strategy is enough to find the solution to many sudoku problems,
but it is not enough to solve all of them. The next step is to go on with the
research and tackle these hard sudoku problems. Beyond these efforts it is the
horizon of a better understanding of the cellular processes and making more and
more efficient cellular designs.
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Summary. In this paper we present a P systems-based solution for the Homology Groups
of Binary 2D Image (HGB2I) Problem, a classical problem in Homology Theory. To this
aim, we present a family of P systems which solves all the instances of the problem in
the framework of Tissue-like P systems with catalysts. This new framework combines the
membrane structure and symport-antiport communication rules of tissue-like P systems
with the power of catalysts and inhibitors.

1 Introduction

Homology theory is a branch of Algebraic Topology that attempts to distinguish
between spaces by constructing algebraic invariants that reflect the connectivity
properties of the space. The field has its origins in the work of the French mathe-
matician, theoretical physicist, and a philosopher of science Jules Henri Poincaré.
Homology groups (related to the different n-dimensional holes, connected compo-
nents, tunnels, cavities, etc., of a geometric object) are invariants from Algebraic
Topology which are frequently used in Digital Image Analysis and Structural Pat-
tern Recognition. In some sense, they reflects the topological nature of the object
in terms of the number and characteristics of its holes.

In this paper we explore one of the main problems from Homology Theory in
terms of Membrane Computing3. The chosen problem is the Homology Groups of
Binary 2D Image (HGB2I) Problem: Given a binary 2D digital image, calculate
the number of black connected components and the representative curves of the
3 We refer to [20] for basic information in this area, to [23] for a comprehensive presen-

tation and the web site [17] for the up-to-date information.
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holes of these components. We can divide this problem in two sub-problems, H0

problem (number of black connected components) and H1 problem (number of
holes). This problem and the way of computing and representing topological infor-
mation (neighborhood, connectedness, orientation, etc.) form an important part
in applications such as image classification, indexing, shape description and shape
recognition.

This is not the first bio-inspired approach to problems to Algebraic Topology.
In 1996, J. Chao and J. Nakayama connected Natural Computing and Algebraic
Topology using Neural Networks [5] by extended Kohonen mapping. Some years
after, Subramanian et al. presented in [3, 4] two works where Digital Image and
Natural Computing were linked. Our paper can be seen as a new step from the
work by Cristinal et al. [6, 7] in their effort for bridging Membrane Computing
and Algebraic Topology.

The solution presented in this paper to the HGB2I problem has been designed
in a new P system framework called tissue-like P systems with catalysts. It takes the
membrane structure and symport-antiport communication rules with the power of
catalysts and inhibitors.

Time to calculate the homology groups of 2D digital images with these P
systems is logarithmic with respect to the input data with size n2. This involves
an improvement with regard to the algorithms development by S. Peltier et al. in
[24], where they use irregular graphs pyramids with a time complexity of O(n5/3).

The paper is organized as follows: In the next section we formally present the
framework of tissue-like P systems with catalysts. In Section 3, we show how these
P systems can be used to solve the H0 and H1 problems in Homology Theory.
Next we will show a pair of examples. The paper ends with some final remarks
and open lines for the future.

2 Tissue-like P Systems with Catalysts

Tissue P systems were presented in [15, 16]. This P system model is inspired in the
intercellular communication and cooperation between neurons. The mathematical
model of these devices is a net of processors dealing with symbols and communicat-
ing these symbols along channels specified in advance. The communication among
cells is based on symport/antiport rules4. Symport rules move objects across a
membrane together in one direction, whereas antiport rules move objects across a
membrane in opposite directions.

In tissue-like P systems the membrane structure is a general undirected graph.
The edges of such graph are not given explicitly, but they are deduced from the
set of rules. From the seminal definition of tissue P systems, several research lines
have been developed and other variants have arisen (see, for example, [1, 2, 10, 12,
14, 18, 22]).

4 This way of communication for P systems was introduced in [21].
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Catalytic P systems were introduced in [19]. The main feature of these P sys-
tems is the presence of objects in membranes such that they are not consumed by
the application of the rule, but their presence in the membrane is necessary for
the triggering. Catalysts have been deeply studied in Membrane Computing (see,
e.g. [8, 13, 11]), but to the best of our knowledge, this is the first time in which
catalysts are used for tissue P systems5.

Next we provide the definition of tissue-like P systems with catalysts:

Definition 1. A tissue-like P system with catalyst of degree q ≥ 1 is a tuple of the
form

Π = (Γ, E , w1, . . . , wq,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. E ⊆ Γ is a finite alphabet representing the set of the objects in the environment

available in an arbitrary large amount of copies.
3. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration.
4. R is a finite set of enzymatic rules of the following form: (¬in, cat | i, u/v, j) for
i, j ∈ {0, 1, 2, . . . , q}, i 6= j, in, cat, u, v ∈ Γ ∗. The length of a communication
rule is defined as |u| + |v|. The catalyst and the inhibitor are not modified by
the application of the rules and cat, in and v can be empty.

5. i0 ∈ {0, 1, 2, . . . , q} denotes the output region, which can be the environment
(i0 = 0) or the region inside a cell (1 ≤ i0 ≤ q).

Informally, a tissue-like P system with catalysts of degree q ≥ 1 can be seen as
a set of q cells (each one consisting of a single membrane) labeled by 1, 2, . . . , q.
The cells are the nodes of a virtual graph, where the edges connecting the cells are
determined by the communication rules of the system (an edge linking two cells
indicates that they are able to trade objects between them). In our definition, all
objects in the alphabet can act as catalyst or inhibitor, depending on the applied
rule. This means that the inhibitor or catalysts for a rule can be sent to another
cell (or to the environment) by another rule.

The enzymatic rule (¬in, cat | i, u/v, j) can be applied over two cells (or a cell
and the environment) i and j such that u (contained in cell i) is traded against v
(contained in cell j). The rule is applied if in membrane with label i the objects
of the set cat are present (catalyst) and none of the objects from the set in are
present (inhibitors). If the catalyst and the inhibitor are empty, then the rule is
called a communication rule.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e. in each step we apply a maximal multiset of rules.
5 Comprehensive information about catalytic P systems can be found at [9].
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A configuration is an instantaneous description of the system Π, and it is
represented as a tuple (w0, w1, . . . , wq). Given a configuration, we can perform
a computation step and obtain a new configuration by applying the rules in a
parallel manner as it is shown above. A sequence of computation steps is called a
computation. A configuration is halting when no rules can be applied to it. The
output of a computation is collected from its halting configuration by reading the
objects contained in the output cell.

3 Using Tissue-like P Systems to Obtain H0 and H1

As pointed out above, given a binary 2D digital image, the problem consists on
calculating the number of black connected components and the representative
curves of the holes of these components. We can divide this problem in two sub-
problems, the H0 problem consists on calculating the number of black connected
components and the H1 problem, which consists on calculating the number of
holes. In this paper we present a new technique to use tissue-like P systems with
catalyst to obtain homological information of binary 2D digital images.

A 2D digital image I can be considered like a matrix where one pixel is an
element of the matrix. If we have pixels the following question is to know when
two pixels are adjacent (connected). There exists two natural possibilities, consider
to work with a 4-adjacency (Von Neumann neighborhood in cellular automata) or
8-adjacency (Moore neighborhood in cellular automata).

In the first case, given a pixel Kij (where K = B ∨ K = W ), the list of
adjacent pixels to this is {Kij−1,Kij+1,Ki−1j ,Ki+1j} i.e.; the adjacent pixels to
any pixel Ki,j are just north, south, west, east of this (no in the diagonal respect
to considered pixel), such we can observe in the following:

B
B K W
W

In the second we consider the pixel Kij (where K = B ∨K = W ), the list of
adjacent pixels to this is {Ki−1j−1,Ki−1j ,Ki−1j+1,Kij−1,Kij+1, Ki+1j−1,Ki+1j ,
Ki+1j+1} i.e.; the adjacent pixels to a any pixel Ki,j are just up, down, right and
left of this and, moreover, we consider the diagonal objects, such we can observe
in the following:

B W B
W K B
B B W

We have decide to consider in this paper the 4-adjacency for black pixels and
the 8-adjacency for white pixels.

Given an image I with size n2, we divide I in a set of pixels, black or white,
but not both. We codify each pixel (i, j) by the object aij where a = b (black)
or a = w (white). We can assign to each object a label associated to the codified
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pixel by this object. So, we have the objects of the form (aij , (i, j)). We will see
below how to use these labels to solve our problem with P systems.

3.1 Solving H0 Problem

Fig. 1. A simple example to obtain H0

In order to provide a logarithmic-time uniform solution to the H0 problem, we
design a family of tissue-like P systems with catalyst, Π0. Given an image I of
size n2, we take the system of the family Π0(n) to work with I. The input data
(image I) is codified by a set of objects bij and wij for 1 ≤ i, j ≤ n. Each pixel of
the image is given by an object zij with z = b or z = w.

The family of P systems is defined as follows:

Π0(n) = (Γ,Σ, E , ω1, ω2,R, iin, i0)

where:

• Γ = {ai : 1 ≤ i ≤ n+ 2} ∪
{bij , wij : 1 ≤ i, j ≤ n} ∪
{(bij , (k, l)) : (1, 1) ≤ (i, j) ≤ (k, l) ≤ (n, n)} ∪
{Aijkl : (1, 1) ≤ (i, j) < (k, l) ≤ (n, n)}.

• Σ = {bij , wij : 1 ≤ i, j ≤ n}.
• ω1 = {a1}.
• ω2 = ∅.
• E = Γ −Σ.
• R is the set of rules:
◦ R1 ≡ (1, ai/ai+1, 0) for 1 ≤ i ≤ n+ 1.

These rules generate a counter that will be used in the output of the system.
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◦ R2 ≡ (1, bij/(bij , (i, j)), 0) for 1 ≤ i, j ≤ n.
These rules add labels to black pixels in order to work with them.

◦ R3 ≡ (1, (bij , (k, l))(bi′j′ , (k′, l′))/(bij , (k, l))(bi′j′ , (k, l))Aklk′l′ , 0) for (1, 1)≤
(k, l) < (k′, l′) ≤ (n, n), and (i, j), (i′, j′) adjacent pixels.

◦ R4 ≡ (1, (bij , (k, l))(bi′j′ , (k′, l′))/(bij , (k′, l′))(bi′j′ , (k′, l′))Ak′l′kl, 0) for
(1, 1) ≤ (k′, l′) < (k, l) ≤ (n, n) and (i, j), (i′, j′) adjacent pixels.
The two last types of rules change the labels of adjacent pixels, we need all
the adjacent black pixels to have the same label, so we will know that they
are all in the same connected component.

◦ R5 ≡ (Aijkl|1, (bi′j′ , (k, l))/(bi′j′ , (i, j)), 0) for 1 ≤ i, j, k, l, i′, j′ ≤ n.
In these rules we introduce catalysts, and process becomes faster. The cat-
alyst has been created when the pixel labeled by (k, l) traded its label for
(i, j), so (i, j) and (k, l) are adjacent pixels and other pixels with these
labels can be changed.

◦ R6 ≡ (an+2|1, (bij , (i, j))/λ, 2).
With these rules we send one pixel for each connected component to the
cell 2.

• iin = 1 is the input cell.
• i0 = 2 is the output cell.

Each system of the family implements the following stages:

1. Label Allocation Stage: Cell 1 trades objects bij against others with the form
(bij , (i, j)) with the environment. The white objects are not transformed.

2. Label Conversion Stage: We can compare the black adjacent pixels by using
catalyst, and we trade the label of the greatest pixel against the label of the
other pixel; i.e. (i, (bij , (i′, j′))(bkl, (k′, l′))/(bij , (i′, j′))(bkl, (i′, j′))Ai′j′k′l′ , j),
where (i, j) and (k, l) are adjacent pixels. Moreover, we can see a new object
arriving to cell i. It is a catalyst and it is used to codify if two labels must be
compared. Later, they are connected, and one of them can be changed by the
other one, as we can see in the Figure 1.

3. Answer Stage: In the step n + 2, the object an+2 arrives to the cell 1 due
to the counter. It is used by the system as a catalyst, and the objects with
the form (bij , (i, j)) are sent to the output cell representing each one to a
black connected component. The P system have used n+ 2 steps to obtain the
number of black connected components of an n2 image.

Figure 1 shows a computation of the Π0(7) system whose input data is the
configuration C0 of the picture.

3.2 Solving H1 Problem

With respect to the H1 problem we use the same technique that we present above
where labels are associated to the objects codifying pixels. We can construct a



A Cellular Way to Obtain Homology Groups 95

Fig. 2. Representative configurations of a simple example to obtain H1

family of tissue-like P systems with catalyst, Π1, to obtain a solution of the H1

problem. Moreover, we can obtain the curves formed by black pixels containing
the holes of the black connected components of the input image. So, we introduce
in this paper a technique for segmenting images using catalysts.

Given an image I of size n2 we take the system of the family Π1(n) to work
with I. The input data (image I) is codified by a set of following objects: bij and
wij for 1 ≤ i, j ≤ n. Then, each pixel of the image is given by an object zij with
z = b ∨ w. The family of P systems is defined as follows:

Π1(n) = (Γ,Σ, E , ω1, ω2,R1, . . . ,R10, {R6,R8} > R1, iin, i0)

where:

• Γ = {zi : 1 ≤ i ≤ n+ 3} ∪
{bij , b̄ij , wij , (wij , (k, l)) : 1 ≤ i, j, k, l ≤ n} ∪
{(pij , (0, 0)), (pji, (0, 0)) : i = 0, n+ 1, 0 ≤ j ≤ n+ 1} ∪
{Zijkl : (1, 1) ≤ (i, j) < (k, l) ≤ (n, n)}.

• Σ = {bij , wij : 1 ≤ i, j ≤ n}.
• E = Γ −Σ.
• ω1 = {z1, (pij , (0, 0)), (pji, (0, 0)) : i = 0, n+ 1, 0 ≤ j ≤ n+ 1}.
• ω2 = ∅.
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• The sets of rules are:
◦ R1 ≡ (1, zi/zi+1, 0) for 1 ≤ i ≤ n+ 5.

This rule counts the number of steps of the process. We will use this to
start the Deleting Stage after n + 2 steps, and the Segmenting Stage after
n+ 4 steps.

◦ R2 ≡ (1, wij/(wij , (i, j)), 0) for 1 ≤ i, j ≤ n.
These are the only rules used in the Label Allocation Stage. These rules add
labels to white pixels in order to work with them.

◦ R3 ≡ (1, (wij , (k, l))(wi′j′ , (k′, l′))/(wij , (k, l))(wi′j′ , (k, l))Zklk′l′ , 0) for
(1, 1) ≤ (k, l) < (k′, l′) ≤ (n, n), wij , wi′j′ adjacent pixels.

◦ R4 ≡ (1, (wij , (k, l))(wi′j′ , (k′, l′))/(wij , (k′, l′))(wi′j′ , (k′, l′))Zk′l′kl, 0) for
(1, 1) ≤ (k′, l′) < (k, l) ≤ (n, n), bij , bi′j′ adjacent.
These two set of rules are used in Label Conversion Stage to compare two
adjacent white pixels, and change the label of one of them. We need all the
adjacent white pixels to have the same label.

◦ R5 ≡ (Zijkl|1, (wi′j′ , (k, l))/(wi′j′ , (i, j)), 0) for 1 ≤ i, j, k, l, i′, j′ ≤ n.
The catalyst Zijkl acts to become the process faster. It has been created
when the pixel labeled by (k, l) traded its label for (i, j), so (i, j) and (k, l)
are adjacent pixels and other pixels with these labels can be changed.

◦ R6 ≡ (zn+3|1, (pij , (0, 0))(wkl, (k′, l′))/(pij , (0, 0))(pkl, (0, 0))Z00kl, 0) for
(i, j), (k, l) 8-adjacent pixels, 0 ≤ i, j ≤ n+ 1, 1 ≤ k, l, k′, l′ ≤ n.
These rules are used in Deleting Stage to delete white pixels which are out
of the connected black component. By using 8-adjacency, we become outer
white pixels into pink pixels, in order to differentiate them from the interior
white pixels (holes). We will refer to the objects pij as pink pixels.

◦ R7 ≡ ((Z00ij |1, (wi′j′ , (i, j))/(pi′j′ , (0, 0)), 0).
A new catalyst acts in the same way, trading white exterior pixel for pink
pixels. In this way, the Deleting Stage takes only 2 step.

◦ R8 ≡ (zn+5|1, (wij , (i′, j′))bkl/(wij , (i′, j′))b̄kl, 0) for wij , bkl 8-adjacent pix-
els 1 ≤ i′.j′, i, j, k, l ≤ n.
In the Segmenting Stage a black pixel is marked if it and a white pixel are
8-adjacent pixels. It starts after n+ 2 steps.

◦ R9 ≡ (1, b̄ij/λ, 2) for 1 ≤ i, j ≤ n.
At the end, in the

– Answer Stage, black marked pixels are sent to membrane number 2, so we
obtain which black pixels are containing the holes.

◦ R10 ≡ (zn+6|1, (wij , (i, j))/λ, 2) for 1 ≤ i, j ≤ n.
We want to obtain the number of holes too, so these rules send one white
pixel for each hole to membrane number 2.

• iin = 1 is the input cell.
• i0 = 2 is the output cell.
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We will also use priorities among rules. Rules from sets R6 and R8 are applied
before rules from the set R1.

The computation of each P system of the family has the following phases:

1. Label Allocation Stage: Cell 1 trades objects wij against others with the form
(wij , (i, j)) with the environment.

2. Label Conversion Stage: We compare the label of two white adja-
cent pixels, and we trade the label of the greatest pixel against
the label of the other pixel; i.e., we use rules with the form
(i, (wij , (i′, j′))(wkl, (k′, l′))/(wij , (i′, j′))(wkl, (i′, j′))Zi′j′k′l′ , j), where (i, j)
and (k, l) are adjacent pixels. Moreover, we can see a new object arriving
to cell i, Zi′j′k′l′ . It is a catalyst and is used to codify when two labels must
be compared. Then, the labels are connected, and one of them can be changed
by the other one, as we can see in C7 in the Figure 2.

3. Deleting Stage: Initially, system keeps in cell 1 a set of objects codifying the
frame of the input image (p0i, pn+1i, pi0, pin+1 for i = 0, . . . , n + 1) with the
label (0, 0) associated. When the input data is introduced in the system, the
white pixels not contained inside of black connected components are sent to
the environment to trade against of objects with the form of the frame. We
need a linear number of steps with respect to n to eliminate all the possible
white pixels. We can see the result in C11 in the Figure 2.

4. Segmenting Stage: This part begins when deleting stage finishes due to the
counter zi (rules R1). If there are white pixels in cell 1 in this step are in a
hole. The P system takes pairs of adjacent pixels, one black and the other
white, adding a mark to the black pixels of these pairs. Then, we have marked
the black pixels adjacent to a hole. We need a constant number of steps to
segment an image with P systems. Figure 2 shows in C12 how the holes of the
image are codified.

5. Answer Stage: We send the marked black pixels to output cell in the following
step to be marked. So, we obtain, the representative curves of the holes in the
image I. We also send white pixels which keep their labels, there is only one
pixel for each connected white component, ie, for each hole in the image. We
only need one step more with respect to the segmenting stage.

3.3 Complexity and Necessary Resources

Bearing in mind the size of the input data is O(n2), the amount of necessary
resources for defining the systems of our two families and the complexity of our
problems can be observed in the following table:
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HGB2I Problem
H0 Problem H1 Problem

Complexity
Number of steps of a computation n+ 2 n+ 7
Necessary Resources
Size of the alphabet O(n4) O(n4)
Initial number of cells 2 2
Initial number of objects 1 O(n)
Number of rules O(n6) O(n6)
Upper bound for the length of rules of the systems 5 5

4 Final Remarks

Problems associated with the treatment of Digital Images have several interesting
features from the Membrane Computing point of view. One of them is that they can
be suitable for parallel processing. In many cases, the same sequential algorithm
must be applied in different regions of the image which are independent. Other
important feature is that the information of the image can be split into little pieces
of information and the local transformations can be processed by re-writing-type
rules.

These features lead us to explore the possibilities of using Membrane Comput-
ing techniques to well-known problems in Digital Images. In this paper we provide
a solution in the framework of tissue P systems with catalysts, but a deeper study
is necessary. The research lines related to the most suitable P system model for
Homology Theory problems or which are the most relevant features of P systems
which can represent the nature of the problems are open.
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bolic Abstract Neural Nets: Tissue P Systems. Lecture Notes in Computer Science,
2387, (2002), 290–299.
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Summary. The process of designing a P system in order to perform a task is a hard
job. The researcher has often only an approximate idea of the design, but finding the
exact description of the rules is a heavy hand-made work. In this paper we introduce
PSystemEvolver, an evolutionary algorithm based on generative encoding, that could help
to design a P system to perform a specific task. We illustrate the use of PSystemEvolver
with a simple mathematical problem: the computation of squared numbers.

1 Introduction

Natural Computing studies computational paradigms inspired from various well
known natural phenomena in physics, chemistry and biology3. It abstracts the
way in which nature computes, conceiving new computing models. The field is
growing rapidly and there are many open research lines based on different aspects
in which nature acts. Among them, Cellular Automata [16] conceived by Ulam
and von Newman as a spatial distribution of cells able to reproduce the behav-
ior of complex systems; Genetic algorithms introduced by J. Holland [13] which
is inspired by natural evolution and selection in order to find a good solution in
a large set of feasible candidate solutions; Neural Networks introduced by W.S.
McCulloch and W. Pitts [15] it is based on the interconnections of neurons in
the brain; DNA-based molecular computing, that was born when L. Adleman [2]
published a solution to an instance of the Hamiltonian path problem by manip-
ulating DNA strands in a lab; Swarm Intelligence [6] based on the behavior of
mobile organisms as ants or bees communicating among them and acting in the
environment; Artificial Immune Systems [5] based on the natural immune system

3 An introduction on Natural Computing can be found in [12].
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of biological organisms; Amorphous computing [1] inspired from the development
of morphogenesis in biological organisms or Membrane Computing [17, 18] based
on the functioning and morphology of living cells and tissues.

Membrane Computing was introduced by Gh. Păun in [17] under the assump-
tion that the processes taking place in the compartmental structure of a living
cell can be interpreted as computations. The devices of this model are called P
systems. Roughly speaking, a P system consists of a membrane structure, in the
compartments of which one places multisets of objects which evolve according to
given rules in a synchronous nondeterministic maximally parallel manner.

The basic idea is to consider a distributed and parallel computing device struc-
tured in an arrangement of membranes which delimit compartments where various
chemicals evolve according to local reaction rules. The objects can be eventually
sent to the environment or to adjacent membranes under the control of specific
rules. Because the chemicals from the compartments of a cell are swimming in an
aqueous solution, the data structure we consider is that of a multiset – a set with
multiplicities associated with its elements. Also, in close analogy with what hap-
pens in a cell, the reaction rules are applied in a parallel manner, with the objects
to evolve by them and with the reactions themselves chosen in a non–deterministic
manner.

In this way, we can define transitions from a configuration to another configura-
tion of our system and hence we can define computations. A computation provides
a result, for instance, in the form of the number of objects present in the halting
configuration in a specified compartment, or in the form of a special object, yes
or no, sent to the environment at the end of the computation (thus answering a
decision problem that the system had to solve).

Evolutionary Algorithms (EAs) are generic population-based metaheuristics
inspired in biological evolution to deal with combinatorial optimization problems.
Four main EAs have been applied to different kind of problem domains: Genetic
Algorithms, Genetic Programming, Evolutionary strategies and Evolutionary pro-
gramming. Genetic Algorithms were introduced by J.H. Holland [13] an Ameri-
can psychologist and computer scientist who developed his theory to study self-
adaptiveness in biological processes as well as to solve optimization problems.
Concerning to functioning, a genetic algorithm is an iterative procedure which op-
erates on a population where individuals are evaluated according a certain fitness
value. Some individuals are selected according this value and produce offspring
candidates which form the next generation4. For producing new individuals, two
operators, namely crossover and mutation are used. Crossover takes two individu-
als called parents and produce one or two new individuals called offsprings. In its
simplest form, it works by swapping pieces of information from the parents. The
second operator is called mutation and it is applied by modifying an information
unit in one individual according to a mutation rate.

In this paper we present a case study where genetic algorithms are used for
designing a Membrane Computing device which performs a pre-fixed task. In the
4 For details, see, for example [3].
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literature, one can find several joint approaches of Membrane Computing and
Genetic Algorithms as [14] or [4], but, to the best of our knowledge, this is the
first time in which genetic algorithms are used to find a P system which solves an
abstract computational problem.

The paper is organized as follows: Next we describe our case study for the ap-
plication of Genetic Algorithms to the design of P systems. We start by describing
an initial population of P systems and the genetic operators to act on them. In
Section 3 we provide a short description of the genetic algorithm PSystemEvolver
used in our experiments. In the following sections we provide the obtained experi-
mental results. The paper ends with some final remarks and open lines for further
research.

2 The Problem

The process of designing a P system in order to perform a task is a hard job.
In many cases, the designer has an approximate idea of the membrane structure,
initial multisets and set of rules necessary to describe the P system, but a little
mistake in the description of the initial configuration or in the set of rules can
leads to undesired consequences.

In this paper we present the case study of designing a P system which computes
the square of a given number, e.g., number 4. To this aim, we will consider an initial
population of P systems. Such population will evolve according to the natural
selection of the evolution of alive beings (by means the corresponding crossover
and mutation operations of a given genetic algorithm) and with the help of a fitness
function we will obtain a member of the population, i.e., a P system obtained from
the original ones, which performs the fixed task.

In order to perform our experiments, we consider that all the P systems have
the same initial configuration. The allowed set of rules are of the types:

• Evolution rules: [ o → u ]e. The object o evolves to the multiset u in mem-
brane with label e. Notice that u can be the empty multiset λ.

• Dissolution rules: [ r ]e → s. The object r dissolves the membrane e and goes
to the surrounding region as object s. All the remaining objects in e also go to
the surrounding region.

Our starting point is to consider a family of P systems Π = {Πi}i∈I where

Π = 〈Γ,H, µ,we, ws, Ri〉

• The alphabet Γ = {a, b, c, z1, . . . , z4}
• The set of labels H = {e, s}
• The membrane structure µ = [ [ ]e ]s
• The initial multisets we = a2 b z1 and ws = ∅
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The difference among the P systems in the family are the sets of rules Ri. In order
to give a formal definition of Π = {Πi}i∈I we will start with a set of rules R

R =





r1 ≡ [ a → a b ]e r7 ≡ [ z2 → z1 ]e r13 ≡ [ a → λ ]s
r2 ≡ [ b → b c ]e r8 ≡ [ z3 → z4 ]e r14 ≡ [ b → λ ]s
r3 ≡ [ c → b2 ]e r9 ≡ [ z1 ]e → b r15 ≡ [ b → c ]e
r4 ≡ [ a → b c ]e r10 ≡ [ z2 ]e → a r16 ≡ [ c → λ ]e
r5 ≡ [ z1 → z2 ]e r11 ≡ [ z3 ]e → c r17 ≡ [ z4 → z1 ]e
r6 ≡ [ z2 → z3 ]e r12 ≡ [ z4 ]e → a r18 ≡ [ z4 ]e → b





Our aim is to use genetic algorithms in order to find a P system which computes
the square of number 4, from an initial set of P systems. The genetic evolution
will only correspond to changes in the set of rules. The genetic operations in order
to develop a genetic algorithm on the P systems are the following:

• Crossover. Given two P systems Π1 and Π2 and their sets of rules R1 and
R2, let P 1

1 P 2
1 and P 1

2 P 2
2 two partitions of R1 and R2 respectively. Then, we

obtain two offsprings Π ′
1 and Π ′

2 by considering the set of rules R′1 = P 1
1 ∪ P 1

2

and R′2 = P 2
1 ∪ P 2

2 .
• Mutation. Given an evolution rule [u → v]h with u ∈ Γ and v ∈ Γ ∗, the

mutation operator changes the object u by one from Γ − {u} or the object w
in the multiset v by one object from Γ − {w} or by λ. For an dissolution rule
[u]h → w, the mutation operator changes the object u or w by a different one
from Γ .

Only for practical reasons, in this case study we will impose an extra condi-
tion. All the P systems considered as individuals in our genetic algorithm must
be deterministic. This is checked by ensuring that, for each P system and each
membrane, there are no two rules triggered by the same object.

Example 1. Let us consider two P systems Π1 and Π2 and their sets of rules
R1 = {r1

1, r
2
1} and R2 = {r1

2, r
2
2, r

3
2} with

r1
1 ≡ [ a → a b ]e r1

2 ≡ [ a → b c ]e
r2
1 ≡ [ c → b2 ]e r2

2 ≡ [ z4 → z1 ]e
r3
2 ≡ [ z1 ]e → b

Let P 1
1 and P 2

1 be a partition of R1, P 1
1 = {r1

1} and P 2
1 = {r2

1} and P 1
2 , P 2

2 a
partition of R2 with P 1

2 = {r2
2, r

3
2} and P 2

2 = {r1
2}. Then, we obtain two offsprings

Π ′
1 and Π ′

2 by considering the set of rules R′1 = P 1
1 ∪ P 1

2 = {r1
1, r

2
2, r

3
2} and

R′2 = P 2
1 ∪ P 2

2 = {r2
1, r

1
2}. Notice that, due to the restriction of determinism, we

cannot get a new offspring by joining P 1
1 and P 2

2 .
As example of the mutation operator, let us consider now the rule [ a → b c ]e.

By applying a mutation rule we can obtain, for example, the rules [ z1 → b c ]e
(changing a by z1), the rule [ a → b2 ]e (changing c by b) or [ a → c ]e (changing
b by λ).
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Finally, we can describe the set of P systems Π considered as individu-
als for our genetic algorithm. A P system Π belongs to Π if it is a construct
〈Γ, H, µ, we, ws, Ri〉 as described above and the rules in Ri are from R or can be
derived by a finite number of applications of the operators crossover and mutation
from rules in R.

3 The Genetic Algorithm

In this section we will briefly describe the genetic algorithm, PSystemEvolver, used
in our case study. It follows the basic workflow:

Produce an initial population of individuals
Evaluate the fitness of all individuals
while termination condition not met do

Select the best individuals and produce new individuals (crossover and
mutation operators)
Evaluate the fitness of new individuals
Generate the new population inserting the best individual
from previous generations

end while

In order to apply the previous algorithm, we need to precise some details:

• The initial population consists on 30 individuals. In order to generate these
individuals, 30 different random subsets of R are considered. The number of
rules of each individual will not exceed 14, that is, the length of the alphabet
times the number of membranes that we are considering. Before evaluating a
possible solution using the fitness function, the P system is checked to assure
determinism. If more than one rule in a specific membrane has the same right
hand side (firing object), one of them is selected randomly to be active and the
others are deleted from this P system.

• The fitness function is probably the key point in the application of the genetic
algorithm for the design of P systems. In this case study we have considered
a simple function: The absolute value of the difference between the number of
objects c in the membrane s in the halting configuration of the P system and
the expected number of such objects in an ideal found solution, i.e., 16 objects
c. In order to prevent non-ending computations, we we limit to 20 the number
of steps.

• The crossover and mutation operators will be applied on some randomized
individuals with good score in the fitness function. For that, two parents are se-
lected according to their fitness and mated to produce two offsprings that later
could be mutated. Crossover and mutation rates of 0.8 and 0.8, respectively,
have been considered in order to perform our experiments. We also varied this
parameters to test the effect of this operators over the performance of the
algorithm.
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• As termination condition for the algorithm, a maximum of 30 generations has
been considered.

4 Experimental Results

The chosen fitness function for our experiments with PSystemEvolver evaluates
each P system according to its halting configuration. The computer simulations
of all the computations have been performed by using the P-lingua simulator [9].
To calculate the fitness of each individual, PSystemEvolver generates the corre-
sponding P-lingua file and call with it the simulator that produces a report file to
obtain the evaluation for that P system.

To test the behavior of the algorithm, we performed 30 runs for each EA
parameters setting. Table 1 shows the number of success for each experiment, that
is, the number of times that PSystemEvolver could find a P system that solve the
square(4) problem.

Experiment Crossover Rate Mutation Rate Successful Runs

1 0.0 0.5 0/30
2 0.5 0.5 0/30
3 0.8 0.8 1/30
4 1.0 0.8 1/30

Table 1. Number of successful runs for different parameter settings.

Results demonstrated that is difficult to evolve a P system, even though ini-
tial configuration and membrane structure are fixed, and rules are provided for
generating the initial population. This may be due to the fitness function that we
considered for this problem, that conforms a landscape with a unique peak.

High values for crossover and mutation rates resulted beneficial for this algo-
rithm, as can be seen in 1. Other types of mutations, as for example, rule activation
or inactivation would be considered in future implementations.

The best P system Pbest encountered by PSystemEvolver is described above
by the rules Rbest:

Rbest =





r1 ≡ [ a → a b ]e r5 ≡ [ z3 → z4 ]e
r2 ≡ [ b → b c ]e r6 ≡ [ z4 ]e → a
r3 ≡ [ z1 → z2 ]e r7 ≡ [ a → λ ]s
r4 ≡ [ z2 → z3 ]e r8 ≡ [ b → λ ]s





5 Final Remarks

The advances in the research in Membrane Computing requires the design of more
and more complex P systems. On the one hand, the theoretical research needs
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sophisticated designs which allows prove the ability of P systems for solving dif-
ferent type of problems by using a fixed ingredients (see, e.g., [10, 11]). On the
other hand, Membrane Computing solutions to real-life problems needs to be quite
precise in the design in order to find a sharp simulation of the processes [7, 8].

The design of such P systems is a hard task which must be performed by hand
by the researcher. In this paper we explore the use of Genetic Algorithms as a
help for designing P systems. The key point is finding a good fitness function. P
systems are designed to make a computation and it is difficult to measure how far
is the current design from the desired when the result of the computation is not
the searched.

Many open questions arise from this work. As pointed above, the problem of
finding the features of a good fitness function is open, but this is not the only one.
A first research line involves a deeper study of the genetic algorithm operators, not
only for the fitness function, but operators able also to modify the initial multisets
or the membrane structures. A second line is related to the applications. In this
paper we use a small theoretical problem, but the final target is to apply genetic
algorithms for the design of complex P systems.
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Jiménez, A. Riscos-Núñez. An overview of P-Lingua 2.0. Lecture Notes in Computer
Science, 5957 (2010), 264-288.

10. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. Solv-
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Summary. Food engineering deals with manufacturing, packaging and distributing sys-
tems for drug and food products. In this work, we discuss about the applicability of
membrane systems to model environmental conditions and their effects on the produces
during storage of fresh fruits and vegetables. In particular, we are interested in abstract
molecular interactions that occur between produce, film and surrounding atmosphere
factors involved in fresh fruit and vegetable package designs. We present a basic imple-
mentation to simulate the dynamical behaviour of these systems, due to gas exchanges
and temperature fluctuations. Additionally, we reveal the benefits of this modelling ap-
proach and suggest some extensions as future directions to be considered.

1 Introduction

Membrane systems [17], also called P systems, had emerged to assist in the mod-
elling of systems of concurrent reactions taking place in compartments, so as occur
in biological systems. In this paper we use P systems as membrane structures de-
limiting compartments that contain multisets of objects representing molecules.
The model was first presented in [3]. Compartments configuration changes over
time (evolves) according to given rules that represent biochemical reactions and
diffusions. In contrast to ODE-based approaches, each single molecule within the
entire system is represented explicitly as individual entity. Capturing aspects of
structural dynamics (changes in the membrane structure as well as in the com-
position of complex molecules) is seen as an advantageous feature of P systems.
Inclusion of reaction kinetics into this formalism can be done by discretised ki-
netic laws [10]. We applied this mathematical formalism to a real known problem
in fruits and vegetables post-harvest processing.
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Fresh fruits and vegetables are living materials that continue to respire after
harvesting exhibiting progressive biochemical changes. Food engineering methods
to preserve freshness of post-harvest produces include low temperature storage and
special packaging technologies, mainly Modified Atmosphere Packaging (MAP).
MAP of fresh fruits and vegetables refers to the technique of enveloping the pro-
duce in a sealed container of polymeric film in order to modify the O2 and CO2

concentrations inside the package, reducing metabolic activity and increasing shelf
life [16].

Designing MAP systems is a complex task that involves considerations about
many interrelated environmental (as temperature and atmosphere composition),
biological and package technology factors. Basic biological processes are res-
piration, transpiration, ethylene production and compositional changes due to
metabolism. The variability of responses to internal and external signals depends
on the characteristic of each plant organ type, developmental stage and physio-
logical condition. In addition, much of the behaviour of a MAP system at cellular
level are not fully understood. As examples we can refer to the little knowledge
about the effect of CO2 on the activity of respiratory enzymes [11]. Moreover, the
contribution of the biochemical changes that alters physical properties of cell walls
and tissues modifying the texture of the produce is not known in detail [9]. On the
other hand, the mechanism of ethylene signal transduction that coordinates fruit
ripening processes, is another aspect subject to study [1].

The difficulty to test different combination of gases and temperatures and the
complexity of experimental setup for MAP systems had led to the development
of various mathematical models [4, 11, 16, 19] and software [14]. In the literature,
many respiration models are empirical fits of experimental data, based on one
particular type and variety of fruit or vegetable, and most of them are based on
the principles of enzyme kinetics and are represented using ODEs (for reviews see
[5, 18]). However, there exists some lack on studies about the dynamical behaviour
of these systems in terms of changes in environmental conditions, so as produce
composition and physiology due to developmental processes [5]. It is worth men-
tioning that post-harvested fruits and vegetables, unlike other living materials, can
be considered as less robust systems, as their responses on environmental fluctu-
ations depends mostly on their actual configuration of biochemical components.
In this context, some authors [7, 14] have considered the potential benefits of a
systematic analysis or process-based modelling approach for fruits and vegetables.
Considering that understanding the reaction network underlying MAP systems can
give food experts more knowledge about emergent properties of packaged fruits
and vegetables, we propose a framework based on membrane systems that ab-
stracts basic biochemical reactions that occur in MAP systems. In the future, the
proposed model can serve as a predictive tool to simulate changes in fresh produce
on the molecular level, due to changes in environmental conditions.

This paper is organized as follows: firstly, biological and technical background
of MAP systems is described in section 2. In Section 3 we present a P system
framework for MAP, including the description of components, reaction kinetics
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and evolution of the system. Section 4 shows an application of the framework con-
sidering a package under modified atmosphere containing two produces. Finally, in
Section 5 we point out some benefits of using our framework and future extensions
of it.

2 Fresh Fruits and Vegetables Packaging

From the horticultural point of view, there are four main, sometimes overlapped,
developmental stages identified in fruits, vegetables and flowers: growth, matura-
tion, ripening and senescence. For packaging technology purposes, maturation and
ripening stages of fresh commodities constitutes the central point of attention.
During ripening, fruits and vegetables suffer considerable physiological changes
that normally include: modification of colour through the alteration of chloro-
phyll, carotenoid, and/or flavonoid accumulation; textural modification via al-
teration of cell turgor and cell wall structure and/or metabolism; modifications
of sugars, acids, and volatile profiles that affect nutritional quality, flavour, and
aroma; and, generally enhanced susceptibility to opportunistic pathogens (likely
associated with loss of cell wall integrity) [8]. The climacteric is a stage of fruit
ripening associated with an autocatalytic production of ethylene, that rises cell
respiration in some fruits. This physiological process marks the end of fruit ripen-
ing and the beginning of fruit senescence, in which a serie of irreversible events
leads to breakdown and death of the plant cells.

In addition to temperature control, a reduced O2 and elevated CO2 atmo-
sphere can extend the post-harvest life of whole and pre-cut commodities. This
techniques reduce their respiration rate as well as production of ethylene, mini-
mizing metabolic activity, delaying enzymatic browning and retaining visual ap-
pearance [13]. In order to obtain a good design of such a system, it is necessary to
understand many concurrent reactions at a macro, meso and micro level, including
the dynamics behind the interdependencies between environmental, biological and
technical factors.

Basic environmental factors to be consider in MAP design are temperature, rel-
ative humidity (RH), and atmosphere composition. Other minor factors are light,
chemicals as fungicides, growth regulators, ethylene perception blockers, etc. Tem-
perature is the most important extrinsic factor affecting all elements of harvested
produce. Considering packaged produces, temperature influences both the gas ex-
change of the produce and the permeability of the film for O2, CO2 and H2O.

High RH in the atmosphere surrounding fruit diminishes dehydration and pre-
serves freshness, whereas excessive RH may engender moisture condensation, mi-
crobial growth and decay of the produce. On the other hand, three gases in the sur-
rounding atmosphere O2, CO2 and ethylene (C2H4), mostly influence stored fresh
fruits and vegetables. Decreasing oxygen partial pressure can increase shelf life,
but it is essential that the oxygen level not be reduced to the point that anaerobic
respiration occurs. Anaerobiosis results in fermentation, the chemical conversion of
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carbohydrates into ethanol and organic acids, which may cause undesirable odours
and flavours. Ethylene is a gaseous plant hormone (signal molecule) that regulates
fruit ripening and senescence. O2 is required for the synthesis of ethylene, while
O2 and low levels of CO2 are required for its biological activity [9].

The most important biological processes occurring in fresh fruits and vegetables
that affect them in packaging conditions over time are respiration, transpiration,
ethylene production and compositional changes due to metabolism. Additionally,
developmental processes, so as physiological and pathological breakdown should
be considered.

Respiration involves a complex set of biochemical processes of which part is
the oxidative breakdown of carbohydrates, lipids and organic acids into CO2 and
H2O plus heat and metabolic energy. Respiration rate can be expressed in terms
of O2 consumed or CO2 produced. The respiratory quotient (RQ), the ratio of
CO2 produced to O2 consumed, ranges from about 0.7 to 1.4 depending on the
substrate and its metabolic state (if the substrate is a lipid, RQ < 1, and RQ > 1
for organic acids)[5]. When carbohydrates are aerobically respired, the RQ is near
1, and the reaction is represented by Eq. (1).

C6H12O6 + 6O2 → 6CO2 + 6H2O + energy (1)

On the other hand, post-harvested fresh fruit and vegetables are mainly made
up of water (80 to 95% approx.). Water loss is the primary cause of fresh weight
loss and it is much more sensitive to changes in relative humidity around the
commodity than to the rate of respiration[9]. Transpiration occurs due to the fact
that fruits and vegetables internal atmosphere is saturated with water vapour,
while external atmosphere contains lesser. Therefore, water loss rate depends on
the external and internal water vapour pressure gradient.

There are two types of MAP techniques: passive or active. Passive MAP or
equilibrium modified atmosphere consists in matching film permeation rates for
O2 and CO2 with the respiration rate of the packaged produce. In some cases, it is
likely that atmospheres within MAP will be actively established and adjusted, and
this is realised creating a vacuum into the package and replacing the atmosphere
with the desired gas mixture, and/or introducing gas absorbers/emmitters or other
atmosphere-modifying elements into the package, so as using specialized films [18].

In a MAP design process, the type of material and its surface area and thickness
are selected to obtain the desired equilibrium gas composition. Each film type has
specific ranges of O2 and CO2 permeabilities, usually with the permeability of
CO2 being 3 − 5 times that of O2 [4]. Two strategies for creating film barriers
exist: continuous and perforated films. Continuous film control movement of O2

and CO2 into or out of the package so that steady-state O2 and CO2 levels are
achieved in the package, that is, they are used in the MAP design process assuming
a constant respiratory rate of the produce. Perforated films with small holes are
more suitable for produce having a high O2 demand, and in this case the rate
of gas exchange is a sum of gas permeation through the film and gas diffusion
through the microperforations [9].
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3 A P System-based MAP

We abstract a fruit or vegetable as a graph of cells or modules, like tissue P systems
[15]. Each cell represents a compartment that contains species, and at a specific
time, the contents of the compartment determines the cell configuration. This
serves as a mechanism to differentiate one cell from other, given the possibility to
create diverse tissue types, as occurs for example in fruits epicarp, mesocarp and
endocarp tissues [7]. Additionally, as gas consumption-production occurs inside
the cells, at the mitochondria level, and is stated that gas diffusion between cells
depends on the geometry of the produce [11], differences in gas content in cells
that conform a determinate region can adequately be represented. This is also in
accordance to the idea that the ripening process usually starts in one region of a
fruit and spreads to neighbouring regions, due to ethylene diffusion starting from
promoter cells [1]. Produces into the package are represented as a population of
membranes, giving the advantage that the model can deal with distinct fruits and
vegetables within the same film, or the same produce in distinct developmental
stages, varieties and/or presentations. Figure 1 shows as example, the schematic
representation for such a system. In the next section we present the formal speci-
fication of our model.

Fig. 1. A schematic representation for the MAP system model. In this case, two produces
share a package: plant1 is formed by three connected cells, and plant2 is formed by a
single cell. Arrows represent paths for molecules (spheres) diffusions

Multiset prerequisites

Let A be an arbitrary set and N the set of natural numbers including zero. A
multiset over A is a mapping F : A −→ N ∪ {∞}. F (a), also denoted as [a]F ,
specifies the multiplicity of a ∈ A in F . Multisets can be written as an elementwise
enumeration of the form {(a1, F (a1)), (a2, F (a2)), . . .} since ∀(a, b1), (a, b2) ∈ F :
b1 = b2. The support supp(F ) ⊆ A of F is defined by supp(F ) = {a ∈ A | F (a) >
0}. A multiset F over A is said to be empty iff ∀a ∈ A : F (a) = 0. The cardinality
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|F | of F over A is |F | =
∑
a∈A F (a). Let F1 and F2 be multisets over A. F1 is a

subset of F2, denoted as F1 ⊆ F2, iff ∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and
F2 are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1. The intersection F1 ∩ F2 = {(a, F (a)) | a ∈
A ∧ F (a) = min(F1(a), F2(a))}, the multiset sum F1 ] F2 = {(a, F (a)) | a ∈
A∧F (a) = F1(a) +F2(a)}, and the multiset difference F1	F2 = {(a, F (a)) | a ∈
A ∧ F (a) = max(F1(a) − F2(a), 0)} form multiset operations. Multiplication of
a multiset F = {(a, F (a)) | a ∈ A} with a scalar c, denoted c · F , is defined by
{(a, c · F (a)) | a ∈ A}.

P system components

Let N+ = N \ {0} be the set of natural numbers without zero, and m,n ∈ N+. We
define a P system for a MAP system as a construct:

ΠMAP = (µ, S, plant1, . . . , plantm, G, L0, D1, . . . , Dd, f1, . . . , fd, ∆τ)

where:

• µ = [[[]cell1,1 ...[]cell1,n1
]plant1 ...[[]cellm,1 ...[]cellm,nm ]plantm ]package is the spatial sys-

tem structure composed of three inner levels: package, plants, and cells,
• S is a set of chemical species,
• plant1, . . . , plantm represent the produces into the package,
• G is a set of global parameters,
• L0 : S → N is a multiset of axioms representing the initial molecular configu-

ration,
• Dν is a diffusion (communication) rule among package and external environ-

ment (ν = 1, . . . , d),
• fν : (S → N)→ N is a kinetic function attached to diffusion rule Dν ,
• ∆τ ∈ R+ is the time discretisation interval.

A diffusion rule Dν can be of the form [s] → []s for molecules s ∈ S leaving
the package and released to the external environment, and []s→ [s] for molecules
entering the package, respectively.

Furthermore, each planti is defined as a tuple:

planti = (Ni, Ei, Gi, Di,1, . . . , Di,di , fi,1, . . . , fi,di)

where:

• Ni = {celli,1, . . . , celli,ni} defines a set of cells within plant i,
• Ei ⊆ Ni×Ni specifies a set of directed edges (diffusion channels between cells),
• Gi is a set of plant (organ) specific parameters,
• Di,κ represents a diffusion rule inside plant i and between plant i and package

(κ = 1, . . . , di),
• fi,κ is a kinetic function attached to diffusion rule Di,κ.
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Here, a diffusion rule can be of the form [s]cellp,q → []cellp,qs for molecules s ∈ S
leaving cellp,q and spread out into the package. A rule of the form []cellp,qs →
[s]cellp,q describes molecules entering cellp,q from the package. Finally, a rule of
the form [s]cellp,q → [s]cellx,y formulates the directed transport of molecule s along
the edge (cellp,q, cellx,y) ∈ Ei.

Each celli,j is defined as a tuple

celli,j = (Li,j,0, Ri,j,1, . . . , Ri,j,ri,j , fi,j,1, . . . , fi,j,ri,j )

where:

• Li,j,0 : S → N is a multiset of axioms representing its initial molecular config-
uration,

• Ri,j,k = (Ai,j,k, Bi,j,k) with Ai,j,k : S → N (multiset of reactants) and
Bi,j,k : S → N (multiset of products) specifies a reaction rule including its
stoichiometric factors,

• fi,j,k : (S → N)→ N is a function corresponding to kinetics of reaction Ri,j,k.

System evolution

A P system of the form ΠMAP evolves by successive progression of its configuration
at discrete points in time t ∈ N for what we assume a global clock. Two consecutive
dates t and t+ 1 specify a time span ∆τ . A system step at time t consists of three
modification stages carried out from outer to inner spatial components of the
system. Firstly, the diffusion between package and its environment is considered.
To this end, the rules D1 up to Dd are employed. Afterwards, the diffusion between
package and cells as well as the intracellular diffusion is utilised by employing
the rules Di,κ for each plant i = 1, . . . ,m. The last modification stage concerns
application of the reaction rules specified in each cell. To cope with conflicts that
can occur if the available amount of substrate cannot satisfy all matching diffusion
and reaction rules, we prioritise all rules by their index: D1 > D2 > . . . > Dd.
Moreover, for each plant i: Di,1 > Di,2 > . . . > Di,di and for each cell i, j:
Ri,j,1 > Ri,j,2 > . . . > Ri,j,ri,j . Thus, we keep determinism of the system evolution
and enable mass conservation. An alternative method for coping with conflicts is
randomisation in selection and sequentialisation of diffusion and reaction rules.

The application of an arbitrary rule is organised into two consecutive steps. The
first step identifies all molecules from the rule’s left hand side acting as sources
for diffusion or reactants. These molecules are removed from the current configu-
rations. Corresponding molecules from the right hand side (destinations in case of
diffusion and products in case of reactions) are then added.

We formulate discretised reaction-diffusion kinetics by specification of scalar
functions f : M → N based on a multiset M : S → N. Each function f converts
the current configuration (Lt or Li,j,t), a multiset of objects, into the number of
turns for application of the corresponding diffusion or reaction rule. Here, kinetic
laws f̂(s) for each species s ∈ S employ the multiplicity of its occurrences to
formulate the corresponding reaction rate.
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For updating the entire system configuration, we define an iteration scheme as
shown in Figure 2. When this formalism is hidden in a software, the specification
is intuitive and accessible for an expert focussing on MAP modelling.

4 Simulation

As a first application, we introduced as rules into the model only the basic processes
involved in a MAP design: respiration and fermentation, so as gas diffusion between
membranes. The influence of gas composition on respiration rates of produce has
been widely represented by Michaelis Menten-type equation [5]. In this context,
respiration rate is considered as a function of concentration in terms of enzymatic
reaction, with O2 in the place of substrate and the product CO2 acting as inhibitor.

Temperature dependence over respiratory rate and over film permeability was
represented using Arrhenius equation (Eq. 2).

k = F × e−Ea/R×T (2)

where Ea is the activation energy, expressed in joule per mol, defined as the energy
that must be overcome for a chemical reaction to occur; R is the gas constant
(≈ 8.314 J · K−1mol−1), T the absolute temperature, F is the pre-exponential
factor that represents the total number of molecular collisions per second; and k
corresponds to the number of collisions per second that result in a reaction. This
can be related to the probabilistic approach to P systems introduced by [2] in order
to obtain more biological-like models. In this context, the Arrhenius exponential
term can be viewed as the probability per time unit that the reaction takes place.

In order to apply our model, we simulate the dynamical behaviour of an in-
stance of a ΠMAP with two hypothetical fruits as it is shown in Fig. 1, using
continuous film and passive MAP as package techniques. Rules that use symbol

 between reactants and products must been interpreted as reversible reactions.
Into the formalism described in Fig. 2, a rule of the form Dα = [σ] 
 []σ, for
example, consists in the following two rules, in order of application: [σ]→ []σ and
[]σ → [σ].

Temperature is represented by T and expressed in Kelvin (K). O2, CO2 and
H2O abundances in the outside are represented by O2ex, CO2ex and H2Oex
respectively. A and E symbolise the surface area in cm2 and the thickness of
the packaging film in mil (1mil = 0.00254cm). pO2 and pCO2 represent the
reference film permeability in mL · mil · cm2 · hr−1 · atm−1 for O2, CO2 and
H2O, respectively. EaO2 and EaCO2 symbolise the permeability activation energy
expressed in J ·mol−1 for O2 and CO2, respectively. Mi symbolises mass of the
produce i in kg. For simplicity, we assume that each cell in a produce has the
same mass. rO2 and rCO2f corresponds to the preexponential factor for produce
respiration and fermentation in mL · kg−1 · hr−1. ErO2 and ErCO2f represent
the respiration and fermentation activation energy for the produce expressed in
J ·mol−1.
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Stage 1 (diffusion between package and external environment):

∀α = 1, . . . , d

diffusion rule Dα conditions action

[σ]→ []σ (σ ∈ S) ∧ ({(σ, fα)} ⊆ Lt) Lt := Lt 	 {(σ, fα)}
[]σ → [σ] (σ ∈ S) Lt := Lt ] {(σ, fα)}

with fα(Lt) =
⌊
kα(G) ·∆τ · f̂(|Lt ∩ {(σ,∞)}|)

⌋
Stage 2 (diffusion between plant cells and package):

∀i = 1, . . . ,m
∀α = 1, . . . , di

diffusion rule Di,α conditions action

[σ]celli,j → []celli,jσ
(σ ∈ S) ∧ (celli,j ∈ Ni)∧
({(σ, fi,α)} ⊆ Li,j,t)

Li,j,t := Li,j,t 	 {(σ, fi,α)}
Lt := Lt ] {(σ, fi,α)}

[]celli,jσ → [σ]celli,j
(σ ∈ S) ∧ (celli,j ∈ Ni)∧
({(σ, fi,α)} ⊆ Lt)

Lt := Lt 	 {(σ, fi,α)}
Li,j,t := Li,j,t ] {(σ, fi,α)}

[σ]celli,j → [σ]celli,k

(σ ∈ S) ∧ (k 6= j) ∧ (celli,j ∈ Ni)∧
(celli,k ∈ Ni) ∧ ((celli,j , celli,k) ∈ Ei)
∧({(σ, fi,α)} ⊆ Li,j,t)

Li,j,t := Li,j,t 	 {(σ, fi,α)}
Li,k,t := Li,k,t ] {(σ, fi,α)}

with fi,α(Lt) =
⌊
ki,α(G,Gi) ·∆τ · f̂(|Lt ∩ {(σ,∞)}|)

⌋
Stage 3 (reactions occurring within each cell):

∀i = 1, . . . ,m
∀j = 1, . . . , ni
∀α = 1, . . . , ri,j

reaction rule Ri,j,α conditions action

(Ai,j,α, Bi,j,α) fi,j,α ·Ai,j,α ⊆ Li,j,t
Li,j,t := Li,j,t 	 fi,j,α ·Ai,j,α

]fi,j,α ·Bi,j,α

with fi,j,α(Li,j,t) =

ki,j,α(G,Gi) ·∆τ
∏

∀c ∈ supp(Ai,j,α) :
(Ri,j,α = (Ai,j,α, Bi,j,α))

f̂(|Li,j,t ∩ {(c,∞)}|)|Ai,j,α∩{(c,∞)}|



Increment time t:

Lt+1 := Lt
∀i = 1, . . . ,m
∀j = 1, . . . , ni
Li,j,t+1 := Li,j,t

Fig. 2. Iteration scheme for the temporal evolution of ΠMAP system
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Most of the values for these symbols were taken from the literature [4]. Symbols
O2, CO2,H2O, Ethanol andGlucose represent amounts of species O2, CO2,H2O,
Ethanol and Glucose. Initial values for these symbols in each compartment and
the rest of the parameters were assigned empirically.

S = {CO2, Ethanol,Glucose,H2O,O2}
G = {M,T,R,A,E,CO2ex,H2Oex,O2ex,EaCO2, EaO2, pCO2, pO2, pH2O}
N1 = {cell1,1, cell1,2, cell1,3}
N2 = {cell2,1}
Gi : {ErO2, rO2, ErCO2f, rCO2f} ∀i ∈ {1, 2}
D1 : []packageO2 
 [O2]package

f1(Lt) =

⌊
A

E
· (O2ex − Lt(O2)) · pO2 · e

−EaO2
R ·T

⌋
D2 : [CO2]package 
 []packageCO2

f2(Lt) =

⌊
A

E
· (Lt(CO2) − CO2ex) · pCO2 · e

−EaCO2
R ·T

⌋
D3 : [H2O]package 
 []packageH2O

f3(Lt) =

⌊
A

E
· (Lt(H2O) − H2Oex) · pH2O

⌋
D1,1 : []cell1,1O2 
 [O2]cell1,1 f1,1(Lt) = k1,1 · Lt(O2)

D1,2 : [CO2]cell1,1 
 []cell1,1CO2 f1,2(Lt) = k1,2 · Lt(CO2)

D1,3 : [H2O]cell1,1 
 []cell1,1H2O f1,3(Lt) = k1,3 · Lt(H2O)

D1,4 : [O2]cell1,1 
 [O2]cell1,2 f1,4(Lt) = k1,4 · Lt(O2)

D1,5 : [CO2]cell1,2 
 [CO2]cell1,1 f1,5(Lt) = k1,5 · Lt(CO2)

D1,6 : [H2O]cell1,2 
 [H2O]cell1,1 f1,6(Lt) = k1,6 · Lt(H2O)

D1,7 : [O2]cell1,2 
 [O2]cell1,3 f1,7(Lt) = k1,7 · Lt(O2)

D1,8 : [CO2]cell1,3 
 [CO2]cell1,2 f1,8(Lt) = k1,8 · Lt(CO2)

D1,9 : [H2O]cell1,3 
 [H2O]cell1,2 f1,9(Lt) = k1,9 · Lt(H2O)

D2,1 : []cell2,1O2 
 [O2]cell2,1 f2,1(Lt) = k2,1 · Lt(O2)

D2,2 : [CO2]cell2,1 
 []cell2,1CO2 f2,2(Lt) = k2,2 · Lt(CO2)

D2,3 : [H2O]cell2,1 
 []cell2,1H2O f2,3(Lt) = k2,3 · Lt(H2O)

Ri,j,1 : Glucose+ 6 O2→ 6 CO2 + 6 H2O ∀i ∈ {1, 2} ∧ j ∈ {1, 2, 3}

fi,j,1(Li,j,t) =

⌊
Li,j,t(Glucose)

Θi,j,1,1 + Li,j,t(Glucose)
· Li,j,t(O2)6

Θi,j,1,2 + Li,j,t(O2)6
· Mi

3
· rO2 · e

−ErO2
R ·T

⌋
Ri,j,2 : Glucose→ 2 Ethanol + 2 CO2 ∀i ∈ {1, 2} ∧ j ∈ {1, 2, 3}

fi,j,2(Li,j,t) =

⌊
Li,j,t(Glucose)

Θi,j,2,1 + Li,j,t(Glucose)
·Mi · rCO2f · e

−ErCO2f
R ·T

⌋



Applying Membrane Systems in Food Engineering 119

Figure 3 shows the corresponding courses of plant1 internal gas composition,
resulting from following parameter setting for the discrete iteration scheme: A =
100, E = 1, Mi = 0.1, pO2i = 1620000, EaO2i = 43100, pCO2i = 238000,
EaCO2i = 34300, rO2i = rCO2fi = 3 × 1014, ErO2i = ErCO2f = 70700,
pH2Oi = 1, Θi,j,1,k = 1, for i ∈ {1, 2} and j ∈ {1, 2, 3} and k ∈ {1, 2}; k1,j = 0.2
for j ∈ {1, . . . , 9}, k2,j = 0.2 for j ∈ {1, . . . , 3}. A fixed value T = 277.15 was
considered for a constant temperature scenario, and transient values for 273.15 ≤
T ≤ 293.15 were obtained through a sigmoid function to represent changes in
temperature over time in another scenario. Simulations have been performed using
Copasi [12]. Differences in internal gas composition of plant1 have been observed

Fig. 3. Dynamical behaviour for gas composition for plant1 in constant and varying
temperature scenarios

during time due to the interplay between cellular respiration and fermentation
processes and intercellular diffusion. Those differences could determine the form of
maturation of the produce, in this case, from the center to the skin. An equilibrium
is reached in the package gas composition, while respiration rates of the produces
diminished.

5 Conclusions

Using a membrane based model for MAP, we presented a framework that is able
to abstract packaging for different fruit and vegetable types, varieties or develop-
mental stages. Respiration of the produce is considered as the basic process when
modelling MAP, and predictions about the dynamical behaviour of such systems
can be improved taking into account environmental, biological and technical fac-
tors. Our approach allows extensions including other low level processes, such as
ethylene signaling pathway, cell/tissue rupture due to produce cutting and trans-
port of other molecules, that can been advantageously modeled using P systems.
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Finally, the quality of the packaged produce (taste, odour, texture, colour and ap-
pearance) is based on some subjective consumer evaluation. These traits are based
on specific product properties, such as sugar content, volatile production and cell
wall structure [19], and therefore can be introduced into the model through reac-
tions, as a mechanism to obtain more knowledge about the impact of packaging
conditions over product quality.

Considering texture (softening) of the fruit or vegetable, a next extension of
this model will include cell wall structure contents and reactions. To do so, we
plan to add a new membrane surrounding the structure on the cell level in order
to represent this compartment, and a new stage in the evolution algorithm. Also,
dissolution rules can be defined in this framework to capture cell wall dissolution.
Additionally, to perform further simulations, we plan to implement the model in
P-Lingua [6], basically because ODE-based simulators for membrane systems are
unable to deal with structural changes.
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Summary. P systems are computational devices versatile enough to represent many
real-life scenarios. In this paper, we present a first interpretation for P systems where a
computation produces a set of sounds. The idea is to associate sounds to the application
of specific rules in the P system. The application of such rules produces sounds of one
time unit. Different rules produce different sounds. The combination of such sounds along
time can be interpreted as music.

1 Introduction

Membrane Computing is a nice symbolic game inspired by Nature. It abstracts the
processes taking place in the compartmental structure of a living cell, interpreting
them as computing operations. The information is usually represented as multisets
of metabolites placed in compartments (membranes). According to different types
of rules, the chemical compounds can evolve or be sent to other membranes. De-
pending on the model, the membranes can be created, divided or dissolved. These
cellular devices are called P systems.

The description of a P system is usually made by a n-tuple which enumerates
the different sets of components. Such sets usually involve alphabets for the sym-
bols and labels, the multisets placed initially in the different regions and rules.
Depending on the model, the description can also involve an alphabet for describ-
ing electrical charges or an explicit description of the membrane structure.

The aim of P systems is to perform changes on the multisets placed on the
membranes (and, eventually, changes in the membrane structure) according to the
set of rules. The rules are usually applied in a synchronous maximally parallel
manner. It means that we can consider a clock which measures the time, taking
the application of all the rules exactly one time unit. Rules are applied in parallel
in a double way: rules are applied in all the membranes simultaneously and inside
each membrane, all the objects that can evolve according to the rules must do it.
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A configuration is an instantaneous description of a P system. After one time unit,
several rules have been applied and the configuration has changed, so we obtain a
new configuration. If no rules can be applied, we have a halting configuration and
the computation stops.

In order to perform such changes, we need a syntax expressive enough to rep-
resent the different configurations of the P system, but we also need a semantics
which allows us to apply the rules in an appropriate way. Changes in the syntax
and/or the semantics produce the large panoply of P system models.

By considering the syntax and the semantics of a P system we can calculate the
configurations which are reachable from a given configuration. Due to the inherent
non-determinism of P systems, if one object can trigger more than one rule, one of
them is chosen and the computation goes on. If we consider all the configurations
to be reachable from a given one in each step, we obtain the so-called computation
tree. In this abstract level, we can study many interesting problems related to
confluence, reachability of configurations or halting criteria; problems inherent to
all computation models.

Nonetheless, not only are we usually interested in the intrinsic properties of P
systems themselves, but in using them as tools for dealing with other processes as
well. Such processes can be of a symbolic nature, as solving the SAT [7] problem,
or real-world problems such as the simulation of a population of bearded vultures
[2] or the study of the epidermal growth factor receptor [8] in cells.

The design of P systems for dealing with these problems needs the explicit
description of the syntax and the semantics of the problem, but we also need
an interpretation of the symbols in our problem. According to the problem, the
occurrence of a symbol in a membrane can be interpreted as a scavenger bird [1]
in an ecosystem or a metabolite in the vesicle of a cell [4], but it also can represent
a length unit of the width of the truck of a tree [9] or the negation of a literal in
a propositional formula [7].

Other elements of the description of a P system can also different interpreta-
tions according to the problem which describes. In many situations, the electrical
charges of the membranes act as traffic lights: a generated object can be several
unit times waiting for a change in the polarization of a membrane which allows it
to cross the membrane. Another typical example is to use a sequence of objects
{z1, . . . , zn} as a counter till the appearance of the objects zn which produces an
event (maybe the dissolution or division of the membrane) exactly after n steps.

In this paper we provide a new interpretation to the application of a rule.
We propose the use of membranes to produce sounds and, in a broad sense of
the word, to produce music. The use of membranes to produce music should not
be something surprising: from the origin of the Mankind, the vibration of tight
membranes has been a source of sound. Nonetheless, to the best of our knowledge,
this is the first time in which P systems are seen as musical instruments.

In the literature, there exist several approaches between music and computa-
tional biology, as [5] or [6] among others, but this is the first time in which P
systems and music are brought together.
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The paper is organized as follows: First we give some ideas about the interpre-
tation of some computational events as sound producers. Next we provide some
details about the implementation used in our experiments. In Section 4 we show
an example of a P system designed for producing sounds and we finish with some
final remarks.

2 Generating sounds

The word sound has two main meanings. On the one hand, it can be defined as
the vibration transmitted through an elastic media (solid, liquid or gas), with
frequencies in the approximate range of 20 to 20,000 hertz. The second meaning is
related to the sensation stimulated in the organs of hearing by such vibrations in
the air or other medium. Figure 1 shows the notes that can be usually reproduced
by human voice or instruments.

Oc. 0 Oc. 1 Oc. 2 Oc. 3 Oc. 4 Oc. 5 Oc. 6 Oc. 7 Oc. 8

C 32,70 65,41 130,81 261,63 523,25 1046,50 2093,00 4186,01
C# 34,65 69,30 138,59 277,18 554,37 1108,73 2217,46
D 36,71 73,42 146,83 293,66 587,33 1174,66 2349,32
D# 38,89 77,78 155,56 311,13 622,25 1244,51 2489,02
E 41,20 82,41 164,81 329,63 659,26 1318,51 2637,02
F 43,65 87,31 174,61 349,23 698,46 1396,91 2793,83
F# 46,25 92,50 185,00 369,99 739,99 1479,98 2959,96
G 49,00 98,00 196,00 392,00 783,99 1567,98 3135,96
G# 51,91 103,83 207,65 415,30 830,61 1661,22 3322,44
A 27,50 55,00 110,00 220,00 440,00 880,00 1760,00 3520,00
A# 29,14 58,27 116,54 233,08 466,16 932,33 1864,66 3729,31
B 30,87 61,74 123,47 246,94 493,88 987,77 1975,53 3951,07

Fig. 1. Frequency in hertzs of the notes

In this paper we explore the relationship between P systems and music. In
a broad sense, playing music consists on the production of vibration of a media
(sounds) during several time units. The appropriate combination of the frequencies
of the vibration (different notes) along time produces (eventually) a harmonious
sound.

From this point of view, producing sounds with P systems is based on three
key ideas:

• As we have seen above, time is generally considered to be discrete in P systems.
We usually consider an universal clock for all the events (evolution of objects,
creation, division or dissolution of membranes . . . ). Such a universal clock can
be considered as a uniform pulse. In other words, if we want to see a P system
as a sound generator, we already have a metronome.
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• We can associate a sound to an event produced in a P system in a time unit.
The association is arbitrary and can be seen as an interpretation. In the same
way as we can associate a meaning to a membrane, an object or to an electrical
charge and see them as a geographical region, as a bearded vulture or as the
signal of a traffic light, we can also associate a sound to an event produced
during the computation.
The main difference is that we associate a sound to the application of the rule,
not to the rule itself. In such a way, the application of the rule is an event which
is produced in one step of computation at time t. It makes sense to associate
a sound to the application of a rule. The duration of the sound will be also
arbitrarily prefixed. We will consider that the application of a rule produces
one sound during a time unit.

• The third key point is the parallelism inherent in most of the P system models.
As pointed above, in a time unit, several rules can be applied in different
membranes. If we associate a sound to the application of one rule, we will
produce several sounds simultaneously. In other words, for a musical piece, the
application of some rules can produce the main voice and simultaneously, an
accompanying chord can be performed. The parallelism of P systems opens a
door to explore the possibilities of P systems as tools for producing polyphony.

3 Implementation

A first implementation of these ideas has been carried out by using the P system
simulator SCPS [3]. This simulator was written in Prolog and one of its features
is that the user can obtain a file which includes a report with the applied rules in
each time unit.

3.1 Log parsing

These files can be easily parsed by using regular expressions or any other text
search method, so a new output format can be defined in order to make the sound
generation easier. Just to test this, three different musical interpretations can done
by processing the events.

• First method: A different frequency is assigned to each membrane in the sys-
tem. In this method, we consider that the membrane vibrates at the associated
frequency when an object cross it, regardless of the object.

• Second method: A different frequency is assigned to each element. In this
method, the vibration of one membrane does not depend on the membrane
itself, but on the object which crosses the membrane.

• Third method: A different frequency is assigned to each rule. In this case, the
frequency is associated to a membrane and an object, but it can be considered
in a more general case, since other rules different from communication ones
(dividing, dissolving, evolving, . . . ) can also have an associated frequency.
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3.2 Frequency and timing assignment

Time length for each musical event from a P system is an arbitrary choice as long
as the human ear can hear each separate note. If the length of an event is too
short, the output wave will be a valid physical recreation of the sonic wave, in
terms of frequencies and amplitudes, but from an human point of view, it will be
just a burst of beeps with no musical sense at all. Typical assignments for the first
generated waves have been in the order of 0.1 seconds to 1 second. Greater lengths
are, for now, just boring.

The frequency assignment for the events is, in a cold way, an arbitrary task
too. Anyway, as far as somebody has to hear and to give an interpretation to the
sounds, it seems to be quite obvious that a friendly assignment must be done.
These assignments can be:

• Harmonic frequencies: Starting from an arbitrary frequency, the next ones
are selected so they are integer multiples of that first one. So, if 440 Hz. is
selected (central A), the next frequencies must be 880, 1320, 1760, . . . and so
on. Integer dividers are allowed too.

• Occidental dodecaphonic notes: As it has been described above, each mu-
sical note in the Western culture is defined by a well-known frequency. If each,
or some, of these frequencies are assigned to different events, any known chro-
matic melody can be played by the P system.

• Occidental musical scales: Well defined and largely used in the musical
world, musical scales are subsets of the dodecaphonic system. In a scale, only
some notes are picked from the entire the set, following any rule (typically, a
set of intervals from a starting note). This way the scales of C minor, B flat
major, F diminished or any other one, can be defined.

Depending on what target to be reached, different assignments can be done.

• For Musical P systems, those which have been specifically designed to be in-
terpreted as music event generators, all chromatic range or any scale will be a
good choice, depending on the target melody.

• For Non Musical P systems, it seems to be a good idea to avoid reinforcing any
possible inherent cacophony in the interpretation. As far as it is completely
unknown how a P system sounds (until now), there is nothing such as a correct
assignment, so harmonic frequencies or any scale notes are assigned. This way,
at least, a tuned melody will be generated regardless of its musical coherence.

3.3 Wave generation

The process to generate a wave which represents how a P system sounds involves
these steps:

1. Parse report (log) file from SCPS.
2. Select an interpretation (scales, harmonics,. . . ).
3. Select parameters (time lengths, overlapping behavior, intensity levels,. . . ).
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4. Render the wave according to interpretation and parameters.
5. Post-processing the wave so as to make it easy listened.

The parsing is done by using regular expressions, which are a widely known tool
for text search. The interpretation and the parameters are defined for harmonic and
chromatic sounds inside the scripts as variable values. The render is accomplished
following these steps:

1. Total length is calculated.
2. For each simulation step, every applied rule generates a single tone wave.
3. These single event waves are summed and the resulting wave can be normalized

in amplitude. This exploits the parallelism, so chords are the interpretation of
the set of rules which are fired in a step.

4. After every summed waves are linked together, the final wave can be normal-
ized.

5. The resulting wave is saved as a PCM file with a sampling frequency of 44.100
Hz. and 16 bits, ready to be played in any standard WAV or music player.

4 Experimental Results

The first experiment performed was to consider a P system designed for an specific
task without any relationship to music. The chosen one was a family of P system
which solves the Subset Sum problem. We chose an instance of the problem, pro-
vided the corresponding input to the P system and got the information of the
applied rules by using the simulator.

The obtained report file was processed by associating arbitrary sounds to the
application of rules. The performance of this piece was presented during the Eight
Brainstorming Week on Membrane Computing, held in Seville in the first days of
February of 2010. The obtained sound was absolutely cacophonous, but it was the
first answer to the question that entitles this paper.

The next challenge was to design a P system whose unique target was to
produce sounds in a harmonious way. This first design is showed below. It was
called ΠHB . From a technical point of view, it is a very simple P system. It only
uses two types of rules:

• Chemical decomposition or analysis: [ a → b c ]e The object a inside the mem-
brane with label e is decomposed into two new objects b and c.

• Osmotic reaction: [ a ]e → a [ ]e The object a is sent out from the partially-
permeable membrane with label e.

This first design ΠHB does not exploit the parallelism of P systems. In fact it is
a deterministic P system which works sequentially, but illustrates the possibilities
of P systems for producing sounds. In a more complex design, other membranes or
objects could also perform parallel calculus and hence, producing the correspond-
ing chords.
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Let us consider now the following P system ΠHB = (Γ,H, µ,E, w1, w2, R)
where

• Γ = {g3, a3, b3, c4, d4, e4, f4, g4, A1, A2, B1, . . . , B4, C1, . . . , C11,
D1, D2, E1, . . . , E4, F1, F2, G1, . . . , G6, T1, z1, . . . , z26} is the working alphabet.

• H = {1, 2} is the set of labels.
• µ = [ [ ]2 ]1 is the membrane structure.
• w1 = ∅ and w2 = {g3 G1} are the initial multisets.
• R is the set of rules:

[g3]2 → g3 [ ]2 [a3]2 → a3 [ ]2 [b3]2 → b3 [ ]2 [c4]2 → c4 [ ]2
[d4]2 → d4 [ ]2 [e4]2 → e4 [ ]2 [f4]2 → f4 [ ]2 [g4]2 → g4 [ ]2

[Ai → a3 Ai+1]2 i ∈ {1, 3, 5}
[A2 → a3 G2]2
[A4 → a3 G6]2
[A6 → a3 F1]2

[Bi → b3 Bi+1]2 i ∈ {1, 2, 3, 5}
[B4 → b3 G4]2
[B6 → b3 A5]2

[Ci → c4 Ci+1]2 i ∈ {1, 3, 4, 5, 7,
9, 11, 12, 13}

[C2 → c4 B1]2
[C6 → c4 G8]2
[C8 → c4 B5]2
[C10 → c4 D3]2
[C14 → c4]2

[Di → d4 Di+1]2 i ∈ {1, 3}
[D2 → d4 C3]2
[D4 → d4 C11]2

[Ei → e4 Ei+1]2 i ∈ {1, 3}
[E2 → e4 C7]2
[E4 → e4 C9]2

[F1 → f4 F2]2
[F2 → f4 E3]2

[G1 → g3 A1]2
[Gi → g3 Gi+1]2 i ∈ {2, 4, 6, 8, 9}
[G3 → g3 C1]2
[G5 → g3 A3]2
[G7 → g3 D1]2
[G10 → g4 G11]2
[G11 → g4 E1]2

4.1 Overview of the computation

The initial configuration consists on two membranes: An outer membrane with
label 2 and an inner membrane with label 1. At the beginning, the membrane
with label 1 is empty (w1 = ∅) and the membrane with label 2 only has two
objects: g3 and G1 (w2 = {g3 G1}), so the initial configuration can be expressed
as C0 ≡ [ [ g3 G1 ]2 ]1.
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From this initial configuration two rules can be applied: [g3]2 → g3 [ ]2 and
[G1 → g3 A1]2. Both are applied simultaneously in one time unit. The object g3 is
sent out from membrane 2 and goes to membrane 1 and object G1 is decomposed
into objects g3 and A1. The new configuration at time t = 1 is C1 ≡ [ [ g3 A1 ]2 g3 ]1.
Object g3 in membrane 1 does not evolve any more, since there is no rule for it
in the membrane 1. Nonetheless, objects in membrane 2 evolve according to the
rules [g3]2 → g3 [ ]2 and [A1 → a3 A2]2. We obtain C2 ≡ [ [ a3 A2 ]2 g2

3 ]1, i.e., two
copies of the object g3 are placed in membrane 1 and objects a3 and A2 are placed
in membrane 2. Bearing in mind that objects in membrane 2 do not trigger any
rule, the remaining configurations can be obtained by applying simultaneously a
chemical rule and an osmotic rule. Membrane 2 in configuration 46 contains objects
c4 and C14. Rules [c4]2 → c4 [ ]2 and [C14 → c4]2 are then applied and membrane
2 has only object c4 in the configuration 47. Again [c4]2 → c4 [ ]2 is applied and
finally, in configuration 48, membrane 2 is empty. No more rules can be applied,
and the computation stops.

4.2 Interpretation

In order to obtain a melody, we associate a sound to an event. In this case, we
choose to associate a note to the application of one osmotic rule. In this way, if the
rule [a]2 → a [ ]2 is applied at time t, then one sound will be produced during one
time unit starting at time t. The remaining rules do not produce sounds. In order
to simplify the interpretation, the objects sent out by osmotic rules have a natural
interpretation in music. Such objects are g3, a3, b3, c4, d4, e4, f4 and g4. They
are naturally interpreted by considering c4 as the central note C in a keyboard
piano. According to the computation, the first objects which cross out membrane
e by application of the corresponding osmotic rules are g3, g3, a3, etc. Figure 2
shows the melody obtained by the computation where the considered time unit
corresponds to one quaver1

5 Final Remarks

In this paper we have presented a first approach between P systems and music. The
idea of associating a sound to an event is quite natural and opens a large panoply
of possibilities. The first one is to explore the possibilities of polyphony, since the
parallelism is inherent to Membrane Computing devices. Other possibilities can be
to introduce different timbres (different instruments) or different lengths of notes.
Another exciting way to explore is the non determinism of P systems, since it can
produce different melodies depending on the chosen computation.
1 The G-clef and the time signature have been added. They do not correspond to the

interpretation of the P system computation.



How Does a P System Sound? 131

� ���� ������ ���
4
3�

� �� � �� � � � � � �
2

� � � � �� �

��
��� �����������

5 �����

Fig. 2. The interpretation of the computation of the P system ΠHB
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Summary. The usual way to find a solution for a NP complete problem with Membrane
Computing techniques is by brute force algorithms where all the feasible solutions are
generated and they are checked simultaneously by using massive parallelism. These so-
lutions work from a theoretical point of view but they are implementable only for small
instances of the problem. In this paper we provide a family of P systems which brings
techniques from Artificial Intelligence into Membrane Computing and apply them to
solve the N-queens problem.

1 Introduction

Brute force algorithms have been widely used in the design of solutions for NP
problems in Membrane Computing. Trading time against space allows us to solve
NP problems in polynomial (even lineal) time with respect to the input data.
The cost is the number of resources, mainly the number of membranes, which
grows exponentially. The usual idea of such brute force algorithms is to encode
each feasible solution in one membrane. The number of candidates to solution is
exponential in the input size, but the coding process can be done in polynomial
time. Once generated all these candidates, each of them is tested in order to check
whether it represents a solution to the problem or not. This checking stage is
made simultaneously in all membranes by using the massive parallelism inherent
to Membrane Computing. Any computational device that performs this checking
sequentially needs an exponential amount of time. After the checking stage ends,
the P system halts and sends a signal to the user with the output of the process.

Such theoretical process works and many different P system models have been
explored by searching the limits between tractability and intractability [2]. In such
way, several semantic and syntactic ingredients have been mixed and nowadays
there exist many open questions and open problems in the area (see, e.g., [6]).
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In spite of the great success in the design of theoretical solutions to NP prob-
lems, these solution have an intrinsic drawback from a practical point of view. It
is not clear yet whether Membrane Computing will have an in vitro, in vivo or in
silico implementation, but in any case, a membrane will have a space associated
(maybe a piece of memory in a computer, a pipe in a lab or the volume of a bac-
teria) and brute force algorithms only will be able to implement little instances of
such problems. As an illustration, if we consider an in vivo implementation where
each feasible solution is encoded in an elementary membrane and such elementary
membrane is implemented in a bacteria of mass similar to E. Coli (∼ 7×10−16 kg.,
see [8]), then, a brute force algorithm1 which solve an instance of a NP problem
with input size 40 will need approximately the mass of the Earth for an imple-
mentation (∼ 6× 1024 kg., ibid.).

In this paper we explore the possibility of searching solutions to NP problems
with Membrane Computing techniques, but taking ideas from Artificial Intelli-
gence instead of using brute force algorithms. Of course, the worst case of any
solution of an NP-problem needs and exponential amount of resources, but we are
not always in the worst case. The contribution of using search strategies from Ar-
tificial Intelligence is that, on average, the number of resources for solving several
instances of an NP problem decreases with respect to the number of resources
used by brute force, since an exponential number of resources is always used in
the former one. The case study is the N-queens problem (Section 2), which was
previously studied in the framework of Membrane Computing in [3].

The paper is organized as follows: Next we present the N-queens problem and
recall the brute force algorithm presented in [3]. In Section 3, we give a brief no-
tions of searching strategies in Artificial Intelligence and in Section 4, we present
an implementation of depth-first search with P systems. In Section 5, we present a
family of P systems which solve the N-queens problem based on the cellular imple-
mentation. Finally, some conclusions and new open research lines are presented.

2 The N-queens Problem

Along this paper we will consider the N-queens problem as a case study. The N-
queens problem is very popular among computer scientists. It is a generalization
of a classic problem known as the 8-queens problem. The original one is attributed
to the chess player Max Bezzel and it consists on putting eight queens on an 8× 8
chessboard in such way that none of them is able to capture any other using the
standard movement of the queens in chess, i.e., at most one queen can be placed
on each row, column and diagonal line.

The 8-queens problem was later generalized to the N-queens problem, with the
same rules but placing N queens on a N×N board.
1 A similar comparison was proposed by Niall Murphy during the Tenth Workshop on

Membrane Computing.
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Fig. 1. Solutions to the 4-queens problem

In [3], a first solution to the N-queens problem in Membrane Computing was
shown. For that aim, a family of deterministic P systems with active membranes
was presented. In such family, the N-th element of the family solves the N-queens
problem and the last configuration encodes all the solutions of the problem.

In order to solve the N-queens problem, a truth assignment such that it makes
true a formula in CNF is searched. This problem is exactly SAT, so the solution
presented in [3] uses a modified solution for SAT from [5].

In such a paper, it was proven that given an integer N ≥ 3, there exists a
formula Φ in conjunctive normal form such that encodes the N-queens problem
with N2 variables and 1

3 (5N3 − 6N2 + 4N) clauses.
Some experiments were presented by running the corresponding P systems

with an updated version of the the P-lingua simulator [1]. The experiments were
performed on a one-processor Intel core2 Quad (with 4 cores at 2,83Ghz), 8GB of
RAM and using a C++ simulator over the operating system Ubuntu Server 8.04.

In the 3-queens problem, three queens should be placed on a 3×3 chessboard.
According to our representation, the problem can be expressed by a formula in
CNF with 9 variables and 31 clauses. The input multiset has 65 elements and
the P system has 3185 rules. Along the computation, 29 = 512 elementary mem-
branes need to be considered in parallel. Since the simulation was carried out in
a one-processor computer, in the simulation, these membranes were evaluated se-
quentially. It took 7 seconds to reach the halting configuration. It is the 117-th
configuration and in this configuration one object No appears in the environment.
As expected, this means that we cannot place three queens on a 3×3 chessboard
satisfying the restriction of problem.

In the 4-queens problem, we try to place four queens on a 4×4 chessboard. Ac-
cording to our representation, the problem can be expressed by a formula in CNF
with 16 variables and 80 clauses. Along the computation, 216 = 65536 elementary
membranes were considered in the same configuration and the P system has 13622
rules.

The simulation takes 20583 seconds (> 5 hours) to reach the halting config-
uration. It is the 256-th configuration and in this configuration one object Yes
appears in the environment. This means that there exists at least one solution to
the problem. In order to know such solutions, we check the multiset of the elemen-
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tary membranes. In this case there are two elementary membranes in the halting
configuration with the following multisets:

w1 = {f1, f2, t3, f4, t5, f6, f7, f8, f9, f10, f11, t12, f13, t14, f15, f16}

w2 = {f1, t2, f3, f4, f5, f6, f7, t8, t9, f10, f11, f12, f13, f14, t15, f16}

Such multisets encode the solution showed in the Figure 1
According to this design, for the solution of the N-queens problem in a standard

8×8 chessboard 264 = 18.446.744.073.709.551.616 elementary membranes should
be considered simultaneously. If we follow with the analogy from the Introduction,
an E. Coli implementation of such P system we will need approximately a metric
tone of bacteria to solve the problem. Does it means that Membrane Computing is
not able to find at least one solution to the N-queens problem on a 8×8 chessboard?

3 Searching Strategies

Searching has been deeply studied in Artificial Intelligence. In its basic form, a
state is an instantaneous description of the world and two states are linked by a
transition which allows us to reach a state from a previous one. In such way, we
consider a directed graph where the nodes are the states and the edges are the
actions. Giving a starting state, a sequence of actions (a path in a graph) to one
of the final states is searched.

In sequential algorithms, only one node is considered in each time unit and the
order in which we explore new nodes determines the different searching strategies.
In the usual framework, several possible unexplored nodes are reachable and we
need to choose one of them in order to continue the search. In the best case, we
have a heuristic which can help us to decide the best options among the candidates.
Such heuristic represents, in a certain sense, how far the considered node is from
a solution node and it captures our information about the nature of the problem.
In many other situations we have no information about how far we are from a
solution and we need to use a blind strategy.

Since there is no information about the nature of the problem, blind strategies
are based exclusively in the topology of the graph and the order in which new
nodes are reached.

There exists a clear parallelism between the space of states represented as a
directed graph and the computation trees in Membrane Computing. In Membrane
Computing, we start with an initial description of the world (the initial config-
uration) and, in the general case, we have several sets of applicable rules which
lead us to different configurations. We choose one of the reachable configurations
and go on with the process till reaching a halting configuration. In the case of
recognizer P systems, no matter which new configuration we choose among the
different possibilities since all of them lead us to the same answer, but this is not
the general case.
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The two basic blind search strategies are depth-first search and breath-first
search. The main difference between them is that depth-first search follows a path
to its completion before trying an alternative path. Some path can be infinite, so
this search may never succeed. It involves backtracing: One alternative is selected
for each node and it backtracks to the next alternative when it has pursued all of
the paths from the first choice. In the worst case, depth-first search will explore
all of the O(bm) nodes in the search tree, where m is the maximum depth of any
node and b is the maximum branching factor. The complexity in time is O(bm),
and the complexity in space is O(bm).

In breath-first search the order in which nodes are explored depends on the
number of arcs in the path. The algorithm always selects one of the paths with
fewest arcs. If there exists a solution at depth d, the total number of generated
nodes is O(bd+1). In this case the complexity in time and in space is O(bd+1).

4 Depth-first Search with P Systems

The idea of representing an instantaneous description of the world as a state and
a step from a state to the following one as an edge in the graph is so general that
many real-life problems can be modeled as a problem of space of states. In this
paper we present a first approach to depth-first search with P systems. The aim is
to show that Membrane Computing provides all the ingredients that we need to
find a solution for any problem represented as a space of states and hence, to be
a useful tool to solve many real-life problems.

The aim of this first approach is not minimalist. We are not looking for the
minimum number of ingredients for implementing in P systems the depth-first
search. In fact, we use four of the most powerful available ingredients: inhibitors,
cooperation, priorities and dissolution. As we will remark in Section 6, it is an
open question to weaken these conditions.

In an abstract way, the representation of a problem P = (a, S,E, F ) as a space
of states consists on:

• A set of states S and an initial state, a ∈ S
• A set E of ordered pairs (x, y), called transitions, where x and y are states and

y is reachable from x in one step.
• A set F of final states.

Technically, we also need a cost mapping, which assigns a cost to each transition
(x, y), but we will consider a constant cost and we will omit it.

Given a problem P = (a, S,E, F ), we will consider a P system Π =
(Γ,H, µ,we, ws, R1, R2, R3, R1 > R2, > R3) where

• The alphabet Γ = S ∪ {pe, re | e ∈ E}
• The set of labels H = {u, s}
• A membrane structure µ = [ [ ]u ]s
• The initial multisets wu = {a} and ws = ∅.
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• Three sets of rules R1, R2 and R3

– R1 = {[x]u → λ : x ∈ F}. For each final state we have a dissolution rule
which dissolves the membrane u.

– R2 = {[x¬py → y rxy]u : (x, y) ∈ E}. For each transition (x, y), x can be
changed by y rxy if py does not occur in the membrane u, i.e., py acts as an
inhibitor.

– R3 = {[y rxy → x py]u : (x, y) ∈ E}. For each transition (x, y) we have a co-
operative rule where the multiset y rxy is rewritten as x py in the membrane
u.

• Finally, we have an order among the rules. Rules of R1 have priority over the
other rules and rules from R2 have priority over rules from R3.

The intuition behind the objects is the following: In each configuration (but
in the last one) there is one object from S in the configuration. It represents
the current state in the searching process. For each state y, the object py is an
inhibitor2 which forbid to visit the state y. Finally, the occurrence of the object
rxy represents that the transition (x, y) belongs to the path from the initial state
to the current one. We illustrate one computation of these P systems with the
following example.

4.1 Example

Let us consider the space of states P = (a, S,E, F ) with a the initial state, the set
of transitions E = {(a, b), (a, c), (b, d), (b, e), (e, f), (c, g)} and the set of final states
F = {g}. Let Π be the P system associated with this space as described above.
The initial configuration is C0 = [ [a]u ]s. Two rules are applicable, both belonging
to the set R2, rb ≡ [a¬pb → b rab]u and rc ≡ [a¬pc → c rac]u. Let us suppose that
non-deterministically rb is chosen. Then we have C1 = [ [b rab]u ]s. From C1, three
rules are applicable

rd ≡ [b¬pd → d rbd]u ∈ R2 re ≡ [b¬pe → e rbe]u ∈ R2 rb ≡ [b rab → a pb]u ∈ R3

Since R2 has priority over R3, only rd or re can be non-deterministically chosen.
We choose re and reach C2 = [ [e rab rbe]u ]s. Now, only two rules are applicable

rf ≡ [e¬pf → f ref ]u ∈ R2 re ≡ [e rbe → b pe]u ∈ R3

Since R2 has priority, rf is applied and we reach C3 ≡ [ [f rab rbe ref ]u ]s. From C3,
the unique applicable rule is rf ≡ [f ref → e pf ]u ∈ R3 and C4 ≡ [ [e rab rbe pf ]u ]s.
Notice than the application of rf is an implementation of backtracing. In the
configuration C4, the current state is e and the state f is forbidden. From C4, only
re ≡ [e rbe → b pe]u ∈ R3 is applicable. The application of this rule is a new step
of backtracing and it leads us to the configuration C5 ≡ [ [b rab pe pf ]u ]s. From C5,
two rules are applicable
2 Notice taht the object py is never removed. If the state y can be reached from different

paths, then we should add new rules in order to prevent it.
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rd ≡ [b¬pd → d rbd]u ∈ R2 rb ≡ [b rab → a pe]u ∈ R3

Notice that the rule re ≡ [b¬pe → e rbe]u ∈ R2 is not applicable due to the
occurrence of the inhibitor pe in the membrane u. Since R2 has priority over
R3, the rule rd is applied an the configuration C6 ≡ [ [d rab rbd pe pf ]u ]s is reached.
From C6 we only can do backtracing by applying the rule rd ≡ [d rbd → b pd]u ∈ R3

and reach C6 ≡ [ [b rab pd pe pf ]u ]s. By applying now rb ≡ [b rab → a pb]u ∈ R3 we
obtain C7 ≡ [ [a pb pd pe pf ]u ]s. From C7 we only can apply rc ≡ [a¬pc → c rac]u ∈
R2 and reach C8 ≡ [ [c rac pb pd pe pf ]u ]s. From C8 two rules are applicable

rg ≡ [c¬pg → g rcg]u ∈ R2 rc ≡ [c rac → a pc]u ∈ R3

Due to the priority of R2 over R3, rg is applied and we obtain C9 ≡
[ [g rac rcg pb pd pe pf ]u ]s. Finally, the applicable rules are

rF ≡ [g]u → λ ∈ R1 rg ≡ [g rcg → c pg]u ∈ R3

Since R1 has priority over R3, the rule rF is applied and the configuration
C10 ≡ [rac rcg pb pd pe pf ]s. No more rules are applicable and C10 is a halting con-
figuration. The objects rac and rcg determine a path from the initial state to the
final one. Notice that the chosen rules in the non-deterministic points are crucial.
From C0 the configuration C∗

3 ≡ [rac rcg]s is reachable in three steps by applying
sequentially the rules rc ≡ [a¬pc → c rac]u ∈ R2, rg ≡ [c¬pg → g rcg]u ∈ R2 and
rF ≡ [g]u → λ ∈ R1.

5 A New Solution for the N-queens Problem

The first step for designing a new solution for the N-queens problem is to determine
the space of states. There are two basic formulations (see [7]). A complete-state
formulation, which starts with N queens on the board and moves them around and
an incremental formulation, where the operators augment the state description,
starting from the empty state and each action adds a queen to the state. This
second formulation reduces drastically the space of states, since a new queen added
to the description of a state can be placed only in a non forbidden square. In such
way, states and transitions are the following:

• States: Arrangements of k queens (0 ≤ k ≤ N), one per column in the leftmost
k columns.

• Transitions (x, y): The state y is the state x where a new queen is added in
the leftmost empty column. Such new queen is not attacked by any other one.

The basic idea of the P system design is to encode the position of a queen as
a set of four objects xi, yj , ui−j and vi+j , where xi represents a column and yj

represents a row (1 ≤ i, j ≤ N). The objects ui−j and vi+j represent the ascendant
and the descendant diagonals respectively and their subindices are determined by
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the corresponding column and row i and j. Placing a queen on the chessboard
means to choose a square, i.e., a set {xi, yj , ui−j , vi+j} among the eligible objects
and delete them from the corresponding membrane. The choice is recorded. If the
final state is reached we finish the process; otherwise we do backtracing and choose
other eligible set.

We present a family of P systems which find a solution for the N-queens problem
(a P system for each value of N) slightly different from the general one presented
in Section 4. We add a new set of rules R∗ for cleaning purposes. For each positive
integer greater than 2, we consider the P system

Π = (Γ,H, µ,we, ws, R1, R
∗, R2, R3, R1 > R∗ > R2, > R3) where

• The alphabet Γ = {xi, yj , ui−j , vi+j , pi,j : i, j ∈ {1, . . . , N}} ∪ {xN+1}
• The set of labels H = {u, s}
• The initial multisets wu = {x1, y1, . . . , yN , u1−N , . . . , uN−1, v2, . . . , v2N} and

ws = ∅.
• A membrane structure µ = [ [ ]u ]s
• Four sets of rules R1, R∗, R2 and R3

– R1 = {[xN+1]u → λ : x ∈ F}. In this design, when the object kN is reached,
the membrane u is dissolved and the computation ends.

– R∗ = {[pi,jxi−1 → xi−1]u : i ∈ {2, . . . , N}, j ∈ {1, . . . , N}} Just cleaning
rules.

– R2 = {[xi yj ui−j vi+j ¬pi,j → xi+1 ri,j ]u : i, j ∈ {1, . . . , N}} These rules
put a new queen on the chessboard by choosing an eligible position.

– R3 = {[ri,j xi+1 → xi yj ui−j vi+j pi,j ]u i, j ∈ {1, . . . , N}}. These rules re-
move one queen form the chessboard and implement the backtracing.

• Finally, the order R1 > R∗ > R2, > R3 among the sets of rules is settled.

5.1 Hints on the computation

From the objects {x1, . . . , xN}, only x1 occurs in the initial configuration. This
means that the column 1 is already chosen. In order to take the row, one of the N
rules [k0 x1 yj u1−j v1+j ¬p1,j,0 → x2 r1,j,1 k2]u where j ∈ {1, . . . , N} is chosen. The
election of this rule determines the square (x1, yj) where the first queen is placed.
The application of the rule removes the objects corresponding to the column, row
ascendant and descendant diagonal lines x1 yj u1−j v1+j in the chessboard. The
associated column, row and diagonals to these objects are no eligible and the new
queen will be put in a safe square. The application of the rule produces the object
x2. Next, a rule from the set [k1 x2 yj u2−j v2+j ¬p2,j,1 → x3 r2,j,2 k3]u is chosen. If
the successive choices are right, then the object kN is reached and the membrane
u dissolved. The objects ri,j,r in the membrane s from the halting configuration
give us a solution to the problem. If no rules from the set R2 can be applied, then
we apply one rule from R3. As shown in the general case, such rules implement
backtracing and produces objects pi,j,r which act as inhibitors. Before applying
rules from R2 or R3, the P system tries to apply rules from R1, which means the
halt of the computation, or from R∗, which clean useless inhibitor objects.
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5.2 Examples

Figure 3 shows a computation of the P system which solves the four queens prob-
lem, where the rules are non deterministically chosen. The subindices of the objects
r1,2r2,4r3,1r4,3 in the halting configuration give us the found solution. In this case
the squares for the four queens are (1, 2), (2, 4), (3, 1), (4, 3).

An ad hoc CLIPS program has been written based on this design of solution
for the N-queens problem based on Membrane Computing techniques. Figure 2
shows a solution for the 20-queens problem found by such computer program.

1-20 2-1 3-3 4-5 5-2 6-4 7-13 8-10 9-17 10- 15
11-6 12-19 13-16 14-18 15-8 16-12 17-7 18-9 19-11 20-14

Fig. 2. A solution for the 20-queens problem

6 Conclusions and Future Work

The purpose of this paper is twofold. On the one hand, to stress the inviability
of solutions based on brute force algorithms for intractable problems, even in case
of a future implementations. On the other hand, to open a door in Membrane
Computing to Artificial Intelligence techniques, which are broadly studied and
which can enrich the methodology of the design of P system solutions.

This first approach can be improved in many senses. As pointed out in Section
4, the aim of this paper is not minimalist and probably, searching algorithms can
be implemented into P systems by using more simple P system models. The second
improvement is associated to the nature of P systems. The design of P systems
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Applied rule Configuration

C0 ≡
h ˆ

x1y2y3, y4u−3 . . . u3v2 . . . , v8

˜
u

i
s

[x1y1u0v2 ¬p1,1 → x2r1,1]u C1 ≡
» »

x2y2y3y4u−3, u−2u−1

u1u2u3v3 . . . v8r1,1

–
u

–
s

[x2y3u−1v5 ¬p2,3 → x3r2,3]u C2 ≡
» »

x3y2y4u−3, u−2u1u2u3

v3v4v6v7v8r1,1r2,3

–
u

–
s

[r2,3x3 → x2 y3 u−1 v5 p2,3]u C3 ≡
» »

x2y2y3y4u−3, u−2u−1u1u2

u3v3v4v5v6v7v8r1,1p2,3

–
u

–
s

[x2 y4 u−2 v6 ¬p2,4 → x3 r2,4]u C4 ≡
» »

x3y2y3u−3u−1u1u2u3

v3v4v5v7v8r1,1r2,4p2,3

–
u

–
s

[x3y2u1v5¬p3,2 → x4 r3,2]u C5 ≡
» »

x4y3u−3, u−1u2u3v3v4

v7v8r1,1r2,4r3,2p2,3

–
u

–
s

[r3,2x4 → x3y2u1v5p3,2]u C6 ≡
» »

x3y2y3u−3, u−1u1u2u3v3v4

v5v7v8r1,1r2,4p3,2p2,3

–
u

–
s

[r2,4x3 → x2y4u−2v6p2,4]u C7 ≡

2424x2y2y3y4u−3u−2u−1

u1u2u3v3v4v5v6v7v8

r1,1p3,2p2,3p2,4

35
u

35
s

[p3,2x2 → x2]u C8 ≡

2424x2y2y3y4u−3u−2u−1

u1u2u3v3v4v5v6v7v8

r1,1p2,3p2,4

35
u

35
s

[r1,1x2 → x1y1u0v2p1,1]u C9 ≡

2424x1y1y2y3y4u−3u−2

u−1u0u1u2u3v2v3v4v5

v6v7v8p1,1p2,3p2,4

35
u

35
s

[p2,3x1 → x1]u C10 ≡

2424x1y1y2y3y4u−3u−2

u−1u0u1u2u3v2v3v4v5

v6v7v8p1,1p2,4

35
u

35
s

[p2,4x1 → x1]u C11 ≡

2424x1y1y2y3y4u−3u−2

u−1u0u1u2u3v2v3v4v5

v6v7v8p1,1

35
u

35
s

[x1y2u−1v3 ¬p1,2 → x2r1,2]u C12 ≡
» »

x2y1y3y4u−3u−2u0u1u2

u3v2v4v5v6v7v8p1,1r1,2

–
u

–
s

[x2y4u−2v6¬p2,4 → x3r2,4]u C13 ≡
» »

x3y1y3u−3u0u1u2u3

v2v4v5v7v8p1,1r1,2r2,4

–
u

–
s

[x3y1u2v4¬p3,1 → x4r3,1]u C14 ≡
» »

x4y3u−3u0u1u3v2v5v7v8

p1,1,0r1,2r2,4r3,1

–
u

–
s

[x4y3u1v7¬p4,3 → x5r4,3]u C15 ≡
» »

x5u−3u0u3v2v5v8

p1,1r1,2r2,4r3,1r4,3

–
u

–
s

[x5] → λ C16 ≡
»

u−3u0u3v2v5v8

p1,1r1,2r2,4r3,1r4,3

–
s

Fig. 3. Example of computation
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which computes searching is too close to the classical sequential algorithm. In fact,
although the presented P system family uses non-determinism in the choice of the
rules, it does not explore the intrinsic parallelism of P systems. The next step in this
way is to design algorithms which uses a limited form of parallelism where several
rules can be applied simultaneously, but controlling the exponential explosion of
brute force algorithms. The current hardware based on Compute Unified Device
Architecture [4] from Nvidia can be a clue for these new generation of algorithms.
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1 Introduction

This extremely informal contribution sketches an extremely informal proposal of
classification of systems according their (up to now only intuitively) comprehended
complicatedness by providing few examples from the fields of (theoretical) com-
puter science, (computer) arts, and economics. The intuitive comprehension pro-
vides, however, at least in certain extent, an extension of theoretically well-founded
and deeply studied classification of computing systems and their behavior (compu-
tation, algorithms) according different complexity measures into complexity classes
of systems and behaviors with the same complexity as known in the traditional the-
oretical computer science. Almost all of our professional considerations are up to
now traditional in the sense that almost all of us try to cover all of the appealing
objects (languages, molecules, membrane structures), and phenomena (sentence
generations, DNA mutations, cells functioning) into the traditional, of course in
many situations very well-working, paradigm of the Turing computability, and of
the spectrum of formal models performing these type of computation.

Our aim is to extend the typology of systems by some intuitive classes of
systems with more or less similar level of complicatedness in order to include to
the potential formalistic debate also systems inspired by some advances in artificial
intelligence, artificial life, cognitive science and similar disciplines despite of this
notion has - at least up to now - not a very clear status in the hardcore theories
of computation.

First of all, it seems to by reasonable to specify at least intuitively what we will
in this plain talk understood as a system. We will concentrate to systems which
produce some symbolic behaviors or structures on the base of transforming another
(sensed) symbols or symbol structures into the form of their output structures
or their behavioral units. More or less autonomous agents as described e.g. in
(Kelemen, 2006) are examples of such systems. The next sections will provide a
couple of examples.
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We note that from our point of view also collections of systems working together
in order to generate a behavior (e.g. multi-agent systems, decentralized systems,
societies of systems) may be considered as unique systems.

Our second duty is the - at least intuitive - a specification of the meaning of
complicatedness. By complicatedness we will mean a structural property of a sys-
tem which provides a base for producing the behavior of this system. If a behavior
is given, then ”What is the less complicated system which is able to perform this
behavior?” seems to be one among the most appealing question related to systems
complicatedness.

2 Simple Systems

Simple systems are, according our intuition, systems having a specific property
- if we have several such systems, then behavior of the society composed from
such systems will be in certain meaning only the simple result of their individual
behavior.

More formally and more generally speaking from the point of view of their
behavior are simple systems closed under set-algebraic operation like union, in-
tersection, Kleene’s * operation, and set complementation operation. From such a
perspective, some of the formal grammars - understood as generators of behaviors
in the form of sets of strings of symbols (languages) are simple systems: Having
two context-free grammars, the behavior which results from the union of their
individual behaviors (context-free languages generate by them) is again a behav-
ior (a context-free language) which can be generated by another corresponding
context-free grammar. Similar is the situation with other models, too: If we have,
for instance, two finite automata, and we form the set-theoretic union (or we use
some other suitable operation) of their behaviors (the union of two regular lan-
guages accepted by them, or some other operation over these two languages) we
receive a regular language again, and we are able to construct a finite automaton
which will accept the resulting regular language.

From the position of the theoretical computer science we may state, that simple
systems are all theoretical models related to computation (automata, machines,
grammars) the class of languages corresponding to which are closed under the
traditional (above mentioned) set-theoretic (and also to the other traditional ones
- concatenation, and reversal) operations usually studied in theoretical computer
science. More details on these models and their closures under set-theoretic (and
some other) operations are included into each course-book on theoretical computer
science; let us mention e.g. (Hopcroft, Ullman, 1969, Chapter 9). The infinitely
large classes of regular, context-free, context-sensitive, and recursively enumerable
languages (sets) have this property with respect the operation of union, concate-
nation, intersection, and reversal; see (Hopcroft, Ullman, 1969, Theorem 9.1).

There are several possibilities of how to define different complexity measures
which reflects in a very formal, theoretic level some of the characteristics of simple
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systems, and how to use the differences induced by these measures in order to
stratify simple systems according these measures into different complexity classes,
to relate these classes, to study the possibility of partial reduction of one to another,
etc.; more details provides e.g. (Hromkovic, 1997).

Another possibilities of how to define different classes of languages using some
biologically well-inspired models of computing devices can be found e.g. in (Paun,
Rozenberg, Salomaa, 1998) for computational interpretations of some of impor-
tant biochemical processes appearing between nucleic acid macromolecules, and in
(Paun, 2002) for the case of computing motivated by biochemical and biophysical
processes appearing in (organic) membrane systems like cells, for instance.

3 Systems with Emerging Behavior

The traditional and most widely used informal definition of emergence is formu-
lated in (Holland, 1998, pp. 121-122): Emergence is ”... a product of coupled,
context-dependent interactions. Technically these interactions, and the resulting
system, are nonlinear: The behavior of the overall system cannot be obtained
by summing the behaviors of its constituent parts... However, we can reduce the
behavior of the whole to the lawful behavior of its parts, if we take nonlinear
interactions into account”.

In connection with the phenomenon of emergence, another phenomenon ap-
peared very interesting form the computational point of view - the notion of emer-
gent computation. The premise of emergent computation is - according (Forrest,
1991, p. 1) - that interesting and useful computational systems can be constructed
by exploiting interactions among primitive components, and further, that for some
kinds of problems (e.g. modeling intelligent behavior) it may be the only feasible
method. The formal study of such processes and the systems behind them is in the
focus of the professional attention up to now, and might be interesting to reflect it
not only in experiments in the field of artificial intelligence and artificial life, but
also in the context of theories of formal symbolic behavior generators.

Systems with emerging behavior are in fact multi-agent systems because they
are set up from a number of individually behaving component systems. Com-
ponent systems have their own behaviors, and they have also some possibilities
to communicate in some indirect ways, sharing the common ”environment”, for
instance, say, e.g., rewriting symbols in a shared string. Good candidates for be-
come to be systems with emerging behavior are grammar systems as presented in
(Csuhaj-Varju et al., 1994), or eco-grammar systems (Csuhaj-Varju et al., 1997).

Consider now component systems to be simple systems from some complex-
ity classes, and consider the behavior of the whole system composed from the
component systems now. We may recognize two possibilities:

1. the systems will produce behavior from one of the complexity classes of the
component systems, or
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2. the system will produce a behavior from another complexity class. In the sec-
ond case the behavior of the system is emergent, it emerges from the behaviors
of the component systems, and the systems will be called system with emerging
behavior.

The emergent behavior of such systems satisfies the emergence test formulated
in (Roland et al., 1999) consisting in the following three basic testing steps:

a) Design. The designer designs the systems by describing local interactions be-
tween components in a language L1.

b) Observation. The observer describes global behaviors of the running system
using a language L2.

c) Surprise. The language of design L1 and the language of observation L2 are
distinct, and the causal link between the elementary interactions programmed
in L1 and the observations observed in L2 are non-obvious.

A suitable example of systems with emerging behavior are variants of grammar
systems, c.f. (Csuhaj-Varju et al., 1994), called colonies (Kelemen, Kelemenova,
1992). In the case of colonies finite sets of regular grammars cooperating as mem-
bers of a grammar system are able to generate the members of all of the family of
context-free languages; the relation of this phenomenon to the emergence is dis-
cussed in (Kelemen, 2004). Some remarks on a possibility how to attack the formal
treatment of the problem of emergence from the positions of the traditional for-
mal language theory and the theory including the theory of abstract families of
languages into considerations, is presented in (Freund, Kelemen, Paun, 2003).

4 Hyper-Computing Systems

Hyper-computing systems are, very roughly speaking, systems, which go by their
computing potentials in certain senses beyond the limits of traditional Turing-
computation. Burgin and Klinger (2004) described the relevant opinions, and in
the special issue of TCS Journal in which the just mentioned article is published
and which is edited by them, collects a couple of other interesting opinions.

In (Stannett, 2004) the problem of hyper-computation is connected in an ele-
gant way by the Turing machine and the Church-Turing thesis by making explicit
the following three points:

1. Computation in a Turing machine is in fact a controlled manipulation of con-
figurations, where each configuration encodes a finite amount of information
as a state, a finite amount of information as memory, and a finite amount of
information as program.

2. Turing machines control structure is constrained both by the current config-
uration of it, and by the requirement that only one program instruction is
executed at a time.
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Then the Church-Turing thesis expresses the conviction that any ”cosmetic
changes” in the architecture of the Turing machine have no principal influence to
its the computational power (may be they have some influence the traditionally
understood complexity requirements of performed computation, but what is not
computable by a Turing machines remains not computable by other machines,
too).

Stannett in the above mentioned article concludes with the statement, that
there are only four obvious ways of modifications of the Turing machine: the tem-
poral structure of computation, the information contents of memory, the informa-
tion content of programs, and the information content of states. Then he provides
the list of publications which attacked the problem from the mentioned obvious
ways.

Let us to provide an example of such systems producing non recursive behavior
which is not mentioned in (Stannett, 2004). In connection with another variant
of grammar systems - with so called eco-grammar systems (Csuhaj-Varju et al.,
1997) - some observations concerning the hyper-computing potentials of this model
is provided in (Watjen, 2003). Roughly and informally speaking, Watjen in his just
mentioned article proved that if into an eco-grammar system which uses teams of
components for generating strings of symbols, a non-recursive function is included
which defines the number of components in teams for each step of the derivation
process, then such an eco-grammar system is able to generate non-recursive lan-
guages. Let us mention marginally, that the pure randomness comprehended as a
function (in the above case prescribing teams to derivation steps) seems to be, at
least intuitively, non-recursive (in the opposite case it is not random), and that
perhaps in the real, non idealized situations the randomness play very crucial role
in real physically embodied systems behaviors.

5 Creative Systems

To create is usually used for denoting the ability to cause something to come to ex-
istence, bring into being, originate something. Creativity is then usually considered
as the act of creation, so as a mental and social process involving the generation
of new concepts or new associations between the existing concepts, the ability to
finding ”new ways to look at things”; cf. (Minsky, 1986, p. 134). Two principal
attributes are usually required with respect to creative combinations of concepts
- the originality of the concept, and its appropriateness.

In order to decision about the appropriateness, in all of usual cases an anthro-
pocentric test (in certain extent similar to the Turing test known in AI) is used -
a test of the appropriateness in a given cultural context of a given human society.
The culture of the particular human society dictates what is required and what
is (at least marginally) acceptable. This is the important and inevitable outer an-
thropocentric determination of the inner individual creativity of each human mind
or some artificial information processing systems, too.
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During the history of the development of computers use, and during the ex-
periments with computational models of mental processes in the field of artificial
intelligence and cognitive science numerous systems have been developed which
are based on some hypotheses concerning the human mental activities. It have
been developed also a challenging area of agents, and multi-agent systems, the
fields which are focused to the understanding, construction, and practical use of
more and more autonomous computer-based systems - agents as presented e.g. in
(d’Inverno, Luck, 2001) -, and societies in which agents may interact - multi-agent
systems; see e.g. (Ferber, 1999).

The existence of (societies of) agents opens another, from some perspective - if
we consider human societies as a kind of multi-agent systems, and the interactions
of agents inside multi-agent systems as some level of the existence of culture in
these systems - a more general position for testing the appropriateness of results
of creativity.

Some artificially designed systems produce behaviors which, in the case that
a human being is considered as the system of this type, are called creative. The
author of this contribution does not know any theoretical, formal approach to
the study of systems of this type. However, there are some successfully working
systems of this type, and now we will mention examples of the two types of creative
systems in certain details on the base of (Kelemen, 2009).

In the field of artificial intelligence, numerous systems have been developed
which belong to the broad family of the so called goal-driven systems. The basic
idea common for all of such systems consists in comparing some representation
of an actual situation of a given problem with (representation of) a given desired
situation of it. The comparison results in an ordered set of formally defined and
represented differences. The differences are then, step by step, reduced using some
formally defined operators in order to reduce the number of differences between
the existing and the desired state of the problem. Operators and differences are
connected with respect the ability of the given operator to reduce the related with
it difference(s).

The principle was successfully applied e.g. in the famous General Problem
Solver (GPS) developed by H. A. Simon, A. Newell, and C. J. Shaw during the
end of fifties and beginning of sixties of the past century; for more details see e.g.
(Ernst, Newell, 1969).

A crucial point in the GPS which makes it relevant for our discussion is that
from simple concepts (operators) it constructs autonomously (without any human
assistance) a sequence of operators, a more complicated concept, which represents
the solution of the problem given at the beginning as an input to the system.
This sequence, if GPS is successful in solving the given problem, transforms the
starting situation describing the problem (the well-known tower-of-Hanoi or some
similar problems), into the situation which represents its solution. In this sense
GPS represents a creative system. However, its creativity is fundamentally based
on the definitions of operators, differences, situation descriptions, table of operator-
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differences connections, etc. provided by its human users. So, the success of GPS
in solving problems depends on the quality of these human-defined components.

Art is another field in which the agent paradigm works well, and creativity ex-
hibits its potentials very clearly. Perhaps the most popular among the computer-
based art-producing machines is the system called AARON. It began - according its
author Harold Cohen (Cohen, 1995) - its existence some time in the mid-seventies
of the past century; see e.g. (Cohen, 1973). The earliest versions of the system used
some perceptual primitives only for producing (drawing) images. It has the abil-
ity to differentiate between figure and the ground, to differentiate between open
forms and closed forms, and to differentiate between insideness and outsideness.
Moreover, it has the capability to perform various simple manipulations on the
structures it produced. Time-to-time, this more or less randomly executed ma-
nipulation on primitive line-structures resulted in figures having in certain sense
figurative contents, like ”human face” represented for instance by the expression
as follows: human-face IS (INSIDEclosed-form (UPPER-POSITION(closed-form,
closed-form) CENTRAL-POSITION(open form), DOWN(closed-form)))

This symbolic representation may look in corresponding free-hand drawing
representation like in Fig. 1 (a). A more complicated picture - an original drawing
made by AARON Fig. 1 (b) - of the ”human body” may be represented in similar
symbolic way. Of course, the human face can be then sophisticated also to more
and more complicated pictures, e.g. as the one in Fig. 1 (c), produced with a more
sophisticated version of AARON. Realize that what the human-face expresses, is
the definition of the human face for AARON.

We decided, associating the human-face with its formal expression that the
randomly scrawled lines remind the line-drawing of a human face in our minds.
Now we are able to instruct AARON to draw a new human face. But the result
will be not the same, as in the previous case, the same will be only the structure
expressed by the formal definition of what we consider to be a human face. In
such a way we can produce more and more concepts and instruct AARON to
draw more and more complicated drawings, each with certain degree of ”freedom”
of AARON’s drawing. For generating Fig. 2 the requirement was a picture of a
botanical garden with seven human beings (five distressed women and two men)
inside it.

AARON is - from the point of view of knowledge processing technologies - in
fact a rule-based knowledge-system in the usual meaning used e.g. in (Stefik, 1995).
Without going into the technical details of the construction (programming) of it,
we may conclude, in concordance with conclusions made in (Cohen, 1995), that
AARON constitutes an existence proof of the power of machines to do some of the
things traditionally connected with human thought and his creativity. ”If what
AARON is making is not art, what is it exactly, and in what ways, other than its
origin, does it differ from the ”real thing”? If it is not thinking - and let us to be
more explicit: creative thinking -, what exactly is it doing?” Cohen asks in last
strokes of (Cohen, 1995).
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Fig. 1. (Parts of) pictures. The first drown in AARON style; the second produce by
AARON, and taken from (McCorduck, 1990, p. 105), the third one produced by AARON,
and taken from (Kurzweil, 1999, p. 167).

6 Man-Machine Systems

The emergent nature of some creative phenomena appearing in complicated sys-
tems - like the man-machine societies are - we may also test using the so called
test of emergence proposed in (Ronald et al., 1999). We provide here an example
of such a system from the field of the interactive art discussed in more details and
with more examples in (Horakova, Kelemen, 2010).

The first interactive piece we mention is based on some ideas from the exper-
iments executed in the field of artificial life, and is created by Christa Sommerer
and Laurent Mignonneau. The project named A-Volve has been presented first in
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Fig. 2. Five distressed women and two men (one hiding, upper right). Taken from
(McCorduck, 1991, p. 135)

1994, and developed it during few next years. The audience of the A-Volve session
has possibilities to design artificially living creatures and to provide for them dif-
ferent modes of their behavior (aggression, snuggles, curiosity, caution, friendship,
etc.). In the virtual world behind of the screen a society of such creatures mu-
tually interact, and behaves according the habit of the members, and have been
influented also if the visitors touched the screen; see Fig. 2. More details on the
A-Volve can be found in (Whilelaw, 2004).

Let us now to analyze the project from the position of the test of emergence:
Design. The language L1 is the language in which the system is implemented, so,
a purely technical computer programming device used with a specific intention to
provide a usable, user-friendly software product for well-specified purposes. Ob-
server. The previous language substantially differs, of course, form the language
L2 in which the audience - the observers - interacts with the systems A-Volve.
This language contains tools for defining new creatures, and contains also kinds of
gestures for interacting with the creatures through touching the screen. Surprise.
The surprise follows then from the observation of the new created creatures as
members of he existing community behind the screen, and from the direct inter-
action with the creatures through touching the screen. This is the reason why we
propose that the real artistic creativity emerges in the case of the systems A-Volve
from interaction of human being with the machine.FFF
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Fig. 3. Interaction with the A-Volve. Photo Ch. Sommerer and L. Mignonneau, 1994.

7 Conclusion - What About to Study Reflexive Systems?

The emergence of creativity mentioned in the previous two chapters can be dis-
cussed also in the broader context of a special kind of systems derived from study
of some specificity of economic systems and their behavior, and called by George
Soros as reflexive systems (Soros, 1994). For explaining what kind of systems we
have in mind we borrow an example from (Soros, 1994, p. 42).

Let us suppose that active agents belonging to a given system work according
two functions. The first function, say f, is defined on the situations appearing on
the system. We will call it the cognitive function, because the participants - the
agents - effort to understand the system depends on perception of the systems.
More formally (but not in a pure formalistic manner) we have y = f(x). The second
function defines the participants’ participation on the changes of the system. This
participation is supposed to be rationalistic, so is based on the understanding
of the system and changes the situation inside of the system. We express this
dependence of the behavior on the understanding by the function x = g(y) and
call this function, according Soros proposal as the participating function. So, as the
result we have: y = f(x), and x = g(y), what gives y = f(g(y)), and x = g(f(x)).
This is, roughly speaking, and not in a very well formulated way, the fundamental
property of the reflexive systems.
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An example: Suppose that a globally influential group of economic experts
start to speak and write on a good functioning bank in a highly critical tone
and start to hesitate with respect of its economic future. What will happen? This
bank will quickly go to problems and in the more wrong case to bankruptcy.
More generally speaking, in certain situations, in certain types of systems the
observer’s observations change the observed object. So, ”objective” observations
are not possible in this type of systems. This type of systems are reflexive.

The development of a methodology for systematic study of such systems might
perhaps start form experimentations with artificially created societies of simple
economic agents as presented in a very impressive way in (Epstein, Axtell, 1996).
The experiments prove the way how some simple economic laws, e.g. the famous
Pareto law, emerges - laws originally formulated on the base of observation of the
behavior oh human economic societies - in very simple societies with some basics
of economic behavior of their members, and how many other interesting economic
and social situations and processes can be observed and experimentally tested in
the specific test-bed of the multi-agent system the author used in experiments
collected and analyzed in the above mentioned book .

What was presented concerning the creativity is another illustration of the
behavior of reflexive systems. Thanks to the reflexivity of the human society the
new creations are first surprising, but then become to be accepted, so, they become
appropriate for the society in which they have first the attribute of innovations
(technical innovations, artistic innovations, fashion innovations, etc.).

However, the study of reflexive systems are up to now and according the au-
thor best knowledge, out of the scope of interest of theoretical computer scientists,
despite of the fact, that reflexivity is perhaps the property of majority of the com-
plicated information processing systems (like human brains, computer networks,
man-machine systems and societies, etc.). What about to look for the much more
suitable formal frameworks in order to make first steps towards formal understand-
ing of this type of systems from computationalist positions similarly as we do that
with the simplified models of real computing engines in the field of traditional
computer science?
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Summary. This paper presents an approach for P system testing, that uses model-
checking for automatic test generation and P-Lingua as specification language. This
approach is based on a transformation of the transitional, non-deterministic, cell-like
P system into a Kripke structure, which is further used for test generation, by adding
convenient temporal logic specifications. This paper extends our previous work in this
field to multi-membrane, transitional P system, having cooperative rules, communica-
tion between membranes and membrane dissolution. A tool, which takes as input a P
system specified in P-Lingua and translates it into the language accepted by the model
checker NuSMV was developed and used for test case generation. Some hints regarding
the automatic test generation using NuSMV and P-Lingua are also given.

1 Introduction

Membrane computing is a branch of natural computing, which investigates parallel
computing models, inspired by the structure of the living cell, called P systems.
These computational models, were introduced by Gheorghe Păun in 1998, in its
seminal research report, further published as journal paper [19]. Membrane com-
puting has known a fast growth in the last years: many variants of P systems have
been proposed and results concerning their computational power and universality
have been obtained. A recent handbook summarizes the most important develop-
ments in this field [21]. For all these P system variants, different implementations
and simulators have been developed and consequently it appears the necessity of
testing these implementations.

A first approach on testing P systems focuses on cell-like models and proposes
some coverage criteria [12], which are empirically evaluated in [16]. Automatic test
generation for P systems using model-checking is proposed in [15].

Given a model of a system, model checking [6] is a formal verification tech-
nique that explores the entire state space and decides whether this model meets a
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given property, expressed in temporal logic. If the property does not hold, then a
counterexample is returned. This capability of model checkers to construct coun-
terexamples provides a way to build test sets. Fraser et al. present in a recent and
comprehensive survey [10] the results obtained over the last decade in software
testing using model checkers.

One of the approaches used to obtain a test suite using model checking follows
the steps [10]:

1. A test purpose is defined, describing the expected features of the test case,
for example: reaching a certain state s in the model, covering a transition t,
traversing a sequence of states, getting a certain value val of a variable x, etc.

2. These features are further specified as temporal logic properties and then
converted by negation into never-claim conditions, or trap properties, such
as: G !(state = s), expressing that the system will never reach state s, or
G !(x = val), expressing that the value val is never taken (x is always dif-
ferent from val).

3. The model checker will verify whether the never-claim or trap property holds.
If the property is false, it returns a counterexample that gives the exact path
in the model that reaches state s or sets the system variable x to val. The
counterexample will provide all the information needed to extract the test
case. If the property is true, then it is impossible to build a test case satisfying
the given purpose.

Regarding P system testing, one intuitive test criterion is rule coverage, that
specifies that the test set should contain test cases which cover every rule, i.e.
for each rule there exists a test case, describing a computation which involves
that rule. More powerful test sets can be computed by considering the context-
dependent rule coverage criterion. This considers coverage of rules in the context
defined by other rules.

An approach on building test cases for P systems using model checking was
proposed in [15]. It transforms the P system specification into a Kripke structure,
then properties regarding the coverage criteria are expressed in LTL (Linear Tem-
poral Logic) and added to the NuSMV specification. This paper extends the work
from [15] in the following aspects:

• It employs the P-Lingua framework [11], to specify the P system and verify its
syntactic correctness.

• It uses multi-membrane P systems, having cooperative and communication
rules between membranes (the approach presented in [15] treats only one-
membrane P systems, with cooperative rules).

• A transformation of P systems with membrane dissolution into the SMV (Sym-
bolic Model Verifier) language is proposed.

• Bounded model checking is used to obtain the shortest counterexamples. This
is useful in practice, to obtain a reduced test suite.

• The paper shows how other properties can be verified against the transformed
model, to find possible faults in the P system.
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2 Background

In the rest of the paper, we will use the following notations: V ∗ for the set of all
strings over the alphabet V = {a1, ..., ap} and λ to denote the empty string. For a
string u ∈ V ∗, |u|ai

denotes the number of ai occurrences in u. Each string u has
an associated vector of non-negative integers (|u|a1 , ..., |u|ap). This is denoted by
ΨV (u).

2.1 P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes
identifying corresponding regions of the system. Each region has associated a finite
multiset of objects and a finite set of rules; both may be empty. A multiset is either
denoted by a string u ∈ V ∗, where the order is not considered, or by ΨV (u). The
following definition refers to one of the many variants of P systems, namely cell-
like P systems, which uses transformation and communication rules [20]. We will
call these processing rules. Since now onwards we will call this model P system.

Definition 1. A P system is a tuple Π = (V, µ, w1, ..., wn, R1, ..., Rn), where V
is a finite set, called alphabet; µ defines the membrane structure, which is a hi-
erarchical arrangement of n compartments called regions delimited by membranes
- these membranes and regions are identified by integers 1 to n; wi, 1 ≤ i ≤ n,
represents the initial multiset occurring in region i; Ri, 1 ≤ i ≤ n, denotes the set
of processing rules applied in region i.

The membrane structure, µ, is denoted by a string of left and right brackets
([i, and ]i), each with the label of the membrane i, it points to; µ also describes
the position of each membrane in the hierarchy. The rules in each region have the
form u → (a1, t1)...(am, tm), where u is a multiset of symbols from V , ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a multiset u in
the current region, u is replaced by the symbols ai with ti = here; symbols ai

with ti = out are sent to the outer region or outside the system when the current
region is the external compartment and symbols ai with ti = in are sent into one
of the regions contained in the current one, arbitrarily chosen. In the following
definitions and examples when the target indication is here, the pair (ai, here)
will be replaced by ai. The rules are applied in maximally parallel mode.

A configuration of the P system Π, is a tuple c = (u1, ..., un), where ui ∈ V ∗, is
the multiset associated with region i, 1 ≤ i ≤ n. A computation of a configuration
c2 from c1 using the maximal parallelism mode is denoted by c1 =⇒ c2. In the set
of all configurations we will distinguish terminal configurations; c = (u1, ..., un) is a
terminal configuration if there is no region i such that ui can be further developed.

We say that a rule is cooperative if it has at least two objects in its left hand
side, e.g. ab → (c, in)(d, out). Otherwise, the rule is non-cooperative, e.g. a →
(c, in)(d, out). The rules can also have the form u → vδ, where δ denotes the
action of membrane dissolution: if the rule is applied, then the corresponding
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membrane disappears and its contents, object and membranes alike, are left free
in the surrounding membrane; the rules of the dissolved membrane disappear with
the membrane. The skin membrane is never dissolved. For further details regarding
membrane computing, please refer to [20].

2.2 P-Lingua

P-Lingua is a programming language for membrane computing [8], developed by
members of the Research Group on Natural Computing, at the University of
Seville. It is developed as a free software framework for cell-like P systems and
can be downloaded from http://www.p-lingua.org. Its main component is a Java
library, pLinguaCore, that accepts as input text files (either in XML or in P-Lingua
format) describing the P system model [11].

The library includes several built-in simulators for each supported model. P-
Lingua 2.0 was designed for cell-like P systems and contains simulators for the
following types of P systems: active membrane with division/creations rules, tran-
sition, symport/antiport, stochastic and probabilistic P systems. P-Lingua 2.1
(actual version) was extended for tissue P systems with symport/antiport rules
and cell division [17].

The P-Lingua software package contains the pLinguaCore library and a user
interface called pLinguaPlugin. It was used in several research papers, e.g. to
solve a SAT problem using a family of P systems [8], to describe and simulate
ecosystems by means of P systems [11].

A specification in P-Lingua of the P system Π = (V, µ,w1, w2, R1, R2), V =
{s, a, b, c}, µ = [1[2]2]1, w1 = s, w2 = λ, R1 = {r1 : s → sa(b, in); r2 : s → ab; r3 :
b → a; r4 : a → c}, R2 = {r5 : b → bc, r6 : b → c} is given in Fig. 1 and can be
saved in a specific file, with the .pli extension.

2.3 Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four
tuple M = (S,H, I, L), where S is a finite set of states; I ⊆ S is a set of initial
states; H ⊆ S × S is a transition relation that must be left-total, that is, for every
state s ∈ S there is a state s′ ∈ S such that (s, s′) ∈ H; L : S −→ 2AP is an
interpretation function, that labels each state with the set of atomic propositions
true in that state.

Usually, the Kripke structure representation of a system results by giving values
to every variable in each configuration of the system. Suppose var1, . . . , varn are
the system variables, V ali denotes the set of values for vari and vali is a value from
V ali, 1 ≤ i ≤ n. Then the states of the system are S = {(val1, . . . , valn) | val1 ∈
V al1, . . . , valn ∈ V aln}, and the set of atomic predicates are AP = {(vari = vali) |
1 ≤ i ≤ n, vali ∈ V ali}. Naturally, L will map each state (given by the values of
variables) onto the corresponding set of atomic propositions. For convenience, in
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@model<transition>

def main()

{

/* Initial configuration */

@mu = [[]’2]’1;

/* Initial multisets */

@ms(1) = s;

@ms(2) = #;

/* Rules */

[s []’2]’1 --> [s,a [b]’2]’1;

[s --> a,b]’1;

[b --> a]’1;

[a --> c]’1;

[b --> b,c]’2;

[b --> c]’2;

}

Fig. 1. P-Lingua specification file for a P system with two membranes

the sequel the expressions of AP and L will not be explicitly given, the implication
being that they are defined as above.

Additionally, a halt (sink) state is needed when H is not left-total and an extra
atomic proposition, that indicates that the system has reached this state, is added
to AP .

Definition 3. An (infinite) path in a Kripke structure M = (S,H, I, L) from a
state s ∈ S is an infinite sequence of states π = s0s1 . . . , such that s0 = s and
(si, si+1) ∈ H for every i ≥ 0. A finite path π is a finite prefix of an infinite path.

The set of all (infinite) paths from initial states is denoted by Path(M). The
set of all finite paths from initial states is denoted by FPath(M).

2.4 Linear Temporal Logic (LTL)

The most widely used temporal specification languages in model checking are
Linear Temporal Logic (LTL) [22, 23] and the branching time logic CTL (Com-
putation Tree Logic) [5]. The superset of these logics is CTL* [9], which combines
both linear-time and branching-time operators. A state formula in CTL* may be
obtained from a path formula by prefixing it with a path quantifier, either an A
(for every path) or an E (there exists a path).

In LTL the only path quantifier allowed is A, i.e. we can describe only one
path properties per formula and the only state subformulas permitted are atomic
propositions. More precisely, LTL formulas satisfy the following rules [6]:

• If p ∈ AP , then p is a path formula
• If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, Xf , Ff , Gf , fUg and

fRg are path formulas, where:
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– The X operator (”neXt time”, also written ©) requires that a property
holds in the next state of the path.

– The F operator (”eventually” or ”in the future”, also written ♦) is used to
assert that a property will hold at some state on the path.

– G (”always” or ”globally”, also written ¤) specifies that a property holds
at every state on the path.

– The U operator (”until”) holds if there is a state on the path where g holds,
and at every preceding state on the path, f holds.

– R (”release”) is the logical dual of the U operator. It requires that the
second property holds along the path up to and including the first state
where the first property holds.

2.5 NuSMV

NuSMV is a symbolic model checker [3], developed as part of a joint project
between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientifica
e Tecnologica (IRST). NuSMV is the result of the reengineering, reimplementation,
and, to a limited extent, extension of the SMV model checker [18], developed by
CMU. It is publicly available at http://nusmv.irst.itc.it/. NuSMV [3] can process
files written in SMV (Symbolic Model Verifier) language [18] (the NuSMV language
is mostly source compatible with the original version of SMV) and supports LTL
and CTL as temporal specification logics.
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Fig. 2. Non-deterministic finite state machine

The input language of NuSMV was designed to allow descriptions of Finite
State Machines (FSMs), more precisely to describe the transition relation of the
FSM. This relation defines the valid evolutions of the FSM. For example, given
the FSM from Fig. 2, the corresponding SMV code is:

MODULE main
VAR

state : {running, halt, crash};
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ASSIGN
init(state) := running;
next(state) := case
state = running : {running, halt, crash};
state = halt : halt;
state = crash : crash;

esac;

The transition relation of the FSM can be expressed also using the TRANS key-
word. For more details refer to [3].

MODULE main
VAR

state : {running, halt, crash};
ASSIGN

init(state) := running;
TRANS

state = running & next(state) = running |
state = running & next(state) = halt |
state = running & next(state) = crash |
state = halt & next(state) = halt |
state = crash & next(state) = crash

Having the model described in NuSMV, one can add LTL or CTL spec-
ifications to be verified by the model checker. For example, the specification
LTLSPEC G !( F state = halt) is false and the counterexample obtained is the
path: running → halt → halt → . . . (the system will eventually remain in the
halt state). On the other hand, the specification LTLSPEC G !(state =
halt & X state = running) is true (there is no transition from the halt state,
having the next state running).

3 Coverage criteria for P systems

A set of coverage criteria for P system rules, inspired from grammar testing, is
presented in [12]. Test sets should be further designed to satisfy each coverage cri-
terion. In the following we summarize the main coverage criteria, but for simplicity,
we will provide the definitions only for one membrane P systems, Π = (V, µ,w, R),
µ = [1]1.

Definition 4. A multiset denoted by u ∈ V ∗, covers a rule r : a → v ∈ R, if
there is a computation w =⇒∗ xay =⇒ x′vy′ =⇒∗ u; x, y, x′, y′, v, u ∈ V ∗, a ∈ V ,
w ∈ V ∗ is the initial multiset. If there is no further computation from u, then this
is called a terminal coverage.
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Definition 5. A set T ⊆ V ∗, is called a test set that satisfies the rule coverage
(RC) criterion if for each rule r ∈ R there is u ∈ T which covers r. If every
u ∈ T provides a terminal coverage then T is called a test set that satisfies the rule
terminal coverage (RTC) criterion.

Definition 6. A rule r ∈ R, r : a → ubv, u, v ∈ V ∗, a, b ∈ V , is called a direct
occurrence of b. For every symbol b ∈ V , we denote by Occs(Π, b), the set of all
direct occurrences of b.

Definition 7. A multiset z ∈ V ∗ covers the rule r : b → y ∈ R for the direct
occurrence of b, a → ubv ∈ R, if there is a computation w =⇒∗ u1av1 =⇒ u′1ubvv′1
=⇒ u′′1u′yv′v′′1 =⇒∗ z; u, v, u′, v′, u1, v1, u

′
1, v

′
1, u

′′
1 , v′′1 , y ∈ V ∗, a, b ∈ V. A set Tr

is said to cover r : b → y for all direct occurrences of b if for any occurrence
o ∈ Occs(Π, b) there is t ∈ Tr such that t covers r for o.

Definition 8. A set T is said to achieve context-dependent rule coverage (CDRC)
for Π if it covers all r ∈ R for all their direct occurrences. If every z ∈ T provides
a terminal coverage then T is called a test set that satisfies the context-dependent
rule terminal coverage (CDRTC) criterion.

To illustrate these concepts, we consider the P system Π = (V, µ, w,R) where:
V = {a, b, c}, µ = [1]1, w = a, R = {r1 : a → bc; r2 : b → bc; r3 : b → c}. It can
be verified that the set T = {c3} covers all the rules, because the computation
a =⇒ bc =⇒ bc2 =⇒ c3 applies the rules r1, r2, r3. Note that c3 is a terminal
configuration and, consequently, T = {c3} satisfies the RTC criterion. The test set
T ′ = {bc2, c2} achieves the CDRC criterion, because it covers the rules r2, r3, each
one in the context defined by r1. A test set satisfying the CDRTC is T ′′ = {c2, c3}.

4 Transforming a one-membrane P system into a Kripke
structure

In a previous paper [15], a transformation of a one-membrane P system into a
Kripke structure was proposed and several theoretical aspects were analysed. To
simplify the presentation, we will consider one-membrane P system and show in
next section how this approach can be extended to an arbitrary system.

Consider the one-membrane P system Π = (V, µ, w, R), where R = {r1, . . . ,
rm}; each rule ri, 1 ≤ i ≤ m, is of the form ui −→ vi, where ui and vi are
multisets over the alphabet V . In the sequel, we treat the multisets as vectors of
non-negative integers, that is each multiset u is replaced by ΨV (u) ∈ Nk, where k
denotes the number of symbols in V ; so, we will write u ∈ Nk.

In order to define the Kripke structure associated to Π we use two predi-
cates MaxPar and Apply (similar to [7]): MaxPar(u, u1, v1, n1, . . . , um, vm, nm),
u ∈ Nk, n1, . . . , nm ∈ N signifies that a computation from the configuration u in
maximally parallel mode is obtained by applying rules r1 : u1 −→ v1, . . . , rm :
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um −→ vm, n1, . . . , nm times, respectively (in particular, MaxPar(u, u1, v1,
0, . . . , um, vm, 0) signifies that no rule can be applied and so u is a terminal con-
figuration); Apply(u, v, u1, v1, n1, . . . , um, vm, nm), u, v ∈ Nk, n1, . . . , nm ∈ N, de-
notes that v is obtained from u by applying rules r1, . . . , rm, n1, . . . , nm times,
respectively.

In order to keep the number of configurations finite, for each configuration
u = (u(1), ..., u(k)) we will assume that each component, u(i), 1 ≤ i ≤ k cannot
exceed an established upper bound, denoted Max, and each rule can only be
applied for at most a given number of times, denoted Sup.

We denote u ≤ Max if u(i) ≤ Max for every 1 ≤ i ≤ k and (n1, . . . , nm) ≤ Sup
if ni ≤ Sup for every 1 ≤ i ≤ m; Nk

Max = {u ∈ Nk | u ≤ Max},
Nm

Sup = {(n1, . . . , nm) ∈ Nm | (n1, . . . , nm) ≤ Sup}. Analogously to [7], the
system is assumed to crash whenever u ≤ Max or (n1, . . . , nm) ≤ Sup does not
hold (this is different from the normal termination, which occurs when u ≤ Max,
(n1, . . . , nm) ≤ Sup and no rule can be applied). Under these conditions, the one-
membrane P system Π can be described by a Kripke structure M = (S, H, I, L)
with S = Nk

Max ∪ {Halt, Crash} with Halt, Crash /∈ Nk
Max, Halt 6= Crash;

I = w and H defined by:

• (u, v) ∈ H, u, v ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm

Sup \ {(0, . . . , 0)} ·
MaxPar(u, u1, v1, n1, . . . , um, vm, nm) ∧
Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

• (u,Halt) ∈ H, u ∈ Nk
Max, if MaxPar(u, u1, v1, 0, . . . , um, vm, 0);

• (u,Crash) ∈ H, u ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm, v ∈ Nk ·

¬((n1, . . . , nm) ≤ Sup∧ v ≤ Max) ∧ MaxPar(u, u1, v1, n1, . . . , um, vm, nm) ∧
Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

• (Halt, Halt) ∈ H;
• (Crash, Crash) ∈ H.

It can be observed that the relation H is left-total.
The main result of [15] can be summarized by the following theorem:

Theorem 1. Given an one-membrane P system Π = (V, [1]1, w1, R), (terminal)
test suites satisfying the rule coverage and context dependent rule coverage criteria
are generated based on LTL specifications.

This means that having the transformation into a Kripke structure, what we
need is to verify the following LTL specifications:

• G¬((ni ≥ 1) ∧ (state = other)), for each rule ri ∈ R, in order to achieve rule
coverage (RC).

• G¬((ni ≥ 1)∧ (state = other)∧F (state = halt)), for each rule ri ∈ R, in order
to obtain rule terminal coverage (RTC).

• G¬((ni ≥ 1) ∧X((nj ≥ 1) ∧ (state = other))), for each pair of rules (ri, rj) ∈
R × R, where rj can be applied the context of ri, in order to achieve context
dependent rule coverage (CDRC).
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• G¬((ni ≥ 1) ∧X((nj ≥ 1) ∧ (state = other)) ∧ F (state = halt)), for each pair
of rules (ri, rj) ∈ R×R, where rj can be applied the context of ri, in order to
obtain context dependent rule terminal coverage (CDRTC).

5 Generating the test suits

5.1 The test generation tool

Following the test generation strategy presented previously, a tool was developed,
which functions as described by Fig. 3. A graphical interface allows editing and ver-
ification of PLI files, representing the specification of P systems in P-Lingua. The
tool communicates with the P-Lingua framework, using its parser to syntactically
verify the specification. Once the specification contains no syntactically errors,
the corresponding objects from the library pLinguaCore are created. For a given
Psystem object, an SMV file is created, containing the associated SMV model (cor-
responding to the Kripke structure). The user has the possibility to choose which
of the following coverage criteria should be employed: RC, RTC, CDRC, CDRTC.
For each coverage criteria LTL specifications, representing never-claim formulas,
are added to the SMV file. Finally, the NuSMV model checker is run against the
model specified in SMV, the counterexamples are decoded and transformed into
test cases.

Psystem 
Java object from 
pLinguaCore 

package 

SMV file 
Specification + 
temporal logic 
properties, e.g. 

never-claim 
formulas 

PLI file 
P-lingua 

specification 

Edit and verify until 
the specification is 
syntactically correct 

Test cases 
Computation + 
applied rules 

Parse the PLI file 

Associate the P system to  
a Kripke structure, used to 
generate test cases 

Run NuSMV model 
checker and decode 
each counterexample 

Fig. 3. Tool overview
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Having a P system specified in P-Lingua, the tool automatically transforms
it into a SMV model. This model depends on the type of P system and in the
following subsections we will present the transformation strategies proposed for
different types of P systems. After the transformations the LTL specifications are
automatically generated and appended to the SMV file.

5.2 Transforming one-membrane P systems into SMV

For an one-membrane P system Π = (V, µ,w, R), with V = {a1, . . . , ak} and R =
{r1, . . . rm} (each rule ri has the form ui −→ vi), its associated Kripke structure
is M = (S,H, I, L). The state space of M is implemented by using a 3-valued
”state” variable (with values ”Halt”, ”Crash” and ”Running”) and appropriate
variables to hold the current configuration and the number of applications of each
rule. Therefore, the NuSMV model will contain:

• k variables, labelled exactly like the objects from the alphabet V , each one
showing the number of occurrences of each object, ai ∈ V , 1 ≤ i ≤ k;

• m variables ni, 1 ≤ i ≤ m, each one showing the number of applications of
ri ∈ R, 1 ≤ i ≤ m;

• one variable state showing the current state of the model, state ∈ {Running,
Halt, Crash};

• two constants, Max corresponding to the upper bound for the number of oc-
currences expressed by each ai ∈ V, 1 ≤ i ≤ k and Sup which shows that each
rule ri, 1 ≤ i ≤ m, can be applied at most Sup times (see Section 4).

With these notations we are prepared to construct a NuSMV specification as
a FSM where the states and transitions are defined below and also abstracted in
Fig. 2.

If the current state is Running then this is characterised by the values provided
by a1 ≥ 0, . . . , ak ≥ 0; the maximal parallelism condition will be written as a
conjunction c1 ∧ · · · ∧ cm, where each condition ci, 1 ≤ i ≤ m, corresponds to
rule ri and is a disjunction ci = ci1 ∨ · · · ∨ cip , given the left hand side of ri is
a

ti1
i1

. . . a
tip

ip
. The condition cij , 1 ≤ j ≤ p, is 0 ≤ aij − n1h1 − · · · − nmhm < tij ,

where n1, . . . , nm represent the values provided by MaxPar and hq ≥ 0 represents
the number of occurrences of symbol aij on the left hand side of rq. This condition
simply states that, after applying all rules in a maximal parallel way, the number
of occurrences of symbol aij left is less than the number of occurrences of aij

appearing on the left hand side of ri, i.e., this rule can no longer be applied for
this step. When the number of occurrences of the symbol aij in the left side of a
rule rq is equal to 1, then the above inequality 0 ≤ aij − n1h1 − · · · − nmhm < tij

becomes 0 = aij − n1h1 − · · · − nmhm (because tij = 1).
The values a1 ≥ 0, . . . , ak ≥ 0 that characterise the next state are computed

as follows. Using the above notations and denoting by next(a) the new value, we
have next(aij ) = aij − n1h1 − · · · − nmhm + n1h

′
1 + · · · + nmh′m, where h′q ≥ 0

represents the number of occurrences of symbol aij on the right hand side of rq.
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Some additional conditions are added to the above ones in order to distinguish
the destination state. These are obvious and derive from the upper bound condi-
tions introduced. The example below illustrates the approach. We notice that all
these conditions and the entire NuSMV specification, including the LTL expres-
sions, are automatically derived from a P system using the tool developed by the
authors of this paper.

We illustrate the approach by using the following one-membrane P systems:
Π1 = (V1, µ, w1, R1), having V1 = {s, a, b, c}, µ = [1]1, w1 = s, R1 = {r1 :
s → ab; r2 : a → c; r3 : b → bc; r4 : b → c} and Π2 = (V2, µ, w2, R2), having
V2 = {s, a, b, c, d, x}, µ = [1]1, w2 = s, R2 = {r1 : s → abc; r2 : ab → d2; r3 : c →
ab; r4 : abd2 → x}.

The transition from the state Running to itself, for the P system Π1, which
has non-cooperative rules, can be written as the following NuSMV specification,
where the second row shows that all the objects have been consumed and no rule
can be further applied (maximal parallelism):

state = running & next(state) = running &

s - next(n1) = 0 & a - next(n2) = 0 & b - next(n3) - next(n4) = 0 &

next(s) = s - next(n1) &

next(a) = a - next(n2) + next(n1) &

next(b) = b - next(n3) - next(n4) + next(n1) + next(n3) &

next(c) = c + next(n2) + next(n3) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |

next(n1) > Sup | next(n2) > Sup | next(n3) > Sup | next(n4) > Sup)

The maximal parallelism condition for Π2, a P system with cooperative rules,
becomes a conjunction of disjunctions c1 ∧ · · · ∧ cm, each ci corresponding to a
rule:

(s-next(n1)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(n4)=0) &

(c-next(n3)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(n4)=0 |

(0<=d-2*next(n4) & d-2*next(n4)<2))

When one specification is false, a counterexample is given, i.e. a trace of the
FSM that falsifies the property. Based on the counterexample received for the spec-
ification G !((n1 > 0 & X n2 > 0) & F state = halt) of Π1, a test sequence
checking that r2 appears in the context of r1 on a terminal computation starting
with w is obtained. This is given by s =⇒ ab =⇒ c2 and the rules applied are r1

first and r2, r4 at the second step.
In the following we will present an excerpt of a counterexample received from

NuSMV, for the P system Π1, edited for brevity:

-- specification G !((n3 > 0 & X n3 > 0) & F state = halt) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample
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-> State: 8.1 <-

s = 1

a = 0

b = 0

c = 0

n1 = 0

n2 = 0

n3 = 0

n4 = 0

state = running

-> State: 8.2 <-

s = 0

a = 1

b = 1

n1 = 1

-> State: 8.3 <-

a = 0

c = 2

n1 = 0

n2 = 1

n3 = 1

-> State: 8.4 <-

c = 3

n2 = 0

-> State: 8.5 <-

b = 0

c = 4

n3 = 0

n4 = 1

-- Loop starts here

-> State: 8.6 <-

n4 = 0

state = halt

The values of all variables are listed only once, for the first configuration
of the counterexample. Then, at the following steps, only the modified vari-
ables are printed. Based on the counterexample received for the specification
G !((n3 > 0 & X n3 > 0) & F state = halt), the tool computes the entire
configuration at each step and the applied rules. The test case corresponding to
the use of rule r3 in the context of r3, is represented by the P system derivation:
s =⇒ ab =⇒ bc2 =⇒ bc3 =⇒ c4. The rules used were: first r1, then r2, r3, for
the third transition r3 and finally r4, as it can be seen from the following table,
corresponding to the counterexample above:

State s a b c n1 n2 n3 n4 state
8.1 1 0 0 0 0 0 0 0 running
8.2 0 1 1 0 1 0 0 0 running
8.3 0 0 1 2 0 1 1 0 running
8.4 0 0 1 3 0 0 1 0 running
8.5 0 0 0 4 0 0 0 1 running
8.6 0 0 0 4 0 0 0 0 halt

5.3 Transforming multi-membrane P systems into SMV

The transformation of multi-membrane P systems into SMV is similar to the one
for one-membrane P systems. The differences are the following:

• If the P system contains p > 1 membranes, the SMV model will contain k × p
variables for the occurrences of the objects in each membrane; labelled like the
symbols from the alphabet V , |V | = k, with an additional index, representing
the membrane.

• The variables ni, 1 ≤ i ≤ |R1| + . . . + |Rm| will be used to represent the
number of applications of each rule ri, (we have considered that the rules from
all membranes are labelled r1, . . . , r|R1|+...+|Rm|).

We will illustrate these differences, compared to the one-membrane P system,
by specifying in NuSMV the P system Π3 = (V, µ, w1, w2, R1, R2), V = {s, a, b, c},
µ = [1[2]2]1, w1 = s, w2 = λ, R1 = {r1 : s → sa(b, in); r2 : s → ab; r3 : b → a; r4 :
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a → c}, R2 = {r5 : b → bc, r6 : b → c}, whose P-Lingua specification is given in
Fig. 1.

The SMV model has the variables: s1, a1, b1, c1, s2, a2, b2, c2, state, the con-
stants Max, Sup and the differences from the previous model will be given by
the communications between membranes. For example, the number of objects b
in the inner membrane, labelled with b2, will take into account: the number of b
objects consumed in membrane 2 by applying rules r5, r6, the number of objects b
produces by the rules r5 in membrane 2 and r1 in membrane 1. An excerpt, repre-
senting the self loop from the state running is the following (edited for brevity):

state = running & next(state) = running &

s1 - next(n1) - next(n2) = 0 & b1 - next(n3) = 0 & a1 - next(n4) = 0 &

b2 - next(n5) - next(n6) = 0 &

next(s1) = s1 - next(n1) - next(n2) + next(n1) &

next(a1) = a1 - next(n4) + next(n1) + next(n2) + next(n3) &

next(b1) = b1 - next(n3) + next(n2) &

next(c1) = c1 + next(n4) &

next(s2) = s2 &

next(a2) = a2 &

next(b2) = b2 - next(n5) - next(n6) + next(n1) + next(n5)&

next(c2) = c2 + next(n5) + next(n6) &

! (next(n1) = 0 & ... & next(n6) = 0 ) &

! (next(s1) > Max | ... | next(c1) > Max |

next(s2) > Max | ... | next(c2) > Max |

next(n1) > Sup | ... | next(n6) > Sup )

5.4 Transforming P systems with dissolving rules into SMV

Similarly to the previous section, this P system model, which has p > 1 mem-
branes, will have k×p variables to represent the occurrences of the objects in each
membrane, a number of variables ni equal to the total number of rules and some
special variables, to mark the membranes affected by dissolving rules.

For each membrane that can be dissolved we will consider a variable disi ∈
{0, 1}, showing whether the membrane is dissolved (1) or it is still alive (0). When
the membrane is dissolved its objects are assimilated by the outer membrane.
In the SMV transformation we have used the variables disi as flags, to correctly
update the values of the variables counting the occurrences of objects in each
membrane.

Consider the P system Π4 = (V, µ, w1, w2, R1, R2), V = {a, b, c}, µ = [1[2]2]1,
w1 = b, w2 = abc, R1 = {r1 : b → c; r2 : c → a}, R2 = {r3 : b → ab; r4 : b →
bδ, r5 : c → cc}. The inner membrane, labelled 2, can be dissolved when the rule
r4 is applied. In the SMV model the variable dis2 is updated by the instruction:

next(dis2) := case

dis2 = 1 : 1; -- if membrane is dissolved, it remains dissolved

next(n4) >= 1 : 1; -- if rule r4 is applied, membrane 2 dissolves

1 : 0; -- otherwise, the membrane remains alive (0)
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esac;

If the membrane is dissolved (dis2=1), then it remains dissolved. When rule r4

is applied (next(n4)>=1) the membrane will dissolve (next value is 1). Otherwise
(1 means true in this case and shows the default option), the membrane will remain
alive, the next value is 0 (not dissolved).

An excerpt from the SMV file, showing the transition from the running state to
itself is given below. To ensure that, only when a membrane is dissolved its content
is moved to the outer membrane, the rules for updating the quantities in the
outer membrane, e.g. next(a1), have added an extra term, e.g. a2*next(dis2),
representing the same type of objects from the inner membrane, multiplied with
the next value dis2, because this term is null when the membrane is alive and it
is exactly a2 when the membrane dissolves. On the other hand, the values from
the inner membrane will be multiplied with the opposed value, (1-next(dis2).
When membrane 2 dissolves, the number of objects in membrane 2 will become 0
because the factor (1-next(dis2) is 0. Otherwise, the factor is 1 and the value
is computed as usual (subtracting the consumed objects and adding the produced
ones).

state = running & next(state) = running &

b1 - next(n1) = 0 & c1 - next(n2) = 0 &

b2 - next(n3) - next(n4) = 0 & c2 - next(n5) = 0 &

next(a1) = a1 + next(n2) + a2*next(dis2) &

next(b1) = b1 - next(n1) + b2*next(dis2) &

next(c1) = c1 - next(n2) + next(n1) + c2*next(dis2) &

next(a2) = (a2 + next(n3))*(1-next(dis2)) &

next(b2) = (b2-next(n3)-next(n4)+next(n3)+next(n4))*(1-next(dis2)) &

next(c2) = (c2 - next(n5) + 2*next(n5))*(1-next(dis2)) &

! (next(n1) = 0 & ... & next(n5) = 0)&

! (next(a1) > Max | ... | next(c2) > Max |

next(n1) > Sup | ... | next(n5) > Sup )|

5.5 Using the transformed model to verify different properties

The transformation of a P systems into a model accepted by a specific model-
checker, NuSMV, was used to generate test cases. For this, LTL specifications
were written, such as G !(n_2 > 0 & F(state = halt)), having the purpose
of obtaining a terminal coverage for rule r2. If the LTL specification is false, the
counterexample obtained is decoded: it represents a path in the SMV model, which
corresponds to a (possible partial) computation in the P system. The union of all
test cases will form the test suite.

If an LTL specification like G !(n2 > 0 & F(state = halt)) is true this
means that: (1) rule r2 is never applied or (2) rule r2 is applied, but the com-
putation does not finish, i.e. the system does not reach the halt state. Verifying
the simpler specification G !(n2 > 0) and receiving from the model checker the
response ’specification is true’ reveals the fact that this rule is never applied. This
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is normally a fault in the model and could be obtained in situations like the fol-
lowing:

@mu = [ ]’1; @mu = [ ]’1;
@ms(1) = s; @ms(1) = s;
[s --> a,b]’1; [s --> a,b ]’1;
[a --> c]’1; [x --> c]’1;
[b --> b,c]’1; [b --> b,c]’1;
[b --> c]’1; [b --> c]’1;

In the left column is given a correct specification in P-Lingua of a certain P
system; on the right side the second rule has a typo (x instead of a). Both fragments
are syntactically correct, so the parser will accept them both. On the other hand
the second P system has different computations and rule r2 is never applied, fact
revealed by the specification G !(n2 > 0).

The automatic transformation to NuSMV allows verifications of different LTL
or CTL specifications, that might be useful at designing a P system, that mod-
els a certain process. Even simple propositions like G !(a > 100) let us know if
there exist or not a computation in which the number of objects a can reach a
certain level. And this answer is obtained quickly, without simulating hundreds of
computations to see if this ever happens.

5.6 Test generation using bounded model checking

Model checking tools face a combinatorial blow up of the state-space, known as
the state explosion problem. This can occur if the system being verified has many
components which can make transitions in parallel [5]. As P systems work in
parallel and have a non-deterministic nature, the number of global system states
may grow exponentially. One approach to alleviate this problem is based on using
Binary Decision Diagrams (BDD) [18], this being the case of NuSMV, which
implements BDD model checking.

Another approach to face the state explosion problem is to use Bounded Model
Checking (BMC) algorithms. NuSMV provides also a BMC mode: it tries to find a
counterexample of increasing length, and stops when it succeeds, declaring that the
formula is false. The maximum number of iterations can be specified, the default
value is 10. For testing it is preferable to obtain shorter test cases, so the BMC
option can be very useful at test generation.

It should be emphasized that: if the maximum number of iterations is reached
and no counterexample is found, the truth of the formula is not decided. In this case
we cannot conclude that the formula is true, but only that any counter-example
should be longer than the maximum length.

As a final conclusion, for test generation the BMC option of NuSMV is very
useful. For verifying other properties of the P system NuSMV should be used in
the default mode.



Model Checking Based Test Generation from P Systems Using P-Lingua 173

6 Related work

Only a few approaches on model checking P systems have been proposed until
now. Among them, decidability of model checking problems for P systems was
analysed and a discussion regarding the use of SPIN model checker provided [7],
for P systems without priority rules and membrane dissolving rules. An operational
semantics using rewriting logics and model checking based on Maude was given in
[1]. Regarding probabilistic model checking of P systems Romero-Campero et al.
proposed in [24] a transformation into a probabilistic and symbolic model checker
called PRISM.

Several testing strategies for P systems have been presented, that use: coverage
criteria inspired from grammar testing [12], finite state based testing [13] and
stream X-machine models [14]. An approach to automate the test generation for
P systems using model checking is presented in [15] and further extended in this
work.

7 Conclusions

This paper extends our previous work on model-checking based P system testing
[15]. It integrates this approach with P-Lingua, a software framework for cell-like
P systems [11]. Compared to the previous work, the current tool offers support
for multi-membrane P systems. Also, we propose an approach for transforming P
systems with dissolving rules into NuSMV. The transformed model can be used
not only for test generation, but also for verifying system properties. A reduction
in test case size can be obtained if bounded model checking is used.

Future work will focus on other types of P systems, employed in modelling
ecosystems [2], for which automatic test generation and model checking would be
very useful. We will study testing and verification of probabilistic and stochastic
P systems, integration with P-Lingua and possible use of a probabilistic model
checker, e.g. PRISM, as suggested in [24].

Another research topic concerns the study of other model checkers and im-
provements made to the strategies presented, to face the state explosion problem,
which appears when more complex models are verified.
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and D. Sanuy. A P system based model of an ecosystem of some scavenger birds.
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Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,ferretti}@disco.unimib.it

Summary. We propose to use tissue-like P systems as a tool to model and analyse the
security properties of firewall systems. The idea comes from a clear analogy between
firewall rules and P systems rules: they both modify and or move objects (data packets,
or symbols of an alphabet) among the regions of the system. The use of P systems for
modeling packet filters, routers and firewalls gives the possibility to check — and possibly
mathematically prove — some security properties.

1 Introduction

Firewalls are devices that allow to control network traffic. Depending on the pro-
tocol layer they operate at, firewalls can be classified into packet filters, circuit
proxies, and application level proxies. Since they allow to enforce security policies,
firewalls are essential for organizations that are connected to the Internet, and/or
whose networks are divided in a number of segments. In fact, they operate like fil-
ters that selectively choose what data packets are allowed to cross the boundaries
between network segments, and thus ensure that information flow between those
segments only in the intended ways.

When deploying firewalls in an organization, it is essential to verify that they
are configured properly. Unfortunately, firewall configurations are often written in
a low-level language which is hard to understand. Thus, it is often quite difficult to
find out which connections and services are actually allowed by the configuration.
Indeed, it is well recognized that writing a correct set of rules is a challenging task.
Hence, network administrators would benefit greatly using a tool that helps them
to analyze the behavior of firewall rules.

Membrane systems (also known as P systems) are a distributed, parallel and
synchronous model of computation inspired by the functioning of living cells [15].
The basic model consists of a hierarchical structure composed by several mem-
branes, embedded into a main membrane called the skin. Membranes divide the
Euclidean space into regions, that contain some objects (represented by symbols of



178 A. Leporati, C. Ferretti

an alphabet) and evolution rules. Using these rules, the objects may evolve and/or
move from a region to a neighboring one. At least two ways to apply the rules are
considered in the literature: the maximally parallel and the sequential way. When
two or more (sets of) rules can be applied in a given computation step, a nonde-
terministic choice is performed. A computation starts from an initial configuration
of the system and terminates when no evolution rule can be executed. Tissue P
systems [10, 11] can be viewed as an evolution of P systems, corresponding to a
shift from cell-like to tissue-like architectures, based on intercellular communica-
tion and cooperation between cells. In this model cells are usually composed of
a single membrane, and the interconnection structure forms an arbitrary graph.
The cells are the nodes of the graph, and objects may either evolve by means of
evolution rules, or move between cells (alongside the edges of the graph) as a result
of the application of symport/antiport or uniport rules. In what follows we assume
the reader is familiar with the basic notions and the terminology underlying P
systems. For details, and a systematic introduction on the subject, we refer the
reader to [16, 17]. The latest information about P systems can be found in [14].

By looking at firewall rules as filters that selectively choose what data packets
are allowed to cross the boundary between two regions of the network, it is apparent
that a firewall operates like a semi-permeable membrane that separates the two
regions. Hence, membrane systems are easily seen as a natural tool that allow to
model and analyze firewall systems.

In this paper we apply the membrane computing paradigm to the problem of
properly configuring a collection of firewall systems. The scenario we imagine is
the following: a network administrator has to devise the rules that allow to control
traffic in a large network, composed of several segments. Each segment delimits an
area, or zone, that contains hardware equipments such as PCs, servers, printers,
etc. Each pair of adjacent areas is separated by a firewall, that for each direction
selectively filters what data packets are allowed to cross the boundary in that di-
rection. We assume that firewalls operate as packet filters, which are allowed to
examine and possibly modify the fields of IP packets. This means, in particular,
that they are also able to operate as routers: for example, they can modify the
destination address of all packets having a specified source address and destina-
tion port. The aim is to help network administrators in testing and analyzing
firewall rules before implementing them; in fact, usually the implementation must
be performed quickly, since as soon as all network equipments are mounted the
organization wants to start using the network. Moreover, it is always desirable to
test a configuration change before putting it at work in a real network.

Another goal of our work — not addressed in this paper — is to give the
possibility to mathematically prove security properties (such as, for example, the
impossibility for a certain kind of TCP packets to reach a given region of the
network). This will be obtained by considering reachability problems on the P
systems that simulate the functioning of the firewalls. So doing, we will be able to
find answers to questions like:

• What is the action for a specified IP packet?
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• What packets are permitted by this list of rules?
• From which sources are packets to this destination permitted?
• Which services are accessible on a given host?
• Is a given host/network accessible from another given host/network?
• What kind of traffic is allowed between two networks?
• From which networks is a given host accessible?

Of course, some attempts have already been made in the literature to provide
tools that help network administrators to test and analyze firewalls and packet
filters before implementing them. To the best of our knowledge, no one of these
attempts uses membrane systems. Moreover, much of the work currently present
in the literature focuses on the configuration of a single firewall, and proposes
algorithms that detect common configuration mistakes, such as rule shadowing,
correlation, generalization and redundancy. The work whose spirit is most similar
to ours has been done by Eronen and Zitting [1]; in their paper they describe an
expert system whose knowledge base contains a representation of a firewall config-
uration. The tool allows to model a single firewall, but it has the advantage that
it can also compare the firewall configuration against a list of known vulnerabili-
ties and attacks, and warn the user whenever a match is found. Mayer, Wool and
Ziskind [12] propose a firewall analysis engine based on graph algorithms. Similar
work based on a logic background has been done by Hazelhurst et al. [4, 5, 6],
where ordered binary decision diagrams have been used to analyze routers’ access
control lists. This representation allows for efficient handling of the lists: for in-
stance, finding redundant (shadowed) rules is easy. Several researches have also
implemented tools for describing and generating the contents of an access list. For
example, Guttman [2] describes an approach for generating filters’ rules starting
from a desired security policy, and verifying that a packet filter correctly imple-
ments a given security policy.

The paper is organized as follows. In section 2 we briefly describe the features
of packet filters we want to model, and consequently we derive some properties
and constraints of the P systems we will use. In sections 3 and 4 we present the
model of tissue-like P systems that results from this analysis, and we show how
this model can be simulated by a single-membrane P system. Section 5 contains
the conclusions, and gives some directions for future research.

2 Preliminary Analysis

We focus our attention to stateless firewalls with packet inspection, also known as
packet filters. We assume the reader has some background in IP-based networking
[19].

As told in the Introduction, firewalls function as routers which connect different
network segments together. Based on their configuration, they may restrict the
traffic flowing between the different segments. Despite being so common, firewalls,
routers, and many other simple packet filters usually lack good user interfaces
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1 permit udp any host 192.168.1.1 eq 53

2 deny udp any host 192.168.1.2

3 permit udp any 192.168.1.0 0.0.0.255 eq 123

4 permit udp any host 192.168.1.2 eq 177

5 deny ip any any

Fig. 1. An example of a Cisco router access list. Note that the fourth rule is never
matched because of the second rule

for specifying the desired security policy. Hence it is very easy to make mistakes
when writing the lists of filtering rules, especially when these lists are long (several
hundreds rules is not uncommon). In particular, it is possible to make four kinds of
errors when implementing a security policy as a set of rules: shadowing, correlation,
generalization, and redundancy. Briefly, a rule r1 shadows a rule r2 when r1 is
always executed before r2, and r2 operates on a subset of the IP packets which are
processed by r1. In this situation r2 can never be executed and hence is useless. A
pair of rules r1 and r2 are correlated when the sets of packets processed by them
are not one the subset of the other but have a nonempty intersection; the problem
arises in particular when the actions (either accept or reject) specified in the
two rules are different. A rule r2 is a generalization of a rule r1 if r2 follows r1 in
the order, and r2 matches a superset of the packets matched by r1, and the actions
of r2 and r1 are different. Generalization may not be a configuration error, since it
is generally accepted that more specific rules are followed by more general rules;
however, since the actions performed are different it is a good practice to warn the
administrator, so that he is aware of the situation. A redundant rule performs the
same action on the same packets as another rule such that if the redundant rule is
removed, the security policy will not be affected. Rule r2 is redundant to rule r1 if
r1 precedes r2 in the order, and r2 matches a subset (or the same set) of packets
matched by r1, and the actions of r1 and r2 are the same. If r1 precedes r2 and r1

matches a subset of the packets matched by r2, and the actions of r1 and r2 are
the same, then rule r1 is redundant to rule r2 provided that r1 is not involved in
any generalization or correlation anomalies with other rules preceding r2.

Since the administrator may write several rules that may affect the same set of
IP packets, when one of these packets arrives the firewall must choose what rule to
apply. Since a nondeterministic choice is not desirable, the firewall disambiguates
by considering the rules in the same order as they have been specified, and applies
the first rule whose parameters match the packet. For instance, Figure 1 shows an
example of a Cisco router access list. When a packet is received, the list is scanned
from the start to the end, and the action (either permit or deny) associated with
the first match is taken. If a packet does not match any of the rules, the default
action is deny. Often a “deny all” rule is included at the end of the list to make it
easier to verify that a list has not been truncated. Separate lists can be specified
for each network interface. As told above, it is very easy to make mistakes when
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Fig. 2. The structure of a firewall P system. Each node of the graph represents a mem-
brane in our tissue-like P system, that on its own represents a segment or zone of the
network. The edges show the connections between zones. The small circles located on the
membranes represent the lists of rules that filter the packets incoming to the membranes
through the corresponding edges

writing access lists. For instance, the fourth rule in Figure 1 is never matched
because it is shadowed by the second rule.

A crucial observation is that IP packets are processed one at the time, as soon
as they arrive. Stated otherwise, network traffic is seen as a stream of packets. No
cooperation among packets and no form of parallelism exist in current firewalls.
If we sum all these observations, we can see that our model of P systems should
apply non-cooperative rules in the sequential way; moreover, we should either im-
pose that they are deterministic, or otherwise we should associate a linear (i.e.,
total) ordering < to rules, so that if two rules r1 < r2 can be applied to a given
object then r2 (the rule which has the hightest priority) will be applied. However
the assumption that our P systems are deterministic is not realistic, since this
would mean that the above mentioned problems in writing firewall rules (shadow-
ing, correlation, generalization, redundancy) have been solved before modeling the
firewall by using the P system. Since we would rather like to use our P systems
to solve these problems (as well as to answer questions concerning other security
properties) we will assume that each rule has an associated priority.

Our rules will be an abstraction of the accept (also permit) and reject (also
deny) rules which can be found in many packet filters such as, for example, Cisco
routers [7], ipchains and iptables [13]. The rules will use the following fields from
the IP protocol header: next level protocol (e.g., TCP, UDP or ICMP), source and
destination IP addresses. In addition, some fields for upper level protocols, such as
TCP and UDP port numbers, can be used. It will also be possible to specify entire
subnets in place of single IP addresses, and to use wildcards when specifying the
protocol or port numbers.

Since a firewall checks packets that try to pass the barrier in both directions,
we should provide a separate list for the packets that try to enter and those trying
to leave each of the regions separated by the firewall.

Another aspect that we have to take into account is that the segments of a
network may be interconnected in an arbitrary way. Further, two segments may



182 A. Leporati, C. Ferretti

possibly be connected by two (or even more) network interfaces, that is, two seg-
ments may have multiple connections. This means that if we want to associate
a membrane to each segment of the network we have to use a model similar to
tissue P systems. In what follows we refer to this model — that will be formally
defined in the next section — as firewall P systems. Figure 2 represents a sketch
of the structure of a firewall P system. Nodes are labelled with the name of the
segment or zone of the network, and edges show the existing connections between
zones. The small circles located on the borders of the membranes represent the
lists of rules that filter the packets incoming to the membranes through the cor-
responding edges. So, for example, Segment1 is a zone connected to Gateway by
means of two network interfaces. The two small circles located on the membrane
of Segment1 represent the two lists of rules that control the incoming traffic in the
zone named Segment1. The corresponding small circles located on the membrane
named Gateway represent the lists of rules that filter the packets that come from
Segment1 and try to enter the zone Gateway. The precise form of the rules that
compose these lists, as well as of the objects upon which these rules operate, is
the subject of the next section.

3 The P Systems Model

In this section we give a precise definition of all the ingredients of our model of
firewall P systems.

The objects represent IP packets. For the purposes of this paper, IP packets
are represented as six-tuples

(protocol, src IP, dst IP, src port, dst port, gateway), where:

• protocol ∈ {TCP, UDP, ICMP};
• src IP and dst IP represent the source and destination address in the usual

form (a quartet of integer numbers, each in the range 0..255);
• src port and dst port are integer numbers in the range 0..65535 that represent

the source and the destination port associated with the source and destina-
tion address, respectively. These fields are meaningful only when protocol ∈
{TCP, UDP};

• gateway is an identifier of the edge to be followed at the next hop. It is used
for routing purposes.

Note that in real IP packets there are other fields (such as flags) that we do not
consider in this paper.

A rule is a quadruple of the form

(priority, action, in fields, out fields), where:

• priority is a non-negative integer that specifies the priority of the rule;
• action ∈ {accept, reject, drop} specifies how the packet filter should treat

packets matched by the rule;
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• in fields is a six-tuple of the form

(protocol, src IP/subnet, dst IP/subnet, src port, dst port, gateway),

where:
– protocol ∈ {TCP, UDP, ICMP, any}. The value any is treated as a wild-

card;
– src IP and dst IP represent the source and destination address in the usual

form (a quartet of integer numbers, each in the range 0..255). The subfield
subnet is an integer in the range 0..32, and allows to specify subnets (that
is, sets of IP addresses) in the customary way: it indicates that the specified
number of bits of the IP address — starting from the most significant bit
— are fixed (as specified in the address), whereas the others may assume
any value. So, for example, the subnet 192.168.1.0/30 is composed by the
IP addresses 192.168.1.x, where x ∈ {0, 1, 2, 3}.
Alternatively, src IP and/or dst IP may assume the special value (wildcard)
any. In such a case, the subfield subnet is not specified;

– src port and dst port are integer numbers in the range 0..65535 that rep-
resent the source and the destination port (if protocol ∈ {TCP, UDP}) as-
sociated with the source and destination address/subnet, respectively. Also
in this case, src port and/or dst port may assume as a value the wildcard
any;

– gateway is an identifier (that is, a label) of the edge to which the rule is
associated;

• out fields is a six-tuple of the form

(protocol, src IP, dst IP, src port, dst port, gateway),

whose fields and values are defined exactly as those appearing in the objects of
the system. Additionally, each field may assume the special value same, which
indicates that the rule does not change the value of the field (that is, the value
already present in the analyzed object is kept).

A rule r matches an object o if the fields specified in in fields match. The fields
protocol, src port and dst port match if they are equal (in the object and in the
rule), or if the field in the rule contains the wildcard any. The field src IP of o
matches the field src IP/subnet of r if the former IP address is contained in the
subnet (set of IP addresses) of the latter. This definition includes the case in which
the rule specifies a single IP address. The same criteria are applied when matching
the field dst IP of o with the field src IP/subnet of r. The fields gateway match if
and only if they are equal (in the object and in the rule).

The lists of rules are associated to the membranes, rather than to the regions
enclosed by them, as is customary in membrane computing. Each list of rules
checks the packets coming from a specific region, seeking to enter into the region
enclosed by the membrane that contains the rules. As stated above, each list of
rules is processed in the order given by priorities, until a match is found. The
first matching rule specifies the action taken by the filter on the given object. In
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case two or more rules having the same priority match (a situation that should
not occur, since it denotes a misconfiguration), a nondeterministic choice is made
between such rules.

The application of an accept rule to an object o has the effect of letting the
object enter the zone delimited by the membrane that contains the rule. Precisely,
the object is removed from the system and a new object is created, with the same
values of the fields as those of o but for the fields of out fields different from same,
which are rewritten with the new values specified in the rule. So doing it is possible
to simulate port forwarding, an important feature of firewalls that allows to redirect
the incoming traffic towards the appropriate server, which is supposed to be in a
specific zone of the network (unknown to anyone located outside). The application
of a reject rule is similar: the incoming object is removed from the system and
a new special object, representing an ICMP error packet, is created. The source
and destination IP addresses of the new packet are exchanged with respect to the
packet given as input, so that the new packet goes back to the sender to signal
that its previous IP packet has been rejected. The destination port is set equal to
the source port of the original packet, whereas the source port is simply put to
0. Since all these fields of the resulting packet are so determined, when writing a
reject rule the only argument of out fields which is meaningful is gateway, which
indicates the direction to be followed to go back to the sender; all the other fields
are ignored. The application of a drop rule simply removes the object from the
system, without producing any new object. In this case, the argument out fields
can be omitted.

When a new object has been created as the result of the application of a
rule, it is put in the region enclosed by the membrane, ready to be processed
by the next list of rules. Such a list is located at the end of the edge which is
uniquely determined by the gateway parameter; the presence of this field thus
allows to simulate also routing tables, and is particularly useful when two regions
are connected by two or more edges. Of course there may already be other objects
waiting to be matched against these rules; at the next computation step, one
of these objects will be chosen in a nondeterministic way and will be processed,
according to the sequential mode of applying the rules. Since no object may be
processed by two or more lists of rules in the same computation step, each list
can be operated in parallel with the others. This situation is similar to what
happens with spiking neural P systems [8], where each neuron applies its rules in
the sequential way but all neurons work in parallel.

We conclude this section by giving the formal definition of our model of P sys-
tems. A firewall P system, of degree m ≥ 1, is a tuple Π = (O,Z1, . . . , Zm, conn),
where:

• O is the set of objects, which represent IP packets as described above;
• Z1, . . . , Zm are the membranes (cells) of the system, each representing a zone

of the network. Each membrane is a tuple Zi = (wi, Li1 , . . . , Lik
), where wi is

the multiset of objects initially present in the membrane, and k is the number
of incoming edges (in-degree) of Zi. For every j ∈ {1, 2, . . . , k}, Lij is a set of
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rules, associated to Zi and to the j-th incoming edge, having the form described
above:
– (priority, accept, in fields, out fields)
– (priority, reject, in fields, out fields)
– (priority, drop, in fields)

• conn =
{{i, j} : i, j ∈ {1, 2, . . . ,m} and i 6= j

}
is the multigraph (that is, a

multiset of edges) of connections between the membranes.

A configuration of a firewall P system Π is described by the multisets of ob-
jects contained in its membranes. The initial configuration is the one in which
membrane Zi contains the multiset wi, for all i ∈ {1, 2, . . . , m}. A computation
step changes the current configuration by applying the rules as described above.
In particular, we recall that at every computation step each list of rules chooses
in a nondeterministic way an object among those which have to be processed by
such rules. Moreover, the lists operate with maximal parallelism: if at least one
object exists which has to be processed by a given list of rules, then one of these
objects must be chosen and matched against the rules. A final configuration is
a configuration in which no rule can be applied. As usual, a computation starts
from an initial configuration and produces configurations by applying computation
steps. The computation halts if it reaches a final configuration. By identifying an
input membrane Zin and an output membrane Zout, with in, out ∈ {1, 2, . . . ,m},
we can define a computation device that transforms input multisets into output
multisets: the input of the computation is win, whereas the output is the con-
tents of membrane Zout in the final configuration, if it is reached. Non-halting
computations produce no output. By considering the Parikh vectors associated
with multisets, we immediately obtain also a computation device that transforms
vectors of natural numbers into vectors of natural numbers.

4 One Membrane Suffices

Let us give now some insight on the computational power of firewall P systems.
As stated in the Introduction, we envision that our systems will be used to

mathematically prove some security properties. Such proofs will be obtained by
considering reachability problems. So, for example, we could prove that a certain
kind of TCP packets will never reach a specified zone of the network by showing
that no configuration which can be reached from the initial configuration contains
that kind of packets in that zone. This means that our P systems should not
be Turing-complete, otherwise the reachability problem would be undecidable.
However, it is easily proved that firewall P systems are not universal: since objects
are never created (rules can only modify an object or remove it from the system,
and no object can enter the system from the environment during the computation,
as it happens with tissue P systems), no output which contains more objects than
those given in the initial configuration may be produced.
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Establishing the precise computational power of firewall P systems is left as an
open problem. In this section we just prove that firewall P systems can be simulated
by single-membrane transition P systems using non-cooperative rewriting rules
with priorities and catalysts. If the simulated firewall P system would operate
in the sequential mode (meaning that lists of rules do not work in the maximally
parallel way) this would mean that they would generate at most the Parikh images
of ET0L languages [18]. However, in order to correctly simulate the maximally
parallel application of the lists of rules — while maintaining sequentiality between
the rules of the same list — we have to use a catalyst for each list of rules.

Theorem 1. Firewall P systems can be simulated by single-membrane transition
P systems using non-cooperative rewriting rules with priorities and catalysts.

Proof. Let Π = (O, Z1, . . . , Zm, conn) be a firewall P system, where Zi =
(wi, Li1 , . . . , Lik

). We build a transition P system Π ′ = (A,µ, w, R) that simu-
lates Π as follows. The alphabet A is composed of objects which can be seen as
seven-tuples

(region, protocol, src IP, src port, dst IP, dst port, gateway)

where (protocol, src IP, src port, dst IP, dst port, gateway) is an object of Π, and
region keeps track of the region which contains the object. Moreover, alphabet
A contains also a symbol ] 6∈ O, and a symbol ci,j 6∈ O for each set of rules Lj

of simulated membrane Zi. The membrane structure µ is composed by a single
membrane, the skin. The multiset w of the objects initially present in the skin
membrane is built from the multisets wi by adding to each object o ∈ wi the new
value of the region component (that, for wi, is equal to i). This initial multiset
also contains a single copy of each symbol ci,j ∈ A.

The set R of rewriting rules is obtained from the lists of rules of Π as follows.
Let ri,j = (priority, accept, in fields, out fields) be an accept rule of Π, associ-
ated with membrane i and its incoming edge j. This rule produces a set Ri,j of
rewriting rules in Π ′, where each rule is obtained by specifying a source and a
destination IP address, taken from the subnets specified in in fields in all possible
ways. For every pair (src IP, dst IP) of IP addresses a rule aci,j → bci,j ∈ Ri,j is
generated, where a is the object that represents the IP packet being analyzed, and
b represents the packet modified according with the values of out fields. Object
ci,j is a catalyst, unique to membrane i and its incoming edge j, which is used to
make the application of rules from the same list sequential; indeed, for all i and
j, system Π ′ contains a single copy of ci,j . The value of region in b is i, while the
value of region in a is put equal to the membrane which is connected to membrane
i through its incoming edge j. The priority of the rule is set equal to the value of
priority from ri,j . Each reject rule produces an analogous set of rewriting rules,
whereas all drop rules generate rewriting rules in which the output object is ], that
does not appear in the left hand side of any rule. The set R of rules is obtained as
the union of all sets Ri,j thus generated.

The system Π ′ thus generated operates in the maximally parallel way. Due to
the presence of catalysts, the rules occurring in the same list of Π are simulated
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by Π ′ in the sequential way. It is not difficult to see that each computation step of
Π corresponds to a computation step of Π ′, and hence that Π ′ simulates Π. ut

Please note that in firewall P systems we can have rules with wildcard patterns
when the fields src IP/subnet, dst IP/subnet have a subfield subnet of value less
than 32, or anywhere a value any is used in a field, but these wildcards will have
matches only over a predefined finite set of values (valid IP addresses, protocols,
. . . ). Ours is therefore just a syntactic short notation for finite sets of usual P
rules, and this comes into play also in the previous proof, when building the set
of rules of the simulating transition P system.

Remark.

The possibility of modeling a network of firewalls by an equivalent single formal
element has been studied also in a completely different technical context, when
using SAT instances as a representation of the system [9]. Moreover, this property
suggests the interesting perspective of having actual network systems where all
the subnets are seen as a single region. In the actual implementation of such a
system, we could consider to write in the header of IP packets the value of the
region component used by our single membrane model, and anywhere a packet
would arrive, it would be filtered/transformed by active elements of the network.
This technological approach could enhance network security, since filtering would
no longer happen only in firewalls on the borders, with the trouble of them being
“single points of failure”, but consistently anywhere on the network.

5 Conclusions and Directions for Future Work

In this paper we have modeled the functioning of firewalls, routers, and other
simple rule filters by a tissue-like model of P systems. After a description of the
features of this model, we have formally defined it and we have shown that it can
be easily simulated by a single-membrane P system. We can thus argue that what
is seen as an important and difficult problem in the practice of computer networks
(analyzing and understanding long lists of filtering rules) is indeed a very simple
task in the theory of membrane systems.

Future work includes further analysis of the features of packet filters and of the
properties of the corresponding P systems. In particular, it should be interesting
to see how the algorithms currently proposed in the literature (such as those in
[3, 4, 5]) to solve common firewall misconfiguration problems map themselves to the
model of P systems we have proposed. Also some new algorithms may be devised,
based upon the new point of view given by P systems. Since many simulators of
P systems already exist, an interesting development is to test the application of P
systems described in the current paper against real cases.
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8. M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems. Fundamenta Infor-

maticae 71(2-3):279–308, 2006.
9. A. Jeffrey, T. Samak. Model checking firewall policy configurations. In Proc. of the

2009 IEEE Symposium on Policies for Distributed Systems and Networks, 2009, pp.
60–67.
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retical Computer Science, 296(2):295–326, 2003.

12. A. Mayer, A. Wool, E. Ziskind. Fang: A firewall analysis engine. In Proc. of the 2000
IEEE Symposium on Security and Privacy, 2000, pp. 177–187.

13. The netfilter/ipchains/iptables web page: http://www.netfilter.org/
14. The P systems web page: http://ppage.psystems.eu/
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Mathematics is a powerful tool that helps
people achieve new goals as well as under-
stand what is impossible to do.

Mark Burgin

Summary. Gandy–Păun–Rozenberg machines are introduced as certain graph rewriting
systems. A representation of Gandy–Păun–Rozenberg machines by Gandy machines is
given. A construction of a Gandy–Păun–Rozenberg machine solving 3-SAT problem in a
polynomial time is shown.

1 Introduction

The paper [8] by Eric Steinhart contains a discussion of logical foundations of
computation theory including quantum computing which gives rise to the following
family of questions:
(?) what is it an X possible machine?
for X ∈ {set-theoretically, discrete topologically, continuous topologically, geomet-
rically, biologically inspired, physically, cognitive and intelligent}.

We point out here that Robin Gandy’s machines (cf. Gandy’s paper [1]) yield
some answer to (?) for X ≡ set-theoretically in discrete case. The physically possi-
ble machines are discussed in the papers about physical limitations of computing
devices by Scott Aaronson, Jacob Bekenstein, Charles H. Bennett, Rolf Landauer,
Stockmeyer and Meyer, among others.

The paper [9] by Jǐŕı Wiedermann inspired to formulate (?) for X ≡ cognitive
and intelligent.

An idea of a Gandy–Păun–Rozenberg machine, briefly G–P–R machine, intro-
duced in Section 2, is aimed to provide an answer to (?) for X ≡ set-theoretically,
X ≡ discrete topologically, and X ≡ biologically inspired.
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The G–P–R machines are the constructs which have common features with or
are related to:

— Gandy’s machines,
— P systems due to Gheorghe Păun (cf. [6]),
— parallel rewriting systems of graphs investigated by Grzegorz Rozenberg him-

self with scientists cooperating with him, among others, in preparation and
editing of many volume Handbook of graph grammars and computing by graph
transformation [2].

The core of a G–P–R machine is a finite set of rewriting rules for certain finite
directed labelled graphs, where these graphs are instantenous descriptions for the
computation process realized by the machine.

The conflictless parallel (simultaneous) application of the rewriting rules of a
G–P–R machine is realized in Gandy’s machine mode (according to Local Causality
Principle), where (local) maximality of “causal neighbourhoods” replaces (global)
maximality of, e.g. conflictless set of evolution rules applied simultaneously to a
membrane structure which appears during the evolution process generated by a
P system. Therefore one can construct a Gandy’s machine from a G–P–R machine
in an immediate way, see Section 2.

The NP complete problems can be solved by G–P–R machines in a polyno-
mial time (but with an exponential number of indecomposable processors), see
Section 3, where we construct a G–P–R machines solving SAT problem in a poly-
nomial time in a similar way to (families of) P systems solving this problem also
in a polynomial time (cf. the pioneering Păun’s paper [5]).

Randomized G–P–R machines for solving NP problems in a polynomial time
with subexponential number of indecomposable processors are forthcoming.

An extension of G–P–R machines to the case of cellular automata can be
done by adopting the idea of cellular hypergraph rewriting introduced by Peter
Hartmann in his paper [3].

2 Gandy-Păun-Rozenberg machines and Gandy machines

For all unexplained terms and notation of category theory and graph theory we
refer the reader to Appendix.

Definition. A G–P–R machine M is determined by the following data:

— a finite set ΣM of labels or symbols of M,
— a skeletal set SM of finite isomorphically perfect labelled directed graphs

over Σ, which are called instantenous descriptions of M,
— a function FM : SM → SM called the transition function of M,
— a function RM : PREMM → CONCLM from a finite skeletal set PREMM

of finite isomorphically perfect labelled directed graphs over ΣM onto a finite
skeletal set CONCLM of finite isomorphically perfect labelled directed graphs
over ΣM such that RM determines the set
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R̃M = {P ` C | P ∈ PREMM and C = RM(P )}
of rewriting rules of M which are identified with ordered pairs r = (Pr, Cr),
where the graph Pr ∈ PREMM is the premise of r and the graph Cr = RM(Pr)
is the conclusion of r,

— a subset IM of SM which is the set of initial instantaneous descriptions of M.

The above data are subject of the following conditions:

1) V (G) ⊆ V (FM(G)) for every G ∈ SM,
2) V (G) ⊆ V (RM(G)) for every G ∈ PREMM,
3) the rewriting rules of M are applicable to SM which means that for every
G ∈ SM the set

P`(G) =
{
h | h is an embedding of labelled graphs over Σ

with dom(h) ∈ PREMM and cod(h) = G
such that for every embedding h′ of labelled graphs over Σ

with dom(h′) ∈ PREMM and cod(h′) = G
if im(h) is a labelled subgraph of im(h′), then h = h′

}

of maximal applications h of the rules dom(h) ` RM(dom(h)) of M in places
im(h) is such that the following conditions hold:
(i) V (G) =

⋃
h∈P`(G)

V (im(h)), E(G) =
⋃

h∈P`(G)

E(im(h)),

(ii) for all h1, h2 ∈ P`(G) the equation `Gh1
(ḣ−1

1 (v)) = `Gh2
(ḣ−1

2 (v)) holds
for every v ∈ V (im(h1)) ∩ V (im(h2)), where `Gh1

, `Gh2
are the labelling

functions of Gh1 = RM(dom(h1)), Gh2 = RM(dom(h2)), respectively, and
ḣ−1

1 , ḣ−1
2 are the inverses of isomorphisms induced by the embeddings

h1, h2, respectively.
(iii) FM(G) is a colimit of a gluing diagram DG constructed in the following

way (the construction of DG is provided by (ii)):
• the set I of indexes of DG is such that I = P`(G) ∪ {∆}, where ∆ /∈

P`(G) is the center of DG ,
• the family Gi (i ∈ I) of labelled graphs of DG is such that Gh =

RM(dom(h)) for every h ∈ P`(G), and G∆ is such that V (G∆) = V (G),
E(G∆) = ∅, and the labelling function `G∆ is such that provided by
(ii)

`G∆
(v) = `Gh

(ḣ−1(v))

for every v ∈ V (im(h)) and every h ∈ P`(G), where ḣ−1 is the inverse
of the isomorphism ḣ induced by the embedding h,

• the gluing conditions glh (h ∈ P`(G)) of DG are defined by

glh =
{
(v, ḣ−1(v)) | v ∈ V (im(h))

}

for every h ∈ P`(G), where ḣ−1 is the inverse of the isomorphism ḣ
induced by embedding h,
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(iv) the following equations hold:

V (FM(G)) =
⋃

i∈I
V (im(qi))

and E(FM(G)) =
⋃

i∈I
E(im(qi))

for the canonical injections qi : Gi → FM(G) (i ∈ I) forming a colimiting
cocone of the diagram DG defined in (iii),

(v) the canonical injection q∆ : G∆ → FM(G) is an inclusion of labelled graphs,
where ∆ is the center of DG and q∆ is an element of the colimiting cocone
in (iv).

Thus FM(G) is the result of simultaneous application of the rules dom(h) `
RM(dom(h)) in the places im(h) for h ∈ P`(G), where one replaces simultaneously
im(h) by im(qh) in G for h ∈ P`(G), respectively.

A finite sequence
(F i

M(G)
)n

i=0
is called a finite computation ofM, the number n

is called the time of this computation, and Fn
M(G) is called the final instantaneous

description for this computation if

F0
M(G) = G ∈ IM, Fn−1

M (G) 6= Fn
M(G), and FM(Fn

M(G)) = Fn
M(G),

where F i
M(G) is defined inductively: F i

M(G) = FM
(F i−1

M (G)
)
. ut

We introduce the following auxiliary constructs which will be used to define
those Gandy machines which represent G–P–R machines. For all unexplained
terms concerning Gandy machines and hereditarily finite sets we refer the reader
to [1], [7].

If the set ΣM of labels of a G–P–R machine is an m-element set, we choose a
bijection ∇ : ΣM → {1, . . . , m} and an urelement u to code the labels σ ∈ ΣM by
hereditarily finite sets {u}∇(σ)+1, where one defines {u}1 = {u}, {u}k+1 =

{{u}k
}

for a natural number k > 0.
Then for a labelled directed graph G belonging to the set SM of instantaneous

descriptions of a G–P–R machine M, an injection α : V (G) → U into the set U of
urelements, and an urelement u = α(v) for some v one defines a hereditarily finite
set

H(α, u,G) =
{{

α(v1), {α(v2)}
} ∣∣∣ (v1, v2) ∈ E(G)

}

∪
{{

α(v), {{u}∇(`G(v))+1}}
∣∣∣ v ∈ V (G)

}
,

where `G is the labelling function of G.
Since SM is a skeletal set of isomorphically perfect graphs, the assignment

H(α, u,G) defined above is a bijection from

S+
M =

{
(α, u,G) | G ∈ SM, α : V (G) → U is an injection,

and u = α(v) for some v
}
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into
S∗M =

{
H(α, u,G) | (α, u,G) ∈ S+

M
}
,

where S∗M appears a structural set of hereditarily finite sets understood as in
Gandy’s paper [1]. We use this set S∗M as the set of state-descriptions of a Gandy
machine aimed to represent a G–P–R machine M.

Then we choose a mapping F+ : S+
M → S+

M such that

F+(α, u,G) = (α̂, u,FM(G))

for the transition function FM of a G–P–R machine M and for a chosen injection
α̂ : V (FM(G)) → U such that

α̂(v) = α(v) for every v ∈ V (G) ⊆ V (FM(G)).

Then we define a mapping F∗M : S∗M → S∗M such that

F∗M
(
H(α, u,G)

)
= H

(
F+(α, u,G)

)
.

This mapping F∗M appears a structural mapping understood as in Gandy’s pa-
per [1] and we use it as the transition function of a Gandy machine aimed to
represent a G–P–R machine M which is described in the following theorem.

Theorem 1 (Representation of G–P–R machines by Gandy machines).
Let M be a G–P–R machine. Then M determines a Gandy machine GM whose
set of state-descriptions is S∗M, the transition function of GM is F∗M, the sets
T1, T2 of stereotypes of GM and the structural functions G1, G2 of GM are such
that

T1 = T2 = PREM∗
M/ ∼= and G1 = G2 = R∗M,

where PREM∗
M is defined for PREMM in an analogous way as S∗M has been

defined for SM, PREM∗
M/ ∼= is the set of equivalence classes with respect to iso-

morphism relation ∼= of hereditarily finite sets defined in Gandy’s paper [1], and
R∗M is defined for RM in an analogous way as F∗M has been defined for FM.

Proof. The assumption that F(G) is a colimit of the gluing diagram DG and
Lemma 5 in the Appendix provide that the conditions (3)r of Principle IV in
Gandy’s paper [1] hold for GM. ut

The assignment H(α, u,G) and then the definition of S∗M were inspired by the
similar constructions in [7].

The examples of G–P–R machines are presented in the next section.

3 Gandy-Păun-Rozenberg machines and NP complete
problems

We show a construction of a G–P–R machine which solves NP complete 3-SAT
problem in a polynomial time. We begin with presentation of examples of those
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G–P–R machines which simulate the computations of Turing machines and the
computations of certain Boolean circuits, respectively, and which are used in the
construction.

For all unexplained terms of logic and computational complexity theory, in-
cluding Turing machines and the formulation of SAT and 3-SAT problems, we
refer the reader to [4].

We use the following two types of labelled directed graphs.

Definitions. We say that an ordered triple (k,m, n) of integers k, m, n is accept-
able if k > 0, m 6= 0, n > 1, and −k < m < n. We define

lin[k, n] =
{
(i, i + 1) | i is an integer such that − k ≤ i < −1 or 1 ≤ i ≤ n

}

∪ {(−1, 1)}

for k, n as above.
Then we say that a labelled directed graph G over Σ having more than one

label is induced by an acceptable ordered triple (k,m, n) if G is such that

— V (G) =
{
i | i is an integer such that − k ≤ i ≤ n

}
,

— E(G) = lin[k, n] ∪ {(0,m), (1, 1)},
— `G(0) /∈ {`G(k), `G(m)}.
For a natural number n > 0 a regular labelled binary tree of depth n over
{root, 0, 1} ×Σ is defined to be a labelled directed graph T over {root, 0, 1} ×Σ
such that

— V (T ) is the set of binary strings1 of length not greater than n including empty
string Λ,

— E(T ) =
{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (T ) and i ∈ {0, 1}}

∪ {
(Γ, Γ ) | Γ is a binary string of length n

}
,

— the labelling function `T : V (T ) → {root, 0, 1} ×Σ of T is such that `1T (Λ) =
root, `1T (Γi) = i for every binary string Γ and every i ∈ {0, 1} such that
Γi ∈ V (T ),

where `1T (x), `2T (x) denote the coordinates such that `T (x) = (`1T (x), `2T (x)) and
Γi denotes that binary string Θ whose last element is the digit i, and Γ is that
binary string which is the result of deleting the last element in Θ.

Lemma 1. The set of labelled directed graphs over Σ induced by acceptable ordered
triples of integers is a skeletal set of isomorphically perfect graphs for Σ having
more than one label.

Lemma 2. The set of all regular binary trees of arbitrary depth over
{root, 0, 1} ×Σ is a skeletal set of isomorphically perfect graphs.

1 A binary string is a sequence, maybe empty, of digits 0, 1.
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Example 1 (G–P–R machine simulating the computations of a Turing
machine). Let T be a Turing machine whose alphabet Σ (including blank symbol)
is disjoint with the set Q of states of T and let δ : Σ×Q → Σ×Q×{L, 0, R} be the
transition of T with cursor directions L for “left”, 0 for “stay”, and R for “right”.
We define a graphical instantaneous description of T to be a labelled directed
graph G over Σ0 = Σ ∪Q ∪ {%, §} with {%, §} ∩ (Σ ∪Q) = ∅ such that

— G is induced by some acceptable ordered triple of integers,
— if G is induced by an acceptable ordered triple (k, m, n) of integers, then

`G(−k) = %, `G(0) ∈ Q, `G(n) = § and `G(j) ∈ Σ for every j ∈ {
i ∈ V (G) |

−k < i < n and i 6= 0
}

(here m corresponds to cursor position on Turing
machine tape indicated by the edge (0,m)).

By Lemma 1 the set ST of all graphical instantaneous descriptions of T is a skeletal
set of isomorphically perfect labelled graphs. Thus we define a G–P–R machine
MT aimed to simulate the computations of T such that

— the set of instantaneous descriptions of MT is the set ST of graphical instan-
taneous descriptions of T,

— the transition function FT ofMT and the rewriting rules ofMT are determined
by the transition function δ of T such that if δ(a, q) = (a′, q′, R), then
(fR) if G ∈ ST and G is induced by (k, m, n) such that `G(m) = a, `G(0) = q,

then
(fR

1 ) if m < n − 1 then FT(G) is that G′ which is induced by (k, m̂, n) with
m̂ = m + 1 for m 6= −1 and m = 1 for m = −1 such that `G′(0) = q′,
`G′(m) = a′, and `G′(i) = `G(i) for every i ∈ V (G)− {0,m},

(fR
2 ) if m = n− 1 then FT(G) is that G′ which is induced by (k, m + 1, n + 1)

such that `G′(0) = q′, `G′(m) = a′, `G′(n) is blank symbol, and `G′(i) =
`G(i) for every i ∈ V (G′)− {0,m, n},

(rR) the rewriting rules are given by the following two schemes Gp ` Gc such
that

(rR
1 ) the premise Gp is such that V (Gp) = {−1, 0, 1, 2}, E(Gp) = lin[1, 2] ∪
{(0, 1)}, `Gp(−1) ∈ Σ ∪ {%}, `Gp(0) = q, `Gp(1) = a, `Gp(2) ∈ Σ,
the conclusion Gc is such that V (Gc) = V (Gp), E(Gc) = lin[1, 2]∪{(0, 2)},
`Gc(−1) = `Gp(−1), `Gc(0) = q′, `Gc(1) = a′, and `Gc(2) = `Gp(2).

(rR
2 ) the premise Gp is such that V (Gp) = {−1, 0, 1, 2}, E(Gp) = lin[1, 2] ∪
{(0, 1)}, `Gp(−1) ∈ Σ ∪ {%}, `Gp(0) = q, `Gp(1) = a, `Gp(2) = §,
the conclusion Gc is such that V (Gc) = {−1, 0, 1, 2, 3}, E(Gc) = lin[1, 3]∪
{(0, 2)}, `Gc(−1) = `Gp(−1), `Gc(0) = q′, `Gc(1) = a′, `Gc(2) is blank
symbol, and `Gc(3) = §.

For the cases of equations δ(a, q) = (a′, q′, 0) and δ(a, q) = (a′, q′, L) the values
FT(G) and the rewriting rules are defined in a similar way, where, e.g., the coun-
terpart of (fR

2 ) for δ(a, q) = (a′, q′, L) is:

(fL
2 ) if 1 = m = k or −k+1 = m 6= 0, then FT(G) is that G′ which is induced

by (k + 1,−k, n) such that `G′(−k − 1) = %, `G′(−k) is blank symbol,
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`G′(0) = q′, `G′(m) = a′, and `G′(i) = `G(i) for all i ∈ V (G′) − {−k −
1,−k, 0,m}.

The versions of the above rules Gp ` Gc for both Gp and Gc completed by the
loop (i, i) for a unique i ∈ V (Gp) with `Gp(i) /∈ {%, §} ∪Q are also necessary. The
identity rules G ` G are also necessary, where G is of the following two forms:

(id1) V (G) = {0, 1}, E(G) = {(0, 1)}, {`G(0), `G(1)} ⊂ Σ0 −Q,
(id2) V (G) = {0}, E(G) = {(0, 0)}, `G(0) ∈ Σ.

There is no other rewriting rule of MT than that described by the above
schemes.

Since the graphical instantaneous descriptions of a Turing machine T coincide
with the usual instantaneous descriptions of T or configurations of T as in [4], the
G–P–R machine MT simulates the computations of T due to definition of FT.
Example 2 (G–P–R machine simulating the computations of certain
Boolean circuits). We define a disjunctive circuit G–P–R machine Mcirc

which is aimed to simulate computations of certain tree like Boolean circuits such
that

— the set Scirc of instantaneous descriptions of Mcirc is the set of those regular
labelled binary trees T of depth greater than 3 over the set {root, 0, 1} ×
{⊥, 0, 1} of labels which satisfy the following condition

(circ0) for every binary string Γ ∈ V (T ) of length equal to the depth of T the
number of elements of the set

{
i | i is a natural number with 0 < i ≤ n such that `2T (Γ ¹ i) 6= ⊥}

is not greater than 1 (thus this set may be empty), where n is the depth
of T and if Γ is (kj)n

j=1 then Γ ¹ i denotes the string (kj)i
j=1 which is Γ

itself for i = n and for i < n (kj)i
j=1 is a shortening of Γ by cancellation of

the elements kn, kn−1, . . . , ki+1.
— the transition function Fcirc of Mcirc is such that Fcirc(T ) is the result of

simultaneous application to T in G–P–R machine mode the rewriting rules
of Mcirc which do not introduce new vertices and which are given by the
following three schemes Tp ` Tc such that

(circ1) the premise Tp is such that V (Tp) = {Λ, 0, 00, 01},
E(Tp) =

{
(Λ, 0), (0, 00), (0, 01), (00, 00), (01, 01)

}
,

`2Tp
(Λ) = `2Tp

(0) = ⊥, {`1Tp
(Λ), `1Tp

(0)} ⊆ {0, 1},
`1Tp

(00) = 0, `1Tp
(01) = 1, {`2Tp

(00), `2Tp
(01)} ⊆ {0, 1},

the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp), `Tc(Λ) =
`Tp(Λ), `Tc(0) =

(
`1Tp

(0), max{`2Tp
(00), `2Tp

(01)}),
`Tc(00) = (0,⊥), `Tc(01) = (1,⊥),

(circ2) the premise Tp is such that V (Tp) = {Λ, 0, 00, 01, 000, 001, 010, 011},
E(Tp) =

{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Tp) and i ∈ {0, 1}},

`2Tp
(Γ ) = ⊥ for all Γ ∈ V (Tp)− {00, 01},



Gandy-Păun-Rozenberg Machines 197

{`2Tp
(00), `2Tp

(01)} ⊆ {0, 1}, {`1Tp
(Λ), `1Tp

(0)} ⊆ {0, 1},
`1Tp

(Γi) = i for all Γ ∈ {0, 00, 01} and i ∈ {0, 1},
the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp), `Tc(Γ ) =
`Tp

(Γ ) for every Γ ∈ V (Tc)− {0, 00, 01},
`Tc(0) =

(
`Tp(0),max{`2Tp

(00), `2Tp
(01)}),

`Tc
(Γ ) = (`1Tp

(Γ ),⊥)
for every Γ ∈ {00, 11},

(circ3) the premise Tp is such that V (Tp) = {Λ, 0, 1, 00, 01, 10, 11},
E(Tp) =

{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Tp) and i ∈ {0, 1}},

`1Tp
(Γi) = i for all Γ ∈ {Λ, 0, 1} and i ∈ {0, 1},

`2Tp
(Γ ) = ⊥ for every Γ ∈ V (Tp)− {0, 1},

`1Tp
(Λ) = root, {`2Tp

(0), `2Tp
(1)} ⊆ {0, 1},

the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp),
`2Tc

(Γ ) = `2Tp
(Γ ) for every Γ ∈ V (Tc)− {Λ, 0, 1},

`Tc
(Γ ) = (`1Tp

,⊥) for every Γ ∈ {0, 1},
and `Tc

(Λ) =
(
root, max{`Tp

(0), `Tp
(1)}).

The identity rules T ` T are also necessary which are defined in a similar way as
in Example 1.

There is no other rewriting rule of Mcirc than that described by the above
schemes.

The following lemma characterizes the computations of G–P–R machineMcirc.

Lemma 3. Let T ∈ Scirc be a regular labelled binary tree such that the following
conditions hold

(a) for every binary string Γ of length equal to the depth of T there exists a natural
number i with i > 0 such that `2T (Γ ¹ i) 6= ⊥,

(b) for every Γ ∈ V (T ) and j ∈ {0, 1} if Γj ∈ V (T ) and `2T (Γj) 6= ⊥, then
`2T (Γ¬(j)) 6= ⊥, where ¬(0) = 1 and ¬(1) = 0.

Then for

n = max
{
i | i is the length of some binary string Γ ∈ V (T ) with `2T (Γ ) 6= ⊥}

the value Fn
circ(T ) is that regular labelled tree T ′ which is such that V (T ′) = V (T ),

E(T ′) = E(T ), `2T ′(Γ ) = ⊥ for all Γ ∈ V (T ′) − {Λ} and `2T ′(Λ) = max
{
`2T (Γ ) |

Γ ∈ V (T ′) and `2T (Γ ) 6= ⊥}
, where Fn

circ(T ) is defined inductively by F1
circ(T ) =

Fcirc(T ) and Fn
circ(T ) = Fcirc(Fn−1

circ (T )).

Example 3 (A G–P–R machine solving 3-SAT problem in a polynomial
time). We use a Turing machine Ṫ such that for every formula ϕ in a disjunctive
normal form as in 3-SAT problem and every truth assignment T for variables of ϕ
the machine decides in the time ≤ nk0 whether ϕ is valid for T , where the ordered
pair (ϕ, T ) is an input for Ṫ from which the machine begins the computation, k0 is
some constant natural number, and n is the number of variables occurring in ϕ.
We claim for Ṫ that:
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(A) if n is the number of variables occurring in ϕ, then any truth assignment T
for variables of ϕ is represented by that binary string Γ of length n in the
machine tape which is such that if the value “True” is assigned to the i-th
variable of ϕ, then 1 is the i-th element of Γ , otherwise the i-th element of Γ
is 0,

(B) for the G–P–R machine MṪ simulating the computations of Ṫ if we have
that
(b1) Gϕ,Γ is that instantaneous description of MṪ which coincides with the

initial instantaneous description or initial configuration for input (ϕ, T )
with T represented by the binary string Γ in the machine tape as in (A),

(b2) G = Fq

Ṫ(Gϕ,Γ ) is the final instantaneous description of MṪ for the case of
the final or halting state “stop” reached by Ṫ after q steps of computation
starting with input (ϕ, T ) with T related to Γ as in (A),

then G is a labelled graph induced by some acceptable triple (k, m, n) of
integers with (−k, m) ∈ E(G) such that `G(0) is the final state “stop” and
`G(m) = 1 if ϕ is valid for the truth assignment represented by Γ , otherwise
`G(m) = 0, where FṪ is the transition function of MṪ and Fq

Ṫ(Gϕ,Γ ) is
inductively defined: F1

Ṫ(Gϕ,Γ ) = FṪ(Gϕ,Γ ) and Fq

Ṫ(Gϕ,Γ ) = FṪ(Fq−1

Ṫ (Gϕ,Γ )).

The shape of formulas in a disjunctive normal form in 3-SAT problem (it suf-
fices to consider formulas of n > 3 variables which are disjunctions of 23 · (n

3

)
nonrepetitive clauses, each conjunction of three literals containing different vari-
ables) provides that the claimed Turing machine Ṫ can be constructed from some
simpler three-string or three-tape Turing machine 3-T according to the general
construction in the proof of Theorem 2.1, p. 30 of [4]. The first tape of 3-T is an
input tape containing some presentation of a formula, the second tape is also an
input tape containing some presentation of a truth assignment, and the third tape
is an output tape. The machine 3-T reads only its input tapes and does not move
its head or cursor on output tape printing or erasing the digits 0, 1. The machine
3-T reaches the final state in the time not greater than 23 · n5 steps for a formula
of n variables, hence by Theorem 2.1, p. 30 of [4] the machine Ṫ reaches the final
state in the time not greater than 26 · n10 steps for a formula of n variables.

We outline a construction of a G–P–R machine M3-SAT aimed to solve 3-SAT
problem in a polynomial time. The initial instantaneous descriptions of M3-SAT

are labelled directed graphs G0
ϕ determined by formulas ϕ in disjunctive normal

forms as in 3-SAT problem in the following way:

(IV ) V (G0
ϕ) =

{
(j, Γ ) | j ∈ V (Gϕ,Γ ) and Γ ∈ 2n

} ∪ {
(Θ, Λ) | Θ ∈ V (T⊥)

}
,

where Gϕ,Γ is that initial instantaneous description which was introduced in
(b1), n is the number of variables occurring in ϕ, 2n is the set of binary strings
of length n, and T⊥ is the regular labelled binary tree of depth n− 1 such that
`2T⊥(Θ) = ⊥ for every Θ ∈ V (T⊥),

(IE) E(G0
ϕ) =

{(
(j, Γ ), (j′, Γ )

) | (j, j′) ∈ E(Gϕ,Γ ) and Γ ∈ 2n
}

∪{(
(Θ, Λ), (Θ′, Λ)

) | (Θ,Θ′) ∈ E(T⊥)
}
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∪{(
(Θ, Λ), (jΘi, Θi)

) | Θi ∈ 2n, i ∈ {0, 1}, and Θ ∈ 2n−1
}
,

where jΘi is that unique vertex of Gϕ,Θi for which `Gϕ,Θi
(jΘi) = %,

(I`) the labelling function `G0
ϕ

is defined in the following way:
– `G0

ϕ
((j, Γ )) = `Gϕ,Γ

(j) for all Γ ∈ 2n and j ∈ V (Gϕ,Γ ) except jΓ for which
`Gϕ,Γ

(jΓ ) = %,
– `G0

ϕ
((jΓ , Γ )) = (i, %) if Γ is Θi for i ∈ {0, 1}, where jΓ is such that

`Gϕ,Γ
(jΓ ) = %,

– `G0
ϕ
((Θ, Λ)) = `T⊥(Θ) for every Θ ∈ V (T⊥).

Then we define inductively the labelled graphs Gk
ϕ for a natural number k > 0

and a formula ϕ in a disjunctive normal form as in 3-SAT problem such that
the sets V (Gk

ϕ) and E(Gk
ϕ) are defined in an analogous way as V (G0

ϕ) and E(G0
ϕ)

were defined in (IV ) and (IE), respectively, except the graphs Gϕ,Γ are replaced by
Fk
Ṫ (Gϕ,Γ ) (see the definition of Fq

Ṫ(Gϕ,Γ ) in (B)). The labelling function `Gk
ϕ

of Gk
ϕ

is determined by the labelling function of Gk−1
ϕ by imposing that Gk

ϕ is the result of
simultaneous application to Gk−1

ϕ in G–P–R machine mode the rules of the G–P–R
machines MṪ and Mcirc with the label % replaced by (i,%) for i ∈ {0, 1}, and
the following new rules given by the scheme Gp ` Gc, where the premise Gp is such
that

V (Gp) = {Λ, 0, 00, 01, 001, 011, 0010, 0011, 0110, 0111},
E(Gp) =

{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Gp)− {0010, 0110} and i ∈ {0, 1}}
∪ {(0010, 001), (0110, 011), (0, 0)},

`2Gp
(Λ) = `2Gp

(0) = ⊥ 2, {`1Gp
(Λ), `1Gp

(0)} ⊆ {0, 1},
`Gp(00) = (0,%), `Gp(01) = (1, %), {`Gp(001), `Gp(011)} ⊆ {0, 1},
`Gp(0010) = `Gp(0110) = “stop” ∈ Q, {`Gp(0011), `Gp(0111)} ⊆ Σ,

the conclusion Gc is such that V (Gc) = V (Gp), E(Gc) = E(Gp),
`Gc(v) = `Gp(v) for every v ∈ V (Gp) except `Gc(001) = `Gc(011) = ⊥,
and `2Gc

(0) = max{`Gp(001), `Gp(011)}, `1Gc
(0) = `1Gp

(0).
Thus we define the set S3-SAT of instantaneous descriptions of G–P–R machine

M3-SAT by

S3-SAT =
{Gk

ϕ | k is a natural number and ϕ is a formula

in a disjunctive normal form as in 3-SAT problem
}
.

The transition function F3-SAT of G–P–R machine M3-SAT is given by

F3-SAT(Gk
ϕ) = Gk+1

ϕ for every k ≥ 0 and every ϕ.

The rewriting rules of M3-SAT are the rewriting rules of the G–P–R machines
MṪ, Mcirc with the label % replaced by (i, %) for i ∈ {0, 1}, and the new rules
introduced above.

Theorem 2. The G–P–R machine M3-SAT solves 3-SAT problem in a polynomial
time.
2 We assume that ⊥ /∈ Σ ∪Q ∪ {%, §}.
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Proof. Since the upper bound of the time of computation of Ṫ does not depend on
the binary sequences Γ representing truth assignments but only on their length
and is polynomial with respect to this length, the upper bound of the time of
computation of G–P–R machine MṪ also does not depend on binary sequences
Γ representing truth assignments and is polynomial with respect to the length of
these sequences Γ . Hence by Lemma 3 we get the theorem.

Less formally, for a given formula ϕ of n variables with n > 3 the machine
M3-SAT simultaneously simulates without any delay the computations of 2n copies
of the Turing machine Ṫ, where 2n possible truth assignments for ϕ are the in-
puts together with ϕ itself for these 2n copies of Ṫ, respectively. Here each truth
assignment T is associated to that copy of Ṫ which is aimed to decide whether ϕ
is valid for T .

Then Boolean circuit part of M3-SAT simulates the computation of tree-like
Boolean circuit C of 2n input gates, where the underlying graph of C is a tree
of depth n and all non-input gates of C are OR gates. The 2n input gates of C
receive those inputs which are the output results of the computations of the above
2n copies of Ṫ, respectively. Here each input gate g is associated with that copy
Ṫg of Ṫ for which g is connected with that unique vertex i of the final graphical
instantaneous description of Ṫg for which (0, i) is an edge of this final graphical
instantaneous description and i is labelled by the output result of Ṫg with 0 labelled
by the final or halting state of Ṫg. The inputs of C are simultaneously processed
by C to give the output result in the root of the underlying graph of C. The output
result contained in the root yields an answer to a question whether there exists a
truth assignment for ϕ such that ϕ is valid for this assignment. Therefore M3-SAT

solves 3-SAT problem in a polynomial time. ut

Corollary. There exists a Gandy machine which solves 3-SAT problem in a poly-
nomial time but with the exponential number of urelement processors.

Proof. The corollary is a consequence of Theorems 1 and 2. ut

4 Concluding remarks

One could adopt G–P–R machines and Gandy machines as the underlying ab-
stract computing devices of computational complexity theory because these ma-
chines propose a wide scope of possible computational parallelism, even up to
unreliable parallelism of G–P–R machine M3-SAT and representing it Gandy ma-
chine which prove that polynomial computational time does not imply polynomial
computational space understood as the size of hardware measured by the number
of urelement (indecomposable) processors of a machine. We will show in a forth-
coming paper about randomized G–P–R machines those G–P–R machines which
are capable to construct in polynomial time the initial instantaneous descriptions
of the machine M3-SAT from simpler labelled graphs of size, i.e., the number of
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vertices, depending linearly on the size of input data of a formula and a truth
assignment, where some versions of division rules of membrane computing [6] are
used.

Appendix. Graph-theoretical and category-theoretical
preliminaries

A [finite] labelled directed graph over a set Σ of labels is defined to be an ordered
triple G = (V (G), E(G), `G), where V (G) is a [finite] set of vertices of G, E(G) is a
subset of V (G)×V (G) called the set of edges of G, and `G is a function from V (G)
into Σ called the labelling function of G. We drop the adjective ‘directed’ if there
is no risk of confusion.

A homomorphism of a labelled directed graph G over Σ into a labelled directed
graph G′ over Σ is an ordered triple (G, h : V (G) → V (G′),G′) such that h is a
function from V (G) into V (G′) which satisfies the following conditions:

(H1) (v, v′) ∈ E(G) implies (h(v),h(v′)) ∈ E(G′) for all v, v′ ∈ V (G),
(H2) `G′(h(v)) = `G(v) for every v ∈ V (G).

If a triple h = (G, h : V (G) → V (G′),G′) is a homomorphism of a labelled directed
graph G over Σ into a labelled directed graph G′ over Σ, we denote this triple by
h : G → G′, we write dom(h) and cod(h) for G and G′, respectively, according to
category theory convention, and we write h(v) for the value h(v).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an embedding
of G into G′, denoted by h : G ½ G′, if the following condition holds:

(E)h(v) = h(v′) implies v = v′ for all v, v′ ∈ V (G).

An embedding h : G ½ G′ of labelled directed graphs G,G′ over Σ is an
inclusion of G into G′, denoted by h : G ↪→ G′, if the following holds:

(I) h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is a labelled subgraph of a
labelled directed graph G′ over Σ if there exists an inclusion h : G ↪→ G′ of labelled
directed graphs G,G′ over Σ.

For an embedding h : G ½ G′ of labelled directed graphs G,G′ over Σ we define
the image of h, denoted by im(h), to be a labelled directed graph Ĝ over Σ such
that V (Ĝ) =

{
h(v) | v ∈ V (G)

}
, E(Ĝ) =

{
(h(v), h(v′)) | (v, v′) ∈ E(G)

}
, and the

labelling function `Ĝ of Ĝ is the restriction of the labelling function `G′ of V (G′)
to the set V (Ĝ), i.e., `Ĝ(v) = `G′(v) for every v ∈ V (Ĝ).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an iso-
morphism of G into G′ if there exists a homomorphism h−1 : G′ → G of labelled
directed graphs over Σ, called the inverse of h, such that the following conditons
hold:

(Iz1) h−1(h(v)) = v for every v ∈ V (G),
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(Iz2) h(h−1(v)) = v for every v ∈ V (G′).
We say that a labelled directed graph G over Σ is isomorphic to a labelled

directed graph G′ over Σ if there exists an isomorphism h : G → G′ of labelled
graphs G,G′ over Σ.

For an embedding h : G ½ G′ of labelled directed graphs G,G′ over Σ we
define a homomorphism ḣ : G → im(h) by ḣ(v) = h(v) for every v ∈ V (G).
This homomorphism ḣ is an isomorphism of G into im(h), called an isomorphism
deduced by h.

For a labelled directed graph G over Σ, the identity homomorphism (or simply,
identity of G), denoted by idG , is the homomorphism h : G → G such that h(v) = v
for every v ∈ V (G).

We say that a labelled directed graph G over Σ is an isomorphically perfect
labelled directed graph over Σ if the identity homomorphism idG is a unique
isomorphism of labelled directed graph G into G.

Lemma 4. Let G be an isomorphically perfect labelled directed graph over Σ and
let h : G → G′, h′ : G → G′ be two isomorphisms of labelled graphs G,G′ over Σ.
Then h = h′.

We say that a set or a class A of labelled directed graphs over Σ is skeletal if
for all labelled directed graphs G,G′ in A if they are isomorphic, then G = G′.

A gluing diagram D of labelled directed graphs over Σ is defined by:

— its set I of indexes with a distinguished index ∆ ∈ I, called the center of D,
— its family Gi (i ∈ I) of labelled directed graphs over Σ,
— its family gli (i ∈ I − {∆}) gluing conditions which are sets of ordered pairs

such that
(i) gli ⊆ V (G∆)× V (Gi) for every i ∈ I − {∆},
(ii) (v, v′) ∈ gli implies `G∆

(v) = `Gi(v) for all v ∈ V (G∆), v′ ∈ V (Gi), and for
every i ∈ I − {∆},

(iii) for every i ∈ I − {∆} if gli is non-empty, then there exists a bijection

bi : L(gli) → R(gli)

for L(gli) = {v | (v, v′) ∈ gli for some v′} and R(gli) = {v′ | (v, v′) ∈ gli for
some v} such that

{
(v, bi(v)) | v ∈ L(gli)

}
= gli.

For a gluing diagram D of labelled directed graphs over Σ we define a cocone
of D to be a family hi : Gi → G (i ∈ I) of homomorphisms of labelled directed
graphs over Σ (here cod(hi) = G for every i ∈ I) such that

lG(h∆(v)) = lG(hi(v′))

for every pair (v, v′) ∈ gli and every i ∈ I − {∆}.
A cocone qi : Gi → G̃ (i ∈ I) of D is called a colimiting cocone of D if for

every cocone hi : Gi → G (i ∈ I) of D there exists a unique homomorphism
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h : G̃ → G of labelled directed graphs G̃,G over Σ such that h(qi(v)) = hi(v) for
every v ∈ V (Gi) and for every i ∈ I. The labelled directed graph G̃ is called a
colimit of D, the homomorphisms qi (i ∈ I) are called canonical injections and
the unique homomorphism h is called the mediating morphism for hi : Gi → G
(i ∈ I).

For a gluing diagram D one constructs its colimit G̃ in the following way:

— V (G̃) =
⋃

i∈I
(Vi × {i}), where

V∆ = V (G∆) for the center ∆ of D,
Vi = V (Gi)−R(gli) for every i ∈ I − {∆},

— E(G̃) =
⋃

i∈I
Ei, where

E∆ =
{(

(v, ∆), (v′, ∆)
) | (v, v′) ∈ E(G∆)

}
for the center ∆ of D,

Ei =
{(

(v, i), (v′, i)
) | (v, v′) ∈ E(Gi) and {v, v′} ⊆ Vi

}

∪ {(
(v,∆), (v′,∆)

) | (v, v′′) ∈ gli, (v′, v′′′) ∈ gli,

and (v′′, v′′′) ∈ E(Gi) for some v′′, v′′′
}

∪ {(
(v,∆), (v′, i)

) | v′ ∈ Vi, (v, v′′) ∈ gli and (v′′, v′) ∈ E(Gi) for some v′′
}

∪ {(
(v, i), (v′,∆)

) | v ∈ Vi, (v, v′′) ∈ gli and (v, v′′) ∈ E(Gi) for some v′′
}

for every i ∈ I − {∆},
— the labelling function `G̃ is defined by `G̃((v, i)) = `Gi(v) for every (v, i) ∈ V (G̃).

The definition of a colimiting cocone of a gluing diagram D provides that any
other colimit of D is isomorphic to the colimit of D constructed above. Hence one
proves the following lemma.

Lemma 5. Let D be a gluing diagram of labelled graphs over Σ. Then for every
colimiting cocone qi : Gi → G (i ∈ I) of D if i′ 6= i′′, then

(
V (im(qi′))− V (im(q∆))

) ∩ (
V (im(qi′′))− V (im(q∆))

)
= ∅

for all i′, i′′ ∈ I − {∆}, where ∆ is the center of D and the elements of nonempty
V (im(qi)) − V (im(q∆)) with i 6= ∆ are ‘new’ elements and the elements of
V (im(q∆)) are ‘old’ elements.
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Summary. Bistability, or more generally multistability, is an important recurring theme
in biological systems. In particular, the discovery of bistability in signal pathways of ge-
netic networks, prompts strong interest in understanding both the design and function of
these networks. Therefore, modelling these systems is crucial to understand their behav-
iors, and also to analyze and identify characteristics that would otherwise be difficult to
realize. Although different classes of models have been used to study bistable dynamics,
there is a lag in the development of models for bistable systems starting from experi-
mental data. This is due to the lack of detailed knowledge of biochemical reactions and
kinetic rates.
In this work, we propose a procedure to develop, starting from observed dynamics,
Metabolic P models for multistable processes. As a case study, a mathematical model
of the Schlögel’s dynamics, which represents an example of a chemical reaction system
that exhibits bistability, is inferred starting from observed stochastic bistable dynamics.
Since, recent experiments indicate that noise plays an important role in the switching of
bistable systems, the success of this work suggests that this approach is a very promising
one for studying dynamics and role of noise in biological systems, such as, for example,
genetic regulatory networks.

1 Introduction

Bistability is an important recurring theme in cell signaling and has been studied
extensively through experiments, theoretical analysis, and numerical simulations
[8, 10, 3, 22]. A bistable system has two distinct steady states and any initial
state will eventually bring the system into one of them. Bistability is a key to
understand basic cellular phenomena, such as decision-making processes in cell
cycle progression, cell differentiation and apoptosis [2]. It is also involved in the
loss of cellular homeostasis associated with early events in cancer onset [12] and
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in prior diseases [11]. In [23], different bistable phenomena in bacteria and the
importance of bistability for the origin of new species are studied.

Recently, interest grew in the investigation of the bistable dynamics regula-
tions through differential and stochastic modelling [8, 10]. Usually, differential and
stochastic models are developed based on detailed knowledge of biochemical re-
actions, molecule amounts and kinetic. Kinetic rates are estimated by using the
mass action law, while stochastic parameters are derived from these rates.

However, there are several limitations for a reliable application of these classes
of models. First, the determination of kinetic and stochastic constants depends on
the chemo-physical details of the reactions, and moreover, even if carefully estab-
lished in rigorous experimental settings, they may be completely different when
many reactions are put together in real complex systems. Second, data availability
and regulatory information usually can not provide a comprehensive picture of
biological regulations. Lastly, in the processes with only a few molecules, classic
mass action kinetics are no longer valid for describing the reaction dynamics. For
these reasons, the modelling of observed dynamics is not a trivial work and in
some cases it still remains an open problem.

Recognizing the importance of bistability in biochemical systems, some tech-
niques to obtain mathematical models of bistable (multistable) systems starting
from observed dynamics or experimental data are needed.

In this work, we propose a procedure, rooted in Metabolic P Systems [17,
15], shortly MP Systems, to infer models of an observed, also stochastic, bistable
(multistable) dynamics.

As a case study, a mathematical model of the Schlögel’s reaction [21], which rep-
resents an example of chemical reaction system that exhibits bistability, is inferred
starting from observed stochastic dynamics. Since recent experiments indicate that
noise and stochasticity play important roles in the switching of bistable systems,
this work suggests that this approach is very promising for studying the dynam-
ics and role of noise in biological systems, like, for example, genetic regulatory
networks.

2 Metabolic P Systems and Log-Gain theory: a brief
introduction

MP systems have been introduced as mono-membrane multiset rewriting gram-
mars, whose rules are regulated by specific functions [15]. The aim is to control
the matter transformation in a reactor by means of rules whose fluxes dynamically
depend on the state of the system. This strategy of rules application is different
to that of P Systems [20] and it has been successfully applied to several biological
processes [1, 18, 19].

Specifically, an MP system is completely specified (the reader can find the
formal definition in [17]) by: i) n substances and their initial values, ii) m reactions,
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with3 m > n, iii) m corresponding flux regulation functions, iv) k parameters4,
and their initial values, which are arguments, beside substances, of flux regulation
functions, and v) k parameter evolution functions.

A state q is an Rn+k vector, reporting the current amounts of substances and
parameters, while each rule rj (with j = 1, . . . ,m) having some of the n sub-
stances as substrates and some as products, is associated with a couple of vectors
(r−j , r

+
j ) ∈ Nn×Nn(one of which possibly null), reporting the substance quantities

respectively occurring in the premise and in the consequence of rj .
As an example, we can consider a system M with three substances {a, b, c},

two parameters {v, w} which values evolve, for t ∈ N, according with their own
function fv(t) and fw(t), respectively, and four reactions:

r1 : ab→ aa

r2 : bcc→ a (1)
r3 : ac→ λ

r4 : abc→ bb.

The reactions (1) correspond to the following vectors, respectively :

(r−1 , r
+
1 ) = ((1, 1, 0), (2, 0, 0)), (r−2 , r

+
2 ) = ((0, 1, 2), (1, 0, 0)),

(r−3 , r
+
3 ) = ((1, 0, 1), (0, 0, 0)), (r−4 , r

+
4 ) = ((1, 1, 1), (0, 2, 0)).

Four flux regulation functions, one for each rule, are defined from R5 to R, and
they produce at each step fluxes u1, u2, u3, u4, associated with the corresponding
reaction.

We call stoichiometric matrix, the (n × m)-dimensional matrix A formed by
the vectors r+i − r

−
i , for every rule ri, disposed according to a prefixed order. For

example, in the system above, we have

A =

 1 1 −1 −1
−1 −1 0 1

0 −2 −1 −1

 . (2)

The stoichiometric matrix is assumed to have maximal rank. Should we have
one row linearly dependent on the others, we could delete it (together with the
corresponding substance in the system, as studying its dynamics would not add
any useful information on the system), and analyse only the remaining substances
(we newly say n) and the corresponding n ×m stoichiometric matrix which now
has full rank.
3 We assume m > n, as it realistically happens in biochemical systems. A few examples

are given by the following protein-protein interaction networks: yeast has 8868 known
interactions among 3280 proteins [9], Drosophila has 4780 known interactions among
4679 proteins, and C. elegans has 5534 known interactions among 3024 proteins [7].

4 Parameters are internal or external controlling variables which somehow affect the
system’s functioning.
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Let U [t] = (ur[t] | r ∈ R) be, for t = 0, 1, . . ., the (m)-dimensional column
vector of fluxes and X[t] be the (n)-dimensional column vector of substances.
Then, the dynamics of an MP system, given by both the evolution of parameters,
according to their laws, and by the evolution of the substances, are computed
by the Equational Metabolic Algorithm[15, 14], which is the following recurrent
n-equations system:

X[t+ 1] = A× U [t] +X[t] (3)

where × denotes the ordinary matrix product and t the discrete instant of time.
This way to observe the evolution rules of a system reproducing a biological

reaction has been proposed in [1] and constitutes a new perspective. In fact, by
using MP systems, one assumes an a priori choice of the time interval τ , between
consecutive evolution steps, that depends on the macroscopic level at which con-
sidering the dynamics of the system. Then, the flux values, depending on the state
of the system, are computed according to the chosen observation granularity.

Therefore, the approach of modelling by MP systems considers the rules as
macroscopic matter transformation reactions rather than microscopic molecular
interactions. Then, the search of fluxes is aimed at designing a model of the ob-
served macroscopic reality with respect to the abstract transformations one has
assumed, and it is different from the rate estimation typically studied in systems
biology.

This inverse dynamical problem is the starting point of the Log-Gain theory
[16]. The goal of this theory is to deduce the time-series of fluxes, reproducing an
observed dynamics and biologically meaningful, starting from some consecutive (at
a time interval τ) time-series of the state of a system. When such time-series are
known, the discovery of flux regulation functions is a problem of approximation
which can be solved with mathematical regression techniques.

According to the simplest formulation of this theory, given a number of obser-
vations of the system’s states, for which the stoichiometry is known, the relative
variations of any reaction flux of the rule rj : αj → βj is the sum of the rela-
tive variations of its reactants, plus some error pj , called reaction offset, which is
introduced as a variable of the system:

(uj [t+ 1]− uj [t])/(uj [t]) =
∑
x∈αj

((x[t+ 1]− x[t])/x[t]) + pj .

We denote with P [t] the m-dimensional vector of pj variables, j = 1, . . . ,m,
that is, of the errors introduced with the log-gain approximations of fluxes at
step t. Furthermore, we denote with Lg(U [t]) the m-dimensional vector of relative
fluctuations, that is ((uj [t + 1] − uj [t])/uj [t] | j = 1, . . . ,m), for any t ∈ N.
Analogously, Lg(X[t]) is the vector of relative variations of substances. Therefore,
in formal terms, the m+n equations system we want to solve (in order to find the
vector U[t+1]) is {

Lg(U [t]) = B× Lg(X[t]) + C · P [t+ 1]
A× U [t+ 1] = X[t+ 2]−X[t+ 1] (4)
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where B is a (m×n)-dimensional boolean matrix selecting, by matrix product, the
reactants for each reaction, and C is an m-dimensional boolean vector selecting, by
Schur product, only n of the m reaction offsets (hence that are n other unknowns
in the system, besides the m fluxes). As proposed in [4], vector C selects a set
of n linear independent reactions, called covering set, in order to infer the flux
time-series. However, a way to choose the best covering set among the linearly
independent ones still remains to be found.

3 A flowchart to infer bistable MP systems

In order to model bistable (stochastic) phenomena starting from experimental
data, we propose the flowchart represented in Figure 1. In our method, first a set
of intermediate MP systems having dynamics in accordance with several observed
dynamics is created, by using Log-Gain theory, least-square theory and correlation
analysis. In the case of stochastic phenomena, this phase in particularly important
because it allows us to obtain dynamics having behaviours, in particular those
related to the reaction fluxes, not affected by observed noise. Namely, first i)
we apply the Log-Gain theory to infer the numeric values of the reaction fluxes,
then ii) a correlation analysis is used to suggest relationships between flux and
substance/parameter time-series, and finally iii) least-squares theory is used to
approximate the flux regulation functions.

Once we obtained good approximations of the different observed dynamics, we
apply again the least-squares theory to infer an unique MP system modelling the
bistability of the input phenomenon.

This last phase represents the major challenge because it needs a mathematical
analysis to identify the appropriate forms of the final flux regulation functions. As
result of this flowchart, we will obtain an MP systemM modelling the bistability
of the studied phenomenon.

In the following section we will apply this flowchart to a chemical reaction
system which exhibits a stochastic bistable dynamics.

4 A case study: the stochastic Schlögel’s reaction

An interesting example of bistable process is provided by the Schlögel’s model
[21], which is an autocatalytic, trimolecular reaction schema composed of the set
of coupled chemical reactions reported in Table 1.

What makes the Schlögel’s reaction especially interesting is that, despite its
simplicity (it is composed of four reactions involving three species, two of which
are buffered) it provides a very rich dynamics. If we fix the stochastic parameters
(and hence the reaction rates which can be computed from them), according to
certain ranges of values, as well as the initial amounts of the two buffered species
a and b, depending on the initial amount of x, the stochastic simulation of the
system provides a bistable behaviour.
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Bistable phenomenon

Different time-series

Time-series 2 Time-series n

MP model 1 MP model 2 MP model n

Time-series 1

Dynamics 1 Dynamics 2 Dynamics n

Least-squares theory

Bistable MP model

Log-Gain theory
Least-squares theory
Correlation analysis

Regulation functions

Soundness functions Improving functions

Yes

No

Fig. 1. Flowchart for the estimation of an MP system describing the dynamics of a
bistable (stochastic) phenomenon. Experimental data are analysed and used to infer
intermediated MP models which characterize the different observed dynamics. Then,
these models are used to generate reaction flux and substance dynamics in accordance
with the observed ones. Finally, these dynamics represent the input of a least-squares
analysis, where, by using also some hypothesis about the logic governing the studied
phenomenon, the final MP system is inferred.

Let #X[t] = (#x1[t],#x2[t], . . . ,#xn[t]) be the vector representing the state
of the system (i.e. the number of molecules of every species xi in the system
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Reactions Stochastic parameters

r1 : a+ 2x→ 3x+ a c1 = 3 · 10−7

r2 : 3x→ 2x c2 = 1 · 10−4

r3 : b→ x+ b c3 = 1 · 10−3

r4 : x→ λ c4 = 3.5

Table 1. Schlögel’s reactions and a set of stochastic parameters [13].

evaluated at time t, for i = 1, ..., n). In our simulations, we used the set of stochastic
parameters given in Table 1 and we performed, by using the Stochastic Simulation
Algorithm [5, 6], shortly SSA, up to 40 independent simulations from t = 0 starting
from the following initial configurations:

#X[0] = (#a[0],#b[0],#x[0]) = (1 · 105, 2 · 105, 0)
#X[0] = (#a[0],#b[0],#x[0]) = (1 · 105, 2 · 105, 238) (5)
#X[0] = (#a[0],#b[0],#x[0]) = (1 · 105, 2 · 105, 800).

The average behaviours (i.e. simulations were sampled with constant rate and
an average concentration of species x over the up to 40 different stochastic simula-
tions starting from the same initial state was computed) of the species x, according
to different initial states, are reported in Figures 2 and 3. The left-hand part of
Figure 2 shows that if we simulate the Schlögel’s model starting from the initial
state (1 · 105, 2 · 105, 0) then the number of molecules of species x goes up until it
reaches a stable ‘on’ state. Alike, the right-hand part of the same Figure shows that
if we simulate it starting from the initial state (1 ·105, 2 ·105, 800) then the number
of molecules of species x decreases and stabilizes at stable ‘off’ state. Moreover, if
we start the simulations from the initial state (1 · 105, 2 · 105, 238), the number of
molecules of x randomly stabilizes at one of the two possible distinct stable states.
These behaviours are depicted in Figure 3.

Fig. 2. Average time-evolution of species x in the Schlögel model obtained by using the
SSA and considering the initial states (1 · 105, 2 · 105, 0) (leftmost image) and (1 · 105, 2 ·
105, 800) (rightmost image).
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Fig. 3. Average time-evolution of species x in the Schlögel by using the SSA with initial
state (1 · 105, 2 · 105, 238). The two different behaviours are the result of the bimodal
probability distribution of the set of reactions.

4.1 Results of the flowchart

In this subsection we will see the result obtained by applying our method to infer
an MP system modelling the stochastic bistability of the Schlögel model.

Obtaining data.

The Schlögel’s reaction has been simulated by considering the three different initial
states (5) to generate the time series of species x. Then, we clustered the data of
the different behaviours in four sets and we calculated the average number of
molecules during all the steps of the time evolution. In particular, these were
sampled at regular time intervals to mimic experimental measurements.

Inferring intermediate MP models.

First, we computed reaction fluxes by applying the Log-Gain theory with different
plausible covering sets [4], concluding that r3 has a constant flux. This result is in
accordance with the nature of this reaction, which has a buffered reactant. After
that, considering the four behaviours, we applied the least-squares theory to infer
four sets of flux regulation functions, that is, to obtain four MP grammars. In
particular, according to a correlation analysis, and given that a and b are buffered
species, we assumed that each functions ϕj(q), j = 1, 2, . . . , 4, can be seen as:

ϕj(q) =
{
αj + βjx if j = 1, 2, 4
αj if j = 3. (6)

In this way, we obtained four MP systems, reported in Tables 2, 3, 4 and 5,
which characterize the different behaviours showed in Figures 2 and 3.
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Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = 3.4710 · 10−3 + 4.1533 · 10−1x
r2 : 3x→ 2x ϕ2 = 4.7307 · 10−1 + 4.0487 · 10−1x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 1.2542 · 10−4 + 1.5008 · 10−2x

Table 2. Flux regulation functions approximating the behaviour of Schlögel’s reaction
computing by the SSA, starting from the initial state #X[0] = (1 · 105, 2 · 105, 0), that is,
the behaviour of the species x showed in the left part of Figure 2.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = −2.1926 · 10−13 + 2.5331 · 10−4x
r2 : 3x→ 2x ϕ2 = 7.1050 · 10−1 − 2.9884 · 10−4x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 2.5415 · 10−13 + 8.4015 · 10−4x

Table 3. Flux regulation functions approximating the behaviour of Schlögel’s reaction
computing by the SSA, considering the initial state #X[0] = (1 · 105, 2 · 105, 800), that
is, the behaviour of the species x showed in the right part of Figure 2.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = −1.2646 · 10−15 + 8.5151 · 10−4x
r2 : 3x→ 2x ϕ2 = 8.5511 · 10−1 − 1.7333 · 10−3x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 5.7823 · 10−15 + 2.8242 · 10−3x

Table 4. Flux regulation functions approximating the behaviour of Schlögel’s reaction
dynamics depicted in the left part of Figure 3.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = −1.6164 · 10−13 + 1.7453 · 10−3x
r2 : 3x→ 2x ϕ2 = 8.1220 · 10−1 + 1.7921 · 10−3x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = −7.8644 · 10−16 + 6.3066 · 10−5x

Table 5. Flux regulations functions approximating the behaviour of Schlögel’s reaction
dynamics depicted in the right part of Figure 3.

Inferring a bistable MP system.

In this phase we used the four intermediate MP models as starting points to obtain
an MP system M describing the bistable behaviours of the Schlögel’s model. In
particular, we followed these steps: i) we computed the dynamics of the four MP
systems to obtain four time-series of x and u1, u2, u3 and u4, respectively, ii) we
approximated the flux regulation functions, starting from the time-series obtained
in the previous step, by using the least square theory, iii) we analyzed the inferred
functions, and iii) finally we obtained the final MP grammar of M.
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The Schlögel’s model has four reactions, each of which is equipped with a
function describing how that reaction contributes to the change of the number of
molecules of x: ϕ1(q), ϕ2(q), ϕ3(q), and ϕ4(q), respectively.

Since the Schlögel’s model is a one-variable system, an MP system modelling
it can be expressed, considering the stoichiometry of each reaction, as the sum of
the four fluxes:

x[i+ 1]− x[i] =
4∑
i=1

(r+i − r
−
i )ϕi(q) = f(q). (7)

To describe a bistable behaviour, equation (7) needs an unstable steady state
to separate the attractor regions of two stable steady states [24], so we need a
function f(q), called the global flux function of x, having at least three steady
states to realize an MP system describing the bistability of the studied process.

The simplest function f(q) with three zeros is the cubic polynomial. Therefore,
since the fluxes of reaction r3 are constant, we assumed the following forms for the
flux regulation functions of M:

ϕj(q) =
{
αj + βjx+ γjx

2 + ηjx
3 if j = 1, 2, 4

αj if j = 3 (8)

and we applied the least square theory to learn the coefficients of each function,
obtaining the MP grammar reported in Table 6, which models the bistable be-
haviour of the Schlögel’s model. To prove this, if we consider such flux regulation
functions, f(q) can be reduced as follow:

f(q) = c1x
2 + c2x

3 + c3 + c4x (9)

where:

c1 =
4∑
j=1

γj = 1.0480 · 10−6 c2 =
4∑
j=1

ηj = −1.1130 · 10−9 (10)

c3 =
4∑
j=1

αj = 1.9370 · 10−2 c4 =
4∑
j=1

βj = −2.6800 · 10−4.

The set of parameters {cj | j = 1, 2, . . . , 4} is associated with a bistable dy-
namics, that is, two stable steady states separated by an unstable state. By using
the discriminant analysis, we can analyze the nature of the roots of a polynomial.
The discriminant of (9) is given by:

∆ = c21c
2
4 − 4c2c34 − 4c31c3 − 27c22c

2
3 + 18

4∏
j=1

cj . (11)

For a cubic polynomial we have the following cases: i) if ∆ > 0 then the
polynomial has 3 distinct real roots, ii) if ∆ < 0 then the polynomial has 1 real root
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and 2 complex conjugate roots, and iii) if ∆ = 0 then at least 2 polynomial’s roots
coincide, and they are all real. The cubic polynomial in (9) has ∆ = 4.5012 ·10−22,
so such function has three different roots. Moreover, to realize a stable ’on’ state the
sign of the cubic term needs to be a minus. For three different non-negative steady
states a positive quadratic and a negative linear term are needed. In addition if a
positive constant is adjoint, then the one-variable system:

x[i+ 1]− x[i] = −k1x
3 + k2x

2 − k3x+ k4, ki > 0, i = 1, 2, 3, 4. (12)

has two positive stable steady states [25].
It is simple to see that equation (9), considering the constants (10), is in accor-

dance with (12). Then the MP grammar of Table 6 models the bistable dynamics
of the Schlögel’s reaction, which has two positive stable steady states.

However, we saw that, starting from some initial states, we obtained negative
fluxes. Therefore, we applied the last phase of our flowchart to obtain a final “good”
set of functions.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = 47.133− 3.5489 · 10−1x+ 7.8941 · 10−4x2 − 5.4356 · 10−7x3

r2 : 3x→ 2x ϕ2 = 46.103− 3.4186 · 10−1x+ 7.6346 · 10−4x2 − 5.2949 · 10−7x3

r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 1.885− 1.2762 · 10−2x+ 2.4902 · 10−5x2 − 1.2957 · 10−8x3

Table 6. Bistable MP grammar modelling the Schlögel’s reaction.

Improving flux regulation functions

First, by considering equation (12), we assumed that, since ci > 0, i = 1, 3 then the
monomials c1x2 and the constant c3, are associated with reactions producing x.
Since r3 has b as reactant, which is a buffered species, and u3[t] is constant for t =
0, 1, . . ., then ϕ3(q) = c3. This implies that ϕ1(q) = c1x

2, which is in accordance to
the fact that r1 is a double-molecular reaction. Similarly, ci < 0, i = 2, 4, therefore
c2x

3 and c4x can be seen as functions regulating the fluxes of reactions consuming
x. Since, r2 and r4 are tri-molecular and an one-molecular reaction respectively,
we assumed that ϕ2(q) = c2x

3 and ϕ4(q) = c4x. In this way, we obtained the MP
grammar reported in Table 7, which computes the same dynamics of the grammar
of Table 7, but having flux time-series positive for each initial states.

5 Conclusion and ongoing work

Schlögel’s model is an example of chemical reaction system which exhibits bistabil-
ity. Bistable behaviour can be found in many biological networks, including heart
models, visual perception and gene networks.
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Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = 1.0480 · 10−6x2

r2 : 3x→ 2x ϕ2 = 1.1130 · 10−9x3

r3 : b→ x+ b ϕ3 = 1.9370 · 10−2

r4 : x→ λ ϕ4 = 2.6800 · 10−4x

Table 7. Bistable MP grammar modelling the Schlögel’s reaction.

Owing to the ubiquity and importance of switching behaviours, it is important
to have comprehensive mathematical models of bistable chemical reaction systems.
In particular, there is a lag in the development of models for bistable systems
starting from experimental data. This is due to the lack of detailed knowledge of
biochemical reactions and kinetic rates.

In this work, we used the Schlögel’s model as an example to study the applica-
bility of the MP Systems to infer mathematical models describing observed bistable
(multistable) dynamics. The theoretical background of this approach comes from
the Log-Gain theory for MP systems, which links observed time-series to the MP
systems for simulating and analyzing dynamics of phenomena in living cells. Com-
pared with approaches based on stochastic models and mass action law, our ap-
proach allows to obtain some insights into the logic governing a bistable phe-
nomenon starting from observations of such a phenomenon.

Starting from stochastic dynamics of the Schlögel’s model, we saw the possi-
bility to obtain an MP system describing the bistability of such dynamics. Since,
different studies indicates that noise plays an important roles in the switching of
bistable systems, the results of this work suggests that the proposed approach is a
very promising one for inferring and studying bistable and multistable dynamics of
biological systems, also when kinds of noise are present. Moreover, this approach
could be very useful in the cases of complex reaction networks, for which data
availability and regulatory information can not provide a comprehensive picture
of the role of the diverse reactions in the toggle switch transition.

Ongoing research is focused on the application of the proposed approach to
infer bistable systems inspired from biology and chemistry and analyze the logic
governing these systems. In particular, since bistable switches are common motifs
in genetic regulatory networks, we have a mind to apply our procedure for mod-
elling a naturally occurring switch from relatively few experimental data points,
yielding a model suited: i) to dynamical simulation, ii) to give predictions of un-
measured proteins and genes of the analyzed network, iii) to analyze the effects
of noise and perturbations which can afflict the network, iv) and to develop ro-
bust mathematical models which could represent prototypes of synthetic biological
systems.
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Summary. Although P systems are distributed parallel computing devices, no explicit
way of handling the input in a distributed way in this framework was considered so far.
This note proposes a distributed architecture (based on cell-like P systems, with their
skin membranes communicating through channels as in tissue-like P systems, according
to specified rules of the antiport type), where parts of a problem can be introduced as
inputs in various components and then processed in parallel. The respective devices
are called dP systems, with the case of accepting strings called dP automata. The
communication complexity can be evaluated in various ways: statically (counting the
communication rules in a dP system which solves a given problem), or dynamically
(counting the number of communication steps, of communication rules used in a
computation, or the number of objects communicated). For each measure, two notions of
“parallelizability” can be introduced. Besides (informal) definitions, some illustrations of
these idea are provided for dP automata: each regular language is “weakly parallelizable”
(i.e., it can be recognized in this framework, using a constant number of communication
steps), and there are languages of various types with respect to Chomsky hierarchy
which are “efficiently parallelizable” (they are parallelizable and, moreover, are accepted
in a faster way by a dP automaton than by a single P automaton). Several suggestions
for further research are made.

1 Introduction

P systems are by definition distributed parallel computing devices, [11], [12], [17],
and they can solve computationally hard problems in a feasible time, [13], but
this efficiency is achieved by a trade-off between space and time, based on the
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possibility of generating an exponential workspace in a linear time, by means of
biologically inspired operations, such as membrane division and membrane cre-
ation. However, no class of P systems was proposed where a hard problem can
be solved in a distributed parallel way after splitting the problem in parts and
introducing these subproblems in components of a P system which can work on
these subproblems in parallel and produce the solution to the initial problem by
interacting/communicating among each other (like in standard distributed com-
puter science). In particular, no communication complexity, in the sense of [2], [9],
[16], was considered for P systems, in spite of the fact that computation (time)
complexity is very well developed, [13], and also space complexity was recently
investigated, [14]. Some proposals towards a communication complexity of P sys-
tems were made in [1], but mainly related to the communication effort in terms
of symport/antiport rules used in so-called evolution-communication P systems of
[5]. (Note that in communication complexity theory the focus is not on the time
efficiency of solving a problem, but the parties involved in the computation just
receive portions of the input, in general, distributed in a balanced manner, “as fair
as possible” – this distribution introduces an inherent difficulty in handling the
input – and then mainly the complexity of the communication needed to parties
to handle this input is investigated.)

This note tries to fill in this gap, proposing a rather natural framework for
solving problems in a distributed way, using a class of P systems which mixes in-
gredients already existing in various much investigated types of P systems. Namely,
we consider P systems with inputs, in two variants: (i) like in P automata, [6], [10],
where a string of symbols is recognized if those symbols are brought into the sys-
tem from the environment and the computation eventually halts (it is important
to note that the string is “read” during the computation, not before it), and (ii)
in the usual manner of complexity investigations, [13], where an instance of a de-
cision problem is introduced in a P system in the form of a multiset of symbols
(this operation takes no time, the computation starts after having the code of the
problem inside), and the system decides that instance in the end of a computation
which sends to the environment one of the special objects yes or no. Several such
systems, no matter of what type, are put together in a complex system which
we call dP system (from “distributed P system”); the component systems com-
municate through channels linking their skin membranes, by antiport rules as in
tissue-like P systems. When accepting strings by dP systems with P automata as
components, the device is called a dP automaton.

Such an architecture was already used, with specific ingredients, for instance, in
the investigations related to eco-systems, where “local environments” are necessary
to be delimited and communication possibilities exist, linking them; details can be
found in the recent paper [4].

The way to use a dP system is obvious: a problem Q is split into parts
q1, q2, . . . , qn, which are introduced in the n components of the dP system (as
in P automata or as in decision P systems), these n systems work separately on
their problems, and communicate to each other according to the skin-to-skin rules.
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The solution to the problem Q is provided by the whole system (by halting – in
the case of accepting strings, by sending out one of the objects yes or no, etc.).
Like in communication complexity, [9], we request the problem to be distributed
in a balanced way among the components of the dP system, i.e., in “as equal as
possible” parts (also an almost balanced way to distribute the input among two
processors is considered in [9] – no partner takes more than two thirds of the in-
put – which does not seem very natural to be extended to the general case, of n
processors).

Several possibilities exist for defining the communication complexity of a com-
putation. We follow here the ideas of [1], and introduce three measures: the num-
ber of steps of the computation when a communication rule is used (such a step
is called communication step), the number of communication rules used during a
computation, and the number of objects transferred among components (by com-
munication rules) during a computation. All these three measures are dynamically
defined; we can also consider a static parameter, like in descriptional complexity of
Chomsky languages (see a survey in [8]), i.e., the number of communication rules
in a dP system.

A problem is said to be “weakly parallelizable” with respect to a given (dy-
namical) communication complexity measure if it can be split in a balanced way,
introduced in the dP system, and solved using a number of communication steps
bounded by a constant given in advance; a problem is “efficiently parallelizable” if
it is weakly parallelizable and can be solved by a dP system in a more efficient way
than by a single P system; more precise definitions are given in the next sections
of the paper.

Various possibilities exist, depending on the type of systems (communicating
systems, e.g., based on symport/antiport rules, systems with active membranes,
catalytic systems, etc.) and the type of problem we consider (accepting strings,
decision problems, numerical problems, etc.).

In this note we only sketch the general formal framework and give an illus-
tration, for the case of accepting strings as in P automata. We only show here
that all regular languages are weakly parallelizable (only one communication step
suffices, hence the weak parallizability holds with respect to all three dynamical
measures), and that there are regular, context-free non-regular, context-sensitive
non-context-free languages which are efficiently parallelizable with respect to the
first two dynamical measures mentioned above (in view of the results in [9], there
are linear languages which are not efficiently parallelizable with respect to the
number of communicated objects/bits among components).

If we use extended systems (a terminal alphabet of objects is available) and the
communication channels among the components of a dP automaton are controlled,
e.g., by states, as in [7], or created during the computation, as in [3], then the
power of our devices increases considerably: all recursively enumerable languages
are weakly parallelizable in this framework.

Many research problems remain to be explored, starting with precise defi-
nitions for given classes of P systems, continuing with the study of usefulness
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of this strategy for solving computationally hard problems (which problems are
weakly/efficiently parallelizable and which is the obtained speed-up for them?),
and ending with a communication complexity theory of dP systems, taking into
account all measures of complexity mentioned above (for the number of objects
communicated among components, which corresponds to the number of bits con-
sidered in [9], we can transfer here the general results from communication com-
plexity – note however that in many papers in this area one deals with 2-party
protocols, while in our framework we want to have an n-party set-up, and that
we are also interested in the time efficiency of the distributed and parallel way of
solving a problem).

2 dP Systems – A Preliminary Formalization

The reader is assumed familiar with basics of membrane computing, e.g., from
[11], [12], and of formal language theory, e.g., from [15], hence we pass directly to
introducing our proposal of a distributed P system. The general idea is captured
in the following notion.

A dP scheme (of degree n ≥ 1) is a construct

∆ = (O,Π1, . . . ,Πn, R),

where:

1. O is an alphabet of objects;
2. Π1, . . . ,Πn are cell-like P systems with O as the alphabet of objects and the

skin membranes labeled with s1, . . . , sn, respectively;
3. R is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i 6= j, and

u, v ∈ O∗, with uv 6= λ; |uv| is called the weight of the rule (si, u/v, sj).

The systems Π1, . . . ,Πn are called components of the scheme ∆ and the rules
in R are called inter-components communication rules. Each component can take
an input, work on it, communicate with other components (by means of rules in
R), and provide the answer to the problem in the end of a halting computation.
(A delicate issue can appear in the case of components which can send objects
to the environment and bring objects from the environment – this happens, for
instance, for symport/antiport P systems; in this case we have to decide whether
or not the components can exchange objects by means of the environment, or the
only permitted communication is done by means of the rules in R. For instance, a
“local environment” for each component can be considered, disjoint from the “local
environments” of other components, thus preventing the interaction of components
by means of other rules than those in R. Actually, the rules in R themselves can be
defined between these “local environments” – which is a variant worth to explore.
We point out here that also the need of a “local environment” has appeared in the
applications of membrane computing to eco-systems investigations, see [4] and its
references.)
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Now, we can particularize this notion in various ways, depending on the type
of systems Πi, 1 ≤ i ≤ n, and the type of problems we want to solve.

For instance, we can define dP systems with active membranes, as dP schemes as
above, with the components being P systems with active membranes, each of them
having a membrane designated as the input membrane. Having a decision problem
– consider, e.g., SAT for n variables and m clauses – we can split a given instance of
it in parts which are encoded in multisets which are introduced in the components
of the dP system. For example, we can introduce the code of each separate clause
in a separate component of the dP system. The components start to work, each
one deciding its clause, and in the end they communicate to each other the result;
if one of the components will find that all m clauses are satisfied, then the whole
SAT formula is satisfied. Intuitively, this is a faster way than deciding the formula
by means of a single P system with active membranes – but a crucial aspect has
been neglected above: in order to say that the formula is satisfied, all the m clauses
should be satisfied by the same truth-assignment, and this supposes that the m
components communicate to each other also which is the assignment which turns
true the clauses. That is, besides the usual time complexity of solving the problem
we have now to consider the cost of communication among the components and
the trade-off between these two parameters should be estimated.

Another interesting case, which will be briefly investigated in the subsequent
section, is that of accepting strings in the sense of P automata, [6], [10]; we will
come back immediately to this case.

On the other hand, we have several possibilities for estimating “the cost of
communication”, and we adapt here the ideas from [1].

Let us consider a dP system ∆, and let δ : w0 =⇒ w1 =⇒ . . . =⇒ wh be a
halting computation in ∆, with w0 being the initial configuration. Then, for each
i = 0, 1, . . . , h− 1 we can write:

ComN(wi =⇒ wi+1) = 1 if a communication rule is used in this transition,
and 0 otherwise,
ComR(wi =⇒ wi+1) = the number of communication rules used in this tran-
sition,
ComW (wi =⇒ wi+1) = the total weight of the communication rules used in
this transition.

These parameters can then be extended in the natural way to computations, re-
sults of computations, systems, problems/languages. We consider below the case
of accepting strings (by L(∆) we denote the language of strings accepted by ∆):
for ComX ∈ {ComN, ComR, ComW} we define

ComX(δ) =
∑h−1

i=0 ComX(wi =⇒ wi+1), for δ : w0 =⇒ w1 =⇒ . . . =⇒ wh a
halting computation,
ComX(w, ∆) = min{ComX(δ) | δ : w0 =⇒ w1 =⇒ . . . =⇒ wh is a computa-
tion in ∆ which accepts the string w},
ComX(∆) = max{ComX(w, ∆) | w ∈ L(∆)},
ComX(L) = min{ComX(∆) | L = L(∆)}.
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Similar definitions can be considered for more general decidability problem
than accepting strings, then complexity classes can be defined. We do not enter
here into details for this general case; in the next section we will briefly consider
the specific case of dP automata and of languages.

The previously sketched approach should be investigated in more details.
Which is the speed-up for a given problem or class of problems? Clearly,
ComN(α) ≤ ComR(α) ≤ ComW (α), for all valid α. Moreover, in one commu-
nication step one can use arbitrarily many communication rules, which therefore
move from a component to another one arbitrarily many objects. Anyway, inde-
pendently of the communication cost, presumably, only a linear speed-up can be
obtained by splitting the problem in a given number of parts. Are there problems
which however cannot be solved in this framework in a faster way than by using
a single P system (with active membranes) provided that the communication cost
is bounded (e.g., using communication rules in R only for a constant number of
times)? Which is the communication complexity for a given problem or class of
problems? Finding suggestive examples can be a first step in approaching such
issues.

A case study will be considered in the next section, not for dP systems with ac-
tive membranes (which, we believe, deserve a separate and detailed examination),
but for a distributed version of P automata.

3 dP Automata

We consider now the distributed version of P automata, [6], [10], which are sym-
port/antiport P systems which accept strings: the sequence of objects (because we
work with strings and symbol objects, we use interchangeably the terms “object”
and “symbol”) imported by the system from the environment during a halting
computation is the string accepted by that computation (if several objects are
brought in the system at the same time, then any permutation of them is consid-
ered as a substring of the accepted string; a variant, considered in [6], is to associate
a symbol to each multiset and to build a string by such “marks” attached to the
imported multisets). The accepted string can be introduced in the system symbol
by symbol, in the first steps of the computation (if the string is of length k, then
it is introduced in the system in the first k steps of the computation – the P au-
tomaton is then called initial), or in arbitrary steps. Of course, the initial mode is
more restrictive – but we do not enter here into details.

As a kind of mixture of the ideas in [6] and [10] for defining the accepted
language, we can consider extended P automata, that is, with a distinguished
alphabet of objects, T , whose elements are taken into account when building the
accepted string (the other objects taken by the system from the environment are
ignored). Here, however, we work with non-extended P automata.

A dP automaton is a construct

∆ = (O,E, Π1, . . . ,Πn, R),
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where (O,Π1, . . . ,Πn, R) is a dP scheme, E ⊆ O (the objects available in arbitrar-
ily many copies in the environment), Πi = (O,µi, wi,1, . . . , wi,ki

, E, Ri,1, . . . , Ri,ki
)

is a symport/antiport P system of degree ki (without an output membrane), with
the skin membrane labeled with (i, 1) = si, for all i = 1, 2, . . . , n.

A halting computation with respect to ∆ accepts the string x = x1x2 . . . xn over
O if the components Π1, . . . ,Πn, starting from their initial configurations, using
the symport/antiport rules as well as the inter-components communication rules,
in the non-deterministically maximally parallel way, bring from the environment
the substrings x1, . . . , xn, respectively, and eventually halts.

The dP automaton is synchronized, a universal clock exists for all components,
marking the time in the same way for the whole dP automaton. It is also important
to note that we work here in the non-extended case, all input symbols are recorded
in the string. In this way, at most context-sensitive languages can be recognized.

The three complexity measures ComN, ComR, ComW defined in the previous
section can be directly introduced for dP automata (and they were formulated
above for this case). With respect to them, we can consider two levels of paral-
lelizability.

A language L ⊆ V ∗ is said to be (n, m)-weakly ComX parallelizable, for some
n ≥ 2, m ≥ 1, and X ∈ {N, R,W}, if there is a dP automaton ∆ with n com-
ponents and there is a finite subset F∆ of L such that each string x ∈ L − F∆

can be written as x = x1x2 . . . xn, with ||xi| − |xj || ≤ 1 for all 1 ≤ i, j ≤ n, each
component Πi of ∆ takes as input the string xi, 1 ≤ i ≤ n, and the string x is
accepted by ∆ by a halting computation δ such that ComX(δ) ≤ m. A language L
is said to be weakly ComX parallelizable if it is (n, m)-weakly ComX parallelizable
for some n ≥ 2, m ≥ 1.

Two conditions are here important: (i) the string is distributed in equal parts,
modulo one symbol, to the components of the dP automaton, and (ii) the commu-
nication complexity, in the sense of measure ComX, is bounded by the constant
m.

We have said nothing before about the length of the computation. That is why
we also introduce a stronger version of parallelizability.

A language L ⊆ V ∗ is said to be (n, m, k)-efficiently ComX parallelizable, for
some n ≥ 2, m ≥ 1, k ≥ 2, and X ∈ {N, R,W}, if it is (n, m) weakly ComX
parallelizable, and there is a dP automaton ∆ such that

lim
x∈L,|x|→∞

timeΠ(x)
time∆(x)

≥ k,

for all P automata Π such that L = L(Π) (timeΓ (x) denotes here the smallest
number of steps needed for the device Γ to accept the string x). A language
L is said to be efficiently ComX parallelizable if it is (n, m, k)-efficiently ComX
parallelizable for some n ≥ 2, m ≥ 1, k ≥ 2.

Note that in the case of dP automata, the duration of a computation may
also depend on the way the string is split in substrings and introduced in the
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components of the system; in a natural way, one of the most efficient distribution
of the string and shortest computation are chosen. Of course, as larger the constant
k as better.

Moreover, while time∆(x) is just given by means of a construction of a suitable
dP automaton ∆, timeΠ(x) should be estimated with respect to all P automata
Π.

An example is worth considering in order to illustrate this definition. Let
us examine the dP system from Figure 1 – the alphabet of objects is O =
{a, b, c, d, c1, c2, #}, and E = {a, b}.

'

&

$

%

'

&

$

%

Â

Á

¿

ÀÂ

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

s1

(1,2)

(1,3)

c1

#

(c1, out; c, in)

(#, in)

(#, out)

(#, out; c1, in)

c d

(s1, c1/c2, s2)

(c, out; a, in)

(a, out; c, in)

s2

(2,2)

c2

#

(2,3)

(c2, out; d, in)

(#, in)
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(#, out; c2, in)

(d, out; b, in)

(b, out; d, in)

Fig. 1. An example of a dP automaton

Clearly, component Π1 (in the left hand side of the figure) can only bring
objects a, c inside, and component Π2 (in the right hand side of the figure) can
only bring objects b, d inside. In each step, only one of a, c, alternately, enters
Π1 and only one of b, d, alternately, enters Π2 (note that we do not need objects
c, d to be present initially in the environment, while one copy of each a and b is
sufficient). The computation of each component can stop only by “hiding” the
“carrier objects” c, d inside an inner membrane, and this means releasing c1 in
Π1 and c2 in Π2. If these objects are not released at the same time in the two
components, so that the exchange rule (s1, c1/c2, s2) can be used, then, because of
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the maximal parallelism, the object c1 should enter membrane (1,3), and object c2

should enter membrane (2,3); in each case, the trap-object # is released, and the
computation never stops: the object # oscillates forever across membrane (1,2) in
Π1 and across membrane (2,2) in Π2.

Consequently, the two strings accepted by the two components of ∆ should
have the same length, that is the language accepted by the system is

L(∆) = {(ac)s(bd)s | s ≥ 0}.

Note the crucial role played here by the fact that the system is synchronized,
and that a computation which accepts a string xs = (ac)s(bd)s, hence of length 4s,
lasts 2s + 2 steps (2s steps for bringing objects inside, one step when objects c, d
are introduced in an inner membrane, and one inter-components communication
step), with one of these steps being a communication between components.

Obviously, if we recognize a string xs = (ac)s(bd)s as above by means of a
usual symport/antiport P system, then, because no two symbols of the string can
be interchanged, no two adjacent symbols can be introduced in the system at
the same step, hence the computation lasts at least as many steps as the length
of the string, that is, 4s. This shows that our language is not only (2, r)-weakly
ComX parallelizable, but also (2, r, 2)-efficiently ComX parallelizable, for (r, X) ∈
{(1, N), (1, R), (2, W )}.

This conclusion is worth formulating as a theorem.

Theorem 1. The language L = {(ac)s(bd)s | s ≥ 0} is efficiently ComX paral-
lelizable, for all X ∈ {N, R,W}.

Note that this language is not regular (but it is linear, hence also context-free).
The previous construction can be extended to dP automata with three com-

ponents: Π1 inputs the string (ac)s, Π2 inputs (bd)s, and Π3 inputs (ac)s, then
Π1 produces the object c1, Π2 produces two copies of c2, and Π3 produces the
object c3. Now, c1 is exchanged for one copy of c2 from Π2 and c3 for the
other copy, otherwise the computation never stops. The recognized language is
{(ac)s(bd)s(ac)s | s ≥ 0}.

This language is not context-free, hence we have:

Theorem 2. There are context-sensitive non-context-free languages which are ef-
ficiently ComX parallelizable, for all X ∈ {N, R,W}.

The previous two theorems show that the distribution, in the form of dP sys-
tems, is useful from the time complexity point of view, although only one com-
munication step is performed and only one communication rule is used at that
step. Moreover, the proofs of the two theorems show that, in general, languages
consisting of strings with two well related halves (but not containing “too much”
information in each half of the string, besides the length), are weakly paralleliz-
able, and, if no two adjacent symbols of the strings can be interchanged, then these
languages are efficiently parallelizable.

We have said nothing above about regular languages – this is the subject of
the next section.
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4 All Regular Languages are Weakly Parallelizable

The assertion in the title of this section corresponds to Theorem 2.3.5.1 in [9],
which states that for each regular language there is a constant k which bounds
its (2-party) communication complexity. The version of this result in terms of
weak ComX parallelizability is shown by the following construction. Consider a
non-deterministic finite automaton A = (Q, T, q0, F, P ) (set of states, alphabet,
initial state, final states, set of transition rules, written in the form qa → q′, for
q, q′ ∈ Q, a ∈ T ). Without any loss of generality, we may assume that all states of
Q are reachable from the initial state (for each q ∈ Q there is x ∈ T ∗ such that
q0x =⇒∗ q with respect to transition rules in P ). We construct the following dP
automaton:

∆ = (O,E, Π1, Π2, R), where :
O = Q ∪ T ∪ {d}
∪ {(q, q′) | q, q′ ∈ Q}
∪ {〈q, qf 〉 | q ∈ Q, qf ∈ F}
∪ {〈q〉 | q ∈ Q},

E = O − {d},
Π1 = (O, [

s1
[
1,2

]
1,2

]
s1

, q0, λ, E, Rs1 , R1,2),

Rs1 = {(q, out; q′a, in) | qa → q′ ∈ P}
∪ {(q, out; 〈q′〉a, in) | qa → q′ ∈ P},

R1,2 = {(〈q〉, in), (〈q〉, out) | q ∈ Q},

Π2 = (O, [
s2

]
s2

, d, E, Rs2),

Rs2 = {(d, out; (q, q′)a, in) | qa → q′ ∈ P, q ∈ Q}
∪ {((q, q′), out; (q, q′′)a, in) | q′a → q′′ ∈ P, q ∈ Q}
∪ {((q, q′), out; 〈q, qf 〉a, in) | q′a → qf ∈ P, q ∈ Q, qf ∈ F},

R = {(s1, 〈q〉/〈q, qf 〉, s2) | q ∈ Q, qf ∈ F}.

The first component analyzes a prefix of a string in L(A), the second com-
ponent analyzes a suffix of a string in L(A), first guessing a state q ∈ Q from
which the automaton starts its work. At some moment, the first component stops
bringing objects inside by taking from the environment a symbol 〈q′〉 for some
q′ ∈ Q, reached after parsing the prefix of the string in L(A). This object will pass
repeatedly across the inner membrane of Π1. The second component can stop if a
state q′ is reached in the automaton A for which no rule q′a → q′′ exists in P (and
then ∆ never stops, because its first component never stops), or after reaching a
state in F , hence introducing an object of the form 〈q, qf 〉 for some qf ∈ F . Note
that q is the state chosen initially and always stored in the first position of objects
(q1, q2) used by Π2. The computation can halt only by using a communication
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rule from R, and this is possible only if q = q′ – the first component has reached
the state of A which was the state from which the second component started its
work. Consequently, the concatenation of the two strings introduced in the system
by the two components is a string from L(A). Thus, the language L(A) is weakly
parallelizable.

Now, consider a regular language such that no two adjacent symbols in a string
can be permuted (take an arbitrary regular language L over an alphabet V and a
morphism h : V ∗ −→ (V ∪{c})∗, where c is a symbol not in V , such that h(a) = ac
for each a ∈ V ). Then, clearly, if the two strings accepted by the two components
of the dP automaton ∆ are of equal length (note that the strings of h(L) are of an
even length), then the time needed to ∆ to accept the whole string is (about) half
of the time needed to any P automaton Π which accepts the same language. This
proves that the language h(L) is efficiently parallelizable, hence we can state:

Theorem 3. Each regular language is weakly ComX parallelizable, and there are
efficiently ComX parallelizable regular languages, for all X ∈ {N, R,W}.

Of course, faster dP automata can be constructed, if we use more than two
components. However, it is not clear whether dP automata with n+1 components
are always faster than dP automata with n components – this might depend on
the structure of the considered language (remember that the distribution of the
input string to the components of the dP automaton must be balanced). More
specifically, we expect that there are (n, m) weakly parallelizable languages which
are not, e.g., (n + 1, m) weakly parallelizable; similar results are expected for
efficiently parallelizable languages.

A natural question is how much the result in Theorem 3 can be extended. For
instance, is a similar result true for the linear languages, or for bigger families of
languages? According to Theorem 2.3.5.4 in [9], this is not true for measures ComR
and ComW , the recognition of context-free languages (actually, the language LR

at page 78 of [9] is linear) have already the highest communication complexity
(in 2-party protocols), a linear one with respect to the length of the string. Thus,
the number of communication rules used by a dP automaton during a computa-
tion cannot be bounded by a constant. The case of measure ComN remains to
be settled: is it possible to have computations with a bounded number of com-
munication steps, but with these steps using an unbounded number of rules? We
conjecture that even in this case, languages of the form {x mi(x) | x ∈ {a, b}∗},
where mi(x) is the mirror image of x (such a language is minimally linear, i.e.,
can be generated by a linear grammar with only one nonterminal), are not weakly
ComN parallelizable.

Many other questions can be raised in this framework. For instance, we can
consider families of languages: (n, m)-weakly ComX parallelizable, weakly ComX
parallelizable, (n, m, k)-efficiently ComX parallelizable, and efficiently ComX par-
allelizable. Which are their properties: interrelationships and relationships with
families in Chomsky hierarchy, closure and decidability properties, hierarchies on
various parameters, characterizations and representations, etc.
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Then, there is another possibility of interest, suggested already above: the static
complexity measure defined as the cardinality of R, the set of communication
rules. There is a substantial theory of descriptional complexity of (mainly context-
free) grammars and languages, see [8], which suggests a lot of research questions
starting from ComS(∆) = card(R) (with “S” coming from “static”) and extended
to languages in the natural way (ComS(L) = min{ComS(∆) | L = L(∆)}):
hierarchies, decidability of various problems, the effect of operations with languages
on their complexity, etc.

5 The Power of Controlling the Communication

In the previous sections the communication rules were used as any rule of the
system, non-deterministically choosing the rules to be applied, with the commu-
nication rules competing for objects with the inner rules of the components, and
observing the restriction of maximal parallelism. However, we can distinguish the
two types of rules, “internal evolution rules” (transition rules, symport/antiport
rules, rules with active membranes, etc.) and communication rules. Then, as in [1],
we can apply the rules according to a priority relation, with priority for evolution
rules, or with priority for communication rules. Moreover, we can place various
types of controls on the communication channel itself. For instance, because the
communication rules are antiport rules, we can associate with them promoters or
inhibitors, as used in many places in membrane computing.

A still more natural regulation mechanism is to associate states with the chan-
nels, like in [7]. In this case, the communication rules associated with a pair (i, j) of
components Πi, Πj are of the form (q, u/v, q′), where q, q′ are elements of a given
finite set Q of states; initially, the channel is assumed in a given state q0. A rule as
above is applied only if the cannel is in state q – and the antiport rule (i, u/v, j)
can be applied; after exchanging the multisets u, v among the two components
Πi, Πj , the state of the channel is changed to q′.

An important decision should be made in what concerns the parallelism. In [7],
the channel rules are used in the sequential mode, but we can also consider two
types of parallelism: (i) choose a rule and use it as many times as made possible
by the objects in the two components, or (ii) apply at the same time all rules
of the form (q, u/v, q′) for various u and v (but with the same q and q′), in the
non-deterministic maximally parallel way. In the result discussed below, any of
these two possibilities works – and the result is somewhat surprising:

Theorem 4. Any recursively enumerable language L is (2, 2)-weakly ComN and
ComR parallelizable and has ComS(L) ≤ 2, with respect to extended dP automata
with channel states.

We do not formally prove this assertion, but we only describe the (rather
complex, if we cover all details) construction of the suitable dP automaton.
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Take a recursively enumerable language L ⊆ T+, for some T = {a1, a2, . . . , an}.
For each string w ∈ T+, let valn+1(w) be the value of w when considered as a num-
ber in base n + 1, using the digits a1, a2, . . . , an interpreted as 1, 2, . . . , n, without
also using the digit zero. We extend the notation to languages, in the natural way:
valn+1(L) = {valn+1(w) | w ∈ L}. Clearly, L is recursively enumerable if and only
if valn+1(L) is recursively enumerable, and the passage from strings w to numbers
valn+1(w) can be done in terms of P automata (extended symport/antiport P
systems are universal, hence they can simulate any Turing machine; this is one of
the places where we need to work with extended systems, as we need copies of a
and b – see below – to express the values of strings, and such symbols should be
taken from the environment without being included in the accepted strings).

Construct now a dP automaton ∆ with two components, Π1 and Π2, working
as follows. The component Π1 receives as input a string w1 ∈ T ∗ and Π2 receives
as input a string w2 ∈ T ∗, such that w1w2 should be checked whether or not
it belongs to the language L. Without loss of generality, we may assume that
|w1| ∈ {|w2|, |w2|+ 1} (we can choose a balanced distribution of the two halves of
the string). In the beginning, the state of the channel between the two components
is q0.

Both components start to receive the input symbols, one in each time unit;
the component Π1 transforms the strings w1 in valn+1(w1) copies of a symbol a,
and Π2 transforms the string w2 in valn+1(w2) copies of a symbol b. When this
computation is completed in Π1, a special symbol, t, is introduced. For this symbol,
we provide the communication rule (q0, t/λ, q1), whose role is to change the state
of the channel. We also consider the rule (q1, a/λ, q2). Using it in the maximally
parallel way, all symbols a from Π1 are moved to Π2, in one communication step.

Because we have considered w1 at least of the length of w2 and we also need two
steps for “opening” the channel and for moving the symbols a across it, we are sure
that in this moment in Π2 we have, besides the valn+1(w1) copies of a, valn+1(w2)
copies of b. The second component takes now these copies of a and b and computes
valn+1(w1w2), for instance, as the number of copies of an object c. After that, Π2

checks whether or not valn+1(w1w2) ∈ valn+1(L). If the computation halts, then
the string w1w2 is accepted, it belongs to the language L.

Note that the dP automaton ∆ contains two communication rules (hence
ComS(L) ≤ 2) and that each computation contains two communication steps
(hence ComN(L) ≤ 2), in each step only one rule being used (hence ComR(L) ≤
2). These observations complete the proof of the theorem.

Of course, ComW (∆) = ∞. (Similarly, if we define ComR taking into account
the multiplicity of using the rules, then also ComR can be considered infinite –
hence the assertion in the theorem remains to be stated only for the measure
ComN .)

Instead of changing channel states as above, we can assume that the channel
itself switches from “virtual” to “actual”, like in population P systems, [3]: the
channel is created by object t produced by Π1, and then used for moving a from
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Π1 to Π2 by a usual communication rule (which, by definition, is used in the
maximally parallel way).

Anyway, the conclusion of this discussion is that the results we obtain crucially
depend on the ingredients we use when building our dP systems (as well as on the
chosen definitions for complexity measures and types of parallelizability).

6 Closing Remarks

The paper proposes a rather natural way (using existing ingredients in membrane
computing, bringing no new, on purpose invented, stuff into the stage) for solving
problems in a “standard” distributed manner (i.e., splitting problems in parts,
introducing them in various component “computers”, and constructing the solu-
tion through the cooperation of these components) in the framework of membrane
computing. So called dP schemes/systems were defined, and two notions of par-
allelizability were proposed and briefly investigated for the case of dP automata
(accepting strings).

A lot of problems and research topics were suggested. The reader can imagine
also further problems, for instance, transferring in this area notions and questions
from the communication complexity theory, [9], considering other types of P sys-
tems (what about spiking neural P systems, where we have only one type of objects
and no antiport-like rules for communicating among components?), maybe using
unsynchronized P systems, non-linear balanced input, and so on and so forth. We
are convinced that dP systems are worth investigating.

Note. During the recent Brainstorming Week on Membrane Computing, 1-5 of
February 2010, Sevilla, Spain, several comments about the definitions and the re-
sults of this paper were made, especially by Erzsébet Csuhaj-Varú, György Vaszil,
Rudolf Freund, and Marian Kögler. Several continuations of this paper are now
in preparation; the interested reader is requested to check the bibliography from
[17], in particular, the Brainstorming proceedings volume.

Acknowledgements

This work is supported by Proyecto de Excelencia con Investigador de Reconocida
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Sanuy: A P system based model of an ecosystem of some scavenger birds. Membrane
Computing. Proc. WMC10, Curtea de Argeş, 2009 (Gh. Păun et al., eds.), LNCS
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Universitad Politécnica de Madrid
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Summary. We studied Petri nets with five places constructed in a pseudo-random way:
their underlying net is composed of join and fork. We report initial results linking the
dynamical properties of these systems to the topology of their underlying net.

The obtained results can be easily related to the computational power of some ab-
stract models of computation.

1 Introduction

Recently [4, 5, 1, 7], several abstract models of computation operating with multi-
sets of objects have been related to Petri nets. This study let to define new ways to
prove the computational power of these abstract models of computations. More-
over, it also let a hierarchy of computational process to be defined. This hierarchy
is based on building blocks (small Petri nets used to construct more complex Petri
nets), the way the building blocks are combined, and the way the Petri net runs.

The results related to this hierarchy have been obtained using systems created
ad hoc: the Petri nets were engineered in specific ways so to be able to generate
specific languages. The languages generated by ‘pseudo-random’ Petri nets, remain
to be investigated. Here ‘random’ refers to the fact that Petri nets are created
composing building blocks in a random way, while ‘pseudo’ refers to the fact that
some limitations to this randomness or to the way the Petri nets runs, are imposed.
This direction of research was raised in [3] (suggestion for research 4).

In this paper we report our initial results on these investigations. The overall
aims of this research is to be able to predict the behaviour of a computing system
just looking at what has been called topology of information flow [6], that is, at
the way the several parts of the system interact.
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2 Basic Definitions

The model of Petri nets considered by us are known either as elementary net sys-
tems (EN systems), as 1-bounded place-transitions systems (1-bounded P/T sys-
tems), or safe Petri nets [8].

An elementary net system (or EN system) is a tuple N = (P, T, F, Cin), where:

i) (P, T, F ) is a net, that is:
1. P and T are sets with P ∩ T = ∅;
2. F ⊆ (P × T ) ∪ (T × P );
3. for every t ∈ T there exist p, q ∈ P such that (p, t), (t, q) ∈ F ;
4. for every t ∈ T and p, q,∈ P , if (p, t), (t, q) ∈ F , then p 6= q;

ii) Cin ⊆ P is the initial configuration (or initial marking).

Elements of P are called places (graphically represented with circles), elements
of T are called transitions (graphically represented with rectangles). We use the
common Petri net terminology and notation [8] with the exception of using the
term configuration instead of marking.

We consider maximal strategy as running mode (i.e., the way transitions fire): in
each configuration all transitions that can fire do so. Moreover, if in a configuration
there is a conflict (two different transitions with a not empty intersection of input
sets can fire), then all the transitions in the conflict fire. If after a firing a place
should receive more than one token (from the firing of two different transitions),
then only one token is assumed to be present in that place. This ensures that in
every configuration places have at most one token and that the behaviour (sequence
of configurations) of an EN system is deterministic.

This rather restrictive firing strategy (similar to the ones present in random
Boolean networks [2]) has been mainly dictated by efficiency during these initial
simulations. In section 5 we note that the firing strategy should be definitely
changed in order to obtain results of a more general use.

We considered EN systems composed of only two building blocks: join and fork
depicted in Figure 1.

join fork

Fig. 1. Building blocks: join and fork.
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Definition 1. Let x, y ∈ {join, fork} be building blocks and let t̄x and t̂y be the
transitions present in x and y respectively.

We say that y comes after x (or x is followed by y, or x comes before y or x
and y are in sequence) if t̄•x ∩ •t̂y 6= ∅ and •t̄x ∩ •t̂y = ∅. We say that x and y are
in parallel if •t̄x ∩ •t̂y 6= ∅ and t̄•x ∩ •t̂y = ∅.

We say that a net is composed of building blocks (it is composed of x) if it can
be defined by building blocks (it is defined by x) sharing places but not transitions.
So, for instance, to say that a net is composed of joins means that the only building
blocks present in the net are join.

3 The Simulator and Its Complexity

A computer program (in the following called simulator) able to create and run EN
systems composed of join and fork has been written and it can be downloaded
from http://www.macs.hw.ac.uk/~pier/download.html.

In the following j denotes the number of join, f denotes the number of forks
and p denotes the number of places in a Petri net.

The maximum number of join (or fork) that can be present in a Petri net with
p places is p(p−1)(p−2)

2 . Moreover, when the Petri net is connected, j + f ≥ p
2 .

Given the number of places, the number of Petri nets with j join and f forks
is

(p(p−1)(p−2)
2 )!

j(p(p−1)(p−2)
2 − j)!

∗ (p(p−1)(p−2)
2 )!

f(p(p−1)(p−2)
2 − f)!

This number is definitely high even if one considers that it includes isomorphic
nets. Due to this high number, we could only generate and run nets with 5 places.
This means that the number of join and fork in these nets ranged from 1 to 30.

For each different triple of p, j and f , only 1% of the possible nets has been
created and run for all its possible initial configurations.

The simulator created these nets in a random way.
The set of all possible configurations of such a net is called configuration space.

The dynamics of an EN system is such that it will start from its initial configuration
and it will reach an attractor. With attractor we define both a configuration from
which no firing is possible or a set of configurations that are cyclically repeated.
We name the configurations in the following way: With isolated configuration we
refer to a configuration which is not reachable from any configuration and from
which no transition is possible; with final configuration we refer to a configuration
from which no transition is possible. Clearly, any isolated configuration is also a
final configuration but a configuration can be final but not isolated.

The tests run on a computer with a single CPU of 2.4 GHz and with 1.5 GB of
800 MHz RAM. The simulation took 70 hours and the output files occupy 5 GB.

In Figure 2 a net and its configuration spaces are depicted. In this figure the
configuration with no tokens is not shown (and in the following we do not consider
this configuration). Each configuration in the configuration space is represented as
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a number in a circle. The number encodes the configuration of the EN system (as
a conversion from binary to decimal). For instance, the encoding of configuration
{0, 1, 0, 1, 1} (nodes 0 and 2 have no token while the remaining nodes have 1 token)
in the net depicted in Figure 2 is 11 (place 0 is the leftmost and place 4 is the
rightmost).

Fig. 2. A net and its configuration space

The attractors in Figure 2 are configurations 1, 2, 4, 5, 6, (11, 22) and 31,
where (11, 22) define a cycle (i.e., an attractor with more than one configuration)
in the configuration space. The configurations 1, 2, 5 and 6 are isolated (and
final). Configuration 31 is not isolated as a transition (to itself) indeed is possible.
Configurations 1, 2, 4, 5 and 6 are final.

4 Results

We addressed several questions during our study. The plotted answers to these
questions and brief comments are present in the following. The tables used to gen-
erate the plots can be downloaded from
http://www.macs.hw.ac.uk/~pier/cvPublications.html

How does the probability to have at least one cycle in the configuration space
depend on the number of join and fork?

We found that join and fork equally influence the presence of cycles in the
configuration space. The plot in Figure 3 shows that if the number of fork is
bigger than 9 or the number of join is bigger than 19, then it is certain that the
configuration space contains at least one cycle.

How does the number of not-isolated configurations depend on the number of
join and fork?
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Fig. 3. Probability to have at least one cycle in the configuration space as a function of
the number of join and fork

We found that the number of fork have a strong influence on the number
of not-isolated configurations decreasing them to 0 with only 5 forks are present
in the net. Also the increase of join tend to decrease the number of not-isolated
configurations, but not with a marked effect as the number of forks. This is clearly
shown by the plot in Figure 4.

Interestingly, the maximum number of not-isolated places is reached in nets
with only 2 joins.

Fig. 4. Number of not-isolated configurations as a function of the number of join and
fork

What is the minimum number of cycles present in the state space of Petri nets
as a function of join and fork?
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Also in this case the influence of join and fork is asymmetrical: a net can have
up to 18 join and still no cycle is present in the state space of the Petri net.
Differently, if the net has at least 11 fork, then the state space of the Petri net has
at least 1 cycle. This is shown by the plot in Figure 5.

Fig. 5. Probability of the Petri net to end up in a cycle as a function of the number of
join and fork

How many initial configurations will end up in a cycle depending on the number
of join and fork?

The fact that the state space contains at least a cycle does not imply that
all initial configurations will end up in in a cycle. It is confirmed that for high
numbers of join and fork the Petri net will certainly enter a cycle. This is shown
by the plot in Figure 6.

5 Final Remarks

A Petri net whose attractors are all final configurations can only generate or accept
finite languages. Our study proved that the presence of only join or many join and
a few forks let Petri nets have only final configurations as attractor. This result is
rather immediate: a join consumes tokens, so if a net has only join, then sooner
or later it will run out of tokens.

Thinks become more interesting when attractors with more than one place are
present. In this case the set of languages generated or accepted is infinite. The
kind of languages depends on the number of these attractors and their topology.
We did not study this.

As said in Section 1, these results can be easily translated to formal models of
computation operating with multisets of objects. Unfortunately, the firing strategy
adopted by us, does not find a counterpart in any such model. This is, for instance,
due to the fact that we allow one single token to be used in the firing of more than
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Fig. 6. Number of configurations that end up in a cycle as a function of the number of
join and fork

one transition. The translation of this feature in, for instance, P systems, means
that one single occurrence of an object can be used in the same configuration by
different rules.

For this reason one of our future direction of research will be to implement
firing strategies closer to the operational modes of existing formal models of com-
putation.
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Summary. We identify a family of decision problems that are hard for some complexity
classes defined in terms of P systems with active membranes working in polynomial time.
Furthermore, we prove the completeness of these problems in the case where the systems
are equipped with a form of priority that linearly orders their rules. Finally, we highlight
some possible connections with open problems related to the computational complexity
of P systems with active membranes.

1 Introduction

Membrane systems, usually called P systems, are computing devices inspired by
the internal working of biological cells [6]. The main feature of P systems is a
structure of membranes dividing the space into regions, inside which multisets
of objects describe the molecular environment. A set of rules describe how the
molecules (and often the membranes themselves) evolve during the computation;
usually, the rules are applied in a maximally parallel way, i.e., each component of
the P system must be subject to a rule during each computation step, if a suitable
rule exists. When multiple rules may be applied to an object or membrane, one
of them is nondeterministically chosen. The computation, starting from an initial
configuration, proceeds until no further rule can be applied. For an introduction on
membrane computing we refer the reader to [8, 9], and for the latest information
to the P Systems Webpage [16], where an extensive bibliography on the topic can
be found.

Families of P systems can be used as language recognizers, by associating with
each input string (or to each input length) a P system; this association is sub-
ject to a uniformity condition (i.e., it must be computed by a Turing machine
operating in polynomial time). The constructed P systems can then accept or
reject, thus deciding the membership of strings to the language. The computa-
tional complexity of recognizer P systems with active membranes [7], where the
membranes themselves play an important role during the computation, has been
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subject to extensive investigation, due to their ability of solving NP-complete and
even PSPACE-complete problems [11] in polynomial time: this efficiency is due
to the possibility of creating in polynomial time an exponential number of mem-
branes, which then evolve in parallel using membrane division (a process found in
nature, e.g., in cell mitosis).

In this paper we investigate the existence of complete problems for complexity
classes defined in terms of P systems with active membranes. Some classes are
known to possess them, simply because they coincide with classes defined in terms
of Turing machines and inherit their complete problems: for instance, polynomial-
time P systems with active membranes without membrane division characterize
P [15], while they caracterize PSPACE if all kinds of rule are available [12]. Our
approach is, however, more general; we exhibit problems (inspired by analogous
ones for Turing machines) that are hard for every polynomial-time complexity
class defined in terms of P systems with active membranes, independently of what
rules are available, and complete for several of them if a restricted form of priority
among rules is used.

The remainder of this paper is organized as follows. In Section 2 we recall
the notion of recognizer P systems with active membranes and how to measure
their time complexity. Section 3 describes the bounded acceptance problem; in
particular, the variant for nondeterministic Turing machines is considered and its
NP-completeness is proved. In Section 4 we introduce the bounded acceptance
problem for P systems and prove its hardness for all polynomial-time complexity
classes; we also prove that the problem is complete if we add a linear ordering on
the rules of the P systems.

2 Definitions

We begin by recalling the definition of P systems with active membranes.

Definition 1. A P system with active membranes of the initial degree m ≥ 1 is a
tuple

Π = (Γ, Λ, µ,w1, . . . , wm, R)

where:

• Γ is a finite alphabet of symbols, also called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree) consisting of m mem-

branes enumerated by 1, . . . , m; furthermore, each membrane is labeled by an
element of Λ, not necessarily in a one-to-one way;

• w1, . . . , wm are strings over Γ , describing the multisets of objects placed in the
m initial regions of µ;

• R is a finite set of rules.
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Each membrane possesses a further attribute, named polarization or electrical
charge, which is either neutral (represented by 0), positive (+) or negative (−)
and it is assumed to be initially neutral.

The rules are of the following kinds:

• Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labeled by h, having polarization α
and containing an occurrence of the object a; the object a is rewritten into
the multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having polarization α and
such that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the polarization of h is changed
to β.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the polarization of h is changed
to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the membrane h is dissolved and its
contents are left in the surrounding region unaltered, except that an occurrence
of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having polarization α, con-
taining an occurrence of the object a but having no other membrane inside; the
membrane is divided into two membranes having label h and polarizations β
and γ; the object a is replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

• Non-elementary division rules, of the form
[
[ ]+h1

· · · [ ]+hk
[ ]−hk+1

· · · [ ]−hn

]α

h
→ [

[ ]δh1
· · · [ ]δhk

]β

h

[
[ ]εhk+1

· · · [ ]εhn

]γ

h

They can be applied to a membrane labeled by h, having polarization α, con-
taining the positively charged membranes h1, . . . , hk, the negatively charged
membranes hk+1, . . . , hn, and possibly some neutral membranes. The mem-
brane h is divided into two copies having polarization β and γ, respectively;
the positive children are placed inside the former, their polarizations changed
to δ, while the negative ones are placed inside the latter, their polarizations
changed to ε. Any neutral membrane inside h is duplicated and placed inside
both copies.

A configuration in a P system with active membranes is described by its current
membrane structure, together with its polarizations and the multisets of objects
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contained in its regions. The initial configuration is given by µ, all membranes
having polarization 0 and the initial contents of the membranes being w1, . . . , wm.
A computation step changes the current configuration according to the following
principles:

• Each object and each membrane can be subject to only one rule during a
computation step.

• The rules are applied in a maximally parallel way : each object which appears
on the left-hand side of applicable evolution, communication, dissolution or
elementary division rules must be subject to exactly one of them; the same
holds for each membrane which can be involved in a communication, dissolution
or division rule. The only objects and membranes which remain unchanged are
those associated with no rule, or with unapplicable rules.

• When more than one rule can be applied to an object or membrane, the actual
rule to be applied is chosen nondeterministically; hence, in general, multiple
configurations can be reached from the current one.

• When dissolution or division rules are applied to a membrane, the multiset of
objects to be released outside or copied is the one resulting after all evolution
rules have been applied.

• The skin membrane cannot be divided, nor it can be dissolved. Furthermore,
every object which is sent out from the skin membrane cannot be brought in
again.

A halting computation C of a P system Π is a finite sequence of configurations
(C0, . . . , Ck), where C0 is the initial configuration of Π, every Ci+1 can be reached
from Ci according to the principles just described, and no further configuration can
be reached from Ck (i.e., no rule can be applied). P systems might also perform
non-halting computations; in this case, we have infinite sequences C = (Ci : i ∈ N)
of successive configurations.

We can use families of P systems with active membranes as language recogniz-
ers, thus allowing us to solve decision problems.

Definition 2. A recognizer P system with active membranes Π has an alphabet
containing two distinguished objects yes and no, used to signal acceptance and
rejection respectively; every computation of Π is halting and exactly one object
among yes, no is sent out from the skin membrane during each computation.

In what follows we will only consider confluent recognizer P systems with active
membranes, in which all computations starting from the initial configuration agree
on the result.

Definition 3. Let L ⊆ Σ? be a language and let Π = {Πx : x ∈ Σ?} be a family
of recognizer P systems. We say that Π decides L, in symbols L(Π) = L, when
for each x ∈ Σ?, the result of Πx is acceptance iff x ∈ L.

Usually some uniformity condition, inspired by those applied to families of
Boolean circuits, is imposed on families of P systems. Two different notions of
uniformity have been considered in the literature; they are defined as follows.
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Definition 4. A family of P systems Π = {Πx : x ∈ Σ?} is said to be semi-
uniform when the mapping x 7→ Πx can be computed in polynomial time, with
respect to |x|, by a deterministic Turing machine.

Definition 5. A family of P systems Π = {Πx : x ∈ Σ?} is said to be uniform
when there exist two polynomial-time Turing machines M1 and M2 such that, for
each n ∈ N and each x ∈ Σn

• M1, on input 1n (the unary representation of the length of x), outputs the
description of a P system Πn with a distinguished input membrane;

• M2, on input x, outputs a multiset wx (an encoding of x);
• Πx is Πn with wx added to the multiset located inside its input membrane.

In other words, the P system Πx associated with string x consists of two parts;
one of them, Πn, is common for all strings of length |x| = n (in particular, the
membrane structure and the set of rules fall into this category), and the other
(the input multiset wx for Πn) is specific to x. The two parts are constructed
independently and, only as the last step, wx is inserted in Πn.

Time complexity classes for P systems [10] are defined as usual, by restricting
the amount of time available for deciding a language. By PMCD (resp., PMC?

D)
we denote the class of languages which can be decided by uniform (resp., semi-
uniform) families Π of confluent P systems of class D (e.g., AM denotes the class
of P systems with active membranes) where each computation of Πx ∈ Π halts
in polynomial time with respect to |x|.

3 The bounded acceptance problem for Turing machines

A classic decision problem related to each class of automata is the acceptance or
prediction problem: given an automaton A and a string x over its input alphabet,
is it the case that A accepts x? The difficulty of this problem varies according to
the class of automata: for instance, if we consider finite automata it is in P, while
it is PSPACE-complete for linear bounded automata [3, p. 265]; one of the first
and most important results of computability theory asserts that the problem is
undecidable for Turing machines [13].

Even when the problem is not solvable, one can often devise an easier version
by limiting the amount of resources allocated. Consider the variant defined as
follows.

Definition 6. The bounded acceptance problem BAPNTM for nondeterministic
Turing machines is the set of triples (N, x, 1t) where

• N is a “reasonable” encoding [2] of a nondeterministic Turing machine;
• x is a string over the input alphabet of N ;
• 1t is the unary encoding of a natural number t;

such that N accepts the string x within t computation steps.
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BAPNTM is an interesting problem because it is very easy to prove its NP-
completeness.

Proposition 1. BAPNTM ∈ NP.

Proof (a variant of the proof of Theorem 2.9 in [1]). A nondeterministic Turing
machine N ′, given (N, x, 1t) as input, can easily perform a step-by-step simulation
of a computation of N on x with a polynomial slowdown, making a nondetermin-
istic choice every time N does; simultaneously, on another tape, N ′ counts the
number of simulated computation steps. If N accepts before the counter reaches
t + 1, then N ′ halts and accepts; if, on the contrary, the counter reaches t + 1
without N having accepted, then N ′ halts and reject. Since the input t is given
in unary notation, the whole simulation runs in polynomial time, and N ′ has an
accepting computation on (N, x, 1t) iff N has an accepting computation on x. ut
Proposition 2. BAPNTM is NP-hard.

Proof. Let L ∈ NP be a language. Then, there exists a nondeterministic Turing
machine N deciding L in polynomial time p(n).

Let R : Σ? → Σ? be defined by R(x) = (N,x, 1p(|x|)); the function R can be
computed by a deterministic Turing machine operating in polynomial time, since
N does not depend on x (hence it can be output in constant time) and 1p(|x|)

can be easily computed in polynomial time given a unary encoding of |x| as input
(which can be easily obtained from x itself).

Now let x ∈ Σ?. Clearly x ∈ L iff N accepts x; since N runs in p(n) steps,
this is equivalent to saying that R(x) = (N, x, 1p(|x|)) ∈ BAPNTM: thus, R is a
polynomial-time reduction of L to BAPNTM. ut

4 The bounded acceptance problem for P systems

In this section we discuss a variant of the bounded acceptance problem in the
setting of P systems with active membranes.

Definition 7. Let D be any subclass of P systems with active membranes; the
bounded acceptance problems BAPD and BAP?

D for uniform and semi-uniform
families of P systems of class D are, respectively, the set of triples (Π,w, 1t) and
the set of pairs (Π, 1t) where

• Π is a P system in the class D;
• w is a multiset over the alphabet of Π;
• 1t is the unary encoding of a natural number t;

such that Π accepts within t steps when the multiset w is placed inside its input
membrane (resp., Π accepts within t steps).

It is easy to show that every problem in PMCD can be reduced to BAPD (and
every problem in PMC?

D to BAP?
D) by modifying the proof of Proposition 2.
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Lemma 1. BAPD is PMCD-hard, and BAP?
D is PMC?

D-hard.

Proof. Let L ∈ PMCD be a language. Then, there exists a uniform family of
P systems Π = {Πx : x ∈ Σ?} deciding L in polynomial time p(n); the family
Π is constructed by polynomial-time Turing machines M1 (for the portion that
only depends on the length of the input) and M2 (for the input multiset, which
depends on the whole string).

Let R : Σ? → Σ? be defined by R(x) =
(
M1(|x|),M2(x), 1p(|x|)); clearly, the

function R can be computed in polynomial time by a deterministic Turing machine.
For each x ∈ Σ? we have, by hypothesis, x ∈ L iff the P system Πx, constructed by
combining M1(|x|) with the multiset M2(x), accepts within p(|x|) steps; in other
words, x ∈ L iff R(x) ∈ BAPD. But then R is a polynomial-time reduction from
L to BAPD.

The proof is completely analogous in the semi-uniform case: the only difference
is that we have no input multiset. ut

Unfortunately, proving that the BAP for standard P systems with active mem-
branes belongs to PMCD or PMC?

D (if this is indeed the case) seems to be much
more difficult than proving the same result for Turing machines. The reason is
that it is very easy to equip a Turing machine with a clock that halts the machine
after a certain number of steps: there are few “moving parts” to stop, namely the
tape heads, and the transition function controls them all simultaneously. On the
other hand, in a P system the global state is distributed, and each rule only affects
a small part of it; the computation is also, in general, nondeterministic. It is then
very difficult to stop every region of the P system, at least in an efficient way (i.e.,
with a polynomial slowdown): the intuitive idea of halting the system by dissolv-
ing every membrane when a certain period of time has passed also fails, since the
dissolution rule may enter into a conflict with the original rules, and hence might
never be applied.

4.1 Completeness of BAP in a special case

By adding a limited form of priority among rules to P systems with active mem-
branes (both with and without polarizations), we are able to find a class D such
that a variant of BAPD (resp., BAP?

D) is complete for PMCD (resp., PMC?
D).

Definition 8. A P system with active membranes (with or without polarizations)
and linear priority

Π = (Γ,Λ, µ, w1, . . . , wm, R,≤)

is a P system (Γ, Λ, µ,w1, . . . , wm, R) with active membranes equipped with a linear
(i.e., total) order ≤ over R, which is used as follows: whenever a nondeterministic
choice between two rules r1 < r2 has to be made during the computation, the rule
which is actually applied is r2.
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Confluent families of P systems with active membranes and polarizations us-
ing only elementary membrane division are powerful enough to solve NP-complete
problems in polynomial time [15]. Due to confluence, we know that any possible
computation (i.e., any sequence of nondeterministic, maximally paralles choices of
rules) yields the correct result: in particular, the computation obtained by linearly
ordering the set of rules in an arbitrary way. This proves that introducing prior-
ities does not affect the ability of solving NP-complete problems in polynomial
time. On the other hand, one can simulate polynomial-time P systems with active
membranes in polynomial space, and this simulation can be easily extended to in-
clude priorities without increasing the space requirements[12]. In other words, the
class of problems decided in polynomial time by P systems with active membranes
(with polarizations) and linear priority is located between NP and PSPACE.

Proposition 3. NP ⊆ PMCD ⊆ PMC?
D ⊆ PSPACE. ut

The existence of complete problems for PMCD and PMC?
D not only provides

us with a possible way of proving PMCD ⊆ NP and PMC?
D ⊆ NP by solving

one of these problems via a polynomial-time nondeterministic Turing machines,
but it also gives us another hint on the nature of this complexity class. It is a
common assumption [5] that the the cumulative polynomial hierarchy PH (i.e.,
the union of all levels of the hierarchy), which is also located between NP and
PSPACE, consists of infinitely many distinct levels. As a consequence, PH is
conjectured not to have complete problems, since their existence would imply the
collapse of the hierarchy, i.e., only finitely many levels would exist: we can then
conjecture that PMCD and PMC?

D differ from PH (or, for that matter, from
any other class lacking complete problems).

On the other hand, if we consider polarizationless P systems with active mem-
branes and elementary division only, we run into the so-called P conjecture [14, 4]:
these systems are conjectured to solve only P problems in polynomial time, but
a proof of this statement is still missing. We are able to exhibit a complete prob-
lem when linear priority among rules is assumed: solving it, or solving any new
complete problem which could emerge in the future, via a polynomial-time deter-
ministic Turing machine (if this is possible at all) might provide some insight for
the P conjecture.

The bounded acceptance problem for P systems with active membranes and
linear priority is hard for PMCD and PMC?

D as described above, and its com-
pleteness can be proved as follows.

Theorem 1. Let D be any subclass of P systems with active membranes (with or
without polarizations) and linear priority, using at least evolution, communica-
tion and dissolution rules. Then BAPD and BAP?

D are complete for PMCD and
PMC?

D respectively.

Proof. We only have to prove membership in PMCD (we focus on the uniform
version here, as the argument for the semi-uniform one is just a simplification
of it). Given (Π, w, 1t), a polynomial-time Turing machine M1 can construct a
P system Π ′ which is identical to Π except for the following differences:
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• The membrane structure is enclosed by two further membranes with new labels
h1 and h0 (h0 becomes the new skin membrane).

• The objects yes and no of Π are renamed as the two new symbols yes ′ and
no′ (they are also renamed in all rules involving them).

• Each of the original membranes of Π contains a timer object z0, that evolves
to the new objects z1, . . . , zt according to the rules

[z0 → z1]αh [z1 → z2]αh . . . [zt−1 → zt]αh [zt]αh → #

for all α ∈ {+, 0,−} and for each original label h. These objects count up
to t and then dissolve the membrane producing a new “junk” object. In the
polarizationless case, the charges are simply omitted.

• The new membrane h1 also contains a timer object z′0 with the rules

[z′0 → z′1]
α
h1

[z′1 → z′2]
α
h1

. . . [z′t → z′t+1]
α
h1

[z′t+1]
α
h1
→ no

The goal of these objects is to count up to t+1 and then dissolve h1, producing
the object no. The objects z′i are also assumed to be different from any object
in Π.

• The new membranes h1 and h0 are also involved in the following rules:

[yes ′]h1 → yes [no′]h1 → no
[yes]h0 → [ ]h0 yes [no]h0 → [ ]h0 no

• The priority among the original rules is left untouched, but all the new rules
have a higher priority than them; the precise ordering among the new rules is
arbitrary.

The Turing machine M2 constructing the input multiset simply outputs the mul-
tiset w. Thus, we obtain a uniform family Π of P systems.

If the original P system Π sends out its output from its skin membrane within
t steps, then either yes ′ or no′ appears in membrane h1 of Π ′. In such a case, yes
(resp., no) is first sent out to h0 (by dissolution, hence interrupting the timer z′)
and then to the environment as the result of the computation, which in this case
is clearly the same as Π. If, however, Π computes for more than t steps, then its
membranes are all simultaneously dissolved in Π ′ in step t+1 (recall that the new
rules have highest priority) and membrane h1 produces a no object that becomes
the result of the computation. Thus, the family Π solves BAPD, and it does so in
O(t) steps, which is polynomial time with respect to the input size. ut

5 Conclusions

We have shown that the bounded acceptance problem, that is, determining whether
a given P systems accepts its input within a certain number of steps, is complete
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for the class of decision problems that can be solved in polynomial time by cer-
tain families of P systems. The P systems covered by the proof are recognizer
P systems with active membranes, with or without polarizations, using at least
evolution, communication and dissolution rules; additionally, it is required that a
linear priority relation is defined on the rules of the system. The result holds both
in the uniform and semi-uniform cases.

The classes of decision problems PMCD and PMC?
D defined as above are

easily shown to be located between NP and PSPACE: hence, the existence of
decision problems for these classes might provide an useful tool in finding a tighter
upper bound, as well as in differentiating them from classes, such as the cumulative
polynomial hierarchy PH, that do not (apparently) possess complete problems.

An outstanding open question concerns the existence of complete problems for
complexity classes defined in terms of standard (i.e., without priority) polynomial-
time P systems with active membranes, particularly those without non-elementary
division rules, as they still lack a characterization in terms of Turing machines;
investigating this question in the polarizationless case might shed new light on the
P conjecture.
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Summary. In this paper we take the first steps in studying possible connections between
non-elementary division with limited membrane depth and the levels of the Polynomial
Hierarchy. We present a uniform family with a membrane structure of depth d + 1 that
solves a problem complete for level d of the Polynomial Hierarchy.

1 Introduction

Active membrane systems without charges are an extremely interesting group of
models to study from the computational complexity point of view. Forbidding the
use of a single rule type yields dramatic differences in computing power of these
models. For example, it is known that systems with strong non-elementary division
characterise PSPACE [1, 14], but when dissolution is forbidden these systems can
solve at most problems in NL in the AC0-semi-uniform case [7], and at most AC0 in
the AC0-uniform case [8]. Since AC0 ( NL ( PSPACE it seems these rules somehow
capture different aspects of computation.

In this report we present our first step towards a better understanding of the
difference between P and PSPACE in terms of membrane systems. We suspect that
the depth of a membrane system combined with non-elementary division is the key
to this difference. Non-elementary division an operation where a membrane divides
and all child membranes (and their child membranes etc.) get copied. There are two
varieties of non-elementary division, “strong” which is triggered by membranes,
and “weak” which is triggered by objects. (The labels “weak” and “strong” have
nothing to do with the power of these rules.) Elementary division is where division
is only permitted on membranes that do not have child membranes, and can be
thought of as non-elementary division on structure of depth of 0.

• Systems with strong non-elementary division and polynomial membrane depth
are known to characterise PSPACE [1, 14].
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• Systems with weak non-elementary division and polynomial depth can solve at
least all of NP ∪ coNP [3].

• Systems with elementary division (non-elementary division on depth 0) are
believed to characterise P (see [6, 16] for some partial results, this is an open
problem known as the P-conjecture [5, 12]).

This has lead us to an intriguing hypothesis: that by using non-elementary
division rules and by limiting the depth of the membrane structure we can charac-
terise each level of the polynomial hierarchy from P to PSPACE. If this hypothesis
is correct it will help us understand how membrane division contributes in the
jump from P to PSPACE and will help resolve the P-conjecture.

The idea that increasing the depth of the membrane structure also increases
the computing power of the systems is also consistent with another recent result.
Porreca et al. [13] show that (if no time limit is imposed) increasing the depth of
active membrane systems using only communication and strong non-elementary
division rules permits the systems to solve exponentially harder problems.

This report presents our first steps to proving a link between non-elementary
division for a specific membrane depth and the polynomial hierarchy. We show
that logspace uniform families of membrane system with a structure of depth d+1
can solve problems complete for the dth level of the polynomial hierarchy. In other
words, adding a further level of depth gives us the power of an oracle for the
previous level of the hierarchy.

In future work we hope to find a corresponding upper-bound where a Turing
machine with d alternations can simulate a membrane system with non-elementary
division and depth d + 1.

2 Definitions for Membrane Systems

In this section we define membrane systems and some complexity classes, these
definitions are based on those from [4, 11, 9, 10, 14]. The set of all multisets over
a set A is denoted MS(A).

2.1 Active membrane systems

Active membrane systems are a class of membrane systems with membrane division
rules. In this paper we use division rules that can act on elementary membranes,
which are membranes that do not contain other membranes (i.e. leaves in the
membrane structure), or non-elementary membranes, membranes that do contain
other membranes.

Definition 1. An active membrane system without charges is a 6-tuple Π =
(O, µ, M, H, L, R) where,

1. O is the alphabet of objects;
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2. µ = (Vµ, Eµ) is a tree representing the membrane structure, where Vµ ⊆ N
and Eµ ( Vµ × Vµ;

3. M : Vµ → MS(O) maps membranes to their multisets;
4. H is the finite set of membrane labels;
5. L : Vµ → H maps membranes to their labels;
6. R is a finite set of developmental rules of the following types (where a, b, c ∈ O

and u ∈ MS(O), h ∈ H):
(a) [ a → u ]h (object evolution),
(b) a [ ]h → [ b ]h (communication in),
(c) [ a ]h → [ ]h b (communication out),
(d) [ a ]h → b (membrane dissolution),

(ew) [ a ]h → [ b ]h [ c ]h, (weak non-elementary membrane division).

The vertices Vµ of the membrane structure tree µ are the individual membranes
of the system. The parent of all membranes in the system (the root vertex in µ) is
called the “skin” and has label 0 ∈ H. A configuration C of a membrane system is a
tuple (µ, M, L) whose elements are defined in Definition 1. A permissible encoding
of a membrane system 〈Π〉, or a configuration 〈C〉, encodes all multisets in a unary
manner. For example, a multiset must be specified in the format [ a, a, a, b, b ],
rather than a3b2, in order to ensure that at most a polynomial number of objects
are initially encoded in a system.

The rules in the set R are applied to a configuration according to the following
principles:

• All the rules are applied in a maximally parallel manner. In each timestep,
each object in a membrane can only be used for one rule (non-deterministically
chosen when there are several possibilities), but any object which can evolve
by a rule of any form must do so.

• If a membrane labelled h is divided by a rule of type (e) and there are objects
in this membrane which evolve via rules of type (a), then we assume that first
the evolution (a) rules are used, and then the division (e) rules. This process
takes only one step.

• The rules associated with membranes labelled with h are used for membranes
with that label. In each timestep, a membrane can be the subject of only one
rule of types (b)–(ew).

A computation of a membrane system is a sequence of configurations such that
each configuration (except the initial one) is obtained from the previous one by a
transition (one-step maximally parallel application of the rules). Membrane sys-
tems are non-deterministic, therefore on a given input there are multiple possible
computations. A computation that reaches a configuration where no more rules
are applicable is called a halting computation.

Definition 2. A recogniser membrane system is a membrane system Π such that:

1. all computations halt,
2. yes, no ∈ O,
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3. the object yes or object no (but not both) appear in the multiset of the mem-
brane with label 0 (the skin),

4. and this happens only in the halting configuration.

2.2 Complexity classes

A problem is a set X = {x1, x2, . . .} ⊆ Σ∗ and its complement is X = Σ∗ − X
where Σ is some finite alphabet. We say that a family Π of membrane systems
recognises a problem if for each x ∈ Σ∗ there is some Π ∈ Π that decides if x ∈
X. We denote by |x| = n the length of any instance x ∈ Σ∗. Throughout this
paper, AC0 circuits are DLOGTIME-uniform, polynomial sized (in input length n),
constant depth, circuits with AND, OR and NOT gates, and unbounded fan-in [2].
FP, FL, and FAC0 are the classes of functions that are respectively computable
by deterministic Turing Machines in polynomial time, by deterministic Turing
machines using logarithmic space, and by DLOGTIME-uniform polynomial-sized
alternating circuits with unbounded fan-in and constant depth.

Definition 3. Let R be a class of recogniser membrane systems and let t : N→ N
be a total function. Let E and F be classes of functions. The class of problems
solved by a (E,F)-uniform family of membrane systems of type R in time t, de-
noted (E, F)–MCR(t), contains all problems X such that:

• There exists an F-uniform family of membrane systems, Π = {Π1,Π2, . . .} of
type R: that is, there exists a function f ∈ F, f : {1}∗ → Π such that f(1n) =
Πn, where |x| = n.

• There exists an input encoding function e ∈ E, e : X ∪ X → MS(I) such
that e(x) is the input multiset, which is placed in a specific input membrane
of Πn, where |x| = n and I ( O is the set of input objects.

• Π is t-efficient: Πn always halts in at most t(n) steps.
• The family Π is sound with respect to (X, e, f); that is if there is an accepting

computation of the system Π|x| on input multiset e(x) then x ∈ X.
• The family Π is complete with respect to (X, e, f); that is, for each in-

put x ∈ X, then every computation of the system Π|x| on input multiset e(x)
is accepting.

We define the set of languages decided by a uniform family of membrane systems
in polynomial time to be

(E, F)–PMCR =
⋃

k∈N
(E,F)–MCR(nk)

When the symbols E and F are replaced by complexity class names such as AC0, L
or P it means that the uniformity conditions under consideration are in the function
versions of these classes. For example, if we let E = F = AC0 then we mean that
the functions e ∈ E and f ∈ F are computable in uniform FAC0 and we say we
have an AC0-uniform family.
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Let AM0
+wne denote the class of membrane systems that obey Definition 2, and

Definition 1. Thus (AC0, L)–PMCAM0
+wne

denotes the class of problems solvable
by L-uniform families of active membrane systems without charges in polynomial
time with weak non-elementary division rules where the input is encoded using a
function in FAC0.

Remark 1. A membrane system is said to be confluent if it is both sound and
complete. That is, a membrane system Π is confluent if all computations of Π
with the same input x (properly encoded) give the same result; either always
“accepts” or else always “rejects”.

In a confluent membrane system, given a fixed initial configuration, the system
non-deterministically chooses one from a number of valid computations (config-
uration sequences), but all of these computations must lead to the same result,
either all accepting or all rejecting.

3 Polynomial Hierarchy

A well know extension for models of computation is to augment them with an
“oracle”, that is, the ability to solve certain decision problems in a single timestep.
An oracle machine is a machine with access to a special oracle tape that is used to
make queries of the form “is q ∈ L” for some language L. By the notation MC we
mean the set of problems solved by machines characterising the complexity class M
having access to an oracle for a language L in the complexity class C. For instance,
PNP is the class of problems solved by deterministic Turing machines working in
polynomial time and using an oracle for a problem in NP.

Definition 4 (The Polynomial Hierarchy). The first level of the hierarchy is
∆0P = Σ0P = Π0P = P. Then each level of the hierarchy is defined for all i ≥ 0,

∆i+1P = PΣiP

Σi+1P = NPΣiP

Πi+1P = coNPΣiP

We define the cumulative polynomial hierarchy to be the class PH = ∪i≥0ΣiP.

Note that Σ1P = NP and Π1P = coNP. The hierarchy possesses the following
inclusion structure:

ΣiP ∪ΠiP ⊆ ∆i+1P ⊆ Σi+1P ∩Πi+1P, for all i ≥ 0.

Each level of the polynomial hierarchy has its own complete problems.
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Problem 1 (Boolean Satisfiability with i Quantifiers (QSATd)). Given a
Boolean formula ϕ, and a partitioning of the variables of ϕ into d sets X1, . . . , Xd.
Is there a partial truth assignment for the variables in X1 such that for all the
partial truth assignment for the variables in X2 such that there is a partial truth
assignments for the variables in X3, and so on up to Xd, such that ϕ is satisfied
by the overall truth assignment?

Lemma 1. QSATd is complete for the class ΣdP[15].

We have defined QSATi so that the odd quantifiers are existential. Without loss
of generality we can assume that the expression ϕ is always in conjunctive normal
form with three literals in each clause (3CNF). We refer to this restriction of
QSATd as ΣdSAT for short. If the odd numbered sets of variables are universal
and ϕ in disjunctive normal form with 3 variables in each clause (3DNF) we refer
to it as ΠdSAT.

4 Description of a Uniform Family to Solve ΣdSAT

In this section we provide some details of a uniform family of active membrane
systems with a membrane structure d + 1 levels deep which decides instances of
ΣdSAT. The uniform family implements the following straightforward quantifier
elimination algorithm to establish the validity of quantified Boolean formulas. We
first describe how the algorithm works on QSAT, then show how it is affected by
considering the restriction ΣdSAT. The algorithm works by reducing the problem
to the evaluation of quantifier-free and variable-free expressions. This method is
based on the following simple observations:

∀xψ(x) ⇐⇒ ψ(0) ∧ ψ(1)
∃xψ(x) ⇐⇒ ψ(0) ∨ ψ(1).

By applying these equivalences recursively to an instance of ΣdSAT, the quantifiers
can be eliminated one by one. We then evaluate the final fully expanded expression
to obtain the result. This evaluation can be computed in polynomial time with
respect to the size of the expression; note however, that the expression to evaluate
is exponentially larger than the input, since eliminating a quantifier doubles its
size.

This quantifier elimination algorithm is needlessly inefficient when executed
sequentially: since QSAT is in PSPACE, this problem can be solved in exponen-
tially less space. However, the algorithm can be made to run in polynomial time
if an exponential number of processors are available. The two sub-formulas result-
ing from the elimination of a quantifier can be evaluated independently, and their
truth values conjuncted or disjuncted (according to the specific quantifier) only
in the last step. This is equivalent to evaluating the formula under every possible
assignment to the variables, then feeding the results into an exponentially-sized
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Boolean circuit C which forms a complete binary tree (the same form as the recur-
sion tree of the quantifier elimination algorithm, or equivalently, as the parse tree
of the resulting Boolean expression) where the nodes of depth i are ∧-gates (resp.,
∨-gates) if variable xi+1 is universally (resp., existentially) quantified. Notice that
the depth of this circuit is linear with respect to the number of variables.

When the number of alternations of quantifiers is bounded by a constant d (as
in the problems ΣdSAT and ΠdSAT), and if unbounded fan-in gates are available,
the circuit used to combine the results of the evaluation of the formula can be
reduced to constant depth d. Indeed, a sequence of k consecutive quantifiers can
be eliminated simultaneously, as long as they are all universal or all existential,
and the values of the 2k resulting sub-formulas fed into a single ∧- or ∨-gate, thus
increasing the depth of the circuit just by one. In symbols:

∀x1 · · · ∀xkϕ(x1, . . . , xk) ⇐⇒
∧

(x1,...,xk)∈{0,1}k

ϕ(x1, . . . , xk)

∃x1 · · · ∃xkϕ(x1, . . . , xk) ⇐⇒
∨

(x1,...,xk)∈{0,1}k

ϕ(x1, . . . , xk).

4.1 Encoding of ΣdSAT instances

We specify that instances of ΣdSAT are encoded as follows.
We encode which variables are bound by which quantifiers in a binary matrix

Q with m rows and m columns. Each column represents one of the m variables of
the formula. There are a maximum of m rows since at most d ≤ m quantifiers are
possible for each instance. The elements of Q are defined as follows:

qi,j =

{
1 variable xj is bound by the ith quantifier
0 otherwise

To encode the Boolean formula ϕ we use P a 2m×2m×2m three dimensional
binary matrix. Each element of the matrix represents the three variables in a clause
in the problem instance. If the element qi,j,k = 1 then the variables xi mod m,
xj mod m xk mod m exist in the clause. If i < m then the variable x1 is unnegated
in the clause while if i > m then the variable xi appears negated.

The total length of the binary string (we flatten the matrices to strings) to
encode an instance of ΣdSAT with m variables is thus m2 + 2m3 bits.

4.2 Evaluating quantified Boolean formulas

We now describe a logspace uniform family of active membrane systems without
charges to recognise problem ΣdSAT and where d is odd. (The arguments for even
d and for the problem ΠdSAT are similar.) The family encoding function f takes
as input the number 1m2+2m3

which is the length of the input instance encoded
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in unary, from this it calculates the value m which is used to construct the family
member Πn.

We present a high level sketch of the membrane structure and rules of Πn to
convince the reader of the systems existence.

The membrane structure µ of Πn is represented (in bracket language) as fol-
lows:

d membranes︷ ︸︸ ︷[[ · · · [[ [
[ ]c〈1,1,1〉 [ ]c〈1,1,2〉 · · · [ ]c〈2m,2m,2m〉︸ ︷︷ ︸

2m3 membranes

]
d+1

]
d

]
d−1

· · · ]
2

]
1

The input membrane is d + 1 and contains the objects produced by the e
function from Definition 3. This function takes a potential instances of ΣdSAT
as input, instances are encoded as binary strings using the scheme described in
Section 4.1. For each element pi,j,k = 0 of the matrix P an object c〈i,j,k〉 is created,
these represent the clauses not used in the instance. For each element qi,j = 1 of
the matrix Q the object xi,j,0 such that 1 ≤ i ≤ m and variable xi is bound by the
j-th quantifier in the input formula. The third subscript of xi,j,0 is a time counter,
which is incremented during each computation steps by evolution rules such as
[xi,j,t → xi,j,t+1]d+1, unless a different behaviour is explicitly described below for
some values of t. It is easy to imagine how a uniform constant depth circuit can
map the encoding described in Section 4.1 to these objects, so we claim the object
encoding function e is in FAC0.

A timer-object zi,0 is contained in membrane i for 1 ≤ i ≤ d + 1; it is also
incremented via [zi,t → zi,t+1]i during each step, unless explicitly stated below.
All membranes cj contain an analogous object z0,0.

The computation of Πn on a given input is divided into four phases.

Phase 1. Dissolution of membranes representing unused clauses.

Membrane c〈i,j,k〉 represents the same clause as the element pi,j,k in Section 4.1.
These membranes are dissolved during the first two computation steps if that
clause does not occur in the input formula (i.e., if object c〈i,j,k〉 occurs in the
input multiset), according to the following rules:

c〈i,j,k〉 [ ]c〈i,j,k〉 → [c〈i,j,k〉]c〈i,j,k〉 [c̄〈i,j,k〉]c〈i,j,k〉 → λ

The total duration of Phase 1 is exactly two computation steps.

Phase 2. Quantifier elimination

In the second phase we use non-elementary membrane division in order to carry
out the process of quantifier elimination, as described in the beginning of this
section.

Let xi be the variable bound by the first quantifier having the smallest sub-
script. The corresponding object xi,1,2 (here the third subscript is 2 because the
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first phase took two steps) is first moved to membrane 2 (the one immediately
below the corresponding quantifier-membrane) by using a series of communication
rules:

[xi,1,2]d+1 → [ ]d+1 xi,1,3 [xi,1,3]d → [ ]d xi,1,4 · · ·
[xi,1,d−1]4 → [ ]4 xi,1,d [xi,1,d]3 → [ ]3 xi,1,d+1

Then, object xi,1,d+1 divides membrane 2, duplicating all of its substructure, and
becoming a “true” object on one side and a “false” object on the other:

[xi,1,d+1]2 → [ti,ε,d+2]2 [fi,ε,d+2]2

The second subscript is erased (i.e., replaced by ε) in the process, since it is not
needed anymore. The object ti,ε,d+2 is now brought back to membrane d+1 using
another series of communication rules:

ti,ε,d+2 [ ]3 → [ti,ε,d+3]3 ti,ε,d+3 [ ]3 → [ti,ε,d+4]3 · · ·
ti,ε,2d [ ]d → [ti,ε,2d+1]d ti,ε,2d+1 [ ]d+1 → [ti,ε,2d+2]d+1

and analogously for fi,ε,d+2. Notice that now we have two instances of membrane
d + 1: in one of them, the variable xi is set to true, and in the other it is set to
false. The timer subscript of ti,ε,d+2 and fi,ε,d+2 continues to be incremented inside
membrane d + 1.

In the subsequent steps, the objects representing the other variables bound
by the first quantifier move to membrane 2 to divide and generate an assignment
for their variable then move back to membrane d + 1. This same process is then
performed for all variables bound by the second quantifier, then third and so
on until the dthquantifier. The timers can be synchronized correctly by always
assuming the longest possible path (from membrane d + 1 to 2) which is 2d + 1
steps. The time required by Phase 2 is then m(2d + 1) steps. At the end of this
phase each of the 2m copies of membrane d + 1 contains a different assignment
(either a ti,ε,m(2d+1)+2 or fi,ε,m(2d+1)+2 object) to the variables x1, . . . , xm.

Phase 3. Evaluation of the matrix of the formula.

The objects representing truth assignments of the variables now must be copied
so that there are enough for each clause-membrane to take in. That is, each mem-
brane representing a clause containing the literal xi can bring in a copy of the
corresponding “true” object, and each one containing the literal x̄i can bring in a
copy of the corresponding “false” object. Each of the copies is subscripted by the
name of one of the clauses which they satisfy, i.e.,

[ ti,ε,m(2d+1)+2 → {t′i,ε,〈j,k,l〉 | i = j ∨ i = k ∨ i = l} ]d+1

[ fi,ε,m(2d+1)+2 → {f ′i,ε,〈j,k,l〉 | i + m = j ∨ i + m = k ∨ i + m = l} ]d+1

Notice that these objects do not need a timer subscript.
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To evaluate a clause occurring in the input formula, membrane c〈i,j,k〉 tries to
bring in one of the objects corresponding to a variable assignment that will make
the clause true. (Recall that in the first phase we removed all clauses not appearing
in the input instance.) For example, for the membrane c〈1,2,6〉 which represents the
clause x1 ∨ x2 ∨ x̄3 uses the following rules:

t′1,ε,〈i,j,k〉 [ ]c〈1,2,6〉 → [t′d+1]c〈1,2,6〉 where 1 = i ∨ 1 = j ∨ 1 = k

t′2,ε,〈i,j,k〉 [ ]c〈1,2,6〉 → [t′d+1]c〈1,2,6〉 where 2 = i ∨ 2 = j ∨ 2 = k

f ′3,ε,〈i,j,k〉 [ ]c〈1,2,6〉 → [t′d+1]c〈1,2,6〉 where 6 = i ∨ 6 = j ∨ 6 = k

At most three objects are sent to in each clause membrane c〈i,j,k〉 in successive
steps. One of the objects t′d+1 (whose only subscript indicates that it is a “true”
object of level d+1, this prevents mixing up truth values on different levels of the
membrane structure) after at most three steps dissolves membrane c〈i,j,k〉 via

[t′d+1]c〈i,j,k〉 → t′d+1

If t′d+1 has not dissolved c〈i,j,k〉 at time m(2d+1)+7, then we infer that the clause
is not satisfied. The counter object z0,m(2d+1)+7 (whose second subscript has been
incremented each step) in each remaining clause membrane evolves into a false
value and dissolves the membrane:

[z0,m(2d+1)+7]c〈i,j,k〉 → f ′d+1

After at most six computation steps, all the objects denoting the results of the
evaluations have been sent to d + 1.

Membrane d + 1 now computes the conjunction of the value-objects located
inside it. If a “false” object f ′d+1 appears, then the whole conjunction has a false
result which is denoted by f ′d:

[f ′d+1] → f ′d

If no instance of f ′d+1 appears inside d + 1 at time m(2d + 1) + 9, then all clauses
evaluate to true. The object zd+1,m(2d+1)+9 (obtained by repeatedly increasing the
second subscript of zd+1,0 as described above for z0,0) is then used to produce a
true result:

[zd+1,m(2d+1)+9] → t′d

Now each instance of membrane d contains either t′d or f ′d, each of these objects
represents the evaluation of Boolean formula on some assignment. The whole phase
requires at most eight steps.

Phase 4. Computing the value of the whole formula

The 2m−1 copies of membrane d (corresponding to the innermost quantifier of the
input formula) must now combine the results coming from the (now dissolved)
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children membranes labelled by d+1. Since d is odd by hypothesis, the last quan-
tifier is ∃, hence the results must be combined by disjunction. If a true object t′d
exists, then the result of the evaluation is, in turn, true:

[t′d]d → t′d−1

otherwise, we can dissolve d via the object zd,m(2d+1)+11 (when its counter reaches
this value), which is transformed into a false value:

[zd,m(2d+1)+11]d → f ′d−1

The evaluation then proceeds to the upper (i.e., outermost) levels of the mem-
brane structure in a completely analogous way, alternating universal quantifica-
tion (corresponding to conjunction, which is performed as described at the end
of Phase 3) and existential quantification. Clearly, the counters of the zi,t objects
must be adjusted appropriately: this is easy to accomplish, since the evaluation of
each quantifier requires at most two computation steps.

The only difference occurs on the last level: instead of sending out object t′0
or f ′0 from the outermost membrane, we use the objects yes and no in order to
signal the result of the whole computation.

Phase 4 is completed in 2d steps.
This Section describes the proof for the following theorem.

Theorem 1. ΣdSAT ∈ (AC0, L)–PMCAM0
+wne

where the depth of the membrane
structure is limited to d + 1.

Note that we do not give the membrane system family in enough detail to show
that it holds for AC0-uniformity however the system described is easily L uniform.

Corollary 1. QSAT ∈ (AC0, L)–PMCAM0
+wne

if the depth of the membrane struc-
ture is polynomial of m, the number of variables.

5 Conclusions and Future Directions

We proved that in the setting of active membrane systems without charges and
using non-elementary division rules, a membrane structure of depth d + 1 is suf-
ficient to decide (in polynomial time) the validity of quantified Boolean formulas
with d alternations of quantifiers. An interpretation of this result is that each level
of nesting of membranes provides access to an oracle. Since there is no known way
to perform the same task using substantially shallower membrane structures, this
seems to suggest that increasing the depth of the membrane structure actually
increases the computing power of the systems.

Whether this apparent phenomenon corresponds to reality remains an open
problem. Future work on this topic may involve simulating arbitrary (d + 1)-
depth families of membrane systems by devices characterising the dth level of
the polynomial hierarchy (such as suitable alternating Turing machines). Also,
identifying the relationship between depth and membrane division on the one
hand, and alternation on the other.
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Summary. A sequence of papers have been recently published, pointing out various
intractable problems which may be solved in certain fashions within the framework of
spiking neural (SN) P systems. On the other hand, there are also results demonstrating
limitations of SN P systems. In this paper we define recognizer SN P systems providing a
general platform for this type of results. We intend to give a more systematic character-
ization of computational power of variants of SN P systems, and establish their relation
to standard complexity classes.

1 Introduction

The spiking neural P systems, incorporating in membrane computing ideas from
spiking neurons, see, e.g., [18], were introduced in [12]. In short, an SN P system
consists of a set of neurons placed in the nodes of a graph, representing synapses.
The neurons send signals (spikes) along synapses (edges of the graph). This is done
by means of firing rules, which are of the form E/ac → a; d, where E is a regular
expression, c is the number of spikes consumed by the rule, and d is the delay from
firing the rule and emitting the spike. The rule can be used only if the number of
spikes collected by the neuron is “covered” by expression E, in the sense that the
current number of spikes in the neuron, n, is such that an ∈ L(E), where L(E) is
the language described by expression E. In the interval between firing a rule and
emitting the spike, the neuron is closed/blocked, it does not receive other spikes
and cannot fire again. There also are rules for forgetting spikes, of the form as → λ
(s spikes are just removed from the neuron). Starting from an initial distribution of
spikes in the neurons and using the rules in a synchronized manner (a global clock
is assumed), the system evolves. A sequence of transitions among configurations
of an SN P system, starting in the initial configuration, is called a computation.
One of the neurons is designated as the output neuron and its spikes can also exit
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the system. The sequence of steps when the output neuron sends spikes to the
environment is called the spike train of the computation.

In section 3.2 we propose a definition of (uniform) families of recognizer SN P
systems which should be still more elaborated in the future work. Then we use this
apparatus to study the computational power of deterministic (or, more generally,
confluent) SN P systems under the following conditions:

general regular expressions / single-star normal form,
polynomial / exponential number of activated neurons,
polynomial uniformity / non-uniformity by Turing machines,
cyclic / acyclic architecture.

Main theoretical tools we use to study these topics are logic circuits and RAM
computers which can simulate SN P systems in a convenient way.

2 Prerequisites

We assume the reader to be familiar with basic language and automata theory, as
well as with basic membrane computing, e.g., from [22] and [26], respectively (we
also refer to [21] for an up-to-date information about membrane computing), so
that we introduce here only some notation used later in proofs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|.
For definitions of boolean circuits we refer the reader to [2]. Let

UCKT(C(n), D(n)), where C(n) ≥ n, denote the class of problems solvable by
logspace-uniform circuit families with unbounded fan-in where element correspond-
ing to n has size O(C(n)) and depth O(D(n)).

2.1 Regular expressions and normal forms

We recall the definition of regular expression mostly in order to fix the notation.

Definition 1. For a finite alphabet V : (i) λ and each a ∈ V are regular expres-
sions, (ii) if E1, E2 are regular expressions over V , then also (E1)∪(E2), (E1)(E2),
and (E1)∗ are regular expressions over V , and (iii) nothing else is a regular ex-
pression over V .

The catenation operator · and non-necessary parentheses may be omitted when
writing a regular expression. With each expression E we associate its language
L(E) defined in a usual way. We call two expressions E1 and E2 equivalent if
L(E1) = L(E2).
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Definition 2 ([1]). We say that a regular expression E = E1 ∪ . . . ∪ En (where
each Ei contains only · and ∗ operators) is in single-star normal form (SSNF) if
∀i ∈ {1, . . . , n}, Ei has at most one occurrence of ∗.

Lemma 1 ([1]). Every regular expression over one-letter alphabet can be trans-
formed into an equivalent single-star normal form.

This transformation, however, might require an exponential time and the size of
the resulting expression can be exponential with respect to the size of the original
expression.

2.2 Random Access Machines

RAM is a computing device with an infinite random access array of data registers
M1, M2, . . . , each of which can store an arbitrary integer, and with a set of labelled
instructions P = {P1, P2, . . .} each from the instruction set described below.

constant −→ Mres

Mop1 −→ Mres

∗Mop1 −→ Mres The contents of a register whose address is
stored in register Mop - indirect memory READ

Mop1 −→ ∗Mres The contents of a register Mop is written into
the register whose address is in register Mres -
indirect memory WRITE

Mop1 + Mop2 −→ Mres

Mop1 −Mop2 −→ Mres

GOTO label
GOTO label if Mop1@Mop2 @ ∈ {=, <}
HALT

Non-deterministic RAM is defined in the same manner as its deterministic
version except that more than one instruction can have the same label and their
choice is non-deterministic.

A parallel RAM (PRAM) has a sequence of RAM’s R1, R2, . . . operating syn-
chronously in parallel. They all have their own local registers and they can read
and write to common registers too. This can be done by indirect memory READ
or WRITE. In CRCW PRAM (concurrent-read, concurrent-write) if more than
one processor attempts to write into the same location in common memory at the
same time, the lowest numbered processor succeeds. All processors run the same
program.

In addition to the programs, another part of specification of a particular CRCW
PRAM is a function P (n) from positive integers to positive integers called the
processor bound. An input of size n consists of n binary words, each of length at
most n. A CRCW PRAM is given an input of size n by placing n words in the
first n locations of common memory, and the first P (n) processors R1, . . . , RP (n)
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are started. Each instruction takes one time unit. The computation halts when
R1, . . . , RP (n) have all halted. The machine operates in time T (n) if it halts within
T (n) steps on every input of size n. When the computation halts, the output can
be found in initial contiguous block of common memory of length at most n. The
model is essentially identical to the SIMDAG of Goldschlager [8] and similar to the
P-RAM of Fortune and Wyllie [7]. Note that [8] and [7] characterized the power
of these models when the number of processors grows exponentially in n.

Denote by CRCW(P (n), T (n)) the class of problems solvable on CRCW
PRAM in O(T (n)) time with O(P (n)) processors. It is known that
CRCW(poly(n), poly(n)) = P while CRCW(exp(n), poly(n)) = PSPACE.

Lemma 2 ([28]). CRCW(P (n), T (n)) ⊆ UCKT(poly(P (n), T (n), n), T (n))

The above result was presented first in [28] where also its detailed proof to-
gether with constructions of logical circuits implementing PRAM can be found.
The formulation in Lemma 2 is inspired by [14].

3 Spiking Neural P Systems

A spiking neural membrane system (abbreviated as SN P system), of degree m ≥ 1,
is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
4. in, out ∈ {1, 2, . . . ,m} indicates the input neuron (resp., output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The application of this rule means consuming
(removing) c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (as usual in membrane computing, a global
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clock is assumed, marking the time for the whole system, hence the functioning
of the system is synchronized). If d = 0, then the spike is emitted immediately, if
d = 1, then the spike is emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes again open, so that it can receive spikes (which can be used starting
with the step t + d + 1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa. Thus, the rules are used in the sequential manner in
each neuron, but neurons function in parallel with each other.

The system is called deterministic if for every neuron that occurs in the system,
any two rules E1/ac1 → a; d1 and E2/ac2 → a; d2 in the neuron have L(E1) ∩
L(E2) = ∅.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron. During a computation, the “state”
of the system is described by both by the number of spikes present in each neuron,
and by the open/closed condition of each neuron: if a neuron is closed, then we
have to specify when it will become open again.

Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where all neurons are
open and no rule can be used. With any computation (halting or not) we associate
a spike train, the sequence of zeros and ones describing the behavior of the output
neuron: if the output neuron spikes, then we write 1, otherwise we write 0.

3.1 Descriptional complexity of SN P systems

The size of description of a SN P system is an important measure when one wants to
study families of SN P systems. The first detailed specification of descriptional size
of a SN P system Π is given in [16]. It is based on the number of bits necessary to
fully describe the system Π. Let m be the number of neurons, N be the maximum
natural number that appears in the definition of Π, R the maximum number of
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rules which occur in its neurons, and S the maximum size required by the regular
expressions that occur in Π (this will be discussed later). Then the total size of
description of Π is polynomial with respect to m, R, S and log N.

Some authors introducing space complexity measures for P systems as [25]
suggested that an n-tuple of identical objects should occupy a space n. In SN P
systems, however, the spikes are not physical objects but an electric potential.
Furthermore, if we decided for unary representation of spikes, then it would be
also fair to assume unary representation of regular expressions in neurons which,
however, could restrict their power significantly.

Finally, observe that classical models of P systems and their uniform families
(see the next section for definition of families) actually use binary representation of
data. A member of the family processing inputs of size n can use poly(n) different
objects and code its input by their (non)presence in the input membrane.

Therefore, to represent n spikes, just the number log n of bits is taken as
the size of its description, both in neurons and regular expressions. This succinct
representation is used also in [16] and other papers. Note, however, that many of
the results presented here remain valid even if the unary representation of spikes
were adopted.

3.2 Families of SN P systems solving decision problems

Standard SN P systems were shown to be universal already in the introductory
paper [12]. However, as demonstrated in [20], no standard spiking neural P system
with a constant number of neurons can simulate Turing machines with less than
exponential time and space overheads. Therefore, for application of SN P systems
to solve intractable problems, many authors have (implicitly) used families of SN
P systems such that each member of a family solves only a finite set of instances of
a given size. In this section we propose a formal specification for families of SN P
systems. A first step towards such a specification was taken already in [15] for the
case of non-deterministic (and non-confluent) SN P systems. Most of definitions
in this section is motivated by [23].

Let us call decision problem a pair X = (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

It was suggested by some authors that a SN P systems solving an instance
w ∈ IX would halt if and only if θX(w) = 1. However, this is incompatible with
definitions of basic complexity classes (which do not allow non-halting compu-
tations) and also with standard construction of families of recognizer P systems
[23] which is extensively used. Hence we suggest the convention used implicitly
by many authors ([9, 16] and others) when describing “neural” solutions to Sub-
set Sum, 3-SAT and similar problems: the system always halts and the result
is determined by the fact whether the output neuron emits a spike during the
computation. Other convention are possible, such as the existence of two output
neurons signalling true or false.
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Definition 3. A recognizer SN P system is a SN P system which has all compu-
tations halting, and whose output neuron spikes no more than once during each
computation. Its computation is called accepting if the output neuron spikes exactly
once, otherwise it is rejecting.

This definition is also compatible with the variant when the system is asked to
spike at least once in the case of accepting computation. Any such SN P system
can be added another neuron connected to the original output, with two initial
spikes and the rules a → λ and a3 → a; 0 which emits only the first spike of those
it receives.

We distinguish recognizer SN P systems with input or without input. In the
first case the input (i.e., an instance w ∈ IX) is sent in the form of binary spike
train bin(w) to the input neuron, where bin(w) is an arbitrary binary encoding
of w. There are reasons for choosing binary encoding: it is known that standard
SN P systems can simulate logic gates with unbounded fan-in in a unit time [9].
Hence, their computational potential is at least as high as that of logic circuits.
The unary input/output convention, however, would decrease their computational
power exponentially in many cases, on one hand. On the other hand, to transform
the input value into the number of spikes in a neuron, the extended rules or
maximal parallelism would be necessary [17].

In the case of SN P systems without input, instances of a problem are encoded
within the structure of SN P system.

Definition 4. A family Π = {Π(w) : w ∈ IX} (respectively, Π = {Π(n) : n ∈
N}) of recognizer SN P without input (resp., with input) is polynomially uniform
by Turing machines if there exists a deterministic Turing machine working in
polynomial time which constructs the system Π(w) (resp., Π(n)) from the instance
w ∈ IX (resp., from n ∈ N).

In the sequel we will for short denote such a family just as uniform. Necessary
conditions must be met by families of recognizer SN P systems to solve algorith-
mically a given decision problem. Conditions of soundness and completeness of
Π with respect to X are defined in [23]. Conjunction of these two conditions for
SN P systems without input (resp., with input) ensures that for every w ∈ IX ,
if θX(w) = 1, then every computation of the SN P systems solving w is accept-
ing, and if θX(w) = 0, then every such computation is rejecting. Note that this
SN P system can be generally nondeterministic, i.e, it may have different possible
computations, but with the same result. Such a P system is also called confluent.

Definition 5. Let f : N → N be a constructible function. A decision problem X
is solvable in time bounded by f by a family Π = {Π(w) : w ∈ IX} of recognizer
SN P systems of type R without input, denoted by X ∈ SN∗

R(f), if the following
holds:

• The family Π is polynomially uniform by Turing machines.
• The family Π is f time-bounded; that is, for each instance w ∈ IX , every

computation of Π(w) performs at most f(|w|) steps.
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• The family Π is sound and complete with respect to X.

The family Π is said to provide a semi-uniform solution to the problem X.
In this case, for each instance of X we have a special P system. Specifically, we
denote by

PSN∗
R =

⋃
f polynomial

SN∗
R(f)

the class of problems to which uniform families of SN P systems of type R without
input provide semi-uniform solution in polynomial time. Analogously we define
families which provide uniform solutions solutions to decision problems.

Definition 6. Let f : N → N be a constructible function. A decision problem X is
solvable in time bounded by f by a family Π = {Π(n) : n ∈ N} of recognizer SN P
systems of type R with input, denoted by X ∈ SNR(f), if the following holds:

• The family Π is polynomially uniform by Turing machines.
• The family Π is f time-bounded; that is, for each instance w ∈ IX , every

computation of the member of Π solving w performs at most f(|w|) steps.
• The family Π is sound and complete with respect to X.

The family Π is said to provide a uniform solution to the problem X. Again,
we denote by

PSNR =
⋃

f polynomial

SNR(f)

the class of problems to which uniform families of SN P systems of type R with
input provide uniform solution in polynomial time. Obviously, for any constructible
function f and a class of SN P systems R, SNR(f) ⊆ SN∗

R(f), and PSNR ⊆
PSN∗

R.
We use the following notation to describe a specific type R of SN P systems:

−reg for systems with regular expressions of the form an, n ≥ 1, −del for systems
without delays, and ssnf for systems with regular expressions in the single-star
normal form.

4 Simulation of SN P systems with RAM

Theorem 1. For each confluent (respectively, non-confluent) SN P system Π with
all regular expressions in single-star normal form (SSNF) and with description
of size s, there is a deterministic (resp., non-deterministic) RAM constructed in
polynomial time with unit costs of operations which simulates t steps of Π in time
O(t(s + t)).

Proof. All information about the topology of the SN P system and rules in neurons
can be contained within the simulating RAM program. The configuration of each
neuron of a SN P systems will be represented in RAM by three registers counting
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(i) the number of spikes in the neuron, (ii) current delay period of the neuron (i.e.,
the remaining number of steps during which the neuron will be closed), and (iii)
the number of spikes prepared to be emitted (0 or 1, but in case of extended SN
P systems it can be more). Simulation of single step of a SN P system with RAM
consists of the following phases:

1. For each neuron:
• If the delay period is 0, check whether the number of spikes in neuron is

covered by a regular expression in some of its rules. If more than one rule
matches, choose one randomly. If a rule E/ac → a; d or ac → λ can be
applied, then
a) decrease the number of spikes in neuron by c,
b) set the delay period to d in the case of firing rule,
c) set the number of spikes to be emitted to 1 for firing rule or to 0 for

erasing rule.
• Else decrement the delay period by 1.

2. For each neuron with delay period 0 and the number of spikes to be emitted
¿0: reset the number of spikes to be emitted and increase by 1 the number of
spikes in all neurons connected to the output of the processed neuron.

3. If all neurons have delay period 0, none rule was applied and none spike was
emitted, halt the computation.

It is easy to verify that almost each elementary operation described above for
a single neuron or a synapse can be implemented on RAM in O(1) time, hence the
total number of necessary RAM operations for all neurons is O(s).

The only exception is the evaluation whether the number of spikes in a neuron
is covered by regular expressions. Consider a regular expression E = E1 ∪ . . .∪En

in SSNF. Each Ei, 1 ≤ i ≤ n, can be easily rewritten to the form aq(ar)∗, for
q, r ≥ 0. The evaluation whether Ei covers a number k of spikes present in the
neuron consist of checking the divisibility of k−q by r. This operation is performed
in time proportional to the number of bits of k. Total number of bits to describe all
spikes in all neurons after t steps of computation is O(s+log t) for standard SN P
systems, or O(s+ t) in the case of maximal parallelism or exhaustive rules. Hence,
the total number of RAM operations necessary to simulate t steps is O(t(s + t)).

The situation is more complicated when we deal with general regular expres-
sions in neurons. Let us prove the following lemma first.

Lemma 3. Matching of a regular expression E of size s in succinct form over a
singleton alphabet with a string ak can be done on a RAM or a Turing machine
in non-deterministic polynomial time with respect to s log k.

Proof. Assume that we have the syntactic tree of the expression E at our disposal
(its parsing can be done in deterministic polynomial time). We treat the sub-
expressions of the form an as constants and assign them a leaf node of the tree
with the value n. The matching algorithm works as follows:
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• Produce non-deterministically a random element of L(E) in succinct form by
a depth-first search traversal of its syntactic tree. Start with the value 0 and
evaluate recursively each node depending on its type as follows:
– leaf node containing a constant: return the value of the node;
– catenation: evaluate both subtrees of this node and add the results;
– union: choose non-deterministically one of the subtrees of this node and

evaluate it;
– star: draw a random number of iterations x within the range 〈0, k〉, evaluate

the subtree starting in this node and multiply the result by x.
• Compare the drawn element of L(E) with ak whether they are equal.

Whenever during the evaluation the computed value exceeds k, the algorithm
halts immediately and reports that ak does not match L(E). This guarantees that
the number of bits processed in each operation is always O(log k).

Each of the elementary operations described above can be performed in con-
stant time on RAM with unit instruction price, except the multiplication which re-
quires O(log k) time. Total number of tree-traversal steps is O(s). If we implement
the algorithm on Turing machine, the resulting time increases only polynomially.

Theorem 2. Any confluent or non-confluent SN P system Π of size s with gen-
eral regular expressions which performs t steps can be simulated on a RAM in
polynomial space with respect to t and s.

Proof. Consider the confluent case first. The construction of RAM used in the
proof of Theorem 1 can remain in this proof unchanged except the problem of
matching a number of spikes in a neuron with a general regular expression E over
one letter alphabet. Lemma 3 states that this problem can be solved in a non-
deterministic polynomial time on a RAM. Therefore, it might seem that the whole
simulation of a SN P systems might belong to the class NP. However, it is not
the case (unless NP=co-NP). The problem is that we cannot iterate the non-
deterministic solutions guessing whether certain neuron spikes, since the overall
result of computation might depend of the fact whether some neurons do spike
and others do not spike.

Therefore, since NP ⊆ PSPACE, we can only guarantee that the whole sim-
ulation can be done in deterministic polynomial space. Indeed, if one replaces the
random selection in the proof of Lemma 3 by dept-first-search of all possible vari-
ants, one gets a deterministic algorithm performing matching in polynomial time
and exponential space.

Finally, the same argument can be applied for the case of non-deterministic
and non-confluent SN P systems. In this case the simulating machine (RAM)
must further keep trace of non-deterministic choices of rules in each step and try
systematically all the possibilities. This requires obviously a polynomial space with
respect to s and t.
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5 Relation to standard complexity classes

For the first result we recall the NP-complete problem Subset Sum:

Problem 1. NAME: Subset Sum

INSTANCE: a (multi)set V = {v1, v2, . . . , vn} of positive integers, and a positive
integer S.

QUESTION: is there a sub(multi)set B ⊆ V such that
∑

b∈B = S?

The usual agreed instance size of Subset Sum is Θ(n log K), where K =
max{v1, . . . , vn, S}.

Theorem 3. The problem Subset Sum is solvable in semi-uniform way by a
uniform family of deterministic recognizer SN P systems in constant time, where
each member of the family solving an instance of size n log K has a single-neuron
and a description of size O(n log K).

Proof. Consider the SN P system described in [16], Proposition 1 at p. 242–243.
Given an instance of the Subset Sum problem defined ibidem, the construction
of the SN P system is clearly polynomially uniform by Turing machine, the size
of the description of the system is O(n log K) (i.e., equivalent to the size of the
instance), the system is deterministic and it solves the given instance in a single
step.

Note: The above theorem remains valid only in the case of succinct represen-
tation of spikes and regular expressions. Otherwise the size of the SN P system
would be nK, i.e., exponentially greater than the size of the instance.

The following lemma is due to [9] where detailed constructions of acyclic “neu-
ral” modules simulating gates with unbounded fan-in can be found.

Lemma 4. SN P systems with regular expressions of the form an, n ≥ 1 and
without delays can simulate logic gates AND, OR, XOR with unbounded fan-in
and fan-out in constant time and space.

Theorem 4. For an arbitrary polynomial T, CRCW(poly(n), T (n)) ⊆
SN−reg,−del(T (n))

Proof. By Lemma 4, UCKT(poly(n), T (n)) ⊆ SN−reg,−del(T (n)) since a
polynomially-sized circuit can be simulated in linear time a SN P system which
can clearly be constructed in polynomial time by a Turing machine, and hence
is a member of a uniform family. Then by Lemma 2, CRCW(poly(n), T (n)) ⊆
UCKT(poly(n), T (n)) for a polynomial T and, furthermore, the family of cir-
cuit is logspace-uniform, hence also polynomial time uniform by Turing machines.
The whole construction of the simulating SN P system is therefore polynomially
uniform and the statement of the theorem follows.
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Note that the above result would hold for acyclic SN P systems as well since
the neural modules referred to in Lemma 4 are acyclic. Since SN P systems allow
for cyclic architectures, one might ask whether this fact could not improve the
above result. Unlike acyclic circuits, SN P systems could simulate many steps of
a CRCW PRAM program by the same computing modules. However, the size
of the resulting SN P system would still increase with P (n) and T (n) as the
number of bits processed by each RAM unit is bounded by O(T (n)) and the size
of the SN P system increases accordingly. Hence in is interesting to observe that
the computational power of uniform families of cyclic and acyclic SN P systems
differs only polynomially. Solving the same problem, cyclic systems would have
their size bounded by a polynomial of a lower degree.

The statement of the above theorem was partially foretold already in [10] where
“neural” circuits of SN P systems performing arithmetics are presented. In that
paper, however, these operations are performed sequentially, bit-by-bit, unlike in
standard binary computers where all bits are processed in parallel.

Corollary 1. P = PSNssnf = PSN∗
ssnf

Proof. Observe that CRCW(poly(n), poly(n)) = P, then the statement follows
by Theorem 4 and 1.

Theorem 5. NP ⊆ PSN∗ ⊆ PSPACE

Proof. Follows by Theorems 2 and 3. Note that, thanks to the power of general
regular expressions, there is no difference between constant and polynomial time.

We do not know whether for families of recognizer SN P systems also uniform
solutions to NP-complete problems would be possible, allowed by some kind of
“universal regular expression” for a given size of instances.

6 Beyond P and NP

Our first focus in this section is devoted to non-uniform families of SN P systems.
This means that an unlimited number of resources and even a super-Turing com-
puting devices can be used to construct members of the family. Clearly, without
any further limitations, such families could solve any decision problem including
undecidable ones. Therefore certain limitations are imposed especially on the size
of members of the family. It is known that, to characterize the computing power
of such families, the Turing machine with advice function is a useful tool. Infor-
mally, an advice is a binary string which is given to the Turing machine solving a
decision problem in addition to its input. The advice is the same for all inputs of
identical size, hence it depends only on the size of the input. It contains (possibly
non-computable) correct information which can help to adopt a decision about the
input.



On Complexity Classes of Spiking Neural P Systems 279

Definition 7. Let f : N → N . An f(n)-advice sequence is a sequence of binary
strings A = (a1, a2, . . .), where |an| ≤ f(n). For a language B ⊆ {0, 1, #}∗ let
B@A = {x| x#a|x| ∈ B}. Let P/f(n) = {B@A : B ∈ P and A is an f(n)-advice
sequence}. Let P/poly =

⋃
k P/nk.

Theorem 6. Non-uniform families of deterministic recognizer SN P systems of
polynomial size with regular expressions in single-star normal form can compute
in polynomial time exactly the class of problems P/poly.

Proof. By Theorem 1, any polynomial-time restricted computations of a SN P
system of a polynomial size with regular expressions in single-star normal form
can be simulated by RAM (and hence also by Turing machine) in polynomial time.
Furthermore, by Theorem 4 in [24], each computation of such a Turing machine
can be simulated by a polynomial size circuit. Finally, by Theorem 2.2 in [2], each
problem with polynomial circuit complexity is in P/poly.

The converse inclusion follows by Lemma 4 which shows that each circuit of
polynomial size can be simulated by a SN P system of an equivalent size with
simple regular expressions.

Note that uniform solutions are necessary because they form a part of the
standard definition of sets recognized by circuits [2]. If we thought about semi-
uniform solutions, then for each instance we could have a special SN P system,
and since their family is non-uniform, it could solve in constant time any problem,
even non-decidable, by pre-computing the result.

Note also that, even if the sets recognized by the mentioned families of SN P
systems are also recognized by a Turing machine in polynomial time, this does
not imply that these sets are in P since these machines were derived from SN P
systems constructed in a non-uniform way and hence they can contain an advice
of polynomial size.

Finally we briefly mention SN P systems with pre-computed resources. The
basic idea is that we start with an exponentially large number of inactive neurons,
which will be subsequently activated and used during the computation. These
neurons are arranged into a simple regular structure in the sense that a prototype
neuron and the interconnection pattern is computed in polynomial time and then
simply replicated [9]. It has been shown [13] that such SN P systems can solve in
linear time PSPACE-complete problems QSAT and Q3SAT.

Conjecture 1. If a deterministic SN P system can activate an exponential number
of neurons in a polynomial time, the resulting machine is equivalent to the parallel
RAM, a standard Second Machine Class model, whose polynomial time-bounded
computations characterize PSPACE.

Proof. (Sketch) The statement follows by Theorem 1, Theorem 4 and by the con-
struction of CRCW PRAM as described, e.g., in [28].

Similar arguments indicate that, if a non-deterministic SN P system can ac-
tivate an exponential number of neurons in a polynomial time, the resulting
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machine may prove equivalent to the P-RAM [7], a computing model whose
non-deterministic polynomial time-bounded computations characterize the class
NEXPTIME. These open problems are the next to be addressed in the future
research.

7 Conclusion

In this contribution we tried to generalize results concerning complexity issues
of SN P systems published previously in a sequence of papers. We have defined
(uniform) families of recognizer SN P systems which should still be more elaborated
in future work. Main results can be summarized as follows:

1. Polynomially uniform families of recognizer SN P systems with regular ex-
pressions in single-star normal form characterize by their polynomial time-
bounded computations the class P.

2. Polynomially uniform families of recognizer SN P systems with general regular
expressions can in polynomial time solve a class of problems bounded between
NP and PSPACE.

3. If a confluent or deterministic SN P system can activate an exponential number
of neurons in a polynomial time, it is probably computationally equivalent to
parallel RAM, a standard Second Machine Class model whose computations
in polynomial time characterize PSPACE.

4. Non-uniform families of SN P systems of polynomial size with regular expres-
sions in single-star normal form characterize by their uniform solutions in
polynomial time the class P/poly.

Rather surprisingly, it turned out that there is no substantial difference in
power of uniform families cyclic and acyclic SN P systems. The use of single-star
normal form for regular expressions to demonstrate the borderline between SN P
systems able to solve tractable and intractable problems is also interesting.
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Proceedings of Fifth Brainstorming Week on Membrane Computing, Sevilla, 2007.
Fénix Editora.
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solutions to SAT and Subset Sum by spiking neural P systems. Natural Computing,
8(4):681–702, 2009.

16. A. Leporati, C. Zandron, C. Ferretti, and G. Mauri. On the computational power of
spiking neural P systems. In Gutiérrez-Naranjo et al. [11], pages 227–245.

17. A. Leporati, C. Zandron, C. Ferretti, and G. Mauri. Solving numerical NP-complete
problems with spiking neural P systems. In Eleftherakis et al. [6], pages 336–352.

18. W. Maass and C. Bishop, editors. Pulsed Neural Networks. MIT Press, Cambridge,
1999.

19. M.A. Mart́ınez-del-Amor, E.F. Orejuela-Pinedo, G. Păun, I. Pérez-Hurtado, and
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Summary. In this paper we address the possibility of studying the computational ca-
pabilities of catalytic P systems with one catalyst by the means of iterated finite state
transducers. We also give a normal form for catalytic P systems.

1 Introduction

P systems are a computational model introduced by G. Păun in [4]. One of the basic
variant considered there was P systems with catalysts and priorities; these systems
where shown to be computationally universal. In [2], Sośık and Freund proved that
priorities among the rules can be discarded from the model without any loss of
computational power. Moreover, it was shown that for extended P systems only one
membrane and two catalysts are enough for reaching computational universality.
However, the computational power for P systems with only one catalyst was not
established. The present paper characterize these systems in terms of iterated finite
state transducers hence it converts an open problem from P system framework to
an open problem from string rewriting theory. Additionally, a normal form for
catalytic P systems is presented.

2 Preliminaries

We assume the reader is acquainted with the basic notions and notations from the
formal language theory (see [3] for more details). Here we only recall the definitions
and the results which are useful for the present work.

If FL is a family of languages, then NFL denotes the family of length sets of
languages in FL. We denote by REG, CF , REC, and RE the family of regular,
context-free, recursive, and recursively enumerable languages, respectively. It is
known that NREG = NCF ( NREC ( NRE.
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2.1 Iterated Finite State Transducers

An iterated (finite state) sequential transducer (IFT) is a construct γ =
(K,V, q0, a0, F, P ), where K is a finite set of states, V is a finite set of symbols
(the alphabet of γ), K ∩ V = ∅, q0 ∈ K is the initial state, a0 ∈ V is the starting
symbol, F ⊆ K is the set of final states, and P is a finite set of transition rules of
the form qa → xp, for q, p ∈ K, a ∈ V , and x ∈ V ∗.

For q, p ∈ K and u, v, x ∈ V ∗, a ∈ V , a direct transition step of γ is defined
as uqav ` uxpv if and only if qa → xp ∈ P . The reflexive and transitive closure
of the relation ` is denoted by `∗. In general, for α, β ∈ V ∗ we say that α derives
into β and we write α =⇒ β, if and only if q0α `∗ βp for some p ∈ K. By =⇒∗ we
denote the reflexive transitive closure of =⇒. If q0α `∗ βp such that p ∈ F , then
we write α =⇒f β.

The language generated by γ is L(γ) = {β ∈ V | a0 =⇒∗ α =⇒f

β, for some α ∈ V ∗}.
If for each pair (q, a) ∈ K×V , there is at most one transition rule qa ` xp ∈ P ,

then γ is called deterministic (otherwise, it is called nondeterministic). The family
of languages generated by nondeterministic IFTs with at most n ≥ 1 states is
denoted by IFTn. It is known from [1] that CF ⊂ IFT2 ⊆ IFT3 ⊆ IFT4 = RE.
Moreover, there are non-semilinear languages belonging to IFT2, and there are
non-recursive languages belonging to IFT3. Consequently, if we denote by NIFTn,
n ≥ 1, the family of length sets of languages from IFTn, then we have that
NREG = NCF ( NIFT2 ⊆ NIFT3 ⊆ NIFT4 = NRE.

2.2 Membrane Systems

A catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ, w1, . . . , wm, R1, . . . , Rm, i0)

where
• O is an alphabet of objects;
• C ⊆ O is the set of catalysts;
• µ is a hierarchical tree structure of m ≥ 1 uniquely labelled membranes

(which delimit the regions of Π); typically, the set of labels is {1, . . . ,m};
• wi ∈ O∗, for 1 ≤ i ≤ m, are the multisets of objects initially present in the

m regions of µ;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules; these rules can be non-

cooperative a → v or catalytic ca → cv, where a ∈ O \ C, v ∈ ((O \ C) ×
{here, out, in})∗, and c ∈ C;

• i0 ∈ {1, . . . , m} is the label of the output region of Π.
A configuration of Π is a vector C = (α1, . . . , αm), where αi ∈ O∗, 1 ≤ i ≤ m,

is a multiset of objects present in the region i of Π. The vector C0 = (w1, . . . , wm)
is the initial configuration of Π. Starting from the initial configuration and always
applying in all membranes a maximal multiset of evolution rules in parallel, one
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gets a sequence of consecutive configurations. By ⇒ is denoted the transition be-
tween two consecutive configurations. A sequence (finite or infinite) of transitions
starting from C0 represents a computation of Π. A computation of Π is a halting
one if no rules can be applied to the last configuration (the halting configuration).
The result of a halting computation is the number of objects from O contained
in the output region i0, in the halting configuration. A non-halting computation
yields no result. By collecting the results of all possible halting computations of a
given P system Π, one gets N(Π) – the set of all natural numbers generated by Π.
The family of all sets of numbers computed by catalytic P systems with at most m
membranes and k catalysts is denoted by NOPm(catk). The above definition can
be relaxed such that in a halting configuration one counts only the symbols from a
given alphabet Σ ⊆ O. In particular, one can consider Σ = O\C; correspondingly,
the family of all sets of numbers computed by such particular P systems will be
denoted by NO−CPm(catk).

It is known (see [7], for instance) that NO−CPm(catk) = NO−CP1(catk). More-
over, in [2] it is shown that NO−CP1(cat2) = NRE.

3 A Normal Form for P Systems with Catalysts

The following result states that any catalytic P system is equivalent with a catalytic
P system having a restriction on the form of the rules.

Theorem 1. For any P system Π with catalysts there exists an equivalent P sys-
tem Π with one region and whose rules are of the form a → α, with |α| ≤ 2, or
ca → cβ, with |β| ≤ 1.

Proof. As we already stated in Section 2.2, for any P system with catalysts and
n > 1 membranes one can construct an equivalent P system with the same number
of catalysts and one membrane. Consequently, without loss of generality, we might
assume that Π has only one membrane, that is Π = (O, C, [ ]1, w1, R1, i0).

Let O \ C = {a1, a2, . . . , ap} and let m = max{|α| | a → α ∈ R1 or ca → cα ∈
R1}. In addition, assume for our convenience that the rules of Π are labeled in an
unique manner with numbers from the set {1, . . . , card(R1)}.

Then one can construct an equivalent P system Π = (O, C, [ ]1, w1, R1, i0)
where

O = O ∪ {a(i,j) | 1 ≤ i ≤ p, 1 ≤ j ≤ m}
∪ {X(i,j) | i : a → αi ∈ R1, 1 ≤ j ≤ m− 2}.

The set R1 is defined as follows (for the simplicity of the explanations, we will
only consider the rules in R1 that are useful for simulating a non-cooperative rule
from R1; the rules corresponding to a catalytic rule are defined similarly, therefore
we will not present them here). Let i : a → aj1aj2 . . . ajk

∈ R1 and let m− k = t.
Then we add to R1 the rules:
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a → X(i,1) (1)
X(i,1) → X(i,2)

. . .

X(i,t−1) → X(i,t)

X(i,t) → a(j1,k−1)X(i,t+1) (2)
X(i,t+1) → a(j2,k−2)X(i,t+2)

. . .

X(i,t+k−3) → a(jk−2,2)X(i,t+k−2)

X(i,t+k−2) → a(jk−1,1)a(jk,1)

a(i,m) → a(i,m−1) (3)
a(i,m−1) → a(i,m−2)

. . .

a(i,1) → ai

The proof is based on the existence of the universal global clock that governs the
functioning of the P system (the clock marks equal time units for the whole system,
hence synchronization is possible). While trying to simulate the application of an
arbitrary non-cooperative rule with several rules of type a → α, with |α| ≤ 2, one
has to accomplish two conditions. Firstly, one has to guarantee that all the objects
from α will eventually be produced. Secondly, these objects must be produced at
the “proper” time: all of them in the same moment (a local synchronization) and
according with the simulation of other rules that were started at the same time
with a → α (a global synchronization).

Consequently, the rules presented above are grouped according with their func-
tion in the simulation. The first group represents a set of “delaying” rules (they
are used while simulating the rules with a shorter right hand side in order to syn-
chronize their executions with those that have the longest right hand side). These
rules are “chained”, hence, staring from an object a, an object X(i,t) is produced
in exactly t computational steps. The second group is responsible for producing in
consecutive computational steps the objects a(j1,k−1), a(j2,k−2), . . . , a(jk−1,1), a(jk,1)

(in order of their production, the last two being produced in the same time). For
an object a(i,l) in this sequence, the index l represents the number of computa-
tional steps that Π will perform, starting from its production and until the object
ai is produced (see the third group of rules). Finally, one can remark that the
objects aj1 , aj2 , . . . , ajk

are produced in the same computational step by Π (while
simulating the rule i : a → aj1aj2 . . . ajk

∈ R1). Moreover, all the other rules from
Π that stated at the same moment as i : a → aj1aj2 . . . ajk

, are simulated in the
same manner by Π and their output is produced in the same computational step
as mentioned above. Consequently Π correctly simulates any computation of Π,
hence the theorem holds true.
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4 Catalytic P Systems with One Catalyst and IFTs

In what follows we prove that the family of sets of numbers computed by catalytic
P systems with only one catalyst is included in the family of the length sets of the
languages generated by iterated finite state transducers with at most 3 states.

Theorem 2. NIFT3 ⊇ NOP1(cat1).

Proof. Given an arbitrary catalytic P system Π = (O, C,w1, R1, i1) such that C =
{c}, then one can construct an iterated finite transducer γ = (K, V, q0, a0, F, P )
which simulates Π as follows.

Without loss of generality we assume that the initial configuration of Π is
w1 = ca0.

Let w = a1a2 . . . am be a string. We denote by

Perm(w) = {ai1ai2 . . . aim
| 1 ≤ ij ≤ m, 1 ≤ j ≤ m, with ij 6= il, 1 ≤ j, l ≤ m}

the set of all permutations of string w, i.e., the set of all strings that can be
obtained from w by changing the order of symbols.

In addition, let us consider the following sets of objects from O:
X = {A ∈ O | (∃) A → α ∈ R1 and ( 6 ∃) cA → cβ ∈ R1};
Y = {A ∈ O | (∃) A → α ∈ R1 and cA → cβ ∈ R1};
Z = {A ∈ O | (∃) cA → cα ∈ R1 and ( 6 ∃) A → β ∈ R1};
T = {A ∈ O | (6 ∃) A → α ∈ R1 and ( 6 ∃) cA → cβ ∈ R1}.
One can remark that O = X ∪ Y ∪ Z ∪ T ∪ {c}.
Based on the above settings the IFT γ is defined as follows:

K = {q0, q1, q2},
V = O \ {c},
F = {q0},

and the set of rules P is constructed in the following manner:
• for any a ∈ T we add to P the rule q0a → aq0;
• for any a ∈ X ∪ Y and a → α ∈ R1 we add to P the rules q0a → αq1, where

α ∈ Perm(α);
• for any a ∈ T we add to P the rule q1a → aq1;
• for any a ∈ X ∪ Y and a → α ∈ R1 we add to P the rules q1a → αq1, where

α ∈ Perm(α);
• for any a ∈ Y ∪Z and ca → cα ∈ R1 we add to P the rules q1a → αq2, where

α ∈ Perm(α);
• for any a ∈ T ∪ Z we add to P the rule q2a → aq2;
• for any a ∈ X ∪ Y and a → α ∈ R1 we add to P the rules q2a → αq2, where

α ∈ Perm(α);
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• for any a ∈ Y ∪Z and ca → cα ∈ R1 we add to P the rules q0a → αq2, where
α ∈ Perm(α).

The construction was designed such that each string processed by γ during its
computation will correspond to a configuration of Π. Moreover, one iteration of γ
simulates the maximal parallel applications of the rules of Π.

If the current string (say w) processed by the IFT is composed only by the
symbols from T , then γ remains in q0 ∈ F and stops, accepting the string. This
situation corresponds to the halting configuration of Π (that is, Π contains in its
region the multiset cw and no rules can be further applied).

In case w contains symbols form X ∪Y ∪Z, then γ starts the simulation of the
maximal parallel applications of the rules of Π. Since γ processes strings at each
iteration, then the simulation of Π has to accomplish the following task: all the
symbols which are the subject of a rule of Π have to be processed also by γ. Recall
that γ processes strings and in these strings there might be symbols from T (which
are not the subject of any rule) in any position. Consequently, one has be sure that
any symbol in a configuration of Π that is a subject of a rule (non-cooperative or
catalytic) has to have the opportunity to be rewritten in the corresponding string
processed by γ (by the corresponding rule). This is why, γ uses the rules qia → aqi

for qi ∈ Q, 1 ≤ i ≤ 3, and a ∈ T (that is, while processing the string, γ ”skips” all
the symbols that are not the subject of any rule).

In one iteration of γ one can apply at most once a rule corresponding to a
catalytic rule of Π (recall that the P system functioning semantics define such
behaviour). More precisely, assuming that w is the current processed string, we
have

• either γ is in state q0 and executes a rule of type q0a → αq2 for q1, q2 ∈ Q,
a ∈ Y ∪ Z, ca → cα ∈ R1, and α ∈ Perm(α). This situation occurs when γ
processes w = w1aw2, w1 ∈ T ∗, and w2 ∈ (X ∪ Y ∪ Z ∪ T )∗ (w has the prefix
w1 composed only by symbols from T , followed by the symbol a ∈ Y ∪ Z that
triggers the simulation of the catalytic rule; the symbols from w2 that belong
to X ∪ Y will trigger only the simulation of the non-cooperative rules).

• either γ is in state q1 and executes a rule of type q1a → αq2 for q1, q2 ∈
Q, a ∈ Y ∪ Z, ca → cα ∈ R1, and α ∈ Perm(α)). This situation occurs
when γ processes w = w1aw2, where w1 is described by the regular expression
T ∗(X|Y )(X|Y |T )∗, w2 ∈ (X ∪ Y ∪Z ∪ T )∗ (the symbols from w1 and w2 that
belong to X ∪Y will trigger only the simulation of the non-cooperative rules) .

One can also remark that if a configuration w of Π contains at least one
object a ∈ Z, then in the current computational step a catalytic rule will be
executed (because of the maximal parallel applications of the rules); in contrary,
if w does not contain any symbol a ∈ Z then it is not guaranteed that a catalytic
rule will be executed (even if w contains symbols from Y , then, because of the
nondeterminism, it might happen that all the rules selected for application are
non-cooperative). On the other hand, γ simulates Π by processing strings (hence
the order of symbols is precisely defined). The design of γ guarantees that, if
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applicable, a rule corresponding to a catalytic rule of Π is executed at most once.
The only issue that could appear regards the presence of multiple symbols from
Y ∪Z in the current string processed by γ (in order to perform a correct simulation,
one has to be sure that any of these symbols has a ”chance” to be rewritten). This
is why for any rule a → α ∈ R1 or ca → cα ∈ R1, the IFT γ will use for the
simulation a set of rules of the type qa → pPerm(α).

Based on the above theorem, the following result holds true.

Corollary 1. If NIFT3 ⊂ NRE then NOP1(cat1) ⊂ NRE

5 Conclusions

In this paper we gave a normal-form theorem for catalytic P systems. We also
investigated the relation between P systems with one catalyst and iterated finite
transducers. This last topic is of a particular interest because it converts an open
problem from the P system framework to an open problem from the string rewrit-
ing theory. In addition, the simplicity of the construction gives hopes for solving
an open problem stated from the introduction of P systems.
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Summary. In this work we propose a variant of P systems based on the Central Dogma
of Molecular Biology which establishes the transformation of DNA strands into protein
products by applying different string transformation such as transductions and transcrip-
tions. We introduce a new kind of worm object rules to carry out transducion operations.
Finally, we establish the universality of the proposed model by simulating Iterated finite
state sequential transducers (IFTs).

1 Introduction

P systems [15] were introduced as a computational model inspired by the in-
formation and biochemical product processing of living cells through the use of
membrane communication. In most of the works about P systems, information is
represented as multisets of symbol/objects which can interact and evolve according
to predefined rules. Nevertheless, the use of strings to represent the information
and the use of rules to transform strings instead of multisets of objects have always
been present in the literature of this scientific area. So, in his mostly referred book
[15], Gh. Păun overviews the use of string rules in P systems. Different variants
of string-based P systems have been proposed along the time. We can mention
rewriting P systems [11], referred as membrane systems with worm objects [2] in
the case of genomic operations, insertion-deletion P systems [6] and splicing P
systems [14], among others. Observe that most of these models have been used for
language generation [12]. In [5, 7], the proposal of hybrid P systems introduces the
use of contextual rules and Chomsky rules to achieve universality by generating all
the recursively enumerable languages. Recently, in [13] a variant of P systems with
worm objects and evolutionary based operations has been introduced to simulate
Networks of Evolutionary Processors, hence to achieve universality.

In this work, we propose a variant of P systems with worm objects and a new
kind of worm rules based on the central dogma of molecular biology which sets
? Work supported by the Spanish Ministerio de Educación y Ciencia under project

TIN2007-60769
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the framework to obtain protein products from DNA strands by applying, among
others, transduction and transcription operations.

The structure of this work is as follows: In section 2 we introduce basic concepts
and notation on formal language theory, iterated transductions, P systems and
molecular biology related to the Central Dogma. Then, we will define the dogmatic
rules in regions which transduce (fragments of) worm objects into (fragments of)
worm objects. We will propose a simulation of iterated transductions with the
new proposed model in order to achieve universality. Finally, we will outline future
research related to this work.

2 Basic Concepts

We start by summarizing the notions used throughout this work. An alphabet is
a finite and nonempty set of symbols. Any finite sequence of symbols from an
alphabet V is called word or string over V . The set of all words over V is denoted
by V ∗. A language over the alphabet V is any subset of V ∗.

A grammar is a construct G = (N, Σ, P, S) where N and Σ are the alphabets
of auxiliary and terminal symbols with N ∩ Σ = ∅, S ∈ N is the axiom of the
grammar and P is a finite set of productions in the form α → β, where α ∈
(N∪Σ)∗N(N∪Σ)∗ and β ∈ (N∪Σ)∗. The language of the grammar is denoted by
L(G) and it is the set of terminal strings that can be obtained from S by applying
symbol substitutions according to P . Formally, w1 ⇒

G
w2 if w1 = uαv, w2 = uβv

and α → β ∈ P . We will denote by ∗⇒
G

the reflexive and transitive closure of ⇒
G

.

So, the language generated by G is defined by the set L(G) = {w ∈ Σ∗ : S
∗⇒
G

w}.
Four larger families of languages generated by grammars can be defined: REG

(regular), CF (context-free), CS (context-sensitive) and RE (recursively enumer-
able). The definition of these families comes from the restriction over the produc-
tion forms in the grammar. The well known Chomsky’s hierarchy establishes the
inclusions REG ⊂ CF ⊂ CS ⊂ RE.

Iterated Transductions

In the following, we will introduce Iterated finite state sequential transducers (IFT)
as it was defined in previous works ([1, 8, 10]).

An IFT is defined by the tuple T = (Q,Σ, q0, a0, F, P ), where Q is a finite set
of states, Σ is an alphabet, q0 ∈ Q is an initial state, a0 ∈ Σ is a starting symbol,
F ⊆ Q is the set of final states and P is a finite set of transduction rules in the
form (q, a, p, x) with q, p ∈ Q, a ∈ Σ and x ∈ Σ∗ which we will write as qa → xp.
The transduction rule qa → xp means that if the finite control is in state q and
it reads the symbol a then it changes to state p and writes x. We define a direct
transition step as follows

uqav ` uwpv iff qa → wp ∈ P
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The reflexive and transitive closure of ` will be denoted by `∗. We say that w
derives x, and it will be denoted by w =⇒ x, iff q0w `∗ xp, for p ∈ Q (observe
that p is any state in Q not necessarily final). We will denote the reflexive and
transitive closure of =⇒ by =⇒∗. If in the previous derivation the process stops
in a final state we will write

f
=⇒ instead of =⇒. That is, w

f
=⇒ x, iff q0w `∗ xp,

for p ∈ F . The language generated by T is defined as follows

L(T ) = {x ∈ Σ∗ : a0 =⇒∗ w
f

=⇒ x,w ∈ Σ∗}
We denote by IFTn the family of languages generated by IFT with at most n

states. The hierarchy of families in IFTn has been completely explored, and it has
been proved that it collapses at level four. We have the following results

Lemma 1.[10] RE = IFT4; [1] CS ⊂ IFT3; [10] CF ⊂ IFT2.
In addition, IFTs have been related to the computing by carving paradigm [9]

as a way to generate even non-recursively enumerable languages.

The Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology is our source of inspiration for the variant
of P system which we will propose later. We follow the ideas exposed in [4]. Mainly,
the central dogma of molecular biology establishes a metaphor of how DNA strands
in the living cell are transformed into protein products by means of information
storage and transformation.

Mainly, a section of DNA (the gene) is transcribed to a molecule of messenger
RNA and the mRNA is translated by the ribosome into a protein. In the eukary-
otic organisms the mRNA molecule is processed, before translation, by splicing out
certain subsequences called introns. The DNA is replicated before the transcrip-
tion. The transcription is made by complementing the single DNA strand, and by
substituting the thymine nucleotide by the uracil one in the RNA molecule. The
translation from (spliced) mRNA to proteins is based on a mapping of nucleotide
triplets called codons to amino acids with the help of transfer RNA (tRNA). Under
a computer science point of view, the central dogma can be viewed as a sequence of
well known operations over strings such as morphisms, transductions and splicing.
The main ingredients that we will consider in the subsequent P system that we
will propose are the followings:

• There are different processes in different regions. DNA duplication and DNA
transcription to mRNA occurs in the nucleus of the cell, while mRNA trans-
lation to amino acids occurs in some cases in the endoplasmic reticulum with
the membrane ribosome.

• There are different alphabet sizes and symbols involved in the operations. The
DNA strands is a sequence of four different nucleotides: adenine (A), thymine
(T), cytosine (C) and guanine (G), in the RNA the thymine (T) is substituted
by the uracil (U), while the proteins are sequences over a twenty-letter alphabet
(the amino acids)
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Fig. 1. The Central Dogma of Molecular Biology. (This picture has been taken from
accessexcellence.org)

• Transcription and translation can be performed by alphabetic homomorphisms
and finite transductions.

• There are different products at every stage which interacts into different re-
gions. The DNA duplication, transcription and splicing needs the presence of
different proteins and other molecular compounds. The proteins are the final
product of the cycle DNA-RNA-protein.

3 Dogmatic P systems

In this section, we will propose a variant of P systems that work with worm objects
in a transduction-like approach. First, we will introduce a new kind of region rules
to work with.

A dogmatic rule is defined as follows

u : vpos → wad1,ad2,··· ,adk
, where

u, v are strings (worm objects), pos ∈ {l, r, ∗} and for all i : 1 ≤ i ≤ k adi ∈
{here, out, inj}. The meaning is the following: Provided that there exist a worm
object u in the region (we can omit the presence of u), all the worm objects with
substring v at position pos (which means, rightmost one (r), leftmost one (l) or
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arbitrary position (∗)) change substring v by w and send a copy of the new worm
object at the regions defined by adi after eliminating the original worm object
from the region.

Example 1. Let the region R have the rule r1 defined as eee : al → bbhere and
the worm objects eee and abbcbaa. Then after applying r1 in the region, the worm
objects are eee and bbbbcbaa.

If the rule r1 is defined as eee : ar → bbhere, we obtain abbcbabb as a new worm
object. Finally, if the rule is defined as eee : a∗ → bbhere then we obtain the set
of new strings {bbbbcbaa, abbcbbba, abbcbabb}. Observe that, in this case, we have
previously obtained three copies of the initial string before applying the rule.

The rule al → bbhere can be applied over baa and it obtains the new string bbba.
Here, we have omitted the presence of an additional string and the rule changes
the leftmost appearance of a symbol a. ¤

The addressing label inj , can be directly applied to contiguous regions at the
same level. That is, if there exist regions j and i inside the same region, then a
rule at region i can send worm objects to region j directly.

We can observe that the dogmatic rules capture the following aspects from the
Central Dogma of Molecular Biology:

• The rules transform parts of a string into a new substring as in transcription
and transduction.

• The rules make copies of the target string before transformation as in DNA
replication.

• The rules need the presence of other objects to be applied.
• The rules can address contiguous regions (i.e. RNA moving from nucleus to

ribosomes).

Now, we will define a Dogmatic P system2 as the following construct

Π = (V, µ, A1, · · · , Am, (R1, ρ1), · · · , (Rm, ρm), i0), where:

• V is an alphabet
• µ is a membrane structure consisting of m membranes
• Ai, 1 ≤ i ≤ m is a finite set of strings associated with the region i (the axioms)
• Ri, 1 ≤ i ≤ m is a finite set of dogmatic rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority
• i0 is a number between 1 and m and it specifies the output membrane of Π (in

the case that it equals to ∞ the output is read outside the system).

2 Different acronyms were candidates for naming Dogmatic P systems. Among others,
dP systems were considered but it was previously used by other authors in a differ-
ent context. Another acronym was dogP but the author thinks that, in such a case,
catalyzers will never be used in this context given that ”dogs” and ”cats” could not
cooperate and living in the same regions. We leave open the search for a good acronym
for the proposed Dogmatic P systems.
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Initially, the system holds the set of axioms at every region. Then, in a fully
parallel manner all the rules are applied over the strings defined at every region.
The system halts whenever no rule can be applied at any region.

The language generated by Π is the set of worm objects collected at region
i0. In the case that i0 = ∞, the language is collected in external mode as the set
of strings in the environment. The language generated by Π is denoted by L(Π).
Observe that if the language is infinite then the system will never halt so it will
add new worm objects to the output region or the environment.

Observe that this proposal is different from [3] where the authors propose a
membrane system framework with symport/antyport rules to perform different
types of transductions. In that work the proposed system operates with strings by
taking every symbol of the input string of the environment (outside the membrane
system) and putting every symbol of the transduced string in the environment.
Here, we will avoid symport/antyport rules and we will work with strings in a
worm object approach.

4 A Simulation of Iterated Transductions by Dogmatic P
Systems

In this section, we will show a simulation of IFTs with n states by dogmatic P
Systems. Our approach will use n regions inside the skin one in order to simulate
the n states of the IFT. The transitions of the IFT will be simulated by using
the direct address inj . We will need to mark some symbols in order to carry out
the transduction from left to right. In addition, we will use different alphabets to
avoid a wrong application of the transduction rules at different symbols, and to
prevent that the simulation goes on even if the IFT cannot carry out a complete
transduction.

Let T = (Q,Σ, q0, a0, F, P ) be an IFT with Q = {q0, · · · , qn}. Then, we propose
the following dogmatic P system

Π = (V, µ, A,A0, · · · , An, (R, ρ), (R0, ρ0), · · · , (Rn, ρn),∞), where

• V = Σ ∪ Σ̂ ∪ Σ̆ ∪ {#}, where Σ̂ = {â : a ∈ Σ} and Σ̆ = {ă : a ∈ Σ}
• µ = [[0]0, · · · , [n]n] (we have omitted a label for the skin region).
• A0 = {#a0}, A = ∅, and for all i : 1 ≤ i ≤ n Ai = ∅.
• Type (a) rules: For every rule q0a → vqj ∈ P , we add the rule #al → #v̂inj

if qj 6= q0 or the rule #al → #v̂here if qj = q0 to R0

• Type (b) rules: For every rule qia → vqj ∈ P , and for every symbol b̂ ∈ Σ̂

we add the rule b̂al → b̂v̂inj if qi 6= qj or the rule b̂al → b̂v̂here if qi = qj to Ri

• Type (c) rules: For every region Ri and for every pair of symbols â ∈ Σ̂ and
b ∈ Σ add the following rule âbl → âbhere

• Type (d) rules: For every region Ri such that qi ∈ F , and for every symbol
â ∈ Σ̂ add the following rule âr → ăout



“Dogmatic” P Systems 297

• Type (e) rules: For every region Ri such that qi 6∈ F , and for every symbol
â ∈ Σ̂ add the following rule âr → âout

• Type (f) rules: Add to R the rules {âl → ahere : a ∈ Σ}
• Type (g) rules: Add to R the rules {ăl → ain0,out}
• Type (h) rule: #l → #in0

We will explain the rules in the system as follows: Type (a) rules start the
transduction of the string from the initial state. Hence, we use the # symbol as a
left delimiter of the string to be transduced. The alphabet Σ̂ is used to mark the
symbols that have been transduced during a derivation process. Type (b) rules
simulate the transitions in the transducer. Observe that we use the address inj

to change the state in the finite control and the address here to simulate the
transducer loops. Type (c) rules are used to block the strings that cannot be
completely transduced (observe that the IFT can be non complete and it would
not finish the derivation process). Type (d) rules are used to output the transduced
strings that arrive to a final state. Here, we use the alphabet Σ̆ to mark the strings
that belong to the language generated by the transducer. Type (e) rules are used
to output the transduced strings that arrive to a non final state.

The priorities of the rules in regions Ri keep the following order: Type (a) rules
> Type (b) rules > Type (c) rules > Type (d) and Type (e) rules.

The rules of the skin region are explained as follows: Type (f) rules are used
to restore the string symbols of the transduced string in order to feed-back the
transducer with a new input string (hence, it performs the iteration in the trans-
duction). Type (g) rules are used to restore the symbols from those transduced
strings that come from a final state (hence, they belong to the language generated
by iterating the transducer). In such a case, one copy of the string is sent out the
environment while another copy is sent in the region zero in order to feed-back the
transducer. Finally, the rule of type (g) is used to send the transduced string into
the initial region to iterate a new transduction.

If a string w ∈ L(T ), then #w ∈ L(Π). We can observe that the transitions
from T are simulated by the P system by means of the rules of type (a) and (b).
The iteration is carried out at the skin region by applying rules of type (g) or (h)
(after restoring the symbols with rules of type (f). If the transduced string arrives
to a final state, then rules of type (g) are applied and the string with the left mark
# outputs the system.

Example 2. Let us consider the finite transducer defined through the following
transition diagram, with a as the starting symbol

The proposed dogmatic P system is defined with a membrane structure
[[0]0, [1]1, [2]2], and the following dogmatic rules

Skin region rules
r1 : âl → ahere r4 : ăl → ain0,out r45 : #l → #in0

r2 : b̂l → bhere r5 : b̆l → bin0,out

r3 : ĉl → chere r6 : c̆l → cin0,out
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with ρ defined as {r1, r2, r3} > {r4, r5, r6} > r45, and A = ∅.
Region 0 rules
r7 : #al → #b̂b̂in1 r9 : âal → âb̂b̂in1 r12 : âbl → âĉĉin2

r8 : #bl → #ĉĉin2 r10 : b̂al → b̂b̂b̂in1 r13 : b̂bl → b̂ĉĉin2

r11 : ĉal → ĉb̂b̂in1 r14 : ĉbl → ĉĉĉin2

r15 : âal → âahere r18 : b̂al → b̂ahere r21 : ĉal → âahere

r16 : âbl → âbhere r19 : b̂bl → b̂bhere r22 : ĉbl → ĉbhere

r17 : âcl → âchere r20 : b̂cl → b̂chere r23 : ĉcl → ĉchere

r24 : âr → âout

r25 : b̂r → b̂out

r26 : ĉr → ĉout

with ρ0 defined as {r7, r8} > {r9, r10, r11, r12, r13, r14} > {r15, r16, r17, r18,
r19, r20, r21, r22, r23} > {r24, r25, r26}, and A0 = {#a}

Region 1 rules
r27 : âal → âb̂b̂here r30 : âbl → âĉĉin2

r28 : b̂al → b̂b̂b̂here r31 : b̂bl → b̂ĉĉin2

r29 : ĉal → ĉb̂b̂here r32 : ĉbl → ĉĉĉin2

r33 : âal → âahere r36 : b̂al → b̂ahere r39 : ĉal → ĉahere

r34 : âbl → âbhere r37 : b̂bl → b̂bhere r40 : ĉbl → ĉbhere

r35 : âcl → âchere r38 : b̂cl → b̂chere r41 : ĉcl → ĉchere

r42 : âr → âout

r43 : b̂r → b̂out

r44 : ĉr → ĉout

with ρ1 defined as {r27, r28, r29, r30, r31, r32} > {r33, r34, r35, r36, r37, r38,
r39, r40, r41} > {r42, r43, r44}, and A1 = ∅

Region 2 rules
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r45 : âbl → âĉĉhere

r46 : b̂bl → b̂ĉĉhere

r47 : ĉbl → ĉĉĉhere

r48 : âal → âahere r51 : b̂al → b̂ahere r54 : ĉal → ĉahere

r49 : âbl → âbhere r52 : b̂bl → b̂bhere r55 : ĉbl → ĉbhere

r50 : âcl → âchere r53 : b̂cl → b̂chere r56 : ĉcl → ĉchere

r57 : âr → ăout

r58 : b̂r → b̆out

r59 : ĉr → c̆out

with ρ2 defined as {r45, r46, r47} > {r48, r49, r50, r51, r52, r53, r54, r55, r56} >
{r57, r58, r59}, and A2 = ∅

¤
From the previous proposed P system and other works previously referred we

get the following result.

Theorem 1. Every recursively enumerable language can be generated by a dog-
matic P system.

Proof. The result comes from the simulation of IFTs by dogmatic P systems that
we have proposed before. Given that any recursively enumerable can be generated
by an IFT with four states [10] then we have the result. ¤

5 Conclusions and future work

In this paper we have proposed new kinds of rules for P system in which we have
been inspired by the Central Dogma of Molecular Biology. The P systems that we
have proposed are a suitable framework to generate languages. We think that these
kind of rules will help in the construction of systems for biological simulations due
to its inspiration from nature.

Our future research will focus on the power of these systems to transduce formal
languages with no iteration. Hence, we will study the simulation of rational and
recognizable transductions and the simulation of (restricted) gsms. In addition,
the framework to accept languages of strings or their Parikh mappings (which is
the natural framework of P systems) should be explored too. Finally, due to the
relation between IFTs and Computing by carving we should explore the possibility
of applying membrane systems to that paradigm, as a continuation of a previous
work [16].
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11. C. Mart́ın-Vide, Gh. Păun. String-objects in P systems. In Proc. of Algebraic
Systems, Formal Languages and Computations Workshop, pages 161-169, Kyoto,
2000. RIMS Kokyuroku, Kyoto Univ.
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Summary. Two proofs have been shown for P systems with active membranes in previ-
ously published papers, demonstrating that these P systems can solve in polynomial time
exactly the class of problems PSPACE. Consequently, these P systems are equivalent
(up to a polynomial time reduction) to Second Machine Class models as the alternating
Turing machine or the PRAM computer. These proofs were based on a modified defini-
tion of uniform families of P systems. Here we demonstrate that the results remain valid
also in the case of standard definitions.

1 Introduction

P systems with active membranes are among computationally most powerful mod-
els of P systems. It has been shown that this model, in its standard definition, can
solve the PSPACE-complete problem QSAT in a polynomial time [8, 1]. Later
on, the paper [10] demonstrated that uniform families of P systems with active
membranes can solve in polynomial time exactly the class of problems PSPACE.
Consequently, these P systems satisfy the Parallel Computation Thesis [2]:

M -PTIME = M -NPTIME = PSPACE, (1)

where M -(N)PTIME is the class of problems solved in polynomial time by a (non-
)deterministic machine M. We recall that computers satisfying (1) form the second
machine class, whose members are the alternating Turing machine, SIMDAG (also
known as SIMD PRAM) and other parallel models [2].

However, the papers [8, 10] used a slightly modified version of definition of
uniform families of membrane systems. Besides different structure of definitions,
the main functional differences between the definition considered standard and
presented, e.g., in [5] were these:
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1. While both definitions require each P system – a member of a uniform family
– to halt, the standard definition requires also the system to produce a distin-
guished object yes or no in the last step, telling whether the computation was
accepting or not. Our definition, on the contrary, only required the object yes
in the accepting case.

2. All members of a family must be produced by one and the same Turing machine
in the standard definition, while our formulation allowed that different Turing
machines might be used for different family members. This possibility, however,
was never actually considered and used in our proofs as this would be clearly
contra-intuitive to the commonly accepted sense of uniformity.

Therefore, the modification of the proofs presented here focuses on the first
mentioned difference and makes the proofs compatible with the standard definition
given in the next section.

2 Definitions

A P system with active membranes [7] is a construct

Π = (V, H, µ, w1, . . . , wm, R),

where:

(i) m ≥ 1;
(ii) V is an alphabet;
(iii)H is a finite set of labels for membranes;
(iv)µ is a membrane structure, consisting of m membranes, labelled (not necessarily

in a one-to-one manner) with elements of H; all membranes in µ are supposed
to be neutral;

(v) w1, . . . , wm are strings over V , describing the multisets of objects placed in the
regions of µ;

(vi)R is a finite set of developmental rules, of the following forms:
(a) [

h
a → v]α

h
,

for h ∈ H, α ∈ {+,−, 0}, a ∈ V, v ∈ V ∗

(object evolution rules, associated with membranes and depending on the
label and the charge of the membranes, but not directly involving the mem-
branes, in the sense that the membranes are neither taking part to the
application of these rules nor are they modified by them);

(b) a[
h

]α1
h
→ [

h
b]α2

h
,

for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules; an object is introduced into the membrane, maybe
modified during this process; also, the polarization of the membrane can be
modified, but not its label);
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(c) [
h
a ]α1

h
→ [

h
]α2
h

b,
for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules; an object is sent out of the membrane, maybe mod-
ified during this process; also, the polarization of the membrane can be
modified, but not its label);

(d) [
h
a ]α

h
→ b,

for h ∈ H, α ∈ {+,−, 0}, a, b ∈ V
(dissolving rules; in reaction with an object, a membrane can be dissolved,
leaving all its object in the surrounding region, while the object specified
in the rule can be modified);

(e) [
h
a ]α1

h
→ [

h
b ]α2

h
[
h
c ]α3

h
,

for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ V
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, maybe of
different polarizations; the object specified in the rule is replaced in the two
new membranes by possibly new objects; all the other objects are copied
into both resulting membranes);

(f) [h0
[h1

]+h1
. . . [hk

]+hk
[hk+1

]−hk+1
. . . [hn

]−hn
]α2
h0

→ [
h0

[
h1

]α3
h1

. . . [
hk

]α3
hk

]α5
h0

[
h0

[
hk+1

]α4
hk+1

. . . [
hn

]α4
hn

]α6
h0

,
for n > k ≥ 1, hi ∈ H, 0 ≤ i ≤ n, and α2, . . . , α6 ∈ {+,−, 0};
(division of non-elementary membranes; this is possible only if a membrane
contains two immediately lower membranes of opposite polarization, + and
−; the membranes of opposite polarizations are separated in the two new
membranes, but their polarization can change; all membranes of opposite
polarizations are always separated by applying this rule;
if the membrane labelled h0 contains other membranes than h1, . . . , hn spec-
ified above, then they must have neutral charges in order to make this rule
applicable; these membranes are duplicated and then become part of the
content of both copies of membrane h0).

All the above rules are applied in parallel, but at one step, an object a can be
subject to only one rule of type (a)–(e) and a membrane h can be subject to only
one rule of type (b)–(f). In the case of type (f) rules, this means that none of the
membranes h0, . . . , hn listed in the rule can be simultaneously subject to another
rule of type (b)–(f). However, this restriction do not apply to membranes with
neutral charge contained in h0. In general, an application of the rules is performed
as follows:

1. In every step, first the rules are assigned to objects and membranes in a max-
imal way (any object and membrane which can evolve by a rule of any form,
should evolve), and then all the rules are simultaneously applied;

2. all objects and membranes which cannot evolve pass unchanged to the next
step;
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3. if a rule of type (d), (e) or (f) is applied to a membrane, then rules of type
(a) are applied first to its objects and then the resulting objects are further
copied/moved in accordance with the (d), (e) or (f) type rule;

4. the skin membrane can neither be dissolved nor divided, nor it can introduce
an object from outside (unless stated otherwise). Therefore, we assume that
there are only rules of types (a) and (c) associated with the skin membrane.

The membrane structure of Π at a given moment, together with all multisets of
objects contained in its regions, form the configuration of the system. The (m+1)-
tuple (µ,w1, . . . , wm) is the initial configuration. We can pass from one configura-
tion to another by using the rules from R according to the principles given above.
The computation stops when there is no rule which can be applied to objects and
membranes in the last configuration.

In this paper we study the accepting (or recognizer) variant of P systems. A
recognizer P system solving decision problems must comply with the following
requirements: (a) the working alphabet contains two distinguished elements yes
and no; (b) all computations halt; and (c) exactly one of the object yes (accepting
computation) or no (rejecting computation) must be sent to the output region of
the system, and only at the last step of each computation. In our case of systems
with active membranes, the outer environment of the system is taken as the output
region.

2.1 Families of membrane systems

Consider a decision problem X = (IX , θX) where IX is a language over a finite
alphabet (whose elements are called instances) and θX is a total boolean function
over IX .

Definition 1. [5] A family Π = {Π(w) : w ∈ IX} of recognizer membrane systems
without input membrane is polynomially uniform by Turing machines if there exists
a deterministic Turing machine working in polynomial time which constructs the
system Π(w) from the instance w ∈ IX .

In the sequel we will for short denote such a family just as uniform.
In this paper we deal with recognizer systems without input membrane, i.e.,

an instance w of a problem X is encoded into the structure of the P system Π(w).
The system Π(w) is supposed to solve the instance w. Formally, [5] defines the
conditions of soundness and completeness of Π with respect to X. A conjunction
of these two conditions ensures that for every w ∈ IX , if θX(w) = 1, then every
computation of Π(w) is accepting, and if θX(w) = 0, then every computation of
Π(w) is rejecting.

Note that the system Π(w) can be generally nondeterministic, i.e, it may have
different possible computations, but with the same result. Such a P system is also
called confluent.
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Definition 2. [5] A decision problem X is solvable in polynomial time by a family
of recognizer P systems belonging to a class R without input membrane Π =
{Π(w) : w ∈ IX}, denoted by X ∈ PMC∗

R, if the following holds:

• The family Π is polynomially uniform by Turing machines.
• The family Π is polynomially bounded; that is, there exists a natural number

k ∈ N such that for each instance w ∈ IX , every computation of Π(w) performs
at most |w|k steps.

• The family Π is sound and complete with respect to X.

The family Π is said to provide a semi-uniform solution to the problem X. In
this case, for each instance of X we have a special P system.

3 P Systems with Active Membranes Solving QSAT

The QSAT (satisfiability of quantified propositional formulas) is a well-known
PSPACE-complete problem. It asks whether or not a given quantified boolean
formula in the conjunctive normal form assumes the value true. A formula as above
is of the form

γ = Q1x1Q2x2 . . . Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm), (2)

where each Qi, 1 ≤ i ≤ n, is either ∀ or ∃, and each Cj , 1 ≤ j ≤ m, is a clause of
the form of a disjunction

Cj = y1 ∨ y2 ∨ . . . ∨ yr,

with each yk being either a propositional variable, xs, or its negation, ∼ xs. For
example, let us consider the propositional formula

β = Q1x1Q2x2[(x1 ∨ x2) ∧ (∼ x1∨ ∼ x2)]

It is easy to see that it is true when Q1 = ∀ and Q2 = ∃, but it is false when
Q1 = ∃ and Q2 = ∀.

By adding dummy variables, each such formula can be rewritten such that the
quantifiers alternate: Q1 = ∃, Q2 = ∀, Q3 = ∃, Q4 = ∀ etc. We assume this normal
form for the formulas considered in the sequel.

Theorem 1 ([8]). There exists a uniform family of recognizer P systems with
active membranes providing a semi-uniform solution to QSAT in a time linear in
the number of variables and the number of clauses.

Proof. The following proof differs from the original one published in [8] mostly in
omitting the original paragraph 1, modifying paragraph 8 (here paragraph 7) and
adding a new paragraph 8.

Consider a propositional formula γ of the form (2) with

Ci = yi,1 ∨ . . . ∨ yi,pi ,
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for some pi ≥ 1, and yi,j ∈ {xk,∼ xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi.
We construct the P system

Π = (V,H, µ,w0, w1, . . . , wm, wm+n+1, R)

with the components

V = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ci | 0 ≤ i ≤ 4n + 2m + 2} ∪ {t, s, yes, no},
H = {0, 1, . . . ,m + n + 1},
µ = [

m+n+1
[
m+n

. . . [
1
[
0

]0
0
]0
1
. . . ]0

m+n
]0
m+n+1

,

w0 = c0,

wi = λ, for all i = 1, 2, . . . , m + n,

wm+n+1 = b,

while the set R contains the following rules:

1. [
0
ci → ai/2+1ci+1]

α
0
, for all 0 ≤ i < 2n, i even, α ∈ {+,−, 0}, and

[0ci → ci+1]
α
0 , for all 0 ≤ i < 2n, i odd, or 2n ≤ i ≤ 2n + m− 1, α ∈ {+,−, 0}

(we count to 2n + m, which is the time needed for producing all 2n truth-
assignments for the n variables, as well as 2n membrane sub-structures which
will examine the truth value of formula γ for each of these truth-assignments;
this counting is done in the central membrane, irrespective which is its po-
larity; moreover during first n odd steps, symbols a1, . . . an are subsequently
produced);

2. [0ai]
0
0 → [0ti]

+
0 [0fi]

−
0 , for all 1 ≤ i ≤ n

(in membrane 0, when it is “electrically neutral” we subsequently choose each
variable xi, 1 ≤ i ≤ n, and both values true and false are associated with it,
in the form of objects ti, fi, which are separated in two membranes with the
label 0 which differ only by these objects ti, fi and by their charge);

3. [
i+1

[
i

]+
i
[
i
]−
i

]0
i+1

→ [
i+1

[
i

]0
i
]+
i+1

[
i+1

[
i
]0
i
]−
i+1

, for all 0 ≤ i ≤ m + n− 1

(division rules for membranes labeled with 0, 1, . . . ,m + n; the opposite po-
larization introduced when dividing a membrane 0 is propagated from lower
levels to upper levels of the membrane structure and the membranes are con-
tinuously divided until also membrane m+n has been divided; this membrane
remains polarized and hence may be never divided again; in the following cycle
of the division process, the same holds for the membrane m+n− 1 and so on,
resulting in the structure at Figure 1 after 2n + m steps);

4. [
0
c2n+m]0

0
→ t

(after 2n + m steps, each copy of membrane 0 is dissolved and the contents is
released into the surrounding membrane, which is labeled with 1);
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5. [
j
ti]

0
j
→ ti, if xi appears in clause Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and

[ jfi]
0
j → fi, if ∼ xi appears in clause Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m

(a membrane with label j, 1 ≤ j ≤ m, is dissolved if and only if clause Cj

is satisfied by the current truth-assignment; if this is the case, then the truth
values associated with the variables are released in the surrounding membrane,
that associated with the next clause, Cj+1, otherwise these truth values remain
blocked in membrane j and never used at the next steps by the membranes
placed above; note that, as we will see immediately, after 2n+m steps we have
2n membrane sub-structures of the form [

m
[
m−1

. . . [
1

]0
1
. . . ]0

m−1
]0
m

working
in parallel; each of them is connected to a leaf of the binary tree membrane
structure as in Figure 1);

6. [m+1t]
α
m+1 → [m+1 ]α

m+1t, α ∈ {+,−}

(together with the truth-assignments, we also have the object t, which can
be passed from a level to the upper one only by dissolving membranes; this
object reaches the level m+1 if only if all membranes in a sub-structure of the
form [m[m−1 . . . [1 ]01 . . . ]0m−1]

0
m are dissolved, which means that the associated

truth-assignment has satisfied all the clauses);
7. [ it]

α
i → [ i ]0i s, [ it]

0
i → [ i ]0i t, if Qm+n+2−i = ∀, α ∈ {+,−}, m+2 ≤ i ≤ m+n,

and

[
i
t]α

i
→ [

i
]0
i
t, if Qm+n+2−i = ∃, α ∈ {+,−}, m + 2 ≤ i ≤ m + n

(a membrane [
i
]
i
corresponds to the quantifier Qjxj , where j = m+n+2− i;

if Qj = ∀, the object t is passed to the upper level only if it comes from both
lower level membranes, i.e. the respective clauses are satisfied for both truth
values of xj ; if Qj = ∃, then the object t coming from lower level is sent up);

8. [m+n+1ci → ci+1]
0
m+n+1, for all i, 0 ≤ i < 4n + 2m + 2,

[
m+n+1

c4n+2m+2]
0
m+n+1

→ [
m+n+1

]−
m+n+1

no,

[
m+n+1

t]0
m+n+1

→ [
m+n+1

]+
m+n+1

yes

(objects ci in the region enclosed by the skin membrane act as a clock; if
the object t reaches this region within 4n + 2m + 2 steps, signalling that the
formula evaluates to true, then the object yes is expeled from the system,
otherwise the object no is expeled after 4n + 2m + 2 steps. In both cases the
systems immediately halts.

From the previous explanations one can see that the object yes (no) leaves the
system in the last step if and only if formula γ evaluates to true (false, respectively).
This is achieved in 3n + bn/2c+ 2m + 2 steps:
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m + n + 1

m + n

m + n− 1

...

m + 2

m + 1

...

m

1

0
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c c

c c c c

c

c c
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+

0

−

0

c c
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0

0

0

0
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. . .
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0

+ −
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. . .

c
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+

0

−

0
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0

0

0

0

...
...

+ −

Fig. 1. The membrane structure of the system Π after 2n + m steps.

• in 2n + m steps we create the membrane structure at Figure 1 (as well as the
2n different truth-assignments)

• then we dissolve all membranes 0 (one step)
• we check the satisfiability of each clause for each truth-assignment, in parallel

in the 2n sub-structures (m + 1 steps)
• we check whether all quantifiers are satisfied by propagating objects t through

the indicated binary tree structure; one step is need for each of dn/2e quantifiers
∃, while two steps are necessary for each of bn/2c quantifiers ∀.
The arguments given above ensure that the system Π is polynomially bounded

and that the family of these P systems is complete and sound with respect to the
problem QSAT. Finally, the family is polynomially uniform by Turing machines
as the above construction can be performed by an algorithm which would run on
a classical computer (and hence also on Turing machine) in a polynomial time,
having as input a propositional formula γ (an instance of QSAT) and which would
output the description of the system Π. Note that both the size of the alphabet
V and the number of membranes in the initial configuration is O(n + m), and
the number of rules is O(nm), which determines the time necessary for the con-
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struction. Since the construction can be done step-by step without a need to store
previous steps, the space needed is O(log n + log m).

Corollary 1 ([8]). PSPACE ⊆ PMCS
AM.

4 Simulation of P Systems with Active Membranes in
Polynomial Space

In this section we show that the inclusion reverse to Corollary 1 hold as well. We
employ the technique of reverse-time simulation. Instead of simulating a compu-
tation of a P system from its initial configuration onwards (which would require
an exponential space for storing configurations), we create a recursive function
which returns the state of any membrane h after a given number of steps. The
recursive calls evaluate contents of the membranes interacting with h in a reverse
time order (towards the initial configuration). In such a manner we do not need
to store a state of any membrane, but instead we calculate it recursively whenever
it is needed. In this way a result of any T (n)-time-bounded computation of a rec-
ognizer P system with active membranes can be found in a space polynomial to
T (n).

Theorem 2 ([10]). PMCS
AM ⊆ PSPACE.

Proof. The proof of this result published in [10] remains unchanged under the
standard definition, except the paragraph at p. 149 under the subtitle “Space
complexity of the simulation”, starting with ”Consider an instance of a size s. . . ”.
This paragraph should be reformulated as follows:

Consider a decision problem which is, by assumption, solved by a uniform
family of P system with active membranes in a semi-uniform way. Each instance
of a size s is solved by a P system Π = (V, H, µ, w1, . . . , wm, R) of size sO(1), a
member of the family. The result of computation of Π can be calculated with the
aid of the function State. Let h0 be the skin membrane of Π. One can subsequently
calculate State(h0, n) for n = 0, 1, 2 . . . until the object yes or no is expelled from
h0 using the rule of type (c). We determine the space complexity of the function
State. Let. . . 2

Together with Corollary 1 we obtain the parallel computation thesis for uniform
families of recognizer P systems with active membranes:

Corollary 2. PMCS
AM = PSPACE.

5 Concluding Remarks

Since the publication of papers [8, 10], similar results linking the class PSPACE
with other types of membrane systems have been presented, see, e.g., [3, 9]. The
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proof technique we have used in Theorem 2 is applicable also to other variants of
P systems.

Finally, we note that the characterization of power of non-confluent P systems
with active membranes remains still open. The presented proof cannot be simply
adapted to this case by using a non-deterministic Turing machine. The reason is
that we cannot store non-deterministic choices of such a P system along a chosen
trace of computation, as this would require an exponential space. It is possible
that non-confluent P systems with active membranes might capture in polynomial
time the class NEXPTIME.

Acknowledgements
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Summary. Spiking neural P systems (SN P systems, for short) are a class of distributed
parallel computing devices inspired from the way neurons communicate by means of
spikes. In this work, a discrete structure representation of SN P systems is proposed.
Specifically, matrices are used to represent SN P systems. In order to represent the
computations of SN P systems by matrices, configuration vectors are defined to monitor
the number of spikes in each neuron at any given configuration; transition net gain vectors
are also introduced to quantify the total amount of spikes consumed and produced after
the chosen rules are applied. Nondeterminism of the systems is assured by a set of spiking
transition vectors that could be used at any given time during the computation. With
such matrix representation, it is quite convenient to determine the next configuration
from a given configuration, since it involves only multiplying vectors to a matrix and
adding vectors.

1 Introduction

Membrane computing was initiated by Păun [6] and has developed very rapidly
(already in 2003, ISI considered membrane computing as “fast emerging research
area in computer science”, see http://esi-topics.com). It aims to abstract com-
puting ideas (data structures, operations with data, computing models, etc.) from
the structure and the functioning of single cell and from complexes of cells, such
as tissues and organs including the brain. The obtained models are distributed
and parallel computing devices, called P systems. For updated information about
membrane computing, please refer to [8].
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This work deals with a class of neural-like P systems, called spiking neural P
systems (SN P systems, for short) [3]. SN P systems were inspired by the neuro-
physiological behavior of neurons (in brain) sending electrical impulses along axons
to other neurons, with the aim of incorporating specific ideas from spiking neurons
into membrane computing. Generally speaking, in an SN P system the processing
elements are called neurons and are placed in the nodes of a directed graph, called
the synapse graph. The content of each neuron consists of a number of copies of
a single object type, namely the spike. Each neuron may also contain rules which
allow to remove a given number of spikes from it, or send spikes (possibly with a
delay) to other neurons. The application of every rule is determined by checking
the content of the neuron against a regular set associated with the rule.

Representation of P systems by discrete structures has been one topic in the
field of membrane computing. One of the promising discrete structures to represent
P systems is matrix. Models with matrices as their representation have been helpful
to physical scientists – biologist, chemists, physicists, engineers, statisticians, and
economists – solving real world problems. Recently, matrix representation was
introduced to represent a restricted form of cell-like P systems without dissolution
(where only non-cooperate rules are used) [2]. It was proved that with algebraic
representation P systems can be easily simulated and computed backward (that
is, to find all the configurations that produce a given one in one computational
step).

In this work, a matrix representation of SN P systems without delay is pro-
posed, where configuration vectors are defined to represent the number of spikes in
neurons; spiking vectors are used to denote which rules will be applied; a spiking
transition matrix is used to describe the skeleton of system; transition net gain
vectors are also introduced to quantify the total amount of spikes consumed and
produced after the chosen rules are applied. With these algebraic representation,
matrix transition can be used to compute the next configuration from a given
configuration.

The rest of this paper is organized as follows. In the next section, we introduce
the definition of SN P systems. Section 3 presents the matrix representation of SN
P systems. Section 4 illustrates how to represent the computation of SN P system
by matrix transition. Conclusions and remarks are given in Section 5.

2 Spiking Neural P Systems

In this section, a restricted variant of SN P systems, SN P systems without delay,
is introduced.

Definition 1. An SN P system without delay, of degree m ≥ 1, is a construct of
the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:
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1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → ap, where E is a regular expression over a, and c ≥ 1, p ≥ 1,
with the restriction c ≥ p;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap

of type (1) from Ri, as /∈ L(E);
3. syn = {(i, j) | 1 ≤ i, j ≤ m, i 6= j } (synapses between neurons);
4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The rules of type (1) are spiking (or called firing) rules, which are applied as
follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → ap ∈ Ri can be applied. This means that consuming (removing) c spikes
(thus only k− c spikes remain in σi), the neuron is fired, and it produces p spikes;
these spikes are transported to all neighbor neurons by outgoing synapses.

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a has E = ac, then it is written in the simplified form ac → a.
In each time unit, if a neuron σi can apply one of its rules, then a rule from

Ri must be applied. Since two spiking rules, E1/ac1 → ap1 and E2/ac2 → ap2 , can
have L(E1)∩L(E2) 6= ∅, it is possible that two or more rules are applicable in a neu-
ron, and in that case, only one of them is chosen and applied non-deterministically.
However, note that, by definition, if a spiking rule is applicable, then no forgetting
rule is applicable, and vice versa.

Thus, the rules are applied in the sequential manner in each neuron, at most
one in each step, but neurons function in parallel with each other. It is important
to notice that the applicability of a rule is established based on the total number
of spikes contained in the neuron.

A configuration of the system is described by the number of spikes present in
each neuron. Using the rules as described above, one can define transitions among
configurations. Any sequence of transitions starting in the initial configuration is
called a computation. A computation halts if it reaches a configuration where no
rule can be applied. The result of a computation is the number of steps elapsed
between the first two spikes sent by the output neuron during the computation.

3 Matrix Representation of SN P System

In this section, a matrix representation of SN P system is given.
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As mentioned in the above section, a configuration of the system is described
by the number of spikes present in each neuron. Here, vectors are used to represent
configurations.

Definition 2 (Configuration Vectors). Let Π be an SN P system with m neu-
rons, the vector C0 = (n1, n2, . . . , nm) is called the initial configuration vec-
tor of Π, where ni is the amount of the initial spikes present in neuron σi,
i = 1, 2, . . . ,m before the computation starts.

For any k ∈ N, the vector Ck = (n(k)
1 , n

(k)
2 , . . . , n

(k)
m ) is called the kth config-

uration vector of the system, where n
(k)
i is the amount of spikes in neuron σi,

i = 1, 2, . . . ,m after the kth step in the computation.

In order to describe which rules are chosen and applied in each configuration,
spiking vector is defined.

Definition 3 (Spiking Vectors). Let Π be an SN P system with m neurons and
n rules, m ≤ n < ∞. Assume a total order d : 1, . . . , n is given for all the n
rules, so the rules can be referred as r1, . . . , rn. A spiking vector s(k) is defined
as follows:

s(k) = (r(k)
1 , r

(k)
2 , . . . , r(k)

n ),

where:

r
(k)
i =





1, if the regular expression Ei of the rule ri is satisfied
and the rule ri is chosen and applied;

0, otherwise.

In particular, s(0) = (r(0)
1 , r

(0)
2 , . . . , r

(0)
n ) is called the initial spiking vector.

In each configuration, when the chosen rules are applied, the change of the
number of spikes in each neuron is represented by spiking transition matrix.

Definition 4 (Spiking Transition Matrix). Let Π be an SN P system with
m neurons and n rules, d : 1, . . . , n a total order given for all the n rules. The
spiking transition matrix of the system Π, MΠ , is defined as follows:

MΠ = [aij ]n×m,

where:

aij =





−c, if rule ri is in neuron σj and it is applied consuming c spikes;
p, if rule ri is in neuron σs (s 6= j and (s, j) ∈ syn)

and it is applied producing p spikes;
0, if rule ri is in neuron σs (s 6= j and (s, j) /∈ syn).

In a spiking transition matrix, the row i is associated with the rule ri : E/ac →
ap. Assume that the rule ri is in neuron σj . When the rule ri is applied, it consumes
c spikes in neuron σj ; neuron σs (s 6= j and (j, s) ∈ syn) receives p spikes from
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neuron σj ; neuron σs (s 6= j and (j, s) /∈ syn) receives no spike from neuron σj .
By the definition of spiking transition matrix, the entry in the position (i, j) is a
negative number; the other entries in the row i are non-negative numbers. So the
following observation holds:

Observation 1 Each row of a spiking transition matrix has exactly one negative
entry.

In a spiking transition matrix, the column i is associated with neuron σi. For
an SN P system, without loss of generality, it can be assumed that each neuron
has at least one rule inside (if a neuron has no rule inside, it just stores spikes,
sending no spikes to other neurons or environment, so it can be deleted without
any influence to the computational result of the system). Assume the rules to be
rm, rn, . . . . The rules consume spikes in neuron σi when they are applied. So the
corresponding entries (m, i), (n, i), . . . in the spiking transition matrix are negative
numbers, and the following observation holds:

Observation 2 Each column of a spiking transition matrix has at least one neg-
ative entry.

4 Computing via Matrices

In this section, it is shown how the computation of SN P system can be represented
by operations on matrices, by using the matrix representation defined in the above
section.

First, we provide an example before we define formally the matrix operations
for an SN P system.

Example 1. Let us consider an SN P system Π = ({a}, σ1, σ1, σ3, syn, out) that
generates the set N of natural numbers excluding 1, where σ1 = (2, R1), with
R1 = {a2/a → a, a2 → a}; σ2 = (1, R2), with R2 = {a → a}; σ3 = (1, R3),
with R3 = {a → a, a2 → λ}; syn = {(1, 2), (1, 3), (2, 1), (2, 3)}; out = 3. Π is also
represented graphically in Figure 1, which may be easier to understand .

In order to represent the above SN P system Π in a matrix, firstly, we set a
total order for all the rules in the system, which can be seen in Figure 1. With
this order, the rules can be denoted by r1, . . . , r5.

Let MΠ1 = [aij ]5×3 be the spiking transition matrix for Π. As defined in
Section 3, row i of MΠ is associated with rule ri : E/ac → ap, c ≥ 1, p ≥ 0
in system Π. The entries ai1, ai2, ai3 are the amount of spikes which neurons
σ1, σ2, σ3 will get (or consume) when rule ri is applied.

We have the following spiking transition matrix for the SN P system Π in
Figure 1.
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Fig. 1. An SN P system Π that generates the set N− {1}

MΠ =




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




(1)

Initially, neurons σ1, σ2, σ3 have 2, 1, 1 spikes, respectively. According to
Definition 2, the initial configuration vector for system Π would be C0 = (2, 1, 1).
We also get the initial spiking vector by Definition 3: since neuron σ1 has two
rules r1 and r2 that could possibly be applied in the initial transition, one of the
rules could be chosen. The initial spiking transition vector would be (1, 0, 1, 1, 0) or
(0, 1, 1, 1, 0). Note here that we cannot use rule r5 because the regular expression
a2 is not satisfied in neuron σ3.

If rule r1 : a2/a → a is applied, it consumes one spike in neuron σ1 and sends 1
spike to neurons σ2 and σ3, respectively; at the same time, neuron σ2 sends 1 spike
to neurons σ1 and σ3. In this step, the net gain of neuron σ1 is 0 spike (it consumes
1 spike by r1 and receives 1 spike from neuron σ2); the net gain of neuron σ2 is
0 spike (it consumes 1 spike by r3 and receives 1 spike from neuron σ1); the net
gain of neuron σ3 is 1 spike (it consumes 1 spike by rule r5 and receives 2 spikes
from neurons σ1 and σ2, respectively). After this step, the numbers of spikes in
neurons σ1, σ2, σ3 are 2, 1, 2, respectively.

Our illustration above served as witness to the following results.

Definition 5 (Transition Net Gain Vector). Let Π be an SN P system with m

neurons and n rules, m ≤ n < ∞, Ck = (n(k)
1 , n

(k)
2 , . . . , n

(k)
m ) the kth configuration

vector of an SN P system Π. We define

NG(k) = Ck+1 − Ck,
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as the transition net gain vector at step k.

Lemma 1. Let Π be an SN P system with m neurons and n rules, m ≤ n < ∞,
d : 1, . . . , n a total order for the n rules, MΠ the spiking transition matrix of Π,
s(k) the spiking vector at step k. Then the transition net gain vector at step k can
be obtained by

NG(k) = s(k) ·MΠ . (2)

Proof. Equation (2) implies that NG(k) = (g1, g2, . . . , gm), such that gj =
Σn

i=1 r
(k)
i aij , for all j = 1, 2, . . . , m. Note that the spiking vector s(k) is a

{0, 1}-vector that identifies the rules in each neuron that would be applied
at step k. Thus, gj represents the total amount of spikes obtained and con-
sumed by neuron σj after applying the rules identified by s(k). Therefore, we
have (n(k+1)

1 , n
(k+1)
2 , . . . , n

(k+1)
m ) = (n(k)

1 , n
(k)
2 , . . . , n

(k)
m ) + (g1, g2, . . . , gm), that is,

Ck+1 = Ck + NG(k).

Theorem 1. Let Π be an SN P system with m neurons and n rules, m ≤ n < ∞,
d : 1, . . . , n a total order for the n rules, MΠ the spiking transition matrix of
Π, C(k) the kth configuration vector, s(k) the spiking vector at step k, then every
configuration Ck of Π can be obtained by

Ck = Ck−1 + s(k−1) ·MSNP . (3)

Proof. This results follows directly from the preceding Lemma.

Let us go back to the example show in Figure 1. Given the initial configuration
vector C0 = (2, 1, 1), the next configuration of system Π can be computed as
follows:

If we choose the rules r1, r3, r4 to apply, the spiking vector will be s(0) =
(1, 0, 1, 1, 0), then the next configuration can be obtained by:

C1 = (2 1 1) + (1 0 1 1 0)




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




= (2 1 2) (4)

In the next step, we choose r1, r3, r5 to apply, the spiking vector is (1, 0, 1, 0, 1),
then the next configuration is:

C2 = (2 1 2) + (1 0 1 0 1)




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




= (2 1 2) (5)
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So, if we choose the spiking vector to be (1, 0, 1, 0, 1), the transition net gain
vector will be:

NG = (1 0 1 0 1)




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




= (0 0 0) (6)

Equation (6) means that the configuration of the system will remain unchanged
as long as we choose rules r1, r3 and r5 to apply. However, at any moment, starting
from the first step of computation, neuron σ1 can choose to use the rule r2 : a2 → a,
in this case system will go to another configuration, we do not want to check the
computation in detail here but leave this task to the readers.

Finally, the following Corollary is a direct consequence of the preceding Theo-
rem.

Corollary 1. Let Π be an SN P system with m neurons and n rules, m ≤ n < ∞,
d : 1, . . . , n a total order for the n rules, MΠ the spiking transition matrix of Π,
C(k) the kth configuration vector, s(k) the spiking vector at step k, the previous
configuration Ck−1 can be obtained by

Ck−1 = Ck − s(k−1) ·MΠ . (7)

In our matrix representation, we do not include the environment. This idea can
be incorporated in the definition of a spiking transition matrix by introducing a
so-called augmented spiking transition matrix.

Definition 6 (Augmented Transition Spiking Matrix). Let Π be an SN P
system with m neurons and n rules, m ≤ n < ∞, d : 1, . . . , n a total order for the
n rules, MΠ the n×m spiking transition matrix of Π. We define an augmented
spiking transition matrix as follows:

[MΠ | e]n×(m+1),

where e = (e1, e2, . . . , en)T is a column representing environment, where:

ei =
{

p, if rule ri is in the output neuron and it is applied producing p spikes;
0, if rule ri is not in the output neuron.

Correspondingly, we define

Ck = (n(k)
1 , n

(k)
2 , . . . , n(k)

m , n(k)
e ),

to be augmented configuration vector after the kth step in the computa-
tion, where n

(k)
i is the amount of spikes in neuron σi, for all i = 1, 2, . . . ,m, n

(k)
e

is the amount of spikes collected by environment. Using this vector instead of the
configuration vector defined in Section 3 simply allows us to monitor the output
of a system.
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5 Conclusions and Remarks

In this paper, we have found a universal algebraic representation for SN P systems:
for every SN P system without delay, configuration vectors are defined to represent
the number of spikes in neurons; spiking vectors are used to denote which rules will
be applied; a spiking transition matrix is used to describe the skeleton of system.
Such algebraic representation turns out to be a reasonable representation of SN P
systems. It is shown that matrix computation is convenient for deciding the next
configuration of our systems.

It is not difficult to see that such matrix representation is also suitable for
other variants of SN P systems, such as asynchronous SN P systems [1], SN P
systems with exhaustive use of rules [4], and so on. The spiking transition matrix
is related to the structure of system only, so that the elements of the matrix are
determined initially. During the computation of a system, it is only necessary to
decide the spiking vector by checking the current configuration vector and the
regular expressions of rules. Thus, it is easy to program for computer application,
which can offer as a powerful tool for the simulation and analysis of these systems.

Anyway, there are many issues still worth investigating. Another research line
would be of interest to see whether matrix can be used for biological neural net-
works, for example, human brain. A problem is how to capture the feature that
neurons have refractory time (in the present paper, we have not considered this
feature in our model).
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Summary. This paper proposes an approximate optimization algorithm combining P
systems with ant colony optimization, called ACOPS, to solve traveling salesman prob-
lems, which are well-known and extensively studied NP-complete combinatorial optimiza-
tion problems. ACOPS uses the pheromone model and pheromone update rules defined
by ant colony optimization algorithms, and the hierarchical membrane structure and
transformation/communication rules of P systems. First, the parameter setting of the
ACOPS is discussed. Second, extensive experiments and statistical analysis are investi-
gated. It is shown that the ACOPS is superior to Nishida’s algorithms and its counterpart
ant colony optimization algorithms, in terms of the quality of solutions and the number
of function evaluations.

1 Introduction

As a young and vigorous branch of natural computing, membrane computing fo-
cuses on abstracting computing models and membrane systems from the structure
and the functioning of the living cell as well as from the cooperation of cells in
tissues, organs, and other populations of cells [1, 2]. The molecular interactions
of neurons inspired the development of the neural P systems [3]. In recent years,
the interaction between membrane computing and other nature-inspired comput-
ing paradigms has been considered from various perspectives. The integration of
meta-heuristic search methodologies and P systems has given birth to membrane
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algorithms [4], which prove to be efficient and effective ways to solve various real
world problems. Generally, there are two main methods utilized in providing solu-
tions to optimization problems, approximate and complete approaches. The com-
plete algorithms are guaranteed to find an optimal solution in bounded time for
every finite size instance of an optimization problem and they may require ex-
ponential computing time in the worst case for an NP-hard problem [5]. These
approaches are ineffective in practical circumstances and other ways of tackling
these problems are considered. The approximate algorithms instead, focus on pro-
ducing good solutions in significantly less time rather than obtaining optimal solu-
tions which are hard to compute. These approaches are very important in solving
various continuous and combinatorial optimization problems [5].

The membrane algorithm, or the approximate optimization algorithm based
on P systems, is a fertile research direction which explores the great potential of
membrane computing as a distributed processing mechanism. Until now, relatively
limited work has been produced in this field. In [6, 7, 8], an approximate algorithm
using a nested membrane structure (NMS) and a local search technique to solve
traveling salesman problems was presented. The algorithm was also applied to ob-
tain good approximate solutions to the min storage problem [9]. In [10, 11], an
optimization algorithm combining the NMS and conventional genetic algorithms
was presented to solve single-objective and multi-objective numerical optimization
problems. In [12], the similarities between distributed evolutionary algorithms and
P systems were analyzed and new variants of distributed evolutionary algorithms
are suggested and applied for some continuous optimization problems. In our pre-
vious work [4, 13], a quantum-inspired evolutionary algorithm based on P systems
(QEPS) was proposed to solve knapsack and satisfiability problems. In the QEPS,
a one-level membrane structure (OLMS) was introduced and a comparison be-
tween the OLMS and the NMS was experimentally investigated. Further variants
of the QEPS were applied to analyze radar emitter signals and design digital filters
[14, 15, 16]. In [17], the application of membrane algorithms to controller design
was discussed. All these investigations support the claim made by Păun and Pérez-
Jiménez [18] that the membrane algorithm is a rather new research direction with
a well-defined scope, a set of open questions, and therefore further studies are
necessary to prove the usefulness of P systems-based approaches for real-world
applications.

The already established way of conceiving membrane algorithms is to explore
the interactions between P systems and various meta-heuristic techniques for solv-
ing different problems; their performance is assessed by comparing the results pro-
duced by them and their complexity aspects with those obtained by using already
available optimization techniques. In this paper, an approximate optimization
algorithm integrating P systems and ant colony optimization techniques, called
ACOPS, is proposed in order to solve traveling salesman problems (TSPs). This
is the first attempt to investigate the interaction between P systems and swarm
intelligence approaches in defining membrane algorithms. We use the pheromone
model and pheromone update rules of ant colony optimization (ACO) algorithms,
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and the hierarchical membrane structure and transformation/communication rules
of P systems, to specify the ACOPS algorithm. Also we discuss the parameter set-
ting of the ACOPS. A TSP is a well-known and extensively studied NP-complete
combinatorial optimization problem. Experiments conducted on fairly large TSP
instances and statistical analysis undertaken show that the ACOPS outperforms
Nishida’s algorithms and its counterpart ACO algorithms. This work is an example
of a successful use of membrane computing, in combination with efficient searching
methods, for designing approximate optimization algorithms.

This paper is organized as follows. Section 2 first gives a brief introduction
of TSP, P systems, and ACO, and then discusses the ACOPS in detail. Section
3 addresses some discussions with regard to parameter setting and experimental
results. Conclusions are drawn in Section 4.

2 ACOPS

This section starts with a brief description of the TSP problem, some basic P
systems concepts, and a presentation of the ant optimization algorithm. The rest
of this section is dedicated to a presentation of the ACOPS.

2.1 Traveling Salesman Problems

TSP is one of the well-known and most intensively studied combinatorial opti-
mization problems in the areas of optimization, operational research, theoretical
computer science, and computational mathematics [19, 20]. A TSP can be de-
scribed as follows. Given a set C of N cities, i.e., C = {c1, c2, · · · , cN}, and a set
D of the pairwise travel costs dij , i, j = 1, 2, · · · , N, i 6= j, i.e., D = {dij}, it is
requested to find the minimal cost of the path taken by a salesman visiting each of
the cities just once and returning to the starting point. More generally, the task is
to find a Hamiltonian tour with a minimal length in a connected, directed graph
with a positive weight associated to each edge. If dij = dji, the TSP is symmetric
in the sense that traveling from city X to city Y costs just as much as traveling in
the opposite direction, otherwise, it is asymmetric.

In the TSP, the cost could be associated with distance, time, money, energy,
etc.. A number of industrial problems such as network structure design, machine
scheduling, cellular manufacturing, and frequency assignment, can be formulated
as TSPs; consequently TSP is often used as a standard benchmark for optimization
algorithms [21]. In the theory of computational complexity, TSP belongs to the
class of NP-complete problems. In this paper, we will consider the symmetric TSPs,
in which the distance is used as the cost.

2.2 P Systems

Various P systems in the literature can be classified in three groups: cell-like P
systems, tissue- like P systems and neural-like P systems [22]. A cell-like P system,
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considered in this paper, is characterized by three components: the membrane
structure delimiting compartments, the multisets of abstract objects placed in
compartments, and the evolution rules applied to objects. The membrane structure
of a cell-like P system, shown in Fig. 1, is a hierarchical arrangement of membranes
[1]. The outermost membrane is the skin membrane separating the system from
its environment. As usual, there are several membranes inside the skin membrane.
Each of these membranes defines a region, which forms a different compartment of
the membrane structure and contains a multiset of objects, other membranes and
a set of evolution rules. The membrane without any membrane inside is called an
elementary membrane.

membrane 

skin 

elementary membrane region 

environment 
environment 

elementary region 

membrane 

Fig. 1. The membrane structure of a cell-like P system [1]

A cell-like P system with an output set of objects and using transformation
and communication rules is formally defined as follows [1, 23]

Π = (V, T, µ, w1, · · · , wm, R1, · · · , Rm, i0),

where

(i) V is an alphabet; its elements are called objects;
(ii) T ⊆ V the output alphabet);
(iii) µ is a membrane structure consisting of m membranes, with the membranes

and the regions labelled in a one-to-one manner with elements of a given set
Λ – usually the set {1, 2, · · · ,m}; m is called the degree of Π;

(iv) wi, 1 ≤ i ≤ m, are strings representing multisets over V associated with the
regions, 1, 2, · · · ,m, of µ;

(v) Ri, 1 ≤ i ≤ m, are sets of rules associated with the regions, 1, 2, · · · ,m, of µ;
(vi) i0 is a number between 1 and m which specifies the output membrane of Pi.

The rules of Ri, 1 ≤ i ≤ m, have the form a → v, where a ∈ V and
v ∈ (V × {here, out, in})∗. The multiset v consists of pairs (b, t), ∈ V and
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t ∈ {here, out, in}, where here means that b will stay in the region where the
rule is used; out shows that b exits the region and in means that b will be commu-
nicated to one of the membranes contained in the current region which is chosen
in a non-deterministic way.

A P system, regarded as a model of computation, provides a suitable frame-
work for distributed parallel computation that develops in steps. In the process
of computation, multisets of simple objects or are rewritten; the rules associated
to regions are employed in a non-deterministic and maximally parallel manner;
the rules involving both transformation and communication are responsible for
evolving the current objects and transfer them among regions according to some
targets; the output region will contain the result of the computation [13].

2.3 Ant Colony Optimization

Ant colony optimizations, ACO for short, a successful evolutionary paradigm of
swarm intelligence inspired from the social behaviors of insects and of other animals
[19], was initiated by Dorigo in the early 1990s to solve various combinatorial
optimization problems [5]. ACO is inspired by the behavior of real foraging ants,
which employ pheromone trails to mark their paths to food resources. The main
ACO algorithms in the literature include the earliest ant system, MAX-MIN ant
system, rank-based ant system, hyper-cube ant system, and ant colony system
(ACS). According to the studies in [5, 19, 20, 24], the ACS is one of the most
powerful ACO algorithms. Therefore, we consider the use of ACS to construct the
ACOPS. In what follows the TSP is taken as an example to describe the ACS.

In the ACS, the TSP is mapped onto a graph called a construction graph in
such a manner that feasible solutions of the problem correspond to paths on the
construction graph. Artificial ants successively produce better feasible solutions by
modifying pheromones deposited on the edges of the TSP graph. The pseudocode
algorithm for ACS is shown in Fig. 2, where each step is described as follows.

(i) In this step, the pheromone values are initialized to a value τ0 (τ0 = 1/ND)
at step t = 0, where N is the number of cities in a TSP and D is an arbitrary
solution.

(ii) In the While loop, M represents the number of ants. Initially the M ants are
randomly placed in the N nodes of the TSP graph as the initial state of a
tour construction. Each ant uses a pseudorandom proportional rule to choose
the next city it will visit. For instance, the kth ant in the ith city chooses
the next city j by using the following formula

j =

{
arg max

l∈Nk
i

{[τil]α[ηil]β}, if q ≤ q0

J, otherwise
(1)

where τil is the pheromone value of the edge connecting the ith node and the
lth node; ηil is a heuristic information value; the parameters α and β(α > 0
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Begin 
1t 

(i) Initialize pheromone values 

While (not termination condition) do

For k=1, 2, … , M

For n=1, 2, … , N

(ii)       Construct a tour 

(iii)       Local pheromone update 

End For 

End For

(iv) Global pheromone update
1t t !

End While 

End Begin 

Fig. 2. Pseudocode algorithm for ACS

and β > 0) determine the relative importance of the pheromone value τil and
the heuristic information ηil; N k

i (N k
i ⊆ N ) is the set of all nodes that the

kth ant in the ith city can visit, where N is the set of all the nodes in the TSP
graph; q0(0 ≤ q0 ≤ 1) is a user-defined parameter specifying the distribution
ratio of the two choices; q is a random number generated by using a uniform
distribution function in the interval [0, 1]; J means that the next city j is
chosen by using a random proportional rule, i.e., the kth ant in the ith city
visits the city j at the next step according to the probability

pk
ij =





[τij ]
α[ηij ]

β

∑
l∈Nk

i

[τil]
α[ηil]

β , j ∈ N k
i

0, otherwise
(2)

(iii) After an ant constructs a tour, it will update the pheromone value τij of the
tour by applying a rule as follows

τij = (1− υ)τij + υτ0 (3)

where υ(0 < υ < 1) is a local pheromone decay coefficient. The local
pheromone update is used to encourage subsequent ants to choose other edges
and, hence, to produce different solutions, by decreasing the pheromone value
on the traversed edges. Thus, this step is helpful to the exploration of more
solutions.

(iv) This step is to update the pheromone values of all the edges in the TSP graph
by employing the best solution searched. To be specific, the pheromone value
τij(t) of the edge connecting the ith node and the jth node at generation t
is modified as the pheromone value τij(t + 1) at generation t + 1, i.e.,
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τij(t + 1) = (1− ρ)τij(t) + ρ∆τij(t) (4)

where ρ(0 < ρ ≤ 1) is a global pheromone decay coefficient and is also called
the evaporation rate of the pheromone, and ∆τij(t) is

∆τij(t) =
{

1/Db, if (i, j) ∈ Tb

0, otherwise (5)

where Db is the minimal distance searched, that is, the best solution searched,
and Tb is the shortest path corresponding to Db. The global pheromone
update is to guide ants toward the best path searched.

2.4 ACOPS

In this subsection, we use the hierarchical framework of cell-like P systems and
its evolution rules in a slightly modified way, and the parameterized probabilistic
model, i.e., the pheromone model, of ACO, to specify the ACOPS algorithm. More
specifically, the ACOPS applies the OLMS [13] to organize objects and evolution
rules. The objects consist of ants or TSP construction graphs. The evolution rules,
which are responsible to evolve the system and select the best ant, include a tour
construction, and transformation/communication rules implemented by using local
and global pheromone update rules.

More precisely the P system-like framework will consist of:

(i) a membrane structure µ = [0[1]1, [2]2, · · · , [m]m]0 with m+1 regions delimited
by m elementary membranes and the skin membrane denoted by 0;

(ii) a vocabulary that consists of all the ants;
(iii) a set of terminal symbols, T, TSP construction graphs;
(iv) initial multisets w0 = λ,

w1 = A1A2 · · ·AM1 ,
w2 = AM1+1AM1+2 · · ·AM2 ,
· · · · · ·

wm = AM(m−1)+1AM(m−1)+2 · · ·AMm

where Ai, 1 ≤ i ≤ M , is an ant; Mj , 1 ≤ j ≤ m, is the number of ants in the
wj ;

∑m
j=1 Mj = M , where M is the total number of ants in this computation;

(v) rules which are categorized as
a) tour construction rules in each of the compartments 0 to m; these are

transformation-like rules which construct tours for the ants (see (ii) in
the ACS presentation);

b) communication rules which use pheromone values to update the edges
of the TSP graphs. There are three levels of communication rules. The
first level corresponding to the local pheromone update strategy of the
ACS is utilized to exchange information between the current ant and
its subsequent ant. The second and third levels of communication rules
come from the global pheromone update strategy in the ACS. The second
one implements information exchange between the best ant and the rest
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within a certain membrane. The third one performs the communication
between the ants in the elementary membranes and those in the skin
membrane.

In the ACOPS the initial colony of ants is scattered across the membrane
structure. The initial colony will consist of the multisets w1, · · · , wm. Each of
the ants in the elementary membranes uses the rules of type (a) to sequentially
construct its tours. Going through N(the number of cities) steps, an ant will
sketch a whole path for the N cities. If all the ants have their paths, the current
generation is assessed compartment by compartment to select the best fit ant for
each elementary membrane. The best ant is used to adjust the pheromone values
in the TSP graph to communicate with the other ants in the same elementary
membrane. Every gi(i = 1, 2, · · · ,m) generations for the ith compartment, the best
ant is sent out to the skin membrane. Thus m ants from m elementary membranes
form the initial objects in the skin membrane. These ants evolve independently g0

generations to elect a best one to communicate with the ants in each elementary
membrane. The process will stop according to a preset termination condition, such
as a certain number of iterations. The pseudocode algorithm for the ACOPS is
summarized in Fig. 3, where each step is described as follows.

Begin 

1t  

(i) Initialize the membrane structure 

While (not termination condition) do

(ii)    Scatter ants into elementary membranes 

(iii)    Determine iterations for each of elementary membranes

For i =1, 2, .., m

(iv)    Perform ACS inside the ith elementary membrane 

End

(v) Form a colony of ants in the skin membrane 

(vi) Perform ACS in the skin membrane 

(vii) Execute global communication 

1t t !

End

End

Fig. 3. Pseudocode algorithm for the ACOPS
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1
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…

2

m

Fig. 4. The one level membrane structure

(i) In this step, the OLMS, shown in Fig. 4, is constructed. How to choose the
parameter m will be discussed in Section 3.

(ii) The M ants forming a colony are scattered across the m elementary mem-
branes in such a random way that guarantees each elementary membrane
contains at least two ants. This is helpful to perform the second level of the
communication process. Thus, the number of ants in an elementary mem-
brane varies from 2 to M − 2m + 2.

(iii) This step determines the number of iterations for each elementary membrane
to independently perform ACS. To be specific, the number gi(i = 1, 2, · · · ,m)
of iterations for the ith elementary membrane is generated randomly between
gmin and gmax, i.e.,

gi = gmin + brand(0, 1) · (gmax − gmin)c (6)

where gmin and gmax are lower and upper limits of iterations for elementary
membranes, respectively; b·c is a function rounding an element to the nearest
smaller integer.

(iv) In each of the m elementary membranes, the ACS algorithm shown in Fig. 2
is performed independently, i.e., the tour construction, local pheromone up-
date and global pheromone update are sequentially carried out for gi(i =
1, 2, · · · ,m) iterations.

(v) The colony of ants in the skin membrane is formed by using the best ants of
elementary membranes. Each compartment sends the best ant out into the
skin membrane and therefore there are m ants in total.

(vi) The ACS algorithm shown in Fig. 2 is performed independently in the skin
membrane for g0 iterations as in step (iv). The parameter g0 is determined
using (6).

(vii) The global communication is used to exchange some information between
the ants in the skin membrane and those in the elementary membranes. To
be specific, the best one ant in the skin membrane is employed to update
the pheromone values of the TSP graph in each of elementary membranes.
This operation has a positive effect on the ants in the compartments toward
better fitness, the shorter path.
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3 Experiments and Results

The performance of the ACOPS is tested on various TSP instances. First of all,
it is discussed how to set the number of elementary membranes by using 4 TSP
benchmarks. Then 20 benchmarks are applied to compare ACOPS and its coun-
terpart ACO algorithm. Subsequently, experimental comparisons between ACOPS
and Nishida’s algorithms are performed on 8 benchmark TSP problems. In these
experiments, several parametric and non-parametric tests are employed to analyze
the ACOPS behavior.

3.1 Parameter Setting

This subsection uses four TSP benchmarks, Eil76, Eil101, Ch130 and Ch150, to
discuss how to choose the number m of elementary membranes and the number
gi(i = 1, 2, · · · ,m)of generations for each elementary membrane. The four TSPs
have N =76, 101, 130 and 150 cities, respectively. According to the studies in
the literature, the parameters in the experiments are chosen as follows: M = 40,
α = 1, β = 3, ρ = 0.6, υ = 0.1 and q0 = 0.9. We use the number 10000 of function
evaluations as the termination criterion for all tests.

We first investigate the effect of the number of elementary membranes on the
ACOPS performance. On the basis of the ACOPS description, the parameter m
varies from 2 to 20. The parameters gmin and gmax are set to 10 and 30, respectively.
The performances of the ACOPS for each of the 19 cases are evaluated by using the
best solutions and their corresponding elapsed time per run, and the mean of best
solutions and their corresponding mean of elapsed time per run, of 20 independent
runs. Experimental results are shown in Fig. 5 – Fig. 12.

It can be seen from Fig. 5 – Fig. 12 that there are some general trends. Both the
best solutions and the mean of best solutions over 20 runs have fluctuant behavior.
To be specific, there is a first rapid fall and then several waves of higher values
follow. The elapsed time per run has a general increase as m goes up from 2 to 20.
It is worth pointing out that the general trends become clearer as the complexity
of the problem increases. From these experimental results, a trade-off value for the
parameter m between the quality of solutions and the elapsed time could be about
4.

In what follows we set the number of elementary membranes to 4 to conduct
a further investigation on the effects of the number of communications (NoC)
between the skin membrane and the elementary membranes, i.e., the number of
global communications, on the ACOPS performance. Let the NoC vary from 1 to
40. The number of function evaluations (NoFE) as the stopping criterion is 10000.
The parameter gmin is set 10. Thus, according to the ACOPS description, the gmax

can be obtained from the following formula

gmax =
2 ·NoFE

NoC · (N + m)
− gmin (7)
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Fig. 5. Experimental results of Eil76 with different membranes
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Fig. 6. Experimental results of Eil76 with different membranes
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Fig. 7. Experimental results of Eil101 with different membranes

where N and m are the total number of ants and the number of elementary mem-
branes (also is the number of ants in the skin membrane), respectively. We also
use the four TSP benchmarks, Eil76, Eil101, Ch130 and Ch150, to carry out the
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Fig. 8. Experimental results of Eil101 with different membranes
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Fig. 9. Experimental results of Ch130 with different membranes
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Fig. 10. Experimental results of Ch130 with different membranes

experiments. For each of the 40 cases, we record the best solutions and their corre-
sponding mean of elapsed time per run, and the mean of best solutions and their
corresponding mean of elapsed time per run, to assess the ACOPS performance.
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Fig. 11. Experimental results of Ch150 with different membranes
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Fig. 12. Experimental results of Ch150 with different membranes

The independent runs for each case are 20. Experimental results are shown in
Fig. 13 – Fig. 20.

Figures 13 – 20 show that the best solutions and the mean of best solutions
over 20 runs have a behavior oscillating between various maxima and minima.
The elapsed time per run goes through a drastic fluctuation and then stays a
relatively steady level. We note that the trends become clearer as the complexity
of the problem increases. Considering a trade-off between quality of solutions and
the elapsed time, the recommended value for the NoC could be chosen in the
range [15, 35]. Thus, given a certain value of NoFE, an appropriate value for the
parameter gmax could be determined in an interval, according to (7).

3.2 Comparisons with ACO and Statistical Analysis

To draw a comparison between the ACOPS and its counterpart ACO, we use 20
symmetric TSP benchmark problems to conduct experiments. The test problems,
shown in Table 1, were chosen either because there were data available online in
the literature, or the optimal solutions are known. They are challenging enough
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Fig. 13. Experimental results of Eil76 with NoC
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Fig. 14. Experimental results of Eil76 with NoC
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Fig. 15. Experimental results of Eil101 with NoC

for making fair comparisons between the two algorithms, in terms of solving diffi-
cult instances of TSPs. In the following experiments, the ACOPS and ACO have
identical settings for parameters: M = 40, α = 1, β = 3, ρ = 0.6, υ = 0.1, q0 = 0.9
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Fig. 16. Experimental results of Eil101 with NoC

5 10 15 20 25 30 35 40
6160

6180

6200

6220

6240

6260

NoC

Le
ng

th
 o

f p
at

h

(a) Best solutions

5 10 15 20 25 30 35 40
40

50

60

70

80

90

NoC

E
la

ps
ed

 ti
m

e 
pe

r 
ru

n(
s)

(b) Elapsed time per run

Fig. 17. Experimental results of Ch130 with NoC
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Fig. 18. Experimental results of Ch130 with NoC

and the NoFE, also listed in Table 1, for different TSPs as the termination cri-
terion. Additionally, in the ACOPS, the number of elementary membranes, the
parameters gmin and gmax are set to 4, 10 and 30, respectively. The performances
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Fig. 19. Experimental results of Ch150 with NoC
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Fig. 20. Experimental results of Ch150 with NoC

of the ACOPS and ACO are evaluated by using the following statistical results
over 20 independent runs: the best, the worst and the average length of paths.
Experimental results are listed in Table 1.

As shown in Table 1, the ACOPS achieves better results than the ACO in 19
out of 20 instances, in terms of the best and mean solutions. We go further to ap-
ply statistical techniques to analyze the behavior of the two algorithms, ACOPS
and ACO, over the 20 TSPs. Parametric and non-parametric approaches are two
main ways of statistical methods [25]. The parametric approach, also called single-
problem analysis, employs a parametric statistical analysis t-test to check whether
there is a significant difference between two algorithms applied to an optimiza-
tion problem. The non-parametric approach, also called multiple-problem analy-
sis, utilizes non-parametric statistical tests, such as Wilcoxon’s and Friedman’s
tests, to compare different algorithms whose results represent average values for
each problem, regardless of the inexistence of relationships among them. Thus, a
95% confidence Student t-test is first used to check whether there are significant
differences between ACOPS and ACO. Two non-parametric tests, Wilcoxon’s and
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Table 1. A comparison between ACOPS and ACO (‘+’ and ‘-’ represent significant
difference and no significant difference, respectively. ‘—’ means no optimum available)

TSP NoFE
ACO ACOPS

t-test OptimumBest Average Worst Best Average Worst
ulysses16 1e+4 74.11 74.11 74.11 73.99 74.02 74.23 3.47e-6(+) 74

att48 2e+4 33588.34 33654.16 33740.35 33523.71 33644.97 34060.49 7.05e-1(-) 33524
eil76 3e+4 545.39 546.22 551.93 544.37 551.62 555.55 3.48e-7(+) 538

kroA100 4e+4 21577.69 21776.91 22320.91 21285.44 21365.64 21552.00 4.00e-8(+) 21282
eil101 4e+4 642.66 652.30 684.19 640.98 648.48 664.24 2.03e-1(-) 629
lin105 4e+4 14383.00 14472.38 14482.31 14383.00 14444.77 14612.43 8.61e-2(+) 14379
ch130 4.5e+4 6204.09 6268.43 6333.16 6148.99 6205.54 6353.69 1.02e-3(+) 6110
gr137 4.5e+4 718.92 725.02 749.93 709.91 718.85 738.35 6.63e-3(+) —
pr144 5e+4 58587.14 58612.82 58687.80 58535.22 58596.00 58761.43 2.24e-1(-) 58537
ch150 5e+4 6595.00 6630.59 6689.79 6548.89 6570.86 6612.46 1.05e-7(+) 6528
rat195 6e+4 2370.24 2392.69 2434.39 2348.32 2355.23 2373.79 1.61e-7(+) 2323
d198 6e+4 16172.77 16266.93 16530.79 16073.13 16192.89 16381.91 3.75e-2(+) 15780

kroa200 6e+4 29597.01 29988.74 30466.71 29453.10 29552.92 29688.13 1.92e-6(+) 29437
gr202 6e+4 496.48 496.96 499.53 488.41 494.21 499.44 6.82e-4(+) —
tsp225 7e+4 4067.96 4146.32 4262.76 3904.46 3971.68 4044.32 2.11e-9(+) 3916
gr229 7e+4 1739.77 1763.80 1802.44 1725.84 1756.28 1792.91 2.11e-1(-) —
gil262 8e+4 2452.82 2487.58 2512.85 2407.68 2431.58 2450.65 4.86e-10(+) 2378
a280 9e+4 2626.44 2683.21 2787.61 2595.31 2636.49 2728.06 8.46e-4(+) 2579
pr299 10e+4 51050.78 52103.27 53698.23 49370.69 51021.74 52251.21 7.69e-4(+) 48191
lin318 10e+4 44058.08 45297.99 46410.50 42772.12 43433.54 45194.62 5.95e-9(+) 42029

Friedman’s tests, are applied to check whether the two algorithms are significantly
different or not. The level of significance considered is 0.05. Results of t-test are
listed in Table 1. Results of Wilcoxon’s and Friedman’s tests are shown in Table 2.
In Table 1 and 2, the symbols ‘+’ and ‘-’ represent significant difference and no
significant difference, respectively. The t-test results in Table 1 demonstrate that
there are 16 significant differences between the two algorithms. The p-values of the
two non-parametric tests in Table 2 are far smaller than the level of significance
0.05, which indicates that the ACOPS really outperforms the ACO. It is worth
noting that the study in [25] shows that the non-parametric statistical tests are
more appropriate than parametric statistical tests in the analysis of the behavior
of optimization algorithms over multiple optimization problems.

Table 2. Results of non-parametric statistical tests for ACOPS and ACO in Table 1.
‘+’ represents significant difference

Tests ACOPS vs ACO

Wilcoxon test(p-value) 1.6286e-004(+)

Friedman test(p-value) 5.6994e-005(+)

3.3 Comparisons with Nishida’s Algorithms and Statistical Analysis

In [6, 7, 8], Nishida proposed a membrane algorithm combining an NMS P sys-
tems structure and a local search. Eight TSP benchmarks were applied to test the
performances of the algorithm and its variants. In his experiments, the NMS with
2, 10, 30, 50, 70 and 100 membranes, respectively, was discussed. The maximal
number of iterations, which can be equivalent to a certain number of function eval-
uations (NoFE), was used as the termination criterion. The number of trials was
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20. The ACOPS algorithm stops according to a prescribed NoFE. The parameters
of the ACOPS are assigned as follows: M = 40, α = 1, β = 3, ρ = 0.6, υ = 0.1,
q0 = 0.9, m = 4, gmin = 10 and gmax = 30. Experimental comparisons between the
ACOPS and the Nishida’s algorithm are listed in Tables 3-5, in which NoM repre-
sents the number of membranes. The results of the ACOPS are obtained from 20
independent runs. In Tables 3 and 4, the results of Nishida’s algorithm are obtained
from [7, 8] and the NoFE for each cases are calculated according to the number
of iteration and the number of membranes. The performance of the ACOPS is
also tested on the Eil51 and KroA100 TSPs with different NoFE. Table 5 lists the
experimental results of Nishida’s algorithm and the equivalent NoFE for each of
the 8 TSP instances calculated by using 50 membranes and 100000 iterations. The
results of Wilcoxon’s and Friedman’s tests are given in Table 6.

Table 3. Comparisons of Nishida’s algorithm and ACOPS with Eil51 TSP

Nishida’s algorithm ACOPS

NoM 2 10 30 50 70 4
NoFE 1.2e+5 7.6e+5 2.36e+6 3.96e+6 5.56e+6 1e+4 2e+4 3e+4 4e+4 5e+4
Best 440 437 432 429 429 429.4841 429.4841 428.9816 428.9816 428.9816
Worst 786 466 451 444 443 435.5985 436.3928 434.9739 433.6050 433.8558

Average 522 449 441 435 434 432.3858 431.8023 431.3146 430.5506 430.4495

Table 4. Comparisons of Nishida’s algorithm and ACOPS with KroA100 TSP

Nishida’s algorithm ACOPS

NoM 2 10 30 50 70 100 4
NoFE 3e+5 1.9e+6 5.9e+6 9.9e+6 1.39e+7 1.99e+7 1e+4 2e+4 4e+4 6e+4 8e+4 1e+5
Best 23564 21776 21770 21651 21544 21299 21331 21285 21285 21285 21285 21285
Worst 82756 24862 23940 24531 23569 22954 22332 21665 21552 21475 21427 21575

Average 34601 23195 22878 22590 22275 21941 21593 21407 21367 21337 21320 21362

Table 5. Comparisons of Nishida’s algorithm and ACOPS with 8 TSPs

TSP
Nishida’s algorithm — ACOPS

NoFE Best Average Worst NoFE Best Average Worst

ulysses22 9.9e+7 75.31 75.31 75.31 2e+4 75.31 75.32 75.53

eil51 9.9e+7 429 434 444 4e+4 429 431 434

eil76 9.9e+7 556 564 575 6e+4 546 551 558

eil101 9.9e+7 669 684 693 8e+4 641 647 655

kroA100 9.9e+7 21651 22590 24531 1e+5 21285 21320 21427

ch150 9.9e+7 7073 7320 7633 1.2e+5 6534 6560 6584

gr202 9.9e+7 509.7 520.1 528.4 1.4e+5 489.2 492.7 497.1

tsp225 9.9e+7 4073.1 4153.6 4238.9 7e+4 3899.6 3938.2 4048.2

As compared with Nishida’s algorithm, the ACOPS uses much smaller NoFE
to achieve better solutions, which is shown in Table 3-5. Small NoFE means low
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computing complexity. The non-parametric statistical analysis shows that the two
algorithms have also a significant difference.

Table 6. Results of non-parametric statistical tests for Nishida’s algorithm and ACOPS
in Table 5. ‘+’ represents significant difference

Tests Nishida’s algorithm vs ACOPS

Wilcoxon test(p-value) 0.0156 (+)

Friedman test(p-value) 0.0339 (+)

4 Conclusions

This work is the first attempt to discuss the interaction between P systems and ant
colony optimization. We present an approximate optimization algorithm combin-
ing the hierarchical structure of compartments and communication/transformation
evolution rules of P systems, and the pheromone model of ant colony optimization.
The introduced approach is used to solve the well-known and extensively studied
NP-hard problem, traveling salesman problem. The better optimization perfor-
mance of the ACOPS is verified by comparing it with its counterpart ACO and
Nishida’s algorithms. In order to thoroughly test the capabilities of this approach,
our future studies will focus on the use of the ACOPS to producing solutions to
some real-world engineering problems.
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