
Artiom Alhazov   Svetlana Cojocaru
Marian Gheorghe   Yurii Rogozhin
Grzegorz Rozenberg   Arto Salomaa (Eds.)

 123

LN
CS

 8
34

0

14th International Conference, CMC 2013
Chişinău, Republic of Moldova, August 20-23, 2013
Revised Selected Papers

Membrane
Computing



Lecture Notes in Computer Science 8340
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Artiom Alhazov Svetlana Cojocaru
Marian Gheorghe Yurii Rogozhin
Grzegorz Rozenberg Arto Salomaa (Eds.)

Membrane
Computing
14th International Conference, CMC 2013
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Preface

This volume contains a selection of papers presented at CMC 14, the 14th

International Conference on Membrane Computing, held in Chişinău, Repub-
lic of Moldova, during August 20-23, 2013 (http://www.math.md/cmc14/).

The CMC series was initiated by Gheorghe Păun as the Workshop on Multi-
set Processing in the year 2000. Then two workshops on Membrane Computing
were organized in Curtea de Argeş, Romania, in 2001 and 2002. A selection of
papers from these three meetings were published as volume 2235 of the Lecture
Notes in Computer Science series, as a special issue of Fundamenta Informat-
icae (volume 49, numbers 1–3, 2002), and as volume 2597 of Lecture Notes in
Computer Science. The next six workshops were organized in Tarragona, Spain
(in July 2003), Milan, Italy (in June 2004), Vienna, Austria (in July 2005), Lei-
den, The Netherlands (in July 2006), Thessaloniki, Greece (in June 2007), and
Edinburgh, UK (in July 2008), with the proceedings published in Lecture Notes
in Computer Science as volumes 2933, 3365, 3850, 4361, 4860, and 5391, respec-
tively. The 10th workshop returned to Curtea de Argeş in August 2009 (LNCS
volume 5957).

From the year 2010, the series of meetings on membrane computing contin-
ued as the Conference on Membrane Computing with the 2010, 2011, and 2012
editions held in Jena, Germany (LNCS volume 6501), Fontainebleau, France
(LNCS volume 7184) and Budapest, Hungary (LNCS volume 7762). Today a
Steering Committee takes care of the continuation of the CMC series, which is
organized under the auspices of the European Molecular Computing Consortium
(EMCC). A regional version of CMC, the Asian Conference on Membrane Com-
puting, ACMC, started with the 2012 edition in Wuhan, China, and continued
with the 2013 edition in Chengdu, China.

CMC 14 was organized by the Institute of Mathematics and Computer Sci-
ence (IMCS) of the Academy of Sciences of Moldova Republic in conjunction with
the International Conference on Intelligent Information Systems, IIS 2013. These
two conferences represent the starting point of a series of events dedicated to the
50th anniversary of IMCS, celebrated in April 2014. A special session organized
in connection with IIS was dedicated to the memory of Prof. Yuri Pechersky,
the founder of artificial intelligence research at IMCS. These two conferences
obtained extensive media coverage in the Republic of Moldova. On August 20
the major news program of the national broadcasting television station started
with comprehensive reportage on the opening session of CMC 14 and IIS 2013.
Other radio and television stations also provided news and presented interviews
with organizers and participants of the conferences. On August 22, “Literatura
şi Arta” (Literature and Art), the weekly main cultural newspaper in Moldova,
published an article about these conferences as well as about Artiom Alhazov’s
Doctor habilitation defence.



VI Preface

On the first day a special session with invited speakers from both CMC 14
and IIS 2013 was organized for the participants. In the afternoon, Dr. Artiom
Alhazov defended his Doctoral habilitation thesis, “Small Abstract Machines”
(http://www.cnaa.md/en/thesis/24558/), in front of a panel with scientists from
six countries.

The Program Committee of CMC 14 invited lectures from Jozef Gruska
(Brno, Czech Republic), Gheorghe Păun (Bucharest, Romania/Seville, Spain),
Marian Gheorghe (Sheffield, UK), Alberto Leporati (Milan, Italy), Petr Sośık
(Opava, Czech Republic), and Sergey Verlan (Paris, France). Based on the votes
of the CMC 14 participants, the Best Paper Award of this year’s CMC con-
ference was given to Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca,
and Claudio Zandron for their paper “Enzymatic Numerical P Systems Using
Elementary Arithmetic Operations”.

In addition to the texts of the invited talks, this volume contains 16 papers
out of 26 presented at the conference. Each paper was subject to at least two
referee reports for the conference and of an additional one for this volume.

The editors warmly thank the Program Committee, the invited speakers, the
authors of the papers, the reviewers, and all the participants for their contribu-
tions to the success of CMC 14.

November 2013 Artiom Alhazov
Svetlana Cojocaru
Marian Gheorghe

Yurii Rogozhin
Grzegorz Rozenberg

Arto Salomaa

Administrator
高亮
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Alexandru Colesnicov Chişinău, Moldova
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Implementation of P Systems by Using Big Data Technologies . . . . . . . . . 117
Alex Ciobanu and Florentin Ipate

On Counter Machines versus dP Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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A Kernel P Systems Survey

Marian Gheorghe1 and Florentin Ipate2

1 Department of Computer Science
University of Sheffield

Portobello Street, Regent Court, Sheffield, S1 4DP, UK
m.gheorghe@sheffield.ac.uk

2 Department of Computer Science
University of Bucarest

Str Academiei, 14, Bucarest, Romania
florentin.ipate@ifsoft.ro

Abstract. In this short paper one overviews the two years development
of kernel P systems (kP systems for short), a basic class of P systems
combining features of different variants of such systems. The definition
of kP systems is given, some examples illustrate various features of the
model and the most significant results are presented.

1 Introduction

Membrane computing, a branch of natural computing, is a well-established body
of research and many models have been introduced and studied [5,6]. Such mod-
els are called P systems and many variants have been considered. The concept
of kernel P system (kP system) has ben introduced in [2] in order to include the
most used concepts from P systems into a single, coherent setting which allows
various solutions to a certain problem to be specified, compared and formally
verified.

Kernel P systems use a graph-like structure (like the so called, tissue P sys-
tems) of the model, with a set of symbols, labels of membranes, and rules of
various types. The rules selected against the multiset of objects available in each
compartment are executed in accordance with well-defined execution strategies.
These rules are responsible for either transforming and moving objects between
compartments or for changing the structure of the model.

The model has been revised in [3] and is now equipped with a specification
language, called kP-lingua, allowing a problem to be specified and then auto-
matically translated into a model-checker that helps verifying its correctness.
A software platform, called kPWorkbench, supports the kP-lingua verification
process [8].

We first introduce some preliminary definitions, then present some examples
and results, and end this paper with a brief description of the kP-lingua speci-
fication language.

A. Alhazov et al. (Eds.): CMC 2013, LNCS 8340, pp. 1–9, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 M. Gheorghe and F. Ipate

2 Definitions, Examples and Main Results

We consider that standard concepts like strings, multisets, rewriting rules, and
computation are well-known and point to [6] as a reference in this respect. First
we introduce the key concept of a compartment.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

The compartments introduced by the definition of the kP systems will be
instantiated from the compartment types defined above.

Definition 2. A kernel P (kP) system of degree n is a tuple

kΠ = (A, μ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; μ defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and
E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of
a compartment type from T and an initial multiset, wi over A; io is the output
compartment where the result is obtained.

The inner part of each compartment is called region, which is delimited by a
membrane.

Each rule r may have a guard g, its generic form is r {g}. The rule r is
applicable to a multiset w when its left hand side is contained into w and g
is true for w. In the sequel we will analyse how the guards are specified and
evaluated. The guards are constructed using multisets over A and relational and
Boolean operators – like Boolean expressions. Before presenting the definition
we introduce some notations.

For a multiset w overA and an element a ∈ A, we denote by #a(w) the number
of a′s occurring in w. Let Rel = {<,≤,=, �=,≥, >} be the set of relational
operators, γ ∈ Rel, a relational operator, an a multiset and r {g} a rule with
guard g.

Definition 3. If g is the abstract relational expression γan and the current
multiset is w, then the guard denotes the relational expression #a(w)γn. The
guard g is true for the multiset w if #a(w)γn is true.

Let us consider the Boolean operators ¬ (negation), ∧ (conjunction) and ∨
(disjunction), listed w.r.t. decreasing precedence order. Abstract relational ex-
pressions can be connected by Boolean operators generating abstract Boolean
expressions.

Definition 4. If g is the abstract Boolean expression and the current multiset
is w, then the guard denotes the Boolean expression for w, obtained by replacing
abstract relational expressions with relational expressions for w. The guard g is
true for the multiset w when the Boolean expression for w is true.
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Definition 5. A guard is: (i) one of the Boolean constants true or false; (ii)
an abstract relational expression; or (iii) an abstract Boolean expression.

Example 1. If the rule is r : ab → c {≥ a5∧ ≥ b5 ∨ ¬ > c}, then this can be
applied iff the current multiset, w, includes the left hand side of r, i.e., ab and
the guard is true for w - it has at least 5 a′s and 5 b′s or no more than a c.

Definition 6. A rule from a compartment Cli = (tli , wli) can have one of the
following types:

– (a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and
tj indicates a compartment type from T – see Definition 2 – with instance
compartments linked to the current compartment; tj might indicate the type
of the current compartment, i.e., tli – in this case it is ignored; if a link does
not exist (the two compartments are not in E) then the rule is not applied;
if a target, tj, refers to a compartment type that has more than one instance
connected to li, then one of them will be non-deterministically chosen;

– (b) structure changing rules; the following types are considered:

• (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},
where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj , tj,hj ) like
in rewriting and communication rules; the compartment li will be re-
placed by p compartments; the j-th compartment, instantiated from the
compartment type tij contains the same objects as li, but x, which will
be replaced by yj; all the links of li are inherited by each of the newly
created compartments;
• (b2) membrane dissolution rule: []tli → λ {g};
the compartment li will be destroyed together with its links;
• (b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is
transformed into y; if more than one instance of the compartment type
tlj exists then one of them will be non-deterministically picked up; g is a
guard that refers to the compartment instantiated from the compartment
type tl1 ;
• (b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are
disconnected.

Input-output rules considered in [2] will be expressed as rewriting and com-
munication rules.

2.1 kP System Execution Strategy

In kP systems the way in which rules are executed is defined for each compart-
ment type t from T – see Definition 1. As in Definition 1, Lab(R) is the set of
labels of the rules R.
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Definition 7. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following:

– σ = λ, means no rule from the current compartment will be executed;
– σ = {r} – the rule r is executed;
– σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be chosen non-

deterministically and executed; if none is applicable then none is executed;
this is called alternative or choice;

– σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times
( arbitrary parallelism);

– σ = {r1, . . . , rs}� – the rules are executed according to maximal parallelism
strategy [6];

– σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤
s, describes any of the above cases, namely λ, one rule, a choice, arbitrary
parallelism or maximal parallelism; if one of σi fails to be executed then the
rest is no longer executed;

– for any of the above σ strategy only one single structure changing rule is
allowed.

The result of a computation will be the number of objects collected in the
output compartment. For a kP systems kΠ , the set of all these numbers will be
denoted by M(kΠ).

2.2 kP System Examples

In this section we illustrate the newly introduced P system model with some
examples.

Example 2. Let us consider the set of component types
T = {t1, t2, t3}, where t1 = (R1, σ1), t2 = (R2, σ2), t3 = (R3, σ3), with
R1 = {r1 : a→ a(b, 2)(c, 3) {≥ p}; r2 : p→ p; r3 : p→ λ}, and σ1 = Lab(R1)

�,
R2 = {r1 : b→ (b, 0)c {≥ p}; r2 : p→ p; r3 : p→ λ}, and σ2 = Lab(R2)

�,
R3 = ∅ and σ3 = Lab(R3)

�.
A kP system with n = 4 compartments is kΠ1 = (A, μ,C1, . . . , C4, 1), where
A = {a, b, c, p}, C1 = (t1, w1,0), C2 = (t2, w2,0), C3 = (t2, w3,0), C4 = (t3, w4,0);
with w1,0 = a3p, w2,0 = w3,0 = p, w4,0 = λ;
μ is given by the graph with nodes {C1, C2, C3, C4} and edges {C1, C2}, {C1, C3},
{C1, C4}.

One can note that we do not use targets for objects meant to stay in the
current compartment (i.e., we have r1 : a → a(b, 2)(c, 3) {≥ p} instead of r1 :
a → (a, 1)(b, 2)(c, 3) {≥ p}). The rule r1 in R2 simulates an input/output rule
[2] which is meant to bring a c from the environment (0) and to send out a b
instead.

In this example there are only rewriting and communication rules; some rules
have a guard, ≥ p, others do not have any and in each compartment the rules
are applied in maximal parallel way in every step, as indicated by σj , 1 ≤ j ≤ 3.
As two instances of the compartment type t2, C2, C3, appear in the system,
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when the rule r1 from the compartment C1 is applied, the object b goes non-
deterministically to one of the two compartments labelled 2 (from t2) as long as
p remains in compartment C1; object c goes always to the compartment C4, of
type t3.

The initial configuration of kΠ1 is M0 = (a3p, p, p, λ). The only applicable
rules are r1, r2 and r3 from C1 and r2, r3 from C2, C3. If r1, r2 are chosen in C1

and r2 in C2, C3, then a3p is rewritten by r1, r2 in C1 and p in C2, C3 by r2;
then three a′s stay in C1, three b’s go non-deterministically to C2, C3, three c’s
go to compartment C4, and each p in C2, C3 stays in its compartment. Let us
assume that two of them go to C2 and one to C3. Hence, the next configuration is
M1 = (a3p, b2p, bp, c3). If in the next step the same rules are applied identically
in the first compartment, C1, and rules r1, r2 are used in C2 and r1, r3 in C3,
then the next configuration is M2 = (a3p, b2c2p, bc, c6). If now r1, r3 are used
in C1, with r1 used in the same way and r1, r3 in C2 (no rule is available in
C3) then M3 = (a3, b2c4, b2c, c9); this is a final configuration as there is no p to
trigger a further step.

Example 3. Let us reconsider the example above enriched with rules dealing
with the system’s structure. First the set T will be replaced by T ′ = {t1, t′2, t3},
where t′2 = (R′

2, σ
′
2), with R′

2 = R2 ∪ Rstr
2 and σ′

2 = Lab(R2)
�&Lab(Rstr

2 ). We
can notice that σ′

2 tells us that first the rewriting and communication rules are
applied in a maximal parallel manner and then one of system’s structure rules is
chosen to be executed. The set Rstr

2 denotes the set of membrane division rules
for t′2, i.e., R

str
2 = {r4 : []2 → []2[]2 {≥ b2∧ ≥ p}}. The new kP system, denoted

kΠ2, will have the following four compartments:
C1 = (t1, w1,0), C

′
2 = (t′2, w2,0), C

′
3 = (t′2, w3,0), C4 = (t3, w4,0).

If the system follows the same pathway as kΠ1 then M2 shows a different
configuration given that in C′

2 after applying R2 in a maximal parallel manner,
Rstr

2 is applied as indicated by σ′
2, when the guard of r4 is true. The compartment

C′
2 is divided into two compartments, C2,1, C2,2, instantiated from the same

compartment type t2, with the content of C′
2 and appearing on positions 2 and 3

in the new configuration,M ′
2 = (a3p, b2c2p, b2c2p, bc, c6); the new compartments,

C2,1, C2,2, are linked to compartment C1. Compartment C′
3 is not divided as the

guard of r4 is not true for its current multiset. In the next step both C2,1, C2,2

are divided as they contain the guard triggering the membrane division rule r4.
The process will stop when either p will be rewritten to λ or b2 stops coming to
these compartments.

Remark 1. If we aim to dissolve one of the compartments instantiated from t2,
once a certain condition is true, for instance {≥ b2∧ ≥ c2∧ ≥ p}, then one
more rule will be added to Rstr

2 , namely r5 : []2 → λ {≥ b2∧ ≥ c2∧ ≥ p}. The
expression σ′

2 remains the same, but in this case Rstr
2 contains two elements and

at most one is applied at each step, in every compartment with label 2. For this
reason σ′

2 can also be written as Lab(R2)
�&Lab(Rstr

2 ).
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2.3 Neural-Like P Systems and P Systems with Active Membranes
versus kP Systems

In order to prove how powerful and expressive kP systems are, we will show how
two of the most used variants of P systems are simulated by kP systems. More
precisely, we will show how neural-like P systems and P systems with active
membranes are simulated by some reduced versions of kP systems. These results
below are from [3].

Definition 8. A neural-like P system (tissue P system with states) of degree n
is a construct Π = (O, σ1, ...σn, syn, i0) ([5], p. 249), where:

– O is a finite, non-empty set of objects, the alphabet;
– σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, represents a cell and
• Qi is the finite set of states of cell σi;
• si,0 ∈ Qi is the initial state;
• wi,0 ∈ O∗ is the initial multiset of objects contained in cell σi;
• Ri is a finite set of rewriting and communication rules, of the form
sw → s′xygozout; when such a rule is applied, x will replace w in cell
σi, the objects from y will be sent to neighbouring cells, according to the
transmission mode (see Remark 2) and the objects from z will be sent
out into the environment; cell σi will move from state s to s′;

– syn ⊆ {1, ..., n} × {1, ..., n}, the connections between cells, synapses;
– i0 is the output cell.

Remark 2. We discuss here a special class of P systems introduced in Definition
8 that will help us to prove a first result.

1. For neural-like P systems, three processing modes are considered, called
“max”, “min”, “par”, and three transmission modes, namely “one”, “repl”,
“spread”. For formal definitions and other details we refer to [5].

2. We denote by simple neural-like P systems the class of P systems given by
Definition 8, where the rewriting and communication rules have the form
sw → s′x(a1, t1) · · · (ap, tp), where th, 1 ≤ h ≤ p, denotes the target cell
(σh), and processing mode “max”, transmission mode defined by the target
indications mentioned in each rule.

Notation. For a given P system, Π , the set of numbers computed by Π will be
denoted by M(Π).

Theorem 1. If Π is neural-like P system of degree n, then there is a kP system,
Π ′, of degree n and using only rules of type (a), rewriting and communication
rules, simulating Π and such that M(Π ′) ⊆M(Π) ∪ {2}.

We study now how P systems with active membranes are simulated by kP
systems. In this case we are dealing with a cell-like system, so the underlying
structure is a tree and a set of labels (types) for the compartments of the sys-
tem. The system will start with a number of compartments and its structure will
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evolve. In the study below it will be assumed that the number of compartments
simultaneously present in the system is bounded.

Definition 9. A P system with active membranes of initial degree n is a tuple
(see [6], Chapter 11) Π = (O,H, μ, w1,0, . . . , wn,0, R, i0) where:

– O, w1,0, . . . , wn,0 and i0 are as in Definition 8;
– H is the set of labels for compartments;
– μ defines the tree structure associated with the system;
– R consists of rules of the following types
• (a) rewriting rules: [u→ v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;
• (b) in communication rules: u[]e1h → [v]e2h , for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;
• (c) out communication rules: [u]e1h → []e2h v, for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;
• (d) dissolution rules: [u]eh → v, for h ∈ H \ {s}, s denotes the skin
membrane (the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;
• (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈
H, e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗;

The following result shows how a P system with active membranes starting
with n1 compartments and having no more than n2 simultaneously present ones
can be simulated by a kP system using only rules of type (a).

Theorem 2. If Π is a P system with active membrane having n1 initial com-
partments and utilising no more than n2 compartments at any time, then there
is a kP system, Π ′, of degree 1 and using only rules of type (a), rewriting and
communication rules, such that Π ′ simulates Π.

2.4 Solving 3-Col Problem

Many variants of P systems have been considered for solving NP-complete prob-
lems in an efficient way. We show now how one such problem, the 3-colouring
(3-Col) problem, can be solved using kP systems. Another NP-complete prob-
lem, the partition problem, has been already solved using kP systems [3,7]. The
3-Col problem has been already solved in linear time by recogniser tissue P sys-
tems with cell division and symport/antiport rules [1]. A solution for the 3-Col
problem by using kP systems has been provided in [4]. Here we just reproduce
this solution.

Theorem 3. The 3-Col problem for a graph with n, n ≥ 2, nodes can be solved
by a kP system with two types of compartments, two initial compartments, n(n−
1)/2+7n+10 objects, 2n division rules and 2n+7 rewriting and communication
rules. An answer to whether a solution exists or not is obtained in at most 2n+3
steps using maximum 3n + 1 compartments.
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3 Specification Language for kP Systems

The specification language allows to describe problems and then, by using kp-
Workbench, one can simulate and verify them. The language uses two key con-
cepts:

1. Type definitions - encompassing the instruction set, organised in accordance
with the type’s associated execution strategy.

2. Instance definitions and interlinking - establish the set of compartments and
related connections, assembling the graph-like structure of comprtments.

A type is declared using the keyword type followed by the name of the type.
The body of a type declaration consists of a succession of guarded rules or rule
ensembles (choice, arbitrary execution and maximal parallel execution blocks)
as specified in the type’s execution strategy. A rule is represented as a guarded
transition, symbolised by an arrow, between two terms. We illustrate the syntax
of a type definition and its constituents with a simple example:

Example 4. A type definition in kP–Lingua.

type C1 {

2a, 3b -> c .

>= 2c & > 2b : b, c -> a .

choice {

b -> 2b .

< 3b : b -> 3b .

}

max {

a -> a, a(C2), {a, 2b}(C3) .

}

= 5a : a -> [3a, 3b](C1) [3b](C2) [3a](C3) .

}

In this example we define type C1 with the following sequence of rules: a
rewriting rule which takes two a objects and three b objects and produces a
c; a guarded rewriting rule which yields an object a if and only if there are at
least two c’s and more than two b’s in the compartment the rule is applied on;
next we have a choice block with two rewriting rules of which one is guarded,
followed by a maximally parallel block where the rewrite communication rule is
exhaustively executed, producing an object a inside the membrane and sending
an object a to compartments of type C2, one a and two b’s to membranes of
type C3 respectively; finally, a guarded membrane division rule takes one object
a and divides the compartment into three distinct compartments of types C1,
C2, C3 respectively, if the number of a’s in the membrane is precisely five.
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M.A., Păun, G.H., Romero-Campero, F. (eds.) Membrane Computing, Tenth Brain-
storming Week, BWMC 2012, Sevilla, Spain, pp. 153–170. Universidad de Sevilla
(February 2012)

3. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-
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1 A Birth of Modern Informatics

Currently dominating perception of computer science has its origin in in a very
cleverly written, and much influential, paper of Newel, Simon and Perlis, pub-
lished in Science in 1967, that well captured the perception of the field at that
time.

The basic ideas presented in their paper were:
”Whenever there are phenomena there can be a science dealing with these phe-

nomena. Phenomena breed sciences. Since there are computers, there is computer
science. The phenomena surrounding computers are varied, complex and rich.”

There are nowadays a variety of reasons why such a computer-centric view
of the field should be seen as very obsolete, not broad and not deep enough,
and actually damaging the development of the field. They will be discussed only
briefly in this paper, for details see [2]. Here are some of them.

– An understanding starts to be developed that information processing plays
the key role both in physical and biological nature. For example, quantum,
DNA and molecular information processing do that. In particular, an un-
derstanding has developed that information processing is of such an impor-
tance for life as breathing and eating and that even very primitive live being
can perform exceptionally well exceptionally complex information processing
surprisingly efficiently.

– All natural sciences, and not only these sciences, are starting be be increas-
ingly seen as being, to a large extend at least, information processing driven.
Actually, it starts to be understood that all sciences start to converge, in an
important way, to informatics once they are seen in a proper broadness and
deepness.

– On a more practical level, it starts to be clear that in the coming future
any very significant innovation will have to use advanced informatics tools,
methods and paradigms.

All that requires that a much broader and deeper view of the field should be
taken and developed, see [1] for details.

A. Alhazov et al. (Eds.): CMC 2013, LNCS 8340, pp. 10–18, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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2 Informatics and Information Processing in Nature

Two big discoveries led to an understanding that natural sciences are information
processing driven.

The first one was the discovery, by Francis Crick and James Watson, in 1953,
of the twin-corkscrew structure of DNA and how genetic information is encoded
into DNA - followed by a demonstration, due to Adleman, how DNA computing
could be performed and that it has a potential for remarkable efficiency.

The second one was the discovery of quantum teleportation and of the uncon-
ditionally secure quantum generation of shared random classical key, by Charles
Bennett et al. during years 1984-1993 - followed by the demonstration due to
Shor, in 1994-1996, that quantum information processing can be, inspite of dam-
aging impacts of environments, performed and has also a potential for remarkable
efficiency.

These discoveries changed views on physics and biology that started to be
seen and explored as being, to a significant extent, information processing driven
sciences.

From that it has been only a natural and logical step to see other natural
sciences in this way, as being to an important degree information processing
driven - and a new revolution in the study of natural and also other sciences has
emerged.

Of importance has been also an observation that there are primitive one cell
organisms, like paramecium (from 50 to 350 μm in length), that do information
processing par excellence in order to find foods, to avoid predators, to find a
mate and to have sex - without having any synapses.

All that converged to a view that information processing is for life of key
importance in many way, and led, step by step, to an intensive development and
exploration of various by living nature inspired models of information process-
ing. Membrane computing has been one of them and one of the more deeply
explored one with a variety of interesting outcomes and as the one behind new
computation paradigms.

These discoveries also started to bring new views on the goals and relations
between such fundamental sciences as physics, biology an informatics.

Let us first go to look to the relation between physics and informatics. One
can surely say that:

The main goal of Physics can be seen as to study laws, limitations and phe-
nomena of the physical worlds.

Physics has been extremely successful in pursuing its goal and one of the key
role by that played an understanding that it is useful to consider many physical
worlds and to take quite broad, deep and also futuristic/mathematical approach
in doing that.

The main goal of Informatics can be seen, in an analogous way, as to study
laws, limitations and phenomena of the information worlds.

It started to be also clear that also informatics needs to concentrate on the
study of various natural, real and virtual information processing worlds.
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Physics and Informatics can therefore be seen as representing two windows
through which we could and should try to perceive and understand the worlds
around us.

In a similar way we can see life-sciences and Informatics as providing two
windows and tools with which we try to understand, imitate and outperform the
biological world and its highlights - human (physical) brain, mind, consciousness,
and cognitive capabilities.

Concerning Physics, information started to be considered also as a very impor-
tant physical concept, especially in the connection with the Black hole paradox:1

John Archibald Wheeler, a famous physicists, and one that coined the term
black hole, expressed his view on the role of information in physics in the following
way:

I think of my lifetime in physics as divided into three periods. In the first
period ...I was in the grip of the idea that everything is particle. I see my second
period as believing that everything is field. Now I am in the grip of a new vision.
Namely, that that everything is information.

In particular he said: ”I have been led to think of analogies between the way a
computer works and the way the universe works. The computer is built on yes-no
logic. So, perhaps is the universe ... The universe and all that it contains (”it”)
may arose from the myriad yes-no choices of measurements (the ”bits”).

By Wheeler, Information has some connection to existence, a view he ad-
vertised with the slogan ”It from bit” - or, in other words, that ”Everything is
information”.

A similar position was actually taken by another famous physicist, W. Heisen-
berg, quite long time ago:

I think that modern physics has definitely decided in favour of Plato. In fact
the smallest units of matter are not physical objects in the ordinary sense: they
are forms, ideas which can be expressed unambiguously only in mathematical
language.

3 A New Perception of Informatics

A new perception of the informatics here presented see the field as consisting of
four much interleaved components:

– scientific informatics;
– technological informatics;
– new methodology;
– applied informatics.

1 It is known that black holes evaporate. It is known that information that gets into
black holes cannot get out. All that means that information can disappear. However,
quantum mechanics says that information cannot be lost. Quantum gravity theory
therefore says that information can get lost - quantum mechanics that it cannot.
Both theories has already turned out as being excellent in describing universe or
microworld.
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As a scientific discipline of a very broad scope and deep nature, Informatics
has many goals. Its main task is to discover, explore and exploit in depth, the
laws, limitations, paradigms, concepts, models, theories, phenomena, structures
and processes of both natural and virtual information processing worlds.

To achieve its tasks, scientific Informatics concentrates on new, information
processing based, understanding of the universe, evolution, nature, life (both nat-
ural and artificial), brain and mind processes, intelligence, creativity, information
storing, processing and transmission systems and tools, complexity, security, and
other basic phenomena of information processing worlds.

Development and analysis of a variety of formal, descriptional, computation,
interaction and communication models and modes, development and analysis
of (deterministic, randomized, genetic, evolutionary, quantum, ...) algorithms,
protocols and games are some of the main tools of Informatics.

Data, information, knowledge, formal systems, logics, algorithms, protocols,
games, resources, models and modes of information processing, communication
and interactions are the key concepts behind.

In order to meet its goals, informatics develops close relations with other
sciences and technology fields, especially with physics and biology, on one hand,
and with electronics and nanotechnologies on the other hand.

The basis of the relationship between informatics and the natural sciences
rests on the fact that information carriers are always elements of the physical,
biological or chemical worlds, and consequently information processing is gov-
erned and constrained by their laws and limitations.

Informatics as a science includes also numerous theories much needed for
its development to depth and in broadness. Some theories are very abstract,
others quite specific, and some theories are oriented on making better use of the
outcomes of the scientific informatics to create a scientific basis of informatics
as of an engineering/technology discipline.

One way to illustrate such a broad and deep perception of scientific informatics
will be in this paper through a presentation and analysis of its grand challenges.
They will be discussed briefly below. In the same way one can illustrate main
tasks of technological and applied informatics, but this is beyond the scope of
this paper, see [1] for details.

3.1 Grand Challenges of Scientific Informatics

New main grand challenges of scientific informatics can be briefly summarized
as follows:

– To explore our world as a point in the space of potential information pro-
cessing worlds.

– To explore laws and limitations of information processing that governs uni-
verse, evolution and life.

– To develop theoretical foundations for design, analysis, verification, security,
simulation and modeling of huge information processing systems
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– To understand intelligence, creativity, mind and consciousness.
– To make foundations for science and engineering of the science making ac-

tivities.
– To understand and manage all aspects of computation, communication and

structural complexity.

4 Informatics-Driven Methodology

Of a key importance for a new perception of informatics is also an understand-
ing that informatics, as a symbiosis of a scientific and a technology discipline,
develops also basic ingredients of a new, in addition to theory and experiments,
the third basic methodology for all sciences, technologies and society in general.

This new, informatics-based or informatics-driven, methodology provides a
new way of thinking and a new language for sciences and technologies, extending
the Galilean mathematics-based approach to new heights.

Main components of this new methodology can be briefly summarized as
follows:

– Modeling - design and study of information processing models of phenomena
and processes.

– Simulation methods and systems.
– Visualisation and animation.
– Searching (sophisticated search as an alternative to deep knowledge based

reasoning)
– Design and exploration of systems with human and even superhuman intel-

ligence.
– Design of systems for mechanized problem solving and reasoning.
– Development of methods to specify, design, analyse, verify and reliably run

complex (information processing) systems.
– Design of algorithms, study of their performances and study of inherent com-

plexities of computational, communication and description systems as a way
to get deep understanding of various phenomena and of their interrelations.

– Design, analysis and comparison of descriptional languages and systems and
of the relations between objects and their specifications.

– Transformation of the study of problems of the real world to the study of
problems of information processing worlds.

Informatics-driven methodology subsumes and extends the role and improves
tools mathematics used to play in advising, guiding and serving other scientific
and technology disciplines and society in general.

Power of new methodology is discussed in details in [1]. Here are only few of
the reasoning:

– Informatics-driven methodology brings new dimension to both old method-
ologies;
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– It brings into new heights an enormous power of modeling, simulations and
visualisation for knowledge acquisition and utilisation;

– It utilises an enormous exploratory and discovery power of automata, algo-
rithms and complexity considerations.

– It utilizes enormous discovery and exploratory power of the correctness and
truth searching considerations, systems and tools.

– It utilizes an enormous potential that the study of virtual worlds brings for
an understanding of the real worlds.

– It seems to have a big chance to make hard sciences from (at least some)
soft sciences.

5 Life, Brain and Informatics

Our optimism that science starts to be in the position to understand life and
especially brain processes and that technology starts to be in the position to
simulate them using different, more efficient and more reliable substrates is bases
on some belief, on the advances of the GNR-revolution and on successes in
the genome engineering, in the reverse engineering of the human brain, and in
our understanding that we are to have soon information processing technology
available to outperform information processing potential of all human brains -
see [3].

Some of the basic beliefs/assumptions behind these developments are: (a) We
are able to use our own thinking to understanding our own thinking; (b) Our
intelligence is just above the critical threshold necessary to for us to scale our
own ability to unrestricted heights of creative power.

Science’s understanding of life is based on the Darwinian evolution by nat-
ural selection, and selection is, in its essence, information processing. Virtually
all forms of life, including humans, are descendants from their ancestors, by
the transmission of DNA. DNA information storage function alone is the rea-
son enough to regard the life, as in essence, an information processing process.
Therefore, in a deep biological sense, computing is as much a part of the life as
eating and breathing.

Concerning the developments in technology, so called GNR-revolution is seen
as the key factor. Here ”G’ stands for genetics, ”N” for nanotechnology and ”R”
for robotics (actually for the whole artificial intelligence).

Genetics tries to harvest information processing features of the biological na-
ture. Nanotechnology gives us tools to play with atoms and molecules and there-
fore our possibilities to create new materials and things, and even to print many
of them, appear as unlimited. Nanotechnology paves also roads to the increasing
performance and decreasing miniaturization of processors. Robotics, or better all
artificial intelligence, tries to design superintendent systems robots/humans.2

2 Nanobots, robots of nanoscale, are seen as very important tools to brows in human
bodies to collect information and to deliver drugs and in this way to contribute much
to our attempts to reach longevity and to beat natural death - see [3].
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Another foundation of the conviction that reverse engineering of the brain
and simulation of the brain is based on the progress in these areas and in the
belief/understanding that needed information processing potential is likely to be
soon available.

For example, by the neuroscientist LloydWatts, ”At about the turn of the 21-st
century, we passed a detectable turning point in both neuroscience knowledge and
computing power. For the first time in the history, we collectively know enough
about our own brains, and have developed such advanced computing technology,
that we can now seriously undertake the construction of a verifiable, real-time,
high-resolution models of significant parts of our brains.”

Concerning the information processing potential needed to outperform inge-
nious, but very slow (comparing to the speed of electronic circuits) and not much
reliable, biological brains, they are based on two estimations - of information
processing of brains and of the expected information processing technologies.

A number of estimations have already been made concerning the information
processing potential of brains - see, for example, [4,5]. They are reasonably simi-
lar with respect to the order-of-magnitude estimations. Estimations are based on
replications of the functionality of brain regions that have already been reverse
engineered (that is their functionality understood) at human levels of perfor-
mance. Estimation of the computational capacity of a region is then multiplied
by the number of regions. Estimations are based on the functional simulations
of a region and not on simulations of each neuron and interneural connection in
the region. These estimation put the total number of elementary computations
in the brain to 1014 − 1016 per second.

These estimations, as well as estimations concerning the development of infor-
mation rocessing technology based on the Moore law, and on the developments
in new information processing technologies, shows that around 2040-50 we could
have not only supercomputers, but actually even laptops with information pro-
cessing potential outperforming all human brains - see [3].3

6 Informatics and New Megachallenges of Science and
Technology

Because of its enormous guiding power for practically all areas of science, tech-
nology and and many other components of society as well as enormously powerful
tools Informatics offers, we can see Informatics as a new queen and at the same
time a new powerful servant for all sciences, technologies and for all society.4

3 Performance of top supercomputers, in theNovember lists and in petaflops: 1.7 in 2009,
2.6 in 2010, 10.5 in 2011, 17.6 in 2012, 33.8 in 2013 - 20 times increase in 3.5 years.

4 There has ever been a ”queen of science” with very broad impacts, also on all educa-
tion. Some examples: (a) Medicine in Padua and at the same time theology in Paris
in 17th century; (b) Philology at the Renaissance; (c) Mathematics after the Galileo
time due to its methodological impacts and physics in the 20th century during its
impacts on industrial revolution and other areas of science and technology. This view
was well captured by Ernest Rutherford (1912), who said In Science there is only
Physics: all the rest is stamps collecting.



Roads to New Grand Challenges of Informatics 17

In particular Informatics is expected to play the key role in dealing with two
main megachallenges of the current science, technology and society. Namely:

– To beat natural human intelligence. More exactly, to create super-
powerful non-biological intelligence and its merge with biological intelligence.

– To beat natural human death. More exactly, to increase much longevity
for human bodies and to achieve uploading for human minds. In more details,
to fight natural death as another disease and to find ways to upload human
mind to a non-biological substrate.

We start to have enough reasons to see the above megachallenges as being
currently realistic enough to pursue them. Here are some of them.

– Since computers performance keeps developing not only very fast, exponen-
tially fast, and actually faster faster, there are good reasons to assume that
we can have soon (around 2045?) information processing power and capacity
larger than of all human brains - see [3].

– Exponential scaling up concerns not only of the development in comput-
ers, but actually of all main information processing technologies, especially
genetic and nanotechnologies as well as artificial intelligence. This creates
another basis for seeing both of the above mentioned megachallenges as al-
ready feasible ones.

– Exponential developments of all information processing related technologies
are believed to lead also to enormous speed ups in developments of all sci-
ences and technologies to such an extend that what is nowadays seen as
needed several hundred years to come will actually happen in several tenth
of years.

– Of special importance is that tools to reverse engineering brains keep also de-
veloping exponentially, concerning their potential, precision, speed and cost,
and so we can assume to have quite soon ways to simulate well functionality
of human brains.

– Society keep putting enormous effort, actually more and more human and
money resources, to develop and apply genome engineering, to model human
brains and minds as well as to vastly extend human longevity. Such huge
project as that of Human brain of EU, supported by 1.2 milliards of EUR,
is one of them.

– A vision starts to be accepted to see the development of superintelligent
machines as the next stage of evolution and to prepare society for handling
and accepting such developments.

To deal with new megachallenges practically all areas of sciences and tech-
nologies have to be involved. However, informatics is expected to play by that a
very important role for several reasons. here is one of them;

– It starts to be clear that in order to understand more deeply functionality
of living systems, on all levels - from cells to brains - and to design, using
other, non-biological, substrates, systems to outperform them, information
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processing models of such systems are needed. Chemistry and biology has
been able to gather enormous number of data about the composition and
isolated behaviour of basic elements of particular living systems, but infor-
matics tools are needed to model their functionality as complex, concurrent
systems, in such a way that we can then model their functionality using
non-biological substrates. It starts to be understood that modeling of ele-
ments and their behaviour through differential equations can hardly lead to
the design of efficient models and that modeling using informatics tools to
model concurrent and parallel systems may be much needed.

7 Conclusions - Food for Thoughts

Some observation of famous scientists inspired also developments suggested in
this paper

– There is nothing in biology found yet that indicates the inevitability of death.
Richard Feynman

– It seems probable that once the machine thinking method had started, it will
not take long to outstrip our feeble power. They would be able to converse
with each other to sharpen their wits. At some stage therefore, we should
have to expect machine to take control. Alan M. Turing

– Let an ultraintelligent machine be defined as a machine that can far sur-
pass all intellectual activities of any man, however clever. Since the design
of machines is one of intellectual activities, an ultraintelligent machine could
design even better machines; there would then unquestionably be and ”intel-
ligent explosion” and the intelligence of man would be left far behind. Thus
the first ultraintelligent machine is the last invention that man needs ever
make. I. J. Good, 1965, a British mathematician

– Since there is a real danger that computers will develop intelligence and take
overweurgently need to developdirect connections to brains so that computers
can add to human intelligence rather than be in opposition. Stephen Hawking

– When you reach for stars you may not quite get one, but you won’t come
with a handful of mud either Leo Burnett.
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Abstract. P systems with active membranes constitute a very inter-
esting model of computation, defined in the framework of Membrane
Computing. Since their appeareance, they have been used to solve com-
putationally difficult problems (usually in the classes NP andPSPACE),
due to their ability to generate an exponential size workspace in a polyno-
mial number of time steps. Several computational complexity techniques
have thus been applied to study their computing power and efficiency.
In this extended abstract I will briefly survey some of these techniques
and the main results which have been obtained in the last few years by
the group of Membrane Computing at the University of Milano-Bicocca
(also known as the “Milano Team”), sometimes in collaboration with
collegues from the international Membrane Computing community.

1 Introduction

P systems with active membranes are a very interesting and stimulating model
of computation, defined in the framework of membrane systems [9]. They were
first introduced in [10] to attack NP-complete problems. Since then, they have
generated several variants; a general survey of these can be found in chapters 11
and 12 of [11].

In this model of P systems, also the membranes play an active role in the com-
putations: they possess an electrical charge that can inhibit or activate the rules
that govern the evolution of the system, and they can also increase exponentially
in number via division rules. This latter feature makes them extremely efficient
from a computational complexity standpoint: using exponentially many mem-
branes that evolve in parallel, they can be used to solve NP-complete and even
PSPACE-complete problems [23,1] in polynomial time. Surprisingly, polariza-
tions are not even needed (provided that division rules are powerful enough)
to solve these kinds of problems, as shown in [29,4]. On the other hand, when
the ability of dividing membranes is limited the efficiency apparently decreases:
the so-called Milano theorem [28] tells us that no NP-complete problem can be
solved in polynomial time without using division rules, unless P = NP holds.

Needless to say, several computational complexity techniques have been ap-
plied to investigate the computational power and efficiency of P systems with
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active membranes. In what follows, I will briefly recall the main results which
have been obtained using such techniques by the group of Membrane Computing
at the University of Milano-Bicocca (the so-called “Milano team”), sometimes
in collaboration with collegues from the international Membrane Computing
community.

This extended abstract is organized as follows. In Section 2 I recall the formal
definition and operation of P systems with active membranes, as well as the
definition of time and space complexity. Section 3 summarizes the results on the
complexity of P systems with active membranes we have obtained in the last few
years; it also proposes directions for further research, to attack some problems
which are still open.

2 P Systems with Active Membranes

We start by recalling the definition of P systems with active membranes that
will be used in the rest of this paper. For a more formal definition we refer the
reader to chapter 12 of [11].

Definition 1. A P system with active membranes of the initial degree d ≥ 1 is
a tuple Π = (Γ,Λ, μ, w1, . . . , wd, R), where:

– Γ is a finite alphabet of symbols (the objects);
– Λ is a finite set of labels for the membranes;
– μ is a membrane structure (i.e., a rooted unordered tree) consisting of d

membranes, enumerated by 1, . . . , d; furthermore, each membrane is labeled
by an element of Λ, not necessarily in a one-to-one way;

– w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of μ;

– R is a finite set of rules.

As usual in Membrane Computing, the membrane structure of a P system
is represented symbolically as a string of balanced nested brackets, where each
pair of corresponding open/close ones represents an individual membrane. The
nesting of brackets corresponds to the ancestor-descendant relation of nodes in
the tree; brackets at the same nesting levels can be listed in any order.

Each membrane possesses, besides its label and position in μ, another at-
tribute called electrical charge (or polarization), which can be either neutral (0),
positive (+) or negative (−) and is always neutral before the beginning of the
computation.

The rules are of the following kinds:

– Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).
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– Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β.

– Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

– Dissolution rules, of the form [a]αh → b

They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

– Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labeled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

– Nonelementary division rules, of the form[
[ ]+h1
· · · [ ]+hk

[ ]−hk+1
· · · [ ]−hn

]α
h
→ [

[ ]δh1
· · · [ ]δhk

]β
h

[
[ ]εhk+1

· · · [ ]εhn

]γ
h

They can be applied to a membrane labeled by h, having charge α, con-
taining the positively charged membranes h1, . . . , hk, the negatively charged
membranes hk+1, . . . , hn, and possibly some neutral membranes. The mem-
brane h is divided into two copies having charge β and γ, respectively; the
positive children are placed inside the former, their charge changed to δ,
while the negative ones are placed inside the latter, their charges changed
to ε. Any neutral membrane inside h is duplicated and placed inside both
copies.

Each instantaneous configuration of a P system with active membranes is
described by the current membrane structure, including the electrical charges,
together with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane any number of evo-
lution rules can be applied simultaneously).

– The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary divi-
sion must be subject to exactly one of them (unless the current charge of
the membrane prohibits it). The same reasoning applies to each membrane
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that can be involved to communication, dissolution, elementary or nonele-
mentary division rules. In other words, the only objects and membranes that
do not evolve are those associated with no rule, or only to rules that are not
applicable due to the electrical charges.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– While all the chosen rules are considered to be applied simultaneously during
each computation step, they are logically applied in a bottom-up fashion:
first, all evolution rules are applied to the elementary membranes, then all
communication, dissolution and division rules; then we proceed towards the
root of the membrane structure. In other words, each membrane evolves only
after its internal configuration has been updated.

– The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of a P system is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
by Ci via a single computation step, and no rules can be applied anymore in Ck.
A non-halting computation consists of infinitely many successive configurations
C = (Ci : i ∈ N).

P systems can be used as recognisers by employing two specified objects yes
and no; exactly one of these must be sent out from the outermost membrane dur-
ing each computation, in order to signal acceptance or rejection respectively; we
also assume that all computations are halting. If all computations starting from
the same initial configuration are accepting, or all are rejecting, the P system is
said to be confluent. If this is not necessarily the case, we have a non-confluent
P system, and the overall result is established as for nondeterministic Turing
machines: it is acceptance iff an accepting computation exists.

In order to solve decision problems (i.e., decide languages), we use families
of recogniser P systems Π = {Πx : x ∈ Σ�} for some finite alphabet Σ. Each
input x is associated with a P systemΠx that decides the membership of x in the
language L ⊆ Σ� by accepting or rejecting. The mapping x �→ Πx is restricted,
in order to be computable efficiently; usually one of the following uniformity
conditions is imposed.

Definition 2. A family of P systems Π = {Πx : x ∈ Σ�} is said to be semi-
uniform if the mapping x �→ Πx can be computed in polynomial time by a deter-
ministic Turing machine.

The Turing machine can encode its output Πx by describing the membrane
structure with brackets, the multisets as strings of symbols (in unary notation)
and listing the rules one by one. However, any explicit encoding of Πx is allowed
as output, as long as the number of membranes and objects represented by it
does not exceed the length of the whole description, and the rules are listed one
by one. We pose this restriction in order to enforce the initial membranes, initial
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objects and rules to be at most polynomial in number, as they can be super-
polynomial if more compact representations (e.g., binary numbers) are used;
this mimics a (hypothetical) realistic process of construction of the P systems,
where membranes and objects are presumably placed one by one, and require
actual physical space in proportion to their number (see also how the size of a
configuration is defined in the following, and [7]).

Definition 3. A family of P systems Π = {Πx : x ∈ Σ�} is said to be uniform
if the mapping x �→ Πx can be computed by two deterministic polynomial-time
Turing machines M1 and M2 as follows:

– The machine M1, taking as input the length n of x in unary notation, con-
structs a P system Πn with a distinguished input membrane (the P system
Πn is common for all inputs of length n).

– The machine M2, on input x, outputs a multiset wx (an encoding of the
specific input x).

– Finally, Πx is simply Πn with wx added to the multiset placed inside its
input membrane.

Notice how the uniform construction is just a restricted case of semi-uniform
construction. The relations between the two kinds of uniformity have not com-
pletely been clarified yet; see [11,7] for further details on uniformity conditions
(including even weaker constructions).

Finally, we describe how time and space complexities for families of recogniser
P systems are measured.

Definition 4. A uniform or semi-uniform family of P systems Π = {Πx : x ∈
Σ�} is said to decide the language L ⊆ Σ� in time f : N → N iff, for each
x ∈ Σ�,

– the system Πx accepts if x ∈ L, and rejects if x /∈ L;
– each computation of Πx halts within f(|x|) computation steps.

The notion of space complexity has been formally introduced in the Membrane
Computing setting in [14], in order to analyse the time/space trade-off that is
common when solving computationally hard problems via P systems. The size
|C| of a configuration C of a P system is given by the sum of the number of objects
and the number of membranes; this definition assumes that every component of
the system requires some fixed amount of physical space, thus approximating
(up to a polynomial) the size of a real cell. The space required by a halting
computation C = (C0, . . . , Ck) is then given by |C| = max{|C0|, . . . , |Ck|}, and the
space required by a P system Π is

|Π | = max{|C| : C is a computation of Π}.
We can finally give the following definition.

Definition 5. A uniform or semi-uniform family of P systems Π = {Πx : x ∈
Σ�} operates in space f : N→ N if |Πx| ≤ f(|x|) for all x ∈ Σ�.
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Several complexity classes can be defined referring to the languages recognized
by P systems with active membranes (possibly with restrictions on their rules),
when a polynomial, exponential, logarithmic (or other) bound is fixed on the
amount of time or space allowed in computations. Here we do not recall them,
so as not to burden the exposition. For precise definitions, we refer the reader
to the cited papers.

3 The Complexity of P Systems with Active Membranes

We now recall the main results we have obtained in the last few years on the
time and space complexity of P systems with active membranes, that is, the
amount of time and/or space needed to solve a given problem (equivalently,
recognize a given language) by a uniform or semi-uniform family of P systems
with active membranes. The leading question is: “When we bound the amount
of time and/or space by a given quantity, what is the class of decision problems
(resp., languages) we can solve (resp., recognize)?”.

We start with the simulation of deterministic single-tape Turing machines,
operating in polynomial space with respect to the input length, by semi-uniform
families of P systems with active membranes and three polarizations, presented
in [27]. The simulation is efficient both in terms of time and space, and what is
particularly remarkable is that it only uses communication rules. Basing upon
this simulation, a result similar to the space hierarchy theorem [22] can be ob-
tained for P systems with active membranes: the larger the amount of space we
can use during the computations, the harder the problems we are able to solve.

We then continue by considering the case in which only communication rules
and nonelementary division rules (which apply to membranes containing other
membranes) are allowed. It turns out that the resulting P systems are not com-
putationally universal, neither in the uniform nor in the semi-uniform setting;
nonetheless, they are very powerful, as they characterize the class of languages
decidable by Turing machines using time (or, equivalently, space) bounded by an
exponential function, known as tetration, iterated polynomially many times [13].

The computing power of polynomial-time P systems with division rules oper-
ating only on elementary membranes (that is, membranes not containing other
membranes) is possibly the most interesting case. It is a known fact that ele-
mentary division rules suffice to efficiently solve NP-complete problems (and,
due to closure under complement, also coNP-complete ones). This result dates
back to 2000 in the semi-uniform case [28], and to 2003 in the uniform case [12].
Since these results do not require membrane dissolution rules, they hold also
for the so-called P systems with restricted elementary active membranes [1],
where dissolution is avoided. Although a PSPACE upper bound was proved in
2007 [24], no significant improvement on the NP∪ coNP lower bound for these
P systems has been found until 2010. In [16] we have shown that there exists a
uniform family of P systems with restricted elementary active membranes that
solves the PP-complete problem Sqrt-3sat, which can be stated as follows:
given a Boolean formula of m variables in 3CNF, do at least

√
2m among the 2m
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possible truth assignments satisfy it? The solution is a variation of the classi-
cal scheme introduced in [10] to attack NP-complete problems: given the input
formula φ(x1, . . . , xm), the P system first generates 2m membranes using elemen-
tary division, each one containing a different truth assignment to the variables
occurring in φ; then, it evaluates φ under the 2m assignments, in parallel, and
sends out from each membrane an object t whenever the formula is satisfied by
the corresponding assignment; subsequently it erases �√2m� − 1 copies of t (or
all of them, if less than �√2m� − 1 occur); finally, it outputs yes if at least one
copy of t remains, otherwise it outputs no. The construction is made uniform
by providing an encoding of m-variable Boolean formulae as binary strings of
length 8

(
m
3

)
, where the i-th bit of a string is 1 if and only if the i-th clause

(under a fixed ordering of all possible 3-clauses in m variables) occurs in the
corresponding Boolean formula. Such Boolean strings can then be represented
as multisets of objects (one object for each clause occurring in the formula, that
is, for each 1 in the corresponding bit string — since each binary string is at
most polynomially long, a polynomial number of different objects suffices) and
fed as input to a P system that solves all possible instances of Sqrt-3sat in
m variables. Unfortunately, the fact that the PP-complete problem Sqrt-3sat
can be efficiently solved by P systems with restricted elementary active mem-
branes does not allow one to immediately conclude that the entire class PP of
problems can be solved by the same families of P systems, as incorrectly stated
in [16], at least under the uniformity condition expressed in Definition 3. This
is due to the fact that closure under polynomial-time reductions is not given for
free under our uniformity condition, as it happens with the stronger notion of
polynomial-time uniformity usually employed in the literature [12]. The ability
to solve all decision problems in the complexity class PP has then been proved
in [17], and follows from a solution of the PP-hard problem Threshold-3sat,
similar to the one given for Sqrt-3sat in [16]. The Threshold-3sat problem
is more general than Sqrt-3sat, and is defined as follows: Given a Boolean
formula of m variables in 3CNF, and a non-negative integer k < 2m, do more
than k assignments (out of 2m) satisfy it? In this case, the solution scheme has
been modified so that k copies of object t (instead of �√2m�−1) are erased from
the system, in order to check whether the number of assignments that satisfy
the input Boolean formula φ is greater than k. Once again, to make the solu-
tion uniform the formula is encoded as an appropriate multiset of clause-objects,
plus a multiset of objects representing the binary encoding of k. Note that the
complexity class PP appears to be larger than NP, since it contains NP as a
subset and it is closed under complement: thus NP ∪ coNP ⊆ PP. However,
neither the upper bound proved in [24] nor the lower bound proved in [16] are
known to be strict.

The existence of the uniform family of P systems with restricted elementary
active membranes shown in [17] has an interesting consequence. As shown in
[19], it is possible to use the P systems that solve Threshold-3sat presented
in [17] as modules inside larger P systems; this means that we can simulate
computations using (appropriately crafted) subroutines or oracles. In this way,
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all problems in the class PPP turn out to be solvable in polynomial time by
P systems with active membranes, without requiring nonelementary division or
dissolution rules. This result, together with Toda’s theorem [26], allows us to
conclude that P systems with restricted elementary active membranes are able
to solve all the decision problems residing in the polynomial hierarchy PH [25].

Another interesting line of research is the characterization of P systems with
active membranes performing computations within polynomial, exponential and
logarithmic space bounds.

Concerning polynomial space, our attention goes to recognizer P systems with
active membranes in which three polarizations are associated to each membrane,
and for which division and dissolution rules are forbidden. In [15] it has been
proved that these P systems are able to efficiently simulate deterministic regis-
ter machines, using only communication and evolution rules. Such a simulation
can then be used to illustrate the following result: recognizer P systems with
active membranes are able to solve, in a uniform way, the PSPACE-complete
problem Quantified-3sat, using a polynomial amount of space (and an arbi-
trary amount of time — in a sense, we are here trading time for space). This
means that the complexity class PSPACE is contained into the class of deci-
sion problems which can be solved in polynomial space by the above kind of
recognizer P systems; furthermore, such P systems can solve in arbitrary time
(and polynomial space) problems which cannot be solved in polynomial time
unless P = PSPACE. On the contrary, in [18] it has been proved that P sys-
tems with active membranes can be simulated by Turing machines with only
a polynomial increase in space complexity. By combining this result with the
above stated ability of P systems to solve PSPACE-complete problems in poly-
nomial space, we obtain a characterization of PSPACE in terms of membrane
systems. An interesting aspect of this result is that it holds for both confluent
and non-confluent systems, and even when strong features such as division rules
are used.

An analogous characterization of the complexity class EXPSPACE can be
obtained by P systems with active membranes working in exponential space, as
shown in [2]. This result is proved by simulating Turing machines working in
exponential space via uniform families of P systems with restricted elementary
active membranes; the simulation is efficient, in the sense that the time and
space required are at most polynomial with respect to the resources employed
by the simulated Turing machine. Indeed, the most interesting aspect of this
result is the technique used to represent the configurations and simulate the
computation steps of Turing machines by P systems with restricted elementary
active membranes. In fact, it should be noted that the simulation technique used
in [18] does not seem to be applicable when the space bound is exponential (or
even super-exponential): we would need to use P systems with an exponential
number of membranes with distinct labels, and such systems cannot be built in
a polynomial number of steps by a deterministic Turing machine — as required
by the uniformity condition expressed in Definition 3, or even in the stronger
notion of polynomial-time uniformity usually employed in the literature [12].
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Fig. 1. A generic configuration of a single-tape Turing machine, and its representation
by a P system with restricted elementary active membranes

To overcome this difficulty we represented the configurations of a single-tape
Turing machine by means of P systems configurations, as illustrated in Figure
1. In the figure, the first two tape cells (corresponding to membranes t0 and
t1) contain the input string ba, whereas the other cells (corresponding to the
membranes labelled by t) contain the symbols written up to now in the rest of
the tape. The positions (addresses) of tape cells are written in binary, and are
encoded as appropriate multisets of 0 and 1 objects contained into the so-called
cell membranes ; since at most an exponential number of cells exist, at most a
polynomial number of different 0 and 1 objects suffice to write their position.
Apart from cell membranes, our P systems contain so-called position membranes,
labelled with 2, 1 and 0 in Figure 1, that encode in their polarizations the cur-
rent position of the Turing machine’s read-write head. The symbol membranes,
one for each symbol of the alphabet of the Turing machine (a, b and � in Fig-
ure 1), are used to store the symbol read from the head during the simulation
of a computation step, whereas the state of the machine is stored in the only
symbol occurring in the region determined by the skin membrane. To simulate
a computation step performed by the Turing machine, say δ(q,�) = (r, b, �), the
P system has to guess what is the cell membrane corresponding to the tape cell
currently addressed by the read-write head. It does so by letting the state symbol
enter one of the cell membranes having a neutral polarization; the polarization of
the chosen membrane is set to positive, and a comparison between the address
of this membrane and the position stored in the polarizations of the position
membranes is performed; if the comparison fails, the polarization of the chosen
membrane is set to negative, so that it will not be chosen again in the future;
then, the membrane labelled by e is used to signal that an error occurred, and
to restore the configuration of the system so that a new cell membrane can be
chosen at random. If, on the other hand, the comparison was successful, then the
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symbol membranes are used to store the symbol under the read-write head; the
new symbol to be written and the new state are generated, the position of the
head is updated, and the configuration of the P system corresponding to the new
configuration of the Turing machine is prepared, also zeroing the polarization
of all cell membranes. Since an exponential number of cell membranes exists,
before the simulation of the Turing machine starts the system has to undergo
an initialization phase, during which all cell membranes labelled with t are gen-
erated via division rules. So doing, the initial configuration of the P system can
be built in polynomial time by a deterministic Turing machine, satisfying the
uniformity constraints imposed by Definition 3.

Investigation on the computational power of P systems with restricted active
membranes working in logarithmic space is currently in progress. In this case we
have to overcome at least two difficulties. First of all, since we have defined the
space complexity of P systems in terms of number of objects and membranes, we
cannot count the objects used to represent the input string, otherwise we would
exceed the logarithmic bound. A natural solution to this problem is to split the
alphabet of the P systems in two parts: input symbols and work symbols. Input
symbols do not contribute to the size of configurations, but on the other hand
the rules of the systems have to be designed in such a way that no input symbol
is ever created or rewritten during the computations.

Another problem is related to the uniformity condition: since the Turing ma-
chine that builds the P system Πx (or Πn, in the uniform case) can perform
computations in polynomial time, we do not want to cheat by letting it solve the
problem and produce a trivial P system that just outputs a yes or no object in
one step, corresponding to the correct solution. Hence a new notion of uniformity
is needed, which is weaker than the P systems themselves. Inspired by Boolean
circuits complexity [6] we have introduced DLOGTIME-uniformity [20], which
is obtained by substituting in Definition 3 polynomial-time deterministic Turing
machines with deterministic logarithmic-time (DLOGTIME, for short) Turing
machines. A DLOGTIME Turing machine [6] is a Turing machine having a
read-only input tape of length n, a constant number of read-write work tapes of
length O(log n), and a read-write address tape, also of length O(log n). The in-
put tape is not accessed by using a sequential tape head (as the other tapes are);
instead, during each step the machine has access to the i-th symbol on the input
tape, where i is the number written in binary on the address tape (if i ≥ |n| the
machine reads an appropriate end-of-input symbol, such as a blank symbol). The
machine is also required to operate in time O(log n), hence only O(log n) bits
of information of the input may be read during a DLOGTIME computation.
Despite their seemingly weak computational power, DLOGTIME Turing ma-
chines are able to perform many interesting computations, such as determining
the length of their input, compute sums, differences and logarithms of numbers
of O(log n) bits, decode simple pairing functions on strings of length O(log n)
and extract portions of the input of size O(log n) [6]. They are also used in the
uniformity construction of several classes of Boolean circuits [21]. As P systems
are more complicated devices than Boolean circuits, in [20] we have defined a
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Fig. 2. A P system with active membranes representing a generic configuration of a
logarithmic-space Turing machine

series of predicates describing their various features: number of symbols in the
alphabet, number and type of rules, membrane hierarchy, etc. All together, these
predicates define a DLOGTIME-computable function 1n �→ Πn for n ∈ N.

We have then proved that DLOGTIME-uniform families of P systems with
active membranes working in logarithmic space (not counting their input) can
simulate logarithmic-space deterministic Turing machines. Also in this case, the
interesting part of the construction is the representation of Turing machines
configurations by P systems configurations, and the simulation of Turing ma-
chines computation steps by sequences of P systems computation steps. Figure 2
shows how Turing machine configurations are represented as P systems configu-
rations. The state object has now two subscripts, indicating the current position
on the input tape and on the work tape, respectively; the object itself represents
the current state of the machine. The membrane hierarchy on the left (mem-
branes labelled with i00, i01 and i10 in the figure) has a logarithmic depth,
and represents the input tape; membranes w00, w01 and w10 represent the work
tape, whereas the other membranes are associated with the symbols of the in-
put and of the work alphabet, and play the same role of the symbol membranes
in exponential-space simulations. The input tape of the machine represented in
Figure 2 contains the string abbaa; all the input objects are normally contained
in the innermost membrane of the hierarchy associated with the input tape, and
the positions of the symbols on the input tape are encoded in binary. To simulate
a computation step of the Turing machine, say δ(r, b, a) = (s, b, �, �) — meaning
that the machine, being in state r and having symbols b and a respectively under
the input read head and under the work read-write head, goes into state s, writes
b on the work tape and moves the input head and the work head to the right
and to the left, respectively — the P system operates as follows. First the state
object crosses the membrane hierarchy associated with the input tape, setting
the polarizations according to the position of the tape cell to be read. All the
objects contained in the innermost membrane then start to leave, crossing the
membranes in the hierarchy according to their position subscript; only one ob-
ject, corresponding to the tape cell read, reaches the region enclosed by the skin
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membrane. Such object stores its presence in the corresponding symbol mem-
brane, and then goes back to the innermost membrane of the input hierarchy,
together with all the other input symbols, while the state object goes back to
the region enclosed by the skin membrane, resetting to zero all the polarizations
in the hierarchy. The state object is then used to read the current work tape
cell, and to store the symbol read in the corresponding symbol membrane. By
means of the polarizations of the input and work symbol membranes, the state
object has now all the information needed to generate the new state (comprising
the two modified subscripts corresponding to the new heads positions) and the
symbol to be written on the work tape. In the meanwhile all polarizations are
resetted to neutral, and so the P system correctly represents the new state of
the Turing machine, ready to simulate the next computation step.

Unfortunately, the possibility to perform the opposite simulation (that is,
simulating DLOGTIME-uniform families of P systems by Turing machines
operating in logarithmic space) remains open. It thus remains to be established
whether these P systems may or not characterize the class L of problems solvable
in logarithmic space by deterministic Turing machines, or maybe solve harder
problems like, for instance, those in NL.
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Abstract. Some open problems and research topics are pointed, about
three classes of P systems: catalytic, numerical, and spiking neural P
systems. In each case, several issues are briefly discussed, in general,
related to questions already formulated as open problems in the literature
and also related to recent results dealing with these questions.

1 Introduction

In spite of the large bibliography accumulated in the fifteen years since this
research area was initiated, [26], membrane computing still exhibits a lot of
open problems and research topics, some of them “going back to basics”, others
being related to more recent branches of the theory. We recall here three sets of
such problems, from both categories mentioned above.

First, we start from the already “classic” question whether or not catalytic P
systems with one catalyst, or purely catalytic P systems with two catalysts are
computationally universal, and we add to this basic issue three related research
topics: (i) give an example of a P system with two catalysts computing a non-
trivial (e.g., non-semi-linear) set of numbers, find additional features to be added
to (ii) P systems with one catalyst or to (iii) purely catalytic P systems with two
catalysts in order to get universality. Recent results in this respect were reported
– see, e.g., [11], [8].

Then, we consider the numerical P systems. Besides the basic question, of
constructing a complexity theory for these systems, especially related to and
important for applications, open problems related to a recent important progress
concerning the power of enzymatic numerical P systems ([20]) are formulated. In
particular, an interesting question concerns of the computing power of numerical
P systems with a small number of enzymes.

Finally, with respect to the spiking neural (SN) P systems, we mention two
problems already mentioned elsewhere (e.g., in [15]) and with respect to a new
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class of SN P systems, recently introduced in [35], where the spiking and the
forgetting rules are associated with the synapses, not with the neurons.

In view of the assumed non-Turing computing power/behavior of the brain,
an interesting issue would be to find SN P systems able to compute beyond
Turing barrier; suggestions from the hypercomputation area could be useful.

The reader is assumed to be familiar with membrane computing (e.g., from
[28], [33], [42]), hence we recall no prerequisites. Instead, for the use of the reader,
we indicate a series of primary references, without being complete from this point
of view; further references can be found in the above mentioned comprehensive
sources of information in membrane computing.

2 Catalytic P Systems

P systems with catalytic rules were already introduced in [26], with their com-
puting power left open.

We denote by NPm(catr) the family of sets of numbers computed (generated)
by P systems with at most m membranes, using catalytic or non-cooperative
rules, containing at most r catalysts. When all the rules of a system are catalytic,
we say that the system is purely catalytic, and the corresponding families of sets
of numbers are denoted by NPm(pcatr). When the number of membranes is not
bounded by a specified m (it can be arbitrarily large), then the subscript m is
replaced with ∗.

The following fundamental results are known:

Theorem 1. (i) NP2(cat2) = NRE, [10];
(ii) NREG = NP∗(pcat1) ⊆ NP∗(pcat2) ⊆ NP2(pcat3) = NRE, [13], [14].

Two intriguing open problems appear here, related to the borderline between
universality and non-universality: (1) are catalytic P systems with only one cat-
alyst universal? (2) are purely catalytic P systems with two catalysts universal?
The conjecture is that both these questions have a negative answer, but it is also
felt that “one catalyst is almost universal”: many features which look “innocent”
at the first sight are enough to lead P systems with one catalyst to universality
(see [11]) – and similar results were obtained also for purely catalytic P systems
with two catalysts (see [8]).

Here we briefly recall the universality results for one catalyst P systems with
additional ingredients:

– Introducing a priority relation among rules, [26].
– Using promoters and inhibitors associated with the rules.
– Controlling the computation by means of controlling the membrane per-

meability, by actions δ (decreasing the permeability) and τ (increasing the
permeability), [27].

– Besides catalytic and non-cooperating rules, also using rules for membrane
creation, [22].

– Considering, instead of usual catalysts, bi-stable catalysts, [34], or mobile
catalysts, [18].
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– Imposing target restrictions on the used rules, [11]; the universality was ob-
tained for P systems with 7 membranes, and it is an open problem whether
or not the number of membranes can be diminished).

– Imposing to P systems the idea from time-varying grammars and splicing
systems, [11]; the universality of time-varying P systems is obtained for one
catalyst P systems with only one membrane, having the period equal to 6,
and it is open the question whether the period can be decreased.

– Using in a transition only (labeled) rules with the same label – so-called label
restricted P systems, [19].

Several of these results were extended in [8] to purely catalytic P systems
with two catalysts. It remains open to do this for all the previous results, as well
as to look for further ingredients which, added to one catalyst P systems or to
purely catalytic P systems with two catalysts, can lead to universality. It would
be interesting to find such ingredients which work for one catalyst systems and
not for purely catalytic systems with two catalysts, and conversely. Suggestions
from the regulated rewriting area [6] or the grammar systems area [3] in formal
language theory can be useful.

We end this section with a somewhat surprising issue: we know that
NP2(cat2) = NRE, but no example of a P system with two catalysts which
generates a non-trivial set of numbers (for instance, {2n | n ≥ 1}, {n2 | n ≥ 1})
is known. In fact, the problem is to find a system of this kind as simple as pos-
sible (otherwise, just repeating the construction in the proof from [10], starting
from a register machine computing a set as above, we get an example, but of a
large size). A first answer to this question is given in [36], where a catalytic P
system with 54 rules is produced, but it is expected that this number could be
reduced.

3 Numerical P Systems

Numerical P systems form an “eccentric” class of P systems, because of their
“non-syntactic” character, far from language and automata theory, but closer
to numerical analysis. This is probably one of the reasons for which only a
few papers were accumulated in this area. However, because of the economic
motivations, [31], and of the recent applications in robot control, [24], [25], [40],
[39], the subject started to call the attention. There are many questions to be
investigated in this framework (see a list of such questions in [30]).

Two recent papers, making important steps ahead in the study of numerical P
systems are [20] and [21]. The first paper considerably improves the universality
results for enzymatic numerical P systems. We do not recall here the definitions,
but we only mention that one deals with enzymatic numerical P systems working
in the so-called all-parallel or one-parallel modes introduced in [41].

Thus, two immediate questions are to consider also the case of (i) numerical
P systems without enzymes and (ii) of sequential numerical P systems (with or
without enzymes).
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Then, let us remember that the enzyme variables behave like catalysts (ac-
tually, they are closer to promoters) in catalytic P systems. This suggests the
problem of considering numerical P systems with a small number of enzymes.
Which is the smallest number of enzyme variables for which enzymatic numerical
P systems (working in a specified manner: sequential, all-parallel, or one-parallel)
is universal?

4 Spiking Neural P Systems

The SN P systems area contains many open problems and research topics. We
have mentioned in the Introduction the paper [15]. Three main problems are
recalled there:

– To further investigate the power and the properties of SN dP systems, that
is, to combine the idea of distributed P systems introduced in [32] with that
of spiking neural P systems from [17]. SN dP systems were introduced in
[16], but only briefly investigated.

– To investigate the possibility of using SN P systems as pattern recognition
devices, in general, in handling 2D patterns. One of the ideas is to consider
a layer of input neurons which can read an array line by line and the array
is recognized if and only if the computation halts.

– In some sense, the SN P systems is the only class of P systems which have
only a few and somewhat metaphoric applications in the study of the “real”
brain, of interest for biologists, and this is an important issue: should we
change the definition of an SN P system in order to have such applications,
or we simply failed to find them in the present setup?

Actually, several modifications in the initial definition of SN P systems were
considered already. We only mention the SN P systems with astrocytes ([29],
[1]), the SN P systems with request rules ([5]), the SN P systems with anti-
spikes ([23]), and the axon computing systems ([4]).

One further modification in the initial definition was recently introduced in
[35], namely, one moves the firing rules (they can be both spiking and forgetting
rules, of the standard forms in SN P systems) on the synapses. The neurons
contain spikes; when the number of spikes in a given neuron is “recognized” by
a rule on a synapse leaving from that neuron, then the rule is fired, a number of
spikes are consumed and a number of spikes are sent to the neuron at the end
of the synapse. Precise details can be found in [35]. Using one rule per synapse,
with all synapses firing in parallel, we get computations, in the usual style of SN
P systems.

In [35], the universality of SN P systems with rules on synapses (with the result
of a computation being the number of spikes stored in a designated neuron, the
output one, in the end of the computation) is proved, and small universal SN P
systems with the rules on synapses are produced.

We end this section with one further research idea: changing the definition
of SN P systems in such a way to obtain hypercomputations, going beyond the
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Turing barrier. In membrane computing there are are, as far as we know, only two
papers dealing with this subject (but not with SN P systems), the accelerated
P systems with membrane creation from [2], and the lineages of P systems from
[37]. Suggestions from the general hypercomputation area could be useful – see,
e.g., the survey from [38].

5 Final Remarks

We end this note by recalling the attention about the “mega-paper” [12], where a
lot of open problems and research topics in membrane computing can be found.
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30. Păun, G.: Some open problems about numerical P systems. In: Proc. 11th Brain-

storming Week on Membrane Computing, February 4-8, Fénix Editora, Sevilla
(2013)
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36. Sośı, P.: k: A catalytic P system with two catalysts generating a non-semilinear
set. Romanian J. Inf. Sci. Technology (in press)
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Abstract. We resume computational complexity aspects of several mod-
els of membrane systems, namely P systems with active membranes, P
systems with proteins on membranes and tissue P systems both with
membrane separation and membrane division. A sequence of common
issues is studied in relation to these P system models, and 16 open prob-
lems are stated in the text.

We question the role of families of P systems and their necessity to
solve computationally hard problems in polynomial time. For each P sys-
tem model we focus on conditions guaranteeing the polynomial equiv-
alence of families of P systems and Turing machines. The ability of P
systems to solve NP/co-NP-complete problems in polynomial time (trad-
ing space for time) is a very popular issue. Interesting characterizations of
the borderline between tractability and intractability, i.e., P/NP, have
been recently shown. Similarly important, although less popular, is the
relation between NP/co-NP and further classes as PP, the polynomial
hierarchy PH and PSPACE. Several models of P systems has been
shown to characterize the class PSPACE which itself characterizes par-
allel computations with an unlimited number of processors but a limited
propagation of data between them.

1 Introduction

The key ingredient of P system is an abstract membrane which lets pass only
certain objects, only in certain directions or only under some conditions. The
membranes can be embedded, hence the name “membrane system.” Objects can
also react and produce other objects. Gradually, many variants of membrane sys-
tem have been proposed, enriched with further operations as membrane division,
membrane dissolution, membrane polarization, tissue P systems, membrane with
regulating proteins etc.

In the remaining sections we shall study the mutual relation of several abstract
operations in membrane systems: membrane division, membrane dissolution,
membrane polarization, symport/antiport of objects, regulation by proteins on
membranes etc. Various combinations of these operations yield various levels of
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computational power of the system. Our aim is to give a survey of the known
results arranged in a comparative way. Where possible, we omit technical details
and refer the reader to more technical papers. We also omit explanation of
definitions and we limit the number of examples which can be also found in the
sources referred to.

2 Preliminaries

A multiset M over an underlying set A is a pair (A, f) where f : A → N is a
mapping. If M = (A, f) is a multiset then its support is defined as supp(M) =
{x ∈ A | f(x) > 0}. The total number of elements in a multiset, including re-
peated memberships, is the cardinality of the multiset. A multiset is empty (resp.
finite) if its support is the empty set (resp. a finite set). If M = (A, f) is a finite
multiset over A, and supp(M) = {a1, . . . , ak} then it can also be represented

by the string a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all

permutations of this string precisely identify the same multiset M . Throughout
this paper, we speak about “the finite multiset M” where M is a string, and
meaning “the finite multiset represented by the string M”.

If M1 = (A, f1), M2 = (A, f2) are multisets over A, then we define the union
of M1 and M2 as M1 +M2 = (A, g), where g = f1 + f2.

In the rest of the paper we use extensively the computational complexity
classes P, NP, co-NP and PSPACE. We also denote by AC0 the class of
problems solvable by uniform families of acyclic logic circuits with constant depth
and a polynomial size, and by PP the class of decision problems solvable by a
probabilistic Turing machine in polynomial time, with an error probability of
less than 1/2 for all instances. We refer the reader to, e.g., [15] for more details.

Definition 1. A P system of degree m ≥ 1 is a construct

Π = (O,H, μ, w1, . . . , wm, R, iout) where:

1. O is the alphabet of objects;
2. H is the set of labels of membranes;
3. μ is a membrane structure of degree m with membranes labeled with elements

of H ;
4. w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions

of μ;
5. R is a finite sets of evolution rules (associated with labels) which can change

contents of membranes and eventually also structure of the system; types of
rules are specified in further sections;

6. iout ∈ H indicates the output region of Π.

The membrane structure and the multisets represented by wi, 1 ≤ i ≤ m,
in Π constitute the initial configuration of the system. A transition between
configurations means applying a maximal multiset of evolution rules in par-
allel. Other execution modes as sequential or minimal parallelism are possible.
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The computation stops when there is no rule which can be applied to objects and
membranes in the last configuration.The result of computation is then defined
by the content of the output membrane.

In this paper we study the accepting (or recognizer) variant of P systems. A
recognizer P system solving a decision problem has a specific input membrane
iin which initially contains a multiset of objects encoding an instance of the
problem. Alternatively, if the system solves only one instance, the instance may
be encoded within the structure of the system; then we speak about P systems
without input membrane.

A recognizer P system must furthermore comply with the following require-
ments: (a) the alphabet O contains two distinguished elements yes and no; (b)
all computations halt; and (c) exactly one of the object yes (accepting compu-
tation) or no (rejecting computation) must be sent to the output membrane of
the system, and only at the last step of each computation.

3 Complexity Classes of P Systems

Consider a decision problem X = (IX , θX) where elements of IX are called
instances and θX is a total boolean function over IX . In a family of recognizer
systems without input membrane, denoted by Π = {Π(w) : w ∈ IX}, an instance
w of a problem X is encoded into the structure of a P system Π(w). The system
Π(w) is supposed to solve the instance w. If we use recognizer P systems with
input membrane, then such a family is denoted by Π = {Π(n) : n ∈ N}. A
member Π(n) of the family solves all the instances of the problem X of size
n, properly encoded as its input. (Let us denote by |w| the size of an instance
w ∈ IX .)

Definition 2 ([28]). A family of recognizer membrane systems is polynomially
uniform by Turing machines if there exists a deterministic Turing machine which
constructs each member Π of the family in polynomial time with respect to the
size of the instance(s) solved by Π.

In the sequel we will for short denote such a family just as uniform. Formally,
[28] defines the conditions of soundness and completeness of Π with respect
to X. A conjunction of these two conditions ensures that for every w ∈ IX , if
θX(w) = 1, then every computation of Π(w) is accepting, and if θX(w) = 0,
then every computation of Π(w) is rejecting.

Note that the P system Π(w) can be generally nondeterministic, i.e, it may
have different possible computations, but with the same result. Such a P system
is also called confluent.

Definition 3 ([28]). A decision problem X is solvable in polynomial time by a
family Π = {Π(w) : w ∈ IX} of recognizer P systems without input membrane
if the following holds:

– The family Π is polynomially uniform by Turing machines.
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– The family Π is polynomially bounded; that is, there exists a polynomial p
such that for each instance w ∈ IX , every computation of Π(w) performs at
most p(|w|) steps.

– The family Π is sound and complete with respect to X.

The family Π is said to provide a semi-uniform solution to the problem X.
Analogously one could define a family Π = {Π(n) : n ∈ N} of recognizer P
systems with input membrane which provide a uniform solution to the problem
X. We refer to [28] for more details.

Let R be a class of recognizer P systems. We denote by PMCR the set of all
decision problems which can be solved in a uniform way and polynomial time
by means of families of systems from R. We denote by PMC∗

R the set of all
decision problems which can be solved by such families in a semi-uniform way.
By the definition, for any family R we obtain PMCR ⊆ PMC∗

R.

3.1 The Need for Families?

It became usual to express the computational power of various kinds of mem-
brane systems in terms of families just described in the previous section. It is
long known, however, that most of the studied types of P systems are compu-
tationally universal and, by the Church-Turing thesis, there exists a universal P
system of each such type, capable to solve all instances of any decidable problem.

The need for families is therefore given by the efficiency of computation. It is
easy to simulate the Minsky register (or counter) machine [21] by virtually any
transition P system in linear time. The content of any register can be represented
by a multiset of specific object in a specific membrane, see Fig. 1. Most types
of P systems are capable to decrement or increment a given multiset of objects
in a membrane. However, the register machine is exponentially slower than the
Turing machine.

One could turn to other models as the RAM machine which are known to
be polynomially equivalent with Turing machine (TM). The simulation of TM
by RAM in polynomial time, however, typically uses an unbounded number of
individually addressable registers which cannot be achieved with common models
of P systems (unless some special extension is used). If one tries to simulate a
TM by P system directly, the same problem arises. However, there still might be
a way how to avoid its obstacle: many models of P systems are able to perform
the multiplication and division by a constant in one step. Could this capability
be used to encode the whole content of tape of a TM into one multiset and to
manipulate it effectively?

Finally, if one wanted to construct a P system solving all instances of an NP-
complete problem in polynomial time, it seems inevitable to have an unbounded
number of individually accessible cells. Known models of P systems, however,
use a fixed set of cell labels or a fixed diameter of a communication graph with
a bounded number of distinguishable cells. Although an unlimited number of
cells can be produced by cell division, separation or creation, they cannot be ac-
cessed individually unless nondeterminism is involved as in [1]. Which extension
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r1a = 0
r1b = 0
r1c = 0

≡ r2a = 2
r2b = 1
r2c = 3

...

Fig. 1. An example of contents of membranes representing registers

(e.g., a dynamically growing communication graph) would be nature inspired
and not much artificial, on one hand, and powerful enough to overcome this
obstacle, on the other hand?

Open Problem 1. Is there any known standard model of P system capable of
solving a P-complete problem in polynomial time without the use of families, i.e.,
all instances are solved by the same P systems? Alternatively, such a P system
must simulate any Turing machine in polynomial time.

Open Problem 2. How to design a natural (not much “extraordinary”) model
of P system capable of solving an NP-complete problem in polynomial time with-
out the use of families?

4 P Systems with Active Membranes

The term “active membranes” denotes the fact that, in this model, an operation
inspired by division of live cells is introduced: membranes can divide into two,
copying their contents (including eventual embedded membranes) into both de-
scendants. Some objects, however, can be modified, imitating mutations. Besides,
the membranes contain objects which can evolve and pass between membranes
under pre-defined conditions.

The following definition is given without any broad explanation and examples;
for further details please see, e.g., [38] or [37]. A P system with active membranes
[38], abbreviated here as AM system, is a construct

Π = (O,H, μ, w1, . . . , wm, R, iout),
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where O, H, w1, . . . , wm and iout are as in Definition 1, μ is amembrane structure
of m membranes with possible polarizations {+,−, 0}, and R is a finite set of
developmental rules of the following forms:

– [ha→ v]
α
h , for h ∈ H,α ∈ {+,−, 0}, a ∈ V, v ∈ V ∗

(object evolution rules);

– a[h ]
α1

h → [hb]
α2

h , for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules);

– [ha ]
α1

h → [h ]
α2

h b, for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules);

– [ha ]
α
h → b, for h ∈ H,α ∈ {+,−, 0}, a, b ∈ V

(dissolving rules);

– [ha ]
α1

h → [hb ]
α2

h [hc ]
α3

h ,
for h ∈ H,α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ V
(division rules for elementary membranes);

– [h0
[h1

]
+
h1

. . . [hk
]
+
hk

[hk+1
]
−
hk+1

. . . [hn
]
−
hn

]
α2

h0

→ [h0
[h1

]
α3

h1
. . . [hk

]
α3

hk
]
α5

h0
[h0

[hk+1
]
α4

hk+1
. . . [hn

]
α4

hn
]
α6

h0
,

for n > k ≥ 1, hi ∈ H, 0 ≤ i ≤ n, and α2, . . . , α6 ∈ {+,−, 0};
(division of non-elementary membranes).

All the above rules are applied in parallel, but at one step, an object a can be
subject to only one rule of type (a)–(e) and a membrane h can be subject to only
one rule of type (b)–(f). In the case of type (f) rules, this means that none of the
membranes h0, . . . , hn listed in the rule can be simultaneously subject to another
rule of type (b)–(f). However, this restriction do not apply to membranes with
neutral charge contained in h0.

The systemΠ starts its computation in the initial configuration (μ,w1, . . . , wm)
when all the membranes are neutral (polarization 0), and it continues the compu-
tation until no rule can be applied.

Since another paper [16] in this volume is devoted solely to the complex-
ity issues in P systems with active membranes, we skip many details and we
summarize basic known results in Table 1, describing the influence of various
combinations of operations on the computational power of AM systems. Each
column in the table corresponds to a specific combination of operations described
in the above definition of AM systems. The last row compares the computational
power of polynomially uniform families of AM systems using these operations
with known computational complexity classes. Most of these characterizations
hold for both families with and without input; some, however, are known to
hold for only one of these variants. See, e.g., [28,42] for more details. Table 1
summarizes results reported in [2,44,45,29,41,31].

Open Problem 3. Is the lower bound PP or the upper bound PSPACE for
the power of families of AM systems without non-elementary membrane division
optimal? If not, how to improve it?
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Table 1. The computational power of uniform families of recognizer AM systems
with polarization. X denotes used operations, ? denotes operations not affecting the
computational power.

Polarization X X X

Evolution rules (a) ? X X

Communication rules (b),(c) X X X

Membrane dissolution (d) ? ? ?

Division of elementary membranes (e) X ?

Division of non-elementary membranes (f) X

Class of problems solved = ⊇ =

in polynomial time P PP PSPACE

4.1 AM Systems without Polarization

In AM systems without polarization, denoted by AM0 systems, all membranes
are always polarized neutrally. In such a case the condition that the membranes
h1, . . . , hk and hk+1, . . . , hn in rules of type (f) have opposite polarization is
relaxed. We start with rather surprising result: if, in addition to polarizations,
we remove also the rules (d) of membrane dissolution, the system looses almost
all its computational power [22]. Actually, such a system can be replaced by
a computationally equivalent AM0 system with a single membrane and with
evolution rules only, which immediately transform certain input objects to yes
and others to no. In other words, the behavior of such a system is trivial. It is
interesting that even the non-elementary membrane division does not increase
the power of these systems.

Whenever the the membrane dissolution is allowed, the resulting computa-
tional power corresponds to that of conventional computers, even only with ob-
ject evolution rules (a). The power of these families remains unchanged if we add
communication rules of type (b) a (c), and also division rules (e) restricted to
the form [ha ]h → [hb ]h[hb ]h (symmetric division of elementary membranes).

Interestingly, if unrestricted elementary membrane division is allowed, the
resulting computational power is not known (marked by ??? in Table 2. The
so-called Păun’s conjecture claims that the computational power is still P. With
non-elementary membrane division and only the rules of types (d), (e), (f) are
allowed, then semi-uniform families of AM0 systems solve in polynomial time
problems in NP ∪ co-NP[46].

Finally, with all possible operations (a)–(f) including the non-elementary
membrane division we again get the power of the second class computers, i.e., the
capability to solve PSPACE-complete problems in polynomial time. The results
based on publications [3,22,23,46,17,41] are summarized in Table 2.

Open Problem 4. Find a relevant example(s) of AM or AM0 systems so that
the computational power of polynomially uniform families with and without input
would be different.
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Table 2. The computational power of uniform families of recognizer AM systems
without polarization. X denotes used operations, the symbol ? denotes operations which
do not affect the computational power.

Evolution rules (a) X X X X

Communication rules (b),(c) X ? X X

Membrane dissolution (d) X X X X

Division of elementary membranes (e) X X X X

Div. of non-elementary membranes (f) X X X

Class of problems solved ⊆ = ⊇ NP =

in polynomial time AC0 P ??? ∪ co-NP PSPACE

Open Problem 5. How to characterize the computational power of AM0 sys-
tems without non-elementary membrane division (Păun’s conjecture)?

Open Problem 6. Is the lower bound NP ∪ co-NP or the upper bound
PSPACE for the power of families of AM0 systems with rules of types (d),
(e), (f) optimal? What is their relation to the class PP?

5 P Systems with Proteins on Membranes

The research of P systems with proteins on membranes in the form presented
here started in [33] and [34] where insoluble membrane proteins have been mod-
eled in the broad area of membrane computing. P systems with proteins on
membranes can be viewed as a model combining membrane systems and brane
calculi as introduced in [6]. Besides the crucial role of membrane proteins in cells,
further research motivation is the fact that maximally parallel processing of dif-
ferent species of molecules in membrane systems was not realistic. Here we limit
the parallelism through the modeling of a limited number of trans-membrane
proteins (protein channels).

Definition 4. A P system with proteins on membranes and membrane division
is a tuple Π = (O,P, μ, w1/z1, . . . , wm/zm, E,R1, . . . , Rm, io), where

m is the degree of the system (the number of membranes),
O is the set of objects, P is the set of proteins (with O ∩ P = ∅),
μ is the membrane structure (a rooted tree) with membranes labelled uniquely

1, . . . ,m
w1, . . . , wm are (strings representing the) multisets of objects present in the m

regions of the membrane structure μ,
z1, . . . , zm are multisets of proteins present on the m membranes of μ,
E ⊆ O is the set of objects present in the environment (in an arbitrarily large

number of copies each),
R1, . . . , Rm are finite sets of rules associated with the m membranes of μ, and
io is the label of the output membrane.
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Both proteins and objects can be manipulated via rules associated with mem-
branes. In all of these rules, a, b, c, d are objects, p is a protein, and i is a label
(“res” stands for “restricted”):

Type Rule Effect
1res [ ip|a] i → [ ip|b] i modify an object,

a[ ip| ] i → b[ ip| ] i but not move
2res [ ip|a] i → a[ ip| ] i move an object,

a[ ip| ] i → [ ip|a] i but not modify
3res [ ip|a] i → b[ ip| ] i modify and move

a[ ip| ] i → [ ip|b] i one object
4res a[ ip|b] i → b[ ip|a] i interchange two objects

interchange and modify
5res a[ ip|b] i → c[ ip|d] i two objects

In all the cases above, the protein is not changed, it plays the role of a cata-
lyst. A generalization is to allow rules of the forms below (“cp” means “change
protein”):

Effect (besides changing
Type Rule also the protein)
1cp [ ip|a] i → [ ip

′|b] i modify an object,
a[ ip| ] i → b[ ip

′| ] i but not move
2cp [ ip|a] i → a[ ip

′| ] i move an object,
a[ ip| ] i → [ ip

′|a] i but not modify
3cp [ ip|a] i → b[ ip

′| ] i modify and move
a[ ip| ] i → [ ip

′|b] i one object
4cp a[ ip|b] i → b[ ip

′|a] i interchange two objects
interchange and modify

5cp a[ ip|b] i → c[ ip
′|d] i two objects

where p, p′ are two proteins. If p �= p′ at each rule, then we denote them ncpp,
n = 1, 2, 3, 4, 5 (pure change-protein rules).

An intermediate case is to allow at most two states for each protein, p, p̄, and
each rule must change from p to p̄ and back (like in the case of bistable catalysts).
Rules with such flip-flop proteins are denoted by nffp, n = 1, 2, 3, 4, 5.

The rules are used in the non-deterministic maximally parallel way. However,
at each step each object and each protein can be involved in application of
at most one rule. The membranes are not considered as involved in the rule
applications hence the same membrane can appear in any number of rules at the
same time.

We denote by NOPm(pror ;list-of-types-of-rules) the family of sets of numbers
generated by P systems with proteins on membranes, with at most m mem-
branes, using rules as specified in the list-of-types-of-rules, and with at most r
proteins present on a membrane. The following results were proven in [33], [27],
[13]. Let NRE denote the class of all recursively enumerable sets of non-negative
integers.
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Theorem 1.
NOP1(pro2; 2cpp) = NOP1(pro2; 2res; 4cpp) = NOP1(pro2; 2res; 1cpp) =
= NOP1(pro6; 3ffp) = NOP1(pro6; 2ffp; 4ffp) = NOP1(pro6; 2ffp; 5ffp) =
= NOP1(pro9; 1res; 2ffp) = NOP1(pro6; 1ffp; 2ffp) = NOP1(pro8; 1ffp; 2res) =
= NOP1(pro8; 2ffp; 3res) = NOP1(pro7; 1ffp; 3res) = NOP1(pro8; 3res; 4ffp) =
= NOP1(pro7; 2ffp; 5res) = NRE.

5.1 Introducing Membrane Division

To divide a membrane, we use the following type of rule (referred to as type 6 ),
where p, p′, p′′ are proteins (possibly equal):

[
i
p| ]

i
→ [

i
p′| ]

i
[
i
p′′| ]

i

Membrane i can be non-elementary. The rule doesn’t change the membrane
label i and instead of one membrane, at next step, we will have two membranes
with the same label i and the same contents (except for p′ and p′′) replicated
from the original membrane. Let us denote byMP(+n) the class of recognizer
P systems with proteins on membranes and membrane division (with no restric-
tions on the types of rules described above). The strongest recently known result
[43] is the following:

Theorem 2. PMC∗
MP(+n) = PSPACE.

Open Problem 7. What is the computational power of polynomially uniform
families of MP systems without membrane division? Do they characterize the
class P, and what happens under restrictions on the form of rules used in The-
orem 1?

Open Problem 8. Does a result analogous to Theorem 2 hold true for the class
PMCMP(+n) (i.e., families of P systems with input solving problems in a uni-
form way)?

Open Problem 9. Which restrictions on the form of rules (as in Theorem 1)
can be applied so that the Theorem 2 remains valid?

Open Problem 10. What is the computational power of polynomially uniform
families of MP systems using only restricted rules? Is there an analogy with
polarizationless AM systems?

Open Problem 11. What is the computational power of polynomially uniform
families ofMP systems with elementary membrane division?
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6 Tissue P Systems

The basic idea of tissue P systems is the principle of symport and antiport
[35]. Symport rules move objects across a membrane together in one direction,
whereas antiport rules move objects across a membrane in opposite directions.
In tissue P systems these two variants were unified as a unique type of rule
manipulating a certain number of objects. From the original definitions of tissue
P systems [19,20], several research lines have been developed and other variants
have arisen (see, for example, [4,5,10,12,14]).

Definition 5. A tissue P system of degree q ≥ 1 is a tuple

Π = (Γ, E ,M1, . . . ,Mq,R, iout),
where:

1. Γ is a finite alphabet whose elements are called objects;
2. E ⊆ Γ is a finite alphabet of objects initially in the environment of the system

in inexhaustibly many copies each, and 0 is the label of the environment;
3. M1, . . . ,Mq are strings over Γ , representing the finite multisets of objects

placed in the q cells of the system at the beginning of the computation;
4. R is a finite set of communication rules of the form (i, u/v, j), for i, j ∈
{0, 1, 2, . . . , q}, i �= j, u, v ∈ Γ ∗, and the length of the rule is |uv| > 0;

5. iout ∈ {0, 1, 2, . . . , q} is the output cell.

When applying a rule (i, u/v, j), the objects of the multiset represented by u are
sent from region i to region j and, simultaneously, the objects of the multiset
v are sent from region j to region i. A communication rule (i, u/v, j) is called
a symport rule if u = λ or v = λ. A symport rule (i, u/λ, j), with i �= 0, j �= 0,
provides a virtual arc from cell i to cell j. A communication rule (i, u/v, j) is
called an antiport rule if u �= λ and v �= λ. An antiport rule (i, u/v, j), with
i �= 0, j �= 0, provides two arcs: one from cell i to cell j and another one from cell
j to cell i. Thus, every tissue P systems has an underlying directed graph whose
nodes are the cells of the system and the arcs are obtained from communication
rules.

Recognizer variant of tissue P system is defined analogously as in the previous
sections. We denote the class of recognizer tissue P systems by TC. The following
result was shown by simulation of basic transitional P systems in [8]:

P = PMCTC .

6.1 Tissue P Systems with Cell Division

Tissue P system with cell division is based on the cell-like model of P systems
with active membranes [38]. The biological inspiration is the following: alive
tissues are not static network of cells but new cells are produced by membrane
division in a natural way. In these models, the cells are not polarized; the two
cells obtained by division have the same labels as the original cell, and if a cell
is divided, its interaction with other cells or with the environment is blocked
during the division process.
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Division Rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ , and
i �= iout. In reaction with an object a, the cell i is divided into two cells with
the same label; in the first cell the object a is replaced by b; in the second
cell the object a is replaced by c; the output cell iout cannot be divided;

For each natural number k ≥ 1, we denote by TDC(k) the class of recognizer
tissue P systems with cell division and communication rules of length at most k.
We denote by TDC the class of recognizer tissue P systems with cell division and
without restriction on the length of communication rules. Obviously, TDC(k) ⊆
TDC for all k ≥ 1.

The following result in [11] states that only problems in P can be solved by
families of recognizer tissue P systems with the rules of length 1, on one hand:

P = PMCTDC(1). (1)

On the other hand, [32] places a tight borderline between efficiency and non-
efficiency in the sense of the length of rules:

NP ∪ co-NP ⊆ PMCTDC(2). (2)

Finally, the upper bound on the power of these P systems is given in [39]:

PMCTDC ⊆ PSPACE. (3)

Open Problem 12. Is the lower bound on PMCTDC(k), k ≥ 2 tight? If not,
improve it. Particularly, which is the relation of PP and PMCTDC(k)?

Open Problem 13. Is PSPACE ⊆ PMCTDC ? (This might resolve also the
previous problem.)

6.2 Tissue P Systems with Cell Separation

The operation of membrane separation was introduced in [24]. It is motivated
by the fact that during a cell division, its content is split between the two de-
scendants.

Definition 6 ([25]). A tissue P system with cell separation of degree q ≥ 1 is
a tuple

Π = (Γ, Γ1, Γ2, E ,M1, . . . ,Mq,R, iout),
where:

1. Γ, E , M1, . . . ,Mq, iout are as in Definition 5;
2. {Γ1, Γ2} is a partition of Γ , that is, Γ = Γ1 ∪ Γ2, Γ1, Γ2 �= ∅, Γ1 ∩ Γ2 = ∅;
3. R is a finite set of rules of the following forms:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i �= j, u, v ∈
Γ ∗, |uv| > 0;
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(b) Separation rules: [a]i → [Γ1]i[Γ2]i, where i ∈ {1, 2, . . . , q} and a ∈ Γ ,
and i �= iout. In reaction with an object a, the cell i is separated into
two cells with the same label; at the same time, object a is consumed; the
objects from Γ1 are placed in the first cell, those from Γ2 are placed in
the second cell; the output cell iout cannot be separated.

As in the previous section, we introduce the notation TSC(k) or TSC for
the class of recognizer tissue P systems with cell separation and communication
rules of length at most k, or without restriction, respectively. The known results
are summarized as follows:

P = PMCTSC(2) (Characterization of P, [26]);

NP ∪ co-NP ⊆ PMCTSC(3) ((In)Tractability borderline, [30]);

PMCTSC ⊆ PSPACE (Upper bound on the computing power, [40]).

It is interesting that, although the frameworks of tissue P systems with cell
division and cell separation is rather similar, the borderline between tractability
and intractability is placed differently. Further variants of tissue P systems with
cell division/separation and their computational power were studied, e.g., in [18].

Open Problem 14. Is the lower bound on PMCTSC(k), k ≥ 3 tight? If not,
improve it. Particularly, which is the relation of PP and PMCTSC(k)?

Open Problem 15. Is PSPACE ⊆ PMCTSC ? (This might resolve also the
previous problem.)

Open Problem 16. What happens if only symport (respectively, only antiport)
rules are allowed in tissue P systems with cell division or cell separation?

7 Conclusion

We have addressed a sequence of open problems and challenges in the com-
putational complexity theory of P systems with active membranes, P systems
with proteins on membranes, and tissue P systems. We focused on polynomi-
ally uniform families of recognizer P systems working in polynomial time and
often using the strategy of trading space for time. We questioned also some very
basic concepts commonly used in the computational complexity of membrane
computing, namely the construction of uniform families. Due to limited space
we did not present many details of the cited results but rather their synopsis
which would allow to compare the power of various operations used in the P
system models mentioned above. We presented a sequence of the most impor-
tant recent open problems in these fields, related mostly to basic variants of
these P systems. For further details on computational complexity in P systems
with active membranes and tissue P systems, the reader is referred to [28,16].
However, as the progress in the research of tissue P systems is recently very fast,
some open problems mentioned in [28] are already resolved. Also new variants
of P systems continuously emerge, the reader can find many of them under the
cited references.
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Abstract. In this article we focus on the model called the formal frame-
work for P systems. This model provides a descriptional language power-
ful enough to represent in a simple way, via a strong bisimulation, most
of the variants of P systems. The article presents a series of concrete
examples of the application of the formal framework in order to under-
stand, extend, compare and explain different models of P systems leading
to new research ideas and open problems.

1 Introduction

The model called the formal framework for P systems (FF) was introduced in [4]
and later developed in [3]. It aims to provide a concrete variant of P systems
that can act as descriptional language powerful enough to represent in a simple
way most of the variants of P systems with the goal of better understanding and
comparison of different models of P systems.

The formal framework permits to simulate most of variants of P systems.
Moreover, in most cases it is a strong bisimulation, i.e. one step in the original
system is done by one step in the formal framework. This becomes possible
because the form of configurations and rules is close to multiset rewriting and
generalizes most common configuration changes in P systems. Hence, most of
existing models of P systems could be obtained by a restriction (eventually
using a simple encoding) of FF with respect to different parameters. The strong
bisimulation property also permits a discussion about the semantics of the target
P system, although this is not the primary goal of FF.

Using FF mainly benefits for the following cases (a) understand the function-
ing of some variant of P systems; (b) compare variants of P systems; (c) explain
points of the definition and semantics that can have different interpretations; (d)
extend variants of P systems with new features.

The aim of this paper is not to present the framework itself, but rather several
examples of its application for the description and the comparison of different
variants of P systems with static structure, with probabilities and with dynamic
structure. We also show how these investigations give a uniform view on P sys-
tems and lead to new research ideas and open problems.
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2 A Short Presentation of the Formal Framework

We assume that the reader is familiar with basic notions on formal languages
and on P systems and we refer to [9] and [8] for missing details. We will use
a string notation to denote multisets and we denote the set of finite multisets
over an alphabet V as V ◦. For a multiset M we denote by |M | its size and by
card(M) its cardinal (i.e. the number of different occurring symbols in M). By
|M |x we denote the number of occurrences of symbol x in M .

Before giving the definition of the formal framework we would like to make
some remarks about the definition of different variants of P systems. Informally
speaking, a definition of a P system consists of:

– a description of the initial structure (indicating the graph relation between
the compartments and any additional information like labels, charges, etc),

– a list of the initial multisets of objects present in each compartment at the
beginning of the computation,

– a set of rules, acting over objects and / or over the structure.

The configuration of a P system is generally representing the contents of each
compartment and the current structure (if it can be modified).

A computation of a P system can be defined as a sequence of transitions be-
tween configurations ending in some halting configuration. To give a more precise
description of the semantics we must define the following 4 notions (functions):

– Applicable(Π, C, δ) – the set of multisets of rules of Π applicable to the
configuration C, according to the derivation mode δ.

– Apply(Π, C, R) – the configuration obtained by the (parallel) application of
the multiset of rules R to the configuration C.

– Halt(Π, C, δ) – a predicate that yields true if C is a halting configuration of
the system Π evolving in the derivation mode δ.

– Result(Π, C) – a function giving the result of the computation of the P
system Π , when the halting configuration C has been reached. Generally
this is an integer function, however it is possible to generalize it, allowing,
for example, Boolean or vector functions.

The transition of a P system Π according to the derivation mode δ (gener-
ally this is the maximally parallel mode) is defined as follows: we pass from a
configuration C to C′ (written as C ⇒ C′) iff

C′ = Apply(Π, C, R), for some R ∈ Applicable(Π, C, δ)

In general, the result of the computation of a P system is interpreted as the
union of the results of all possible computations (in the same way as the lan-
guage generated by a grammar is defined in formal language theory, gathering
all possible derivations). Note that this is a theoretical (non-constructive) defini-
tion, since there may exist an infinite number of halting configurations reachable
from a single initial configuration C0.
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The precise definition of the four functions above depends on the selected
model of P systems. The goal of works [3,4,12] is to provide a concrete class of
P systems (hence with concrete definitions of these functions), called the formal
framework, such that most of existing models of P systems could be obtained
by a strong bisimulation of a restriction (eventually using a simple encoding) of
this formal framework with respect to different parameters.

In the remainder of this section we give a summarized version of the definition
of a network of cells, the class containing all networks of cells being the formal
framework. We base the definitions on those given in [4] and we will call the
obtained model FF1. This version takes into account only P systems where the
membrane structure does not evolve in time (is static). In paper [3], an extension
of the formal framework to the case of P systems with dynamically evolving
structure is proposed (we will call this version of the definition FF2 ). However,
in order to have a more simple presentation, in this paper we will only consider
the FF1 variant, except for Section 6 which is devoted to the dynamical extension
of FF and therefore uses the FF2. We remark that in the case of static structures
FF1 and FF2 variants coincide, although the notation is slightly different.

Definition 1 ([4]). A network of cells of degree n ≥ 1 is a construct

Π = (n, V, w, Inf,R)

where

1. n is the number of cells;
2. V a finite alphabet;
3. w = (w1, . . . , wn) where wi ∈ V ◦, for all 1 ≤ i ≤ n, is the finite multiset

initially associated to cell i;
4. Inf = (Inf1, . . . , Infn) where Infi ⊆ V , for all 1 ≤ i ≤ n, is the set

of symbols occurring infinitely often in cell i (in most of the cases, only
one cell, called the environment, will contain symbols occurring with infinite
multiplicity);

5. R is a finite set of rules of the form

(X → Y ;P,Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors
of multisets over V and P = (p1, . . . , pn), Q = (q1, . . . , qn), pi, qi, 1 ≤ i ≤ n
are finite sets of multisets over V . We will also use the notation

(x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n) ; [(p1, 1) . . . (pn, n)]; [(q1, 1) . . . (qn, n)]

for a rule (X → Y ;P,Q); moreover, if some pi or qi is an empty set or some
xi or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from
the specification of the rule.

The semantics of the above rule is to rewrite objects xi from cells i into objects
yj in cells j, 1 ≤ i, j ≤ n, if every cell k, 1 ≤ k ≤ n, contains all multisets from
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pk and does not contain any multiset from qk. In other words, the first part of
the rule specifies the rewriting of symbols, the second part of the rule specifies
permitting conditions and the third part of the rule specifies the forbidding
conditions.

For a rule r of the form above, the set

{i | xi �= λ or yi �= λ or pi �= ∅ or qi �= ∅}
induces a (hypergraph) relation between the interacting cells. However, this re-
lation need not give rise to a structure relation like a tree as in P systems or a
graph as in tissue P systems.

A configuration C ofΠ is an n-tuple of multisets over V (u1, . . . , un) satisfying
ui ∩ Infi = ∅, 1 ≤ i ≤ n.

Example 1. Consider the network of cells C having 5 cells and the configuration
C = (ba, c, a, λ, λ). Suppose that C has the following rule:
r = (1, a)(2, c)→ (1, c)(4, a)(5, b); [(1, b)]; [(3, d)].
Then C =⇒r C′, where C′ = (bc, λ, a, a, b).

The semantics of network of cells is defined as follows (see [4] for more details):

Applicable(Π,C, δ): An algorithm is used to compute Applicable(Π,C, asyn),
the set of multisets of all possible (parallel) applications of rules, which cor-
respond to the set of multisets applicable in the asynchronous mode (asyn).
Then this set is (set-)restricted according to δ. As well known examples of δ
we can cite max, seq, min, mink.

Apply(Π,C,R): The application is performed using an algorithm. In the dy-
namical case (in FF2 definition) there are several variants.

Halt(Π,C, δ): This function is not specified in the definition and is defined
separately. Several examples include total halting (no rule is applicable),
signal halting (the configuration has some properties) and adult halting (no
changes in the configuration occur).

Result(Π,C): This function is not specified in the definition and is defined
separately. Generally it is the contents of some cell.

2.1 Comparison with Multiset Rewriting

It is known that any variant of static P systems can be seen as multiset rewrit-
ing: an object x in membrane i corresponds to a symbol xi and each rule mov-
ing or rewriting x in membrane i, can be rewritten as corresponding multiset
rewriting involving xi. For example an antiport P system with 3 membranes ar-
ranged in the structure [1[2]2[3]3]1, the initial configuration (bc, λ, a) and a rule
(a, out; b, in) in membrane 3 can be rewritten as the following multiset rewriting:
starting multiset b1c1a3 and a rule a3b1 → a1b3.

However, considering a P system like a multiset rewriting loses the important
structural information. For example, try to figure out what happens in the system
defined as follows.
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Example 2. Consider the multiset rewriting system with the starting multiset
a1b2c3 and the rules a1b2 → a2b1, a1c2 → a2c1, a2c3 → a3c2, a2b3 → a3b2,
a3c1 → a1c3, a3b1 → a1b3.

The formal framework groups the information in cells/membranes, does a
group rewriting and represents the structure of the P system separately. So it
is extremely close to the multiset rewriting, it just reorders objects and rules.
This permits to keep the information about the static structure: rules induce a
hypergraph. The communication graph can be deduced from this hypergraph.
A similar approach is used in Petri nets, for example a multiset rewriting rule
aabc→ cde is represented as shown in Figure 1.

Fig. 1. A Petri net representation of the rule aabc→ cde

Example 3. Consider the system from Example 2. By rewriting the rules in terms
of network of cells we obtain the following rules:

(1, a)(2, b)→ (2, a)(1, b) (1, a)(2, c)→ (2, a)(1, c)

(2, a)(3, c)→ (3, a)(2, c) (2, a)(3, b)→ (3, a)(2, b)

(3, a)(1, c)→ (1, a)(3, c) (3, a)(1, b)→ (1, a)(3, b)

Consider the hyperedge induced by the first rule: it goes from the cells 1
and 2 to cells 1 and 2. So we can make a supposition that we could have a
communication graph that would contain an edge 1 − 2. By looking at what
the rule is doing we remark that it exchanges symbols a and b located in cells
1 and 2 respectively. Hence it corresponds to an antiport rule a/b on the edge
1− 2. By repeating this process for all above rules we obtain the antiport tissue
P system shown in Figure 2. Hence it is clear that the system is moving symbol
a in clockwise direction and symbols b and c in anticlockwise direction.

3 Implementing Different Features of P Systems

In this section we discuss the implementation of some features of P systems that
are not present by default in the framework.
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Fig. 2. The antiport system obtained in Example 3. The arc a↔ b corresponds to the
antiport rule a/b.

3.1 New Derivation Modes

In order to define a new derivation mode for a P system it is sufficient to consider
the network of cells equivalent to that system and to provide a set restriction
for asynchronous (asyn) mode. Then, because of the bisimulation, the definition
can immediately be interpreted in the corresponding P system.

Example 4. In this example we define two derivation modes: minimally parallel
mode restricted to partitions of size 1 (min1) and mixed set minimally parallel
mode restricted to partitions of size 1 (msmin1). In order to do this we assume
that the ruleset R is divided into several sets R1, . . . , Rm, m > 0, such that R =⋃

1≤i≤m Ri. Due to historical reasons we will call these sets partitions although
this term is not accurate because the sets R1, . . . , Rm are not necessarily disjoint.

The min1 mode is defined as follows (see also [5]):

Applicable(Π,C,min1) = {S ∈ Applicable(Π,C, asyn) : |S ∩Ri| ≤ 1, 1 ≤ i≤ m

and � ∃S′ ∈ Applicable(Π,C, asyn),

with |S′ ∩Ri| ≤ 1 such that S′ � S}
Hence, the min1 mode is in some sense requiring to take at most one rule from

each partition, when possible. It coincides with the definition of the minimally
applicable multiset of rules from Section 1.9 of [9].

For the msmin1 mode we additionally classify the partitions into two cate-
gories: *-partitions and 1-partitions. In order to simplify the definition we sup-
pose thatR is divided intom partitionsR1, . . . , Rm and that the first k partitions
are 1-partitions and the partitions from k+1 until m are *-partitions. Then the
mode is defined as follows:

Applicable(Π,C,msmin1) = {S ∈ Applicable(Π,C, asyn) :

such that for all i, j where 1 ≤ i ≤ k < j ≤ m,

|S ∩Ri| ≤ 1 and card(S ∩Rj) ≤ 1,

and � ∃S′ ∈ Applicable(Π,C, asyn),

with |S ∩Ri| ≤ |S′ ∩Ri| ≤ 1,

card(S ∩Rj) ≤ card(S′ ∩Rj) ≤ 1 and S′ � S}
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The difference between the two definitions is that in msmin1 mode one rule
is chosen and applied from each 1-partition, if possible, and one rule is chosen
and applied a maximal number of times from each *-partition, if possible.

Example 5. Consider a symport/antiport P system with a mode that ensures
that a cell is used sequentially, only in a single operation. This can be done
by using a partition of rules such that a rule involving cell i, will be a part of
partition i. Hence, each rule will be in two partitions. The desired result is then
obtained by applying the min1 mode with the obtained partitions.

3.2 Membrane Thinkness/Polarization/Labels

We remark that the notions of membrane thickness, polarization and label are
related to each other and designate the property of a membrane to be in some
finite state. In order to be able to simulate efficiently these concepts we introduce
into each membrane a special object coding the state of the membrane. All rules
involving a membrane will additionally have a permitting context (promoter)
checking this state object.

Example 6. Consider following active membranes rules (1) [a → bc]h and (2)
a[]h → [b]h′ in membrane k. They are simulated in the formal framework by the
following rules: (k, a) → (k, bc); [(k, h)] and (k′, a)(k, h) → (k, bh′), where k′ is
the parent of k.

As we can see the change of the state is done directly by the rule (case (2)).
However, it should be noted that in the above implementation only one state
change per membrane can occur in one step which is consistent with actual
definitions used in P systems.

We remark that in the example above the rules (1) and (2) become cooper-
ative after translation. This translates the intuitive idea that the object that is
communicated/rewritten is cooperating with membrane state at the level of the
rule.

We would like to remark that in FF2 the membrane state is an explicit part
of the configuration, so no special object is needed for its representation. This
is done because in P systems with dynamic structure the membrane labels are
always used, so considering them as a part of configuration permits to save space
in the description of the rule. However, it shall be noted that like in the case
above there is an implicit cooperation between the membrane state and the
objects used in the rule.

3.3 Priorities

Already in the first models of P systems a priority relation on the rules of the
system was considered. The underlying relation is a strict partial order (i.e. an
irreflexive, asymmetric, and transitive). We consider here two notions of priority
following [6], the strong priority and the weak priority. Under the semantics of
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strong priority, if a rule with higher priority is used, then no rule of a lower
priority can be used even if the two rules do not compete for objects. For weakly
prioritized systems, a rule is applicable if it cannot be replaced by a higher
priority one. In the original definition of transitional P systems from [7] the
strong priority is used.

Example 7. Consider a transitional P system which has following three rules:
r1 : ab → cd, r2 : ac → bd and r3 : bc → aa. Let the priority relation be
r3 > r1. Suppose that the current configuration contains the multiset aabbc in
the corresponding membrane. Then in the case of the strong priority only rules
r2 or r3 are applicable. In the case of the weak priority it is possible to apply
additionally rule r1, yielding the following applicable sets: {r1, r2} and {r1, r2}.

It is not difficult to see that the strong priority corresponds directly to for-
bidding conditions: indeed r1 > r2 corresponds to two rules (1) r1 and (2) r2
enriched with forbidding sets containing the left-hand sides of all rules r > r2.

Example 8. Consider the system from Example 7. We can translate the first rule
to the formal framework as follows: r′1 : (k, ab)→ (k, cd); []; [(k, bc)].

The case of weak priorities can be handled using a special derivation mode
that keeps track of the relation between rules. It will choose those multisets
where a rule of higher priority cannot be applied anymore even if all rules of a
lower priority are not taken:

Applicable(Π,C, Priwδ) = {R ∈ Applicable(Π,C, δ) |� ∃R′∈Applicable(Π,C, δ),

such that r ∈ R′ \R and R′′ �∈ Applicable(Π,C, δ),

where R′′ ⊇ R ∪ {r} \ {r′ ∈ R | r > r′}}

3.4 Dissolution

We recall that the dissolution operation (denoted by δ) removes the membrane
in which it occurred as well as all rules involving the dissolved membrane. All
objects present in that membrane are transferred to its parent. In a general
case this operation is handled in FF2 as a special operation acting on the struc-
ture like the creation or the division of membranes. However, if we consider the
class of P systems where only dissolution is used (no creation/division of mem-
branes) then it is obvious that such systems have a finite number of possible
membrane structures (the dissolution operation can only decrease the number
of membranes already present at the beginning of the computation). Hence, it
is possible to mimic the effect of the dissolution by assigning a marker to each
membrane in order to indicate if the membrane is dissolved or not, by using per-
mitting and/or forbidding context in order to check this marker and by using a
subset construction at the level of rules in order to capture all possible structure
changes.
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Example 9. Consider the following transitional P system (see Figure 3)
Π = ({a, b, c, d,#}, [0[1]1[2]2]0, {ac}, {c}, {a}, R0, R1, R2), where

R0 = {r01 : ac→ λ, r02 : da→ #, r03 : bc→ #, r04 : #→ #},
R1 = {r11 : c→ cc, r12 : c→ dδ},
R2 = {r21 : a→ aa, r22 : a→ bδ}.

Fig. 3. The P system from Example 9

In order to translate it to the formal framework we shall use 3 objects s0,
s1 and s2 indicating that corresponding membranes are not yet dissolved. We
place these objects in corresponding cells, although they all can be placed in a
particular cell, e.g. cell 0. There are 4 possible membrane structures and they
are encoded by the following combinations of objects si: {(0, s0)(1, s1)(2, s2)},
{(0, s0)(1, s1)}, {(0, s0)(2, s2)} and {(0, s0)}. Now in order to finalize the trans-
lation we shall do a subset construction for all rules in membrane 0 in order
to take into account that corresponding objects can originate from a dissolved
membrane:

Rules from R1 are translated as follows:

(1, c)→ (1, cc); [(1, s1)] (1, s1)(1, c)→ (0, d)

Rules from R2 are translated as follows:

(2, a)→ (2, aa); [(2, s2)] (2, s2)(2, a)→ (0, b)

Rules from R0 are translated as follows:

(0, ac)→ λ; [(2, s0)] (0, a)(1, c)→ λ; [(0, s0)]; [(2, s2)]

(0, c)(2, a)→ λ; [(0, s0)]; [(1, s1)] (1, c)(2, a)→ λ; [(0, s0)]; [(1, s1)(2, s2)]

(0, da)→ (0,#); [(0, s0)] (0, d)(2, a)→ (0,#); [(0, s0)]; [(2, s2)]

(0, bc)→ (0,#); [(0, s0)] (0, b)(1, c)→ (0,#); [(0, s0)]; [(1, s1)]

(0,#)→ (0,#); [(0, s0)]
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We observe that for the translation of rule r01 we had to consider 4 cases
depending on the possible origin of symbols a and c. The difference between
cases is done by corresponding permitting and forbidding conditions.

We also remark that is is possible to avoid forbidding conditions by considering
that a state of the membrane i is defined by one of two (dual) objects si or
s̄i, where the first one indicates that the membrane exists and the second one
indicates that the membrane is dissolved. In this case the rule dissolving the
membrane will rewrite si to s̄i and the forbidding contexts for si are replaced by
permitting for s̄i. For example, in the case above the second rule fromR1 becomes
(0, s1)(1, c) → (0, d)(1, s̄1) and the second rule from R0 becomes (0, a)(1, c) →
λ; [(0, s0)(2, s̄2)].

In some particular cases it is possible to simplify the above construction by
assigning a number (hence a special object) to each of possible membrane struc-
tures and checking by permitting context the current structure. The drawback
of this method is the difficulty to perform several dissolutions in parallel, as sev-
eral rules should modify the same object at the same step. In some cases (e.g.
if the maximally parallel or sequential derivation mode is used) it is possible
to overcome this difficulty by using additional rules that perform all required
dissolutions in one step.

Example 10. Consider system Π from Example 9. We encode by objects si,
1 ≤ i ≤ 4, placed in cell 0, the four possible variants of the membrane structure
(initial, membrane 2 dissolved, membrane 1 dissolved, membrane 1 and 2 are
dissolved). In order to handle the parallel dissolution of membranes 1 and 2 a
special rule is introduced.

Rules from R1 are translated as follows:

(1, c)→ (1, cc); [(0, s1)] (1, c)→ (1, cc); [(0, s2)]

(0, s1)(1, c)→ (0, ds3) (0, s2)(1, c)→ (0, ds4)

Rules from R2 are translated as follows:

(2, a)→ (2, aa); [(0, s1)] (2, a)→ (2, aa); [(0, s3)]

(0, s1)(2, a)→ (0, bs2) (0, s3)(2, a)→ (0, bs4)

Rules from R0 are translated as follows:

(0, ac)→ λ (0, a)(1, c)→ λ; [(0, s3)]

(0, c)(2, a)→ λ; [(0, s2)] (1, c)(2, a)→ λ; [(0, s4)]

(0, da)→ (0,#) (0, d)(2, a)→ (0,#); [(0, s1)]

(0, bc)→ (0,#) (0, b)(1, c)→ (0,#); [(0, s3)]

(0,#)→ (0,#)
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Additional rule for parallel dissolution:

(0, s1)(1, c)(2, a)→ (0, bds4)

We remark that the above construction cannot be generalized to any case. For
example, consider a P system evolving in a special derivation mode that requires
to use exactly one rule from every membrane at each step. In this case the above
construction would fail as the two dissolutions were replaced by a single rule
performing both of them.

3.5 Flattening

We call a flattening of a P systemΠ the process of construction of a new P system
Π ′ having only one cell such that N(Π) = N(Π ′). We remark that system Π ′

need not belong to the same class of P systems asΠ . A strong flattening requires
that Π and Π ′ belong to the same class.

In the case of P systems with static structure (that does not change in time)
it can easily be seen that the flattening is very simple, because of the one-to-one
relation with multiset rewriting grammars. If the dissolution is present, then it is
possible to simulate it as described in previous subsection, hence the flattening
procedure will require the use of permitting and eventually forbidding contexts.
In the case of systems with dynamically evolving structure (with creation and/or
dissolution of membranes) the flattening is not trivial as one should deal with
an unbounded number of membranes. A trivial translation yields an unbounded
alphabet and an unbounded number of rules, so encodings are necessary to
represent the flattening correctly and it is a challenge to provide an algorithm
that performs this task.

For the strong flattening it can easily be seen that it is not always possible.
For example, any P system that does not allow rules corresponding directly to
the multiset rewriting (e.g. symport P systems or minimal symport/antiport P
systems) cannot be strongly flattened.

Another example of systems that do not admit strong flattening are systems
that have dissolution and do not allow permitting and forbidding contexts, e.g.
transitional P systems with dissolution. Because the algorithms eliminating the
dissolution require at least a permitting context, it is clear that the flattening
cannot be done if remaining inside the same model.

A longer discussion on flattening can be found in [2].

4 Examples of Application of FF

In this section we consider three applications of the formal framework. The first
one is the comparison of (purely) catalytic P systems with context-free transi-
tional P systems. The second application consists in extending symport/antiport
P systems with variable membrane thickness. The third application studies the
model of P colonies and helps in understanding this model and allows to easily
obtain some new results.
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4.1 Catalytic P Systems

The translation of (purely) catalytic P systems to FF can be done in a quite
straightforward manner as follows: every rule ca → c(a1, tar1) . . . (ak, tark) of
cell i becomes (i, ca)→ (F (i, tar1), a1) . . . (F (i, tark), ak), where F (i, here) = i,
F (i, inj) = j and F (i, out) = m, where m is the parent of i.

Now we remark that the inherent property of catalytic P systems is that at
each step only one rule can be chosen among all rules involving the same catalyst.
This property can be deduced from the form of rules of such systems. At the
same time it is clear that this property relates more to the way the rules are
used together, i.e. to the derivation mode, than to rules’ action itself. In FF it is
possible to consider a derivation mode that obeys the above restriction. It is not
difficult to see that in the case of catalytic (resp. purely catalytic) P systems the
above requirements are satisfied by the msmin1 (resp. min1) derivation mode.
The (1-)partitions used for the definition of corresponding modes correspond to
each catalyst. In the case of non-purely systems the *-partitions consist of single
rules, those that are used in a context-free manner. From the above analysis
we can also deduce that catalytic P systems having several membranes and one
catalyst are a restricted variant of catalytic P systems with one membrane and
using several catalysts.

Hence, we obtain that catalytic P systems evolving in the maximally parallel
mode are equal to context-free transitional P systems working in the msmin1

mode, where the 1-partitions correspond to catalysts and *-partitions to each
context-free rule. The systems corresponding to purely catalytic P systems have
the number of 1-partitions equal to the number of catalysts and no *-partitions,
so they evolve in the min1 mode. It immediately follows that the model of
purely catalytic P systems is weaker than the general variant, as context-free
rules add more complexity, that can be quantified by the increase of the number
of partitions and by the increase of the degree of parallelism.

The usage of the msmin1 mode may look a little bit artificial, so we remark
that it is also possible to consider a special mixed mode derived in a straightfor-
ward way from the real semantics of catalytic P systems with k catalysts: using
k + 1 partitions with k partitions working in the min1 mode (corresponding to
catalysts) and one special partition working in the maximally parallel mode.

Example 11. Consider the following catalytic P system
Π = (O, {c}, [0[1[3]3[4]4]1[2]2]0, {abc}, {aac}, {c}, {a}, ∅, R0, R1, R2, R3, R4),
where O = {a, b, c, d, e}, R0 = {cb→ cain2}, R1 = {ca→ cbindin4bouteoutehere},
R3 = {b→ aa, a→ bc}, R2 = R4 = ∅.

The straightforward translation of this system gives the following rules:

(0, cb)→ (0, c)(2, a)

(1, ca)→ (0, be)(1, ce)(4, bd) (1, ca)→ (0, be)(1, ce)(3, b)(4, d)

(3, a)→ (3, bc) (3, b)→ (3, aa)

We remark that the translation of the in target is done as ink, for all k.
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Now we construct the context-free network of cells Π ′ equivalent to Π . Con-
sider following sets of rules:

P1 = {(1, a)→ (0, be)(1, e)(4, bd), (1, a)→ (0, be)(1, e)(3, b)(4, d)},
P2 = {(0, b)→ (0, c)(2, a)},
P3 = {(3, a)→ (3, bc)},
P4 = {(3, b)→ (3, aa)}.

Let P1 and P2 form 1-partitions and let P3 and P4 form *-partitions. Then
from the discussion above it is clear that Π ′ working in the msmin1 mode is
equivalent to Π . We remark that the obtained network of cells can easily be
translated to a context-free transitional P system working in the msmin1 mode.

4.2 Symport/Antiport

In this subsection we discuss how it is possible to use the formal framework in
order to extend an existing class of P systems.

Consider the class of symport/antiport P systems. We will extend it with two
features: (1) membrane permeability – a symport rule can modify the membrane
permeability (with δ or τ). If the membrane is in state 2, then no antiport
rule involving this membrane can be used. At each step only one permeability
changing rule per membrane can be applied; (2) maximal objects: at each step
if there are several maximally parallel evolutions choose the one having the
maximal number of objects involved.

In order to define the semantics for both features we will translate sym-
port/antiport P systems to the formal framework, then we will do the necessary
transformations in order to accommodate the desired behavior. Then due to the
strong bisimulation we can recover the desired semantics in symport/antiport P
systems.

The translation of symport and antiport rules can be done in a quite simple
way: each antiport rule (a, in; b, out) (resp. symport rule (a, out)) of membrane
i is translated as (i, b)(j, a) → (i, a)(j, b) (resp. (i, a) → (j, a)), where j is the
parent membrane of i; each symport rule (a, in) is translated as (i, a) → (j, a),
for all child membranes j of i.

Now in order to implement the first proposed extension, for each membrane i
we consider an object in cell i taken from the triple (D,N,C) indicating the state
of the membrane (dissolved, normal, closed). Each symport rule having δ or τ
will modify this object (going to the left or right in the above sequence) and each
antiport rule will check the permitting context if it is in stateN . For example: the
rule (ab, out); τ in membrane i will correspond to rules (i, abN) → (i, C)(j, ab)
and (i, abC)→ (i, C)(j, ab).

Now in order to satisfy the second requirement we consider the following
derivation mode maxobjmax:
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Applicable(Π,C,maxobjmax) =
{
R ∈ Applicable(Π,C,max) |
� ∃R′ ∈ Applicable(Π,C,max) :∑
r′∈R′

|lhs(r′)| >
∑
r∈R

|lhs(r)|
}

It should be clear that the network of cells obtained using the transformations
above will be a strong bisimulation of the initial P system.

4.3 P Colonies

We recall the definition of P colonies taken from [9].
A P colony consists of n cells (agents) Ci, 1 ≤ i ≤ n, each of them contain-

ing a multiset of exactly k symbols and an environment containing initially a
distinguished symbol e in an unbounded number of copies. Each cell Ci has a
set of programs {pi,1, . . . , pi,ki}, where each program pi,j consists of exactly k
rules of the forms a → b (internal point mutation), c ↔ d (one object exchange
with the environment), or r1/r2 (priority rule, where r1 and r2 are arbitrary
combinations of point mutation and/or exchange rules). The computation can
be performed in the maximally parallel or in the sequential mode with respect
to the programs of cells. If no more programs are applicable, the system halts
and the result is collected as the number of distinguished symbols f in the en-
vironment. The number of cells, the maximal number of programs in a cell, and
the maximal number of rules in each program in a given P colony Π are called
the degree, the height, and the capacity of Π , respectively. The family of sets
of numbers computed in the derivation mode x for x ∈ {par, seq} by P colonies
of capacity k, degree at most n ≥ 1 and height at most h ≥ 1, without (resp.
with) using priority rules in their programs, is denoted by NPColx(k, n, h) (resp.
NPColxK(k, n, h)).

We will construct a strong bisimulation of the P colony model in the formal
framework:

– each rule a→ b in pij becomes rij : (i, a)→ (i, b);
– each rule a↔ b in pij becomes rij : (i, a)(0, b)→ (i, b)(0, a);
– each rule r1/r2 in pij is replaced by two rules: r1, and r2; [∅]; [{(i, a)}] if r1

is a→ b and r2; [∅]; [{(i, a)(0, b)}] if r1 is a↔ b.

For the derivation mode each program becomes a rule partition and then the
derivation mode requires to be maximal, but using exactly k rules from each par-
tition (or using all rules from a partition). In the sequential case, the derivation
mode implies to use only one partition (but all rules from that partition).

Example 12. Consider the following P colony Π having 3 cells.

– C1 contains the initial multiset aa and the following programs: p11 : a →
b, a↔ e, p12 : a→ c, a↔ e, p13 : b→ a, e→ a.
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– C2 contains the initial multiset be and the following program: p21 : b ↔
e, e→ b.

– C3 contains the initial multiset ee and the following programs: p31 : e ↔
a, e↔ b, p32 : b→ f, a→ b, p33 : f ↔ a, b→ b.

Figure 4 shows a graphical representation of this system.

Fig. 4. The P colony from Example 12

We translate this system to a network of cells Π ′ having 4 cells (numbered
from 0 to 3), corresponding to the cells of Π , and having same initial contents as
corresponding agents and Inf0 = {e}. System Π ′ contains the following rules:

Rules simulating programs from the first cell:

r111 : (1, a)→ (1, b) r112 : (1, a)(0, e)→ (1, e)(0, a)

r121 : (1, a)→ (1, c) r122 : (1, a)(0, e)→ (1, e)(0, a)

r131 : (1, b)→ (1, a) r132 : (1, e)→ (1, a)

Rules simulating programs from the second cell:

r211 : (2, b)(0, e)→ (2, e)(0, b) r212 : (2, e)→ (2, b)

Rules simulating programs from the third cell:

r311 : (3, e)(0, a)→ (3, a)(0, e) r312 : (3, e)(0, b)→ (3, b)(0, e)

r321 : (3, b)→ (3, f) r322 : (3, a)→ (3, b)

r331 : (3, f)(0, a)→ (3, a)(0, f) r332 : (3, b)→ (3, b)

We remark that the derivation mode of P colonies groups rules corresponding
to programs, uses maximal parallelism or sequentiality, and requires that all
rules from a group shall be used. Since working with one symbol, the group r111
and r112 from example above is equivalent to the application of a single rule
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r11 : (1, aa)(0, e) → (1, be)(0, a). Hence we obtain that a program corresponds
to a more complicated rule, and k is the size of the LHS of this rule (and equal
to RHS). By considering such rules, the evolution of a P colony becomes just
maximally parallel or sequential.

Example 13. Consider the system Π from Example 12. Using the above remark
it can be translated to the following network of cells Π ′′:

r11 : (1, aa)(0, e)→ (1, be)(0, a) r12 : (1, aa)(0, e)→ (1, ce)(0, a)

r13 : (1, be)→ (1, aa)

r21 : (2, be)(0, e)→ (2, be)(0, b)

r31 : (3, ee)(0, ab)→ (3, ab)(0, ee) r32 : (3, ab)→ (3, fb)

r33 : (3, bf)(0, a)→ (3, ab)(0, f)

We can go further by remarking that the number of combinations of objects in
an agent is finite, so it can be represented by a single symbol, the state. Symbol
e from cell 0 can be ignored as it carries no information. This permits to deduce
that a P colony corresponds to a cooperative rewriting with the size of LHS or
RHS at most k + 1 and forbidding conditions (if checking rules are present). It
can be also possible to consider it as a catalytic P system with catalysts having
n-states.

Example 14. Consider system Π from Example 12. Consider the array of mul-
tisets A = (aa, be, ce, ee, ab, bf) and the following encoding f(A[i]) = si. Then
the rules from Example 13 can be rewritten as follows:

r11 : (1, s1)→ (1, s2)(0, a) r12 : (1, s1)→ (1, s3)(0, a) r13 : (1, s2)→ (1, s1)

r21 : (2, s2)→ (2, s2)(0, b)

r31 : (3, s4)(0, ab)→ (3, s5) r32 : (3, s5)→ (3, s6)

r33 : (3, s6)(0, a)→ (3, s5)(0, f)

In order to highlight the original semantics (that only one program per cell can
be executed), we can use catalysts: the rule r11 : (1, s1)→ (1, s2)(0, a) becomes
c1s1 → c1s2a. Although using catalysts is not necessary as the state is unique,
this permits to consider a restricted variant of the model of P colonies that uses
only rules of the above type and therefore corresponds to specific purely catalytic
P systems. This remark permits us to transpose results from P colonies to purely
catalytic P systems and conversely. For example, from the results for P colonies
(Remark after Theorem 23.1.1 and Theorem 23.1.2 from [9]) we immediately
obtain that:

Proposition 1. The following results hold:

– Purely catalytic P systems with one catalyst and the size of the rule equal
to 3 are not computationally complete.

– Purely catalytic P systems of with rules of size 2, an unbounded number
of catalysts and using at most 6 rules for each catalyst are computationally
complete.
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In the other direction we can also immeadiately obtain (Theorem 4.1 from [9])
that:

Proposition 2. NPColpar(3, 3, ∗) = RE.

Our representation of P colonies permits to answer the open question raised
in Section 23.1.3 from [9]:

Proposition 3. NPColseq(∗, 1, ∗) � RE.

This follows from the fact that the corresponding model is identical to purely
sequential multiset rewriting which is known to not be computationally complete.

5 Probabilistic P Systems

In this section we extend the formal framework in order to take into account
probabilities and thus become able to represent via bisimulation different vari-
ants of probabilistic P systems. This section closely follows [11]. To achieve the
proposed goal we recall that in order to perform a computational step in a P
system a set of multisets of applicable rules, denoted by Applicable(Π,C, δ), is
computed according to the type of the system and the derivation mode δ, for
any configuration of the system C. After that, one of the elements from this set
is chosen, non-deterministically, for the further evolution of the system.

We remark that from the point of view of the computer simulation of P sys-
tems the non-deterministic choice can be considered equivalent to a probabilistic
choice where each multiset of rules has an equal probability to be chosen. Per-
mitting these multisets to have a different probability is the main idea of the
extension that we discuss in this section. More precisely, for each multiset of
rules R ∈ Applicable(Π,C, δ) we compute the probability p(R,C) based on the
propensity function f : R◦× (N×O◦)∗ → R, where R and O are the set of rules
and objects of Π respectively. This function associates a real value for a multiset
of rules with respect to a configuration. Hence the value f(R,C) depends not
only on the multiset of rules R, but also on the configuration C.

The probability to choose a multiset R ∈ Applicable(Π,C, δ) is defined as the
normalization of corresponding probabilities:

p(R,C) =
f(R,C)∑

R′∈Applicable(Π,C,δ) f(R
′, C)

(1)

5.1 Discussion

So far we did not indicate the propensity function f , which is the main ingredient
of the model. Below we will give examples of simple propensity functions each
leading to different execution strategies.

Constant strategy: each rule r from R has a constant contribution to f and
equal to cr:

f(R,C) =
∏
r∈R

cr (2)
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Multiplicity-dependent strategy: each rule r from R has a contribution to
f proportional to the number of times this rule can be applied and to a
stochastic constant cr that only depends on r:

Nr(C) = min
x∈lhs(r)

[ |C|x
|lhs(r)|x

]
(3)

f(R,C) =
∏
r∈R

crNr(C) (4)

Concentration-dependent strategy: each rule r from R has a contribution
to f proportional to hr(C), the number of distinct combinations of objects
from C that activate r, and to a stochastic constant cr that only depends
on r (by

(
a
b

)
we denote the binomial function):

hr(C) =
∏

x∈lhs(r)

( |C|x
|lhs(r)|x

)
(5)

hR(C) =
∏
r∈R

crhr(C) (6)

f(R,C) = hR(C) (7)

Gillespie strategy: each rule r from R has a contribution to f that depends
on the order in which it was chosen and it is equal to cr ·hr(C

′), where C′ is
the configuration obtained by applying all rules that were chosen before r.

We remark that the concentration-dependent strategy is not equal to Gillespie
strategy. More precisely, in a Gillespie run the probability to choose a new rule
depends on the objects consumed and produced by previously chosen rules. We
can consider a Gillespie run as a sequence of sequential (single-rule) applications
using the concentration-dependent strategy.

We also remark that the Gillespie algorithm uses the notion of time that we
do not consider in this paper. However, the definitions can easily be adapted for
to handle this case.

5.2 Examples

Dynamical Probabilistic P Systems Dynamical probabilistic P (DPP) systems
were introduced in [10]. Below, we present the definition of the evolution step.
For the sake of the simplicity we will consider only one compartment, however
the discussion below can easily be generalized to several compartments.

Let C be the current configuration and R be the set of all rules. Then the
system evolves from C to C′ as follows.

1. For each rule r ∈ R, the propensity of ar(C) = cr ∗ hr(C) (hr being defined
as in Equation (5)) is computed.
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2. The propensities are normalized giving a probability for a rule r to be chosen:

pr(C) = ar(c)∑
r′∈R ar′ (C) .

3. The rules to be applied are chosen according to their probabilities. If a non-
applicable rule is chosen, the choice is repeated.

4. The process stops when a maximal (parallel) multiset of rules R is obtained.
5. The multiset of rules obtained at the previous step is applied and yields a

new configuration C′.

It can be easily seen that, since the probabilities to apply a rule (pr) are
computed only at the beginning of each step, the maximal multiset of rules R
then is composed from independent rules (the order in which the rules were
chosen has no influence). Hence the probability to choose a multiset of rules R is
equal to the product of the probabilities of each rule: pR(C) =

∏
r∈R pr. Now if

we normalize this value with respect to all possible maximally parallel multisets
of rules we obtain:

∏
r∈R pr(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ pz(C)

=

∏
r∈R

ar(C)∑
r′∈R ar′ (C)∑

R′∈Appl(Π,C,max)

∏
z∈R′

pz(C)∑
r′∈R ar′ (C)

=

∏
r∈R ar(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ az(C)

(8)

Since in the case of the concentration-dependent strategy we have that
f(R,C) =

∏
r∈R ar(C), it follows that (8) equals (1). Hence we just showed that

DPP systems can be translated to probabilistic P systems with a concentration-
dependent strategy.

Probabilistic Functional Extended P Systems Probabilistic functional extended P
(PFEP) systems where introduced in [1] as a part of a framework used to model
eco-systems. In order to simplify the presentation we consider a flattening of
the structure of the P system, thus using only multiset rewriting rules. We also
consider that the rules having the same left-hand side form a partition of the set
of rules R into n subsets R = R1 . . .Rn, where r1, r2 ∈ Ri ⇒ lhs(r1) = lhs(r2),
1 ≤ i ≤ n.

The evolution of a PFEP system is done as follows:

1. A maximally parallel multiset of rules R is chosen.
2. R is partitioned into submultisets based on the left-hand side of rules: Ri =
{r ∈ R | r ∈ Ri}.

3. For each non-empty partition Ri, |Ri| rules from Ri are chosen according to
the given probability fr(a), where r ∈ Ri and a is a moment of time.

4. The resulting multiset of rules is applied yielding a new configuration.

From the description of the strategy it is clear that it corresponds to the
multiplicity-dependent strategy for the maximally parallel derivation mode (and
where the constant cr is replaced by fr(a)).
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6 Active Membranes

In this section we consider the FF2 model described in [3]. The first change with
respect to FF1 is the definition of the configuration, which now shall take into
account the labels and the membrane structure. Hence, a configuration becomes
a couple (L, ρ), where L is a list of “labeled cells” (i1, l1, w1) . . . (in, ln, wn), with
the id ij ∈ N, the label lj ∈ Lab (the set of labels) and the contents wj ∈ O∗ (O
being the alphabet of the system), for 1 ≤ j ≤ n, such that all the cells’ id’s (the
first element of each triple) are different from each other. The second component
ρ ⊆ N× N is a relation that represents the connections between cells (it can be
seen as a graph where the nodes are the cells id’s).

Note that in a configuration each cell has an id which is unique and a label
which is not necessarily unique.

The interpretation of relation ρ may differ depending on the selected P system
model, but its goal is to capture how cells (or membranes) are organized in the
“membrane structure”. In cell-like P systems this corresponds to the parent
relation, while in tissue P systems this corresponds to the communication graph
of the system.

The simulation of most existing variants of active membranes can be done by
rules that use following actions:

1. Rewriting of objects (in several cells simultaneously as it is done for the
static case).

2. Label change.
3. Creation of a new cell.
4. Creation of a new cell having a contents of some existing cell (and also some

additional object rewriting).
5. Deletion of a cell (loosing its contents).
6. Deletion of a cell and moving its contents to some other cell.
7. Arbitrary rewriting of the structure ρ using a graph transducer.

A rule of the network of cells is defined in terms of pattern-matching. First
a pattern subgraph structure is given and all actions like rewriting, membrane
deletion etc. are given in terms of the pattern structure. During the applicability
check the pattern is matched to the actual structure given by the relation ρ. This
procedure can yield several matches (instances), so all of them are considered.
For each match the preconditions given by the rule (presence or absence of some
objects in some cells) are checked and if all of them are satisfied then the rule
is applicable. The applicability check is extended to a multiset of rules in a
way that is consistent with individual instances of rules. The resulting set of all
applicable rules (Applicable(Π,C, asyn)) is computed as the multisets of couples
rule/instance that are applicable to C. Based on this set it is possible to define
derivation modes as in the static case. However, additional possibilities related
to instances of rules may be investigated, e.g. accepting only particular instances
during the derivation (e.g. mandatory including cell number 1).



76 S. Verlan

Fig. 5. The P system with active membranes from Example 15. The bold symbols
represent the objects.

Example 15. Consider a P system with active membranes having the configura-
tion shown on Figure 5. Let r be the following rule (according to FF2):

r : Labels(r) = (z+, h); ρ(r) = {(1, 2)}; Rewrite(r) = (1, a)(2, c) → (1, c)(2, a).

In order to apply r we first should find a combination of two membranes having
the labels z+ and h. There are two such combinations. After that we check the
relation ρ(r) which states that membrane 1 (the one identified by the label z+)
is the parent of membrane 2 (the one identified by h). Hence, only the couple at
the left remains. We now can identify the numbers 1 and 2 with corresponding
cells. Next, the rewriting part of the rule can be applied. It will exchange the
symbols a and c, which are located in cells 1 and 2 respectively.

It can easily be seen that the “maximally parallel” derivation mode for active
membranes is not really maximally parallel. More precisely it is min1 for rules
involving membranes and max otherwise, so it can be seen as msmin1. This fact
makes the active membrane model similar to catalytic P systems, so interesting
links can be done. We also remark that even if it is not mentioned explicitly,
membrane labels induce cooperation to all rules, thus they have a hidden pro-
moter/permitting context. In the case of the minimally parallel derivation mode
for active membranes (min), see Section 11.5 from [9], there could be several
interpretations of this concept depending on whether rewriting and membrane
rules for a cell are considered to be in the same partition or not.

We would like to emphasize that the current definition of the derivation mode
for active membranes allows only one rule per membrane (except rewriting). Us-
ing the formal framework it is possible to define in a consistent non-ambiguous
way the application of several creation, communication and deletion rules in-
volving the same membrane/cell.

The application Apply(Π,C,R) is defined using an algorithm that first applies
the rewriting, then creation and then deletion parts of R. At the end, the struc-
ture can be modified in an arbitrary way by a graph transducer. We remark that
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we used the order rewrite, create, delete (RCD), which is consistent with actual
definitions of active membranes. However, it is possible to define the application
using other orders like RDC or DCR, yielding slightly different semantics. For
example, in RDC order deleted membranes cannot be copied to newly created
ones and in CDR order the newly duplicated membranes get the “old” contents,
before rewriting. The application of rules in some sense is “global”, because the
applicability imposes the order of their application to be irrelevant. It is possible
to relax this condition and to obtain new application strategies that will differ
depending on whether the rules are applied from inside-out or not.

Example 16. Consider a P system with active membranes Π having the config-
uration shown in Figure 5. Suppose that Π has the following rules:

r1 : a[]h → [b]h+ r2 : [b]h → c[]h− r3 : [c→ da]h r4 : [d]h → [e]h+ [f ]h

These rules are translated according to FF2 as follows (see [3]). We suppose
that h′ is an arbitrary membrane label from the set Lab. We also use the following
shorthand notation Ls for Labels, RW for Rewrite, LR for Label − Rename,
GC for Generate− and− Copy and CR for Change−Relation.

Ls(r1) = (h
′
, h); ρ(r1) = {(1, 2)}; RW (r1) = (1, a) → (2, b); LR(r1) = {(2, h+)};

Ls(r2) = (h′, h); ρ(r2) = {(1, 2)}; RW (r2) = (2, b) → (1, c); LR(r2) = {(2, h−)};
Ls(r3) = (h); ρ(r3) = ∅; RW (r3) = (1, c) → (1, da); LR(r3) = ∅;
Ls(r4) = (h′, h); ρ(r4) = {(1, 2)}; RW (r4) = (2, d) → (2, e); LR(r4) = {(2, h+)};
GC(r4) = {(1′, h, 2, d → f)}; CR(r4) = {INSERT − EDGE(1, 1

′
)}.

It can easily be seen that to the leftmost membrane labeled by h rules r1, r3,
and r4 are applicable, while to the rightmost membrane labeled by h only rules
r2 and r3 are applicable. The result of the maximally parallel evolution can be
seen in Figure 6.

Fig. 6. The result of the application of rules given in Example 16 on the configuration
from Figure 5
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We remark that this evolution does not correspond to a standard active mem-
branes derivation, because, as it was mentioned above, P systems with active
membranes evolve in the msmin1 mode and therefore it is not possible to apply
in parallel rules r1 and r4 to the leftmost membrane h.

7 Conclusion

In this article we described the model of P systems called the formal framework
and we showed how it can be useful when dealing with the following questions:
(1) understanding an existing model of P systems; (2) extending a model of P
systems with new features or using a different derivation mode; (3) compare two
different models of P systems; and (4) explaining details of the semantics that
can have several interpretations and raising questions related to these interpre-
tations.

The presented formalism permits to have a powerful language for the descrip-
tion of the features of P systems and is especially useful for making links and
transposing results between different models of P systems like it is exemplified in
Sections 4.3. Another advantage of the formalism is the ability to treat in a uni-
form way P systems with static structure, with dynamically evolving structure,
and with priorities. This permits to share some basic concepts like derivation
modes and may be useful in order to create new formalisms like P systems with
active membranes and probabilities.
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7. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
8. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer

(1997)
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Abstract. This paper describes membrane computational models pars-
ing affixed Romanian words with prefixes, suffixes, terminations, alter-
ations in the root, and continues previous works on word derivation
modeling. An algorithm for Romanian affixes extraction is given, and
several models of P systems are proposed.
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brane computing, linguistic resources.

1 Introduction

Linguistic resources are necessary to solve different problems in natural lan-
guage processing (NLP). They can exist as text collections, corpora, or dictio-
naries containing a lot of information. Processing of big volume of information
takes the corresponding computer resources. Many problems in computer lin-
guistics could be solved more effectively using parallel computations. Formal
models based on principles of bio-molecular computations have inherent paral-
lelism. Therefore, we found it natural to use these models to solve such problems.
Models of membrane systems [10] for Romanian word derivation were proposed
in [5,4,2,1].

This paper discusses construction of membrane, or P systems to parse Ro-
manian words with affixes. This is important because it permits to solve the
inverse problem of creation of affixed linguistic. This contributes to replenish-
ment of corpora and dictionaries, and to formation of morphological word nest
for derivation.

Affixation is the most productive technique to form new Romanian words as
the Romanian language possesses 86 prefixes and approximately 600 suffixes [8].
Nevertheless, this process has its peculiarities. Using inflexion, we get a priori
correct words and know their morphological categories. Affixation as a mecha-
nism of new word production cannot guarantee their correctness and does not
permit to preview their semantic and morphological categories. This character-
izes affixation as a totally non-regular process that complicates word generation.
That is why automated affixation is a difficult task as compared with other
methods of word derivation.
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Using data extracted from accessible lexicographical resources, we developed
methods to check affixed words [6,9]. We found their quantitative and qualitative
characteristics. We developed a technique to produce affixed words, and got a
set of restrictions that permits to filter inappropriate words.

We proposed in [1] several models of P systems to select affixed Romanian
words based on these results. This is a continuation of that work, where we allow
a derivation step to have more than one root alternation, addition of a prefix
and a suffix, replacement of a termination with another one, as well as all of the
above.

The paper consists of introduction, two sections, and conclusion. Sec. 2 gives
main definitions of membrane systems and word derivation model. Sec. 3 of this
paper discusses automated affix selection inside a word. An algorithm to solve
this problem is given. A model of P system with replication is constructed to
automatically analyze derived words with affixes. The model uses the matrix of
rules taking into account alterations in the root in dependence of fixed prefixes
and suffixes that we proposed. Sec. 4 gives examples of the constructed model
work at affixed Romanian words parsing.

2 Definitions

2.1 Word Derivation Model

Consider a finite alphabet V . We assume that we are given a finite set of word
pairs A of root alternations and finite languages Pref of prefixes, RR of roots,
Suf of suffixes and T of terminations (T may include the empty word), all over

V . We also write elements of A in the form x→ y. We use Pref, Ŝuf to denote
the sets Pref, Suf, where all symbols of each word have lines or hats over them.
These two cases correspond to operations of adding a prefix and adding a suffix.

We denote the marked terminations by T = { t | t ∈ T }, and the termination

rewriting rules by
�
T= { t1 → t2 | t1, t2 ∈ T }. Let Op = Pref ∪ Ŝuf ∪ �

T ∪A.
The fourth case (A) corresponds to an operation of performing an alternation.

Moreover, we assume we are given a finite language M over Op. A derivation
step corresponding to a control word s = oi1 · · · oik ∈M consists of k operations
from a set described above. We now define them more formally, using the syntax
o(w) to denote the result of operation o over a word w (note that the result of
some operations may be undefined on some words, the corresponding choice not
leading to any result):

– p(w) = pw,

– ŝ(w t ) = wŝ t ,
– ( x → y )(w x ) = w y ,

– (x→ y)(w1xw2) = w1yw2,
– (oi1 · · · oim)(w) = oi1 (· · · (oim(w)) · · ·).
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We will speak about the problem of accepting a language obtained by re-
moving the prefix, suffix and termination marks from the words of the minimal
language L, such that

– if wt ∈ RR, then w t ∈ L, and
– if w ∈ L and s ∈M then s(w) ∈ L is defined.

Moreover, we would like the acceptor to also produce the lexical decomposition
of the input.

2.2 Computing by P Systems

Membrane computing is a recent domain of natural computing started by Gh.
Păun in 1998. The components of a membrane system are a cell-like membrane
structure, in the regions of which one places multisets of objects which evolve
in a synchronous maximally parallel manner according to given evolution rules
associated with the membranes. The necessary definitions are given in the fol-
lowing subsection, see also [11] for an overview of the domain and to [12] for the
comprehensive bibliography.

Let O be a finite set of elements called symbols, then the set of words over O
is denoted by O∗, and the empty word is denoted by λ.

Definition 1. A P system with string-objects and input is a tuple

Π =
(
O,Σ, μ,M1, · · · ,Mp, R1, · · · , Rp, i0

)
, where:

– O is the working alphabet of the system whose elements are called objects,
– Σ ⊂ O is an input alphabet,
– μ is a membrane structure (a rooted tree) consisting of p membranes,
– Mi is an initial multiset of strings over O in region i, 1 ≤ i ≤ p,
– Ri is a finite set of rules defining the behavior of objects from O∗ in region

i, 1 ≤ i ≤ p, as described below,
– i0 identifies the input region.

In this paper we consider string rewriting with target indications. A rule
x→ (y, tar) ∈ Ri can be applied to a string uxv in region i, resulting in a string
uyv in region specified by tar ∈ {inj | 1 ≤ j ≤ p}∪ {here, out}. The target here
may be omitted, together with a comma and parentheses.

We assume the following computation mode: whenever there are multiple
ways to apply different rules (or the same rule) to a string, all possible results
are produced (each possible result is performed on a different copy of the string;
the string is either replicated, or assumed to be present in sufficient number of
copies to allow this).

In our model of P systems, the membrane structure does not change. A
configuration of a P system is its “snapshot”, i.e., the multisets of strings of
objects present in regions of the system. While initial configuration is C0 =
(M1, · · · ,Mp), each subsequent configuration C′ is obtained from the previous
configuration C by maximally parallel application of rules to objects, denoted
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by C ⇒ C′ (no further rules are applicable together with the rules that trans-
form C into C′). A computation is thus a sequence of configurations starting
from C0, respecting relation ⇒ and ending in a halting configuration (no rule
is applicable).

If S is a multiset of strings over the input alphabet Σ ⊆ O, then the initial
configuration of a P system Π with an input S over alphabet Σ and input region
i0 is

(M1, · · · ,Mi0−1,Mi0 ∪ S,Mi0+1 · · · ,Mp).

We consider the strings sent out of the skin membrane into the environment
as the result of the computation.

3 Main Construction

We proceed with parsing as the reverse process of the generation. For each
possible decomposition of the string, the system sends outside a string, obtained
from the input by erasing the endmarkers and inserting hyphens (for technical
reasons, letters in prefixes and suffixes are marked, the reverse alternations are
performed in both the termination and the rest of the word, and the termination
is moved to the left of suffixes). In the notation below, we use ′ as a morphism:
u′ is a string obtained from u by priming all its letters.

We construct the following P system for accepting words x given in form
$1x$2. We use an enumeration of elements of Op and T : Op = {o1, · · · , ok} and
T = {t1, · · · , tn}. We recall that elements oj , 1 ≤ j ≤ k are of the following forms:

p, ŝ, t1 → t2 , and x → y, where p ∈ Pref, s ∈ Suf, t1, t2 ∈ T and x, y ∈ V ∗.
We also define a set W = Suf(M r) of suffixes of the mirror language of M ;
words from W may appear in angular brackets. This corresponds to operations
remaining to be undone at possible points of the parsing process.

Π = (O, μ,Σ,w1, w2, wo1 , · · · , wok , wt1 , · · · , wtn ,

R1, R2, Ro1 , · · · , Rok , Rt1 , · · · , Rtn , i0 = 2),

O = V ∪ V ∪ V̂ ∪ T ∪Op ∪ {$1, $2,−, 〈, 〉}, V = {a, · · · , z},
Σ = V ∪ {$1, $2}, V = {a, · · · , z}, V̂ = {â, · · · , ẑ},
μ = [ [ ]2[ ]o1 · · · [ ]ok [ ]t1 · · · [ ]tn ]1,

wi = λ, i ∈ {1, 2} ∪Op ∪ T,

R1 = {〈〉 → 〈w〉 | w ∈M r} ∪ {〈o→ (〈, ino) | o ∈ Op},
∪ {〈〉 t → (λ, int) | t ∈ T },
∪ {$1q − t$2 → (q − t, out) | qt ∈ RR, t ∈ T },

R2 = {t$2 → ($2〈〉 t , out) | t ∈ T },
Rp = {$1p→ (p− $1, out)}, p ∈ Pref,

Rŝ = {s$2 → ($2 − ŝ, out)}, s ∈ Suf,
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Rq = { t2 → ( t1 , out)}, q = t1 → t2 , t1, t2 ∈ T.

Ra = {(y → x, out)}, a = (x→ y) ∈ A,

Rt = {$2 → (−t$2, out)}, t ∈ T.

Indeed, the work of Π consists of the reverse application of operations of adding
affixes and alternations in terminations and the rest of the word, according to the
control words fromM . The role of endmarkers $1 and $2 consists of ensuring that
prefixes from Pref and suffixes from Suf are only removed from the appropriate
ends of the word.

The first step consists in marking of a termination in the word, sending the
string out to region 1. The subsequent evolution is reduced to selecting and
performing reverse derivation steps in regions corresponding to the operations;
region 1 serves to control the substeps of the process. At any time, the system
sends a copy of the word into a region corresponding to its termination, and
back to region 1, effectively unmarking the termination and moving it to the left
of all suffixes, separated by a hyphen from the root, in case the control word was
emptied to 〈〉. If the word between the markers (the root and the termination)
matches some word in RR, the resulting word is sent out.

Besides accepting words, the system also produces the decomposition of the
word. In order to do so, instead of removing prefixes and suffixes, they are moved
outside of the interval between $1 and $2.

3.1 A Finer Algorithm

We propose a variation of the algorithm above, fulfilling the following goal: the
alternations are only allowed in the root of the word, not in the prefixes or suffixes
to be removed. We proceed as follows: all reverse alternations are replaced with
the prime version of the letters. Once the choice is made to stop performing the
operations (the string is in a region corresponding to its termination and the
control symbol is removed), every letter can be unprimed, and then the result
is sent out if some word from RR is obtained between the markers. We present
the resulting P system.

Π = (O, μ,Σ,w1, w2, wo1 , · · · , wok , wt1 , · · · , wtn ,

R1, R2, Ro1 , · · · , Rok , Rt1 , · · · , Rtn , i0 = 2),

O = V ∪ V ′ ∪ V ∪ V̂ ∪ T ∪Op ∪ {$1, $2,−}, V = {a, · · · , z},
V ′ = {a′, · · · , z′}, V = {a, · · · , z}, V̂ = {â, · · · , ẑ}, Σ = V ∪ {$1, $2},
μ = [ [ ]2[ ]o1 · · · [ ]ok [ ]t1 · · · [ ]tn ]1,

wi = λ, i ∈ {1, 2} ∪Op ∪ T,

R1 = {〈〉 → 〈w〉 | w ∈M r} ∪ {〈o→ (〈, ino) | o ∈ Op},
∪ {〈〉 t → (λ, int) | t ∈ T },
∪ {$1q − t$2 → (q − t, out) | qt ∈ RR, t ∈ T },
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R2 = {t$2 → ($2〈〉 t , out) | t ∈ T },
Rp = {$1p→ (p− $1, out)}, p ∈ Pref,

Rŝ = {s$2 → ($2 − ŝ, out)}, s ∈ Suf,

Rq = { t2 → ( t1 , out)}, q = t1 → t2 , t1, t2 ∈ T.

Ra = {(z → x′, out) |′−1 (z) = y}, a = (x→ y) ∈ A,

Rt = {a′ → a | a ∈ V } ∪ {$2 → (−t$2, out)}, t ∈ T.

The notation ′−1 means removing all primes from the letters of the argument.
Although it assumes an exponential number of rules with respect to the size of
a root alternation, this size is never too long.

4 Parsing in the Romanian Language

We start by illustrating the work of the last P system by an example of a
fragment of a computation where Pref = {des}, RR = {praf}, Suf = {ui,re},
T = {λ} and M = {(d e s), (a → ă)(û̂i), (r̂ê)}, and the system processes input
$1desprăfuire$2. For conciseness, we only list the first evolution of the copies of
the string leading to the output, using the notation (string,region). (The other
two are obtained if the prefix des is marked before both suffixes or after one of
them, yielding the same results, while for technical reasons some strings remain
blocked in the system, not contributing to the result).

($1desprăfuire$2, 2) ⇒ ($1desprăfuire$2〈〉 λ , 1) ⇒
($1desprăfuire$2〈(r̂ê)〉 λ , 1) ⇒ ($1desprăfuire$2〈〉 λ , (r̂ê)) ⇒

($1desprăfui$2 − r̂ê〈〉 λ , 1) ⇒ ($1desprăfui$2 − r̂ê〈(û̂i)(a→ ă)〉 λ , 1) ⇒
($1desprăfui$2 − r̂ê〈(a→ ă)〉 λ , (û̂i) ⇒ ($1desprăf$2 − û̂i− r̂ê〈(a→ ă)〉 λ , 1)

⇒ ($1desprăf$2 − û̂i− r̂ê〈〉 λ , (a→ ă) ⇒ ($1despra
′f$2 − û̂i− r̂ê〈〉 λ , 1)

⇒ ($1despra
′f$2 − û̂i− r̂ê〈(d e s)〉 λ , 1) ⇒

($1despra
′f$2 − û̂i− r̂ê〈〉 λ , (d e s)) ⇒ (d e s− $1pra

′f$2 − û̂i− r̂ê〈〉 λ , 1)

⇒ (d e s− $1pra
′f$2 − û̂i− r̂ê, λ) ⇒ (d e s− $1praf$2 − û̂i− r̂ê, λ) ⇒

(d e s− $1praf-$2 − û̂i− r̂ê, 1) ⇒ (d e s−praf- -û̂i− r̂ê, 0).

By inspecting the examples, we have come to the conclusion that a derivation
step can include, in the worst case, a prefix, a suffix, two root alternations
and replacing a termination with another one. Some of the above mentioned
operations may be absent.

We should note that the division of a word into morphemes may sometimes
differ from the one commonly accepted in linguistics. However, this should not
restrict the generality of the approach, and we did so in order to simplify the
explanation.

In the parsing process described above, we accounted for the prefixes, suffixes,
root alternations and the terminations. As we have already stated, Romanian
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language has 86 prefixes and about 600 suffixes, see, e.g., [8]. Processing the dic-
tionary [7] (not claiming its comprehensiveness) let us distinguish the following
types of root alternations during the word derivation:

– of vowels: a→ ă, a→ e, e→ ă, o→ u, ı̂→ i, ă→ e,
ea→ e, e→ ea, oa→ o, oa→ u, ia→ ie

– of consonants: t→ ţ, d→ z, h→ ş, z→ j, d→ j, t→ c, t→ ci

Note that, if desired, we can use the context information to refine the scope of
the the root alternation rules, e.g., if we only wanted to perform the alternation
a→ ă between letters t and r, we could write this as a rule tar→ tăr, which does
not affect the model at all.

The set of terminations that we use in our algorithm (set T ) consists of ter-
minations for nouns and adjectives (ă, e, ea, a, i, ică, the empty termination λ,
u, o, a, l, iu, ui, iu, ie, uie) and those for verbs (a, ea, e, i, ı̂).

We now proceed with some more examples of input and output, so let us agree
that

Pref ⊇ {im,̂ın,de,re,des},
RR ⊇ {pune,flori,flex,scrie,cicl,fac,tânăr,fată,mult,deştept,brad,praf},
Suf ⊇ {ere, are, ibil, re, ire, i, iţ, im, uţ, ui},
T ⊇ {λ, ă, e},
A ⊇ {â→ i, ă→ e, a→ e, t→ ţ, e→ ea, a→ ă},
M ⊇ {(̂ı m), (i n), (d e), (r e), (d e s), (êr̂ê), (âr̂ê), (̂îb̂il̂), (r̂ê), (̂ir̂ê),

(â→ i)(ă→ e)(̂ın)(̂i), (a→ e)(̂îţ), (t→ ţ)(̂im̂), ( λ → e )

(e→ ea)( λ → ă ), (a→ ă)(ûţ̂), (a→ ă)(û̂i)}.
Examples without root alternations: words
$1̂ınflorire$2, $1flexibil$2, $1descriere$2, $1reciclare$2, $1desfacere$2 (burst

into blossom, flexible, description, recycling, disassembling) will yield output

ı̂ n-flori--r̂ê, flex--̂îb̂il̂, d e-scrie--r̂ê, r e-cicl--âr̂ê, and d e s-fac-êr̂ê, respectively.
Examples with root alternations: words $1̂ıntineri$2, $1fetiţă$2, $1mulţime$2,

$1deşteaptă$2, $1brăduţ$2 and $1desprăfuire$2 (youthen, little girl, multitude,

dignified (fem.), small spruce, undusting) will yield output ı̂n-tânăr--̂i, fat-ă-̂îţ,

mulţ--̂im̂, deştept-, brad-û̂ţ, and d e s-praf--û̂i − r̂ê, respectively.

5 Conclusions

The paper discussed P systems used to word derivation in Romanian, namely,
affixation of nouns, adjectives, and verbs as most productive parts of speech
at lemmas affixation. We proposed variants of membrane parsing model taking
into account alternations in the root dependent of fixed prefixes and suffixes.
We may deduce that these models can be used not only for Romanian but for
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other languages with analogous type of word derivation. These models can also
be integrated into another NLP applications to solve more complicated problems
in computer linguistics.
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Abstract. We present a real-time extension of P systems in which each
membrane and each object has a lifetime attached to it, and we use these
lifetimes to define and study various behavioural equivalences. We also
establish sufficient conditions for guaranteeing progression over time.

1 Introduction

Biologists are becoming increasingly aware that formal methods can help to avoid
resources consumption in lab experiments [3]. The field of “computational meth-
ods in system biology” provides formal frameworks that are able to faithfully
describe the behaviour of complex systems, to provide qualitative and quan-
titative reasoning, as well as to compare the similar behaviour of two related
systems. During the last years, membrane computing [9,14] has been applied to
biology and could have an important impact in understanding how biological
systems work, giving at the same time a way to describe, manipulate, analyse
and verify them.

In this paper we define and study a real-time extension of P systems, inspired
by the P systems with lifetimes [1] and from biology where cells and intracel-
lular proteins have a well-defined lifetime. We assign real-time lifetimes to each
membrane and to each object and in order to simulate the passage of time, we

use rules of the form (a, t)
d� (a, t − d) for objects, and [ ](i,t)

d� [ ](i,t−d) for
membranes, where d ∈ R and d ≤ t. If the lifetime of an object a reaches 0 then
the object is used to create a new multiset of objects u by applying a rule of the
form (a, 0)→ u, while if the lifetime of a membrane i reaches 0 then the mem-
brane is marked for dissolution by applying a rule of the form [ ](i,0) → [δ](i,0).
After dissolving a membrane, all objects and membranes previously contained in
it become elements of the immediately upper membrane. A similar idea has been
considered for spiking P systems, where a life duration was added for spikes, but
not for cells [11]. If a spike has a lifetime equal to zero, it is removed.

A time-independent P system is a P system that always produces the same
result, independently of the execution times of the rules [6]. If one assumes the
existence of two time scales (an external time for the user, and an internal time
for the device), then it is possible to construct accelerated P systems [5].

A. Alhazov et al. (Eds.): CMC 2013, LNCS 8340, pp. 88–100, 2014.
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Behavioural equivalence is an important concept in biology, necessary for com-
paring the behaviour of various (sub)systems. For example, an artificial organ
should be the functional equivalent of a natural organ, meaning that both behave
in a similar manner up to a given time; e.g. the artificial kidney has the same
functional characteristics as an “in vivo” kidney. Recently, it was shown in [12]
that the vas deferens’ of the human, canine and bull are equivalent in many
ways, including histological similarities. In [10], different methods are presented
for comparing protein structures in order to discover common patterns.

When choosing which equivalence relation to adopt for a given model, we
need to decide what properties are to be preserved by the equivalence rela-
tion. In membrane computing, two P systems (also called membrane systems)
are considered to be equivalent whenever they have the same input/output be-
haviour [14]. Such an equivalence does not consider the temporal evolution of
the two systems. Behavioural equivalences (bisimulations) for membrane systems
were defined in [2,4,8]. As a novelty, we are looking for systems with equivalent
timed behaviour. By defining several equivalences, we offer flexibility in selecting
the right one when verifying biological systems and comparing them.

In computer science, theoretical methods are used to implement software tools
able to verify the properties of complex concurrent systems. It is reasonable to
expect that, for real-time P systems, we can create or adapt some tools based on
verification techniques using temporal logics.What we do in this paper represents
a first step in this direction, namely establishing the formal framework used in
software verifications for biological systems sensitive to timeouts.

2 Real-Time P Systems

Membrane systems are essentially parallel and non-deterministic computing
models inspired by the compartments of eukaryotic cells and their biochemical
reactions. The structure of the cell is represented by a set of hierarchically em-
bedded membranes that are all contained inside a skin membrane. The molecular
species (ions, proteins, etc.) floating inside cellular compartments are represented
by multisets of objects described by means of symbols over a given alphabet.
The objects can be modified or communicated between adjacent compartments.
Chemical reactions are represented by evolution rules that operate on the ob-
jects, as well as on the compartmentalised structure (by dissolving, dividing,
creating, or moving membranes).

A membrane system can perform computations in the following way: starting
from an initial configuration (the initial membrane structure and the initial mul-
tisets of objects placed inside the membranes), the system evolves by applying
the evolution rules of each membrane in a non-deterministic manner. A rule is
applicable when all the objects that appear in its left hand side are available in
the membrane where the rule is placed.

Several variants of membrane systems are inspired by different aspects of liv-
ing cells (communication through membranes, membrane mobility, etc.). Their
computing power and efficiency have been investigated using the approaches of
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formal languages, grammars, register machines and complexity theory. Mem-
brane systems are presented together with many variants and examples in [13].
Several applications of these systems are presented in [9]. An updated bibliog-
raphy can be found at the P systems web page http://ppage.psystems.eu.

For an alphabet V = {a1, . . . , an}, we denote by V ∗ the set of all strings
over V ; λ denotes the empty string and V + = V ∗\{λ}. We use the string
representation of multisets that is widely used in the field of membrane sys-
tems. An example of such a representation is the multiset u = aba, where
u(a) = 2, u(b) = 1. Given two multisets u, v over V , for any a ∈ V , we have
(u�v)(a) = u(a)+v(a) as the multiset union, and (u\v)(a) = max{0, u(a)−v(a)}
as the multiset difference. We use R+ to denote the non-negative reals.

Next we define real-time P systems, a variant of P systems with lifetimes [1].

Definition 1. A real-time P system of degree n ≥ 1 is a construct
Π = (Vt, Ht, μt, w1, . . . , wn,L, (R1, ρ1), . . . , (Rn, ρn)), where:

1. Vt ⊆ V × (R ∪ ∞) is a set of pairs of the form (a, ta), where a ∈ V is an
object and ta ∈ (R ∪∞) is the lifetime of the object a;

2. Ht ⊆ H × (R ∪∞) is a set of pairs of the form (h, th), where h ∈ H is a
membrane label and th ∈ (R ∪∞) is the lifetime of the membrane h;

3. μt ⊆ Ht × Ht is a tree that describes the membrane structure, such that
((i, ti), (j, tj)) ∈ μt denotes that the membrane labelled by j with lifetime tj
is contained in the membrane labelled by i with lifetime ti; this structure does
not depend on the lifetimes of the involved membranes;

4. wi ⊆ (Vt)
∗ is a multiset of pairs from Vt assigned initially to membrane i;

5. L is a set of labels that attaches a unique label to each rule from R1, . . . , Rn;
6. Ri, 1 ≤ i ≤ n, is a finite set of evolution rules from membrane i of the

following forms:
(a) r : u → v, with u ∈ V +

t , either v = v′ or v = v′δ, v′ ∈ ((Vt ×
{here, out}) ∪ (Vt × {inj | 1 ≤ j ≤ n}))∗, r ∈ L; δ is a special sym-
bol not appearing in V ;
Considering that the multiset of objects u was placed inside membrane i,
the targets indicate where, in the membrane structure, the multiset of
objects v obtained from u should be placed:
• here - it remains in i;
• out - is placed in the parent membrane of i;
• inj - is moved in a child of i labelled by j.

(b) r : (a, 0)→ u, for all a ∈ V , u ∈ V +
t , r ∈ L

If an object a has the lifetime 0 then the object is replaced with the
multiset u, thus simulating the degradation of proteins and the fact that
new compounds are obtained.

(c) r : [ ](i,0) → [δ](i,0), for all 1 ≤ i ≤ n, r ∈ L
If the lifetime of a membrane i reaches 0 the membrane is dissolved.

7. ρi, for all 1 ≤ i ≤ n, is a partial order relationship defined over the rules
in Ri specifying a priority relation between these rules.

Therefore, a real-time P systems consists of a membrane structure μ contain-
ing n ≥ 1 membranes, where each membrane i gets assigned a finite multiset
of objects wi and a finite set of evolution rules Ri. The sets Vt and Ht are
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potentially uncountable, but at any moment a real-time P system contains just
a finite number of objects and membranes. An evolution rule can produce the
special object δ to specify that, after the application of the rule, the membrane
containing δ has to be dissolved. After dissolving a membrane, all objects and
membranes previously present in it become elements of the immediately upper
membrane, while the rules of the dissolved membrane are removed. When no
rule from Ri, 1 ≤ i ≤ n, is applicable, all clocks of a real-time P system are
decreased with the same value (the minimum value of the present delays), such
that a new rule from Ri, 1 ≤ i ≤ n, is applicable.

Definition 2. For a real-time P system Π the initial configuration is defined as
C0 = (μt, w1, . . . , wn). The set of all configurations over a real-time P system Π
is denoted by CΠ .

Example 1. Consider the following real-time P system of degree 2:
Π1 = (a × (R ∪ ∞), {1 × ∞, 2 × (R ∪ ∞}), {(1,∞), (2, 5)}, ∅, (a, 2), {r}, ∅,

({r : (a, 0)→ (a, 6)})). Graphically this looks like this:

(2, 5)

(a, 2)

r : (a, 0)→ (a, 6)

(1,∞)

The initial configuration for Π1 is C0
1 = ({(1,∞), (2, 5)}, ∅, (a, 2)). Starting from

this initial configuration, Π has the following evolution:

C0
1

2� ({(1,∞), (2, 3)}, ∅, (a, 0)) r→ ({(1,∞), (2, 3)}, ∅, (a, 6)) 3� . . .
Graphically these steps of evolution are represented as

(2, 5)

(a, 2)

r : (a, 0) → (a, 6)

(1,∞)

2�
(2, 3)

(a, 0)

r : (a, 0) → (a, 6)

(1,∞)

r→
(2, 3)

(a, 6)

r : (a, 0) → (a, 6)

(1,∞)

3� . . .

The label of
2� is determined by comparing the lifetime of object a (namely 2)

with the lifetime of membrane 2 (namely 5), and then taking the minimum value

(namely 2). Similar for the label of
3�, that is the minimum between 6 and 3.

3 Timed Labelled Transition Systems

The operational semantics of a formalism is typically defined by using labelled
transition systems. For formalisms involving time, modelling the passage of time
may be encoded in timed labelled transition systems that distinguish between
transitions due to rules and those due to passage of time.
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A timed labelled transition system (shortly TLTS) is a tuple (C, C0,L,→,�)
where C is a set of configurations, C0 is the initial configuration, L is a set of
labels, →⊆ C × L × C is a rule transition relation and �⊆ C × R+ × C is a

timed transition relation. We write C
r→ C′ for (C, r, C′) ∈→ and C

d� C′ for

(C, d, C′) ∈�. If there is no C′ ∈ C such that either C
r→ C′ or C d� C′, then

we write either C � r→ or C � d� , respectively.
The timed labelled transition system defined above is general and can be

applied to any formalism involving time. A particular system for real-time P
systems is given by Table 1 and Definition 3.

Table 1. Rule Transitions (left column) and Timed Transitions (right column)

(OBJ)

r : (a, 0) → u ∈ Ri, (a, 0) ∈ wi,
C = (μt, w1, . . . , wn)

C
r→ C′ = (μ′

t, w
′
1, . . . , w

′
n), with μ′

t = μt,
w′

i = (wi\(a, 0)) 
 {ut | (ut, here) ∈ u}
w′

j = wj 
 {ut | (ut, out) ∈ u, ((j, tj), (i, ti)) ∈ μt}
w′

k = wk 
 {ut | (ut, ink) ∈ u, ((i, ti), (k, tk)) ∈ μt}
w′

m = wm,m �= i, j, k

(TOBJ)

(a, t) ∈ Vt,
0 ≤ d ≤ t

(a, t)
d� (a, t− d)

(TMULT)

0 ≤ d ≤ t

∀(a, t) ∈ wi, (a, t)
d� (a, t− d)

wi
d� w′

i, with w′
i = {(a, t− d) | (a, t) ∈ wi}

(MEM)

r : [ ](i,0) → [δ](i,0),
((j, tj), (i, 0)) ∈ μt C = (μt, w1, . . . , wn)

C
r→ C′ = (μ′

t, w
′
1, . . . , w

′
n)

with w′
i = ∅, w′

j = wi 
 wj

w′
k = wk, for k �= i, k �= j

and μ′
t = ((μt\((i, ti), (j, tj)))

\{(i, 0), (k, tk)}) 
 {(j, tj), (k, tk))

(TMEM)
(i, t) ∈ Ht, 0 ≤ d ≤ t

(i, t)
d� (i, t− d)

(TSTRUCT)

0 ≤ d ≤ ti, 0 ≤ d ≤ tj ∀((i, ti), (j, tj)) ∈ μt,

(i, ti)
d� (i, ti − d) (j, tj)

d� (j, tj − d)

μt
d� μ′

t

with μ′
t = {((i, ti − d), (j, tj − d)) | ((i, ti), (j, tj)) ∈ μt}

(EVOL)

r : u→ v ∈ Ri, u ∈ wi,
C = (μt, w1, . . . , wn)

C
r→ C′ = (μ′

t, w
′
1, . . . , w

′
n)

with w′
j = wj , for j �= i

and w′
i = (wi\u) 
 v

(TEVOL)

d ∈ R+, μt
d� μ′

t,

∀1 ≤ i ≤ n, wi
d� w′

i

C = (μt, w1, . . . , wn)

C
d� C′ = (μ′

t, w
′
1, . . . , w

′
n)
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The transition relation → describes rule application and a sequence of such
transitions describes an execution within the same instant of real-time, whereas
the timed transition relation � describes the passage of real-time. The opera-
tional semantics of a real-time P system Π is:

Definition 3. A TLTS for a P system Π is a tuple (CΠ , C0,L,→,�) where
the relations → and � are the smallest relations satisfying the inference rules
from Table 1, the priority relations ρi of Π, and the following constraint express-
ing that → has a higher priority than � and guaranteeing maximal progress:

if there exists C′ such that C
r→ C′, then C � d� for all d > 0.

According to Table 1, in rule (OBJ) an object (a, 0) ∈ wi is replaced by a
multiset u and the membrane structure remains unchanged, thus the configura-
tion C = (μt, w1, . . . , wn) is transformed into configuration C′ = (μ′

t, w
′
1, . . . , w

′
n)

with μ′
t = μt, and the objects distributed among membranes according to the

structure μt and the targets from u. Rules (EVOL) and (TEVOL) are similar
to (OBJ). In rule (MEM) a membrane i is dissolved (i is placed inside j) and
thus wi, wj and μt are modified to w′

i = ∅, w′
j = wi�wj and μ′

t, respectively; μ
′
t

is identical to μt excepting that the pair ((i, ti), (j, tj)) is removed and all (i, it)
are replaced by (j, jt).

Proposition 1. For any C,C′, C′′ ∈ CΠ , and any d, d′ ∈ R+,

1. (Time determinacy) If C
d� C′ and C

d� C′′, then C′ = C′′.

2. (Time continuity) C
d+d′
� C′′ if and only if

there is a C′ such that C
d� C′ and C′ d′

� C′′.

4 Timed Equivalences

Behavioural equivalence should be used to compare systems behaviour; whenever
two systems are shown to be identical, no observer or context can distinguish
between them. A good behavioural equivalence guarantees that, in any context,
a system can be safely replaced by an equivalent system, thus allowing compo-
sitional reasoning. A suitable notion of equivalence between timed systems is
obtained by extending the standard notion of bisimilarity to take into account
timed transitions [7].

The notions defined in this section are generally applicable to all formalisms
involving time than can be encoded in a TLTS. Since in the previous section
we defined a specific TLTS for real-time P systems, we use their corresponding
behavioural equivalences to compare membrane systems (e.g., as in Example 1).

Definition 4. Let (CΠ1, C01,L1,→,�) and (CΠ2, C02,L2,→,�) be two TLTSs.
A binary relation R ⊆ CΠ1 × CΠ2 is called a strong timed simulation (ST
simulation) if whenever (C,D) ∈ R, then:
1. for any r ∈ L, C′ ∈ CΠ1, if C

r→ C′, then there exists some D′ ∈ CΠ2 such
that D

r→ D′ and (C′, D′) ∈ R;
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2. for any d ∈ R+, C
′ ∈ CΠ1, if C

d� C′, then there exists some D′ ∈ CΠ2 such

that D
d� D′ and (C′, D′) ∈ R.

If R and R−1 are strong timed simulations, then R is called a strong timed
bisimulation (ST bisimulation). We define strong timed bisimilarity by

∼ def
= {(C,D) ∈ CΠ1 × CΠ2 | there exists an ST bisimulation R and (C,D) ∈ R}.
Definition 4 treats timed transitions as rule transitions and thus strong timed

bisimilarity coincides with the original notion of bisimilarity over two labelled
transition systems (CΠ1, C01,L1∪R+,→ ∪�), and (CΠ2, C02,L2∪R+,→ ∪�).

Remark 1. ∼ is the largest ST bisimulation; moreover, ∼ is an equivalence.

4.1 Bounded Timed Equivalence

Strong timed bisimilarity is too strong since all behaviours that violate time con-
straints are considered failures. An alternative is to weaken comparison criteria
to behaviours up to a given deadline, ignoring the behaviours after the deadline.

Example 2. Consider the following systems:
Π1 = (a × (R ∪ ∞), {1 × ∞, 2 × (R ∪ ∞}), {(1,∞), (2, 5)}, ∅, (a, 2), {r}, ∅,

({r : (a, 0)→ (a, 6)})) and
Π2 = (a × (R ∪ ∞), {1 × ∞, 2 × (R ∪ ∞}), {(1,∞), (2, 7)}, ∅, (a, 4), {r}, ∅,

({r : (a, 0)→ (a, 6)})).
The initial configuration forΠ1 is C

0
1 = ({(1,∞), (2, 5)}, ∅, (a, 2)), while for Π2 is

C0
2 = ({(1,∞), (2, 7)}, ∅, (a, 4)). Before time 2, both Π1 and Π2 have exactly the

same evolutions. If we do not care about the behaviour of the systems beyond
time 2, it makes sense to identify the two systems up to time 2. Nevertheless,
these systems cannot be identified by strong timed bisimulation. We can see
that Π1 has the following evolution:

C0
1

2� ({(1,∞), (2, 3)}, ∅, (a, 0)) r→ ({(1,∞), (2, 3)}, ∅, (a, 6));
however this cannot be matched by the evolution of Π2:

C0
2

2� ({(1,∞), (2, 5)}, ∅, (a, 2)) 2� ({(1,∞), (2, 3)}, ∅, (a, 0)) r→
({(1,∞), (2, 3)}, ∅, (a, 6)).

Hence, Π1 and Π2 cannot be identified by strong timed bisimulation. We need a
notion of equivalence that allows us to identify systems whose behaviours match
up to a given deadline.

A notion of timed bisimilarity up to time t is introduced in [18] to compare
the behaviour of timed CSP processes. This notion can be applied to any pair of
TLTSs, and also to our formalism. In order to define an equivalence up to time t
we need the following terminology.

A binary relation over CΠ1 and CΠ2 is a relation R ⊆ CΠ1 × CΠ2, where CΠ1

and CΠ2 can be equal. The identity relation is id
def
= {(C,C) |C ∈ CΠ1 ∩ CΠ2}.

The inverse of a relation R is R−1 def
= {(D,C) | (C,D) ∈ R}. The composition

of relations R1 and R2 is R1R2
def
= {(C,C′′) | ∃C′ ∈ CΠ1∩CΠ2 s.t. (C,C′) ∈ R1

and (C′, C′′) ∈ R2}.
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Definition 5. The binary relation Rt, t ∈ R+, over CΠ1 and CΠ2 is called a
strong time-bounded simulation (STB simulation) if whenever (C,D) ∈ Rt,
then:

1. for any rule r ∈ L, C′ ∈ CΠ1, if C
r→ C′, then there exists D′ ∈ CΠ2 such

that D
r→ D′ and (C′, D′) ∈ Rt;

2. for any d ∈ R+, d < t and C′ ∈ CΠ1, if C
d� C′, then there exists D′ ∈ CΠ2

such that D
d� D′ and (C′, D′) ∈ Rt−d.

If Rt and R−1
t , t ∈ R+ are STB simulations, then Rt is called a strong time-

bounded bisimulation (STB bisimulation). We define STB bisimilarity by

�t
def
= {(C,D) ∈ CΠ1 × CΠ2 | for t ∈ R+ there exists an STB bisimulation Rt

and (C,D) ∈ Rt}.
We also define the union of all STB bisimilarities �t, as

�=
⋃

t∈R+

�t.

The first clause of Definition 5 states that the derived configurations are
matched up to the same time t. The second clause states that the derived config-
urations are matched up to time t− d, namely when they advance in time (by d
time units), the bound is reduced accordingly.

Now let us come back to Example 1.

Example 3. We have that C0
1 �2 C0

2 , as the two configurations C0
1 and C0

2 have

a timed transition at any time d < 2, namely C0
1

d� Cd
1 and C0

2
d� Cd

2 . Note that

bisimilarity up to time 2 does not include bisimilarity at time 2 since C0
1

2� C2
1

and C2
1

r→ C′
1; however C

0
2

2� C2
2 and C2

2 � r→ C′
2.

This bisimilarity “up to time t” satisfies the following property that states
how equivalence up to a deadline t includes equivalence up to any bound u ≤ t.

Proposition 2. For any TLTSs (CΠ1, C01,L1,→,�) and (CΠ2, C02,L2,→,�),
t, u ∈ R+, C ∈ CΠ1, C

′ ∈ CΠ1 ∩ CΠ2 and C′′ ∈ CΠ2:

1. If C �t C
′′, then for any u ≤ t, C �u C′′.

2. If C �t C
′ and C′ �u C′′, then C �min{t,u} C′′.

Furthermore, we also have the following properties.

Proposition 3. For any TLTSs (CΠ1, C01,L1,→,�) and (CΠ2, C02,L2,→,�),

1. � is an STB bisimulation.
2. � is closed to identity, inverse, composition and union.
3. � is the largest STB bisimulation.
4. � is an equivalence.

Proof (Sketch).

1. Assume that C � D. By definition of �, there must be an STB bisimulation
�t such that (C,D) ∈�t. We need to check that � and �−1 satisfy the
conditions of STB simulations.
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2. (a) The identity timed relation id is an STB bisimulation because any C can
match its own transitions up to any time t.

(b) Since � is an STB bisimulation, the inverse �−1 is also an STB bisimu-
lation, by definition.

(c) If R1 and R2 are STB bisimulations �, then their composition R1R2 is
an STB bisimulation as well.

(d) Finally, we obtain that the union ∪i∈IRi of STB bisimulations Ri is an
STB bisimulation, as follows. Let (C,D) ∈ ∪i∈IRi∩ �t. For some i ∈ I,

(C,D) ∈ Ri∩ �t. If C
r→ C′, then D

r→ D′ and (C′, D′) ∈ Ri∩ �t

and therefore, (C′, D′) ∈ ∪i∈IRi∩ �t⊆ ∪i∈IRi. Similarly, if C
d� C′ for

some d < t, then D
d� D′ with (C′, D′) ∈ Ri∩ �t, and so (C′, D′) ∈

∪i∈IRi∩ �t⊆ ∪i∈IRi, as required.

3. Suppose that there is an STB bisimulation R =
⋃

t∈R+
Rt larger than �, i.e.

�� R. This means that there are C, D and t such that (C,D) ∈ Rt, while
C ��t D. However, C ��t D is possible only if there is no STB bisimulationRt

that contains (C,D), contradicting the assumption.

4. To show that � is an equivalence, it is proved that � is reflexive, symmetric
and transitive. ��

4.2 Bounded Timed Bisimulation “up to” Techniques

In what follows we provide some techniques that extend the “up to” techniques
from [17] to the context of bounded timed bisimulations. The standard proof
technique to establish that C1 and C2 are bisimilar is to find a bisimulation R
such that (C1, C2) ∈ R, andR is closed under transitions, namely the derivatives
(C′

1, C
′
2) of (C1, C2) are also in R. Since such derivatives are added to R without

the possibility of manipulating them, a bisimulation relation often contains many
strongly related pairs. As an example, a bisimulation relation might contain
pairs of configurations obtainable from other pairs through the application of
several algebraic laws. These redundancies can make both the definition and the
verification of a bisimulation relation annoyingly heavy and tedious. This means
that sometimes is difficult to find directly such a relation R.

A property that we naturally expect to hold is that symbols appearing in
the left-hand side of the evolution rules do not influence the evolution of real-
time P systems. Let us consider a configuration C0 = (μt, w0, w1), and two
objects (b, 3) and (c, 3) appearing only in time passing rules. To prove that
C01 = (μt, w0(b, 3), w1) and C012 = (μt, w0(c, 3), w1) are bisimilar, we would like

to use the binary relation R def
= {(C01, C02)}.

However, according to Definition 5, R is not a bisimulation relation. If we add
pairs of configurations to R in order to turn it into a bisimulation relation, then
we might find that the simplest solution is to take the relation

R′ def
= {(C,D) | C � C01, D � C02}.



Behavioural Equivalences in Real-Time P Systems 97

The size of R′ is rather discouraging. However, this extension is unnecessary
because the bisimilarity between the two configurations in R already implies the
bisimilarity between the configurations of all pairs of R′. The notions defined in
the current section aim to simplify the bisimulation proof method. The new tech-
nique would allow for the above example to prove that C01 and C02 are bisimilar
simply using the relation R. In this sense, we generalise the bisimulation proof
method by relaxing Definition 5 by using an useful alternative technique, the so-
called bisimulation “up to” some relation R′: for a non-bisimulation relation R,
if (C1, C2) ∈ R, then the derivatives (C′

1, C
′
2) are in R′. Under certain condi-

tions we can establish that C1 and C2 are bisimilar. For this technique, a general
framework that works on untimed labelled transition systems is presented in [16].
We cannot use directly that framework; however the framework can be extended
to timed labelled transition systems.

Definition 6. Let (CΠ1, C01,L1,→,�) and (CΠ2, C02,L2,→,�) be two TLTSs,
and let Rt, R′

t, t ∈ R+ be any timed relations. We say that Rt strongly pro-
gresses to R′

t, written Rt �→ R′
t, if for any C,D ∈ CΠ , whenever (C,D) ∈ Rt,

then:

1. for any rule r ∈ L, C′ ∈ CΠ1, C
r→ C′, then there exists D′ ∈ CΠ2 such that

D
r→ D′ and (C′, D′) ∈ R′

t;

2. for any d ∈ R+, d < t and C′ ∈ CΠ1, if C
d� C′, then there exists D′ ∈ CΠ2

such that D
d� D′ and (C′, D′) ∈ R′

t−d.

The definition is similar to that of STB bisimulation, except that the derivatives
(C′, D′) must be in R′

t rather than in Rt. In fact, STB bisimulation can be seen
as a specific case:

Remark 2. Rt is an STB bisimulation if and only if Rt �→ Rt.

Proposition 4. If Rt �→ R′
t and R′

t is an STB bisimulation, then Rt ⊆� .

Hence, to establish that C �t D it is enough to find a relation Rt with
(C,D) ∈ Rt that strongly progresses to a known STB bisimulation R′

t. The
choice of R′

t depends on the particular equivalence we are trying to establish.
One of the most common cases is when R′

t =�t. However, in general we may
not have at hand a relation R′

t known to be a bisimulation. Nevertheless, we
may find that Rt progresses to a relation R′

t = F(Rt) for some function F
over relations. The idea is that if Rt progresses to F(Rt) and F satisfies certain
conditions, then Rt is included in �t. Thus, to establish C �t D we need to find
such F and Rt containing (C,D).

In order to characterise the functions F , we use the following results:

Proposition 5. Let Rt,R′
t,R′′

t ,R′′′
t ⊆ CΠ×CΠ , t ∈ R+ be some timed relations.

1. If Rt ⊆ R′
t and R′

t �→ R′′
t , then Rt �→ R′′

t .
2. If Rt �→ R′

t and R′
t ⊆ R′′

t , then Rt �→ R′′
t .

3. If Rt �→ R′′
t and R′

t �→ R′′′
t , then RtR′

t �→ R′′
tR′′′

t .
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Proof (Sketch).

1. Assume Rt ⊆ R′
t and R′

t �→ R′′
t . Let (C,D) ∈ Rt. Then (C,D) ∈ R′

t and
since R′

t �→ R′′
t , we have that

(a) C
r→ C′ implies D

r→ D′ with (C′, D′) ∈ R′′
t (and vice-versa);

(b) C
d� C′ for d < t implies D

d� D′ with (C′, D′) ∈ R′′
t−d (and vice-versa).

This shows that Rt �→ R′′
t .

The other two cases are treated in a similar manner. ��
Proposition 6. Let {Ri}i∈I and {R′

j}j∈J be two sets of timed relations, and

define the relations R def
=

⋃
i∈I Ri and R′ def

=
⋃

j∈J R′
j . Then

1. If for each i ∈ I there is a j ∈ J such that Ri �→ R′
j , then R �→ R′.

2. If for each i ∈ I there is an i′ ∈ I such that Ri �→ Ri′ , then R is an STB
bisimulation.

Definition 7 (Safe functions). A function F on timed relations is safe if for
any timed relations R, whenever R �→ F(R) then R ⊆� .

Using this definition, it is hard to check whether a function is safe. An example
of a function that is not safe is the function that maps every relation to the
relation CΠ × CΠ . In what follows we define a class of safe functions for which
membership is easy to check. We define strongly safe functions:

Definition 8 (Strongly safe functions). A function F on timed relations is
strongly safe if for any timed relations R,R′, whenever R ⊆ R′ and R �→ R′

then F(R) ⊆ F(R′) and F(R) �→ F(R′).

Proposition 7. The following functions are strongly safe:

1. Fid(R) def
= R;

2. F�(R) def
= �.

The main property, the core of the technique, is the following:

Lemma 1. If R �→ F(R) for some strongly safe function F , then R ⊆� and
F(R) ⊆�.

This technique relies on providing a safe function F on timed relations. We
have given two basic strongly safe functions (Fid and F�), but often they are not
enough. As shown in [16,17], it is possible to start from basic strongly safe func-
tions and build more complex ones. The following result provides basic operators
on these functions that preserve the safety property.

Proposition 8. If Fi, F and G are strongly safe, so are ∪i∈IFi, F ◦G and FG,
where:

• (∪i∈IFi)(R) def
= ∪i∈IFi(R);
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• (F ◦ G)(R) def
= F(G(R));

• (FG)(R) def
= F(R)G(R).

Lemma 2. The following functions are strongly safe:

1. Fius
def
= Fid ∪ F�;

2. Fsis
def
= F�FidF�.

For example, using Fius we can prove C �t D by finding a relationRt containing
(C,D) that progresses to Fius(Rt) = Rt∪ �, namely its derivatives (C′, D′) are
in either Rt or in �. Another common example is given by Fsis(Rt) =� Rt �.
In this case, proving C �t D requires finding an Rt containing (C,D) that
progresses to � Rt �, namely for its derivatives (C′, D′) there are C1 and C2

such that C′ � C1, (C1, C2) ∈ Rt and C2 � D′.

5 Conclusion

In this paper we proposed a real-time extension of P systems in which we as-
signed lifetimes to each membrane and to each object. The semantics is given
by two types of transitions: the rule relation→ and the timed relation �. If the
lifetime of an object reaches 0 then the object is used to create a new (possible
empty) multiset of objects, while if the lifetime of a membrane reaches 0 then
the membrane is marked for dissolution.

Behavioural equivalence could represent an important concept in biology, nec-
essary for comparing the behaviour of various (sub)systems. We established a
formal framework for biological systems sensitive to timeouts. For real-time P
systems we have defined timed bounded equivalences by using timed labelled
transition systems, and presented an extended “up to” technique. An important
goal of defining these bisimulations is to offer, depending on what properties
should be preserved, flexibility in selecting the right equivalence when studying
the timed behaviour of biological systems. An appropriate behavioural equiva-
lence guarantees that, in any context, a real-time P system can be safely replaced
by another equivalent real-time P system.
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3-0919.
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Abstract. We continue the investigation of 2D P colonies introduced as
a class of abstract computing devices composed of independent agents,
acting and evolving in a shared 2D environment where the agents are lo-
cated. Agents have limited information about the contents of the environ-
ment where they can move in four directions. In this paper we continue
the research of modelling surface runoff in 2D P colonies. We have added
information about flow direction and amount of water in sinks (places
without runoff, lakes,...) to the simulation environment. The data from
the simulation is compared with the data generated by simulation model
of water erosion SIMWE.

1 Introduction

P colonies were introduced in the paper [7] as formal models of computing de-
vices belonging to membrane systems and similar to formal grammars called
colonies. This model is inspired by the structure and the behaviour of commu-
nities of living organisms in a shared environment. The independent organisms
living in a P colony are called agents. Each agent is represented by several objects
embedded in a membrane. The number of objects inside each agent is the same
and constant during computation. The environment is agents’ communication
channel and storage place for objects. At any moment all agents “know” about
all the objects in the environment and they can access any object immediately.
The reader can find more information about P colonies in [6,2]. P colonies are
one of the types of P systems. They were introduced in 2000 in [9] by Gheorghe
Păun as a formal model inspired by the structure and the behaviour of cells.

With each agent a set of programs is associated. The program, which de-
termines the activity of an agent, is very simple and depends on the con-
tents of agents and on types and number of objects placed in the environment.
An agent can change the contents of the environment through programs and it
can affect the behaviour of other agents through the environment. This influence
between agents is the key factor in the functioning of the P colony. At any mo-
ment each object inside every agent is affected by the execution of the program.

For more information about P systems see [11,10] or [13].
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In addition 2D P colony has the environment in a form of a 2D grid of square
cells. The agents are located in this grid and their view is limited to the cells that
immediately surround them [1]. Based on the contents of these cells, the agents
decide their future locations.

Behaviour of each agent is based on its set of programs. The programs are
formed from two rules of type rewriting, communication or movement. By using
the rewriting rule one object within the agent is changed (evolved) to another
object. When the communication rule is applied one object from the environment
is consumed by the agent and one object from content of the agent is placed to
the environment. The last type of rules is the movement rule. The condition
for the movement of an agent is to find specific objects in specific locations in
the environment. This is specified by a matrix with elements - objects. The agent
is looking for at most one object in every surrounding cell. If the condition is
fulfilled then the agent moves one cell up, down, left or right.

The program can contain one movement rule at most. To achieve the greatest
simplicity in agent behaviour, we set another condition. If the agent moves, it
cannot communicate with the environment. So if the program contains a move-
ment rule, then the second rule is the rewriting rule.

Although the colony is a theoretical computing model through 2D, it is a suit-
able tool for modelling the behaviour of natural multi-agent systems - colonies
of bacteria or ants, spreading substances in homogeneous and non-homogeneous
medium.

In this paper we present hydrological modelling flow of liquid over the Earth’s
surface using 2D P colonies. Based on the entered data - the slope surface,
a source of fluid and quantity - we simulate the fluid distribution in the environ-
ment.

To obtain the similarity of our model with the real situation of water overflow
we compare the results obtained by the simulation using 2D P colonies with
results that provide a hydrological simulation model SIMWE. SIMWE is im-
plemetnation of process based water erosion simulation developed by Mitas et
al. in 1996 in [8].

The first part of the paper is devoted to 2D P colonies. The rest is organised
as follows: The issue of the flow of liquid over the surface, problem solution -
maps preparation, definition of the agent, process simulation, comparison with
results of the model SIMWE and future expansion.

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics
of the formal language theory.

We useNRE to denote the family of the recursively enumerable sets of natural
numbers, N is the set of natural numbers. Let Σ be the alphabet. Let Σ∗ be
the set of all words over Σ (including the empty word ε). We denote the length
of the word w ∈ Σ∗ by |w| and the number of occurrences of the symbol a ∈ Σ
in w by |w|a.
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A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns
to each object in V its multiplicity in M . The set of all multisets with the set
of objects V is denoted by V ◦. The set V ′ is called the support of M and is
denoted by supp(M) if for all x ∈ V ′ f(x) �= 0 holds. The cardinality of M ,
denoted by |M |, is defined by |M | = ∑

a∈V f(a). Each multiset of objects M
with the set of objects V ′ = {a1, . . . an} can be represented as a string w over
alphabet V ′, where |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from
w by permuting the letters represent the same multiset M . The ε represents
the empty multiset.

3 2D P Colonies

We briefly summarize the notion of 2D P colonies. A P colony consists of agents
and an environment. Both the agents and the environment contain objects.
With each agent a set of programs is associated. There are three types of rules
in the programs.

The first rule type, called the evolution rule, is of the form a → b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The sec-
ond rule type, called the communication rule, is of the form c ↔ d. When
the communication rule is performed, the object c inside the agent and the ob-
ject d outside the agent swap their places. Thus, after the execution of the rule,
the object d appears inside the agent and the object c is placed outside the agent.
The third rule type, called the motion rule, is of the form matrix 3× 3→ “move
direction”. Based on the contents of the neighbouring cells, an agent can move
one step to the left, right, up or down.

A program can contain maximum one motion rule. When there is a motion
rule inside a program, there cannot be a communication rule inside the same
program.

Definition 1. The 2D P colony is a construct
Π = (A, e, Env,B1, . . . , Bk, f), k ≥ 1, where

– A is an alphabet of the colony, its elements are called objects,
– e ∈ A is the basic environmental object of the colony,
– Env is a pair (m × n,wE), where m × n,m, n ∈ N is the size of the envi-

ronment and wE is the initial contents of environment, it is a matrix of size
m× n of multisets of objects over A− {e}.

– Bi, 1 ≤ i ≤ k, are agents, each agent is a construct Bi = (Oi, Pi, [o, p]) ,
0 ≤ o ≤ m, 0 ≤ p ≤ n, where
• Oi is a multiset over A, it determines the initial state (contents) of
the agent, |Oi| = 2,
• Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where
each program contains exactly 2 rules, which are in one of the following
forms each:
∗ a→ b, called the evolution rule, a, b ∈ A;
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∗ c↔ d, called the communication rule, c, d ∈ A
∗ [aq,r]→ s, 0 ≤ q, r ≤ 2, aq,r ∈ A, s ∈ {⇐,⇒,⇑,⇓}, called the motion
rule;
∗ The third part of program is natural number h ∈ N , which determine
priority level of the program.

• [o, p] are the coordinates of the initinal placement agent in the environ-
ment.

– f ∈ A is the final object of the colony.

The configuration of the 2D P colony is given by the state of the environment
- matrix of type m×n with multisets of objects over A−{e} as its elements, and
by the state of all agents - pairs of objects from alphabet A and the coordinates of
the agents. An initial configuration is given by the definition of the 2D P colony.

The computational step consists of three parts. The first part lies in deter-
mining the applicable set of programs according to the actual configuration of
the P colony. In the second part we have to choose one program corresponding
to each agent from the set of applicable programs with maximum priority level.
The third part is the execution of the chosen programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of
the agents.

The computation is nondeterministic and maximally parallel. The computa-
tion ends by halting when no agent has an applicable program.

The result of the computation is the number of copies of the final object
placed in the environment at the end of the computation.

The reason for the introduction of 2D P colonies is not the study of their
computational power but monitoring of their behaviour during computation.
We can define measures to describe the dynamics of the computation:

– the number of moves of agents
– the number of agents inside a certain cell or a set of cells
– the number of visited cells (or non-visited cells)
– the number of copies of a certain object in the home cell or throughout

the environment.

4 The Issue of Flow of Liquid over the Surface

The issue of the flow of liquid over the Earth’s surface is studied by experts
from two areas - hydrology and geoinformatics. Both of these disciplines work
closely together on the issue of the so-called “surface runoff”. Surface runoff is
the water flow that occurs when the soil is saturated to full capacity and excess
water from rain, meltwater, or other sources flows over the land.

Surface runoff can be generated in four scenarios: infiltration excess overland
flow, saturation excess overland flow, antecedent soil moisture, subsurface return
flow. Infiltration excess overland flow occurs when the rate of rainfall on a surface
exceeds the rate at which water can infiltrate the ground, and any depression
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storage has already been filled. When the soil is saturated and the depression
storage filled, and rain continues to fall, the rainfall will immediately produce
surface runoff - saturation excess overland flow. Soil retains a degree of moisture
after a rainfall. This residual water moisture (antecedent soil moisture) affects
the soil’s infiltration capacity. During the next rainfall event, the infiltration
capacity will cause the soil to be saturated at a different rate. The higher the level
of antecedent soil moisture, the more quickly the soil becomes saturated. Once
the soil is saturated, runoff occurs. After water infiltrates the soil on an up-slope
portion of a hill, the water may flow laterally through the soil, and exfiltrate
(flow out of the soil) closer to a channel. This is called subsurface return flow or
throughflow.

We can say that generation surface runoff depends on type of soil, tempera-
ture, humidity and rainfall. The task of our model is to determine which way
the flow would run and which areas could be affected by flash floods. In the
first phase of construction of the model, we focus on the issue of the influence
of terrain slope to the direction of waterflow. The input will be two raster files:
the first raster file with the slope of terrain and the second one with place and
amount of rainfall.

4.1 SIMWE - Simulation of Water Erosion

SIMWE is a bivariate model of erosion, sediment transport and deposition by
overland flow, designed for complex terrain, soil and cover conditions. It uses a
Green’s function Monte Carlo method to solve the underlying continuity equa-
tions. More can reader find in [8]. The model is implemented as two modules
in software GRASS GIS. It is a Geographic Information System (GIS) used for
data management, image processing, graphics production, spatial modelling, and
visualization of many types of data (see [4]).

The first module is called r.sim.water and it is a landscape scale simulation
model of overland flow designed for spatially variable terrain, soil, cover and
rainfall excess conditions. A 2D shallow water flow is described by the bivariate
form of Saint Venant equations (e.g. [5]). The numerical solution is based on the
concept of duality between the field and particle representation of the modeled
quantity. The key inputs of the model include elevation, flow gradient vector,
rainfall excess rate and a surface roughness coefficient. Output includes a water
depth raster map and a water discharge raster map.

The second module r.sim.sediment is simulation model of soil erosion, sedi-
ment transport and deposition caused by flowing water designed for spatially
variable terrain, soil, cover and rainfall excess conditions. The function of this
module is out of scope of this paper.

5 Applicationof 2D P Colonies in Solving the Problem
of Surface Runoff

2D P colonies seem to be suitable tool for modeling surface runoff. The environ-
ment can contain objects representing slope of terrain, type of cover and soil.
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Agents represent the units of water and their programs determine behaviour of
water running over the surface. We can assume that the soil is already saturated
thus the main factor of overland flow is the slope of the field. The type of terrain
and soil is not implemented yet.

We divide solution of the problem into two parts - (1) preparation of maps (2D
P colony’s environment) and (2) definition of agents. We assume that the soil is
already saturated thus the main factor of overland flow is the slope of the field.

5.1 Preparation of Maps

Map data is obtained from the geographic information system (GIS) and pro-
cessing system GRASS. We use the map data for the Czech Republic obtained
from dataset FreeGoedataCZ.

Raster graphics images are probably the most appropriate format for mod-
elling real-world phenomena in the field of GIS. To process this format, many
tools were created and can be used for performing various analyses. A raster
image is composed of a regular network of cells, usually in a square shape, to
which values of displayed properties can be assigned independently. More infor-
mation about GIS and image processing the reader can find in [3] and about
geosimulation in [12].

The first step to simulate the flow of liquid over relief was the determination of
its runoff from individual pixels (cells). Gradient with respect to an adjacent cell
is defined as the ratio of the height difference to the horizontal distance. Gradient
is positive due to the lower neighbours, or negative due to higher and zero in
relation to the neighbours of the same height. Lowest neighbour is neighbour
with the largest positive gradient.

There are two basic algorithms to calculate the runoff:

– Single flow direction (SFD) - each pixel of the liquid flows in one direction
only (toward neighbour in the direction of the largest gradient). Each pixel
belongs to only one basin.

– Multiple flow direction (MFD) - fluid can flow out of each pixel in multiple
directions, maximum of eight. In the case of MFD a unit volume flow is fairly
distributed among all lower neighbours. The MFD may include the pixel to
multiple basins.

There is implemented a tool for calculating the flow direction in GRASS soft-
ware, called simply TerraFlow. TerraFlow tool works as a multiple flow (MFD)
or simple flow direction (SFD). After its execution integer raster file is created
that specifies the flow direction for each cell.

Eight basic directions of the flow are represented by the numbers 45, 90, 135,
180, 225, 270, 315 and 360 (see Table 1). If there is more than one direction
(MFD), the number contained in the cell is generated as sum of values of the
directions.

In 2D P colony model we can use the result of both algorithms. If the MFD is
used to generate the directions the agent can only move in one of the directions
specified in the cell.
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Table 1. The eight basic directions

135 90 45

180
↖ ↑ ↗
← →
↙ ↓ ↘

360

225 270 315

What we obtain from GRASS is a raster file with natural number in each
cell corresponding to the runoff from this cell. Because 2D P colony works with
discrete symbols and not with numbers, it is necessary to transcode numbers to
symbols. A coding table is shown on Table 2

Table 2. The coding table

direction → ← ↑ ↓ ↘ ↙ ↗ ↖
symbol a E i m q u y 2

5.2 Definition of the Agent

Agents in 2D P colonies have capacity of 2. It means that an agent contains two
objects, and each program is composed by two rules.

Each of the objects inside the agent carries the information about the state
of the agent. The first object has information about the activity of the agent.
At this stage of the simulation it is the information that the agent “flows” down
the terrain ( objectX) or it is still inactive (belonging to the rainfall that have not
fall - objects A,B,C,D, F,G,R, S, T, U, V,W , it stops in sinks - configuration of
agent is V S) . The second object stores information about the previous direction
of flow. This information can further modify the way of the agent as inertia.

Objects and their association to the flow directions are given in the following
table.

direction → ← ↑ ↓ ↘ ↙ ↗ ↖
the first set of symbols S1 9 8 6 7 D D U U
the second set of symbols S2 L K H I I I H H
One time step will take two steps of computation of the 2D P colony. This is

the reason why we need two sets of object associted with flow directions.
All the programs can reader find in Apendix at the end of the paper.
The first subset of programs with priority 0 is defined for the first step of

computation. The initial configuration of each “working” agent isXe. The agents
move in a direction that represent object in the cells - a one step right ( program
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(1)), E one step left (program(2)), i one step up (program (3)) and m one step
down (program(4)).

In the case of cross direction (after applying the programs (5) and (6) resp.
(7) and (8)) the agent moves one step left or right and it is neccessary to take
one step down (resp. up). It uses program with priority 1 (9) (resp. (10)).

Programs (1) - (8) are of the form〈⎡⎣∗ ∗ ∗
∗ direction ∗
∗ ∗ ∗

⎤⎦→ move; e→ s1; 0

〉
,

direction∈ {a,E, i,m, q, u, y, 2}, move∈ {⇒,⇐,⇑,⇓}, s1 ∈ S1 ∪ {U,D};
While agents apply programs (9) or (10), agents, that do not move in a cross

direction, must stand for the next step. Therefore, they use programs ((11) to
(14) with priority 2) composed of two rewriting rules. The programs are of the
form

〈X → X ; s1 → s2; 2〉 , where

si ∈ Si for i = 1, 2;
The programs (15)-(46) with priority 0 are used to guide the agent in the next

steps, the agent may hold information about the movement in the previous step.
The programs are in the form〈⎡⎣∗ ∗ ∗

∗ direction ∗
∗ ∗ ∗

⎤⎦→ move; s2 → s1; 0

〉
,

direction∈ {a,E, i,m, q, u, y, 2}, move∈ {⇒,⇐,⇑,⇓}, s1 ∈ S1 ∪{U,D} and s2 ∈
S2;

We need one more program for “resetting” inertia. This is for the case when
the slope of the terrain changes extremely. (47) 〈X → X ; N → e; 0〉;

The next set of programs (47)-(51) with priority 7 is applied in the case that
there are sinks in studied area. We add some number of copies of object V to
every cell in the sink area. The number of the objects corresponds to the quantity
of water which can be contained in the sink and the same number of agents have
to be stopped here.
(48) 〈X ↔ V ; I → S; 7〉;(49) 〈X ↔ V ; J → S; 7〉; (50) 〈X ↔ V ; K → S; 7〉;
(51) 〈X ↔ V ; L→ S; 7〉;

If we run the obtained 2D P colony in the simulator, agents, which represent
a unit volume of water, will begin to move around the environment. The number
of agents located in one cell at one moment corresponds to the quantity of water
that at once flowed through the territory in one unit of time.

The agents that “overflow” from the filled sinks move on the direction to the
neighboring cell containing direction out of the sink. It is done by the programs
(52)-(59) with the priority set to 6. The main condition for application of the
program is set in matrix in movement rule. When agent is placed in the cell with
object X and no object V (in this case because of higher priority one of the the
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programs (48)-(51) will be applied) the agent tries to find wat out from the sink
and search for suitable direction object inside the neighbouring cells.

For example

⎡⎣∗ E ∗∗ X ∗
∗ ∗ ∗

⎤⎦ means that in side the west cell agent find object E

corresponding with direction ← and it is possible way out from the sink.
The initial configuration of the 2D P colony is given by the objects placed in

the environment - processed map, by number of agents, by their contents and
placement. The number of agents corresponds to amount of water falling down
during whole examined time. The content of the agent corresponds to the time
when the agent has to start working.

The computation is nondeterministic. Starting with the maps without sinks
and with one direction per cell the computation runs deterministically.

6 The Example Simulation

The example visualization is based on data from FreeGoedataCZ. The final
statistics is done over four different data sets - four different locations.

The processed map is map of area with sink and its size is 10× 10 and its direc-
tions are shown in the Table 3. Transcoded symbols are shown in the Table 4.

Table 3. Processed map

0 1 2 3 4 5 6 7 8 9

0 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 ← ← ↘ ↓ ↙ ↙ ← ↘ ↘ →
2 ← ← ↘ ↓ ↙ ← ← → → →
3 ← ← ↓ ↓ ← ← ↙ ↓ → →
4 ← ↓ ↙ ↙ ← ← ↙ ↓ ↙ →
5 ← ↓ ↓ ↙ ↙ ↙ ↙ ↓ ↙ →
6 ← → ↘ ↓ ↓ ↙ ↙ ↙ ← →
7 ← ↑ → ↘ ↓ ↙ ↙ ↙ ↙ →
8 ← ↗ ↑ → ↓ ← ↙ ← ↙ →
9 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Table 4. Transcoded symbols

0 1 2 3 4 5 6 7 8 9

0 i i i i i i i i i i
1 E E q m u u E q q a
2 E E q m u E E a a a
3 E E m m E E u m a a
4 E m u u E E u m u a
5 E m m u u u u m u a
6 E a q m m u u u E a
7 E i a q m u u u u a
8 E y i a m E u E u a
9 m m m m m m m m m m

A source of water is placed into cells [2, 3], [3, 3], [4, 3], [2, 4], [3, 4], [4, 4], [2, 5],
[3, 5], [4, 5]. In every source cell there are 8 agents. To simulate rain all agents
are inactive in the initial configuration. Only one agent has the configuration of
Xe in each cell. The next nineteen become active always in two computational
steps. The numbers of active agents in the environment are shown in the Tables
5(A) - 10(A) - the first column of tables (heatmaps). The tables (heatmaps) in
the second column (Tables 5(B)-10(B) show corresponding results achieved from
SIMWE algorithm.
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Legend for heatmaps - depth of water in mm

Table 5. (A)Active agents after 2nd step of computation, (B) raster data - depth of
water after 4 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 2 1 0 0 0 0 0
4 0 0 2 3 1 0 0 0 0 0
5 0 1 2 1 1 0 0 0 0 0
6 0 0 1 1 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ 0 0 0 0 0 0 0 0 ∗
2 ∗ 0 0 0 0 0 0 0 0 ∗
3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗
4 ∗ 0 8.0 9.2 4.8 0 0 0 0 ∗
5 ∗ 3.4 7.1 5.1 4.8 0 0 0 0 ∗
6 ∗ 0.7 4.7 4.1 0.8 0 0 0 0 ∗
7 ∗ 0 0.5 0.9 0.5 0 0 0 0 ∗
8 ∗ 0 0 0 0 0 0 0 0 ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 6. (A)Active agents after 4th step of computation, (B) raster data - depth of
water after 8 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 2 1 0 0 0 0 0
4 0 0 5 5 1 0 0 0 0 0
5 0 1 4 1 1 0 0 0 0 0
6 0 2 4 1 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ 0 0 0 0 0 0 0 0 ∗
2 ∗ 0 0 0 0 0 0 0 0 ∗
3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗
4 ∗ 0 14.8 15.3 4.3 0 0 0 0 ∗
5 ∗ 1.7 12.1 5.6 4.8 0 0 0 0 ∗
6 ∗ 6.2 13.7 4.2 1.8 0 0 0 0 ∗
7 ∗ 0 0.7 4.7 0.5 0 0 0 0 ∗
8 ∗ 0 0 0 0 0 0 0 0 ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We compare the simulation process using 2D P colonies and using SIMWE
algorithm.

One agent corresponds to 3 mm of water and two steps of computation take
4 minutes. From the previous tables we can derive the following results: At the
begining of simulation the agents move more slowly than water over the surface
but during the second half of simulation the agents move more quickly than
water. Area touched by water is larger in SIMWE simulation but depth of water
in these cells is only about 1 mm. The graphical representation of the frequency
of depth of water is shown on the Figure 1. The models give different results in
8.854 percent of cells in the whole simulation.



Modelling of Surface Runoff Using 2D P Colonies 111

Table 7. (A)Active agents after 6th step of computation, (B) raster data - depth of
water after 12 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 1 0 0 0 0 0
4 0 0 4 3 1 0 0 0 0 0
5 0 1 4 1 1 0 0 0 0 0
6 0 3 5 2 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0
8 0 0 0 0 3 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ 0 0 0 0 0 0 0 0 ∗
2 ∗ 0 0 0 0 0 0 0 0 ∗
3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗
4 ∗ 0 11.9 10.0 4.3 0 0 0 0 ∗
5 ∗ 2.7 13.8 5.7 4.8 0 0 0 0 ∗
6 ∗ 9.5 16.6 8.2 1.8 0 0 0 0 ∗
7 ∗ 0.5 1.6 6.8 1.5 0 0 0 0 ∗
8 ∗ 0 1.6 8.3 0 0 0 0 0 ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 8. (A)Active agents after 8th step of computation, (B) raster data - depth of
water after 16 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 1 0 0 0 0 0
4 0 0 3 3 1 0 0 0 0 0
5 0 1 3 1 1 0 0 0 0 0
6 0 1 10 2 0 0 0 0 0 0
7 0 0 0 4 3 0 0 0 0 0
8 0 0 0 0 4 0 0 0 0 0
9 0 0 0 0 3 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ 0 0 0 0 0 0 0 0 ∗
2 ∗ 0 0 0 0 0 0 0 0 ∗
3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗
4 ∗ 0 8.9 10.0 4.3 0 0 0 0 ∗
5 ∗ 2.7 12.8 5.7 4.8 0 0 0 0 ∗
6 ∗ 5.5 32.3 7.4 1.8 0 0 0 0 ∗
7 ∗ 0.8 1.3 15.6 10.6 0 0 0 0 ∗
8 ∗ 0 1.6 2.1 13.2 0 0 0 0 ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 9. (A)Active agents after 10th step of computation, (B) raster data - depth of
water after 20 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 2 1 0 0 0 0 0
4 0 0 2 4 1 0 0 0 0 0
5 0 2 4 1 1 0 0 0 0 0
6 0 2 6 4 0 0 0 0 0 0
7 0 0 0 8 1 0 0 0 0 0
8 0 0 0 0 4 0 0 0 0 0
9 0 0 0 0 10 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ 0 0 0 0 0 0 0 0 ∗
2 ∗ 0 0 0 0 0 0 0 0 ∗
3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗
4 ∗ 0 6.9 12.0 4.3 0 0 0 0 ∗
5 ∗ 3.7 13.8 5.7 4.8 0 0 0 0 ∗
6 ∗ 6.2 17.4 14.4 1.8 0 0 0 0 ∗
7 ∗ 0.5 1.8 25.0 4.9 0 0 0 0 ∗
8 ∗ 0 0.6 1.5 13.5 0 0 0 0 ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Table 10. (A)Active agents after 12th step of computation, (B) raster data - depth of
water after 24 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 2 1 0 0 0 0 0
4 0 0 2 4 1 0 0 0 0 0
5 0 2 5 1 1 0 0 0 0 0
6 0 2 7 2 0 0 0 0 0 0
7 0 0 0 6 3 0 0 0 0 0
8 0 0 0 0 8 0 0 0 0 0
9 0 0 0 0 15 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ 0 0 0 0 0 0 0 0 ∗
2 ∗ 0 0 0 0 0 0 0 0 ∗
3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗
4 ∗ 0 6.9 12.0 4.3 0 0 0 0 ∗
5 ∗ 3.7 15.8 5.7 4.8 0 0 0 0 ∗
6 ∗ 7.2 22.0 6.6 1.8 0 0 0 0 ∗
7 ∗ 1.8 2.0 20.3 9.2 0 0 0 0 ∗
8 ∗ 0 1.6 2.3 25.1 0 0 0 0 ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Fig. 1. Frequency of depth of water in 2D P colony and SIMWE

7 Comparison of Models

This work has been an initial attempt to model surface runoff using two different
methods, namely algorithm SIMWE and 2D P colonies. The algorithm SIMWE
is based on the description of water flow and sediment transport processes by
first-principles equations. Inputs and outputs of the simulations are represented
by multivariate functions (scalar or vector fields). The underlying continuity
equations are solved by a Green’s function Monte Carlo method to provide the
robustness necessary for spatially variable conditions and high resolutions. In
contrast, 2D P colonies provide a multiagent framework with agents performing
simple instructions in a collaborative environment. Based on non-deterministic
parallel execution of simple instructions agents to the behaviour of the entire
system can be very similar to the real behaviour of natural systems.

The are some advantages and disadvantages of 2D P colonies for modelling
surface runoff. The first disadvantage is the “calibration” of the model. This
procedure gives us the answer to the questions: What amount of water one agent
represents? What time corresponds to two computational steps? Answer to the



Modelling of Surface Runoff Using 2D P Colonies 113

first question is given by rainfall per unit of time. How long one time unit takes
is given by the average speed of water - we must take into account resolution of
map and roughness of terrain. The SIMWE algorithm is constructed to model
surface runoff and it does not need such calibration - roughness is one of input
parameters.

The requirements for the computations depend not only on algorithm but on
simulation environment too. As we wrote before the SIMWE is integrated for
example as a module of software GRASS GIS. We use simulation environment for
2D P colonies called simply “2D P colony” simulator already introduced in [1].
The computational space used for SIMWE in GRASS GIS (r.sim.water) depends
mainly on the number of cells. In the whole computation it works with all the
matrices on input. We can set in what time period we want to have outputs.
In the 2D P colony simulator the whole matrix of input map is processed only
once at the beginnig of computation. During the rest of the simulation only
agents are active and local changes are made. To compare space requirements of
computations we prepare maps in sizes 10×10 (15 random maps) and 100×100
(10 random maps). We run simulations with 10 and 100 agents in 2D P colony
simulator without visualisation. On the table 11 the reader can find average
values of space used in computation for 50 time units.

Table 11. Average values of used space

size
of map

2D P colony simulator r.sim.water

number
of agents

min
(in MB)

average
(in MB)

max
(in MB)

min
(in MB)

average
(in MB)

max
(in MB)

10× 10 10 6.2 7.9 10.1 296.0 296.2 296.3
100 16.5 18.3 22.8

100× 100 10 9.6 10.3 11.8 296.7 296.9 328.8
100 17.6 18.9 22.8

If we compare results obtained from SIMWE and 2D P colony, we get the
values similar to those of the representative example (graph in the figure 1) and
the percentage of cell with different values becomes 8.795.

8 Conclusion

The aim of this paper was to analyse the situation and to create 2D model
P colonies that would simulate the flow of liquid over the Earth’s surface, a phe-
nomenon called Surface runoff. This process is very common in nature and accu-
mulation of water leads to flash flooding or floods in general. Flow of water over
the surface is influenced by many factors: the surface slope, soil saturation, tem-
perature, humidity, size of source and lots of others. We applied the slope of the
terrain in the environment of 2D P colonies. Finally, we compared the process of
the simulations with the results provided by the algorithm SIMWE, module of
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geographic information system software GRASS GIS. To achieve more realistic
movement of agents through the environment (not only one average speed) and
adjustment of the amount of water in the sinks we plan to extend 2D P colonies
with parameters. It will help us to use more different states of agents and cells
than use of object labelled by common symbols.

Remark 1.
This work was partially supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by
SGS/24/2013, SGS/7/2011 and by project OPVK no. CZ.1.07/2.2.00/28.0014.
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A Programs for 2D P Colony Π

(1)

〈⎡
⎣∗ ∗ ∗∗ a ∗
∗ ∗ ∗

⎤
⎦→ ⇒; e→ 9; 0

〉
; (2)

〈⎡
⎣ ∗ ∗ ∗∗ E ∗
∗ ∗ ∗

⎤
⎦→ ⇐; e→ 8; 0

〉
;

(3)

〈⎡
⎣∗ ∗ ∗∗ i ∗
∗ ∗ ∗

⎤
⎦→ ⇑; e→ 6; 0

〉
; (4)

〈⎡
⎣ ∗ ∗ ∗∗ m ∗
∗ ∗ ∗

⎤
⎦→ ⇓; e→ 7; 0

〉
;

(5)

〈⎡
⎣∗ ∗ ∗∗ q ∗
∗ ∗ ∗

⎤
⎦→ ⇒; e→ D; 0

〉
; (6)

〈⎡
⎣ ∗ ∗ ∗∗ u ∗
∗ ∗ ∗

⎤
⎦→ ⇐; e→ D; 0

〉
;

(7)

〈⎡
⎣∗ ∗ ∗∗ y ∗
∗ ∗ ∗

⎤
⎦→ ⇒; e→ U ; 0

〉
; (8)

〈⎡
⎣ ∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

⎤
⎦→ ⇐; e → U ; 0

〉
;

(9)

〈⎡
⎣∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

⎤
⎦→ ⇓; D → I ; 1

〉
; (10)

〈⎡
⎣ ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

⎤
⎦→ ⇑; U → H ; 1

〉
;

(11) 〈X → X; 6→ H ; 2〉; (12) 〈X → X; 7→ I ; 2〉; (13) 〈X → X; 8→ K; 2〉;
(14) 〈X → X; 9→ L; 2〉;

(15)

〈⎡
⎣ ∗ ∗ ∗∗ a ∗
∗ ∗ ∗

⎤
⎦→ ⇒; H → 9; 0

〉
; (16)

〈⎡
⎣ ∗ ∗ ∗∗ E ∗
∗ ∗ ∗

⎤
⎦→ ⇐; H → 8; 0

〉
;

(17)

〈⎡
⎣ ∗ ∗ ∗∗ i ∗
∗ ∗ ∗

⎤
⎦→ ⇒; H → U; 0

〉
; (18)

〈⎡
⎣ ∗ ∗ ∗∗ m ∗
∗ ∗ ∗

⎤
⎦→ ⇓; H → 7; 0

〉
;

(19)

〈⎡
⎣ ∗ ∗ ∗∗ q ∗
∗ ∗ ∗

⎤
⎦→ ⇒; H → D; 0

〉
; (20)

〈⎡
⎣∗ ∗ ∗∗ u ∗
∗ ∗ ∗

⎤
⎦→ ⇐; H → D; 0

〉
;

(21)

〈⎡
⎣ ∗ ∗ ∗∗ y ∗
∗ ∗ ∗

⎤
⎦→ ⇒; H → U ; 0

〉
; (22)

〈⎡
⎣ ∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

⎤
⎦→ ⇐; H → U ; 0

〉
;

(23)

〈⎡
⎣ ∗ ∗ ∗∗ a ∗
∗ ∗ ∗

⎤
⎦→ ⇒; I → 9; 0

〉
; (24)

〈⎡
⎣ ∗ ∗ ∗∗ E ∗
∗ ∗ ∗

⎤
⎦→ ⇐; I → 8; 0

〉
;

(25)

〈⎡
⎣ ∗ ∗ ∗∗ i ∗
∗ ∗ ∗

⎤
⎦→ ⇑; I → 6; 0

〉
; (26)

〈⎡
⎣∗ ∗ ∗
∗ m ∗
∗ ∗ ∗

⎤
⎦→ ⇓; I → 7; 0

〉
;

(27)

〈⎡
⎣ ∗ ∗ ∗∗ q ∗
∗ ∗ ∗

⎤
⎦→ ⇒; I → D; 0

〉
; (28)

〈⎡
⎣ ∗ ∗ ∗∗ u ∗
∗ ∗ ∗

⎤
⎦→ ⇐; I → D; 0

〉
;

(29)

〈⎡
⎣ ∗ ∗ ∗∗ y ∗
∗ ∗ ∗

⎤
⎦→ ⇒; I → U ; 0

〉
; (30)

〈⎡
⎣ ∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

⎤
⎦→ ⇐; I → U ; 0

〉
;

(31)

〈⎡
⎣ ∗ ∗ ∗∗ a ∗
∗ ∗ ∗

⎤
⎦→ ⇒; J → 9; 0

〉
; (32)

〈⎡
⎣ ∗ ∗ ∗∗ E ∗
∗ ∗ ∗

⎤
⎦→ ⇐; J → L; 0

〉
;

(33)

〈⎡
⎣ ∗ ∗ ∗∗ i ∗
∗ ∗ ∗

⎤
⎦→ ⇑; J → 6; 0

〉
; (34)

〈⎡
⎣∗ ∗ ∗
∗ m ∗
∗ ∗ ∗

⎤
⎦→ ⇓; J → 7; 0

〉
;
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(35)

〈⎡
⎣ ∗ ∗ ∗∗ q ∗
∗ ∗ ∗

⎤
⎦→ ⇒; J → 7; 0

〉
; (36)

〈⎡
⎣ ∗ ∗ ∗∗ u ∗
∗ ∗ ∗

⎤
⎦→ ⇐; J → D; 0

〉
;

(37)

〈⎡
⎣ ∗ ∗ ∗∗ y ∗
∗ ∗ ∗

⎤
⎦→ ⇒; J → 6; 0

〉
; (38)

〈⎡
⎣∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

⎤
⎦→ ⇐; J → U ; 0

〉
;

(39)

〈⎡
⎣ ∗ ∗ ∗∗ a ∗
∗ ∗ ∗

⎤
⎦→ ⇒; K → N ; 0

〉
; (40)

〈⎡
⎣ ∗ ∗ ∗∗ E ∗
∗ ∗ ∗

⎤
⎦→ ⇐; K → 8; 0

〉
;

(41)

〈⎡
⎣ ∗ ∗ ∗∗ i ∗
∗ ∗ ∗

⎤
⎦→ ⇑; K → 6; 0

〉
; (42)

〈⎡
⎣ ∗ ∗ ∗
∗ m ∗
∗ ∗ ∗

⎤
⎦→ ⇓; K → 7; 0

〉
;

(43)

〈⎡
⎣ ∗ ∗ ∗∗ q ∗
∗ ∗ ∗

⎤
⎦→ ⇒; K → D; 0

〉
; (44)

〈⎡
⎣ ∗ ∗ ∗∗ u ∗
∗ ∗ ∗

⎤
⎦→ ⇐; K → 7; 0

〉
;

(45)

〈⎡
⎣ ∗ ∗ ∗∗ y ∗
∗ ∗ ∗

⎤
⎦→ ⇒; K → U ; 0

〉
; (46)

〈⎡
⎣ ∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

⎤
⎦→ ⇐; K → 6; 0

〉
;

(47) 〈X → X; N → e; 0〉;
(48) 〈X ↔ V ; I → S; 7〉; (49) 〈X ↔ V ; J → S; 7〉; (50) 〈X ↔ V ; K → S; 7〉;
(51) 〈X ↔ V ; L→ S; 7〉;

(52)

〈⎡
⎣α ∗ ∗
∗ X ∗
∗ ∗ ∗

⎤
⎦→ ⇐; β → U ; 6

〉
;α ∈ {a,E, i, 2}

(53)

〈⎡
⎣ ∗ α ∗
∗ X ∗
∗ ∗ ∗

⎤
⎦→ ⇑; β → 6; 6

〉
;α ∈ {i, E, a, y, 2}

(54)

〈⎡
⎣ ∗ ∗ α
∗ X ∗
∗ ∗ ∗

⎤
⎦→ ⇒; β → U ; 6

〉
; α ∈ {y, 2, i, a, E}

(55)

〈⎡
⎣ ∗ ∗ ∗
α X ∗
∗ ∗ ∗

⎤
⎦→ ⇐; β → 8; 6

〉
;α ∈ {E, i,m, 2, u}

(56)

〈⎡
⎣ ∗ ∗ ∗
∗ X α
∗ ∗ ∗

⎤
⎦→ ⇒; β → 9; 6

〉
α ∈ {a, i,m, y, q};

(57)

〈⎡
⎣ ∗ ∗ ∗
∗ X ∗
α ∗ ∗

⎤
⎦→ ⇐; β → D; 6

〉
;α ∈ {E, i,m, 2, u}

(58)

〈⎡
⎣ ∗ ∗ ∗
∗ X ∗
∗ α ∗

⎤
⎦→ ⇓; β → 7; 6

〉
;α ∈ {a,E,m, q, u}

(59)

〈⎡
⎣ ∗ ∗ ∗
∗ X ∗
∗ ∗ α

⎤
⎦→ ⇒; β → D; 6

〉
; α ∈ {a, i,m, y, q}; β ∈ {I, J,K, L}
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Abstract. Due to their inherent parallel and non-deterministic nature,
P system implementations require vast computing and storage resources.
This significantly limits their applications, even more so when the calcu-
lation of all possible evolutions of the P system is required. This article
exposes the scalability possibilities available with the Big Data ecosystem
for P systems implementations, using Map Reduce parallelism to build
the P system computation tree. The Hadoop based implementation is
then used for generating test suites for cell like P systems, in particular
for context-dependent rule coverage testing. Our preliminary evaluations
on a benchmark of automatically generated P systems confirm that the
proposed approach scales well.

Keywords: P systems testing, Hadoop, P system computation tree,
Map Reduce, Big Data, NoSQL.

1 Introduction

Membrane computing, a field of research which studies distributed and parallel
computing models called P systems, is a rapidly growing research area. Initially
coined by Gheorghe Păun in [1], P systems have been studied from a computa-
tional and modelling perspective. Many variants have been introduced [2] and
investigated, further a set of applications has been identified and modelled with
such systems. P systems offer the possibility of modelling natural phenomena
using a very natural and logical syntax. Unfortunately natural phenomena are
inherently extremely complex and the simulation of P systems which model such
phenomena inherit the complexity, therefore requiring significant computational
power to process. At a certain point the computational power and storage ca-
pacity of a single machine is simply insufficient for the simulations and testing of
such P systems, at which point grid or clustered computing is considered. In an
attempt to reuse established technologies for the computations of P systems we
will show a method of using a Map Reduce framework and a NoSQL database
in the simulation of P systems. These technologies (which at times fall under the
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blanket term of Big Data) are designed to leverage large scale commodity hard-
ware clusters as massively scalable environment for parallel computing. We will
use Big Data technologies to compute a computation tree of a non-deterministic
P system, and show a potential application of such computations. Some the-
oretical work has been done in using Hadoop with P systems in [7], but no
implementation has been attempted.

There however have been many attempts to generate Psystem simulators
which use parallel computing, with varying levels of success. These are all enu-
merated in: [8]. Possibly the most successful attempts have used speciality hard-
ware to enable the simulation. These include GPU, FPGA, and Micro Controller
implementations. These simulators usually run much faster (per server) then the
one developed in this article, but they have two major drawbacks: they require
speciality equipment and they are limited to the storage and processing capacity
of a single device. Our solution is able to scale to multiple commodity machines
extending the storage capacity to very large data sets. At the same time a pos-
sible integrated approach between Hadoop and GPU approach would be very
interesting to attempt as it might enable a best of both worlds implementations
were the drawbacks of both system can be counterbalanced.

There have also been attempts at using clustered computing, using either
c++ and Message Passing Interface, or Java and remote method calls. Both
methods showed great potential but were limited by the communication overhead
of the implementations. Our approach uses a distributed database to enable our
communication and a slightly different approach to simulation (given tour multi
path approach). Although Hadoop is a more rigid infrastructure then the other
used, its rigidity also mitigates some of the issues faced with bespoke clustering
technologies.

2 Preliminaries

2.1 Map Reduce

MapReduce [3] is a framework developed circa 2004 at Google in an attempt to
deal with their very large scale data warehousing needs. Although the Google
implementation of the Map Reduce ecosystem is proprietary, Doug Cutting from
within the Apache foundation developed an open source implementation under
the project name Hadoop. We use this implementation for our experiments. The
Hadoop ecosystem has many subcomponents including a file system, coordina-
tion applications, meta programming languages and many other components.
For the purposes of our discussion we will focus on the core map reduce func-
tionality developed as a basis for distributed computation within applications.
Map Reduce is conceptually based on functional programming paradigms or to
be more specific two primitives (higher order functions) called map and reduce.

Map (in functional programming) is defined as a higher order function with
type signature: map :: (α → β) → [α] → [β]. In other words a function that
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acts upon a vector of data in one data domain α and returns a vector of data
in another data domain β having transformed from domain α to domain β by
the given transformational function. In more familiar syntax if we have an input
vector A = [a1, a2...an] and a function f , then map(A, f) = f(A) = A′ where
A′ = [f(a1), f(a2)...f(an)]. The data type of the resulting vector does not have
to match the data type of initial vector but the cardinality of the two vectors
must be equal.

Reduce also referred to as fold, accumulate, compress, or inject (in functional
programming) is defined as a higher order function with type signature reduce ::
(α→ β → β)→ [α]→ β → β. In other words a function that acts upon a vector
and returns the aggregation of the elements within that vector, aggregating based
on the provided function. If we had our vector V = [v1, v2..vn] and our reduce
function g), then reduce(V, g) = v′ where v′ = g(v1, g(v2, (...g(v(n − 1), vn)))
(assuming a right side evaluation). In this case the type of V and v′ are the same
but the cardinality of the input vector is n while the cardinality of the result
is 1. At the same time the reduce function g must be associative, commutative,
and distributive as to allow for random ordering in the reduce process. Although
in this example the reduce is right evaluated, evaluation can happen in any
direction and in any order.

Map-Reduce within the context of Hadoop deviates from this strict definition
of functional programming in a couple of ways. Most notable is the format of
the input and output of both the map and reduce function, which are defined
as a tuple of order 2. These tuples also referred to as a Key Value pair 〈K,V 〉
are the basis of all interactions within Hadoop. The Map task takes input of
a 〈K,V 〉 pair and produces i 〈K,V 〉 pairs (where 0 ≤ i ≤n). In the next step
(reduce) all 〈K,V 〉 pairs where the key is identical are passed to the reduce
function. Basically the input of a Reduce function is a key with a list of values
〈K, [V, V, V...]〉. In the reducer (the execution of a reduce task) all of the values are
reduced together and a series of j 〈K,V 〉 pairs (where 0 ≤ j ≤ m) are produced
which are the output of the entire process. The output of one execution can
now become the input of next run of the application in series of executions. The
Map and Reduce processes are written in Java and the execution of a Map or
Reduce task entails running the map or reduce function on a server in a cluster
of machines. A Mapper is a server in the cluster which is running a map task
at that particular instance in time. Upon initiation of the application all servers
run map tasks until the entire input set has been exhausted. Afterwards all
servers become reducers and run the reduce function until again all 〈K,V 〉 pairs
produced by the mappers are exhausted. The resultant 〈K,V 〉 pairs produced
by the reducers are written out to the file system. Since all of the processes run
on independent servers with very little shared between processes, clusters can
scale up to thousands of servers.

To give an example of MapReduce we can look at the canonical example, word
count. Word count calculates the number of occurrences of each word within a
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Fig. 1. Example of the flow of data with a Map-Reduce execution
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text. The Map task takes as input a chunk of the file (the key being the byte offset
of the file and the value is the actual test in the file). The map task tokenizes
the test and creates 〈K,V 〉 pairs where the key is the actual word and value is
the number of occurrences of the word (1 initially). The reducer takes in each
unique key ( in our case word) and does a sum of the integer values associated
with it, fundamentally doing a world count. Figure 2 exemplifies the case where
we have two input files one with the text “hello world” and the other with the
text “goodbye world”

Fig. 2. Steps of Map-Reduce word count

2.2 NoSQL Database

NoSQL is actually a blanket term to describe a suite database technologies which
are not compliant to standard relational paradigms. Most of the underlying
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concepts come fromaGoogle article [4] which describes a technology for distributed
databases. NoSQL comprises of many different database technologies including
document orient databases, graph databases, columnar stores and the technol-
ogy we used for our experiments Key-Value stores. Most NoSQL databases use a
lightweightmechanism for storing and retrieving data in exchange for greater scal-
ability and availability. Oracle NoSQL database (the implementation of NoSQL
used for this article) has similar properties to a map or dictionary from computer
science theory. The database is able to store a key value pair, and it’s able to re-
trieve a value based on its corresponding key. In Oracle NoSQL database the keys
are defined in a slightly more complex way. A key is composed of two components:
a major component and a minor component, which are both a list of strings.

Fig. 3. A diagram of how a key is composed

When data is retrieved from the database, partial keys can be used allowing
the retrieval of multiple values at the same time. A partial key (one that only
contains the major component and i minor components where 0 ≤ i < n−1 and
n is the number of minor components) is used to retrieve multiple keys which
are logically linked and are processed together.

From a physical data storage perspective NoSQL uses a very similar architec-
ture to a Hadoop cluster. NoSQL achieves its scalability and availability through
a distributed storage mechanism. Multiple parallel servers are used to store the
data. Usually the data is mirrored across multiple distinct servers. If a server
is lost, the data can be retrieved from another server with the same data. At
the same time if client requests data from an overloaded server a jump can be
made to another server with lower utilization and the same data. Hashing al-
gorithms are employed to eliminate the need for a linear search of all servers
when retrieving data. In Oracle’s NoSQL Database the major component of the
keys is used as the indicator for which server to use, as an effort is made to keep
all keys with identical major components together on one server. This enables
faster multi-retrieve executions.

There is an important side effect of distributed databases relating to the
consistency of data, or better said the lack there of. NoSQL databases uses a
term called eventual consistency which states given a long enough period in which
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Fig. 4. A diagram of a NoSQL physical deployment

no updates occur, the system will reach a consistent state, but at a particular
point in time there is no guarantee the system will be consistent. Given the
distributed nature of the storage (usually triple mirroring) an update pushed to
one sever is not guaranteed to propagate to all servers before a reading of the
exact data point, hence a read might offer an old version of that data point.
These limitations must be considered when designing an application against a
NoSQL database. For more information see [9].

2.3 Parallelism

The subject of parallelism in computing can be split into many different cat-
egories including symmetric multiprocessing, grid computing massive parallel
processing, grid computing and many more. The focus of this article will be ex-
clusively grid computing, the distribution of work to multiple physical machines
weakly linked through commodity networking, an architecture in which many of
the worlds super computers share. This architecture allows for massive scaling
(theoretically to unlimited number of processing units) while at the same time
eliminating the need for exotic hardware which is both expensive and difficult
to come by. An excellent overview and description of Parallelism in computing
and the different can be found at [8]. Looking at the map and reduce function
from a parallelism perspective it is quite natural that they distribute very nicely.
Looking at the map function there is no link or sharing between the mapping
of individual elements of a vector hence the map function can be executed on a
different node of a cluster for each element of a vector with linear scaling and no
performance impact as the number of nodes increases (baring data movement
issues). The reduce function shares a similar parallelism capability (assuming
associativity, commutativity, and distributivity) as little as two elements can be
reduced (combined) on each node of the cluster and (given a set of n unique keys)
we can theoretically scale to a n node cluster. It is to note there is some com-
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munications overheard as the data produced by a map task (with identical keys)
needs to moved on a single node of the cluster to be able to run the reduce func-
tion. For practical purposes implementation is usually limited to thousands of
nodes due to network limitation although larger implementations are suspected
to exist at web 2.0 corporations.

2.4 P Systems

A (cell like) P system is a computational model inspired by the chemical reactions
across cell membranes. The formal definition with which we will be working is
as follows:

Definition 2.41 A P system is a tuple

Π = (V , μ,W1, . . . ,Wn,R1 . . .Rn)

where

– V is the alphabet (a finite and nonempty) set of objects;
– μ is the membrane structure, a hierarchical arrangement of compartments

named membranes identified by integer 1 to n;
– Wi, where 0 ≤ i ≤ n, are strings over V, describing the multisets of objects

initially placed in the i regions of μ;
– Ri, 0 ≤ i ≤ n, is a finite set of evolution rules for each region i where

evolution rule r is of the form

r : u→ (a1, t1) . . . (an, tn) (1)

where u and ai are multiset over V, and ti is an element from μ; ti is limited
to the current membrane, the region immediately outside the current region
or any of the region immediately inside the current region.

Although many variations on P system exist, for the purposes of this article
we will concern ourselves with only this very basic definition (above) to look
at how Big Data technologies can help in handling the state explosion prob-
lem. Complications such as polarization can be added to the computations upon
request. It is also important to note that although this definition can have P
systems which can only have one possible evolution path, our focus will be on
non-deterministic P system with multiple possible evolutions for every mem-
brane, in every configuration.

2.5 Computation Tree

A computation tree is a directed acyclic graph representation of the evolutions
of a P system. The graph has a single root node (which represents the initial
multiset of the P system), and every edge represents a possible evolution of the
P system. All subsequent nodes in the graph are possible evolutions of the P
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system where the edges leading to the node represent the rules which must be
applied to reach that configuration. Our computation tree assumes maximally
parallel execution. For example, if we have the following P system:

Π = (V , μ,W1,R1),

where

– V = {a, b}
– μ = []′1
– W1 = a2

– R1 = {r1 : a→ a, b; r2 : a→ b},
Then we would see the computation tree as shown in Figure 5:

Fig. 5. A sample of a computation tree

3 Building a P System Computation Tree with Hadoop
and NoSQL Database

In developing the computation three of a P system we will be using the Oracle
NoSQL database and Hadoop to facilitate a massively parallel calculation of
the computation tree. The use of these technologies bring several complications
as to ensure all relevant steps are parallelizable, hence we have developed the
following steps to calculate the computation tree.

1. Load the components (V , μ,Wn,Rn) of the P system into the NoSQL
database;

2. Calculate all possible rule combinations for each multiset at the current level
of the computation tree;
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3. Calculate the multisets which are produced by applying the rule sequences
discovered in step 2;

4. Repeat Step 2 and 3 for subsequent levels of the computation tree;

It is important to note that we are creating the computation tree in a breath
first manner, where all of the nodes for a level n are calculated before any of the
nodes for level n+ 1 are discovered.

3.1 Representing a P System as a Series of 〈K, V 〉 Pairs

A 〈K,V 〉 is a very simple model for storing data and there are theoretically
many ways in which a P system can be represented as a series of pairs. For our
implementation we focused on developing a model that is most conducive to the
computation tree calculations we wanted to do. In that way there was an explicit
effort in using integers to represent elements of the P system rather than strings,
as integer operations are much more efficient than string operations. Further
integer representations allow for matrix and vector mathematics to be directly
applied during our computations without the need to consider how strings would
be handled. The second design decision was to group elements together by their
use within our calculations and not by how they fit in logically within a P system.
Given these design principles we used the following 〈K,V 〉 pairs to represent a
P system Π = (V , μ,W1, . . . ,Wn,R1, . . . ,Rn).

Alphabet V
There is a single key which stores the alphabet. Its corresponding value
is a Java serialized object which stores an array of strings representing the
alphabet. This is the only place the actual alphabet is stored, and any further
mention of an alphabet object is done through the integer index of this array.
For example, if our alphabet is V = [α, β, γ, δ], then we use number 0 to
reference α, number 1 for β, number 2 for γ and so forth.

Membrane Structure μ
The absolute membrane structure is not very interesting to our calculations,
rather the children and parent membranes of each membrane is useful. In
that way for each membrane there are two 〈K,V 〉 pairs stored. A 〈K,V 〉 to
record all children of a membrane (materialized as s Java serialized array of
strings) and a second 〈K,V 〉 to record the parent membrane (as a simple
string). Although storing both parents and children is redundant, the over-
heard is minimal and it eliminates the need of searching relationship trees
to discover ancestry. This is also a 〈K,V 〉 pair which holds a list of all mem-
branes IDs (without any semantic information) to enable iteration through
all membranes.

Rules R
The rules are the most performance critical element of our application as they
are used in many of the calculations that are done. The rules are grouped by
membrane and split by sides of the equation. The rules are stored as integer
matrices where each row represents a rule and each column represents an
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alphabet object. For example, if we have

V = {a, b, c}
R1 = a1c2 → a2b1

R2 = b2 → a2c1

then the first matrix will be an aggregation of the rules left sides. We call
this the consumers

consumers =

[
1 0 2
0 2 0

]
.

The second matrix will be an aggregation of the rules right sides. We call
this the producers

producers =

[
2 1 0
2 0 1

]
.

For each membrane there will be these two matrices stored as Java serialized
objects of two dimensional arrays. The decision to split the rules into left side
and right side was made out of the realization that these two elements will be
used independently of each other. When dealing with rules which produces
objects in multiple membranes we transform the matrix into a cube where
the third dimension maintains a list of all relevant membranes.

Fig. 6. Cube representation of the rules of a membrane

This storage schema assumes a dense coding of the objects and is very ef-
ficient if most of the alphabet objects are used in every rule. If there is a
very sparse use of objects within rules then this coding mechanism may use
excess storage.

Multisets
The multisets are stored as an array of integers, similar to the way rules
are stored. The index of a multiset array corresponds to an object from the
alphabet and the integers stored represents the multiplicity of that object.
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3.2 Storing a Computation Tree as a Series of 〈K, V 〉 Pairs

Nodes

To represent a tree as a series of 〈K,V 〉 we use the smallest piece of information
to store in each 〈K,V 〉 pair, particularly we store the multiset of a membrane.
For P systems which have multiple membranes each membrane has its own node,
so a configuration of the P system is actually comprised of multiple 〈K,V 〉 pairs.
When storing a node of the computation tree the key under which it is stored
contains a significant amount of meta-data. In defining the key we exploit the
make-up of a key described in section 2.2. There are three different pieces of
information stored in the key of a node.

1. The level of the computation tree this node corresponds to;
2. The membrane of the P system this node corresponds to;
3. An unique id for this particular configuration.

The first two make up the major component of the Key, while the third makes
up the minor component.

Major Component: List (Level of tree , membrane number)
Minor Component: (Unique id)

It is important to note the Unique id does not uniquely identify a node in
the computation tree, and is only unique in combination with the membrane
number. For example, if there are 5 membranes in the P system then there
should be 5 different nodes with the identical Unique id, one for each membrane,
and combined they make up one configuration. This is done so each 〈K,V 〉 pair
in the database is the minimum unit for calculation, as the computation of a
membrane is completely independent of all other membranes. This will fit in
very nicely into the MapReduce tasks described in the next section.

Edges

For each node of the tree there are two additional data points stored in the
database. These represent the meta-data which would normally be stored in the
edges of the graph:

1. A list of all child configuration for each Unique ID,
2. A list of all rules applied on a particular evolution,

This information is stored separate to the tree nodes as it applies to multiple
nodes simultaneously. Each node represents only one membrane from a config-
uration and it is trivial which membrane is the child of which membrane. This
mapping can only be done at the configuration level as there is a directly link
between the parent and child of a configuration. The same applies to storing
which rules were applied to go from one configuration to another. It is very diffi-
cult to separate which rules produced all of the objects in a particular membrane
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given membrane communication as such, the rules applied are per configuration
not per node. As described in the previous section the Unique ID identifies a
configuration so it is quite easy to store a 〈K,V 〉 where the key is the unique
ID and the value is a Java serialized array of all the children or a list of rules
applied. These two supplementary 〈K,V 〉 enable the traversing of the tree in a
logical way.

3.3 Determining All Possible Evolutions

One of the most critical and performance intensive aspects of developing the
computation tree is discovering the possible evolutions of a configuration (par-
ticularly when dealing with a non deterministic P system). This calculation is
non parallelizable and the performance of the entire system is gated on the al-
gorithm used to discover all possible evolutions. The applicability of a rule is
context dependent (dependent on the particular configuration) hence reuse of
calculation is difficult, and brute force evaluation is a linear search to a poten-
tially very large set of all possible rule combinations. In this section we have
developed two algorithms, one for the general case, and one optimized for a
specific case.

General Case Algorithm
To calculate all of the possible evolutions of a P system from a given configuration
for the general case where there is not apriori information about the rules within
a membrane we use a brute force algorithm. This algorithm goes through each
of the rules and discovers the maximum number of time a particular rule can
be applied in a context independent space (i.e. ignoring all other rules). Next
we calculate all of the possible vectors of rules which could possibly be applied.
For a Pystem where the maximum time rulei can be applied is max(ri), there
should be at most Πmax(ri) combinations. Once every possible combination is
calculated each one of these vectors is tested for correctness and maximality. If
they pass both criteria then they are stored in list of possible evolutions of the
P system in that particular configuration. The algorithm for checking a possible
vector is described next.

To describe our function we have the following definitions:

– R is the vector of rules in the membrane;
– X is the vector of rules under test;
– M is the configuration (multiset) of the membrane;
– applyAllRules is a function which takes a vector of rules and returns the

multiset resultant from applying those rules;
– applicable check if rule r is applicable given the multiset s.

The algorithm is as follows:

C ← applyAllRules(R)
if C =M then
return maximal
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else
for all c ∈ C do
if |ci| > |mi| then
return incorrect

end if
end for
for all r ∈ R do
if applicable(r,M−C) then
return not maximal

end if
end for
return maximal

end if

Once every possible combination of rules has been tested with this algorithm,
the rules vectors (which return maximal) are the vectors which produce all pos-
sible evolutions of the P system from the specified configuration for that mem-
brane.

Special Case Algorithm
If we impose certain restriction on the acceptable rule, new solving mechanisms
for finding all possible maximal combinations of rules become available. Similar
approaches have been tried by: [6].We offer the following explanation for our
approach:

For M a given multiset and R a set of rules, where ri is of the form u →
(a1, t1) . . . (an, tn) and |ri| represents the number of times a rule i is applied,

∀m ∈ M, Σ|ri| ≤ |m| (2)

where u of ri contains m

But if
∀v ∈ V∃r ∈ R : r = v → α (3)

where V is the alphabet of the P system and α is an arbitrary vector over V (in
other words if every object in the multiset is consumed),
then

∀m ∈M, Σ|ri| = |m|. (4)

Combine (4) with the fact that |ri| ∈ N, you get a system of linear equation which
can be solved. The solutions to the system of equations represent all possible
combinations of rules which satisfy the maximality requirements.

Numerical Example: If we have the following configuration:

V = {a, b, c}
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M = {a4, b5, c3}

R =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r1 = a1, b1 → α

r2 = a1, c1 → α

r3 = a1 → α

r4 = b1 → α

r5 = c1 → α

where α is any arbitrary multiset over V

By expanding the equation (4) we get⎧⎪⎨⎪⎩
|r1|+ |r2|+ |r3| = 4

|r1|+ |r4| = 5

|r2|+ |r5| = 3

This now becomes a problem of n equations and m unknowns. In order to solve
the problem we will rewrite the equations as an augmented matrix.⎡⎣1 1 1 0 0 4
1 0 0 1 0 5
0 1 0 0 1 3

⎤⎦
If we perform Gaussian elimination on this matrix with the solution, we get⎡⎣1 0 0 1 0 5
0 1 0 0 1 3
0 0 1 −1 −1 −4

⎤⎦
From here we have two free variables, we will call them t1 and t2 and the solution
is:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r1 = 5− t1

r2 = 3− t2

r3 = −t1 − t2 + 4

r4 = t1

r5 = t2

which produces an infinite number of solution, but we know that |ri| ∈ N, so we
can add the following restrictions on t1 and t2
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0 ≥ t1 ≥ 5

0 ≥ t2 ≥ 3

t1 + t2 ≤ 4

and if we plug in all acceptable values for t1 and t2 into the solution matrix,
we get the 14 different possible evolutions of that particular configuration.

This algorithm is not exceptionally efficient as Gaussian elimination is O(n3)
but as rules in a membrane do not change through the evolution of the P system
we can solve the equation for a generic multiset and then simple plug in the
values when calculating all possible evolutions. This will significantly reduce the
amount of time required to calculate all possible evolutions.

3.4 Determining Next Level’s Nodes

Once we have calculated all possible evolutions of a particular configuration of a
P system, then the calculation of the next level of the computation tree is quite
straight forward. We follow the steps:

1. Take one possible rule application sequence (calculated in section 4.3)
2. Given the particular input set apply the rule combination and get the output

multiset
3. Take that multiset and do a cross product with the multisets of all of the

other membranes available for the unique ID
4. Break up the resultant configuration and store each node in a unique key in

the database
5. Repeat for all rule application sequences and possible cross products with

different membranes

Following these steps we are able to compute all of the children nodes for a
particular configuration of the P system.

3.5 The Map Reduce Implementation

Developing a computation tree for a P system requires the calculation of all
possible evolutions of each node in the tree recursively. As each node’s possible
evolution is absolutely independent of another, its calculation can be performed
independently and most importantly in parallel. To facilitate this parallelism we
use the Map construct of the Hadoop infrastructure, as it allows us to paral-
lelize very naturally this calculation. As the calculation of the next level’s nodes
requires the aggregation of multiple membrane’s possible evolutions, the Re-
duce construct is used to perform this task. Each MapReduce cycle calculates
one more level of the computation tree, and as multiple calls are made to the
MapReduce infrastructure the output of one cycle becomes the input for the next
cycle. In other words, the Map task implements one of the algorithms described
in section 4.3 and stores the results under the Unique Id of the configuration.

The Reduce task receives all of the results from the MAP task for a particular
configuration (a list who’s cardinality is equal to the number of membranes
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in a configuration). In the Reduce task a cross product between the possible
configurations of each membrane and stored the products as the nodes of the next
level. For example, if we have 3 membranes and each membrane has 4 possible
evolutions, then we would store 192 nodes in the computation tree (assuming
all of the configurations produce objects in all of the membranes). The cross
product of all of the possible evolutions is 4 × 4 × 4 which is 64. Each of those
configuration has objects in all three membranes, but in the computation tree a
node only represents one membrane, hence for each configuration there will be
3 nodes stored in the database; therefore 64× 3 = 192 nodes stored.

4 Experimental Results

We developed several P systems of varied size to determine the time required
to generate a computation three of n levels for a particular P system. We also
vary the number of servers in the cluster to be able to get an idea of scaling
possibilities. The cluster was composed of 16 servers each with a single core 2 duo
processor 4 GB of Ram and a single hard disk on a SATA bus. It is important
to note a single server in a modern Hadoop cluster can be more power than
the sum of the 16 machines we used, as such the following results need to be
taken within that context. Most of the 16 nodes were configured identically with
on server dedicated to administrating the Hadoop cluster and another for the
NoSQL database. These two services (Haddop MapReduce server and NoSQL
storage server) run concurrently on the same physical machines with on core for
each process.

4.1 Testing Different Algorithms

We experimented with the different algorithms described in section 4.3 to notice
the performance difference between the algorithms. The experiment tried to find
all of the possible evolutions of a single membrane given a different number of
rules. The multiset used for each experiment was a vector with one of each ele-
ment in the alphabet ( V ). This experiment was performed on a single machine.
These are the results:

Number Of Rules Time for General Case (ms) Time for Equation Solving (ms)
10 15 86
20 1146 188
30 1915509 891
40 8hrs + 30444
50 ??? 7808309 (2.16 hrs)

To understand the results there are a couple of practical notes to consider for
the Equation Solving algorithm.

1. The calculation of the reduced row echelon form matrix was not taken into
consideration for the total execution time, since it is calculated only once at
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the loading of the P system into the database, hence not relevant in repeated
executions.

2. Although the example in section 3.3 showed lower and upper bounds for each
free variable more complex execution usually only provide lower bounds for
the free variables. As such it required the calculation of theoretical upper
bounds, and then doing a linear search through all combinations of free
variables to check if the comply with restrictions imposed by the equations
in the reduced matrix.

3. The use of the Equation Solving algorithm has a static set-up time which
is why for small search sets the General Case algorithm is more efficient as
there is no set-up required for that algorithm.

4.2 Testing Number of Nodes

We used some P systems with varying number of rules to test how many nodes
we could store in the database and how much space would be required. All
experiments were performed with simple mirroring of data across the cluster.

Our first test used a simple P system with 4 membranes, 3 objects and 5
rules per membrane. This P system had a high number of possible evolutions
per membrane. Our experiment of running this P system had:

Number Of Nodes Storage Space Execution time
65471486 84.9 GB 16.54 hrs

This experiment did not finished as Hadoop time-out start to disrupt the exe-
cution.
We did run the computation again without clearing the database to see if more
nodes could be stored. The results were:

Number Of Nodes Storage Space Execution time
77186334 105.4 GB 5.52 hrs

This execution was exited by the system due to database issues. The Oracle
NoSQL Database caches the keys in memory for single IO retrieval when ac-
cessed, and some of the servers running the database ran out of memory. This
forced the keys to be cached on the hard disk, significantly reducing performance
and timing out the database.
We also used a much larger P system with 5 membranes, 10 objects and 30 rules
per membrane and the following results were achieved:

Number Of Nodes Storage Space Execution time
40445334 90 GB 10.52 hrs

This execution also timed out due to system resource limitations.
These experiments were designed to show the size of the computation trees which
could be stored in the database. The number of nodes stored is not the total
number of nodes which exist in the computation tree but the number of nodes
store before system stability issues interfered. We can extract from those results
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we have about 770 thousand nodes per gigabyte, and 450 thousand nodes per
gigabyte for the respective P systems. The storage requirements do not grow
perfectly proportionally with the number of objects in the multiset as metadata
describing the edges of the tree is also stored in the database which is not affected
by the alphabet size.

4.3 Testing with Different Numbers of Servers

We will also vary the cluster size from 2 to 16 servers with the same P system
to test the scaling factor use a P system of 3 membranes 10 objects and 25 rules
per membrane. We observed the following results:

Tree Level Number Of Nodes 2 Servers 4 Servers 8 Servers 16 Servers
1 18411 2m 51s 1m 22s 1m 43s 1m 18s
2 1438047 55m 34s 24m 12s 12m 44s 7m 56s

This experiment really demonstrates the scaling factor of Hadoop where doubling
the number of nodes effectively doubles the performance of the application. The
results of the experiments were significant despite the cluster being composed of
low power machines. Hadoop clusters have scaled to thousands of servers where
each server was significantly more powerful than the machines used for these
tests. This experiment also shows the potential variance of the system. The first
line of the table required to derivation of a single node (the root node) hence
no parallelism was possible. All results for the first derivation should be the
same as the number of servers does not matter for a non parallelisable task. The
variance in the numbers is because of unpredictable elements in the Hadoop
infrastructure.

4.4 Variance in Results

Hadoop (as an infrastructure) is designed for large scale deployment of a dis-
tributed system (100 - 1000 of servers), and there is a high potential for server
failure, server slowdowns, and data loss, situations which Hadoop is designed to
deal with. These include data replication across servers (to deal with server loss)
and speculative execution to deal with individual server performance issues. As
exact execution path are both unpredictable, the timing results provided in this
article come with a potential error factor. Repeated experiments will produce
the same results but with different execution times, although these deltas are
usually within an acceptable margin.

5 Practical Uses

To demonstrate a practical use of this application we developed a tool which
would perform (Context Dependent Rule Coverage) CDRC test oracle discovery
using the computation tree stored on the database. CDRC is a testing strategy
where all possible sequences of 2 rules which can sequentially occur during the
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simulation of a Psystem are tested. For more details on CDRC please see article
[5] . The process of discovering tree walks, which cover context dependent rules,
is as followed:

1. Go through all of the rules and discover the CDRC rule pairs. Store these
inside the NoSQL database.

2. Run a Map task which take as input a unique configuration at a specific level
of the computation, the goes through all children nodes of that configuration
and tests the applied rules of the two steps.

3. Each evolution of the P system (which covers a CDRC rule pair) is stored
and the CDRC pair is removed from the database as it is discovered.

6 Conclusion

In this article we have shown how big data technologies can be used to massively
extend the reach of our P system simulators and calculators. The use of these
technologies constituted several conceptual elements:

1. The use of a NoSQL database to store the computation tree of a P system.
2. The use of a Hadoop Map task to compute all possible evolutions of a mem-

brane.
3. Two different algorithms which can be used to compute the possible evolu-

tions of a membrane.
4. The use of a Hadoop Reduce task to simulate membrane communication

with the context of developing a computation tree.
5. The implementation of this code which scale to computing and storing mil-

lions of nodes of a computation tree within a distributed storage to allow
sub second access to the data even on low grade hardware.

6. The explanation and implementation of a possible use of the computation
tree in Context Dependent Rule Coverage testing.

We can now extend the use of Hadoop and NoSQL to empower P system to
simulate real world problems and possibly find solutions as we now have a viable
strategy for potentially unlimited scaling.

Further work will now be performed to extend the application both from a
technology perspective and a P system perspective. We will extend the tech-
nology to allow for other NoSQL database to underpin the system as to allow
for the use of server rental services. We will also try the extend in the type of
Psystem which can be simulated including conditional rules. We will also look at
using this technology for different practical purposes including different testing
strategies.

In working with the current code base we will try to extend the existing
code in several ways. We will try to use theories from numerical computing
to find better implementations for generating all possible evolutions, as well as
try to implement that particular component using GPU or APU computation
to accelerate execution time. As an extension of that idea, the Hadoop core
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libraries will be extended to allow for mixed software hardware simulators to
function as a system. Lastly, to reduce the number of nodes in the tree we will
use graph theory to find loops and use pointer references rather then expand
those branches. That would aid in both reducing the number of nodes and the
complexity of walking the tree. Potentially, we will also look at implementing
algorithms which find patterns in the graph as to further reduce the number of
nodes and the computation load.

For access to the source code for this application go to GitHub at URL:
https://github.com/alexciobanu/psystem
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Abstract. Continuing the study of connections between classical and
P automata variants, we show that dP automata, i.e., distributed sys-
tems of P automata, where the input multiset is mapped to the set of
strings consisting of all permutations of its elements, are as powerful as
the class of distributed systems of special counter machine acceptors.
These variants of counter machines read multisets (represented as sets
of all permutations of their elements) and manipulate counters in a con-
ventional manner.

1 Introduction

P automata are purely communicating P systems accepting strings in an autom-
aton-like fashion. In the standard case they are based on antiport systems with
promoters or inhibitors. The concept was introduced in [3,4]; for a summary on
P automata the interested reader is referred to Chapter 6, [13]. Elements of the
language (over some alphabet) of a P automaton are obtained by some mapping
of the multiset sequences which enter the system through the skin membrane
during an accepting computation.

Studying simple, non-erasing mappings, it was shown that if the rules of the P
automaton are applied sequentially, then the accepted language class is strictly
included in the class of languages accepted by one-way Turing machines with a
logarithmically bounded workspace (1LOGSPACE), or if the rules are applied
in the maximally parallel manner, then the class of context-sensitive languages
is obtained [1].

If the input mapping is defined in such a way that it maps a multiset to the set
of strings consisting of all permutations of its elements (we denote this mapping
by fperm), then a class of languages is obtained which is strictly included in
the class of languages of so-called restricted logarithmic space Turing machines
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(r1LOGSPACE) [6]. (In the case of restricted logarithmic space Turing machines,
the actual workspace available for a computation is dynamically changing: it
is in logarithmic accordance with the length of the already consumed input,
and not with the total input length.) To prove the statement, special variants
of counter machines, called RCMA (restricted counter machine acceptors) and
SRCMA (special restricted counter machine acceptors) were introduced in [6].
These counter machines manipulate their counters in a restricted, but more or
less conventional manner, but unlike ordinary counter automata, they are able
to read several input symbols in a single computational step.

Motivated by communication complexity questions, the notion of a distributed
P automaton (a dP automaton, in short) was introduced in [12]. Such a system
consists of a finite number of component P automata which have their separate
inputs and which may communicate with each other by means of special antiport-
like rules. A string accepted by a dP automaton is defined as the concatenation
of the strings accepted by the individual components during a computation per-
formed by the system [12]. The generic variant of dP automata uses the mapping
fperm to define its language, that is, a string accepted by a component P au-
tomaton is the concatenation of strings which are permutations of the objects of
the multisets imported by the skin membrane during an accepting computation;
all combinations are considered.

In the last few years, dP automata were studied in detail (see, for example [12],
[8], [14], and [15,16]). It was shown that using the mapping fperm, dP automata
are strictly more powerful than P automata (with fperm), but the language
family accepted by them is strictly included in the family of context-sensitive
languages. Investigations have also been made with the aim of comparing P and
dP automata classes to classical or well-known classes of acceptors. Connections
between dP automata and multi-head finite automata were studied in [5], based
on the concepts of agreement languages of dP automata and the notion of a two-
way dP automaton. In [5], it was shown how the languages of non-deterministic
one-way and two-way multi-head finite automata can be obtained as the agree-
ment languages of one-way and two-way finite dP automata. (A dP automaton
is finite if the number of its configurations is a finite number.)

Continuing this line of research, in this paper we show that the classes of
concatenated and agreement languages of dP automata with mapping fperm
and working in the nondeterministic maximally parallel mode, are equal to the
classes of concatenated and agreement languages of distributed systems of special
restricted counter machine acceptors.

2 Preliminaries and Definitions

We assume the reader to be familiar with the basics of formal language theory
and membrane computing; for details consult [18] and [13].

An alphabet is a finite non-empty set of symbols. For an alphabet V , we
denote by V ∗ the set of all strings over V ; if the empty string, λ, is not included,
then we use notation V +. The length of a string x ∈ V ∗ is denoted by |x|. For
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any symbol a ∈ V , |x|a denotes the number of occurrences of the symbol a in x;
and for any set of symbols A ⊆ V , the number of occurrences of symbols from
A in x is denoted by |x|A.

A finite multiset over an alphabet V is a mapping M : V → N where N

denotes the set of non-negative integers; M(a) is said to be the multiplicity
of a in M . The set of all finite multisets over an alphabet V is denoted by
V ◦, and we use the notation V ⊕ for denoting the set of nonempty (finite)
multisets. A multiset M can be represented by any permutation of the string

w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where V = {a1, . . . , an}. The empty multiset

is denoted by λ as in the case of the empty string. If confusion may arise, we
make explicit whether we speak of a string or a multiset.

We denote by fperm the mapping which maps a multiset M over V to the set
of its string representations, that is, fperm : V ◦ → 2V

∗
where V = {a1, . . . , an},

and

fperm(M) = {w′ ∈ V ∗ | w′ is a permutation of the

string a
M(a1)
1 a

M(a2)
2 . . . aM(an)

n }.
A P system (or a membrane system) is a structure of hierarchically embedded

membranes (a rooted tree), each membrane (node) having a unique label and
enclosing a region containing a multiset of objects. The outermost membrane
(the root of the tree), called the skin membrane, is unique and usually labeled
with 1. Each region (membrane) is associated with a set of rules over multisets
of objects which are used for changing the configuration of the P system.

An antiport rule is of the form (u, in; v, out), u, v ∈ V ◦ for a finite set of
objects V . If such a rule is applied in a region, then the objects of u enter from the
parent region and in the same step, objects of v leave to the parent region. If only
(u, in) or (u, out) is indicated, then we speak of symport rules. (Note that the
meaning of the “in” tag in these rules is different from the meaning of the target
indicator “in” in the rules of type u→ (v, in) used in other types of P systems.)
Antiport rules can be associated with promoter or inhibitor multisets of objects,
denoted by (u, in; v, out)|z, or (u, in; v, out)|z̄, z ∈ V ◦. In the first case the rule
can only be applied if the objects of the promoter multiset z are all present in
the given region, in the second case, the rule can be applied if no element of z
is present. Analogously, promoters or inhibitors can be added to symport rules
as well. The environment of the P system is supposed to contain an unlimited
supply of objects, thus if an antiport rule (with promoters or inhibitors) is to
be applied in the skin region, then the requested multiset is always available to
enter the system.

A P automaton (of degree k) is a membrane system Π = (V, μ, w1, . . . , wk,
P1, . . . , Pk) with object alphabet V , membrane structure μ, initial contents (mul-
tisets) of the ith region wi ∈ V ◦, 1 ≤ i ≤ k, and sets of antiport rules with
promoters or inhibitors Pi, 1 ≤ i ≤ k. Furthermore, P1 must not contain any
rule of the form (u, in) (neither (u, in)|z or (u, in)|z̄), u ∈ V ◦.

The configurations of the P automaton (the actual k-tuple of multisets of
objects over V in the regions) can be changed by transitions. The transition is
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performed by applying rules according to the working mode of the P automa-
ton. For simplicity, we consider only the non-deterministic maximally parallel
(working) mode, where as many rules are applied simultaneously in the regions
at the same step as possible (this is why we exclude symport rules which only
import objects to the skin region from the environment). Thus, a transition in
the P automaton Π is (v1, . . . , vk) ∈ δΠ(u0, u1, . . . , uk), where δΠ denotes the
transition relation defined implicitly by the rules and the working mode of Π ,
u1, . . . , uk are the contents of the k regions, u0 is the multiset entering the sys-
tem from the environment, and v1, . . . , vk, respectively, are the contents of the k
regions after performing the transition. A sequence of transitions starting from
the initial configuration (w1, . . . , wk) is a computation.

In this way, there is a sequence of multisets which enter the system from the
environment during the steps of any computation. If the computation is accept-
ing, that is, if it enters an accepting configuration, then this multiset sequence is
called an accepted multiset sequence. Here we consider a configuration accept-
ing, if and only if it is halting, that is, if no rule can be applied in any of the
regions of the system.

From any accepted sequence of multisets over V , a string of the accepted
language, that is, a string over some alphabet Σ is obtained by the application
of a mapping f : V ◦ → 2Σ

∗
, mapping each multiset to a finite set of strings.

Let Π be a P automaton as above, and let f be a mapping f : V ◦ → 2Σ
∗
for

some finite alphabet Σ. The language over Σ accepted by Π with respect to f
is defined as

L(Π, f,Σ) = {f(v1) . . . f(vs) ∈ Σ∗ | v1, . . . , vs is an accepted

multiset sequence of Π}.

In [8] the authors consider P automata with fperm. Since in this case Σ does
not differ from V , we denote the accepted language by L(Π, fperm). The class
of languages accepted by P automata defined by mapping fperm is denoted by
L(PA, fperm). We note that the first appearance of fperm is in [7], where the
so-called analyzing P system, a closely related concept to the P automaton was
introduced, almost at the same time as [3].

A finite collection of P automata forms a distributed P automaton, a dP au-
tomaton, in short, introduced in [12]. A dP automaton (of degree n ≥ 1) is
a construct Δ = (V,Π1, . . . , Πn, R), where V is the alphabet of objects; Πi =
(V, μi, wi,1, . . . , wi,k, Pi,1, . . . , Pi,ki) is a P automaton of degree ki ≥ 1, 1 ≤ i ≤ n,
called the ith component of the system; R is a finite set of rules of the form

zi |(si, u/v, sj)|zj , 1 ≤ i, j ≤ n, i �= j, uv ∈ V ⊕, called the set of inter-component
communication (shortly, communication) rules of Δ; sl, 1 ≤ l ≤ n denotes the
skin membrane of Πl. The multisets zi, zj are promoters (or inhibitors) asso-
ciated to the rule which can be applied if region si and sj contain (or do not
contain) the elements of the multisets zi, zj , respectively.

We say that Δ accepts an n-tuple of multiset sequences over V , denoted by
(α1, . . . , αn), if the component Πi, starting from its initial configuration, us-
ing the symport/antiport rules (with promoters or inhibitors) as well as the
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inter-component communication rules in the non-deterministic maximally par-
allel way, takes from the environment the multiset sequence αi = vi,1 . . . vi,si ,
vi,j ∈ V ◦, 1 ≤ j ≤ si, 1 ≤ i ≤ n, and Δ eventually halts, i.e., enters an accepting
configuration.

Analogously to standard (non-distributed) P automata, we may associate a
language to a dP automaton by using a mapping from the object multisets to an
alphabet of symbols. In this paper we study systems with the mapping fperm,
see above. We note that in [3] the mapping to define the alphabet of the language
of the dP automaton was considered in a more general manner.

The (concatenated) language of Δ (introduced in [12]) with respect to the
mapping fperm, is defined as

Lconcat(Δ, fperm) = {w1 . . . wn ∈ V ∗ | wi ∈ fperm(vi,1) . . . fperm(vi,si ) and

αi = vi,1 . . . vi,si , 1 ≤ i ≤ n, for an n-tuple of

accepted multiset sequences (α1, . . . , αn)}.

In [5] two variants of languages based on agreement of the components were
introduced, namely, the weak and strong agreement languages. The strong agree-
ment language consists of all words which can be accepted in such a way that
all components accept the same sequence of multisets. In weak agreement lan-
guages, however, the accepted multiset sequences can be different, only the equal-
ity of the images of all accepted multiset sequences is required. Note that in the
special case of fperm, the two types of agreement languages coincide, since in
general (considering multisets from V ◦ containing at least two different symbols
a, b ∈ V ), the sets of words obtained as the images of two multiset sequences
under the permutation mapping are equal only if the multiset sequences them-
selves are also equal. Thus, to obtain a “weaker” requirement, similarly to the
weak agreement languages for more general input mappings in [5], we will use
here a variant of the notion defined as follows.

The (weak) agreement language with respect to the mapping fperm is defined
as

Lagree(Δ, fperm) = {w ∈ V ∗ | w ∈ fperm(vi,1) . . . fperm(vi,si ) for all 1 ≤ i ≤ n,

where αi = vi,1 . . . vi,si , 1 ≤ i ≤ n,

and (α1, . . . , αn) is an n-tuple of accepted multiset

sequences of Δ}.

In the case of Lconcat(Δ, fperm), the words accepted by the components are
concatenated to obtain the words of the language accepted by the dP automaton.
In the case of the agreement language Lagree(Δ, fperm), those words are accepted
by the dP automaton which can be obtained as the image of the accepted multiset
sequence of all of the components.

The classes of concatenated and weak agreement languages accepted by
dP automata using the mapping fperm are denoted by Lconcat(dPA, fperm) and
Lagree(dPA, fperm).
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Example 1. Let Δ be a dP automaton Δ = ({a, b, c, d}, Π1, Π2, ∅) with Πi =
({a, b, c, d}, [ ]1, d, Pi), 1 ≤ i ≤ 2, where P1 = {(ab, in; d, out), (c, in; a, out)}, P2 =
{(a, in; d, out), (bc, in; a, out)}.

This simple example system Δ has only one computation where Π1 and Π2

accept the following sequences of two multisets: In the sequence accepted by Π1,
the first multiset contains a symbol a and a symbol b, the second contains a
symbol c. In the sequence accepted by Π2, the first multiset contains a symbol
a, the second contains a symbol b and a symbol c. Thus, Δ accepts the pair
of sequences of multisets ({a, b}{c}, {a}{b, c}). (We enumerated the elements
between curly brackets, as in the usual set notation.)

Then, the concatenated language of Δ is Lconcat(Δ, fperm) = {abcabc, bacabc,
abcacb, bacacb}, while the agreement language is Lagree(Δ, fperm) = {abc}.

In the following we recall some notions concerning complexity classes used
to characterize classes of languages accepted by P automata. We start with a
notion from [1].

A nondeterministic Turing machine with a one-way input tape is restricted
logarithmic space bounded if for every accepted input of length n, there is an
accepting computation where the number of nonempty cells on the work-tape(s)
is bounded by O(log d) where d ≤ n is the number of input tape cells already
read, that is, the distance of the reading head from the left end of the one-way
input tape. The class of languages accepted by such machines is denoted by
r1LOGSPACE.

Motivated by restricted logarithmic space bounded Turing machines and P au-
tomata, the following two variants of counter machines were introduced in [6]:
A restricted k-counter machine acceptor M , an RCMA in short, is a (nondeter-
ministic) counter machine with k counters (holding non-negative integers) and
a one-way read only input tape. Thus, M = (Q,Σ, k, δ, q0, F ) for some k ≥ 1,
where Q is the set of internal states, Σ is the input alphabet, q0 ∈ Q is the initial

state, F ⊆ Q is the set of final states, and δ : Q×Σ∗×Ck → 2Q×Dk

is the transi-
tion relation, where C = {zero, nonzero}, denoting the two types of observations
the machine can make on its counters, D = {increment, decrement, none} de-
noting the operations the machine can execute on its counters. Note that δ is
finitely defined, that is, defined for a finite subset of Σ∗, and a counter can be
incremented/decremented by one at any computational step. Moreover,

(a) the transition relation is defined in such a way that the reading head is
able to read a finite multiset of symbols in one computational step in the
following sense: δ(q, x, α) = δ(q, y, α) for each x, y ∈ Σ∗ which represent the
same multiset, that is, when x, y ∈ fperm(M) for some M ∈ Σ◦. Moreover,

(b) the sum of the values stored in the counters can only increase as much in
one computational step as the number of symbols read in that same step,
that is, for all (q′, β) ∈ δ(q, x, α) we have |β|increment − |β|decrement ≤ |x|.

A special restricted k-counter machine acceptor, an SRCMA in short, is a
restricted k-counter machine acceptor M = (Q,Σ, k, δ, q0, F ), but in addition,
the transition relation δ is defined in such a way, that if the length of the string
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x read in one computational step is l, then the sum of the values stored in the
counters can only increase at most as much as l − 1 in the same computational
step. Thus, instead of point (b) of the above definition, we have

(b′) for all (q′, β) ∈ δ(q, x, α), we have |β|increment − |β|decrement ≤ |x| − 1.

The classes of languages accepted by RCMA and SRCMA are denoted by
L(RCMA) and L(SRCMA), respectively.

3 Distributed Systems of Counter Machine Acceptors
and dP Automata

A distributed system of special restricted counter machine acceptors, a dSRCMA
in short, is a systemM = (Σ,M1, . . . ,Mn, δM) for some n ≥ 1, where Σ is an
alphabet, Mi = (Qi, Σ, k, δi, qi,0, Fi) for 1 ≤ i ≤ n are SRCMA, the components
of the system, and δM is the communication relation, where if we denote Q =⋃n

i=1 Qi, then δM : (Q×Ck)2 → 2(Q×Dk)2 and, as above, C = {zero, nonzero},
D = {increment, decrement, none}. The relation δM is defined in such a way
that the sum of the counter contents cannot increase during a communication
step.

When a dSRCMA works, each component processes its own input in a par-
allel and synchronized manner. The components may use their own transition
relations δi, 1 ≤ i ≤ n, or when appropriate, they may communicate as de-
scribed by δM. The relation δM governs the communication of the components
as follows. Let us assume that Mi1 and Mi2 for some 1 ≤ i1, i2 ≤ n are in the
configurations (q1, α1) and (q2, α2), q1 ∈ Qi1 , q2 ∈ Qi2 , and αi ∈ Ck, 1 ≤ i ≤ 2,
respectively. Now, if (q′1, β1, q

′
2, β2) ∈ δM(q1, α1, q2, α2), then the components

change their internal states to q′1 and q′2, and update their counter contents
according to βi ∈ Dk, 1 ≤ i ≤ 2, respectively. Note that it is required that
|β1β2|increment ≤ |β1β2|decrement.

Let (w1, . . . , wn) be the n-tuple of words accepted by the components of the
dSRCMA systemM. The concatenated language and the agreement language of
M are defined as

Lconcat(M) = {w1 . . . wn ∈ Σ∗ | (w1, . . . , wn) is an accepted

n-tuple of words ofM},
and

Lagree(M) = {w ∈ Σ∗ | (w, . . . , w) is an accepted

n-tuple of words ofM}.

The classes of concatenated languages and agreement languages accepted by
dSRCMA systems are denoted by LX(dSRCMA) for X ∈ {concat, agree}.

Now we are going to show that dSRCMA systems and dP automata charac-
terize the same class of languages.
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Lemma 1. LX(dPA, fperm) ⊆ LX(dSRCMA) for any X ∈ {concat, agree}.

Proof. Let L = LX(Δ, fperm), for X ∈ {concat, agree}, and let Δ be the dP au-
tomaton Δ = (Σ,Π1, . . . , Πn, R), Πi = (Σ,μi, wi,1, . . . , wi,mi , Pi,1, . . . , Pi,mi),
for 1 ≤ i ≤ n. We construct a dSRCMA systemM = (Σ,M1, . . . ,Mn, δM) such
that L = LX(M).

The components Mi = (Qi, Σ, k, δi, qi,ini, Fi) of M are able to simulate the
computations of the components ofΔ by keeping track of the number of different
objects in the different regions of Πi, 1 ≤ i ≤ n. Each Mi has three counters for
each symbol-region pair (a, j), a ∈ Σ, 1 ≤ j ≤ mi, these are called storage coun-
ters, temporary counters, and assistant counters; three additional counters for
each symbol-component pair (a, j), a ∈ Σ, 1 ≤ i ≤ n, plus three additional ones
for each symbol and the environment, these are called output counters, input1
counters, input2 counters. In addition, Mi has di additional counters called input
assistant counters where di is the maximal number of objects which can enter
the skin membrane of Πi from the environment or from another component by
the application of one antiport rule, that is, di = max({|v| | (u, out; v, in)|z ∈
Pi,1} ∪ {|v| | zi |((i, 1), u/v, (j, 1))|zj ∈ R, 1 ≤ j ≤ n}). Apart from these, the
components may need a number of assistant counters in order to be able to
perform basic arithmetic operations and to check the equality of counter values
during the computation. In order to have an equal number of counters in each
component, we can take the maximum of the sum of the values defined above as
the number k of counters in any component. These counters are initially empty,
so the numbers of different objects in different regions in the initial configuration
of Mi must be stored in the internal states of the components given in Qi. Such
a state can be written as qi,j = (q′i,j , ci,1, . . . , ci,k) ∈ Qi = Q′

i × Nk for some set
of symbols denoted by Q′

i.
The simulation of a computational step (v1, . . . , vmi) ∈ δΠi(u0, u1, . . . , umi) of

Πi byMi can be described as follows. FirstMi nondeterministically chooses sym-
port/antiport rules (with promoters or inhibitors) from the sets Pi,j , 1 ≤ j ≤ mi,
of Πi or from the communication rules in R, then updates the counters which
keep track of the configuration of Πi according to the chosen rules. The stor-
age counters corresponding to the region and the objects which leave the region
are decremented with the necessary amount of objects, and the number of ob-
jects entering the region are added to the corresponding temporary counters.
If objects are exchanged between the skin regions of different components by
the use of a communication rule of R, then the dSRCMA system also uses a
communicating transition (described by δM) to increase the temporary counters
corresponding to the exchanged symbols and the skin regions of the two com-
ponents. If an object leaves to the environment from the skin region of Πi, then
the corresponding output counter of Mi is incremented.

(We would like to note that the “counter components” (c1, . . . , ck) of the
internal states (q, c1, . . . , ck) ∈ Q =

⋃n
i=1 Qi are also taken into account: their

value and the value of the corresponding “real” counter together represent the
numbers of various objects in the regions of Δ. When such an “internal counter”
is decremented, then the increment of the necessary temporary counter also
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takes place in the corresponding “internal” version of that counter. This way
this nondeterministic rule choosing and configuration modifying phase of the
computations of the components of the dSRCMAM do not increase the overall
sum of the values stored in the different counters.)

When this phase is finished,M checks whether the configuration change im-
plied by the rules chosen above corresponds to the maximally parallel mode of
rule application. This means that each Mi, 1 ≤ i ≤ n, must check the applicabil-
ity of rules in each region, which can be done one by one, using the correspond-
ing assistant counters to store the numbers which are subtracted from various
counters during the process in order to be able to easily restore the original
configuration when the checking of the applicability of a rule fails. The check
also includes the skin regions, to make sure that the multisets leaving to the
environment are also maximal.

After the checking of the maximality of the chosen rule set, M realizes the
configuration change by updating the storage counters using the values from
the temporary counters, and by simulating the entering of objects from the
environment (corresponding to the ones that leave the skin region), which can
be done as follows. The number and type of objects which are supposed to
leave to the environment are recorded in the output counters of the component.
First components Mi ofM, 1 ≤ i ≤ n, choose antiport rules (u, out; v, in)|z ∈
Pi,1 and decrement the output counters corresponding to the objects of u while
incrementing their input assistant counters. Now Mi reads |v| symbols from its
input tape, and records them in the input1 counters, and also records the symbols
of v (from the chosen antiport rule) in the input2 counters. This process can be
repeated a number of times, and when it is finished, the componentMi simulated
the entering of objects into the skin region of Πi from the environment, if two
conditions are satisfied: first, the output counters should be empty, and second,
each input1 and input2 counter corresponding to the same symbol should hold
the same value. The second requirement corresponds to the fact that the same
multiset of objects was read from the tape ofMi (although, possibly in a different
order) as can be imported from the environment into the skin membrane of Πi

using the antiport rules that were chosen previously by Mi.
After completing this phase of the computation,M can start the simulation

of the next computational step of Π in the same way as described above. Before
continuing with the simulation,M can check whether the current configuration
is final or not, and decide to proceed or to stop accordingly. (A configuration is
final if it is halting, thus, if no rule can be applied in any of the regions.)

Note that the input reading operations do not violate the requirement that
the sum of the numbers stored in the counters of a dSRCMA component Mi

can only increase in a computational step as much as ci − 1, where ci is the
number of symbols read in that step by Mi. This holds because if some objects
enter a component Πi of the simulated system Δ, then at least one object also
leaves this component. Therefore, during the simulation at least one symbol
left the simulated system, thus, at least once one of the output counters were
decremented, and at the same time, one of the input assistant counters was
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incremented. This means that while decrementing the input assistant counter, it
is possible to increment the input1 and input2 counters altogether by the value of
|v|, where v is the multiset entering the component Πi of the simulated system.
This is sufficient, because we can store any value c = 2 · j + l, l ∈ {0, 1} by
storing j in the counter and keeping track of l in the state of the finite control,
thus, by increasing the sum of the overall counter contents by |v|, we can store
two numbers which are both less or equal to |v|.

We have seen that the words obtained by permuting the elements of the multi-
sets in the multiset sequences accepted by the components of the dP automaton
Π coincides with the words which can be accepted by the components of the
dSRCMA system M. This means that LX(dPA, fperm) ⊆ LX(dSRCMA) for
any X ∈ {concat, agree}. ��

Now we turn to the converse inclusion, we show how distributed counter
machine acceptor systems can be simulated by distributed P automata.

Lemma 2. LX(dSRCMA) ⊆ LX(dPA, fperm) for any X ∈ {concat, agree}.
Proof. We show how a dSRCMA systemM = (Σ,M1, . . . ,Mn, δM) with Mi =
(Qi, Σ, k, δi, qi,0, Fi), 1 ≤ i ≤ n, can be simulated by a dP automaton. Let
the transitions defined by (

⋃n
i=1 δi) ∪ δM be labeled in a one-to-one manner

by the set lab(M), and let the simulating dP automaton be defined as Δ =
(V,Π1, . . . , Πn, R). For any Mi = (Qi, Σ, k, δi, qi,0, Fi), 1 ≤ i ≤ n, we define
Πi = (V, μi, wi,1, . . . , wi,k+2, Pi,1, . . . , Pi,k+2) as follows.

The alphabet is V = Σ ∪ {q0, C,D,E, F} ∪ {Bi,t, t1, t2, t3, t4 | 1 ≤ i ≤
6, t ∈ lab(M)} ∪ {Ai, A

′
i | 3 ≤ i ≤ k + 2}, the membrane structure is μi =

[ [ ]i,2 [ ]i,3 . . . [ ]i,k+2 ]i,1, and the rule sets with the initial membrane contents
are as follows. (For easier readability, instead of the string notation, we denote
the initial multisets by enumerating their elements between curly brackets, as in
the usual set notation.)

wi,1 = {q0, C,D},
Pi,1 = {(a, out;u, in)|t1 | a ∈ Σ, t ∈ lab(δi) is a transition of M

which reads a string representing u from the input tape}
wi,2 = {a,E,Bj,t, t1, (t2)

k, (t3)
k, (t4)

k | 1 ≤ j ≤ 6, t ∈ lab(δi)} where a is

some element of Σ and (tj)
k denotes k occurrences of the object tj,

Pi,2 = {(t1a, out; q0D, in) | a ∈ Σ, t ∈ lab(δi) labels a transition

from qi,0 ∈ Qi} ∪
{(B1,tD(t2)

k, out; t1, in) | t ∈ lab(δi)} ∪ {(a, out)|D | a ∈ Σ} ∪
{(B2,t(t3)

k, out;B1,t, in), (B3,t(t4)
k, out;B2,t, in),

(B4,t, out;B3,t(t2)
k, in), (B5,t, out; (t3)

kB4,t, in),

(B6,t, out; (t4)
kB5,tCa, in), (s1a, out;B6,tD, in) | t, s ∈ lab(δi) where

s is a transition which can follow t, a ∈ Σ} ∪
{(E, out;B6,t, in) | t ∈ lab(δi) is a transition leading to a final

state of Mi} ∪ {(a, in)|C , (C, out) | a ∈ Σ},
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and for 3 ≤ j ≤ k + 2, let

wi,j = {Aj , A
′
j , F, F},

Pi,j = {(Aj , out; t2, in), (A
′
j , out)|t2 , (AjA

′
j , in), (F, in;F, out)} ∪

{(t2a, out; t3, in), (t2F, out), (t3, out; t4, in), (t4, out) | t ∈ lab(δi) is a

transition which decrements the value of counter j − 2} ∪
{(t2, out; t3, in), (t3, out; t4, in), (t4, out; a, in) | t ∈ lab(δi) is a

transition which increments the value of counter j − 2} ∪
{(Fa, out)|t2 , (t2, out; t3, in), (t3, out; t4, in), (t4, out) | t ∈ lab(δi) is a

transition which requires that the value of counter j − 2 is zero}.
Let also

R = {t2t4 |((i, 1), u/λ, (j, 1))|t2t4 | for all u where t ∈ δM labels a transition

which results in the increase of the sum of the counter

contents of Πj by |u|} ∪
{t2t4 |((i, 1), λ/v, (j, 1))|t2t4 | for all v where t ∈ δM labels a transition

which results in the increase of the sum of the counter

contents of Πi by |v|}.
Each of the components Πi of the system defined above has a skin region

(region (i, 1)), a region representing the finite control (region (i, 2)), and k regions
corresponding to the k counters of Mi (regions (i, j), 3 ≤ j ≤ k + 2, referred to
as the counter regions). The counter regions represent the values stored in the
counters of Mi with objects from Σ, region (i, j) contains as many such objects
as the values stored in counter j − 2. The object q0 present in the skin region in
the initial configuration is exchanged for an indexed transition symbol t1 where
t ∈ lab(δi) denoting a transition from the initial state.

The simulation of a computational step of Mi starts by having one terminal
object a ∈ Σ, and a transition symbol t1 for some transition t ∈ lab(δi)∪lab(δM)
in the skin membrane. (For the simulation of the initial step, these symbols arrive
from region (i, 2) in exchange to q0 when Δ is started.) If t ∈ lab(δi), then the
terminal object a is used by a rule (a, out;u, in)|t1 to import a multiset u ∈ Σ⊕

which is read byMi during the transition t. Otherwise, if t ∈ lab(δM) no symbols
are imported from the environment. Now the transition symbol is moved back
to region (i, 2), and k copies of t2 (corresponding to the same transition, but
indexed with 2) are exported to the skin region together with all the copies of
objects from Σ which are not used inside the counter regions (these are stored
in region (i, 2) until they are needed). In the next six steps, the values stored
in the k counter regions are modified as necessary while the symbol B1,t is
changed to B6,t, increasing its index by one in every step. If a counter needs to
be decremented or checked for being zero, then the objects t2 enter and take with
them a terminal object to the skin region or perform the zero check as necessary.
Meanwhile k copies of t3 are released from region (i, 2) which continue the process
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by changing to t4 and then bringing in terminal objects to the counter regions
when the counter in question needs to be incremented during transition t. If
t ∈ lab(δM) is a communication transition, then the a number of objects which
are necessary to maintain the values of the counters as required by t are also
transferred between the components using the communication rules of R. Such
a rule can be applied only in the step when both t2 and t4 are present in the
skin region.

After the modification of the counter values, the remaining terminal objects
are transported back to region (i, 2), and the symbol s1 ∈ lab(δi) ∪ lab(δM) for
the next transition appears, together with exactly one terminal object a ∈ Σ,
so the simulation of the next computational step of Mi can start in the same
manner. The simulation finishes when, after executing a transition leading to a
final state of Mi, the symbol E is exported from region (i, 2) to the skin region
and the component halts.

Note that the components of the SRCMA system read multisets in the sense
that whenever (q′, β) ∈ δ(w, q, α) for some w ∈ Σ∗, then also (q′, β) ∈ δ(w̄, q, α)
where w̄ is any permutation of w. This means that the components of the dP au-
tomaton described above accept the same words as the components of the dSR-
CMA system, thus, they also accept the same concatenated or agreement lan-
guages. ��

Combining the two lemmas above, we obtain the following

Corollary 3. LX(dPA, fperm) = LX(dSRCMA), for X ∈ {concat, agree}.

4 Conclusion

In this paper we have shown that dP automata with mapping fperm are as
powerful as the class of distributed systems of special restricted counter machine
acceptors. Observing the proof and the concept of dSRCMA, the reader may
easily notice that dSRCMA realize multi-head SRCMA in some sense, i.e., the
(weak) agreement language of dP automata corresponds to the language of a
multi-head SRCMA. We plan research in this direction, i.e., on the relation
between one-way and two-way multi-head RCMA and SRCMA and languages
of one-way and two-way dP automata in the future.
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2. Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: [13], ch. 6, pp. 144–167
3. Csuhaj-Varjú, E., Vaszil, G.: P automata. In: Păun, G., Zandron, C. (eds.) Pre-

Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea
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systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002.
LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)
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Abstract. Recent research in membrane computing examines and con-
firms the anticipated modelling potential of kernel P systems in several
case studies. On the one hand, this computational model is destined to
be an abstract archetype which advocates the unity and integrity of P
systems onto a single formalism. On the other hand, this envisaged con-
vergence is conceived at the expense of a vast set of primitives and in-
tricate semantics, an exigent context when considering the development
of simulation and verification methodologies and tools.

Encouraged and guided by the success and steady progress of similar
undertakings, in this paper we directly address the issue of formal ver-
ification of kernel P systems by means of model checking and unveil a
software framework, kpWorkbench, which integrates a set of related tools
in support of our approach.

A case study that centres around the well known Subset Sum prob-
lem progressively demonstrates each stage of the proposed methodology:
expressing a kP system model in recently introduced kP-Lingua; the au-
tomatic translation of this model into a Promela (Spin) specification;
the assisted, interactive construction of a set of LTL properties based on
natural language patterns; and finally, the formal verification of these
properties against the converted model, using the Spin model checker.

1 Introduction

Membrane computing, the research field introduced by Gheorghe Păun [21],
studies computational models, called P systems, inspired by the functioning
and structure of the living cell. In recent years, significant progress has been
made in using various types or classes of P systems to model and simulate
systems and problems from many different areas [5]. However, in many cases,
the specifications developed required the ad-hoc addition of new features, not
provided in the initial definition of the given P system class. While allowing more
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flexibility in modelling, this has led to a plethora of P system variants, with no
coherent integrating view, and sometimes even confusion with regard to what
variant or functioning strategy is actually used.

The concept of kernel P system (kP system) [7] has been introduced as a
response to this situation. It integrates in a coherent and elegant manner many
of the P system features most successfully used for modelling various applica-
tions and, thus, provides a framework for formally analyzing these models. The
expressive power and efficiency of the newly introduced kP systems have been
illustrated by a number of representative case studies [8,14]. Furthermore, the
kP model is supported by a modelling language, called kP-Lingua, capable of
mapping the kernel P system specification into a machine readable representa-
tion.

Naturally, formal modelling has to be accompanied by formal verification
methods. In the membrane system context, formal verification has been ap-
proached, for example, using rewriting logic and the Maude tool [1] or PRISM
and the associated probabilistic temporal logic [11] for stochastic systems [3].
Several, more recent, successful attempts to apply model checking techniques on
transition P systems also exist [4,17,18,15]. However, to the best of our knowl-
edge, there is no integrated formal verification approach to allow formal proper-
ties to be specified in a language easily accessible to the non-specialist user and
to be automatically verified in a transparent way.

This paper proposes precisely such an integrated verification approach, which
allows formal properties, expressed in a quasi-natural language using predefined
patterns, to be verified against a kP-Lingua representation of the model using
model checking techniques and tools (in this case the model checker Spin and the
associated modelling language Promela). Naturally, this approach is supported
by adequate tools, which automatically convert the supplied inputs (natural
language queries and kP-Lingua representation) into their model checking spe-
cific counterparts (LTL queries and Promela representation, respectively). The
approach is illustrated with a case study, involving a kP system solving a well-
known NP-complete problem, the Subset Sum problem.

The paper is structured as follows: Section 2 recalls the definition of a kernel
P system - the formal modelling framework central to our examination. We
then review, in Section 3, some of the primary challenges of model checking
applicable to kP system models and discuss the transformations such a model
must undergo, in order to be exhaustively verified by Spin. We also present our
implemented approach to achieve an automatic model conversion, targeting the
process meta language, Promela. In Section 4, we address the complementary
requirement of specifying system properties as temporal logic formulae. The
section also includes an array of EBNF formal definitions which describe the
construction of LTL properties that relate to kP system state constituents, a
guided process which employs selected natural language query patterns. Section
5 applies our proposed methodology, exemplifies and demonstrates all stages of
the process with a case study - an instance of the Subset Sum problem. Finally,
we conclude our investigation and review our findings in Section 6.
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2 Kernel P Systems

A kP system is made of compartments placed in a graph-like structure. A com-
partment Ci has a type ti = (Ri, σi), ti ∈ T , where T represents the set of all
types, describing the associated set of rules Ri and the execution strategy that
the compartment may follow. Note that, unlike traditional P system models, in
kP systems each compartment may have its own rule application strategy. The
following definitions are largely from [7].

Definition 1. A kernel P (kP) system of degree n is a tuple

kΠ = (A, μ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; μ defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and
E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of
a compartment type from T and an initial multiset, wi over A; i0 is the output
compartment where the result is obtained.

Each rule r may have a guard g denoted as r {g}. The rule r is applicable
to a multiset w when its left hand side is contained into w and g holds for w.
The guards are constructed using multisets over A and relational and Boolean
operators. For example, rule r : ac→ c {≥ a3∧ ≥ b2 ∨ ¬ > c} can be applied iff
the current multiset, w, includes the left hand side of r, i.e., ac and the guard
holds for w - it has at least 3 a′s and 2 b′s or no more than a c. A formal definition
may be found in [7].

Definition 2. A rule associated with a compartment type li can have one of the
following types:

– (a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and
tj indicates a compartment type from T – see Definition 1 – with instance
compartments linked to the current compartment; tj might indicate the type
of the current compartment, i.e., tli – in this case it is ignored; if a link does
not exist (the two compartments are not in E) then the rule is not applied;
if a target, tj, refers to a compartment type that has more than one instance
connected to li, then one of them will be non-deterministically chosen;

– (b) structure changing rules; the following types are considered:

• (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},
where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj , tj,hj ) like
in rewriting and communication rules; the compartment li will be re-
placed by p compartments; the j-th compartment, instantiated from the
compartment type tij contains the same objects as li, but x, which will
be replaced by yj; all the links of li are inherited by each of the newly
created compartments;
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• (b2) membrane dissolution rule: [x]tli → λ {g};
the compartment li and its entire contents is destroyed together with its
links. This contrasts with the classical dissolution semantics where the
inner multiset is passed to the parent membrane - in a tree-like mem-
brane structure;
• (b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is
transformed into y; if more than one instance of the compartment type
tlj exists then one of them will be non-deterministically picked up; g is a
guard that refers to the compartment instantiated from the compartment
type tli ;• (b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are
disconnected.

Each compartment can be regarded as an instance of a particular compartment
type and is therefore subject to its associated rules. One of the main distinctive
features of kP systems is the execution strategy which is now statutory to types
rather than unitary across the system. Thus, each membrane applies its type
specific instruction set, as coordinated by the associated execution strategy.

An execution strategy can be defined as a sequence σ = σ1&σ2& . . .&σn,
where σi denotes an atomic component of the form:

– ε, an analogue to the generic skip instruction; epsilon is generally used to
denote an empty execution strategy;

– r, a rule from the set Rt (the set of rules associated with type t). If r
is applicable, then it is executed, advancing towards the next rule in the
succession; otherwise, the compartment terminates the execution thread for
this particular computational step and thus, no further rule will be applied;

– (r1, . . . , rn), with ri ∈ Rt, 1 ≤ i ≤ n symbolizes a non-deterministic choice
within a set of rules. One and only one applicable rule will be executed if
such a rule exists, otherwise the atom is simply skipped. In other words the
non-deterministic choice block is always applicable;

– (r1, . . . , rn)
∗, with ri ∈ Rt, 1 ≤ i ≤ n indicates the arbitrary execution of a

set of rules in Rt. The group can execute zero or more times, arbitrarily but
also depending on the applicability of the constituent rules;

– (r1, . . . , rn)
�, ri ∈ Rt, 1 ≤ i ≤ n represents the maximally parallel execution

of a set of rules. If no rules are applicable, then execution proceeds to the
subsequent atom in the chain.

The execution strategy itself is a notable asset in defining more complex be-
haviour at the compartment level. For instance, priorities can be easily expressed
as sequences of maximally parallel execution blocks: (r1)

�&(r2)
�& . . .&(r3)

�

or non-deterministic choice groups if single execution is required. Together with
composite guards, they provide an unprecedented modelling fluency and plastic-
ity for membrane systems. Whether such macro-like concepts and structures are
preferred over traditional modelling with simple but numerous compartments in
complex arrangements is a debatable aspect.
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3 kP System Models and the Spin Model Checker

Formal verification of P systems has become an increasingly investigated subject,
owing to a series of multilateral developments which have broaden its applica-
tion scope and solidified some domain specific methodologies. Although there
have been several attempts that successfully demonstrated model checking tech-
niques on P systems ([17], [18], [15]), the analysis is always bound to an array of
constraints, such as specific P system variants with a limited feature set and a
very basic set of properties. Nevertheless, there are notable advancements which
have paved the path towards a more comprehensive, integrated and automated
approach we endeavour to present in this paper.

The task of P system model checking is perhaps a most inviting and com-
pelling one due to the many onerous challenges it poses. On the one hand we are
confronted with the inherent shortcomings of the method itself, which have a
decisive impact on the tractability of some models and, in the best case, the effi-
ciency or precision of the result is severely undermined. Speaking generally, but
not inaccurately, model checking entails an exhaustive, strategic exploration of a
model’s state space to assert the validity of a logically defined property. Hence,
the state space is of primary concern and we can immediately acknowledge 1.
the requirement for models to have a finite state space and 2. the proportionality
between the state space size and the stipulated computational resources, which
ultimately determines the feasibility of the verification process.

On the other hand, the complex behaviour of certain computational models
translates to elaborate formal specifications, with intricate semantics and more
often than not, a vast set of states. However, it is the tireless state explosion
problem that diminishes the applicability of model checking to concurrent sys-
tems, a rather ironical fact, since such systems are now the primary target for
exhaustive verification.

We shall not delve any further into general aspects since our focus is not the
vivisection of a methodology, but rather the introduction of a robust, integrated
and automated approach that constellates around kernel P systems and overtly
addresses the predominant challenges of model checking emphasised so far.

The three most conspicuous features that typify membrane systems are 1.
a structured, distributed computational environment; 2. multisets of objects as
atomic terms in rewriting rules and 3. an execution strategy according to which
the rules are applied. We recall that kP systems explicitly associate an instruc-
tion set to an array of compartments employing the type - instance paradigm. As
it turns out, this distinction is highly relevant in mapping a formal state transi-
tion system, where a system state is conveyed compositionally, as the union of
individual states attributed to instances (in our case), or disjoint volatile compo-
nents in more generic terms. Thus, a kP system state S is an aggregate of SC , the
set of compartment states and μ which denotes the membrane structure as a set
of interconnections between compartments. A compartment state is identified by
its associated multiset configuration at a particular computational step, together
with the membrane type the compartment it subject to. The following set like
expression exemplifies a kernel P system state for three compartments c1, c2 and
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c3, of types t1, t2, t2, having configurations 2a b, a 2c and empty respectively. The
second fragment is a set of pairs which symbolize links between compartments:
c1 is connected to both c2 and c3, who do not share a link in-between.

({(c1, t1, {2a, b}), (c2, t2, {a, 2c}), (c3, t2, {})}, {(c1, c2), (c1, c3)})

Since kP systems feature a dynamic structure by preserving structure chang-
ing rules such as membrane division, dissolution and link creation/destruction,
a state defined in this expansive context is consequently variable in size. This
is not unnatural for a computational model, however it does become an issue
when conflicting with the requirement of a fixed sized pre-allocated data model
imposed by most model checker tools. The instinctive solution is to bound the
expansion of these collections to a certain maximum based on the algorithmic
necessities. For instance, an initial analysis of the problem we are modelling can
provide relevant details about the number of steps required for a successful ex-
ecution, the number of divisions that may occur and the maximum number of
links generated.

One of the most fruitful advantages of model checking is the fact it can be
completely automated. The principal insight is that both the system’s state space
(commonly referred to as global reachability graph) and the correctness claim
specified as a temporal logic formula can be converted to non-deterministic finite
automata. The product of the two automata is another NDFA whose accepted
language is either empty in which case the correctness claim is not satisfied,
or non-empty if the system exhibits precisely the behaviour specified by the
temporal logic statement. There are numerous implementations of this stratagem
boasting various supplementary features, a survey of which is beyond the scope of
this study. The model checker extensively adopted in formal verification research
on membrane systems is Spin. Developed by Gerard J. Holzmann in the 1990s,
Spin is now a leading verification tool used by professional software engineers and
has an established authority amidst model checkers. Among plentiful qualities,
Spin is particularly suited for modelling concurrent and distributed systems by
means of interleaving atomic instructions. For a more comprehensive description
of the tool, we refer the reader to [12].

A model checker requires an unambiguous representation of its input model,
together with a set of correctness claims expressed as temporal logic formulae.
Spin features a high level modelling language, called Promela, which specializes
in concise descriptions of concurrent processes and inter-process communication
supporting both rendezvous and buffered message passing. Another practical
and convenient aspect of the language is the use of discrete primitive data types
as in the C programming language. Additionally, custom data types and single
dimensional arrays are also supported, although in restricted contexts only.

The kernel P systems specification is an embodiment of elementary components
shared by most variants, complemented by innovative new features, promoting
a versatile modelling framework without transgressing the membrane comput-
ing paradigm. Characterised by a rich set of primitives, kP systems offer many
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high level functional contexts and building blocks such as the exhaustive and
arbitrary execution of a set of rules, complex guards and the popular concept
of membrane division - powerful modelling instruments from a user centric per-
spective. An attempt, however, to equate such a complex synthesis of related
abstractions to a mainstream specification is a daunting and challenging task. It
is perhaps evident that users should be entirely relieved of this responsibility, and
all model transformations should be handled automatically. It is precisely this
goal which motivates the development of kpWorkbench, a basic framework
which integrates a set of translation tools that bridge several target specifica-
tions we employ for kernel P system models. The pivotal representation medium
is, however, the newly introduced kP-Lingua, a language designed to express
a kP system coherently and intuitively. kP-Lingua is described in detail in [7],
which includes an EBNF grammar of its syntax. We exemplify kP-Lingua in our
dedicated case study, presented in section 5 of this paper.

One of the fundamental objectives in devising a conversion strategy is to es-
tablish a correspondence with respect to data and functional modules between
the two specifications. In some cases, a direct mapping of entities can be identi-
fied:

– A multiset of objects is encoded as an integer array, where an index
denotes the object and the value at that index represents the multiplicity of
the object;

– A compartment type is translated into a data type definition, a struc-
ture consisting of native elements, the multiset of objects and links to other
compartments, as well as auxiliary members such as a temporary storage
variable, necessary in order to simulate the inherent parallelism of P sys-
tems.

– A compartment is an instance of a data type definition and a set of com-
partments is organised into an array of the respective type;

– A set of rules is organised according to an execution strategy is mapped
by a Proctype definition - a Promela process;

– A guard is expressed as a composite conditional statement which is evalu-
ated inside an if statement;

– A rule is generally converted into a pair of instructions which manage sub-
traction and addition on compartment multisets, but can also process struc-
tural elements such as compartments and links;

– Exhaustive and arbitrary execution are resolved with using the do
block;

– Single non-deterministic execution is reflected by an if statement with
multiple branches; we note that Promela evaluates if statements differently
than most modern programming languages: if more than one branch evalu-
ates to true, then one is non-deterministically chosen.

It is not, however, the simplicity and limpidity of these projections that pre-
vail, especially when dealing with a computational model so often described as
unconventional. Rather, concepts such as maximal parallelism and membrane



158 C. Dragomir et al.

division challenge the mainstream modelling approach of sequential processes
and settle on contrived syntheses of clauses. These artificial substitutes operate
as auxiliary functions and therefore require abstraction from the global state
space generated by a model checker tool. Spin supports the hiding of mediator
instruction sets by enveloping code into atomic or d step blocks. Although this
is a very effective optimisation, we are still faced with the problem of instruction
interleaving, the de facto procedure which reconciles parallel and sequential com-
putation. It is not this forced simulation of parallelism that obstructs a natural
course for P system verification with Spin, but rather the inevitable inclusion of
states generated by interleaved atomic instructions or ensembles of instructions.

In our approach we overcome this obstacle with a hybrid solution, involving
both the model in question and the postulated properties. Firstly, we collapse
individual instructions (to atomic blocks) to the highest degree permitted by
Spin, minimizing the so-called intermediate state space which is irrelevant to a
P system computation; and secondly, we appoint the states relevant to our model
explicitly, using a global flag (i.e. a Boolean variable), raised when all processes
have completed a computational step. Hence, we make a clear distinction be-
tween states that are pertinent to the formal investigation and the ones which
should be discarded. This contrast is in turn reflected by the temporal logic for-
mulae, which require adjustment to an orchestrated context where only a narrow
subset of the global state space is pursued. The technique is demonstrated in
our case study of section 5.

While the approach is a practical success, its efficacy is still a questionable
matter. Although a substantial set of states is virtually neglected when assert-
ing a correctness claim, the complete state space is nevertheless generated (i.e.
including the superfluous states) and each state examined: if the state is flagged
as a genuine P system state, then it is queried further, otherwise it is skipped.
In terms of memory usage, the implications are significant and certainly not to
be underestimated, particularly when the model exhibits massively parallel and
non-deterministic behaviour.

We conclude this section with an informal synopsis of the kP system - Promela
translation strategy and the rationale behind some of its noteworthy particular-
ities:

– While each compartment type is represented by a Promela process definition,
a Scheduler process is employed to launch and coordinate the asynchronous
execution of procedures per compartment. The following pseudo-code illus-
trates the managerial role played by our scheduler:

process Scheduler {

while system is not halted {

for each type T_i {

for each compartment C_j of type T_i {

appoint process P(T_i) to compartment C_j;

}

}
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start all appointed processes;

wait until all appointed processes finish;

state = step_complete;

print configuration;

state = running;

}

}

– Each compartment consists of two multisets of objects, one which rules op-
erate on and consume objects from; and the second which temporarily stores
the produced or communicated objects. Before the end of each computational
step, the content of the auxiliary multiset is committed to the primary mul-
tiset, which also denotes the compartment’s configuration. This interplay is
required to simulate a parallel execution of the system.

Our software framework, kpWorkbench includes a faithful implementation of
the hitherto described translation principles and supports the automatic conver-
sion of a Kernel P system into a Promela specification. Relevant technical notes,
downloads and installation instructions are available at
http://www.muvet.ifsoft.ro/kpWorkbench.html. kpWorkbench is distributed un-
der GPL license.

4 Queries on Kernel P Systems

A much debated aspect of model checking based formal verification is speci-
fying and formulating a set of properties whose correctness is to be asserted.
Since model checking is essentially an exhaustive state space search, there is a
persistent and irreconcilable concern over the limitations of this method when
investigating the behaviour of concurrent models, generative of an astronomi-
cal state spaces. More precisely, the complexity of the model itself has a great
subversive impact on the property gamut which can be employed such that the
procedure remains feasible given reasonable computational resources.

It is not just the inherent limitations of this technique which must be taken
into consideration, but also the effort and tenacity required to formally express
specific queries concisely and faithfully into prescribed logical frameworks. Amir
Pnueli’s seminal work on temporal logic [20] was a major advance in this di-
rection, enabling the elegant representation of time dependent properties in de-
ductive systems. Essential adverbial indicators such as never and eventually
have a diametric correspondent in temporal logic, as operators which relate sys-
tem states in terms of reachability, persistence and precedence, supporting more
powerful queries in addition to simple state equivalence assertions and basic in-
variance. Exploiting the potential of these logics, as evident as it may seem, can
still be problematic and laborious under certain circumstances.

Firstly, devising a temporal logic formula for a required property is a cum-
bersome and error-prone process even for the experienced. It is often the case
that the yielded expressions, although logically valid, are counter-intuitive and
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abstruse, having little to tell about the significance of the property itself. As with
any abstraction that is based on pure logical inference, it is devoid of meaning
outside the logical context. To clearly emphasize our affirmations, consider the
following example:

G (vm functional = true ∧ vm coin > 0→
F (vm dipsensed drink > 0 ∧ F (vm coin = 0)) ∨

F (vm functional = false))

is a faithful LTL (linear time temporal logic) representation of a property
which can be phrased as “a vending machine, if functional, will always dispense
a drink after having accepted coins and will either become dysfunctional or its
coin buffer will be depleted.” Although we have used intuitive variable names, it
is not immediately apparent what this expression stands for, requiring a thor-
ough understanding of the LTL specification together with effort and insight to
accurately decipher its meaning.

The second notable issue we wish to evince is the correctness of the formula
itself which can often be questionable even if the property is of moderate com-
plexity and is syntactically accepted by a model checker tool. How can one prove
that a temporal logic expression is indeed a valid representation of a property we
wish to verify? Is this a genuine concern we should address, or is it acceptable
to assume the faithfulness of temporal logic expressions to specific queries, as
formulated by expert and non-expert users?

In response to these controversies, we propose a strategy that facilitates a
guided construction of relevant LTL properties and automates the translation to
their formal equivalent. It is the Natural Language Query (NLQ) builder that
was developed to support this methodology. The tool features a rich set of natural
language patterns, presented to users as sequences of GUI (graphical user inter-
face) form elements: labels, text boxes and drop-down lists. Once the required
values have been selected or directly specified and the template populated, NLQ
automatically converts the natural language statement to its temporal logic cor-
respondent. The translation from an informal to a formal representation is based
on an interpreted grammar which accompanies each natural language pattern.

In Table 1, we illustrate a selection of patterns whose instantiation generates
properties suitable for kP system models and their formal verification. Table
2 depicts the EBNF based grammar according to which, state formulae are
derived, with reference to kernel P system components.

In order to verify kP systems modeled in kP-Lingua using Spin model checker,
properties specified in LTL should be reformulated in Spin language for the
corresponding Promela model. In Table 3, we give LTL formulae of the patterns
shown in Table 1, and their corresponding translations in Spin language for the
Promela specification. Each LTL formula described for P systems in general (and
kP systems in our case) should be translated to Spin using a special predicate,
pInS, showing that the current Spin state represents a P system configuration
(the predicate is true when a computation step is completed) or represents an
intermediate state (it is false if intermediary steps are executed) [15,18].
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Table 1. Grammar for query patterns

Pattern ::= Occurrence | Order

Occurrence ::= Next | Existence | Absence | Universality | Recurrence |
Steady-State

Order ::= Until | Precedence | Response

Next ::= stateFormula ‘will hold in the next state’
Existence ::= stateFormula ‘will eventually hold’
Absence ::= stateFormula ‘never holds’
Universality ::= stateFormula ‘always holds’
Recurrence ::= stateFormula ‘holds infinitely often’
Steady-State ::= stateFormula ‘will hold in the long run (steady state)’
Until ::= stateFormula ‘will eventually hold, until then’ stateFormula

‘holds continuously’
Response ::= stateFormula ‘is always followed by’ stateFormula
Precedence ::= stateFormula ‘is always preceded by’ stateFormula

The idea of capturing recurring properties into categories of patterns was
initiated by Dwyer et al. in their seminal paper of 1999 [6]. This study surveyed
more than five hundred temporal properties and established a handful of pattern
classes. In [9], this mapping was extended to include additional time related
patterns and their associated observer automata. This was further supplemented
with real-time specification patterns in [16].

A unified pattern system was introduced in [2], adding new real-time property
classes. Probabilistic properties were similarly catalogued based on a survey of
200 properties [10], and provisioned with a corresponding structured grammar.

An analogous undertaking can also be observed in [19], where an array of
query templates which target biological models was proposed.

Although the NLQ builder is based on an extensive set of patterns investigated
in above mentioned literature, the templates relevant to our formal examination
of kP system models represent a small subset of this collection; particularly we
only employ patterns which generate temporal properties.

5 Case Study: The Subset Sum Problem

In this section we demonstrate the proposed methodology with a case study, the
subject of which is the well known Subset Sum problem.

The Subset Sum problem is stated as follows:

Given a finite set A = {a1, . . . , an}, of n elements, where each element ai has an
associated weight, wi, and a constant k ∈ N , it is requested to determine whether
or not there exists a subset B ⊆ A such that w(B) = k, where w(B) =

∑
ai∈B wi.
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Table 2. EBNF based grammar for state formulae

stateFormula ::= statePredicate | statePredicate ‘does not hold’ |
stateFormula ‘and’ stateFormula |
stateFormula ‘or’ stateFormula

statePredicate ::= numericExpression relationalOperator numericExpression

numericExpression ::= objectCount | localObjectCount | compartmentCount |
linkCount | linkToCount | numericLiteral

linkCount ::= ‘the number of links from’ compartmentQuery
‘to’ compartmentQuery

linkToCount ::= ‘the number of links to’ compartmentQuery

compartmentQuery ::= ‘all compartments’ | ‘compartments’ compartmentCondition

compartmentCondition ::= ‘of type’ typeLabel | ‘of type other than’ typeLabel |
‘linked to’ compartmentQuery |
‘not linked to’ compartmentQuery |
localObjectCount relationalOperator numericExpression |
linkToCount relationalOperator numericExpression

localObjectCount ::= ‘the number of objects’ localObjectCondition

objectCount ::= ‘the number of objects’ objectCondition

localObjectCondition ::= ‘with label’ objectLabel |
‘with label different than’ objectLabel |
localObjectCondition ‘and’ localObjectCondition |
localObjectCondition ‘or’ localObjectCondition

objectCondition ::= localObjectCondition |
‘in’ compartmentQuery |
‘not in’ compartmentQuery |
objectCondition ‘and’ objectCondition |
objectCondition ‘or’ objectCondition

relationalOperator ::= ‘is equal to’ | ‘is not equal to’ | ‘is greater than’ | ‘is less than’ |
‘is greater than or equal to’ | ‘is less than or equal to’

numericLiteral ::= ? {0-9} ?
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Table 3. LTL formulae and translated Spin specifications of the property patterns

Pattern Informal Formula LTL formula Spin formula

Next p will hold in the next state X p X(!pInS U (p && pInS))

Existence p will eventually hold F p <>(p && pInS)

Absence p never holds ¬(F p) !(<>(p && pInS))

Universality p always holds G p [] (p || !pInS)

Recurrence p holds infinitely often G F p [](<>(p && pInS) || !pInS)

Steady-State p will hold in the steady state F G p <>([](p || !pInS) && pInS)

Until
p will eventually hold,

p U q (p || !pInS) U (q && pInS)
until then q holds continuously

Response p is always followed by q G (p→ F q) []((p -> <> (q && pInS)) || !pInS))
Precedence p is always preceded by q ¬(¬p U (¬p ∧ q)) !((!p || !pInS) U (!p && q && pInS))

The Subset Sum problem is representative for the NP complete class because
it portrays the underlying necessity to consider all combinations of distinct ele-
ments of a finite set, in order to produce a result. Consequently, such a problem
requires exponential computational resources (assuming P �= NP), either in the
temporal (number of computational steps) or spatial (memory) domain, or both.
The Subset Sum problem explicitly denominates combinations of integers as sub-
sets of the initial set A, or more accurately, the set of weights respective to A. It
is therefore transparent that the number of all combinations which can be gen-
erated and evaluated is the cardinality of the power set of A, that is 2n. Since
our elements are in fact integers, optimisations have been considered, leverag-
ing the intrinsic order relation between numbers, coupled with efficient sorting
algorithms to avoid generating all possible subsets [13]. This did not, however,
manage to reduce the complexity of the problem to a non-exponential order.

P system variants endowed with membrane division proved to be ideal compu-
tational frameworks for solving NP complete problems efficiently. The insightful
strategy, often referred to as trading space for time, can be envisaged as the lin-
ear generation of an exponential computational space (compartments) together
with the linear distribution (replication) of constituent data (multiset of ob-
jects). The topic is very popular in the community and was subject to extensive
investigation; while the underlying principle is pertinent to our study, we shall
illustrate it more sharply as applied, using a kernel P system model to solve the
Subset Sum problem:

Consider the kP system

kΠ = ({a, x, step, yes, no, halt, r1, . . . , rn}, μ, (Main, {a}), (Output, {step}))
with μ represented by a link between the two instances of type Main and Output
respectively.

The rules for compartments of type Main are:

– Ri: a −→ [a, ri][wix, a, ri]{¬ri}, 1 ≤ i ≤ n
– Rn+1: a −→ (yes, halt)Output {= kx}
– Rn+2: a −→ λ {> kx}
where
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– n is the number of elements in set A, that is the cardinal of A;
– ri with 1 ≤ i ≤ n is an object which flags the execution of a membrane

division rule, prohibiting multiple applications of the same addition;
– wi is the weight of the ith element in the set A, with 1 ≤ i ≤ n;
– k is the constant we refer to, when assessing the sum of the values in a

subset; if
∑

wi
= k, then a solution has been found;

The execution strategy σ(Main) unfolds as follows:

σ(Main) = (Rn+1, Rn+2)&(R1..n)

Thus, each step a compartment of type Main performs two preliminary eval-
uations: if the number of x objects is precisely k, then a yes and a halt object
are sent to the output membrane. We recall the specialised halt object as a
universal, model independent and convenient means of halting a computation
for kernel P systems: when such an object is encountered in any of the system’s
compartments, the execution stops at the completion of the computational step.
This is generally preferred to specifying halting conditions which relate to con-
figurations or system states particular to the modelled problem.

If the multiplicity of x is greater than k, a condition assessed with the guard
> kx, the compartment is dissolved, pruning a fruitless search path. Otherwise,
a division rule is selected non-deterministically, splitting the compartment in
two and adding wixs to the current multiplicity of x in one of the newly created
regions, while preserving the weight of x in the other. Both compartments also
receive a ri object which marks the execution of the ith rule. This will be pre-
vented from executing a second time by the guard ¬ri. The object a is auxiliary
and recurs in every compartment of type Main.

There is only one compartment of type Output which persists throughout the
execution, playing the role of an output membrane, as its name plainly indicates:
either it receives a yes object if a solution is found, or it generates a no object if
the computation does not halt after n + 1 steps. The two rules which correlate
with this behaviour are:

– R1 : step −→ 2step
– R2 : (n+ 2)step −→ no, halt

The rules are executed sequentially:

σ(Output) = (R1&R2)

Remark 1. The illustrated algorithm is a faithful linear time solution to the
Subset Sum problem: it computes an answer to the stipulated enquiry in max-
imum n+ 2 steps, where n is the cardinality of the set A of elements.

Remark 2. The algorithm will generate the sums of all subsets of A in linear time
using membrane division; the process is interrupted when a solution is found and
computation halts at this stage. A notable difference to the skP (simple kernel
P) system based solution presented in [14], is the use of non-deterministic choice
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in the selection of division rules. This rather unconventional approach facilitates
the generation of subset sums that is irrespective of the order of elements in A.
Evidently, the artifice owes its merit to the commutativity of integer addition.

Remark 3. The kP system model requires a total of: n+6 distinct objects, n+4
rules of which n+1 employ basic guards and a maximum of 2n+1 compartments.

Remark 4. Although we have extensively referred to integer weights (of the el-
ements in A) throughout this section, it is important to note that we can not
directly represent negative numbers as object multiplicities alone (some encoding
can be devised for this purpose). Since the only mathematical operation required
is addition, which is a monotonically increasing function, a simple translation to
the positive domain can be mapped on the set of weights w(A), which in turn
makes this issue irrelevant.

We next demonstrate the implementation of our kP system model in kP-
Lingua, highlighting some of the most prominent features of its syntax. The
illustrated model maps an instance of the Subset Sum problem with n = 7
elements: w(A) = {3, 25, 8, 23, 5, 14, 30} and k = 55.

type Main {

choice {

= 55x: a -> {yes, halt} (Output) .

> 55x: a -> # .

}

choice {

!r1: a -> [a, r1][3x, a, r1] .

!r2: a -> [a, r2][25x, a, r2] .

!r3: a -> [a, r3][8x, a, r3] .

!r4: a -> [a, r4][23x, a, r4] .

!r5: a -> [a, r5][5x, a, r5] .

!r6: a -> [a, r6][14x, a, r6] .

!r7: a -> [a, r7][30x, a, r7] .

}

}

type Output {

step -> 2 step .

9 step -> no, halt .

}

{a} (Main) - {step} (Output) .

The code comprises of two type definitions, Main and Output, together with
the instantiation of two, linked, compartments of the respective types. The first
two rules are guarded by {= 55x} and {> 55x} respectively, and organized in
a choice block since they are mutually exclusive and each may execute once
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and only once. Indeed, enclosing these rules in a maximally parallel grouping
would result in equivalent behaviour. A guard always relates to the multiset
contained in the compartment it evaluates in and terminates with a colon; the
− > symbol denotes the transition of a non-empty multiset on the left hand side
to a rewrite-communication outcome (objects yes, halt into the compartment
of type Output), or a single structure changing element (# which symbolises
membrane dissolution). Next, the choice block is applied as a non-deterministic
selection of one of the rules it envelopes: there are seven division rules, which
resemble the addition of a value from w(A). Each rule is prefixed by a guard !ri,
in order to prevent its subsequent application which would equate to multiple
additions of the same number.

Type Output lists two rewriting rules which execute successively and non-
repetitively. The first rule increments the number of step objects in the com-
partment, updating the step count as the computation unfolds. The second rule
will only execute if we have reached the 9th step and no halt object was received
from any of the Main compartments, effectively pronouncing a negative answer
to the problem.

The kP-Lingua implementation is a compact and intuitive representation of
the formally described model presented earlier. The specification is next trans-
lated into Spin’s modelling language, Promela, a fully automated process ac-
complished by a kP-Lingua parser and kP system - Promela model converter,
constituent tools of kpWorkbench. We document this stage of our approach with
several fragments of the rather cryptic Promela encoding, as generated by our
converter.

#define A0_SIZE 9

#define A1_SIZE 4

typedef C0 {

int x[A0_SIZE] = 0;

int xt[A0_SIZE] = 0;

int c1Links[1];

int c1LCount = 0;

int c1LSize = 0;

bit isComputing = 0;

bit isDissolved = 0;

bit isDivided = 0;

}

typedef C1 {

int x[A1_SIZE] = 0;

int xt[A1_SIZE] = 0;

int c0Links[100];

int c0LCount = 0;

int c0LSize = 0;

bit isComputing = 0;
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}

int step = 0;

bit halt = 0;

C0 m0[20];

int m0Count = 0;

int m0Size = 0;

C1 m1[1];

int m1Count = 0;

int m1Size = 0;

int m0DissolvedCount = 0;

int stepsExp = 1;

In Table 4 we elucidate the constituent elements of the above printed data
structures and variable declarations.

Table 4. Interpretation of variable expressions generated in Promela

A0 SIZE, A1 SIZE The size of the alphabet for each type of compartment;

C0, C1 The compartment types Main and Output respectively;

x, xt The arrays which store multiplicities of objects encoded as indices;

c1Links[1] The array of links to compartments of type C1;

isComputing A flag indicating whether a process is running on this instance or not;

isDissolved A flag indicating whether the compartment is dissolved or not;

isDivided Indicates if the compartment was divided
(and henceforth considered non-existent);

m0, m1 The arrays which store compartments of type C0 (Main) and
C1 (Output), respectively;

m0[0].x[2] The object with index 2 in the 0th compartment of type C0;

m1[0].x[0] Multiplicity of object step in compartment 0 of type Output ;

m1[0].x[1] Multiplicity of object yes in the output compartment;

m1[0].x[2] Multiplicity of object no in the output compartment;

m1[0].x[3] Multiplicity of object halt in the output compartment;

m0DissolvedCount The number of dissolved compartments of type Main;

stepsExp A number updated each step with the value of 2step.

The second key requirement for the model checking methodology we exem-
plify in this section is the provision of LTL formulae the validity of which is to be
asserted against the model. As methodically described in the previous section,
a set of properties is generated by instantiating various natural language pat-
terns. These are appointed as templates to be completed by the user with model
variables or numeric constants, interactively, through a graphical user interface.
Several screenshots which illustrate the Natural Language Query (NLQ) builder,
integrated into kpWorkbench are supplied in the Appendix.

Table 5 lists an array of ten properties we have compiled and derived from
natural language patterns for the Subset Sum example. These properties have
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Table 5. List of properties derived from natural language patterns using NLQ and
their generated LTL equivalent

Prop. Pattern Natural Language Statement and Spin formula

1 Until
The computation will eventually halt.
halt == 0 U halt > 0

(m1[0].x[3] == 0 || !pInS) U (m1[0].x[3] > 0 && pInS)

2 Until

The computation will halt within n+ 2 steps.
(halt == 0 && steps < n + 2) U (halt > 0 && steps <= n + 2)

(m1[0].x[3] == 0 && m1[0].x[0] < n+2 || !pInS) U

(m1[0].x[3] >= 0 &&m1[0].x[0] <= n+2 && pInS)

3 Until

The computation will eventually halt with either a ‘yes’ or ‘no’ result.
halt == 0 U (halt > 0 && (yes > 0 || no > 0))

(m1[0].x[3] == 0 || !pIns) U

(m1[0].x[3] > 0 && (m1[0].x[1] > 0 || m1[0].x[2] > 0) && pInS)

4 Until
At least one membrane division will eventually occur (before a result is obtained).
(yes == 0 && no == 0) U m0Count > 1

(m1[0].x[1] == 0 && m1[0].x[2] == 0) || !pInS U m0Count > 1 && pInS

5 Existence
A ‘yes’ result is eventually observed within no more than three steps.
F (yes > 0 && steps <= 3)

<> (m1[0].x[1] > 0 && m1[0].x[0] <= 3 && pInS)

6 Existence
A ‘yes’ result is eventually observed within more than three steps.
F (yes > 0 && steps > 3)

<> (m1[0].x[1] > 0 && m1[0].x[0] > 3 && pInS)

7 Existence
A result (‘yes’ or ‘no’) is eventually obtained without any membrane dissolutions.
F (yes > 0 || no > 0) && m0DissolvedCount == 0

<> ((m1[0].x[1] > 0 || m1[0].x[2] > 0) && m0DissolvedCount == 0 && pInS)

8 Existence
A ‘yes’ result is eventually obtained with membrane dissolution occuring.
F yes > 0 && m0DissolvedCount > 0

<> (m1[0].x[1] > 0 && m0DissolvedCount > 0 && pInS)

9 Universality
The number of compartments in use is always equal to 2stepcount.
G m0Count + 1 == TwoToTheNumberOfSteps

[] (m0Count + 1 == TwoToTheNumberOfSteps || !pInS)

10 Absence
There will never be a negative answer for this example.
!F no > 0

!(<> (m1.x[2] > 0 && pInS ))

been successfully verified with Spin on a Core i7 980X based machine, with 24GB
RAM and running Windows 8 Professional Edition.

Devising a set of properties assisted by the NLQ tool becomes an intuitive,
effortless and streamlined task, however, there may be cases when a generated
natural language statement does not reflect the meaning of the property in its
entirety, although it is logically equivalent. This may lead to shallow interpreta-
tions if the formal representation is not consulted and ultimately to oversights
of relevant implications of the property. For example, in Table 5, the property
a ‘yes’ result is eventually observed within no more than three step is as a fab-
ricated form of there exists a non-deterministic execution strategy that yields
an affirmative result to the problem in no more than three steps. The second
expression is significantly more elevate and meaningful in comparison with its
generated counterpart which clearly describes the underlying LTL formulae, but
requires a deeper understanding of the model for an accurate interpretation.
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6 Conclusions

The approach to kernelP systemmodel checkingpresented in this paper is a power-
ful synthesis of concepts and ideas, materialised into an aggregate of software tools
and template data sets. The investigation permeates two innovative leaps, namely
the kP system computational model in the context of membrane computing and
the use of natural language patterns to generate temporal logic properties in the
field of model checking. After establishing a model equivalence relation together
with a procedural translation from a generic representation to a notation required
by Spin, non-specialist users can benefit from the standard features offered by the
model checker. The often intricate and abstruse process of constructing temporal
logic formulae has also been abstracted to natural language statements and in-
teractive visual representation through graphical user interface (GUI) elements.
Another consequential advantage of significance is the correctness guarantee con-
ferred by an automatic model conversion and formula generation.

Our case study illustrated in section 5, demonstrates the feasibility of this
approach with its illustrious qualities, but also exposes the potential limitations
of the method: on one hand, the notorious state space explosion problem is an
inexorable fact that circumscribes the model checking of concurrent and non-
deterministic systems; on the other hand, some generated properties, products
of composite natural language patterns, are devoid of meaning and can possibly
lead to shallow or inaccurate interpretations and even confusion.

Evidently, a more consistent qualitative evaluation of the methodology, involv-
ing several other case studies is required to highlight its potential and limitations
more generally. It would be interesting to see the outcome of future investigations
in this newly established context.
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5. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane
Computing. Natural Computing Series. Springer (2006)

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM (1999)

7. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garćıa-
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Abstract. For many models of P systems and tissue P systems, the
main behavior of a specific system can be simulated by a correspond-
ing system with only one membrane or cell, respectively; this effective
construction is called flattening. In this paper we describe the main pro-
cedure of flattening for specific variants of static (tissue) P systems as
well as for classes of dynamic (tissue) P systems with a bounded number
of possible membrane structures or a bounded number of cells during
any computation.

1 Introduction

One of the main ideas of membrane systems as introduced by Gheorghe Păun in
[10] is the distributed way of computation in the different membrane regions of a
membrane system. On the other hand, even for the original variant of membrane
systems using catalysts it has been shown that all computations can be carried
out in only one single membrane for getting computational completeness (see
[4]). Using the idea of flattening which we are going to discuss in this paper, i.e.,
constructing a (tissue) P system with only one membrane (cell) simulating the
computations of a given (tissue) P system, especially for P systems working in
the sequential or the maximally parallel derivation mode one often can show that
the number of membranes does not matter. For example, as is well known, with
transition P systems using only non-cooperative rules in the sequential derivation
mode one can characterize the family of Parikh sets of regular languages, no
matter how many membranes are used.

Whereas without any doubt for communication P systems, where computa-
tions are carried out by moving objects through membranes, the underlying
membrane structure of a P system or the underlying graph structure of a tissue
P system will always play an essential role, in the case of transition P systems or
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tissue P systems with evolution rules, a flattening procedure may allow for re-
ducing the number of membranes or cells to one, i.e., to pure multiset rewriting,
without changing the main concept for the computational power of such systems.
Yet depending on the exact definitions of how these systems are supposed to use
their rules and how to get the final results, specific issues have to be discussed
carefully.

As this paper addresses to experts in the area of P systems, in general we only
refer the reader to [11] and the P page [13] for specific notions and results used
or stated afterwards. Formal definitions for a general model of static (tissue)
P systems can be found in [6], a formal framework for dynamically evolving
structures in [5]. Several other examples for flattening and flattening strategies,
described in the formal framework of [6] and [5], can be found in [14].

2 Definitions

The set of non-negative integers is denoted by N, the set of d-dimensional vec-
tors of non-negative integers by Nd. An alphabet V is a finite non-empty set of
abstract symbols. Given V , the free monoid generated by V under the operation
of concatenation is denoted by V ∗; the elements of V ∗ are called strings, and the
empty string is denoted by λ; V ∗ \ {λ} is denoted by V +. Let {a1, · · · , ad} be
an arbitrary alphabet; the number of occurrences of a symbol ai in a string x is
denoted by |x|ai

; the Parikh vector associated with x with respect to a1, · · · , ad
is

(|x|a1
, · · · , |x|ad

) ∈ Nd. The Parikh image of a language L over {a1, · · · , ad}
is the set of all Parikh vectors of strings in L, and we denote it by Ps (L). For
a family of languages FL, the family of Parikh images of languages in FL is
denoted by PsFL; for families of languages of a one-letter alphabet, the corre-
sponding sets of non-negative integers are denoted by NFL. Moreover, by NdFL
we denote the family of Parikh images of languages over an alphabet of d letters
in FL. Finally, we also use the convention that two sets of d-dimensional vectors
in Nd are considered to be equal if they only differ at most by the zero-vector
(0, · · · , 0).

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , ad}, is a mapping
f : V −→ N and is represented by 〈f (a1) , a1〉 · · · 〈f (ad) , ad〉 or by any string x
the Parikh vector of which with respect to a1, · · · , ad is (f (a1) , · · · , f (ad)). In
the following we will not distinguish between a vector (m1, · · · ,md) , its repre-
sentation by a multiset 〈a1,m1〉 · · · 〈ad,md〉 or its representation by a string x
having the Parikh vector

(|x|a1
, · · · , |x|ad

)
= (m1, · · · ,md). Fixing the sequence

of symbols a1, · · · , ad in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈md, ad〉 by the string am1

1 · · · amd

d is unique. The set of all
finite multisets over an alphabet V is denoted by 〈V,N〉. If we allow some ob-
jects to appear in an unbounded number, then we consider a (finite or infinite)
multiset as a mapping f : V −→ N∞, where N∞ = N ∪ {∞} with ∞ denoting
infinity. The set of all (finite or infinite) multisets over an alphabet V is denoted
by 〈V,N∞〉.
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The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [3] and [12].

As a formal model we consider a network of cells of degree n ≥ 1 as a construct

Π = (V, T, Inf0, . . . , Infn, w0, . . . , wn, R, f)

where

– V is a finite alphabet;
– T ⊆ V is the terminal alphabet;
– Infi ⊆ V , for all 0 ≤ i ≤ n, specifies the set of objects appearing in an

unbounded number in cell i (the n + 1 cells are labeled by 0 . . . n or, in a
more general way, uniquely labeled by labels from a set Lab);

– wi ∈ 〈V,N〉, for all 0 ≤ i ≤ n, is the finite multiset from V�Infi initially
associated with cell i; in total, the initial configuration of Π is described by

the multisets wi ∪
⋃

a∈Infi
〈a,∞〉, 0 ≤ i ≤ n;

– R is a finite set of rules of the form (X → Y ;E);
– f , 0 ≤ f ≤ n, is the cell where the output is collected in the generating case

and the input is put in in the accepting case.

In a rule (X → Y ;E), X and Y are (n+ 1)-vectors of multisets over V , i.e.,
X = (x0, . . . , xn), Y = (y0, . . . , yn), xi, yi ∈ 〈V,N〉 , 0 ≤ i ≤ n, and E, in the
most general form, is a decidable condition on the contents of the n+1 cells; for
example, we may take E = (P,Q), where P = (p0, . . . , pn) and Q = (q0, . . . , qn)
are permitting and forbidden contexts, with pi, qi being from 〈V,N〉 or being finite
subsets from 2〈V,N〉, 0 ≤ i ≤ n (for details see [6]). The application of such a rule
means replacing the multiset xi in cell i by the multiset yi, 0 ≤ i ≤ n, provided
E is fulfilled; for example, for E = (P,Q) this means that (every multiset from)
pi is contained in cell i whereas (any multiset from) qi is not, for 1 ≤ i ≤ n.

Transitions in a network of cells may be carried out in the sequential mode
(exactly one rule is applied), in the maximally parallel mode (an applicable mul-
tiset which cannot be extended to an applicable multiset of rules is applied),
etc.; usually, a computation ends when no rule can be applied any more, i.e., Π
halts, but there are also other ways of halting (again see [6]), e.g., stopping when
a specific symbol appears. During a computation, the configurations of the net-
work of cells Π describe the finite multisets of objects from V�Infi contained
in each cell i, 0 ≤ i ≤ n.

A network of cells may be used to generate a (vector of) non-negative inte-
ger(s) in a specific output cell (membrane) or to accept a (vector of) non-negative
integer(s) placed in a specific input cell at the beginning of a computation. More-
over, the goal can also be to compute an output from a given input or to output
yes or no to decide a specific property of a given input.

For a network of cells Π , we consider the communication graph CG (Π) built
up from all rules in R as follows: the cells of Π are the nodes of CG (Π); for
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each pair (k,m) with k �= m, xk �= λ, and ym �= λ we introduce an edge {k,m}
between the nodes k and m. If this communication graph CG (Π) is a tree
whose root has only one successor, then Π is called a hierarchical P system,
with the root corresponding to the environment (usually then labeled by 0) and
its single successor being the skin membrane (usuall labeled by 1), and the cells
are called membranes. Usually, at least some objects occur infinitely often in the
environment (but not in other membrane regions); these need not be taken into
account within the rules with respect to the environment. If the communication
graph CG (Π) does not allow for the interpretation of Π as a hierarchical P
system, then in this paper such a network of cells Π will also be called a tissue
P system, although in the literature this notion is often used for – with respect
to the communication structure – more restricted variants of networks of cells.

A hierarchical P system is (represented as) a construct

Π = (V, T,Env, μ, w0, w1, . . . , wn, R, f)

where

– V is a finite alphabet;
– T ⊆ V is the terminal alphabet;
– Env ⊆ V is the set of elements appearing infinitely often in the environment

(in all other membranes, all objects only appear in a finite number of copies),
i.e., this corresponds to Inf0 = Env and Infi = ∅ for 1 ≤ i ≤ n;

– μ describes the hierarchical membrane structure where 0 denotes the envi-
ronment and 1 is the skin membrane;

– wi ∈ 〈V,N〉, for all 1 ≤ i ≤ n, is the multiset initially associated with
membrane i, w0 specifies the finite multiset of objects from V�Env initially
appearing in the environment;

– R is a finite set of rules of the form (i : X → Y ;E) where 1 ≤ i ≤ n,
X ∈ 〈V,N〉, Y = (yα1 , α1) . . . (yαk

, αk) with αj ∈ TARμ, yαj ∈ 〈V,N〉,
1 ≤ j ≤ k, k ≥ 0, and with

TARμ = {here, in, out} ∪ {inj | 2 ≤ j ≤ n}
being the set of targets; the target here means that the generated objects
remain in membrane i, 1 ≤ i ≤ n; the target out means that the generated
objects are sent out to the membrane surrounding membrane i (i.e., the
parent of i, 1 ≤ i ≤ n, in the tree representing the membrane structure
μ); the target in means that the generated objects are sent into one of the
membranes directly inside membrane i (one of the children of i in the tree
representing the membrane structure μ), and by inj one can directly specify
one of the inner membranes where the objects are sent to;

– f , 0 ≤ f ≤ n, is the membrane where the output is collected in the generating
case and the input is put into in the accepting case.

Example 1. Consider the network of cells with four cells

Π = ({a} , {a} , ∅, ∅, ∅, ∅, 〈a, 0〉 , 〈a, 0〉 , 〈a, 0〉 , 〈a, 0〉 , R, 1)
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with

R = {(λ, aa, λ, λ)→ (λ, a, λ, λ) , (λ, a, λ, λ)→ (λ, λ, a, λ)}
∪ {(λ, λ, aa, λ)→ (λ, λ, λ, aa) , (λ, λ, λ, aa)→ (λ, λ, aa, λ)} .

As we can see, cell 0 is not involved in any rule (so we can take it as the
environment), and transitions only take place between cells 1, 2, and 3; hence, we
can represent this network of cells in a more readable way as the corresponding
hierarchical P system

Π ′′ = ({a} , {a} , ∅, [ 1 [ 2 [ 3 ] 3 ] 2 ] 1, λ, λ, λ, λ,R
′′, 1) .

with
R′′ = {1 : aa→ (a, here) , 1 : a→ (a, in)}
∪ {2 : aa→ (aa, in) , 3 : aa→ (aa, out)} .

If we consider (Π and) Π ′′ as accepting P systems working in the maximally
parallel mode, then the accepted set (of multisets) is

{
a2

n | n ≥ 0
}
, correspond-

ing to the non-semilinear set of natural numbers {2n | n ≥ 0}: the rule 1 : aa→
(a, here) applied in parallel to the input of objects a in membrane 1 divides their
number by 2; if (and only if) the original number of input objects is a power of 2,
then the rule 1 : a→ (a, in) is only to be applied at the end of the computation;
a single object a cannot be processed any more in membrane 2, whereas as soon
as this rule is applied at least twice, the application of the rules 2 : aa→ (aa, in)
and 3 : aa → (aa, out) causes an infinite loop, hence, exactly the inputs a2

n

,
n ≥ 0, are accepted by halting computations.

3 The Basic Flattening Procedure for Static (Tissue)
P Systems

Any element a in cell i of a network of cells

Π = (V, T, Inf0, . . . , Infn, w0, . . . , wn, R, f)

can be represented as a symbol (a, i) in a network of cells (tissue P system)

Π ′ = (V ′, T ′, Inf1, w,R′, 1)

with only one cell where

– V ′ = {(a, i) | a ∈ V, 0 ≤ i ≤ n};
– T ′ = {(a, f) | a ∈ T }; especially for the generating case, only the terminal

symbols in the output cell/membrane count;

– Inf1 = {hi (ai) | ai ∈ Infi, 0 ≤ i ≤ n} where the hi, 0 ≤ i ≤ n, are the
renaming morphisms hi : V → V × {i} with hi (a) = (a, i) for all a ∈ V ;

– w = h0 (w0) . . . hn (wn);
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– for getting the rules in R′, any (n + 1)-vector of multisets (z0, . . . , zn) over
V in the rules from R is replaced by the single multiset h0 (z0) . . . hn (zn).
Similar replacements have to be taken into account for every condition E in
a rule (X → Y ;E) ∈ R. For example, if X = (x0, . . . , xn), Y = (y0, . . . , yn),
E = (P,Q), P = (p0, . . . , pn), Q = (q0, . . . , qn), we take the corresponding
rule

(h0 (x0) . . . hn (xn)→ h0 (y0) . . . hn (yn) ;
((h0 (p0) , . . . , hn (pn)) , (h0 (q0) , . . . , hn (qn))))

into R′.

It is quite obvious that each computation step in Π ′ corresponds to a com-
putation step in Π and vice versa, no matter which of the basic derivation
modes – sequential, asynchronous, maximally parallel – we use; Π ′ working
in the sequential mode now corresponds to a pure multiset rewriting system
G = (V ′, T ′, w,R′) with permitting and forbidden contexts (provided Inf1 is
empty).

In this static case, the flattened network of cells essentially is of the same kind
as the original one, hence, we speak of strong flattening.

Example 2. Consider the accepting P system Π working in the maximally par-
allel mode from Example 1; then the corresponding flattened tissue P system
(in the following, we omit Inf1, as this set of objects being available infinitely
often is empty) is

Π ′ = ({(a, i) | i ∈ {1, 2, 3}} , {(a, 1)} , λ, R′, 1) with
R = {(a, 1) (a, 1)→ (a, 1) , (a, 1)→ (a, 2)}
∪ {(a, 2) (a, 2)→ (a, 3) (a, 3) , (a, 3) (a, 3)→ (a, 2) (a, 2)} .

The accepted set (of multisets) is
{
(a, 1)

2n | n ≥ 0
}
, again corresponding to

the non-semilinear set of natural numbers {2n | n ≥ 0}.
We would like to mention that Π ′ can also be seen as a hierarchical P system

with only one membrane, thereby neglecting the environment outside the skin
membrane, as there is no communication between these two regions. In that
sense, the single cell in Π ′ has been assigned the label 1 (and not 0).

Even in the case of strong flattening, some specific small issues have to be
taken into consideration carefully: as we have seen in Example 2, in the accepting
case, the input vector has to be encoded by hf , 0 ≤ f ≤ n; in the generating
case, in most cases we cannot avoid having to take the projection on the terminal
alphabet (there are some simple exceptions, where all non-terminal objects have
vanished whenever the computation halts, e.g., the semilinear sets, i.e., NREG,
can be generated in that way).

Special care has to be taken for treating the environment: for tissue P systems,
we may assume the environment to be one of the cells; for hierarchical P systems,
the environment usually is considered to be an additional membrane with label
0; the necessary changes for Π ′ and especially R′ are rather obvious, only the
treatment of the symbols occurring infinitely often in the environment needs
some special conventions (for details we refer to [6]).
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4 Communication P Systems

The general model of networks of cells also captures a lot of variants of (pure)
communication P systems, e.g., P systems using antiport and symport rules.
Hence, in principle, the basic flattening procedure can be applied to such com-
munication P systems, too. Yet in this case, flattening means a dramatic change
in the underlying philosophy of these system: whereas in pure communication P
systems objects just move between the cells/membranes and are never destroyed
or generated, in the corresponding flattened system we have rewriting rules do-
ing exactly this kind of operations. Thus, with flattening we lose the main idea of
the underlying concept. Hence, the flattened (tissue) P system is not of the same
kind as the original one, and we can only speak of flattening, but not of strong
flattening any more. We would like to point out that communication P systems
with only one membrane as often occurring in the literature in fact correspond
to tissue P systems with two cells, as the environment plays an essential role as
the additional second cell; therefore, P systems using antiport and symport rules
always need at least two cells to be represented with still capturing the idea of
communication instead of rewriting, hence, in this case strong flattening is not
possible.

On the other hand, flattening may still be a useful tool when investigating
specific features of special variants of communication P systems, e.g., see [1].

5 Flattening for (Tissue) P Systems with Polarizations

In a more general case, we may allow the membranes (cells) to carry so-called
polarizations from a finite set Pol; depending on those polarizations, the set of
transition rules available for the objects in a membrane (cell) may vary. The
unique label h ∈ Lab and the current polarization p of a membrane (cell) can be
put together in a pair (h, p) which can be taken as the new unique label of this
membrane (cell); hence, using a rule changing the polarization from p to p′ then
means changing the label from (h, p) to (h, p′). The current structure of a (tissue)
P system with polarizations can be described by a function μ : Lab → Pol
assigning one polarization to each membrane (cell). Now let M be the (finite!)
set of all such functions; for each μ ∈ M , we introduce a variable V (μ), which
in the flattened system will be used as an object representing μ, and we denote
V (M) = {V (μ) | μ ∈M}. In our general model of networks of cells, the rules
in R in a network of cells Π now are of the extended form (X → Y ;E;μ→ μ′)
with the rules μ → μ′ including the changes of polarizations induced by the
application of the rule (X → Y ;E); we also assume that such a rule is only
applicable if the current polarizations of the membranes (cells) are consistent
with μ. Moreover, several such rules can only be applied in parallel if all of them
together exactly yield the new structure μ′.

For a network of cells Π working in one of the basic derivation modes, i.e., in
the sequential, the asynchronous, or the maximally parallel mode, we immedi-
ately get the flattened network of cells Π ′ by just adapting the basic flattening
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procedure with using the extended rules and their applicability constraints as
described above; moreover, the function μ0 representing the structure of the
start configuration of Π has initially to be assigned to the single cell of Π ′. In
general, the flattened system will be of a different kind of (tissue) P systems
as the original one, as we have used extended variants of rules and additional
constraints for the applicability of a multiset of rules in the flattened system.

In the sequential mode, we can get even more: based on the construction of
the flattened tissue P system Π ′ as given above, we construct a tissue P system

Π ′′ = (V ′′, T ′, wV (μ0) , R
′′, 1)

with the basic type of rules of the form (X → Y ;E): the structure information
from Π is stored in an additional symbol; therefore, we take V ′′ = V ′ ∪ V (M)
and start with the axiom wV (μ0) with V (μ0) representing the structure of the
start configuration of Π . Moreover, we take

R′′ = {(uV (μ)→ vV (μ′) ;E) | (u→ v;E;μ→ μ′) ∈ R′} .
The change of the structure now is included in (the application of) the rule itself;
the only drawback of this construction is that the rules uV (μ) → vV (μ′) now
are cooperative rules, while the original rules u→ v might have been only non-
cooperative rules. Yet in the best case, we even get strong flattening for (tissue)
P systems with cooperative rules working in the sequential mode.

For P systems with active membranes working in the asynchronuous deriva-
tion mode, having polarizations on the membranes and even allowing for disso-
lution, but not for membrane division, a flattening procedure was described in
[8].

There are several other ideas for how to obtain a flattened (tissue) P system
in the case of the maximally parallel mode using permitting and/or forbidding
contexts which will also be discussed in the next section together with membrane
(cell) dissolution. Instead of one single symbol V (μ) describing the actual struc-
ture of the (tissue) P system we may also use a distinct symbol for describing
the actual state of each membrane (cell); again, the number of these symbols is
finite, as we only have a finite number of membranes (cells) and corresponding
polarizations. If we assume that at most one rule in any computation step may
affect the status of each membrane (cell), we can use the corresponding cooper-
ative rules (uV (μi)→ vV (μ′

i) ;E) as already discussed earlier for the sequential
mode, where the index i now indicates that only the status of membrane (cell)
i is affected. But this construction is not yet sufficient for the parallel case now,
as all the other rules have to know which current status the related membrane
(cell) has; the easiest way to capture this obviously is to use permitting contexts,
i.e., we have to replace each rule (u→ v;E) applicable under the condition of
structure μi by the new rule (u→ v;E ∧ ({μi}, ∅)).
Example 3. Consider the hierarchical P system

Π =
({a} , {a} , ∅, [ (1,0)

]
(1,0), λ, a, R, 1

)
with

R = {(1, 0) : a→ (aa, here) , (1, 0) : a→ (aa, here) δ ((1, 0)→ (1, 1))} .
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In the rule (1, 0) : a → (aa, here) δ ((1, 0)→ (1, 1)), the part δ ((1, 0)→ (1, 1))
indicates that with this rule the polarization of membrane 1 is changed from 0
to 1. With this new polarization, no rule is applicable any more. Therefore, if
we consider Π as generating P system working in the maximally parallel mode,
then the generated set (of multisets) is

{
a2

n | n ≥ 1
}
, corresponding to the non-

semilinear set of natural numbers {2n | n ≥ 1}: the rule (1, 0) : a → (aa, here)
applied in parallel to objects a in membrane 1 duplicates their number; if (and
only if) the rule (1, 0) : a → (aa, here) δ ((1, 0)→ (1, 1)) is also applied once
(at the end of the computation), the polarization of membrane 1 is changed
from 0 to 1. With this new polarization, no rule is applicable any more, hence,
the computation halts, with the result a2

n

, n ≥ 1, with n being the number of
computation steps.

In principle, this hierarchical system already has only one membrane (the
environment plays no role in the evolution of the system), but we now want
to construct a (tissue) P system with only one cell which does not change the
polarization of its membrane: According to the construction described above, we
obtain the following (tissue) P system

Π ′ = ({(a, 1) , μ(1,0), μ(1,1)}, {(a, 1)} , (a, 1)μ(1,0), R
′, 1) with

R′ = {((a, 1)→ (a, 1) (a, 1) ; ({μ(1,0)}, ∅)),
((a, 1)μ(1,0) → (a, 1) (a, 1)μ(1,1); ({μ(1,0)}, ∅))}.

The objects μ(1,0) and μ(1,1) represent the polarizations 0 and 1 of men-
brane 1. Starting with the initial configuration ((a, 1)μ(1,0)), the rule ((a, 1) →
(a, 1) (a, 1) ; ({μ(1,0)}, ∅)) can only be applied in a maximally parallel way as long
as the second rule ((a, 1)μ(1,0) → (a, 1) (a, 1)μ(1,1); ({μ(1,0)}, ∅)) is not applied,
too, whereafter the computation immediately halts.

6 Flattening for (Tissue) P Systems with Membrane
(Cell) Dissolution

Already in the original model of membrane systems introduced in [10], the possi-
bility of membrane dissolution was investigated. The objects from the dissolved
membrane r are moved into the surrounding membrane region. In a more general
context, the dissolution of a cell and the moving of its contents were discussed in
[5] as the operation Delete–and–Move(r). Such systems with membrane (cell)
dissolution have a finite number of possible membrane structures, as the dis-
solution operation can only decrease the number of membranes (cells) already
present at the beginning of the computation. Hence, it is possible to mimic the
effect of the dissolution by assigning a marker to each membrane in order to
indicate if the membrane is dissolved or not, and by using permitting and/or
forbidding contexts in order to check these markers and by using a subset con-
struction at the level of rules in order to capture all possible structure changes.

The main idea for the flattening procedure is that the objects from a deleted
membrane (cell) i are moved to another membrane (cell) j and there are treated
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as objects from membrane (cell) j, i.e., every object (a, i) now has to be treated
as an object (a, j). Hence, for any possible membrane (cell) structure μ we define
a mapping Iμ interpreting the objects (a, i) with respect to the current membrane
(cell) structure μ. In the flattened (tissue) P system even with polarizations as
described before we then have the rules (Iμ (u)→ Iμ′ (v) ; Iμ (E) ;μ→ μ′) instead
of the rules (u→ v;E;μ→ μ′) – obviously the condition E has to be interpreted
in the sense of Iμ, too. For technical details concerning the formal interpretation
of the structure changes caused by μ→ μ′ including the deletion of a membrane
(cell) with moving its contents to the surrounding membrane region (to another
cell) we refer the expert reader to [5].

For the sequential mode, according to the construction given in the preceding
section, we get the (tissue) P system

Π ′′ =
(
V ′′, T ′, Iμ0

(w) V (μ0) , R
′′, 1

)
with

R′′ = {(Iμ (u)V (μ)→ Iμ′ (v)V (μ′) ; Iμ (E)) | (u→ v;E;μ→ μ′) ∈ R′} .
For hierarchical P systems working in the maximally parallel derivation mode,

a flattening procedure was described in [2]. The main idea of such a proof is that,
besides taking the additional rules V (μ) → V (μ′) for all possible membrane
structures μ, μ′, the maximally parallel application of the original rules together
with exactly one of these rules is controlled by taking V (μ) as (eventually ad-
ditional) permitting context in a similar way as we have already discussed in
the preceding section, e.g., see Example 3. With such a construction, even the
dissolution of several membranes in one computation step can be captured.

In the following example, we now follow the idea already exhibited at the
beginning of this section with describing the status (existing/not existing) of
each membrane (cell) by a distinct symbol; moreover, each object in a rule,
according to these symbols (characterizing the actual structure of the system)
given as permitting contexts, may originate from different membranes (cells).

Example 4. Consider the hierarchical P system

Π = ({a, b} , {b} , ∅, [ 1 [ 2 ] 2 [ 3 ] 3 ] 1, λ, λ, a, a, R, 1) with
R =

{
2 : a→ (

a2, here
)
, 2 : a→ (

a2, here
)
δ
}

∪ {
3 : a→ (

a4, here
)
, 3 : a→ (

a4, here
)
δ
}

∪ {
1 : aa→ (

b3, here
)}

.

We consider Π as a generating P system working in the maximally paral-
lel mode: in membranes 2 and 3, in each computation step, the actual num-
ber of objects is multiplied by 2 and 4 by the rules 2 : a → (

a2, here
)
and

3 : a → (
a4, here

)
, respectively. By applying the rules with the membrane dis-

solution operator δ in one of these membranes, the corresponding membrane is
dissolved and the objects a are sent to the skin membrane, where in the next step,
from each couple of objects a three terminal objects b evolve. As soon as both
membranes 2 and 3 have been dissolved, the system halts. In sum, the gener-
ated set (of multisets) corresponds to the non-semilinear set of natural numbers
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3.2n−1 | n ≥ 1

} ∪ {
6.4m−1 | m ≥ 1

}
where n and m are the numbers of com-

putation steps in membranes 2 and 3 until the dissolution of the corresponding
membrane.

As the environment is not involved in the P system Π , the corresponding
flattened (tissue) P system can be constructed as follows:

Π ′ = (V ′, {(b, 1)} , (a, 2) (a, 3) , R′, 1) ,
V ′ = {(a, i) , (b, i) | i ∈ {1, 2, 3}} ∪ {si, s̄i | i ∈ {1, 2, 3}} ,
R′ = {((a, 2)→ (a, 2)2 ; ({s2} , ∅)), ((a, 2) s2 → (a, 2)2 s̄2; ({s2} , ∅))}
∪ {((a, 3)→ (a, 3)4 ; ({s3} , ∅)), ((a, 3) s3 → (a, 3)4 s̄3; ({s3} , ∅))}
∪ {(a, 1) (a, 1)→ (b, 1)3 ; ({s1} , ∅)), (a, 1) (a, 2)→ (b, 1)3 ; ({s1, s̄2} , ∅)),

(a, 2) (a, 2)→ (b, 1)3 ; ({s1, s̄2} , ∅)), (a, 1) (a, 3)→ (b, 1)3 ; ({s1, s̄3} , ∅)),
(a, 3) (a, 3)→ (b, 1)

3
; ({s1, s̄3} , ∅)),

(a, 2) (a, 3)→ (b, 1)
3
; ({s1, s̄2, s̄3} , ∅))}.

The symbols si (s̄i) indicate that membrane i is (not) present. In membrane 1,
the symbol a may originate from membranes 1, 2, and 3; hence, for the left-hand
side of the original rule 1 : aa → (

b3, here
)
each of the two symbols a may

come from each of the three membranes depending on the underlying membrane
structure which is visible from the permitting context. As the skin membrane
(membrane 1) must not be deleted, each occurrence of s1 in the permitting
contexts could be omitted.

When the computation halts, the symbols s1, s̄2, s̄3 are present. In order to
eliminate these additional symbols (instead of having to make the projection on
the terminal alphabet {(b, 1)}), we would have to add the rule

(s1s̄2s̄3 → λ; (∅, {(a, 1) , (a, 2) , (a, 3)}))
with the forbidden context guaranteeing that no rule can be applied any more.
This idea with such a forbidden context can be used in general, too.

7 Flattening for (Tissue) P Systems with Membrane
(Cell) Creation, Division, and Dissolution

Whereas the deletion of membranes (cells) still allows for flattening using specific
constructions, as soon as membrane (cell) division and/or creation are allowed, in
general the number of membranes (cells) need not be bounded any more. Hence,
a naive adaptation of the flattening procedure as described above would lead to
potentially infinite numbers of objects and rules. On the other hand, if in any
computation of the system the number of possible structures (membranes/cells)
can be bounded by some constant max, then similar constructions as given for
systems with membrane (cell) dissolution may yield a flattened system.

Example 5. Consider the P system (with active membranes)

Π = ({a, b} , {a} , ∅, [ 1 ] 1, λ, b, R, 1)
R = {1 : b→ [ 2 a ] 2 [ 2 a ] 2}
∪ {

2 : a→ (
a2, here

)
, 2 : a→ (

a2, here
)
δ
}
.
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We consider Π as a generating P system working in the maximally parallel
mode: starting with the initial configuration [1b ]1, the rule 1 : b→ [ 2 a ] 2 [ 2 a ] 2
creates two inner membranes with the same label 2, i.e., we obtain the config-
uration [ 1 [ 2 a ] 2 [ 2 a ] 2 ] 1. In both membranes, in each computation step, the
actual number of objects a is duplicated by the rules 2 : a → (

a2, here
)
until

the application of at least one rule 2 : a→ (
a2, here

)
δ dissolves the membrane.

As in membrane 1 no rule can be applied to objects a, at the end, we obtain k
objects a with k ∈ {2m + 2n | m,n ≥ 1}.

A specific problem of such P systems with active membranes is that we may
generate new membranes having the same label. Yet the assumption that only
a finite number of different membrane structures may arise allows us to assign
different labels to copies of membranes having the same label, e.g., for the two
membranes with label 2 in Π we may take the labels (2, 1) and (2, 2); in that
way we obtain an equivalent P system Π ′′ where we have to duplicate the rules
for membrane 2 for the two membranes now labeled by (2, 1) and (2, 2):

Π ′′ = ({a, b} , {a} , ∅, [ 1] 1, λ, b, R
′′, 1)

R′′ =
{
1 : b→ [

(2,1) a
]
(2,1)

[
(2,2) a

]
(2,2)

}
∪ {

(2, 1) : a→ (
a2, here

)
, (2, 1) : a→ (

a2, here
)
δ
}

∪ {
(2, 2) : a→ (

a2, here
)
, (2, 2) : a→ (

a2, here
)
δ
}
.

As the environment 0 is not involved in the P systems Π and Π ′′, for Π ′′

an equivalent flattened (tissue) P system can be constructed as follows using
extended rules of the form (Iμ (u)→ Iμ′ (v) ;μ→ μ′), i.e., the left-hand sides of
the rules are interpreted according to the current membrane structure μ, whereas
the evolving objects from the right-hand sides have to be interpreted already as
objects in the new membrane structure μ′:

Π ′ = (V ′, {(a, 1)} , (b, 1) , R′, 1) ,
V ′ = {(a, i) , (b, i) | i ∈ {1, (2, 1) , (2, 2)}} ,
R′ = {((b, 1)→ (a, (2, 1)) (a, (2, 2)) ; [ 1 ] 1 →

[
1

[
(2,1)

]
(2,1)

[
(2,2)

]
(2,2)

]
1

)}
∪ {((a, (2, 1))→ (a, (2, 1))2 ;

[
1

[
(2,1)

]
(2,1)

[
(2,2)

]
(2,2)

]
1 → μ′),

μ′ ∈ {[
1

[
(2,1)

]
(2,1)

[
(2,2)

]
(2,2)

]
1,
[
1

[
(2,1)

]
(2,1)

]
1

}}
∪ {((a, (2, 2))→ (a, (2, 2))

2
;
[
1

[
(2,1)

]
(2,1)

[
(2,2)

]
(2,2)

]
1 → μ′),

μ′ ∈ {[
1

[
(2,1)

]
(2,1)

[
(2,2)

]
(2,2)

]
1,
[
1

[
(2,2)

]
(2,2)

]
1

}}
∪ {((a, (2, 1))→ (a, 1)2 ;

[
1

[
(2,1)

]
(2,1)

[
(2,2)

]
(2,2)

]
1 → μ′),

μ′ ∈ {[
1

[
(2,2)

]
(2,2)

]
1, [ 1 ] 1

}}
∪ {((a, (2, 2))→ (a, 1)

2
;
[
1

[
(2,1)

]
(2,1)

[
(2,2)

]
(2,2)

]
1 → μ′),

μ′ ∈ {[
1

[
(2,1)

]
(2,1)

]
1, [ 1 ] 1

}}
∪ {((a, (2, 1))→ (a, 1)2 ;

[
1

[
(2,1)

]
(2,1)

]
1 → [ 1 ] 1)}

∪ {((a, (2, 2))→ (a, 1)
2
;
[
1

[
(2,2)

]
(2,2)

]
1 → [ 1 ] 1)}.

The condition that only rules starting from the same membrane structure μ
and yielding the same new membrane structure μ′ can be applied in parallel,
guarantees that in each derivation step the correct symbols are evolving in the
current membrane structure μ with respect to the next membrane structure μ′.
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For any halting computation, the final configuration is of the form
[
1 (a, 1)

k
]
1

with k ∈ {2m + 2n | m,n ≥ 1}.

We have to point out that a construction like that given above only works
with the maximally parallel derivation mode, as with the change of the structure
all symbols from a dissolved membrane have to be converted into symbols of the
membrane they are sent to by the dissolution of the membrane. On the other
hand, in the preceding example, after the first derivation step, each of the possible
membrane structures evolves by dissolution only, hence, we could also apply each
of the flattening techniques as described in the preceding section.

In the following example, the membrane structure may evolve from [ 1 ] 1 to
[ 1 [ 2 ] 2 ] 1 and back an unbounded number of times, hence, the parallel rewriting
of all symbols is a crucial point of the flattening procedure:

Example 6. Consider the P system (with active membranes)

Π = ({a, b, c} , {c} , ∅, [ 1] 1, λ, ba,R, 1) with
R = {1 : b→ [ 2 c ] 2, 1 : b→ λ,

1 : a→ (
c3, here

)
, 1 : c→ (

a2, in
)}

∪ {2 : c→ (b, here) , 2 : b→ (b, out) δ} .

We consider Π as a generating P system working in the maximally parallel
mode: starting with the initial configuration [1 ba ]1, the rule 1 : b → [ 2 c ] 2
creates an inner membrane with label 2, whereas by the rule 1 : a → (

c3, here
)

from each object a we get three symbols c, i.e., after the first derivation step
we obtain the configuration

[
1 c

3 [ 2 c ] 2
]
1. In the next computation step, from

each object c we get two objects a which are sent into membrane 2 by the rules
1 : c → (

a2, in
)
, and at the same time, in membrane 2 the single object c

evolves back to b by the rule 2 : c → (b, here), i.e., after this derivation step
we have got the configuration

[
1

[
2 a

6b
]
2

]
1. With the dissolution of membrane

2 – using the rule 2 : b → (b, out) δ – all objects a and the single object b are
back in membrane 1. This cycle continues as long as in membrane 1 the rule
1 : b→ [2 c ]2 is applied, whereas the derivation halts after the application of the
rule 1 : b→ λ. In that way, Π generates

{
c3.6

n | n ≥ 0
}
.

As the environment 0 is not involved in the P system Π , an equivalent flat-
tened (tissue) P system can be constructed as follows using extended rules of
the form (Iμ (u)→ Iμ′ (v) ;μ→ μ′):

Π ′ =(V ′, T ′, w,R′, 1) ,
V ′ = {(a, i) , (b, i) , (c, i) | i ∈ {1, 2}} ,
T ′ = {(c, 1)} ,
w =(ab, 1) ,
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R′ ={((b, 1)→ (c, 2) ; [ 1 ] 1 → [ 1 [ 2 ] 2 ] 1) ,

((b, 1)→ λ; [ 1 ] 1 → [ 1 ] 1) ,

((a, 1)→ (c, 1)3 ; [ 1 ] 1 → [ 1 [ 2 ] 2 ] 1),

((c, 1)→ (a, 2)
2
; [ 1 [ 2 ] 2 ] 1 → [ 1 [ 2 ] 2 ] 1)}

∪{((c, 2)→ (b, 2) ; [ 1 [ 2 ] 2 ] 1 → [ 1 [ 2 ] 2 ] 1) ,

((b, 2)→ (b, 1) ; [ 1 [ 2 ] 2 ] 1 → [ 1 ] 1)}
∪{((a, 2)→ (a, 1) ; [ 1 [ 2 ] 2 ] 1 → [ 1 ] 1)}.

As they would never be applicable, rules like ((a, 1) → (c, 1)
3
; [ 1 ] 1 → [ 1 ] 1)

and ((c, 2)→ (b, 1) ; [ 1 [ 2 ] 2 ] 1 → [ 1 ] 1) are omitted, whereas the rule ((a, 2)→
(a, 1) ; [ 1 [ 2 ] 2 ] 1 → [ 1 ] 1) has to be added to rename the symbols a appear-
ing as objects (a, 2) in membrane 1 into objects (a, 1) when membrane 2 is
dissolved. For any halting computation, the final configuration is of the form

[ 1 (c, 1)
3.6n

]1 for some n ≥ 0, i.e., as Π also Π ′ generates the non-semilinear set
{3.6n | n ≥ 0}.

Finally, we consider a simple hierarchical P system with non-elementary mem-
brane division, where the contents of the original cell is duplicated into two new
cells:

Example 7. Consider the P system (with active membranes)

Π = ({a, b} , {a} , ∅, [ 1 [ 2 ] 2 ] 1, λ, b, a, R, 1) with
R = {0 : [ 1 b ] 1 → [ 2 ] 2 [ 3 ] 3, 2 : a→ bδ, 2 : b→ δ, 3 : b→ δ} .

We consider Π as a computing P system working in the maximally parallel
mode, with the input an, n ≥ 0, being given in membrane 1, and the output
being collected in the environment (membrane 0): starting with the initial config-
uration [ 1 ba

n [ 2 a ] 2 ] 1, the rule [ 1 b ] 1 → [ 2 ] 2 [ 3 ] 3 divides the non-elementary
membrane 1 and copies its contents into two new membranes 2 and 3; in the
original inside membrane 2 the rule 2 : a → bδ causes the membrane to be dis-
solved and to release an object b into the surrounding membrane region; thus,
we obtain the configuration [ 2 a

nb ] 2 [ 3 a
nb ] 3 . In the second step, the single

objects b in membranes 2 and 3 dissolve the membranes, thus releasing their
contents to the environment: the objects a in membrane 3 are not affected by
any rule, whereas each copy of the symbol a in membrane 2 is changed to b by
the rule 2 : a → bδ. Hence, the computation stops after two steps with anbn in
the environment as the result of the computation.

An equivalent flattened (tissue) P system Π ′ can be constructed as follows us-
ing extended rules of the form (Iμ (u)→ Iμ′ (v) ;μ→ μ′); again, we only include
those rules which can be applied during a computation:
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Π ′ = (V ′, {(a, 1)} , (b, 1) (a, 2) , R′, 1) ,
V ′ = {(a, i) , (b, i) | i ∈ {0, 1, 2, 3}} ,
R′ = {((b, 1)→ λ; [ 0 [ 1 [ 2 ] 2 ] 1] 0 → [ 0 [ 2 ] 2 [ 3 ] 3 ] 0) ,

((a, 1)→ (a, 2) (a, 3) ; [ 0 [ 1 [ 2 ] 2 ] 1] 0 → [ 0 [ 2 ] 2 [ 3 ] 3 ] 0) ,
((a, 2)→ (b, 2) (b, 3) ; [ 0 [ 1 [ 2 ] 2 ] 1] 0 → [ 0 [ 2 ] 2 [ 3 ] 3 ] 0)}

∪ {((b, 2)→ λ; [ 0 [ 2 ] 2 [ 3 ] 3 ] 0 → [ 0 ] 0) ,
((b, 3)→ λ; [ 0 [ 2 ] 2 [ 3 ] 3 ] 0 → [ 0 ] 0) ,
((a, 2)→ (b, 0) ; [ 0 [ 2 ] 2 [ 3 ] 3 ] 0 → [ 0 ] 0) ,
((a, 3)→ (a, 0) ; [ 0 [ 2 ] 2 [ 3 ] 3 ] 0 → [ 0 ] 0)}.

Π ′ starts with the axiom (b, 1) (a, 2) and the (additional) input (a, 1)
n
in its

single cell; by applying the first three rules we obtain (b, 2) (a, 2)
n
(b, 3) (a, 3)

n
,

whereas the remaining rules are used in the second computation step to obtain
the result of the computation (a, 0)

n
(b, 0)

n
. Finally, we again have to point out

that the computations in Π can only be simulated in Π ′ in real time because Π
and Π ′ work in the maximally parallel derivation mode.

8 Flattening with Changing the Derivation Mode

Several models of tissue P systems work in such a way that in each cell one rule
is applied (if possible), but in one computation step such a sequential derivation
has to take place in all cells, i.e., such systems work sequentially on the level
of the cells, but in a maximally parallel way on the level of the whole system.
Examples for such models are spiking neural P systems or variants of enzymatic
numerical P systems considered in several papers just recently (e.g., see [9] and
the references therein).

The basic flattening procedure may be applied to the objects in such systems
as usual, but in the single membrane of the flattened system Π ′ to these objects
the original rules now have to be applied in the min1 derivation mode (see [7]):
the new rule set R′ is the union of the original rule sets R0 to Rn associated with
the cells of the original system, but for the application of the min1 derivation
mode again divided into the sets R0 to Rn, i.e., from each set Ri, 0 ≤ i ≤
n, exactly one rule (if possible) is taken for any multiset to be applied in a
computation step of Π ′.

9 Final Remarks

In this paper we have discussed the flattening procedure for several of the most
common models of (tissue) P systems in the general framework of networks
of cells, even with membrane (cell) dissolution and polarizations. For (tissue)
P systems with membrane (cell) generation or division, in general the number
of membranes (cells) is not bounded. But if the number of cells during any
computation is bounded, flattening even works for these cases of dynamically
changing structures. In sum, several models of (tissue) P systems can be reduced
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to pure multiset rewriting by flattening these systems to one membrane (cell),
but in general a lot of interesting features arising from the idea to distribute the
objects and their evolution into different membranes (cells) still remains valid.
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Abstract. In this paper we solve the SAT problem (the satisfiability
problem of propositional formulas in conjunctive normal form) by two
polynomially uniform families of P systems with active membranes. The
novelty of these solutions is that these P systems can solve the SAT
problem in linear time in the number of propositional variables occur-
ring in the input. This means that the number of computation steps is
independent form the number of clauses of the input. To achieve this
efficiency our systems employ only the standard rules of P systems with
active membranes plus membrane creation rules. Moreover, in the first
solution the P systems do not use the polarizations of the membranes but
use such membrane division rules which can change the labels of the in-
volved membranes. In the second solution the P systems do not employ
membrane label changing but use the polarizations of the membranes
instead.
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1 Introduction

P systems with active membranes [10] are widely investigated variants of P
systems [9]. These systems have the possibility of dividing elementary membranes
which combined with the massive parallelism that is present in these systems
can yield exponential workspace in linear time. This feature is frequently used
in P system based efficient solutions of well known NP-complete problems such
as the SAT problem. The SAT problem (satisfiability problem of propositional
formulas) is probably the best known NP-complete decision problem where the
question is whether a given propositional formula in conjunctive normal form is
satisfiable.

Solving the SAT problem efficiently by P systems with active membranes is
a subject of many papers in the literature (see e.g. [1], [2], [3], [4], [8], [10], and
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[13]). These solutions differ, for example, in the types of the rules employed,
the possibility of changing the labels of the membranes, and the use of the
polarizations of the membranes. On the other hand, these solutions commonly
work in a way where all possible truth valuations of the input formula are created
and then a satisfying one (if it exists) is chosen.

In the above mentioned papers the SAT problem is solved by polynomially
(semi-)uniform families of P systems. This means that the P systems in these
families can be constructed in polynomial time by a deterministic Turing machine
from the size of the input formula (in the uniform case) or from the formula itself
(in the semi-uniform case). (For more details on polynomially (semi-)uniform
families of P systems we refer to [12] and [13]). The size of the input formula is
usually described by the number of distinct variables and the number of clauses
in the formula. The P systems introduced in the above works can decide SAT in
polynomial time in the size of the input formula. This means that the number of
the computation steps of these systems usually depends also on the number of
clauses. The only exception is the solution of [4] where the SAT problem is solved
in linear time in the number of variables. However, in [4] the presented P systems
employ non-elementary membrane division rules, which are very powerful rules
capable to duplicate such membranes also which contain further membranes.
There is an interesting solution of the SAT problem where instead of membrane
division rules membrane creation rules are used to create every possible truth
valuations of the input formula [7]. The computation steps of the P systems in
this solution is also linear in the number of variables. However, the semantics of
the rules in this solution is slightly differs to the one that is commonly used in P
systems with active membranes. A more detailed comparison of the solution of
[7] and our solution will be given after presenting the main results of this paper.

In [6] two families of polarizationless P systems were given which use neither
non-elementary membrane division nor membrane creation, but still can solve
the SAT problem in linear time in the number of the variables in the input for-
mula. These solutions implement a decision procedure which is strongly based on
the well known resolution rule of propositional logic. However, the first solution
is not polynomially uniform since its object alphabet is exponential in the num-
ber of the variables. The second solution, on the other hand, uses a polynomial
time constructable family of P systems, but the P systems are constructed from
the input formula, thus it is a semi-uniform solution.

In this paper we present two families of P systems that are based on these
systems but do not have their drawbacks in the following sense. Our new solu-
tions are polynomially uniform ones still capable to decide the satisfiability of
a formula in linear time in the number of variables. In the first solution the P
systems do not use the polarizations of the membranes but use such membrane
division rules which can change the labels of the involved membranes. In the sec-
ond solution the P systems do not employ membrane label changing but use the
polarizations of the membranes instead. Moreover, in contrast to the solutions
of [6], our new solutions employ membrane creation rules also.
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This paper is based on the conference paper [5]. The first solution presented
here is a slight variant of the one presented in [5]. The second solution is a variant
of the first one, where we avoid to use rules with membrane label changing.

The paper is organised as follows. In Section 2 we clarify the used notations
and notions and give the necessary definitions and preliminary results. Section
3 contains our families of P systems, and Section 4 presents some concluding
remarks.

2 Definitions

Alphabets, Words, Multisets. An alphabet Σ is a non-empty and finite set
of symbols. The elements of Σ are called letters. Σ∗ denotes the set of all finite
words (or strings) over Σ, including the empty word ε. We will use multisets
of objects in the membranes of a P system. As usual, these multisets will be
represented by strings over the object alphabet of the P system. The set of
natural numbers is denoted by N. For i, j ∈ N, [i, j] denotes the set {i, i+1, . . . , j}
(notice that if j < i, then [i, j] = ∅). Moreover, for the shake of simplicity, for a
number n ∈ N, we denote the set [1, n] by [n].

The SAT Problem. Let X = {x1, x2, x3, . . .} be a recursively enumerable set
of propositional variables (variables, to be short), and, for every n ∈ N, let Xn :=
{x1, . . . , xn}. An interpretation of the variables in Xn (or just an interpretation
if Xn is clear from the context) is a function I : Xn → {true, false}.

The variables and their negations are called literals. A clause C is a disjunction
of finitely many pairwise different literals satisfying the condition that there is
no x ∈ X such that both x and x̄ occur in C, where x̄ denotes the negation of
x. The set of all clauses over the variables in Xn is denoted by Cn. A formula
in conjunctive normal form (CNF) is a conjunction of finitely many clauses. We
denote the conjunction and the disjunction operator by ∧ and ∨, respectively.
However, when it is more convenient, we will treat formulas in CNF as finite sets
of clauses, where the clauses are finite sets of literals. A clause C ∈ Cn is called
a complete clause if, for every x ∈ Xn, x ∈ C or x̄ ∈ C. Let Form be the set
of all formulas in CNF over the variables in X and, for every n ∈ N, let Formn

be the set of those formulas in Form that have variables in Xn. It is easy to
see that Form is a recursively enumerable set (notice that, for a given n ∈ N,
Formn is a finite set).

Let ϕ ∈ Formn (n ∈ N) and let I be an interpretation for ϕ. We say that I
satisfies ϕ, denoted by I |= ϕ, if ϕ evaluates to true under the truth assignment
defined by I. Notice that I |= ϕ if and only if, for every C ∈ ϕ, I |= C. We say
that ϕ is satisfiable if there is an interpretation I such that I |= ϕ. The SAT
problem (boolean satisfiability problem of propositional formulas in CNF) can
be defined as follows:

Given a formula ϕ in CNF, decide whether or not there is an interpre-
tation I such that I |= ϕ.
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Let ϕ ∈ Form. The set of variables occurring in ϕ, denoted by var(ϕ), is defined
by var(ϕ) := {x ∈ X | ∃C ∈ ϕ : x ∈ C or x̄ ∈ C}. Next we define an operation
on a clause in Cn. This operation is a key component in our method of solving
the SAT problem by P systems. For a clause C ∈ Cn and a set Y ⊆ Xn (n ∈ N)
such that var(C) ∩ Y = ∅, let CY be the following set of clauses. Assume that
Y = {xi1 , . . . , xik} (k ≤ n, 1 ≤ i1 < . . . < ik ≤ n). Then let CY := {C ∪
{l1, . . . , lk} | j ∈ [k] : lj ∈ {xij , x̄ij}}. Intuitively, CY is the set of those clauses
that can be created by adding, for every variable x ∈ Y , x or x̄ to C. For
example, if C = {x1, x̄2} and Y = {x3}, then CY = {{x1, x̄2, x3}, {x1, x̄2, x̄3}}.
For a formula ϕ = {C1, . . . , Cm} ∈ Formn (m,n ∈ N), let ϕc :=

⋃
C∈ϕCY ,

where Y := Xn − var(C).
The following statement claims that the satisfiability of a formula ϕ ∈ Formn

can be reduced to the question whether ϕc contains every complete clause in Cn.
Proposition 1. For a formula ϕ ∈ Formn (n ∈ N), ϕ is satisfiable if and only
if | ϕc |< 2n.

The formal proof of this statement can be found, for example, in [6]. We
only note here that the correctness of this statement is based on the following
observations. For a formula ϕ ∈ Formn, C ∈ ϕ, and x ∈ Xn − var(C), ϕ is
satisfiable if and only if the formula (ϕ − C) ∪ C{x} is satisfiable. Moreover,
trivially, a set of complete clauses is satisfiable if and only if it contains every
complete clause in Cn, for some n ∈ N.

As an example consider the formula ϕ = (x1 ∨ x̄2) ∧ x̄1 ∧ x2 ∈ Form2. Let
us denote the clauses of ϕ by C1, C2, and C3, respectively. Clearly var(C1) =
{x1, x2}, var(C2) = {x1}, and var(C3) = {x2}. Thus, the clauses of ϕc are C1,
C2 ∪{x2}, C2 ∪{x̄2}, C3 ∪{x1}, and C3 ∪{x̄1}, i.e., ϕc = (x1 ∨ x̄2)∧ (x̄1 ∨ x2)∧
(x̄1 ∨ x̄2) ∧ (x1 ∨ x2) (notice that the second clause of ϕc can be created from
both C2 and C3). As ϕ

c contains every complete clause in C2, using Proposition
1 we can derive that ϕ is unsatisfiable.

According to this, our P systems, roughly, will work in the following way. For
an input formula ϕ with n variables the corresponding P system will

– create the clauses of ϕc,
– separate the clauses of ϕc into different cells, and
– decide if there is 2n cells containing a complete clause of ϕc.

P Systems with Active Membranes. We will use P systems with active
membranes to solve the SAT problem. In these P systems we will use such
membrane division rules that can change the labels of the membranes involved.
We will also use membrane creation and dissolution rules. The following is the
formal definition of the P systems we will use (see also [11]). A P system with
active membranes is a construct Π = (O,H, μ, w1, . . . , wm, R), where:

– m ≥ 1 (the initial degree of the system);
– O is the alphabet of objects ;
– H is a finite set of labels for membranes;
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– μ is a membrane structure, consisting of m membranes, labelled (not neces-
sarily in a one-to-one manner) with elements of H ;

– w1, . . . , wm are strings over O, describing the multisets of objects placed in
the m regions of μ;

– R is a finite set of developmental rules, of the following forms:
(a) [a→ v]eh, for e ∈ {+,−, 0}, h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes, but not directly involving
the membranes, in the sense that the membranes are neither taking part
in the application of these rules nor are they modified by them);

(b) a[ ]e1h → [b]e2h , for e1, e2 ∈ {+,−, 0}, h ∈ H , a, b ∈ O
(in communication rules, sending an object into a membrane, maybe
modified during this process; also the polarization of the membrane can
be modified, but not its label);

(c) [a]e1h → [ ]e2h b, for e1, e2 ∈ {+,−, 0}, h ∈ H , a, b ∈ O
(out communication rules; an object is sent out of the membrane, maybe
modified during this process; also the polarization of the membrane can
be modified, but not its label);

(d) [a]eh → b, for e ∈ {+,−, 0}, h ∈ H , a, b ∈ O
(membrane dissolving rules; in reaction with an object, a membrane can
be dissolved, while the object specified in the rule can be modified);

(e) [a]e1h1
→ [b]e2h2

[c]e3h3
, for e1, e2, e3 ∈ {+,−, 0}, h1, h2, h3 ∈ H , a, b, c ∈ O

(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with possibly different labels
or polarizations; the object a specified in the rule is replaced in the two
new membranes by (possibly new) objects b and c respectively, and the
remaining objects are duplicated);

(f) a→ [b]eh, for e ∈ {+,−, 0}, h ∈ H , a, b ∈ O
(membrane creation rules; in reaction with an object a new membrane
with label h can be created; the object a specified in the rule is replaced
in the new membrane by the object b);

As usual, Π works in a maximal parallel manner:

– In one step, any object of a membrane that can evolve must evolve, but one
object can be used by only one rule in (a)-(f);

– when some rules in (b)-(f) can be applied to a certain membrane, then one
of them must be applied, but a membrane can be the subject of only one
rule of these rules during each step.

We say that Π is a recognizing P system if

– O has two designated objects yes and no; every computation of Π halts and
sends out to the environment either yes or no, but not both, and this is done
exactly in the last step of the computation;

– Π has a designated input membrane i0;
– for a word w, called the input of Π , w can be added to the system by placing

it into the region i0 in the initial configuration.
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A P system Π with active membranes is deterministic if it has only a single
computation from its initial configuration to its unique halting configuration. Π
is confluent if every computation of Π halts and sends out to the environment
the same object. Notice that, by definition, recognizing P systems are confluent.
A family Π := (Π(i))i∈N of recognizing P systems is called polynomially uniform
if, for every n ∈ N, Π(n) can be constructed from n by a deterministic Turing
machine in polynomial time in n.

We say that the SAT problem can be solved by a family Π := (Π(i))i∈N of
recognizing P systems if, for a formula ϕ ∈ Form with size n (n ∈ N), starting
Π(n) with a polynomial time encoding of ϕ in its input membrane, Π(n) sends
out to the environment yes if and only if ϕ is satisfiable.

3 The Main Result

Here we present two polynomially uniform families of recognizing P systems that
can solve the SAT problem in linear time in the number of distinct variables
in the input formula. The first solution does not use the polarizations of the
membranes but employs membrane division rules with membrane label changing.
In case of this solution we use a formula encoding that is similar to the often
used ones in the theory of P systems (see e.g. the definition of cod(ϕ) on page
314 in [12]). The only difference here is that if a variable is not represented in a
clause, then this fact is encoded in an object appropriately. Let ϕ = C1∧. . .∧Cm

be a formula. Then

cod(ϕ) :=
m⋃
j=1

({xj,i | xi ∈ Cj} ∪ {x̄j,i | x̄i ∈ Cj} ∪ {x̂j,i | xi �∈ Cj and x̄i �∈ Cj}) .

Clearly, for every formula ϕ with m clauses and n variables, cod(ϕ) ⊆ Om,n ∪
Ôm,n, where Om,n :=

⋃
i∈[n],j∈[m]{xj,i, x̄j,i} and Ôm,n :=

⋃
i∈[n],j∈[m]{x̂j,i}. We

will also need the primed versions of the objects in Om,n, thus let O′
m,n :=⋃

i∈[n],j∈[m]{x′
j,i, x̄

′
j,i}. Finally, we will use the size function

〈m,n〉 := (n+m)(n+m+ 1)

2
+ n

also used e.g. in [3] to represent the size of ϕ.

Definition 1. For everym,n ∈ N, letΠ(〈m,n〉) := (O,H, μ, wskin , waux, w1, R),
where:

– O := Om,n ∪ Ôm,n ∪O′
m,n ∪ {yes, no, yes′, e, c1, c2, d1, d2, . . . , d2n+1};

– H := {skin, aux, aux′, 1, 2 . . . , 2n+ 1} ∪ {(i, j) | j ∈ [m], i ∈ [n− 1]};
– μ := [[[ ]1]aux]skin, where the input membrane is [ ]1;
– wskin := ε, waux := ε and w1 := d1;
– R is the set of the rules defined below. We note that, for the sake of simplicity,

we define different set of rules in item (iii) according to that n = 1 or n > 1.
Moreover, in some cases we give explanations of the presented rules.
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(i) [x̂j,i]1 → [xj,ix̄j,i]1 (i ∈ [n], j ∈ [m])

(at the first step the system creates from every object x̂j,i two new
objects, xj,i and x̄j,i; this corresponds to the creation of the complete
clauses of ϕc);

(ii) [d1]1 → [d2]2[d3]3,
[d2i+k]2i+k → [d2i+2]2i+2[d2i+3]2i+3 (i ∈ [n− 1], k ∈ [0, 1]),
[x̄j,i → ε]2i, [xj,i → ε]2i+1 (j ∈ [m], i ∈ [n])

(by these membrane division rules the system divides the cells with label
2i or 2i+1; during this division the objects representing the literals of ϕc

are duplicated and distributed between the new cells; after this step the
system should remove certain superfluous literals from the corresponding
cells; this is done by the object evolution rules above);

(iii) If n = 1:
[xj,1 → x′

j,1]2, [x̄j,1 → x̄′
j,1]3 (j ∈ [m]).

If n > 1:
[xj,1 → x′

j,1]2n+k, [x̄j,1 → x̄′
j,1]2n+k (j ∈ [m], k ∈ [0, 1]),

[x′
j,i → [c1]j,i]2n+k, [x̄j,i → [c1]j,i]2n+k (j ∈ [m], i ∈ [n− 1], k ∈ [0, 1]),

[c1 → c2]j,i, [c2]j,i → c2 (j ∈ [m], i ∈ [n− 1]),
xj,i[ ]j,i−1 → [x′

j,i]j,i−1, x̄j,i[ ]j,i−1 → [x̄′
j,i]j,i−1,

[x′
j,i]j,i−1 → x′

j,i, [x
′
j,i]j,i−1 → x′

j,i (j ∈ [m], i ∈ [2, n], k ∈ [0, 1])

(after n+ 1 steps, each cell with label 2n or 2n+ 1 can contain literals
forming a complete clause of ϕc; with these rules the system can decide
if such a cell contains a complete clause or not);

(iv) (a) [x′
j,n]2n+k → e and [x̄′

j,n]2n+k → e (j ∈ [m], k ∈ [0, 1])
(those cells with label 2n+k which contain a primed literal involving
the nth variable are dissolved by these rules introducing new objects
e);

(b) e[ ]2n+k → [yes′]2n+k, [yes
′]2n+k → [ ]2n+kyes

′ (k ∈ [0, 1]),
[yes′]aux → yes,
[yes]skin → [ ]skinyes
(if there are cells with label 2n + k which are not dissolved by the
rules in (a), then objects e go into these cells introducing objects
yes′; the other rules are used to send objects yes′ out to the cell
aux; there one yes′ introduces yes by dissolving the cell aux; then
yes is sent out to the environment);

(c) [e]aux → [e]aux′ [no]aux′ ,
[no]aux′ → [ ]aux′no,
[no]skin → [ ]skinno
(if every membrane with label 2n+ k could be dissolved by the rules
in (a), then an object e is used to duplicate the membrane with label
aux and to introduce the object no; during the duplication of the
cell its label is changed to aux′; the other rules are used to send no
out to the environment).
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Consider now a formula ϕ ∈ Formn with m clauses (m,n ∈ N). The compu-
tation of Π(〈m,n〉) when the cell with label 1 contains cod(ϕ) can be described
as follows (from now on, by saying that a complete clause C is contained in a
cell, we mean that the cell contains such objects that represent the literals of
C).

In the first step, the system replaces every object x̂j,i (j ∈ [m], i ∈ [n]) in cell
1 by two objects xj,i and x̄j,i using the rules in (i). It is easy to see that after
this replacement, the cell with label 1 contains a complete clause C ∈ Cn if and
only if C ∈ ϕc. Thus, this step corresponds to the creation of ϕc.

Still in the first step, the system duplicates all literals of ϕc and distributes
them between the two new cells created by the corresponding membrane division
rule in (ii). Thus, after the first step, every clause of ϕc are contained in both of
the new cells. However, for every i ∈ [n], after the ith application of a membrane
division rule in (ii), the system removes those objects from the cells with label
2i that represent literals which are negations of the ith variable. Likewise, the
objects representing the ith variable without negation are removed from the cells
with label 2i+ 1.

After n steps, the system contains 2n cells with label 2n or 2n + 1. We call
in the sequel a cell with such a label a final cell. As described above, during the
next step the system removes the corresponding objects from the final cells by
the object evolution rules in (ii). We will prove later that after the first n + 1
steps, for every complete clause C ∈ ϕc, C occurs in exactly one final cell of the
system (see Lemma 1). However, the system should decide if a final cell contains
a complete clause or not. This is done by the rules in (iii). We only discuss here
the case when n > 1.

In the (n+ 1)th step, in every final cell, each object x′
j,1 or x̄′

j,1 can create a
new cell with label (j, 1). A new object c1 is also introduced in this cell. This
object is used to dissolve the new cell in two steps. Another possibility to dissolve
it if there is an object xj,2 or x̄j,2 (notice that only one of them can occur in a
final cell). These objects can get into this new cell. During this a primed version
of them is introduced which can dissolve the new cell in the next step. The above
described procedure is repeated until new primed objects are introduced in the
final cell. It is easy to see that if the primed version of the objects xj,n or x̄j,n

occur in a final cell, than this cell should contain a complete clause after the
(n+ 1)th step. This part of the computation takes 3(n− 1) steps.

Then, using rules in (iv)(a), the system dissolves those final cells that contain
primed versions of the objects xj,n or x̄j,n. During a dissolution of a final cell,
an object e is introduced. At this point the computation can continue in two
different cases.

If every finite cell is dissolved, then, using the first rule in (iv)(c), the system
divides the membrane with label aux, changes its label to aux′ and introduces
the object no. In the last two steps the object no is sent out to the environment,
and the computation halts (as the label of the cell is changed from aux to aux′,
symbols e can not introduce new no symbols).
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If there is at least one final cell that is not dissolved, then only the first rule in
(iv)(b) can be applied, introducing the object yes′ (notice that the division rule
in (iv)(c) cannot be applied as the membrane with label aux is not elementary
in this case). Next yes′ dissolves the cell aux introducing the object yes. In the
last two steps of the system the object yes is sent out to the environment, and
the computation halts (as the cell aux is dissolved, no new yes objects can be
introduced).

It can be seen that after at most 4n+ 2 steps the system halts and sends out
to the environment either yes or no. We demonstrate the above described work
of these P systems by the following example.

Example 1. Let ϕ = (x̄1∨x2)∧(x1∨x2)∧x̄2. Then cod(ϕ) = {x̄1,1, x1,2, x2,1, x2,2,
x̂3,1, x̄3,2}. Let Π(〈3, 2〉) be the P system constructed in Definition 1 with cod(ϕ)
in its input membrane. The initial configuration of Π(〈3, 2〉) and its configu-
rations after the first three steps can be seen on Figure 1 (in the figure the
underlined terms indicate the labels of the cells).
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Fig. 1. The first three steps of Π(〈3, 2〉)

Next consider the first membrane with label 4 in the last configuration of the
system. We show the evaluation of the objects in this cell during the next four
steps in Figure 2.

The first configuration in Figure 3 is the configuration of the system after
the first six steps. The second configuration shows the state of the system after
dissolving the cells with label 4 or 5. Then only rules in (iv)(c) can be applied
which means that no is introduced and sent out to the environment. This answer
of the system is correct as the input formula is clearly not satisfiable.

The correctness of our P systems will be shown using the following lemma.
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Fig. 3. The configuration of Π(〈3, 2〉) after the first six steps and the dissolution of the
inner cells

Lemma 1. Let ϕ ∈ Formn withm clauses and consider the P systemΠ(〈m,n〉)
given in Definition 1. Consider the configuration of Π(〈m,n〉) with input cod(ϕ)
after the nth application of the object evolution rules in (ii). Then the following
holds:

(1) For every complete clause C in ϕc, there is exactly one final cell of Π(〈m,n〉)
that contains C.

(2) There is no complete clause C ∈ Cn − ϕc such that C occurs in a final cell
of Π(〈m,n〉).

Proof. The second statement follows from the observation that after the applica-
tion of the rules in (i) the cell with label 1 contains exactly the complete clauses
of ϕc and no new literals are introduced by the system in the remaining steps.

To see that the first statement also holds we prove a more general statement.
Let us call in the sequel a cell of Π(〈m,n〉) with label 2i or 2i + 1 (i ∈ [1, n])
a level i cell. We show that, for every i ∈ [1, n], after the ith application of
the object evolution rules in (ii), for every complete clause C in ϕc, there is
exactly one level i cell of Π(〈m,n〉) that contains C. We prove this statement
by induction on i.

Let C ∈ ϕc. If i = 1, then C is contained in both level 1 cells (those with label
2 or 3) after the application of the first rule in (ii). Then objects of the form
x̄j,1 are removed from the cell with label 2, while objects of the form xj,1 are
removed from cell with label 3 by applying the corresponding object evolution
rules in (ii). But then, since C can not contain complement literal pairs, one of
the two new cells contains C while the other one does not.
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Now assume that the statement holds when i = l for some l ∈ [2, n− 1]. We
prove that it also holds when i = l+1. Consider the configuration of Π(〈m,n〉)
after the lth application of object evolution rules (ii). By the induction hypoth-
esis, there is exactly one level l cell that contains C. Let us denote this cell by c
and consider the two level l+1 cells that are created from c by the corresponding
membrane division rule in (ii). Clearly, each of these new cells also contains C,
and exactly one of them will contain it after the application of the corresponding
object evolution rules in (ii). Since the other level l+ 1 cells can not contain C,
this finishes the proof of the lemma. �

Theorem 1. The SAT problem can be solved by a polynomially uniform family
Π := (Π(〈m,n〉))m,n∈N of recognizing P systems with the following properties:

(1) the elements of Π ...
... do not use polarizations of the membranes,
... use the standard rules of P systems with active membranes plus mem-

brane creation rules,
... can change the labels of the involved membranes during membrane di-

vision;
(2) for a formula ϕ with n variables and m clauses, starting Π(〈m,n〉) with

cod(ϕ) in its input membrane, Π(〈m,n〉) stops in linear number of steps in
n.

Proof. Let ϕ ∈ Formn with m clauses and consider the P system Π(〈m,n〉)
defined in Definition 1. The fact thatΠ(〈m,n〉) decides correctly the satisfiability
of ϕ can be seen using Proposition 1, Lemma 1, and the fact that the system
sends out to the environment no if and only if its every final cell contains a
complete clause. It also can be seen that Π(〈m,n〉) is a recognizing P system.
In particular, the fact that it is confluent follows from the following observation.
The non-determinism occurs in Π(〈m,n〉) only when the final cells are dissolved
using rules in (iv)(a) and when the objects e chose a final cell (first rules in
(iv)(b)). Clearly these non-deterministic choices do not affect the output of the
system. This means that Π solves the SAT problem and the elements of Π
are recognizing P systems. Moreover, since, for every m,n ∈ N, Π(〈m,n〉 has
polynomial size in 〈m,n〉, Π is polynomially uniform.

Properties in (1) follow from the definitions, while Property (2) was shown at
the end of the discussion after Definition 1 about the computation steps of these
systems. �

Next we define a family of recognizing P systems that also can solve the SAT
problem in linear time in the number of variables, but the rules of the P systems
in this family do not employ membrane label changing. The P systems in this
family will use instead the polarizations of the membranes and several copies of
the objects.

In our previous solution the membrane label changing is used for the following
reason. When Π(〈m,n〉) applies the object evolution rules in (ii), the label of
the membranes is used to select the applicable rules: for i ∈ [n], in a membrane
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with label 2i, only the objects x̄j,i can be subjects of rules, while in a membrane
with label 2i+1, only the objects xj,i can be erased. If there is no possibility of
membrane label changing, we can use polarizations of the membranes to select
whether a variable or its negation can be erased. To ensure that after the ith
membrane division only the ith variable or its negation can be erased we can do
the following. We can use n copies of the objects in Om,n and add such rules that
at every step when a membrane division happens, a new copy of every object in
Om,n is introduced. Moreover, we can define the rules in (ii) such that when the
ith copies of the objects are in the membrane then only the literals containing
the ith variable can be subjects of rules.

First we define, for every p ∈ [0, n + 1], a copy of the objects in Om,n. Let
Op :=

⋃
j∈[m],i∈[n]{xp

j,i, x̄
p
j,i}. Here and in the sequel the superscript p is written

in boldface in order not to confuse it by the notation of the multiplicity of the
objects in multisets. Moreover, we will employ a different formula encoding here.
Let ϕ = C1 ∧ . . . ∧ Cm be a formula. Then

codp(ϕ) :=
m⋃
j=1

({x0
j,i | xi ∈ Cj} ∪ {x̄0

j,i | x̄i ∈ Cj}∪

{x̂0
j,i | xi �∈ Cj and x̄i �∈ Cj}

)
.

The following is the definition of the mentioned family of P systems.

Definition 2. For every m,n ∈ N, let Πp(〈m,n〉) := (O,H, μ, wskin , waux,
w1, R), where:

– O :=
⋃

p∈[0,n+1]O
p
m,n ∪ Ôm,n ∪ {yes, no, e, c1, c2, d1, d2, . . . , dn+1};

– H := {skin, aux, 1} ∪ {(i, j) | j ∈ [m], i ∈ [n− 1]};
– μ := [[[ ]1]aux]skin, where the input membrane is [ ]1;
– wskin := ε, waux := ε and w1 := d1;
– R is the set of the rules defined below. We also give explanations about the

roles of the presented rules.
(i) [x̂j,i]

0
1 → [x1

j,ix̄
1
j,i]

0
1 (i ∈ [n], j ∈ [m]),

[xp
j,i]

0
1 → [xp+1

j,i ]01,

[x̄p
j,i]

0
1 → [x̄p+1

j,i ]01 (p ∈ [0, n− 1], i ∈ [n], j ∈ [m]).

At the first step, the system creates from every object x̂j,i two new
objects x1

j,i and x̄1
j,i. This corresponds to the creation of the complete

clauses of ϕc. Moreover, when a cell with label 1 has neutral polarization,
the superscript of the objects in this cell is incremented by one.

(ii) [di]
0
1 → [di+1]

+
1 [di+1]

−
1 ,

[x̄i
j,i → ε]+1 , [x

i
j,i → ε]−1 (j ∈ [m], i ∈ [n]),

[di]
e
1 → [ ]e1di, di[ ]e1 → [di]

0
1 (i ∈ [n+ 1], e ∈ {+,−}).

Using these membrane division rules, the system divides the cells with
label 1 if they have neutral polarization. The two new cells will have
positive and negative polarizations, respectively. The clauses contained
in the original cells are duplicated and distributed between the new cells.
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In the next step, those objects that correspond to the ith copies of literals
that involve the ith variable are removed from the cells with label 1
according to the following principles: those literals that involve negated
variables are removed from the cells with positive polarization, while
those literals that involve variables without negation are removed from
cells with negative polarization.

Meanwhile, the objects di evolve to di+1. Then they are sent out of the
cells with label 1. In the next step they go back into these cells and
change the polarization of these cells to neutral.

(iii) [xn
j,1 → xn+1

j,1 ]01, [x̄
n
j,1 → x̄n+1

j,1 ]01 (j ∈ [m])

[xn+1
j,i → [c1]

0
j,i]

0
1, [x̄

n+1
j,i → [c1]

0
j,i]

0
1 (j ∈ [m], i ∈ [n− 1]),

[c1 → c2]
0
j,i, [c2]

0
j,i → c2 (j ∈ [m], i ∈ [n− 1]),

xn
j,i[ ]0j,i−1 → [xn+1

j,i ]0j,i−1, x̄
n
j,i[ ]0j,i−1 → [x̄n+1

j,i ]0j,i−1,

[xn+1
j,i ]0j,i−1 → xn+1

j,i , [x̄n
j,i]

0
j,i−1 → x̄n+1

j,i (j ∈ [m], i ∈ [2, n]).

After 3n steps, each cell with label 1 can contain a complete clause of
ϕc. Using these rules, the system can decide if such a cell contains a
complete clause or not. Notice that the role of the objects in On+1

m,n here
is the same as that of the objects in O′

m,n in Definition 1.

(iv) (a) [xn+1
j,n ]01 → e and [x̄n+1

j,n ]01 → e.
Those cells with label 1 which contain the (n+1)th copy of a literal
involving the nth variable are dissolved by these rules introducing
new objects e.

(b) e[ ]01 → [yes]01, [yes]
0
1 → yes,

[yes]0aux → [ ]−auxyes,
[yes]0skin → [ ]0skinyes.
If there is a membrane with label 1 which is not dissolved by the
rules in (iv)(a), then objects e can introduce objects yes; the other
rules are used to send an object yes out to the environment.

(c) [e]0aux → [e]−aux[no]−aux,
[no]−aux → [ ]−auxno,
[no]0skin → [ ]0skinno.
If every membrane with label 1 could be dissolved by the rules in
(iv)(a), then one copy of e is used to duplicate the membrane with
label aux and to introduce the object no; the other rules are used to
send no out to the environment.

Consider a formula ϕ ∈ Formn with m clauses (m,n ∈ N). The computation
ofΠp(〈m,n〉) when the membrane with label 1 contains codp(ϕ) can be described
similarly as it is done after Definition 1 using the notes given after the definition
of the rules in Definition 2. It also can be seen easily that the system halts after
at most 6n+ 2 steps.

In the following example we show some computation steps of Πp(〈3, 2〉) when
its input is the encoding of the formula appearing in Example 1.
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Example 2. Let ϕ = (x̄1∨x2)∧(x1∨x2)∧x̄2. Then codp(ϕ) = {x̄0
1,1, x

0
1,2, x

0
2,1, x

0
2,2,

x̂3,1, x̄
0
3,2}. Let Πp(〈3, 2〉) be the P system constructed in Definition 2 with

codp(ϕ) in its input membrane. The initial configuration of Πp(〈3, 2〉), its con-
figurations after the first four steps, and its configuration after the dissolution of
cells with label 1 can be seen in Figure 4. We note that the polarizations of the
membranes in this figure can be found in the upper-right corners of the cells.
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Fig. 4. Some computation steps of Πp(〈3, 2〉)

Theorem 2. The SAT problem can be solved by a polynomially uniform family
Πp := (Πp(〈m,n〉))m,n∈N of recognizing P systems with the following properties:

(1) the elements of Πp ...

... use polarizations of the membranes,

... use the standard rules of P systems with active membranes plus mem-
brane creation rules,

... do not change the labels of the membranes during membrane division;

(2) for a formula ϕ with n variables and m clauses, starting Πp(〈m,n〉) with
codp(ϕ) in its input membrane, Πp(〈m,n〉) stops in linear number of steps
in n.
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Proof. The correctness of the P systems in Πp can be shown using the following
observation. Consider a formula ϕ ∈ Formn withm clauses (m,n ∈ N) and the P
systems Π(〈m,n〉) and Πp(〈m,n〉) defined in Definitions 1 and 2, respectively.
Moreover, consider the configuration of Π(〈m,n〉) after n + 1 steps, and the
configuration of Πp(〈m,n〉) after 3n steps. Then it is not difficult to see that
there is a one-to-one correspondence between the final cells of Π(〈m,n〉) and the
cells with label 1 of Πp(〈m,n〉). Furthermore, if we consider two corresponding
cells in these configurations of Π(〈m,n〉) and Πp(〈m,n〉), then there is a one-to-
one correspondence between the objects in these cells (with the property that
the primed objects of Π(〈m,n〉) correspond to the (n+1)th copies of objects in
Πp(〈m,n〉)). The formal proof of the correctness is left to the reader.

The other properties of the elements of Πp can be shown similarly as it is
done in the proof of Theorem 1. �

Although our P systems run in linear time in the number of variables of the
input formula, the total time of the decision process might be more. Assume that
we want to decide the satisfiability of a formula ϕ ∈ Formn that contains m
clauses. Assume also that we want to use for this decision process the P system
Π(〈m,n〉) given in Definition 1. If Π(〈m,n〉) is not constructed yet, then it
should be constructed first. Since the family Π is polynomially uniform, there is
a deterministic Turing machine T that can construct Π(〈m,n〉) in polynomial
time in 〈m,n〉. Indeed, if the number 〈m,n〉 is on the input tape of T in unary
encoded form, then T can compute m and n in quadratic time in M , where M
is the maximum of m and n. Then, using m and n, T can construct Π(〈m,n〉)
in linear time in mn. Thus, the construction of Π(〈m,n〉) takes O(M2) steps.
Moreover, since every clause of ϕ can have at most n literals, cod(ϕ) can be
computed in O(mn) steps. Thus, the total time of the decision process has
O(M2) steps. Nevertheless, once Π(〈m,n〉) is constructed, it can be used for
every formula in Formn having at most m clauses. Moreover, if we have an
implementation of Π(〈m,n〉), then we may assume that ϕ is already presented
using an appropriate data structure so that the implementation of Π(〈m,n〉)
can be directly run on ϕ without computing cod(ϕ).

Similar reasoning applies if we consider the family Πp of P systems given in
Definition 2. However, as in Πp(〈m,n〉) we use n + 1 copies of the objects in
Om,n, here the total time of the construction of the P system is bounded by
O(nM2). On the other hand, the time complexity of the computation of codp is
the same as that in the case of cod. In fact, the time complexity of our formula
encodings is not worse than that of the commonly used formula encodings (e.g.
the one used on page 314 in [12]) in the following sense. For everym,n ∈ N, there
is a formula ϕ with n variables and m clauses such that the encoding of ϕ takes
asymptotically the same time using any kind of formula encodings mentioned
above.

As we have mentioned in the introduction, there is a solution of the SAT
problem where the used P systems employ membrane creation and the number
of computation steps of these systems is bounded by the number of variables
of the input formula (see [7] or Section 12.6.1 in [12]). This solution, roughly,
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works in the following way. For a formula ϕ with n variables and m clauses, the
P system first creates in 2n steps 2n membranes, each of them corresponding
to a possible evaluation of the variables in Xn. Meanwhile, the system stores in
every membrane, by using new objects, those clauses of ϕ that are satisfied by
the interpretation represented by the membrane. Finally, the system checks in
constant steps, using again membrane creation, whether there is a membrane
such that the objects in that membrane represent ϕ (i.e., the system decides if
there is an interpretation that satisfies every clause in ϕ).

As it is stated in [7], the time complexity of this solution is θ(n). However,
this result can not be directly compared to our results because of the following
reason. Consider an in communication rule a[ ]e1h → [b]e2h for some objects a, b,
polarizations e1, e2, and label h. In our P systems, as it is usual in the framework
of P systems with active membranes, during a derivation step at most one object
a can go into each cell with label h by the application of this rule, even if there
are more copies of a in the compartment than the number of the cells with label
h. In [7] all objects a should go to a cell with label h during one derivation step.
If we used in the solution of [7] the more strict derivation strategy used in our
solution, then the time complexity of the solution in [7] would be O(n + m).
Nevertheless, the derivation strategy used in [7] is a common strategy used in P
systems with membrane creation.

4 Conclusions

In this paper we presented two polynomially uniform families of P systems that
can decide the satisfiability of a propositional formula in linear time in the num-
ber of variables in the formula. The given P systems use the classical rules of
P systems with active membranes and, in addition, membrane creation rules.
The first solution employs such elementary membrane division rules which can
change the label of the involved membranes but not uses the polarizations of the
membranes. The second solution does not employ membrane label changing but
uses the polarizations of the membranes.

It is a challenging task however whether the SAT problem can be solved in
linear time in the number of variables by such P systems with active membranes
which employ only the standard rules (i.e., rules without membrane label chang-
ing and membrane creation). This might be a subject of a further research.
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Abstract. In this paper, we present non-confluent solutions to some
NP-complete problems using recognizer Evolution-Communication P
systems with Energy (ECPe systems). We then evaluate the communi-
cation resources used in these systems using dynamical communication
measures proposed for computations in ECPe systems. Specifically, we
evaluate based on number of communication steps, communication rules
and energy required for all communication.
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1 Introduction

With the goal of addressing the issue of communication complexity for P systems,
an initial approach in [1] involves investigating communication in a particular
P system cell-like variant called Evolution-Communication P systems [4]. The
main feature of these devices is the separation of evolution and communication
rules, i.e. a rule may be applied either to communicate or to evolve, but not both.
First, they introduced a measure of communication cost through so-called energy
objects. Based on this model, authors in [1] propose dynamical parameters for
communication complexity measure as well as ways of how such parameters can
be used for communication analysis.

It is worth mentioning that studies incorporating the concept of energy as a
model feature for membrane systems have already been investigated in several
literatures. However, these models are introduced for varying motivations. To
mention some, there are P system variants that focus on manipulating energy
assigned to objects (as in [9]) and assigned to membranes (as in [5] which ab-
stracts the behavior of energy carriers called conformons in biology). Another
model introduced in [2] assigns energy and rules to membranes. The novelty of
ECPe systems lies in how energy is utilized in the system’s computations; in
ECPe systems, an energy parameter is assigned to each region. This parame-
ter is only used to enable communication, i.e some energy must be used up to
enable passing of a certain object. When we treat energy as a catalyst in this
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way such that an object is accompanied by some copies of ‘energy’ when passing
through a membrane, we obtain a model similar to Proton Pumping P systems
(introduced in [3]). However, while communication catalysts can pass through
membranes, copies of energy cannot. In such scenario, [1] mentioned that energy
is consumed during communication.

This study continues the works in [1] by examining the resources used in
solving decision problems, specifically, Vertex Cover Problem (VCP), Indepen-
dent Set problem (ISP) and 3-SAT Problem (3SP). We construct recognizer P
systems (whose definitions are adapted from [11] and [12]) to non-confluently
decide these problems. We use the dynamical communication measures in [1] to
determine the amount of communication steps, rules, and energy employed in
solving such problems.

The content of this paper is arranged as follows: Section 2 formally defines
the NP-complete problems we investigated, Section 3 discusses the formal def-
inition of ECPe systems and how we can decide on problems using the idea of
non-confluence and recognizer P systems. The main contribution of our work is
provided in Section 4. Finally, our conclusions are given in Section 5.

2 Definitions of Some NP-Complete Problems

We present formal definitions of the three NP-complete problems of interest
for our study. Two of these problems use graphs as inputs while the remaining
problem involves evaluation of boolean formula.

A graph is denoted by G = (V,E) where V is a set of vertices and E ⊆ V ×V
is the set of edges. Note that in this paper, we only consider simple graphs, that
is, graphs with no loops and parallel edges. Shown in Figure 1 is an example of a
graph where V = {1, 2, . . . , 5} and E = {(1, 2), (1, 3), (1, 5), (2, 3), (3, 4), (4, 5)}.
Without loss of generality, it is imposed that each edge in E is represented by a
pair (i, j), i < j.

1 2

3

4

5

Fig. 1. An example of a graph

A vertex cover V C is a set of vertices in V where for all edge (i, j) ∈ E, either
i ∈ V C or j ∈ V C. We denote V Ck (1 ≤ k ≤ |V |) as a vertex cover with size less
than equal to k. It can be observed that in the graph given in Figure 1, there
exists a vertex cover V C3 = {1, 3, 4}.
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Definition 1. Vertex Cover Problem (VCP) Given a graph G = (V,E)
and a positive integer k (1 ≤ k ≤ |V |), is there a vertex cover V Ck?

An independent set IS is a set of vertices where for all pair i, j ∈ IS, there
is no edge in E connecting i and j. We let ISk be an independent set of size
at least k. In Figure 1, IS2 = {2, 5} is an independent set of size 2. It can be
observed that IS2 = V − V C3. This is a consequence of the lemma given in [6]
stating that given a graph G = (V,E) and subset V ′ ⊆ V , then V ′ is a vertex
cover for G if and only if V − V ′ is an independent set of G.

Definition 2. Independent Set Problem (ISP) Given a graph G = (V,E)
and a positive integer k (1 ≤ k ≤ |V |), is there an independent set ISk?

In boolean logic, a boolean formula in conjunctive normal form (CNF) in-
volving a set of variables X is a conjunction of a set of propositional clauses
where a propositional clause is defined as a disjunction of a set of variables in
X that may take on values 1 (true) or 0 (false). Disjunction in a clause involves
performing OR-operations on the variables involved while conjunction involves
performing AND-operations on the result of the clause evaluations.

Formally, a formula φX in CNF over a set of variables X = {x1, x2, ..., xp} is
a conjunction of a set of propositional clauses represented as:

φX = C1 ∧ C2 ∧ . . . ∧ Cm

where m ∈ Z+ and Ci’s are propositional clauses such that

Ci = (yi1 ∨ yi2 ∨ . . . ∨ yin)

where n ∈ Z+ and yij ∈ X ∪ {x̄ | x ∈ X}, 1 ≤ j ≤ n. The notation x̄ implies a
negation so that ¯̄x = x.

We define a k-CNF boolean formula as a boolean formula in CNF where each
clause is a disjunction of exactly k variables. We say that a boolean formula is
satisfiable if there exists an assignment for all variables such that the formula
evaluates to true.

Definition 3. 3-SAT Problem (3SP) Given a 3-CNF boolean formula φ over
a set of variables X, is φ satisfiable?

Let a 3-CNF boolean formula φx = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨
x4) where X = {x1, x2, x3, x4}. We say that φ is satisfiable since the formula
evaluates to true when x1 = 0, x2 = 0, x3 = r, x4 = r, r ∈ {0, 1}.

3 ECPe Systems

Before we proceed, the readers are assumed to be familiar with the fundamentals
of formal language theory and membrane computing [10].

A new variant of Evolution-Communication P systems [4] has been introduced
in [1] to evaluate communication that is dependent on some energy produced
from evolution rules. A special object e is introduced to the system to represent
a quantum of energy. We use the definition for EC P system with energy (ECPe
system) from [1].
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Definition 4. An EC P system with energy is a construct of the form

Π = (O, e, μ, w1, . . . , wm, R1, R
′
1, . . . , Rm, R′

m, iout)

where:

(i) m pertains to the total number of membranes;
(ii) O is the alphabet of objects;
(iii) e is a special object. Note that e /∈ O.
(iv) μ is the membrane structure which can be denoted by a set of paired square

brackets with labels. We say that membrane i is the parent membrane of
a membrane j, denoted parent(j), if the paired square brackets represent-
ing membrane j is located inside the paired square brackets representing
membrane i, i.e. [i . . . [j ]j . . .]i. Reversely, we say that membrane j is a
child membrane of membrane i, denoted j ∈ children(i) where children(i)
refers to the set of membranes contained in membrane i. The relation of
parent and child membrane becomes more apparent when we represent the
membrane structure as a tree.

(v) w1, . . . , wm are strings over O∗ where wi denotes the multiset of object
present in the region bounded by membrane i.

(vi) R1, . . . , Rm are sets of evolution rules, each associated with a region de-
limited by a membrane in μ;
◦ An evolution rule is of the form a → v where a ∈ O, v ∈ (O ∪ {e})∗.
In the event that this type of rule is applied, the object a transforms
into a multiset of objects v in the next time step. Through evolution
rules, object e can be produced, but e should never be in the initial
configuration and object e is not allowed to evolve.

(vii) R′
1, . . . , R

′
m are sets of communication rules, each associated with a mem-

brane in μ; A communication rule can either be a symport or an antiport
rule:
◦ A symport rule can be of the form (aei, in) or (aei, out), where a ∈ O,
i ≥ 1. By using this rule, i copies of object e are consumed to transport
object a inside (denoted by in) or outside (denoted by out) the membrane
where the rule is defined. To consume copies of object e means that upon
completion of the transportation of object a, the occurrences of e are
consumed, they do not pass from a region to another one.
◦ An antiport rule is of the form (aei, out; bej, in) where a, b ∈ O and
i, j ≥ 1. By using this rule, we know that there exists an object a in the
region immediately outside the membrane where the rule is declared,
and an object b inside the region bounded by the membrane. In the
application of this rule, object a and object b are swapped using i and
j copies of object e in the different regions, respectively. As in symport
rules, the copies of object e are consumed during the application.

We say that a communication rule has a sending and receiving region. For
a rule r ∈ R′

i associated with an in label, its receiving region is region i
and its sending region is the parent(i). The sending and receiving regions
are reversed for a rule r ∈ R′

i associated with an out label. For an antiport
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rule r ∈ R′
i, region i and parent(i) are both sending and receiving region.

Also, note that no communication can be applied without the utilization
of object e.

(viii) iout ∈ {0, 1, . . . ,m} is the output membrane. If iout = 0, this means that
the output will be in the environment.

Another way to look at the role of special object e is to treat energy as a property
of each region; in which case, we monitor a non-negative integer value for each
region’s energy. The energy may increase when some evolution rules are applied
and decrease whenever the region transfers objects through some communication
rule.

Rules are applied in a nondeterministic, maximally parallel manner. Nonde-
terminism, in this case, has the following meaning: when there are more than
two evolution rules that can be applied to an object, the system will randomly
choose the rule to be applied for each copy of the object. The system assumes
a universal clock for simultaneous processing of membranes; all applicable rules
have to be applied to all possible objects at the same time. The behavior of
maximally parallel application of rule requires that all object that can evolve (or
be transferred) should evolve (or be transferred).

Note that there is a one-to-one mapping between region and membrane, how-
ever, strictly, region refers to the area delimited by a membrane. A configuration
at any time i, denoted by Ci, is the state of the system; it consists of the mem-
brane structure and the multiset of objects within each membrane. A transition
from Ci to Ci+1 through nondeterministic and maximally parallel manner of
rule application can be denoted as Ci ⇒ Ci+1. A series of transition is said to
be a computation and can be denoted as Ci ⇒∗ Cj where i < j. Computation
succeeds when the system halts; this occurs when the system reaches a config-
uration wherein none of the rules can be applied. This configuration is called
a halting configuration. If there is no halting configuration—that is, if the sys-
tem does not halt—computation fails, because the system did not produce any
output. Output can either be in the form of objects sent outside the skin, the
outermost membrane, or objects sent into the output membrane.

3.1 Dynamical Communication Complexity Measures for ECPe
Systems

Based on [1], the dynamical communication complexity parameters associated
with a given computation for ECPe systems are:

ComN(Ci =⇒ Ci+1) =

⎧⎪⎪⎨⎪⎪⎩
1 if at least a communication
rule is used in this
transition,

0 otherwise
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ComR(Ci =⇒ Ci+1) = the number of communi-

cation rules used in this

transition,

ComW (Ci =⇒ Ci+1) = the total energy of the

communication rules used

in this transition.

These parameters are related in that ComN ≤ ComR ≤ ComW . They can
be extended in a natural way to results of computations, systems, and sets of
numbers. Again, we adapt the next definition from [1].

Definition 5. We let N(Π) be the set of numbers computed by the system. For
ComX ∈ {ComN,ComR, ComW}, the following is defined:

ComX(δ) =
h−1∑
i=0

ComX(Ci =⇒ Ci+1),

for δ : C0 =⇒ C1 =⇒ . . . =⇒ Ch

is a halting computation,

ComX(n,Π) = min{ComX(δ) |
δ : C0 =⇒ C1 =⇒ . . . =⇒ Ch

in Π with the result n},
ComX(Π) = max{ComX(n,Π) | n ∈ N(Π)},
ComX(Q) = min{ComX(Π) | Q = N(Π)}.

3.2 Solving Problems in ECPe Systems

When solving problems in P systems, [11] uses the notion of a recognizer P
system. For our definition of recognizer ECPe systems, we use the definition
from [12].

Definition 6. Let Π be an ECPe system whose alphabet contains two distinct
objects yes and no, such that every computation of Π is halting and during each
computation, exactly one of the objects yes, no is sent out from the skin to signal
acceptance or rejection. If all the computations of Π agree on the result, then
Π is said to be confluent; if this is not necessarily the case, then it is said to
be non-confluent and the global result is acceptance if and only if there exists an
accepting computation.

From [11], we can formally represent a decision problem as a pair Y = (IY , θY )
where IY is a language over a finite alphabet and θY is a total boolean function
over IY . A representation of an instance of a decision problem in P systems is
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given by a pair (cod, s) where s ∈ N and cod refers to an encoding of the instance
which will be placed in an input membrane in the initial configuration.

Our notion of a P system solving a problem is adapted from definitions in
both [11] and [12] where a problem is solved using a family of P systems. A
family Π(n), n ∈ Z+, of P systems (specifically ECPe systems in our context)
is a set of P systems that takes a parameter n to construct each system.

Definition 7. A family Π(n), n ∈ Z+, of ECPe systems, solves a problem
(IY , θY ) if there exists a pair (cod, s) over IY such that for each instance u ∈ IY :

(i) n = s(u) ∈ N and cod(u) is an input multiset of the system Π(n);
(ii) there exists an accepting computation of Π(n) with input cod(u) if and only

if θY (u) = 1.

The following definitions use dynamical communication measures given in Sec-
tion 3.1 to analyze communication over ECPe systems solving problems.

Definition 8. Let Y = (IY , θY ) be a decision problem, Π(n), n ∈ Z+, be a
family of recognizer ECPe systems solving Y with a pair (cod, s) over IY . For
each instance u ∈ IY ,

ComX(u,Π(n)) = min{ComX(δ) | δ : C0 =⇒ C1 =⇒ . . . =⇒ Ch in Π(n)

with n = s(u) and cod(u) is an input multiset in Π(n)},
where ComX ∈ {ComN,ComR, ComW}.To analyze the communication re-
sources used by Π(n) in solving problem Y , ComX(Y,Π(n)) is defined as:

ComX(Y,Π(n)) = max{ComX(u,Π(n)) | u ∈ IY }.
Definition 9. Let FComX ∈ {FComN,FComR, FComW}. A decision prob-
lem Y = (IY , θY ) ∈ FComX(k) if and only if:

(i) There exists a family Π(n), n ∈ Z+, of confluent recognizer ECPe systems
that decides Y .

(ii) ComX(Y,Π(n)) = k.

The analogous complexity classes for non-confluent recognizer ECPe systems are
NFComN , NFComR, and NFComW .

We say that Y ∈ FComNRW (p, q, r) if and only if Y ∈ FComN(p), Y ∈
FComR(q) and Y ∈ FComW (r). We use NFComNRW for non-confluent rec-
ognizer ECPe systems.

We note here that the definition of FComX in the previous definition is slightly
modified from its definition in [1].

4 ECPe System Solutions to NP-Hard Problems

In this section, we shall present solutions to three NP-hard problems, namely,
the vertex cover problem, the independent set problem and the 3-SAT problem.
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Let the Vertex Cover Problem (V CP ) be represented by a pair V CP =
(IV CP , θV CP ) where IV CP = {w(G,k)|w(G,k) is a string representing a graph G
and a positive integer k}. If the graph G contains a vertex cover of size at most
k, θV CP (w(G,k)) = 1; otherwise, θV CP (w(G,k)) = 0.

Theorem 1. V CP ∈ NFComNRW (6, |VG|+3k+6, 3|EG|+|VG|+k+5) where
EG is the edge set and VG is the vertex set of the input graph G.

Proof. To prove our claim, we need to satisfy the requirements in Definition 9.
To do this, we first introduce a family (denoted by ΠV CP (n)) of ECPe systems
for V CP = (IV CP , θV CP ). We then show that ComN(V CP,ΠV CP (n)) = 6,
ComR(V CP,ΠV CP (n)) = |VG|+3k+6, and ComW (V CP, ΠV CP (n)) = 3|EG|+
|VG|+ k + 5.

The first part of our proof provides a formal definition of ΠV CP (n). We also
define a pair (cod, s) over IV CP and show that for each instance of IV CP , the
two conditions given in Definition 7 are satisfied. Our family of ECPe systems
for VCP is defined as a tuple ΠV CP (n):

ΠV CP (n) = (O, [0[1]1[2]2[3]3]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, R2, R

′
2, R3, R

′
3)

where:

◦ O = {Aij , vi, v̂i, i, î, i | 1 ≤ i < j ≤ n} ∪ {c, c′, d, d′,#0,#1,#2,#3,#4,#5}
∪ {α0, α1, β0, β1, β2}

◦ w0 = v1v2 . . . vn cod(w(G,k)) #0

◦ R0 = {Aij → ie, Aij → je | 1 ≤ i < j ≤ n} ∪ {vi → v̂ie | 1 ≤ i ≤ n}
∪ {#0 → #1,#1 → #2,#2 → #3,#3 → #4,#4 → #5α0β0e

3

∪ {c→ c′e2, d→ d′e} ∪ β2 → yese, α1 → no e}
◦ R′

0 = {(no e, out), (yes e, out)}

◦ R1 = {v̂i → î | 1 ≤ i ≤ n} ∪ {c′ → e}
◦ R′

1 = {(v̂ie, in), (ie, in; îe, out) | 1 ≤ i ≤ n} ∪ {(c′e, in)}
◦ R2 = {d′ → e} ∪ {̂i→ in−2 | 1 ≤ i < j ≤ n} ∪ {α0 → α1}
◦ R′

2 = {(̂ie, in), (ie, in; ie, out) | 1 ≤ i ≤ n} ∪ {(d′e, in), (α0e, in)}
∪ {(#5e, in;α1e, out)}

◦ R3 = {β0 → β1, β1 → β2e}
◦ R′

3 = {β0e, in), (#5e, in;β2e, out)}
We associate a pair (cod, s) over IV CP such that for a given instance w(G,k) ∈

IV CP we have n = s(w(G,k)) = |VG| and the encoding cod(w(G,k)) is a multiset
containing Aij for every (i, j) ∈ EG, k copies of object c and |EG| − k copies of
object d. As shown in the construct ΠV CP (n), the encoding is placed as part
of the input in membrane 0. This guarantees that s(u) is a natural number
and cod(u) is an input multiset for ΠV CP (n), thus, satisfying condition (i) of
Definition 7.

In order to show that condition (ii) of Definition 7 is satisfied, we discuss the
system’s computation:
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Setup Phase. In this phase, for each edge in input region 0, an endpoint is
nondeterministically chosen to cover that edge and represent that edge in the
region. Also, representations of all the vertices are produced in region 1, along
with an amount of energy equal to the maximum size of the vertex cover.

Initially, objects vi (1 ≤ i ≤ n), c and d evolves to v̂i, c
′, and d′, respectively

(through rules vi → v̂ie, c → c′e2, d → d′e). At the same time, objects Aij

nondeterministically evolves to one of i and j through any of rules Aij → ie and
Aij → je. The value i or j represents the vertex that is chosen to cover the edge
(i, j) ∈ E.

In the next step, the single quantum of energy produced in the production
of objects v̂i (1 ≤ i ≤ n), c′, and d′ will be used to communicate the v̂i and c′

in region 1, and the d′ in region 2. The third step involves evolution of commu-
nicated objects in region 1 and 2. Specifically, c′ will evolve to object e and v̂i
becomes î (through rules c′ → e and v̂i → î (1 ≤ i ≤ n)) in region 1 while d′

changes to e in region 2. Also, in region 0, #m−1 evolves to #m in step m for
m = 1, 2, 3.

Finding a Candidate Solution. In region 1, vertices to form a candidate vertex
cover are selected and communicated to region 0.

The next step involves swapping the object î in region 1 with its counterpart
i in region 0 through rule (ie, in; îe, out) in membrane 1. In this case, at most
one copy of an object i will be placed in region 1. The set of all objects i
that is transported in region 1 represents the candidate vertex cover chosen by
a computation. Note that the size of the vertex cover is at most k. This size
is assured by the limited number of e’s in region 1 that will be used for the
transportation. Also note that for each i representing a vertex in the candidate
vertex cover, there is now a corresponding î in region 0. Moreover, the second
quantum of energy produced in region 0 in the production of c′ is now utilized
in the selection of a candidate vertex cover. During this selection, at most k of
the edges are already verified to be covered by the vertices in the chosen set.
Also, in region 0, #3 evolves to #4 in this step.

Validating Candidate Solution. Representation of the vertices in the candidate
solution are produced in region 2. These objects are used to validate that all
edges are covered by the selected vertex cover. This is true if no representation
of the edges is retained in region 0.

In the next step, the î in region 0 is transported to region 2 (through rule

(̂ie, in)) to signal that the vertex represented by i is in the candidate vertex cover.
At the same time, #4 evolves to #5α0β0e

3 in region 0. In the succeeding step, the
objects α0 and β0 are communicated to regions 2 and 3, respectively, using up
two of the quanta of energy, while the î in region 2 will produce |V |−2 copies of i.
The i will then be used to determine if the vertices chosen to cover the remaining
(|E|−k) unverified edges are present in the candidate. This ascertaining is done
by applying the rule (ie, in; ie, out). Note that the maximum degree of simple
graph is |V | − 1. Since one incident edge for each vertex in the candidate vertex
cover has been verified in the previous phase, then a maximum of (|V |−1)−1 =
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|V | − 2 edges that may be incident to a vertex still remain to be verified. Also,
during this step, α0 and β0 evolve to α1 and β1 respectively.

Output Phase. In this phase, object yes is released to the environment if a valid
vertex cover is selected. Otherwise, object no will be sent out.

Note that region 2 started with |E| − k quanta of energy which equals the
number of unverified edges at the start of the previous phase. Hence, in the case
where not all of the vertices chosen (nondeterministically) to cover the edges in
the setup phase belong to the candidate vertex cover, at least one e will be left
in region 2. This case will allow the object α1 to be sent out to region 0 and the
object #5 to enter region 2 through the rule (#5e, in;α1e, out). If the candidate
solution is indeed a vertex cover, then no e is left in region 2 not allowing the
rule (#5e, in;α1e, out) to be used. Now, at this same step, object β1 evolves to
β2e. Hence, at the next step, the presence of object #5 in region 0 allows the
rule (#5e, in;β2e, out) to be used and β2 exits to region 0 while #5 enters region
3.

Finally, note that only one of the objects α1 and β2 will be communicated
to region 0 by a computation. If α1 is in region 0, it evolves to no e and no is
then released to the environment. This case signals that the computation failed
to produce the desired vertex cover. Whereas, if β2 is in region 0, it evolves to
yes e and yes is subsequently released to the environment. This case signals that
the computation succeeded in finding a vertex cover with size at most k of the
input graph G.

To complete our proof, we analyze the communication resources at each stage
of the computation.

◦ The setup phase discussed previously takes three transitions. In this phase,
the system communicates c′, d′ and v̂i (1 ≤ i ≤ |VG|) from membrane 0 in
exactly one communication step. Thus:
• The number of communication steps to accomplish this phase is one.
• The number of communication rules applied is 2 + |VG|
• The number of communicated objects is |EG| + |VG|, i.e. (|EG| − k)
number of d′, k number of c′ and |VG| number of v̂i.

◦ Finding a candidate solution requires at least one communication step. In
this phase, there will be one antiport rule for every member of the candidate
solution. Thus:
• The number of communication steps to accomplish this phase is one.
• The maximum number of communication rules occurs when the size of
the candidate solution is k. In this case, the number of communication
rules applied is k.
• Following the previous item, the maximum number of communicated
objects is 2k since for every antiport rule, two objects are being commu-
nicated at the same time.

◦ For the validation and output phase:
• The first communication step is used to initially place the î representing
the vertices of the candidate solution in membrane 2. This communica-
tion step is also necessary for the initial steps of the output phase. For
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validating whether all remaining edges are covered, another communica-
tion step is needed. Finally, two additional communication steps will be
used to produce a yes or a no and send to the environment.
• In the first communication step, a maximum of k rules of the form (̂ie, in)
(1 ≤ i ≤ |V |) will be used. Simultaneously, rule (α0e, in) ∈ R′

2 and
(β0e, in) ∈ R′

3 will be used. In the succeeding communication step, a
maximum of k rules of the form (ie, in; ie, out) will be used to validate the
|EG|−k remaining edges. This case occurs when the size of the candidate
solution is exactly k. The next communication steps involves the used
of either (a) (#5e, in;α1e, out) and (no e; out), or (b) (#5e, in;β2e, out)
and (yes e; out). Thus, the maximum number of communication rules
applied will be k + k+2 + 2.
• Following the previous item, the maximum number of communicated
objects will be k + 2 + 2(|EG| − k) + 3.

From our discussion above, it can be observed that the path with the most
expensive communication resource (steps, rules and objects) is achieved when
the candidate solution examined is of size equal to k and when this candidate is
evaluated to be true. Summing the communication resources at each phase, we
get ComN(V CP, ΠV CP (n)) = 6, ComR(V CP,ΠV CP (n)) = |VG|+3k+ 6, and
ComW (V CP,ΠV CP (n)) = 3|EG|+ |VG|+ k + 5.

An Example for VCP. Given an instance represented in Figure 1 with k = 3, an
ECPe system solving VCP is a construct:

ΠV CP (5) = (O, [0[1]1[2]2[3]3]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, R2, R

′
2, R3, R

′
3)

where:

◦ O = {Aij , vi, v̂i, i, î, i | 1 ≤ i < j ≤ 5} ∪ {c, c′, d, d′,#0,#1,#2,#3,#4,#5}
∪ {α0, α1, β0, β1, β2}
◦ w0 = v1v2v3v4v5A12A13A15A23A34A45c

3d3#0

◦ R0 = {Aij → ie, Aij → je | 1 ≤ i < j ≤ 5} ∪ {vi → v̂ie | 1 ≤ i ≤ 5}
∪ {#0 → #1,#1 → #2,#2 → #3,#3 → #4,#4 → #5α0β0e

3

∪ {c→ c′e2, d→ d′e} ∪ β2 → yes e, α1 → no e}
◦ R′

0 = {(no e, out), (yes e, out)}

◦ R1 = {v̂i → î | 1 ≤ i ≤ 5} ∪ {c′ → e}
◦ R′

1 = {(v̂ie, in), (ie, in; îe, out) | 1 ≤ i ≤ 5} ∪ {(c′e, in)}
◦ R2 = {d′ → e} ∪ {̂i→ i3 | 1 ≤ i < j ≤ 5} ∪ {α0 → α1}
◦ R′

2 = {(̂ie, in), (ie, in; ie, out) | 1 ≤ i ≤ 5} ∪ {(d′e, in), (α0e, in)}
∪ {(#5e, in;α1e, out)}
◦ R3 = {β0 → β1, β1 → β2e}
◦ R′

3 = {β0e, in), (#5e, in;β2e, out)}
Below is an example of a computation for ΠV CP (5), represented as a series

of configurations (Ci) (0 ≤ i ≤ 11):
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C0: [0 v1v2v3v4v5 A12A13A15A23A34A45 c3 d3 #0 [1 ]1 [2 ]2 [3 ]3 ]0
C1: [0 v̂1e v̂2e v̂3e v̂4e v̂5e 1e 3e 1e 3e 3e 4e c′3e6 d′3e3 #1 [1 ]1 [2 ]2 [3 ]3 ]0
C2: [0 1 3 1 3 3 4 e9 #2 [1 v̂1v̂2v̂3v̂4v̂5 c′3 ]1 [2 d′3 ]2 [3 ]3 ]0
C3: [0 1 3 1 3 3 4 e9 #3 [1 1̂ 2̂ 3̂ 4̂ 5̂ e3 ]1 [2 e3 ]2 [3 ]3 ]0
C4: [0 1̂ 3̂ 1 3 3 4̂ e6 #4 [1 1 2̂ 3 4 5̂ ]1 [2 e3 ]2 [3 ]3 ]0
C5: [0 1 3 3 e3 #5α0β0e

3 [1 1 2̂ 3 4 5̂ ]1 [2 1̂ 3̂ 4̂ e3 ]2 [3 ]3 ]0
C6: [0 1 3 3 e3 #5e [1 1 2̂ 3 4 5̂ ]1 [2 13 33 43 e3 α0]2 [3β0 ]3 ]0
C7: [0 1 3 3 #5e [1 1 2̂ 3 4 5̂ ]1 [2 1 3 3 12 3 43 α1 ]2 [3 β1 ]3 ]0
C8: [0 1 3 3 #5e [1 1 2̂ 3 4 5̂ ]1 [2 1 3 3 12 3 43 α1 ]2 [3 β2e ]3 ]0
C9: [0 1 3 3 β2 [1 1 2̂ 3 4 5̂ ]1 [2 1 3 3 12 3 43 α1 ]2 [3 #5 ]3 ]0
C10: [0 1 3 3 yese [1 1 2̂ 3 4 5̂ ]1 [2 1 3 3 12 3 43 α1 ]2 [3 #5 ]3 ]0
C11: yes [0 1 3 3 [1 1 2̂ 3 4 5̂ ]1 [2 1 3 3 12 3 43 α1 ]2 [3 #5 ]3 ]0

Configurations C0 to C3 represents the set-up phase where necessary objects
are placed in their respective regions for the succeeding phases. At the same time,
transition C0 ⇒ C1 makes use of rules in {Aij → ie, Aij → je | 1 ≤ i, j ≤ 5}
to choose the vertex that covers the edge represented by object Ai,j . Transition
C3 ⇒ C4 represents the phase where a candidate vertex cover is chosen; in the
example computation, the candidate vertex cover is V C3 = {1, 3, 4} as repre-
sented by objects 1, 3 and 4 in region 2. Computation C4 ⇒∗ C7 represents the
verification phase to assure that selected vertex used to cover an edge belongs
to the candidate vertex cover. Lastly, the computation C8 ⇒∗ C11 represents
the output phase. Since all es in region 2 where used up, then α1 will not exit
the region and #5 stays in region 0. This allows β2 to exit region 3, resulting
to the object yes to be communicated to the environment. This means that the
computation succeeded in finding a vertex cover with size at most k of the input
graph G.

If a different transition C0 ⇒ C′
1 is introduced where

C′
1: [0 v̂1e v̂2e v̂3e v̂4e v̂5e 1e 3e 1e 2e 4e 5e c′3e6 d′3e3 #1 [1 ]1 [2 ]2 [3 ]3 ]0

then the set of vertices chosen to cover the edges of the input graph is {1, 2, 3, 4, 5}.
Since only 3 quanta of energy is present in region 2, the use of rule (ie, in; i′e, out)
(i ∈ {1, 2, 3, 4, 5}) in region 1 is limited to 3 applications. This case implies that
two of the objects 1, 2, 3, 4 and 5 will remain in region 0. Hence, the corre-
sponding î for these remaining object will never exit region 1 and thus cannot
be communicated to region 2 through rule (̂ie, in). This scenario implies that
there will be two e’s left in region 2. This case will allow α1 to be communicated
to region 0 in step 8 and subsequently, no is released to the environment in step
10. This means that not all of the vertices chosen to cover the edges in the setup
phase belong to the candidate vertex cover.

The constructed family of ECPe systems used for VCP can also be used to
solve ISP. This becomes apparent due to the lemma given in [6]. Note that the
only difference will be the encoding of the instance for ISP where the initial
copies of object c will be |VG| − k and d has |EG| − (|VG| − k). Also, at the end
of a successful computation, the elements of ISk, 1 ≤ k ≤ |V | is represented by
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object î in region 1 (as illustrated by objects 2̂, 5̂ representing IS2 = {2, 5} in
the previous example).

Formally, let the Independent Set Problem (ISP ) be represented by a pair
ISP = (IISP , θISP ) where IISP = {w(G,k)|w(G,k) is a string representing a
graph G and a positive integer k}. If the graph G contains an independent set
of size at least k, θISP (w(G,k)) = 1; otherwise, θISP (w(G,k)) = 0.

Corollary 1. ISP ∈ NFComNRW (6, 4|VG| − 3k + 6, 3|EG| + 2|VG| − k + 5)
where EG is the edge set and VG is the vertex set of the input graph G.

We now present a solution to the 3-SAT problem in ECPe systems. Let the
3-SAT problem (3SP ) be represented by a pair (I3SP , θ3SP ) where I3SP =
{wφX |wφX is a string representing a 3-CNF boolean formula φX}. Boolean
function θ3SP (wφX ) evaluates to 1 if φ is satisfiable, otherwise, θ3SP (wφX ) = 0.

Theorem 2. 3SP ∈ NFComNRW (5, 2n+3, 4n+3) where n is the number of
clauses for the input 3-CNF boolean formula φX .

Proof. A family of ECPe systems that solves the 3-SAT problem is represented
as a construct Π3SP :
Π3SP (n) = (O, [0[1]1 . . . [n]n[n+1]n+1]0, w0, ∅, . . . , ∅, R0, R

′
0, R1, R

′
1, . . . , Rn, R

′
n,

Rn+1, R
′
n+1)

where:

◦ O = {xd, d, d̂ | 1 ≤ d ≤ 3n} ∪ {0dq, 1dq | 1 ≤ d ≤ 3n, 1 ≤ q ≤ n}
∪ {Ai1i2i3,q, Bi1i2i3,q | 1 ≤ q ≤ n and ir ∈

3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}}
∪ {c,#0,#1,#2,#3,#4, Ω, β0, β1, no, yes, e}

◦ w0 = x1x2 . . . x3n #0 cod(wφX )

◦ R0 = {xd → 0d10d20d3, xd → 1d11d21d3 | 1 ≤ d ≤ 3n}
∪ {Ai1i2i3,q → Bi1i2i3,qce

2 | 1 ≤ q ≤ n and ir ∈
3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}}
∪ {#0 → #1Ωe,#1 → #2,#2 → #3,#3 → #4,#4 → yes e2}
∪ {d→ e, d̂→ e | 1 ≤ d ≤ 3n}

◦ R′
0 = {(no e, out), (yes en+2, out)}

◦ For 1 ≤ q ≤ n:

• Rq = {Bi1i2i3,q → i1i2i3β0e | ir ∈
3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}} ∪ {β0 → β1}

• R′
q = {(Bi1i2i3,qe, in) | ir ∈

3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}} ∪ {(ce, in;β1e, out)}
∪ {(0dqe, in; d̂e, out), (1dqe, in; de, out) | 1 ≤ d ≤ 3n}

◦ Rn+1 = {Ω → no e}
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◦ R′
n+1 = {(Ωe, in), (β1e, in; no e, out)}

We associate a pair (cod(wφX ), s(wφX )) over IφX where for each instance wφX ∈
IφX we have s(wφX ) being the number of clauses for the boolean formula φX ,
i.e. s(wφX ) = n. The encoding cod(wφX ) is a multiset containing Ai1i2i3,q for
1 ≤ q ≤ n where if Cq = yi1,q ∨ yi2,q ∨ yi3,q, then

il =

{
d if yil,q = xd

d̂ if yil,q = x̄d

for l = 1, 2, 3, where xd ∈ {x1, x2, . . . , x3n}. It can be noticed that we limit the
cardinality of X to be at most 3n since the maximum number of variables that
can simultaneously exist on a 3-CNF boolean formula is 3n (that is, when all
variables in all clauses are distinct). If cardinality of the set X is more than the
number of variables present in the boolean formula, then the extra variables can
take any boolean value without affecting the satisfiability of the formula being
evaluated. Our choice of s(wφX ) for an instance wφX ∈ IφX assures that s(wφX )
is a natural number. Furthermore, our constructed Π3SP includes the encoding
cod(wφX ) in region 1. This restriction guarantees that condition (i) of Definition
7 is satisfied.

To show that condition (ii) holds, we discuss how the computation proceeds
as follows:

Setup and Finding a Candidate Solution Phase. In these steps, each variable is
assigned a truth value. The input representation of each clause is also distributed
to different regions.

The initial configuration requires object Ai1i2i3,q in region 0 as input to rep-
resent each clause in φX where q (1 ≤ q ≤ n) symbolizes clause Cq and i1, i2
and i3 corresponds to the variables contained in the clause Cq. In the next step,
objects Ai1i2i3,q will evolve to object Bi1i2i3,q and c, producing two quanta of

energy through rules Ai1i2i3,q → Bi1i2i3,qc e
2 (1 ≤ q ≤ n, il ∈

3n⋃
d=1

{d, d̂}). Objects

xd will be consumed through one of rules xd → 0d10d20d3 and xd → 1d11d21d3
(1 ≤ d ≤ 3n) simultaneously. This choice represents the possible truth assign-
ment for all variable xd such that if the latter rule is used, this means xd = 1,
otherwise, xd = 0. Also, during this step, #0 evolves to #1Ωe. Upon completion
of this step, the system determines a candidate assignment for variables in X .

Validating Candidate Solution and Output Phase. Simultaneously, each clause
is checked whether it evaluates to true. If all clauses evaluate to true, the object
yes is sent to the environment, otherwise, object no is sent out.

The next step involves validating the current candidate assignment. In this time
step, object Bi1i2i3,q is communicated to region q through rule (Bi1i2i3,qe, in). At
the same time, #1 in region 0 evolves to #2 while Ω enters region n + 1. While
#2 in region 0 evolves to #3 and Ω in region n+ 1 evolves to no e, the Bi1i2i3,q’s
evolve through rule Bi1i2i3,q → i1i2i3β0e. The objects i1, i2 and i3 produced by
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this rule may take on values d (interpreted as xd is contained in clause Cq) or d̂
(interpreted as clause Cq contains x̄d), xd ∈ X . Also, #2 in region 0 evolves to #3

while Ω in region n+ 1 evolves to no e.
The quanta of energy left in region 0, as well as the object e produced in the

aforementioned rule can be utilized to apply the antiport rules (0dqe, in; d̂e, out)
and (1dqe, in; de, out) in any one of the objects i1, i2 and i3 present in a region
q (1 ≤ q ≤ n). Meanwhile, #3 evolves to #4 in region 0 and β0 evolves to
β1 in regions 1 to n. Note that only a single application of any one of the
antiport rules can be applied per region, which represents that for a clause
Cq = (yi1,q ∨ yi2,q ∨ yi3,q), at least one of the yil,q’s (1 ≤ q ≤ 3) evaluates
to 1. If all Cq’s are satisfied, all the quanta of energy in regions 0 to n will
be consumed. Henceforth, communication rules will no longer be applicable in
membranes 1 to n+1. Afterwhich, #4 evolves to yes e then yes is communicated
to the environment. If at least one of the Cq’s is not satisfied, then at least one of
regions 1 to n will have an e left, enabling at least one β1 to be communicated to
region 0. The presence of a β1 in region 0 will allow the rule (β1e, in; no e, out) to
be used. This scenario results to the presence of no in region 0 and subsequently,
the release of no to the environment.

We now evaluate the communication resources used as final requirement to
satisfy Definition 9.

◦ In the setup and finding a candidate phase, only one communication step is
needed to communicate each B object (representing a particular clause) from
membrane 0 using one symport rule for each clause. This communication step
also involves transporting an object Ω in membrane n+ 1.
• number of communication step is one.
• number of communication rules is n+1.
• number of communication steps is n+1.

◦ In the validation and output phase,
• the maximum number of communication step occurs when some clauses
are satisfied and other clauses are not satisfied. This scenario will require
two communication steps for the validation phase. Another two commu-
nication steps will be dedicated to communication a no to the skin, and
outside the system. Thus, maximum number of communication step is
four.
• the maximum number of communication rules occurs when the chosen
variable assignment of the system evaluates to false. In such a case, each
of the n clauses will use any one of antiport rules (0dqe, in; d̂e, out) or
(1dqe, in; de, out) where d refers to a variable and q refers to a clause (for
satisfied clauses) and (ce, in;β1e, out) (for unsatisfied clauses). Note that
since our rules are local to membranes/regions, the (ce, in;β1e, out) in
a membrane i is different from (ce, in;β1e, out) in a membrane j. The
output phase will be using two communication rules, (β1e, in; no e, out)
and (no e, out). Therefore, the maximum number of communication rules
will be n+ 2.
• the maximum number of communication rules occurs when the chosen
variable assignment of the system evaluates to true. In such a case, there
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will be 2n quanta of energy needed for executing antiport rules for satis-
fied clause (as shown in previous item) and another n quanta of energy
for executing (yes en+2, out). This occurrence means the maximum num-
ber of quanta of energy used is 3n+ 2.

It can be observed that the computations to compute the maximum number of
communication steps, rules and objects are not necessarily the same. In fact,
while the maximum number of communication rules occurs when the chosen
variable assignments evaluates to false, the maximum number of energy for com-
munication occurs when the chosen variable assignment evaluates to true. In
summary, ComN(3SP, Π3SP (n)) = 5, ComR(3SP,Π3SP (n)) = 2n + 3, and
ComW (3SP,Π3SP (n)) = 4n+ 3.

An Example for 3SP. Given an instance of a 3-CNF boolean formula
φx = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) where X = {x1, x2, x3, x4},
an ECPe system solving 3SP is a construct:

Π3SP (3) = (O, [0[1]1[2]2[3]3[4]4]0, w0, ∅, . . . , ∅, R0, R
′
0, R1, R

′
1, R2, R

′
2, R3, R

′
3, R4, R

′
4)

where:

◦ O = {xd, d, d̂ | 1 ≤ d ≤ 9} ∪ {0dq, 1dq | 1 ≤ d ≤ 9, 1 ≤ q ≤ 3}
∪ {Ai1i2i3,q, Bi1i2i3,q | 1 ≤ q ≤ 3 and ir ∈

9⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}}
∪ {c,#0,#1,#2,#3,#4, Ω, β0, β1, no, yes, e}

◦ w0 = x1x2 . . . x9 #0 cod(wφX )

◦ R0 = {xd → 0d10d20d3, xd → 1d11d21d3 | 1 ≤ d ≤ 9}
∪ {Ai1i2i3,q → Bi1i2i3,qce

2 | 1 ≤ q ≤ 3 and ir ∈
9⋃

d=1

{d, d̂}, ∀r ∈ {1, 2, 3}}
∪ {#0 → #1Ωe,#1 → #2,#2 → #3,#3 → #4,#4 → yese2}
∪ {d→ e, d̂→ e | 1 ≤ d ≤ 9}

◦ R′
0 = {(no e, out), (yes e5, out)}

◦ For 1 ≤ q ≤ 3:

• Rq = {Bi1i2i3,q → i1i2i3β0e | ir ∈
9⋃

d=1

{d, d̂}, ∀r ∈ {1, 2, 3}} ∪ {β0 → β1}

• R′
q = {(Bi1i2i3,qe, in) | ir ∈

9⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}} ∪ {(ce, in;β1e, out)}
∪ {(0dqe, in; d̂e, out), (1dqe, in; de, out) | 1 ≤ d ≤ 9}

◦ R4 = {Ω → no e}
◦ R′

4 = {(Ωe, in), (β1e, in; no e, out)}
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Below is an example of a computation for Π3SP (3), represented as a series of
configurations (Ci) (0 ≤ i ≤ 6):
C0: [0 x1x2x3x4x5x6x7x8x9 #0 A1̂23,1A12̂3,2A1̂24,3 [1]1 [2]2 [3]3 [4]4 ]0
C1: [0 011012013 021022023 031032033 141142143 051052053 061062063 071072073
081082083091092093 #1Ωe B1̂23,1ce

2 B12̂3,2ce
2 B1̂24,3ce

2 [1]1 [2]2 [3]3 [4]4 ]0
C2: [0 011012013 021022023 031032033 141142143 051052053 061062063 071072073
081082083 091092093 #2 c3e3[1 B1̂23,1 ]1 [2 B12̂3,2 ]2 [3 B1̂24,3 ]3 [4 Ω ]4 ]0
C3: [0 011012013 021022023 031032033 141142143 051052053 061062063 071072073
081082083 091092093 #3 c3e3[1 1̂23β0e ]1 [2 12̂3β0e ]2 [3 1̂24β0e ]3 [4 no e ]4 ]0
C4: [0 1̂ 012013 021 2̂ 023 031032033 141142 4 051052053 061062063 071072073
081082083 091092093 #4 c

3 [1 011 23 β1 ]1 [2 1 022 3 β1 ]2 [3 1̂2 143 β1 ]3 [4 no e ]4 ]0
C5: [0 e 012013 021 e 023 031032033 141142 e 051052053 061062063 071072073
081082083 091092093 yes e

2 c3 [1 011 23 β1 ]1 [2 1 022 3 β1 ]2 [3 1̂2 143 β1 ]3 [4 no e ]4 ]0
C6: yes [0 012013 021023 031032033 141142 051052053 061062063 071072073
081082083 091092093 c3 [1 011 23 β1 ]1 [2 1 022 3 β1 ]2 [3 1̂2 143 β1 ]3 [4 no e ]4 ]0

Configurations C0 to C3 represent the set-up phase where necessary objects
are placed in their respective regions for the succeeding phases. At the same time,
transition C0 ⇒ C1 makes use of rules in {xd → 0d10d20d3, xd → 1d11d21d3 | 1 ≤
d ≤ 9} to choose assignment for each variable xd ∈ X .

Transition C3 ⇒ C4 represents the validation phase where the antiport rules
{(0dqe, in; d̂e, out), (1dqe, in; de, out) | 1 ≤ d ≤ 9} are used to check if the candi-
date assignments satisfies all clauses.

Note that in C4 all the quanta of energy in regions 0 to 3 were consumed.
Henceforth, communication rules will no longer be applicable in membranes 1 to
4. Finally, transition C4 ⇒∗ C6, represents the output phase where the object yes
is released to the environment to mean that a satisfying assingment was found
for the given 3-CNF formula.

If we introduce a different transition C0 ⇒ C′
1 where configuration C′

1 is
represented as:

C′
1: [0 111112113 021022023 131132133 041042043 051052053 061062063 071072073

081082083091092093 #1Ωe B1̂23,1ce
2 B12̂3,2ce

2 B1̂24,3ce
2 [1]1 [2]2 [3]3 [4]4 ]0

representing the assignment x1 = 1, x2 = 0, x3 = 1, x4 = 0. Note that in step
4, a quantum of energy is left in each of the regions 0 and 3. Hence, in the
next step, we can apply the communication rule (ce, in;β1e, out) in membrane
3. The presence of β1 in region 0 allows the application of (β1e, in; no e, out) in
membrane 4. Finally, in step 7, the object no is released to the environment to
mean that the candidate solution does not satisfy the given 3-CNF formula.

5 Conclusion

In this paper, we studied the communication resources needed to non-confluently
decide NP-complete problems namely, Vertex Cover Problem (VCP), conse-
quently Independent Set Problem (ISP), and 3-SAT problem (3SP) using rec-
ognizer Evolution-Communication P systems with energy (ECPe systems). The
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following results were obtained : V CP ∈ NFComNRW (6, |VG|+3k+6, 3|EG|+
|VG|+ k+5) and ISP ∈ NFComNRW (6, 4|VG|− 3k+6, 3|EG|+2|VG|− k+5)
where EG is the edge set and VG is the vertex set of the input graph G while
3SP ∈ NFComNRW (5, 2n+3, 4n+3) where n is the number of clauses in the
input 3-CNF boolean formula.

In the solutions presented, it can be observed that while the number of mem-
branes needed to solve VCP is constant (exactly four membranes), the number
of membranes needed to solve 3SP is dependent on the number of clauses. How-
ever, in the results presented in both solutions, the number of communication
steps are constant whereas the number of communication rules and energy for
communication is dependent on the number of vertices and edges (for VCP),
and clauses (for 3SP).

It remains an open problem whether we can reduce the number of communi-
cation steps, rules and energy; for example, can we construct recognizer ECPe
systems using constant amount of rules or energy for communication? Also, from
our results, it can be observed that the amount of communication steps needed
to solve VCP is greater than the amount needed to solve 3SP, can we achieve a
better result? Otherwise, can we characterize the class of problems that can be
decided using five communication steps? six communication steps? or lower num-
ber of communication steps? It is also worth mentioning that the constructed
ECPe systems used in this paper decides non-confluently. Evaluating commu-
nication resources on ECPe systems that decide on problems confluently also
remains to be explored.

As final remarks, part of our future work includes exploring the use of carpets
in understanding communication over the recognizer ECPe systems defined for
solving VCP and 3SP. It is worth noting that Sevilla carpets can be used to
provide a visualization of communication on ECPe systems as explored in [8].
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G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp.
1–18. Springer, Heidelberg (2004)



224 N.H.S. Hernandez, R.A.B. Juayong, and H.N. Adorna

4. Cavaliere, M.: Evolution-Communication P systems. In: Păun, G., Rozenberg, G.,
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8. Juayong, R.A.B., Adorna, H.N.: Communication Complexity of Evolution-
Communication P systems with Energy and Sevilla Carpet. Philippine Computing
Journal 6(1), 34–40 (2010)

9. Mauri, G., Leporati, A., Zandron, C.: Energy-Based Models of P systems. In:
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Abstract. In this article we consider insertion-deletion P systems in-
serting or deleting one symbol in one or two symbol(s) left context (more
precisely of size (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)). We show that com-
putational completeness can be achieved by using only 3 membranes in
a tree-like structure. Hence we obtain a trade-off between the sizes of
contexts of insertion and deletion rules and the number of membranes
sufficient for computational completeness.

1 Introduction

The operations of insertion and deletion were first considered with a linguis-
tic motivation [19, 8, 22]. Another inspiration for these operations comes from
the fact that the insertion operation and its iterated variants are generalized
versions of Kleene’s operations of concatenation and closure [14], while the dele-
tion operation generalizes the quotient operation. A study of properties of the
corresponding operations may be found in [10–12]. However, insertion and dele-
tion also have interesting biological motivations, e.g., they correspond to a mis-
matched annealing of DNA sequences; these operations are also present in the
evolution processes in the form of point mutations as well as in RNA editing, see
the discussions in [3, 4, 26] and [24]. These biological motivations of insertion-
deletion operations led to their study in the framework of molecular computing,
see, for example, [6, 13, 24, 27].

In general, an insertion operation means adding a substring to a given string
in a specified (left and right) context, while a deletion operation means removing
a substring of a given string from a specified (left and right) context. A finite
set of insertion-deletion rules, together with a set of axioms provide a language
generating device: starting from the set of initial strings and iterating insertion-
deletion operations as defined by the given rules, one gets a language.

Even in their basic variants, insertion-deletion systems are able to characterize
the recursively enumerable languages. Moreover, as it was shown in [20], the
context dependency may be replaced by insertion and deletion of strings of
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sufficient length, in a context-free manner. If the length is not sufficient (less or
equal to two) then such systems are decidable and a characterization of them
was shown in [28].

Similar investigations were continued in [21, 16, 17] on insertion-deletion sys-
tems with one-sided contexts, i.e., where the context dependency is present only
from the left or only from the right side of all insertion and deletion rules. The
papers cited above give several computational completeness results depending
on the size of parameters of insertion and deletion rules. We recall the interest-
ing fact that some combinations are not leading to computational completeness,
i.e., there are recursively enumerable languages that cannot be generated by
such devices, in particular, by systems of size (1, 1, 0; 1, 1, 0), where the first
three numbers represent the maximal size of the inserted string and the maxi-
mal size of the left and right contexts, respectively, while the last three numbers
provide the same information about deletion rules.

In order to increase the computational power of the corresponding variants
they were considered in the framework of P systems [18] and it was shown that
computational completeness can be achieved if 5 membranes are used. In [7]
tissue P systems are considered and computational completeness is achieved with
4 membranes. In [2] computational completeness is achieved by simpler insertion-
deletion rules, but instead using priorities. A summary of related results can be
found in [1, 29].

In this article we would like to consider the trade-offs between the sizes of
the contexts and the number of membranes. We consider insertion-deletion P
systems of size (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0), and show that computational
completeness can be achieved with only 3 membranes. We remind that pre-
viously it was shown that 4 membranes are enough to achieve computational
completeness with insertion and deletion rules of size (1, 1, 0).

2 Preliminaries

In this paper, the empty string is denoted by λ, the family of recursively enu-
merable, context-sensitive, and context-free languages by RE, CS and CF , re-
spectively. We will use the notation |w| for the length of a string w, while the
number of occurrences of the symbol a in the string w will be referred to by the
notation |w|a. We do not define the standard concepts of the theory of formal
languages in this section; the reader is invited to consider [25] for further details.

A type-0 grammar G = (N, T, S, P ) is said to be in Geffert normal form [9] if
the set of non-terminals N is defined as N = {S,A,B,C,D}, T is an alphabet
and P only contains context-free rules of the forms S → uSv with u ∈ {A,C}+
and v ∈ (T ∪{B,D})+ as well as S → λ and two (non-context-free) erasing rules
AB → λ and CD → λ.

We remark that according to [9] the generation of a string using a grammar in
this normal form is done in two stages. During the first stage only context-free
rules S → uSv can be applied (this follows from the fact that u ∈ {A,C}+ and
v ∈ ({B,D} ∪ T )+). During the second stage only non-context-free rules can
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be applied (because there is no more symbol S in the string). The transition
between the stages is done by the rule S → λ (note that in [9] a set of rules of
the form S → uv is used instead leading to an equivalent result). Note that the
symbols A,B,C,D are treated like terminals during the first stage and so, each
rule S → uSv is in some sense “linear”.

Throughout this paper we will use the special Geffert normal form. Let G =
(N, T, S, P ) be a grammar with N = N ′ ∪ N ′′, N ′ ∩ N ′′ = ∅, where N ′′ =
{A,B,C,D} and N ′ is a set of non-terminals containing S, S′ and some other
auxiliary non-terminals (that are introduced by the translation from the Geffert
normal form to the special variant). We say that G is in the special Geffert
normal form if it only has two (non-context-free) erasing rules AB → λ and
CD → λ and several context-free rules of one of the following forms:

X → bY, where X,Y ∈ N ′, b ∈ N ′′, X �= Y
X → Y b, where X,Y ∈ N ′, b ∈ T ∪N ′′, X �= Y
S′ → λ.

Moreover, it may be assumed without loss of generality that for any two rules
X → w and U → w in P with the first symbol of w different from S, S′, we have
U = X .

Any grammar G in the Geffert normal form can be transformed into a gram-
mar G′ in the special Geffert normal form generating the same language by
replacing the “linear” rules by right- and left-linear ones. Let S′ be a new non-
terminal that will be used to mark the transition from the first stage to the
second. The rule S → uSv of G, where u = a1 . . . an and v = b1 . . . bm is re-
placed in G′ by the following rules: S → a1X1, X1 → a2X2, . . . , Xn−1 → anXn,
Xn → Xn+1bm, . . . , Xn+m → Sb1, where X1, . . . , Xn+m are new non-terminals
different from each other as well as from the corresponding non-terminals intro-
duced by the translation of other rules. We also add rules Xn+m → S′bm and
S′ → λ to G′ in order to mark the transition to the second stage. Note that the
rule S → λ is not preserved in G′.

We also note that during the first stage of the derivation of a grammar in the
special Geffert normal form there is exactly one non-terminal from N ′ present
in the string and during the second stage the string does not contain any symbol
from N ′.

An insertion-deletion system is a construct Γ = (V, T,A, I,D), where V is an
alphabet, T ⊆ V is the terminal alphabet (the symbols from V \ T are called
non-terminal symbols), A ⊆ V ∗ is the set of axioms, and I and D are finite sets
of triples of the form (u, α, v), where u, α, and v are strings over V , with α �= λ.
The triples in I are called insertion rules, and those in D are called deletion
rules.

An insertion rule (u, α, v) ∈ I indicates that the string α can be inserted
between u and v, while a deletion rule (u, α, v) ∈ D indicates that α can be
removed from between the contexts u and v. In other words, (u, α, v) ∈ I
corresponds to the rewriting rule uv → uαv, while (u, α, v) ∈ D corresponds to
the rewriting rule uαv → uv.
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We denote the “derives by insertion” relation induced by insertion rules by
=⇒ins. Formally, x =⇒ins y (“x derives y by insertion”) if and only if x = x1uvx2

and y = x1uαvx2, x1, x2 ∈ V ∗, and there exists (u, α, v) ∈ I. By the notation
=⇒del we refer to the “derives by deletion” relation defined by deletion rules.
Formally, x =⇒del y (“x derives y by deletion”) if and only if x = x1uαvx2 and
y = x1uvx2, x1, x2 ∈ V ∗, and there exists (u, α, v) ∈ D. By =⇒ we refer to the

union of the relations =⇒ins and =⇒del, and by
∗

=⇒ we denote the reflexive and
transitive closure of =⇒.

Instead of relying on separate sets I and D, we will often consider their union
R = I∪D and distinguish between insertion and deletion rules by the subscripts

ins and del. Thus instead of (u, α, v) ∈ I, we will write (u, α, v)ins, and instead
of (u, α, v) ∈ D, we will write (u, α, v)del.

The language generated by the insertion-deletion system Γ = (V, T,A, I,D)
is defined as follows:

L(Γ ) = {w ∈ T ∗ | x ∗
=⇒ w, x ∈ A}.

The complexity of an insertion-deletion system Γ = (V, T,A, I,D) is described
by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},
m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},
m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

The total size of an insertion-deletion system Γ of size (n,m,m′; p, q, q′) is de-
fined as the sum of all the numbers from the vector:Σ(Γ ) = n+m+m′+p+q+q′.

By INSm,m′
n DELq,q′

p we denote the families of languages generated by
insertion-deletion systems of size (n,m,m′; p, q, q′).

If ∗ is specified instead of one of the parameters n, m, m′, p, q, or q′, then
there are no restrictions on the length of the corresponding component. In partic-
ular, INS0,0

∗ DEL0,0
∗ denotes the family of languages generated by context-free

insertion-deletion systems.
If one of the numbers from the pairs m, m′ or q, q′ is equal to zero, while the

other one is not, we say that the family is with one-sided context.
An insertion-deletion P system of degree n is the following construct:

Π = (V, T, μ,M1, . . . ,Mn, R1, . . . , Rn)

where

– V is a finite alphabet,

– T ⊆ V is the terminal alphabet,

– μ is the membrane (tree) structure of the system which has n membranes
(nodes). This structure will be represented by a word containing correctly
nested marked parentheses.

– Mi, for each 1 ≤ i ≤ n is a finite language associated with the membrane i.
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– Ri, for each 1 ≤ i ≤ n is a set of insertion and deletion rules with tar-
get indicators associated with membrane i and having the following forms:
(u, x, v; tar)ins, where (u, x, v) is an insertion rule, and (u, x, v; tar)del, where
(u, x, v) is an deletion rule, and tar, called the target indicator, is from the
set {here, in, out}.

Any n-tuple (N1, . . . , Nn) of languages over V is called a configuration of Π .
For two configurations (N1, . . . , Nn) and (N ′

1, . . . , N
′
n) of Π we write (N1, . . . ,

Nn) =⇒ (N ′
1, . . . , N

′
n) if one can pass from (N1, . . . , Nn) to (N ′

1, . . . , N
′
n) by

applying the insertion and deletion rules from each region of μ, in the maximally
parallel way, i.e., in parallel to all possible strings from the corresponding regions,
and following the target indications associated with the rules. We assume that
every string represented in a membrane has arbitrary many copies. Hence, by
applying a rule to a string we get both arbitrary many copies of resulting string
as well as old copies of the same string.

More specifically, if w ∈ Ni and r = (u, x, v; tar)ins ∈ Ri, respectively r =
(u, x, v; tar)del ∈ Ri, such that w =⇒r

ins w′, respectively w =⇒r
del w

′, then w′

will go to the region indicated by tar. If tar = here, then the string remains in
Ni, if tar = out, then the string is moved to the region immediately outside the
membrane i (maybe, in this way the string leaves the system), if tar = in, then
the string is moved to one of the regions immediately below region i.

A sequence of transitions between configurations of a given insertion-deletion
P system Π , starting from the initial configuration (M1, . . . ,Mn), is called a
computation with respect toΠ . The result of a computation consists of all strings
over T which are sent out of the system at any time during the computation.
We denote by L(Π) the language of all strings of this type. We say that L(Π)
is generated by Π .

As in [23] we denote by ELSPk(ins
m,m′
n , delq,q

′
p ) the family of languages

generated by insertion-deletion P systems of degree at most k ≥ 1 having the
size (n,m,m′; p, q, q′).

3 Computational Power of One-Sided Insertion-Deletion
Systems of Small Size

In this section we consider insertion-deletion P systems of size (1, 2, 0; 1, 1, 0)
and (1, 1, 0; 1, 2, 0). While the computational power of normal insertion-deletion
systems with these parameters is not yet known, based on observations from [15]
we conjecture that the corresponding models are not computationally complete.
We also recall that most combinations of parameters involving left and right
contexts as well as the insertion or deletion of more than one symbol are known
to produce computationally complete insertion-deletion systems, see [29] for a
complete list.
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Theorem 1. ELSP3(ins
2,0
1 , del1,01 ) = RE.

Proof. Consider a type-0 grammarG = (N, T, P, S) in the special Geffert normal
form and let N ′′ = {A,B,C,D} ⊆ N . We construct an insertion-deletion P
system

Π = (V, T, [1[2[3]3]2]1, {{XS}}, ∅, ∅, R1 ∪R′
1, R2, R3)

that simulates G as follows. The rules from P are supposed to be labeled in
a one-to-one manner with labels from the set [1..|P |]. The alphabet of Π is
V = N ∪ T ∪ {Mi | i : X → α ∈ P} ∪ {K,K ′,X}. The sets of rules R1, R2, R3

of Π are defined as follows.
For any rule i : X → bY ∈ P we consider following sets of rules:

Ri
1 = {i.1 : (X, Mi, λ; in)ins},

Ri
2 = {i.2 : (XMi, Y, λ; in)ins} ∪ {i.3 : (a, Mi, λ; out)del | a ∈ N ′′},

Ri
3 = {i.4 : (a, X, λ;here)del | a ∈ N ′′} ∪ {i.5 : (aMi, b, λ; out)ins | a ∈ N ′′}.

For any rule i : X → Y b we consider following sets of rules:

Ri
1 = {i.1 : (X, Mi, λ; in)ins},

Ri
2 = {i.2 : (XMi, b, λ; in)ins} ∪ {i.3 : (a, Mi, λ; out)del | a ∈ N ′′},

Ri
3 = {i.4 : (a, X, λ;here)del | a ∈ N ′′} ∪ {i.5 : (aMi, Y, λ; out)ins | a ∈ N ′′}.

For the rules i1 : AB → λ and i2 : CD → λ and i3 : S′ → λ we consider
following sets of rules:

Ri1
1 = {i1.1 : (λ, K, λ; in)ins},

Ri1
2 = {i1.2 : (K, A, λ; in)del} ∪ {i1.3 : (λ, K, λ; out)del},

Ri1
3 = {i1.4 : (K, B, λ; out)del},

Ri2
1 = {i2.1 : (λ, K ′, λ; in)ins},

Ri2
2 = {i2.2 : (K ′, C, λ; in)del} ∪ {i2.3 : (λ, K, λ; out)del},

Ri2
3 = {i2.4 : (K ′, D, λ; out)del},

Ri3
1 = {i3.1 : (λ, S′, λ;here)del}.

Now for j = 1, 2, 3 we define Rj = ∪1≤i≤|P |Ri
j and we define R′

1 = {X :
(λ, X , λ; out)del}.

We state that L(Π) = L(G). For this we show how each rule of G can be
simulated in Π . Consider a string wXw′ in membrane 1 and suppose that there
is a rule i : X → bY in P . Then the following unique evolution can happen:

(wXw′, 1) =⇒i.1 (wXMiw
′, 2) =⇒i.2 (wXMiY w′, 3) =⇒i.4

=⇒i.4 (wMiY w′, 3) =⇒i.5 (wMibY w′, 2) =⇒i.3 (wbY w′, 1).
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In the second step it was possible to apply the rule i.3, yielding string wXw′

in membrane 1, but this just returns to the previous configuration.
The rule X → Y b is simulated in a similar manner:

(wXw′, 1) =⇒i.1 (wXMiw
′, 2) =⇒i.2 (wXMibw

′, 3) =⇒i.4

=⇒i.4 (wMibw
′, 3) =⇒i.5 (wMiY bw′, 2) =⇒i.3 (wY bw′, 1).

The rule i1 : AB → λ is simulated as follows (the case of rule i2 : CD → λ
is treated in an analogous way). First a symbol K is inserted in a context-free
manner into the string ww′ by using the rule i1.1, yielding wKw′. If the symbol
to the right of K is not an A, then the only possibility is to apply rule i1.3 which
deletes K and returns the string ww′ to membrane 1. If K is inserted in front of
a symbol A (w′ = Aw′′) then rule i1.2 can be applied and string wKw′′ goes to
membrane 3. Now if w′′ does not start with B, then the computation of this word
is stopped and it does not yield a result. Otherwise (w′′ = Bw′′′), rule i1.4 is
applied yielding wKw′′′ in membrane 2. Now the computation may be continued
in the same manner and K either eliminates another couple of symbols AB if
this is possible, or the string appears in the skin membrane without K and then
is ready for new evolutions.

When the system Π reaches the configuration Xw with w ∈ T ∗, rule X from
R′

1 can be applied yielding a terminal string w in the environment as a result of
the computation.

Now in order to complete the proof, we observe that the only sequences of
rules leading to a terminal derivation in Π correspond to the groups of rules as
defined above. Hence, a derivation in G can be reconstructed from a derivation
in Π . ��
Theorem 2. ELSP3(ins

1,0
1 del2,01 ) = RE.

Proof. Consider the type-0 grammar G = (N, T, S, P ) in the special Geffert
normal form and denote N ′′ = {A,B,C,D} ⊆ N . Consider as well that the
rules from P are bijectively labelled with the numbers from the set [1..|P |]. We
will now construct the following insertion-deletion P system Π which simulates
G:

Π = (V, T, [1[2[3]3]2]1, {{XS}}, ∅, ∅, R1 ∪R′
1, R2 ∪R′

2, R3 ∪R′
3).

The set of objects of Π will contain new special symbols per each rule of G and
is constructed in the following way:

V = {Mi, Ȳi,M
′
i | i : X → bY ∈ P}

∪ {Mi, Ni, Ȳi,M
′
i | i : X → Y b ∈ P}

∪ {K,K ′,X} ∪N ∪ T.

For each i : X → bY ∈ R, we construct the following three sets of rules:

Ri
1 = {i.1 : (λ, Mi, λ; in)ins},

Ri
2 = {i.2 : (Mi, Ȳi, λ;here)ins} ∪ {i.3 : (Mi, b, λ; in)ins}
∪ {i.4 : (bȲi, X, λ; out)del},

Ri
3 = {i.5 : (λ, Mi, λ; out)del}.
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For each i : X → Y b ∈ R, we construct the following three sets of rules:

Ri
1 = {i.1 : (λ, Mi, λ; in)ins},

Ri
2 = {i.2 : (Mi, Ni, λ;here)ins} ∪ {i.3 : (Ni, b, λ; in)ins}
∪ {i.4 : (Ȳib, X, λ; out)del},

Ri
3 = {i.5 : (Mi, Ȳi, λ;here)ins} ∪ {i.6 : (λ, Mi, λ;here)del}
∪ {i.7 : (aȲi, Ni, λ; out)del | a ∈ N ′′}.

Moreover, we also build the following three sets:

R′
1 = {i′1 : (λ, M ′

i , λ; in)ins | i : X → bY ∈ P or i : X → Y b ∈ P},
Ri

2 = {i′2 : (M ′
i , Y, λ; in)ins | i : X → bY ∈ P or i : X → Y b ∈ P}

∪ {i′3 : (λ, M ′
i , λ; in)del | i : X → bY ∈ P or i : X → Y b ∈ P},

Ri
3 = {i′4 : (M ′

iY, Ȳi, λ; out)del | i : X → bY ∈ P or i : X → Y b ∈ P}.
Finally, for the rules i1 : AB → λ, i2 : CD → λ, and i3 : S′ → λ we consider the
following sets of rules:

Ri1
1 = {i1.1 : (λ, K, λ; in)ins},

Ri1
2 = {i1.2 : (K, A, λ; in)del} ∪ {i1.3 : (λ, K, λ; out)del},

Ri1
3 = {i1.4 : (K, B, λ; out)del},

Ri2
1 = {i2.1 : (λ, K ′, λ; in)ins},

Ri2
2 = {i2.2 : (K ′, C, λ; in)del} ∪ {i2.3 : (λ, K, λ; out)del},

Ri2
3 = {i2.4 : (K ′, D, λ; out)del},

Ri3
1 = {i3.1 : (λ, S′, λ;here)del}.

Now for j = 1, 2, 3 we define the sets Rj = ∪1≤i≤|P |Ri
j and also R′

1 = {X :
(λ, X , λ; out)del}.

We state that L(Π) = L(G). For this we show how each rule of G can be
simulated in Π . Consider a string wXw′ in membrane 1 and suppose that there
is a rule i : X → bY in P . The simulation of this rule occurs in two phases: in
the first phase we rewrite X to bȲi, while in the second one we substitute Ȳi

with Y . The following is the valid first-phase simulation sequence in Π :

(wXw′, 1) =⇒i.1 (wMiXw′, 2) =⇒i.2 (wMiȲiXw′, 2) =⇒i.3 (wMibȲiXw′, 3)
=⇒i.5 (wbȲiXw, 2) =⇒i.4 (wbȲiw

′, 1).

The second phase happens due to the rules in the sets R′
i, i = 1, 2, 3, and consists

of the following steps:

(wȲibw
′, 1) =⇒i′.1 (wM ′

i Ȳibw
′, 2) =⇒i′.2 (wM ′

iY Ȳibw
′, 3)

=⇒i′.4 (wM ′
iY bw′, 2) =⇒i′.3 (wY bw′, 1).

We claim the both the first phase and the second phase simulation sequences
are the only ones which can happen in valid derivations of Π . Indeed, consider
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the wXw′ into which i.1 has inserted an instance of Mi. By inspecting the
symbol requirements of the rules associated with membrane 2, we conclude that
only the rules i.2 and i.3 may become applicable. Suppose that rule i.3 is applied
directly. If, for example, Mi has been inserted to the right of X , this will produce
the string γMibγ

′′Xw′, which will be moved into membrane 3. The case when
i.1 inserts Mi to the right of X is treated in a similar way. Now, the only way
to further move the computation out of membrane 3 is by applying the rule
i.5 which will remove the instance of Mi and move the string into the second
membrane. However, no more rules will be applicable from now on, because the
string contains no service symbols at all, but is in the second membrane.

Suppose now that, after the application of i.1, the rule i.2 is applied k > 1
times. The subsequent application of the rule i.3 will insert an instance of b
after Mi, thus yielding the substring Mib(Ȳi)

k. Again, the only way to move the
string out of membrane 3 is to erase the symbol Mi which produces a string
with a substring of k instances of Ȳi. It is clear that, if X is situated to the left
of this (Ȳi)

k, the string cannot contain ȲiX , which is required by i.3. On the
other hand, if X is to the right of (Ȳi)

k, it will not be possible to apply i.3 again,
because the string does not contain the substring ȲiX preceded by a symbol
from N ′′.

Finally, it is rather clear that, if i.1 does not insert the Mi just to the left
of X , Π will not be able to move the string containing a Ȳi and an X out of
membrane 2, thus blocking without producing any meaningful result.

We will focus on the second-phase simulation sequence now. The application
of the rule i′.1 inserts an instance of M ′

i somewhere and moves the string into
membrane 2. There are only two rules that may become applicable: i′.2 and i′.3.
Suppose that i′.3 is applied directly after i′.1. In this case the system will come
back into the configuration it has been in before the application of i′.1 without
doing any changes to the string whatsoever. Therefore, to actually modify the
string, the rule i′.2 must be applied.

An application of the rule i′.2 inserts exactly one instance of Y after M ′
i and

puts the string into the innermost membrane 3. Now, the only way to exit this
membrane is by applying the rule i′.4, which means that, if the application of the
rule i′.1 has not inserted M ′

i to the left of Ȳi, the system Π will unproductively
block in the third membrane. Consequently, after the application of i′.4, the
string in the second membrane must be of the form wM ′

iY bw′. At this point, two
rules are still applicable, i′.2 and i′.3. Suppose indeed that the rule i′.2 is applied
a second time and inserts another instance of Y after M ′

i , thus yielding the string
wM ′

iY Y bw′ and moving it into membrane 3. Now, however, the rule i′.4 is not
applicable because the string lacks Ȳi and Π will thus block. Therefore, the only
productive way to move the string wM ′

iY bw′ out of the second membrane is to
apply i′.3.

Now consider a rule i : X → Y b. Again, the simulation of i happens in
two phases: in the first phase we rewrite X to Ȳib, while in the second phase
we substitute Ȳi with Y . Since the second phase of the simulation happens in
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exactly the same way as in the case of the rule X → bY , we will only focus on
the first-stage simulation sequence:

(wXw′, 1) =⇒i.1 (wMiXw′, 2) =⇒i.2 (wMiNiXw′, 2) =⇒i.3 (wMiNibXw′, 3)
=⇒i.5 (wMiȲiNibXw′, 3) =⇒i.6 (wȲiNibXw′, 3)

=⇒i.7 (wȲibXw′, 2) =⇒i.4 (wȲibw
′, 1).

We claim that the first-phase simulation sequence we have just shown is the
only possible valid derivation of Π . We will now consider the variations that can
interfere with this subderivation and show that none of them can influence the
result of a computation of Π .

Consider the application of i.1 which inserts Mi into the original string wXw′

and moves the new string, say γMiγ
′Xw′, into membrane 2. The case when Mi

is inserted to the right of X is treated in a similar way. In the current situation,
the only applicable rule is i.3, which may insert k instances of Ni, thus yielding
the string γMi(Ni)

kγ′Xw′. If one discards the possibility to produce yet more
instances of Ni, the only other way to evolve is the application of the rule i.3 to
insert a b after one of the Ni’s and thereby to move the string into membrane 3.

In the new configuration, membrane 3 will contain γMi(Ni)
k1b(Ni)

k2γ′Xw′,
where k1 ≥ 1 and k1 + k2 = k. We immediately remark that the only way for
Π to move out of this membrane is to apply the rule i.7. This rule requires
that there is a substring of ȲiNi preceded by a symbol from N ′′. The string
γMi(Ni)

k1b(Ni)
k2γ′Xw′, with which the systemΠ has just arrived in membrane

3, does not contain any instances of Ȳi, but the rule i.5 can introduce them.
Suppose this latter rule is applied t times, t ≥ 0, thus yielding the following
result:

γMi(Ȳi)
t(Ni)

k1b(Ni)
k2γ′Xw′.

Clearly, the rule i.7 is not yet applicable, because there are no instances of Ȳi

preceded by symbols from N ′′. The only way to reach this situation is to apply
the rule i.6 to obtain the string

γ(Ȳi)
t(Ni)

k1b(Ni)
k2γ′Xw′.

The rule i.7 imposes an even stronger requirement: the instance of Ȳi which
is preceded by a symbol from N ′′ must be immediately followed by Ni. Since
instances of Ȳi can only be inserted to the right of Mi, and since the process of
inserting Ni’s has already been completed in membrane 2, applying i.7 actually
requires that exactly one instance of Ȳi has been inserted by i.5 (i.e., it requires
that t = 1), giving

γȲi(Ni)
k1b(Ni)

k2γ′Xw′.

An application of the rule i.7 will erase the leftmost instance of Ni and will
put the following string into membrane 2:

γȲi(Ni)
k1−1b(Ni)

k2γ′Xw′.

The rule i.3 will still be applicable at this moment. Remark, however, that the
string which will be moved into membrane 3 by this application will contain no
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instances of Mi, so the rule which may be applicable is i.7, which will remove yet
another instance of Ni following Ȳi. Applications of the rules i.3 and i.7 in a loop
will only be possible as long as there are instances of Ni just to the right of Ȳi

and then Π will either block in membrane 3 or move the string into membrane
1 with an application of i.4.

Based on the observations we have made in the previous paragraph, we can
assert that the general form of the strings which may appear in membrane 2 after
at least one traversal of membrane 3 is γȲi(N

∗
i (Nib)

∗)∗γ′Xw′. If we discard the
possibility of yet again re-tracing the loop formed by the rules i.3 and i.7, the only
other way for Π to proceed is to apply i.4 and move the string into membrane 1.
However, the rule i.4 imposes a strong condition on the form of the string it can
be applied to: there has to exist a substring ȲibX . Clearly, the only way to have
exactly one b between Ȳi and X is, firstly, to have i.1 insert Mi exactly to the
left of X (that is, γ′ should be zero) and, secondly, to only apply i.3 once during
the whole simulation process, thus obtaining the string γȲibXw′ in membrane 2.
The application of i.4 will thus erase the X and successfully finish the rewriting
of X into Ȳib.

We conclude the proof by stating the simulation of the rules AB → λ and
CD → λ is done in exactly the same way as in the case of the systems from the
class ELSP3(ins

2,0
1 del1,01 ). ��

4 Conclusion

In this article we considered insertion-deletion P systems of size (1, 2, 0; 1, 1, 0)
and (1, 1, 0; 1, 2, 0) and showed that computational completeness can be achieved
with 3 membranes. Compared to [7] this result shows an interesting trade-off
between the size of contexts in insertion-deletion rules and the number of mem-
branes: with 4 membranes, computational completeness is obtained already with
insertion and deletion rules of size (1, 1, 0). Now it remains an open question if
the number of membranes can be further decreased for the investigated systems
or for systems having bigger contexts for the insertion or deletion rules.
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Abstract. We prove that asynchronous P systems with active mem-
branes without division rules can be simulated by single-membrane tran-
sition P systems using cooperative rules, even if the synchronisation
mechanisms provided by electrical charges and membrane dissolution
are exploited. In turn, the latter systems can be simulated by means of
place/transition Petri nets, and hence all these models are computation-
ally weaker than Turing machines.

1 Introduction

P systems with active membranes [10] are parallel computation devices inspired
by the structure and functioning of biological cells. A tree-like hierarchical struc-
ture of membranes divides the space into regions, where multisets of objects
(representing chemical substances) are located. The systems evolve by means of
rules rewriting or moving objects, and possibly changing the membrane struc-
ture itself (by dissolving or dividing membranes) or the state of the membranes
(by changing their electrical charge).

Under the maximally parallel updating policy, whereby all components of the
system that can evolve concurrently during a given computation step are required
to do so, these devices are known to be computationally universal. Alternative
updating policies have also been investigated. In particular, asynchronous P sys-
tems with active membranes [7], where any, not necessarily maximal, number of
non-conflicting rules may be applied in each computation step, have been proved
able to simulate partially blind register machines [8], computation devices equiva-
lent under certain acceptance conditions to place/transition Petri nets and vector
addition systems [11]. This simulation only requires object evolution (rewriting)
rules and communication rules (moving objects between regions).

In an effort to further characterise the effect of asynchronicity on the compu-
tational power of P systems, we prove that asynchronous P systems with active
membranes without dissolution can be flattened if we allow the use of cooperative
rules, obtaining a system that can be easily simulated by place/transition Petri
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nets, and as such they are not computationally equivalent to Turing machines:
indeed, the reachability of configurations and the deadlock-freeness (i.e., the halt-
ing problem) of Petri nets are decidable [2]. This holds even when membrane
dissolution, which provides an additional synchronisation mechanism (besides
electrical charges) whereby all objects are released simultaneously from the dis-
solving membrane, is employed by the P system being simulated. Unfortunately,
this result does not seem to immediately imply the equivalence with partially
blind register machines, as the notion of acceptance for Petri nets employed here
is by halting and not by placing a token into a “final” place [8].

The paper is organised as follows: in Section 2 we recall the relevant defi-
nitions of (divisionless) P systems with active membranes and place/transition
Petri nets; in Section 3 we prove that asynchronous P systems with active mem-
branes are computationally equivalent to their sequential version, where a single
rule is applied during each computation step; in Section 4 we show that sequen-
tial P systems with dissolution rules can be simulated by sequential transition
P systems with cooperative rules having only one membrane; finally, in Section 5
we show how sequential single-membrane transition P systems using cooperative
rules can be simulated by Petri nets. Section 6 contains our conclusions and some
open problems.

2 Definitions

We first recall the definition of P systems with active membranes and its various
operating modes.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a
tuple Π = (Γ,Λ, μ, wh1 , . . . , whd

, R), where:

– Γ is an alphabet, i.e., a finite nonempty set of objects;
– Λ is a finite set of labels for the membranes;
– μ is a membrane structure (i.e., a rooted unordered tree) consisting of d

membranes injectively labelled by elements of Λ;
– wh1 , . . . , whd

, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial
multisets of objects located in the d regions of μ;

– R is a finite set of rules.

Each membrane possesses, besides its label and position in μ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or nega-
tive (−) and is always neutral before the beginning of the computation.

The following four kinds of rules are employed in this paper.

– Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).
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– Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β.

– Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

– Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are released in the surrounding region unaltered, except that an
occurrence of a becomes b.

We recall that the most general form of P systems with active membranes [10]
also includes membrane division rules, which duplicate a membrane and its con-
tents; however, these rules are not used in this paper.

Each instantaneous configuration of a P system with active membranes is
described by the current membrane structure, including the electrical charges,
together with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane several evolution
rules having the same left-hand side, or the same evolution rule can be
applied simultaneously; this includes the application of the same rule with
multiplicity).

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication and dissolution rules involving
the membranes themselves; this process is then repeated to the membranes
containing them, and so on towards the root (outermost membrane). In
other words, the membranes evolve only after their internal configuration
has been updated. For instance, before a membrane dissolution occurs, all
chosen object evolution rules must be applied inside it; this way, the objects
that are released outside during the dissolution are already the final ones.

– The outermost membrane cannot be dissolved, and any object sent out from
it cannot re-enter the system again.

In the maximally parallel mode, the multiset of rules to be applied at each step
must be maximal, in the sense that no further rule can be added without creating
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conflicts. In the asynchronous mode, any nonempty multiset of applicable rules
can be chosen. Finally, in the sequential mode, exactly one rule per computation
step is applied. In the following, only the latter two modes will be considered.

A halting computation of the P system Π is a finite sequence of configu-
rations C = (C0, . . . , Cn), where C0 is the initial configuration, every Ci+1 is
reachable from Ci via a single computation step, and no rule can be applied
in Cn. A non-halting computation C = (Ci : i ∈ N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

The other model of computation we will employ is Petri nets. In particular,
with this term we denote place/transition Petri nets with weighted arcs, self-
loops and places of unbounded capacity [4]. A Petri net N is a triple (P, T, F )
where P is the set of places, T the set of transitions (disjoint from P ) and F ⊆
(P×T )∪(T×P ) is the flow relation. The arcs are weighted by a function w : F →
(N−{0}). A marking (i.e., a configuration) is a function M : P → N. Given two
markings M , M ′ of N and a transition t ∈ T we say that M ′ is reachable from
M via the firing of t, in symbols M →t M

′, if and only if:

– for all places p ∈ P , if (p, t) ∈ F and (t, p) /∈ F then M(p) ≥ w(p, t)
and M ′(p) = M(p)− w(p, t);

– for all p ∈ P , if (t, p) ∈ F and (p, t) /∈ F then M ′(p) = M(p) + w(t, p);
– for all p ∈ P , if both (p, t) ∈ F and (t, p) ∈ F then M(p) ≥ w(p, t)

and M ′(p) = M(p)− w(p, t) + w(t, p).

Petri nets are nondeterministic devices, hence multiple markings may be reach-
able from a given configuration. We call halting computation a sequence of mark-
ings (M0, . . .Mn) where M0 →t1 M1 →t2 · · · →tn Mn for some t1, . . . , tn, and
no transition may fire in Mn. Several problems related to the reachability of
markings and halting configurations (or deadlocks) are decidable [2].

3 Asynchronicity and Sequentiality

In this section we show how it is possible to construct, for every asynchronous
P system with active membranes, a sequential version that is equivalent to the
original one, in the sense that each asynchronous step where more than one rule
is applied can be substituted by a sequence of asynchronous steps where the
rules are reordered and applied one at a time.

Proposition 1. Let Π be a P system with active membranes using object evo-
lution, communication, and dissolution rules. Then, the asynchronous and the
sequential updating policies of Π are equivalent in the following sense: for each
asynchronous (resp., sequential) computation step C → D there exists a series of
sequential (resp., asynchronous) steps C = C0 → · · · → Cn = D for some n ∈ N.

Proof. Every asynchronous computation step C → D consists in the application
of a finite multiset of rules {e1, . . . , ep, c1, . . . , cq, d1, . . . , dr}, where e1, . . . , ep
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are object evolution rules, c1, . . . , cq are communication rules (either send-in or
send-out), and d1, . . . , dr are dissolution rules.

Since evolution rules do not change any charge nor the membrane structure
itself, the computation step C → D can be decomposed into two asynchronous
computation steps C → E → D, where the step C → E consists in the applica-
tion of the evolution rules {e1, . . . , ep}, and the step E → D in the application
of the remaining rules {c1, . . . , cq, d1, . . . , dr}. Notice that in E there still exist
enough objects to apply these communication and dissolution rules, since by
hypothesis C → D is a valid computation step.

Furthermore, notice how there is no conflict between object evolution rules
(once they have been assigned to the objects they transform). Therefore, the
application of the rules {e1, . . . , ep} can be implemented as a series of sequential
steps C = C0 → · · · → Cp = E .

Each membrane can be subject to at most a single rule of communication or
dissolution type in the computation step C → D; hence, applying one of these
rules does not interfere with any other. Thus, these rules can also be serialised
into sequential computation steps E → Cp+1 → · · · → Cp+q+r = D. Once again,
all rules remain applicable since they were in the original computation step.

By letting n = p+ q + r, the first half of the proposition follows. The second
part is due to the fact that every sequential computation step is already an
asynchronous computation step. ��

4 Single-Membrane Transition P Systems

In this section we recall the notion of transition P system, imposing as an addi-
tional constraint that the system has only one membrane. For a description of
a general framework in which these systems can be described see [6]. As proved
in [5], these systems are not universal; indeed, a simple simulation by means
of Petri nets, inspired by [3], is provided in the next section. Our simulation
involves a flattening of the membrane structure and the use of cooperative rules;
the first simulation of this type was presented in [1] and, in fact, our construc-
tion is similar. Unlike that construction, however, the semantics that we use is
sequential and we do not include promoters and inhibitors.

Definition 2. A single-membrane transition P system is a structure

Π = (Γ,w,R)

where Γ is a finite alphabet, w is a multiset of elements representing the initial
state of the system, and R is a set of cooperative rules in the form v → w where
v and w are multisets of objects of Γ .

Notice that the definition is a simplified version of the original definition of
transition P systems [9], since specifying the membrane structure is not needed.
We can now show that single-membrane transition P systems are equivalent to
divisionless P systems with active membranes when operating under the sequen-
tial semantics.
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Let Π = (Γ,Λ, μ, wh1 , . . . , whd
, R) be a P system with active membranes and

C a configuration of Π . The flattened encoding of C is the multiset E(C) over
(Γ ∪ {−, 0,+})× Λ defined as follows:

1. If there are n copies of the object a contained in a membrane h in C, then
E(C) contains n copies of the element (a, h).

2. If a membrane h has charge c, then the object (c, h) is in E(C).
It is easy to see that, for a fixed Π , the encoding function is a bijection between
the configurations of Π and its image, that is, the function E is invertible. Hence,
for any multiset A that is the encoding of some configuration, the decoding is
uniquely identified, i.e., for any configuration C, E−1(E(C)) = C.
Proposition 2. Let Π = (Γ,Λ, μ, wh1 , . . . , whd

, R) be a P system with active
membranes working in the sequential mode and using object evolution, commu-
nication, and dissolution rules, with initial configuration C0. Then, there exists
a single-membrane transition P system Π ′ =

(
(Γ ∪ {−, 0,+} ∪ {•})× Λ, v,R′),

for some initial multiset v, working in the sequential mode, such that:

(i) If C = (C0, C1, . . . , Cm) is a halting computation of Π, then there exists a
halting computation D = (E(C0),D1, . . . ,Dn) of Π ′ such that Dn is the
union of E(Cm) and the set of all the elements in the form (•, h) where h
is a membrane that has been dissolved in C.

(ii) If D = (E(C0),D1, . . . ,Dn) is a halting computation of Π ′, then there
exists a halting computation C = (C0, C1, . . . , Cm) of Π such that Dn can
be written as the union of the set of elements in the form (•, h), where h
is a membrane that was dissolved in C, and the set E(Cm).

(iii) Π admits a non-halting computation (C0, C1, . . .) if and only if Π ′ admits
a non-halting computation (E(C0),D1, . . .).

Proof. The main idea is to replace every dissolution rule of a membrane h in R
with a cooperative rule such that an object in the form (•, h) is generated and
all the objects in the form (a, h) are rewritten to (a, h′), where h′ is the lowest
ancestor of h in μ that has not been dissolved.

Let [a]αh1
→ b be a dissolution rule in R. Then, R′ contains the following

cooperative rules:

(a, h1)(α, h1)→ (b, h1)(•, h1). (1)

The objects that have h1 as the second component are then rewritten by means
of the following rules:

(a, h1)(•, h1)→ (a, h2)(•, h1) (2)

where h2 is the parent membrane of h1 in μ. Notice that, if (•, h2) exists, then
membrane h2 has been dissolved during a previous computation step; this means
that there exists another rule of type (2) rewriting all the objects having h2 as
the second component. This process continues as long as there are objects with
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the label of a dissolved membrane as their second component (excluding the ones
having • as the first component).

An object evolution rule [a → w]αh is simulated by the following cooperative
rule:

(a, h)(α, h)→ (w1, h) . . . (wn, h)(α, h). (3)

A send-out communication rule [a]αh1
→ [ ]βh1

b is replaced by the following rules:

(a, h1)(α, h1)→ (b, h2)(β, h1) (4)

where h2 is the parent membrane of h1 in μ. As mentioned before, if (•, h2)
exists, then a rule of type (2) will subsequently rewrite (b, h2).

Finally, a send-in communication rule a [ ]αh1
→ [b]βh1

is simulated as follows.
Let (hn, hn−1, . . . , h2, h1) be a sequence of nested membranes surrounding h1,
i.e., a descending path in the membrane tree μ. For every such sequence, we add
the following rules to R′:

(•, hn−1) · · · (•, h2)(α, h1)(a, hn)→ (•, hn−1) · · · (•, h2)(β, h1)(b, h1). (5)

These rules rewrite the object (a, hn) into (b, h1) if in Π all the membranes
between hn and h1 have been dissolved. Observe that the number of descending
paths leading to h1 is bounded above by the depth of μ.

Notice how every rule of R′ is exactly of one type among (1)–(5); in particular,
given a rule in R′ of type (1), (3), (4), or (5), it is always possible to reconstruct
the original rule in R.

Each computation step of Π consisting in the application of an evolution or
send-in communication rule is simulated by a single computation step of Π ′ by
means of a rule of type (3) or (5), respectively.

The dissolution of a membrane h1 in Π requires a variable number of steps
of Π ′: first, a rule of type (1) is applied, then each object in the form (a, h1)
must be rewritten, by using rules of type (2), in order to obtain an object in
the form (a, hn), where hn is the lowest ancestor membrane of h1 that has not
been dissolved in the original system. The exact number of steps depends on the
number of objects located inside h1 and the number of membranes that have
been dissolved. The reasoning is analogous for send-out communication rules,
simulated by means of rules of type (4) and (2).

Part (i) of the proposition directly follows from the semantics of the above
cooperative rules.

Now let D = (D0 = E(C0),D1, . . . ,Dn) be a halting computation of Π ′. Then
there exists a sequence of rules r = (r1, . . . , rn) in R′ such that

D0 →r1 D1 →r2 · · · →rn−1 Dn−1 →rn Dn

where the notation X →r Y indicates that configuration Y is reached from X
by applying the rule r. Let f : N→ N be defined as

f(t) =
∣∣{ri : 1 ≤ i ≤ t and ri is not of type (2)}∣∣.
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We claim that there exists a sequence of rules s = (s1, . . . , sm) such that the
computation C = (C0, . . . , Cm) of Π generated by applying the rules of s, i.e.,

C0 →s1 C1 →s2 · · · →sm−1 Cm−1 →sm Cm
has the following property P (t) for each t ∈ {0, . . . , n}:

For all h ∈ Λ and a ∈ Γ , if (γ, h) with γ ∈ {+, 0,−} is in configuration
Dt of Π ′, then the number of copies of the objects of the form (a, h′)
with h′ any descendant of h in μ, or h itself, is equal to the number of
copies of a contained in the membrane substructure rooted in h in Cf(t),
and h has the charge γ. If (•, h) is in Dt, then h does not appear in Cf(t)
(having been dissolved before).

We prove this property by induction on t. The case t = 0 clearly holds, by the
definition of the encoding function: E(Cf(0)) = E(C0) = D0, as f(0) = |∅|.

Now suppose P (t) holds for some t < n. If rt+1 is a rule of type (2) then for
each object a ∈ Γ , the only change in the objects with a as the first component is
when the second component h is the label of a membrane that has been dissolved
in Π and the objects retain a as the first component while the second one became
the label of the parent membrane of h in μ. Furthermore, no symbol in the form
(γ, h), where γ is a charge, is rewritten to a different symbol. Since rt+1 is of
type (2), we have f(t + 1) = f(t) hence Cf(t+1) = Cf(t), and property P (t + 1)
holds.

On the other hand, if rt+1 is not of type (2), then f(t + 1) = f(t) + 1 by
definition. Let sf(t)+1 = sf(t+1) be the rule corresponding to the cooperative
rule rt+1 as described above (an object evolution rule if rt+1 is of type (3), a
dissolution rule if rt+1 is of type (1), and so on). Observe that if rt+1 is applicable
in Dt, then sf(t)+1 is applicable in Cf(t) by induction hypothesis:

– if (γ, h) is in Dt then the membrane h has charge γ in Cf(t);
– if rt+1 is of type (1), (3), or (4) and uses an object (a, h) in Dt, then a copy

of a appears in membrane h in Cf(t);
– if rt+1 is of type (5) and uses an object (a, h) and (•, h) is in Dt, then the

object a appears in Cf(t) inside the membrane having the same label as the
lowest ancestor of h in the original membrane structure such that (γ, h) with
γ �= • is in Dt.

The configuration Cf(t)+1 such that Cf(t) →sf(t)+1
Cf(t)+1, due to the semantics

of the corresponding rules applied by Π and Π ′, is such that the property P (t+1)
holds.

In particular, P (n) holds: configurations Dn and Cf(n) have the following
properties: the encoding E(Cf(n)) is contained in Dn and all other objects not
contained in E(Cf(n)) are in the form (•, h), where h is the label of a membrane
that has been dissolved during the computation. Notice that Cf(n) is a halting
configuration, since otherwise any rule applicable from it could be simulated
from Dn as in statement (i). Furthermore, if an object (•, h) is in Dn then no
object in form (a, h) with a ∈ Γ exists, otherwise further rules of type (2) could
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be applied, contradicting the hypothesis that Dn is a halting configuration. For
all membranes h in Cf(n) and for all objects a ∈ Γ , the number of copies of a
that are inside the membrane h in Cf(n) is equal to the number of objects in the
form (a, h) in Dn, and statement (ii) follows.

Finally, let us consider a non-halting computation of Π . Each time a compu-
tation of Π can be extended by one step by applying a rule, that rule can be
simulated by Π ′ using the same argument employed to prove statement (i), thus
yielding a non-halting computation of Π ′. Vice versa, in a non-halting computa-
tion of Π ′ it is never the case that infinitely many rules of type (2) are applied
sequentially, as only finitely many objects exist at any given time, and eventually
they are rewritten to have the form (a, h) without also having the object (•, h).
As soon as a rule of type (1), (3), (4), or (5) is applied, the corresponding rule
can also be applied by Π , thus yielding a non-halting computation. ��

5 Simulation with Petri Nets

The single-membrane transition P systems described in the last section can be
simulated by Petri nets in a straightforward way. The idea of using Petri nets as
a device for the simulation is originally due to [3].

Proposition 3. Let Π = (Γ,w,R) be a single-membrane sequential transition
P system. Then, there exists a Petri net N , having Γ among its places, such that
C → C′ is a computation step of Π if and only if M → M ′ is a computation step
of N , where M(a) is the number of instances of a in C.
Proof. The set of places of N is defined as Γ ∪ {lock}, where lock is a place
always containing a single token that is employed in order to ensure the firing of
at most one transition per step. For each cooperative rule v1 · · · vn → u1 · · ·um

the net has a transition defined as follows:

v1 v2 vn. . .

. . .u1 u2 um

lock r

Notice that the output places need not be distinct, as the multiset in the left
hand side may contain multiple occurrences of the same symbol; in that case,
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a weighted arc is used. The output places need not be distinct from the input
places either; in that case, the net contains a corresponding loop.

The initial marking M0 of N is given by M0(a) = |w|a, for all a ∈ Γ , where
|w|a is the multiplicity of a in w.

Notice that a transition r in N is enabled exactly when the corresponding
rule r ∈ R is applicable, producing a transition M →r M ′ corresponding to a
computation step C →r C′ of Π as required. In every moment the number of
tokens in a place is equal to the multiplicity of the corresponding object in the
configuration of Π . ��

By combining Propositions 1, 2, and 3, we can finally prove the following
theorem.

Theorem 1. For every asynchronous P system with active membranes Π using
evolution, communication, and dissolution rules, there exists a Petri net N such
that (i) every halting configuration of Π corresponds to a halting configuration
of N and vice versa (under the encoding of Propositions 2 and 3), and (ii) every
non-halting computation of Π corresponds to a non-halting computation of N
and vice versa. ��

Notice that, given the strict correspondence of computations and their halting
configurations (if any) between the two devices, this result holds both for P sys-
tems computing functions over multisets/Parikh vectors and those recognising or
generating families of multisets/Parikh vectors, since the only difference between
these computing modes is the initial configuration and the acceptance condition;
these are translated directly into the simulating Petri net.

6 Conclusions

We have proved that asynchronous P systems with active membranes (without
division rules) can be flattened and simulated by single-membrane transition
P systems using cooperative rules. These systems can, in turn, be easily sim-
ulated by place/transition Petri nets, and hence are not computationally uni-
versal. In order to achieve this result, we exploited the equivalence between the
asynchronous and the sequential parallelism policies for divisionless P systems
with active membranes.

The conjectured equivalence of asynchronous P systems with active mem-
branes and Petri nets does not seem to follow immediately from our result and
the previous simulation of partially blind register machines by means of asyn-
chronous P systems with active membranes [7]. Indeed, an explicit signalling
(putting a token into a specified place) instead of accepting by halting seems to be
required in order to simulate Petri nets with partially blind register machines [8].
Directly simulating Petri nets with asynchronous P systems with active mem-
branes is also nontrivial, since transitions provide a stronger synchronisation
mechanism than the limited context-sensitivity of the rules of a P system with
active membranes. This equivalence is thus left as an open problem.
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Abstract. We prove that all-parallel enzymatic numerical P systems
whose production functions can be expressed as a combination of sums,
differences, products and integer divisions characterise PSPACE when
working in polynomial time. We also show that, when only sums and
differences are available, exactly the problems in P can be solved in
polynomial time. These results are proved by showing how EN P systems
and random access machines, running in polynomial time and using the
same basic operations, can simulate each other efficiently.

1 Introduction

Numerical P systems have been introduced in [8] as a model of membrane sys-
tems inspired both from the structure of living cells and from economics. Each
region of a numerical P system contains some numerical variables, that evolve
from initial values by means of programs. Each program consists of a production
function and a repartition protocol ; the production function computes an output
value from the values of some variables occurring in the same region in which the
function is located, while the repartition protocol distributes this output value
among the variables in the same region as well as in the neighbouring (parent
and children) ones.

In [8], and also in Chapter 23.6 of [9], some results concerning the compu-
tational power of numerical P systems are reported. In particular, it is proved
that nondeterministic numerical P systems with polynomial production func-
tions characterize the recursively enumerable sets of natural numbers, while de-
terministic numerical P systems, with polynomial production functions having
non-negative coefficients, compute strictly more than semilinear sets of natural
numbers.

Enzymatic Numerical P systems (EN P systems, for short) have been intro-
duced in [10] as an extension of numerical P systems in which some variables,
named the enzymes, control the application of the rules, similarly to what hap-
pens in P systems with promoters and inhibitors [2]. As shown in [11,3] and
references therein, the most promising application of EN P systems seems to be
the simulation of control mechanisms of mobile and autonomous robots.
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The computational power of EN P systems has also been thoroughly investi-
gated. In [6] a short review of previously known universality results is presented,
together with an improvement on some of them: linear production functions in-
volving only one variable suffice to obtain universality in the one-parallel and
all-parallel modes.

In this paper we deal with computational complexity issues, and show how
the choice of arithmetical operations allowed in the production functions influ-
ences the efficiency of computation of all-parallel EN P systems, exactly as it
happens for random access machines [5]. Indeed, we prove that these two com-
putation devices can simulate each other efficiently in some relevant cases. As
a consequence, we show the limitations of linear production functions, and how
these are overcome by allowing multiplication and integer division, leading to
polynomial time solutions to PSPACE-complete problems.

The paper is organised as follows. In Section 2 we recall the definitions of
EN P systems and random access machines, together with the relevant results
from the literature. In Section 3 we show, as a technical result, how indirect
addressing can be eliminated when RAMs operate in polynomial time, thus
simplifying the simulation by means of all-parallel EN P systems that is presented
in Section 4. The converse simulation is illustrated in Section 5, leading to our
main result about the computational complexity of all-parallel EN P systems.
Finally, conclusions and open problems are described in Section 6.

2 Definitions and Previous Results

An enzymatic numerical P system (EN P system, for short) is a construct of the
form:

Π =
(
m,H, μ, (Var1,Pr1,Var1(0)), . . . , (Varm,Prm,Varm(0))

)
where m ≥ 1 is the degree of the system (the number of membranes), H is
an alphabet of labels, μ is a tree-like membrane structure with m membranes
injectively labeled with elements of H , Var i and Pr i are respectively the set of
variables and the set of programs that reside in region i, and Var i(0) is the vector
of initial values for the variables of Var i. All sets Var i and Pr i are finite. In the
original definition of EN P systems [10] the values assumed by the variables
may be real, rational or integer numbers; in what follows we will allow instead
only integer numbers. The variables from Var i are written in the form xj,i, for j
running from 1 to |Var i|, the cardinality of Var i; the value assumed by xj,i at
time t ∈ N is denoted by xj,i(t). Similarly, the programs from Pr i are written in
the form Pl,i, for l running from 1 to |Pr i|.

The programs allow the system to evolve the values of variables during com-
putations. Each program is composed of two parts: a production function and
a repartition protocol. The former can be any function using variables from the
region that contains the program. Using the production function, the system
computes a production value, from the values of its variables at that time. This
value is distributed to variables from the region where the program resides, and to
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variables in its upper (parent) and lower (children) compartments, as specified by
the repartition protocol. Formally, for a given region i, let v1, . . . , vni be all these
variables; let x1,i, . . . , xki,i be some variables from Var i, let Fl,i(x1,i, . . . , xki,i)
be the production function of a given program Pl,i ∈ Pr i, and let cl,1, . . . , cl,ni

be natural numbers. The program Pl,i is written in the following form:

Fl,i(x1,i, . . . , xki,i)→ cl,1|v1 + cl,2|v2 + · · ·+ cl,ni |vni (1)

where the arrow separates the production function from the repartition protocol.
Let Cl,i =

∑ni

s=1 cl,s be the sum of all the coefficients that occur in the repartition
protocol. If the system applies program Pl,i at time t ≥ 0, it computes the value

q =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i

that represents the “unitary portion” to be distributed to variables v1, . . . , vni

proportionally with coefficients cl,1, . . . , cl,ni . So each of the variables vs, for
1 ≤ s ≤ ni, will receive the amount q · cl,s. An important observation is that
variables x1,i, . . . , xki,i involved in the production function are reset to zero after
computing the production value, while the other variables from Var i retain their
value. The quantities assigned to each variable from the repartition protocol are
added to the current value of these variables, starting with 0 for the variables
which were reset by a production function. As pointed out in [12], a delicate
problem concerns the issue whether the production value is divisible by the
total sum of coefficients Cl,i. As it is done in [12], in this paper we assume that
this is the case, and we deal only with such systems; see [8] for other possible
approaches.

Besides programs (1), EN P systems may also have programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i → cl,1|v1 + cl,2|v2 + · · ·+ cl,ni |vni

where ej,i is a variable from Var i different from x1,i, . . . , xki,i and v1, . . . , vni .
Such a program can be applied at time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).
Stated otherwise, variable ej,i operates like an enzyme, that enables the execu-
tion of the program but, as happens with catalysts, it is neither consumed nor
modified by the execution of the program. However, in EN P systems enzymes
can evolve by means of other programs, that is, enzymes can receive “contribu-
tions” from other programs and regions.

A configuration of Π at time t ∈ N is given by the values of all the vari-
ables of Π at that time; in a compact notation, we can write it as the sequence
(Var1(t), . . . ,Varm(t)), where m is the degree of Π . The initial configuration
can thus be described as the sequence (Var1(0), . . . ,Varm(0)). The system Π
evolves from an initial configuration to other configurations by means of compu-
tation steps, in which one or more programs of Π (depending upon the mode of
computation) are executed. In [12], at each computation step the programs to be
executed are chosen in the so called sequential mode: one program is nondeter-
ministically chosen in each region, among the programs that can be executed at
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that time. Another possibility is to select the programs in the so called all-parallel
mode: in each region, all the programs that can be executed are selected, with
each variable participating in all programs where it appears. Note that in this
case EN P systems become deterministic, since nondeterministic choices between
programs never occur. A variant of parallelism, analogous to the maximal one
which is often used in membrane computing, is the so called one-parallel mode:
in each region, all the programs which can be executed can be selected, but the
actual selection is made in such a way that each variable participates in only one
of the chosen programs. We say that the system reaches a final configuration if
and when it happens that no applicable set of programs produces a change in
the current configuration.

EN P systems may be used as (polynomial) time-bounded recognising devices
as follows. Notice that we use two variables (instead of just one of them), named
accept and reject , to signal the end of computations. This is done because some
programs of the system may be applied forever, causing the system to never halt
even if the configuration does not change any more. By using two variables, the
event of reaching a final configuration is made visible and distinguishable from
the outside.

Definition 1. Let L ⊆ {0, 1}� be a language, and let Π be a deterministic
EN P system with two distinguished variables accept and reject . We say that Π
decides L in polynomial time iff, for all x ∈ {0, 1}�, when the integer having
binary representation 1x is initially assigned to a specified input variable1 the
P system Π reaches a final configuration such that

– if x ∈ L, then accept = 1 and reject = 0
– if x /∈ L, then accept = 0 and reject = 1

within a number of steps bounded by O(|x|k) for some k ∈ N.

As proved in [6], every all-parallel and one-parallel EN P system can be “flat-
tened” into an equivalent (both in terms of output and number of computation
steps) system having only one membrane. For simplicity, in the following sections
we shall always deal with flattened EN P systems.

The proofs in this paper will be based on random access machines [7,5]. We
define the specific variant we will employ:

Definition 2 (RAM). A random access machine consists of an infinite number
of registers (ri : i ∈ N) having values in N, initially set to zero, and a finite
sequence of instructions injectively labelled by elements � ∈ N. The instructions
are of the following types:

– assignment of a constant k ∈ N: “� : ri := k” (ri is assigned a constant value)
– copying a register: “� : ri := rj” (ri is assigned the content of a fixed register)
– indirect addressing: “� : ri := rrj ” (ri is assigned the content of a register

whose number is given by a fixed register)
1 The “1” is prefixed to the input string x in order to keep the leading zeroes.



Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 253

– arithmetic operations, with • ∈ {+,−,×,÷}: “� : ri := rj • rk”
– conditional jump, with �1, �2 ∈ N: “� : if ri �= 0 then �1 else �2”
– halt and accept: “� : accept”
– halt and reject: “� : reject”.

The labels of the instructions will sometimes be left implicit.
We assume, without loss of generality, that it is never the case that a reg-

ister or a label are mentioned multiple times in the same instruction (e.g.,
in “� : ri := rj • rk” we assume i �= j, j �= k, and i �= k).

Since RAMs operate on natural numbers, we only allow non-negative subtrac-
tion, i.e., x− y = 0 when y > x.

Definition 3. Let L ⊆ {0, 1}� be a language, and let M be a RAM. We say
that M decides L in polynomial time iff, for all x ∈ {0, 1}�, when the inte-
ger having binary representation 1x is loaded into a specified input register, the
machine M behaves as follows:

– if x ∈ L, then M reaches an “accept” instruction
– if x /∈ L, then M reaches a “reject” instruction

within a number of steps bounded by O(|x|k) for some k ∈ N.

In the rest of this paper we will denote the class of random access machines
using the set of basic operations X ⊆ {+,−,×,÷} by RAM(X), and the class of
all-parallel EN P systems whose production functions can be expressed in terms
of X by ENP(X). In particular, we are interested in all-parallel EN P systems
having linear production functions, ENP(+,−), and those with production func-
tions consisting of polynomials augmented by integer division, ENP(+,−,×,÷).

We shall also employ the following notation for complexity classes:

Definition 4. Let D be one of the classes of computing devices described above.
Then, by P-D we denote the class of decision problems solvable in polynomial
time by devices of type D.

The computational power of polynomial-time RAMs is strictly dependent on
the set of basic operations that can be computed in a single time step. When
only addition and subtraction are available, then polynomial-time RAMs are
equivalent to polynomial-time Turing machines [4].

Proposition 1. P-RAM(+,−) = P. ��
On the other hand, multiplication and division considerably increase the effi-

ciency of polynomial-time RAMs [1]:

Proposition 2. P-RAM(+,−,×,÷) = PSPACE. ��
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1 e := y
2 z := 1
3 while e > 0 do
4 {xe × z = xy}
5 p := 1
6 p′ := 2
7 a := x
8 a′ := x× x
9 while p′ ≤ e do

10 p := p′

11 p′ := p′ + p′

12 a := a′

13 a′ := a′ × a′

14 end
15 {e− p ≤ e/2}
16 e := e− p
17 z := z × a

18 end

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

O(log y) iterations

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

O(log y) iterations

Fig. 1. Polynomial-time exponentiation algorithm by repeated squaring

3 Avoiding Indirect Addressing

In this section we recall how indirect addressing may be eliminated from random
access machines by encoding any number of registers as a single large integer.
The resulting machine only needs a constant number of registers and, when the
original machine runs in polynomial time, the slowdown is only polynomial.

In order to eliminate indirect addressing we employ multiplication, integer
division and exponentiation. The first two operations, which are built-in on
a RAM(+,−,×,÷), can be computed in quadratic time by a RAM(+,−) using
repeated doubling.

Proposition 3. The product x × y and the quotient x ÷ y can be computed
in O

(
(log y)2

)
time and O

(
(log x)2)

)
time respectively by a RAM(+,−) using a

constant number of auxiliary registers. ��
Exponentiation can be also computed in polynomial time, using a repeated

squaring algorithm, both by a RAM(+,−) and a RAM(+,−,×,÷).
Proposition 4. The exponential xy can be computed in O

(
(log y)2

)
time by

a RAM(+,−,×) and in O
(
(y log y log x)2

)
time by a RAM(+,−) using a con-

stant number of auxiliary registers.

Proof. The algorithm of Fig. 1 computes z := xy by repeated squaring.
The outermost loop maintains the invariant xe × z = xy , and the innermost

loop computes the largest power 2i less than or equal to e, which is then sub-
tracted from e, thus reducing the value of this register by half or more (hence,
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eventually, to 0); the product of the values x2i is accumulated into z. In other
words, the algorithm computes the value xy as

xy = xym2m × xym−12
m−1 × · · · × xy12

1 × xy02
0

= xym2m+ym−12
m−1+···+y12

1+y02
0

where ymym−1 · · · y1y0 is the binary expansion of y.
Each line of the algorithm is performed by a RAM(+,−,×) in constant time,

for a total of O
(
(log y)2

)
time. On a RAM(+,−), the product of line 8 is com-

puted in O
(
(log x)2

)
time, and the products of lines 13 and 17 in O

(
(log xy)2

)
=

O
(
(y log x)2

)
time, since a reaches the value xy in the worst case (i.e., when y

is a power of 2). The total time is thus O
(
(y log y log x)2

)
. ��

An arbitrary random access machine never uses more registers than time steps;
however, in principle, the largest register index employed can be exponential on
a RAM(+,−), or even doubly exponential on a RAM(+,−,×,÷). The following
proposition [5] obviates the problem.

Proposition 5. Let M be a RAM with addition, subtraction and possibly mul-
tiplication and division, working in time t(n). Then there exists a RAM with the
same basic operations working in time O

(
t(n)2

)
, having the same output as M ,

and using only its first O
(
t(n)

)
registers. ��

The three Propositions 3, 4, and 5 allow us to simulate indirect addressing
from polynomial-time RAMs with a polynomial slowdown.

Proposition 6. Let M1 be a RAM(+,−) (respectively, a RAM(+,−,×,÷))
working in polynomial time O(nk). Then, there exists a RAM(+,−) (resp.,
a RAM(+,−,×,÷)) M2 working in O

(
n8k(logn)2

)
time (resp., O

(
n2k(logn)2

)
)

and computing the same result as M1 without using indirect addressing.

Proof. Since M1 works in polynomial time, by Proposition 5 there exists another
RAM M ′

1 with the same output as M1, working in polynomial time t = c1n
2k+c0

and using at most the first m = d1n
k + d0 registers (for some c0, c1, d0, d1 ∈ N).

The machine M2 simulates M ′
1 as follows. All the registers (r0, . . . , rm−1)

of M ′
1 are stored in a single register r of M2 as a base-b number:

r = bm−1rm−1 + bm−2rm−2 + · · ·+ b1r1 + b0r0.

The base b is one more than the largest number that can ever be stored in a
register by M ′

1, which can be computed as follows:

– If M ′
1 is a RAM(+,−), the most expensive instruction (in terms of magnitude

of the values of the registers) is “x := x + x”, where x is the input register.
After t steps, the value of any register is thus bounded by 2tx, and we choose
b = 2tx+ 1.

– If M ′
1 is a RAM(+,−,×,÷), then the most expensive instruction is squaring,

i.e., “x := x×x”, leading to an upper bound of x2t after t steps. In this case,
we choose b = x2t + 1.
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Notice that r has an upper bound of bm+1.
The machine M2 first computes the length n = O(log x) of the input (con-

tained in the register x) as follows:

1 y := x
2 n := 0
3 while y �= 0 do
4 y := y ÷ 2
5 n := n+ 1

6 end

This requires O(log x) steps on a RAM(+,−,×,÷), and O
(
(log x)3

)
steps on

a RAM(+,−), due to the cost of the division of line 4.
M2 then computes the number of steps t of M ′

1 to be simulated:

7 t := c1n
2k + c0

Line 7 can be executed in O(1) time by a RAM(+,−,×,÷), since k, c0, and c1
are constants; on a RAM(+,−) the time is O

(
(logn)2

)
= O

(
(log log x)2

)
. Notice

that evaluating such complex expressions only requires a constant number of
auxiliary registers.

The base b described above is then computed. For a RAM(+,−) the calcula-
tion is

8 b := 2tx+ 1

which executes in O
(
(t log t)2 + (log x)2

)
= O

(
(n2k logn)2

)
time.

For a RAM(+,−,×,÷) the calculation is

8 b := x2t + 1

which executes in O(t2) = O(n4k) time.
The last phase of the initialisation of M2 sets up register r, which initially

contains only x in its 0-th position:

9 r := x

Every time a register of M ′
1, say ri (with i a constant), has to be read, its value

can be extracted from the register r of M2 and stored in an auxiliary register,
say y, as follows:

y := (r ÷ bi) mod b

where a mod b = a− (a÷ b× b). This requires

O
(
(log b)2 + (log r)2

)
= O

(
(log b)2 + (log bm+1)2

)
= O

(
(log bm+1)2

)
= O

(
(m log b)2

)
= O

(
((d1n

k + d0) log(2
tx+ 1))2

)
= O

(
(nk(t+ log x))2

)
= O(n6k)
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time on a RAM(+,−), and O(1) time on a RAM(+,−,×,÷).
If indirect access is needed, that is, we read ri where i < m is not a constant,

then the computation time becomes

O
(
(i log i log b)2 + (log r)2

)
= O

(
(m logm log b)2 + (m log b)2

)
= O

(
(m logm log b)2

)
= O

(
(nk logn log b)2

)
= O

(
(nk logn · (t+ log x))2

)
= O

(
(nk logn · n2k)2

)
= O

(
(n3k logn)2

)
= O

(
n6k(log n)2

)
on a RAM(+,−), and

O
(
(log i)2

)
= O

(
(logm)2

)
= O

(
(log n)2

)
on a RAM(+,−,×,÷). Hence, reading a register of M ′

1 (and, in particular,
indirect addressing) can be simulated in polynomial time both on a RAM(+,−)
and on a RAM(+,−,×,÷).

The operation of writing the value of a register y of M2 into a simulated
register ri of M ′

1 is similar:

1 z := (r ÷ bi) mod b
2 r := r − (z × bi) + (y × bi)

and has the same asymptotical time complexity as above (keeping in mind that i
is a constant in this case).

We can now finally describe how the instructions of M ′
1 are simulated by M2.

– Assignment of a constant “ri := c”
z := (r ÷ bi) mod b
r := r − (z × bi) + (c× bi)

– Copying the value of a register “ri := rj ”
y := (r ÷ bj) mod b
z := (r ÷ bi) mod b
r := r − (z × bi) + (y × bi)

– Copying the value of a register through indirect addressing “ri := rrj ”
y := (r ÷ bj) mod b
y′ := (r ÷ by) mod b
z := (r ÷ bi) mod b
r := r − (z × bi) + (y′ × bi)

– Arithmetical operations “ri := rj • rk” with • ∈ {+,−} (for a RAM(+,−))
or • ∈ {+,−,×,÷} (for a RAM(+,−,×,÷))

y1 := (r ÷ bj) mod b

y2 := (r ÷ bk) mod b
y := y1 • y2
z := (r ÷ bi) mod b
r := r − (z × bi) + (y × bi)
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– Conditional jump “if ri �= 0 then �1 else �2”
y := (r ÷ bi) mod b
if y �= 0 then �′1 else �′2

where �′1 (resp., �′2) is the label of the first of the instructions of M2 simulating
the instruction �1 (resp., �2) of M ′

1.

The discussion above implies that simulating each instruction of M ′
1 requires at

most O
(
n6k(log n)2

)
for a RAM(+,−), and O

(
(logn)2

)
for a RAM(+,−,×,÷).

Hence, the total number of steps to complete the simulation is O
(
n8k(logn)2

)
and O

(
n2k(logn)2

)
respectively. ��

4 Simulating RAMs without Indirect Addressing

We now prove that each RAM, whose instructions satisfy the mild constraints
we have imposed in the definition, and do not use indirect addressing, can be
simulated by an appropriate EN P system working in the all-parallel mode. The
simulation is efficient, in the sense that each RAM instruction is simulated in
just one step.

Theorem 1. Let M be a RAM that does not use indirect addressing. Then, for
each instruction of M there exists a set of programs for an all-parallel EN P
system Π that simulates it in one computation step.

Proof. We proceed by examining all possible cases. In what follows, z is a variable
whose value is always zero, variables ri, rj , rk represent registers of M (contain-
ing non negative integer values), and variables p assume values in {0, 1} to
indicate the next instruction of M to be simulated.

RAM instructions of type “� : ri := k” can be simulated by the following set
of all-parallel programs:

0ri + k + z|p�
→ 1|ri

p → 1|p+1

When p = 0 the first program is not executed, while the second program ze-
roes p (thus leaving its value unaltered) and gives a contribution of zero to
variable p+1, thus behaving as a nop (No OPeration). Hence no interference is
produced in the variables involved in the RAM instruction currently simulated.
On the other hand, if p = 1 then the first program first zeroes ri and then
assigns the value k to it, while the second program zeroes p and sets p+1 to 1,
thus pointing to the next instruction of M to be simulated.

Assignment instructions of type “� : ri := rj ”, with j �= i, can be simulated
using the following programs:

0ri + 2rj + z|p�
→ 1|ri + 1|rj

p → 1|p+1
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As in the previous case, when p = 0 the first program is not active while the
second one operates like a nop. When p = 1, instead, the first program first
zeroes both ri and rj and then assigns to them the old value of rj ; the second
program, as before, passes the control to instruction �+1. Albeit in our definition
of RAMs we have avoided the case when j = i, here we just observe that we can
also easily deal with it: we simply remove the first program, since in this case it
always operates like a nop.

Arithmetic instructions of type “� : ri := rj•rk”, with • ∈ {+,−,×,÷} and i �=
j, j �= k, and i �= k, can be simulated as follows:

0ri + rj • rk + z|p�
→ 1|ri

rj + z|p�
→ 1|rj (2)

rk + z|p�
→ 1|rk (3)

p → 1|p+1

When p = 0 the first three programs are not executed, while the last program
behaves as a nop. On the other hand, if p = 1 then the first program first zeroes
variables ri, rj and rk, and then it assigns to ri the result of the operation rj •rk,
using the old values of rj and rk. Programs (2) and (3) are used to preserve the
old values of variables rj and rk, whereas the last program passes the control to
instruction �+ 1.

Finally, instructions of type “� : if ri �= 0 then �1 else �2”, with � �= �1, � �= �2,
and �1 �= �2, can be simulated by the following programs:

p → 1|p1
ri − 1|p�

→ 1|p1 (4)
ri + 1|p�

→ 1|p2 (5)

in which we assume ri �= 0 and correct if this is not the case. Note, in particular,
that programs (4) and (5) are active if and only if p = 1 and ri = 0. So,
when p = 0 only the first program is executed, behaving as a nop. When p = 1
and ri > 0, the first program passes the control to instruction �1 whereas the
other two programs are not executed. Finally, when p = 1 and ri = 0 the first
program zeroes p and (incorrectly) sets p1 to 1. This time, however, also the
other two programs are executed: after resetting once again the value of ri to 0,
program (4) gives a contribution of −1 to p1 , so that its final value will be zero,
whereas program (5) sets p2 to 1, indicating the next instruction of M to be
simulated. ��

5 Simulating All-Parallel EN P Systems with RAMs

Having proved that all-parallel EN P systems are able to simulate efficiently
random access machines using the same arithmetic operations, we now turn our
attention to the converse simulation. Without loss of generality, we assume that
the all-parallel EN P systems being simulated have a single membrane [6].
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Since the production functions of EN P systems may evaluate to negative num-
bers, even if the variables themselves are always non-negative, it is convenient to
employ RAMs with registers holding values in Z. This poses no restriction, since
signed integers may be simulated with a constant-time slowdown by RAMs us-
ing non-negative numbers, for instance by storing them with a sign-and-modulus
representation.

Proposition 7. Let Π be an ENP(+,−) (respectively, an ENP(+,−,×,÷))
working in all-parallel mode and polynomial time t(n) ≤ c1n

k + c0. Then, there
exists a RAM(+,−) (respectively, a RAM(+,−,×,÷)) M computing the same
output as Π in time O

(
t(n)3

)
(respectively, O

(
t(n)

)
).

Proof. Let x1, . . . , xm be the variables of Π . The machine M stores the values
of these variables in registers that we will denote with the same names, and will
have the same values in the initial configuration, including the input variable
of Π . Let p1, . . . , ph be the programs of Π .

Before describing the simulation proper, let us compute the maximum value
of a variable of Π . If Π is an ENP(+,−), then the rules have one of the following
forms:

ai1xi1 ± · · · ± aikxik ± a→ b1|x1 + · · ·+ bm|xm

ai1xi1 ± · · · ± aikxik ± a|e → b1|x1 + · · ·+ bm|xm

for some constants a, ai1 , . . . , aik , b1, . . . , bm ∈ N. The following program, with
some constant a ∈ N, produces the maximum increase in the variable x, which
we assume to be the input variable:

ax→ 1|x (6)

After t = c1n
k + c0 computation steps, the value of x reaches its maximum atx.

(Naturally, a program such as (6) is not admissible in a halting EN P system;
that program is considered here only in order to provide an upper bound to the
value of the variables of Π .)

On the other hand, if Π is an ENP(+,−,×,÷), the program that maximises
the value of x is

xa → 1|x

for some a ∈ N. In this case, after t steps the value of x reaches xat

. These
upper bounds to the values of the variables of Π will be used later in order to
determine the time required by M in order to simulate the EN P system.
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The following is an overview of the simulation of Π :

repeat
save the current values of the variables
compute the variations due to p1 (if applicable)
...
compute the variations due to ph (if applicable)
compute the new values of the variables

until a final configuration is reached
if Π accepted then

accept
else

reject
end

At the beginning of each simulated step, the current values of the variables are
copied:

x′
1 := x1

...
x′
m := xm

In the variables Δ1, . . . , Δm, initially zero, we accumulate the contributions to
x1, . . . , xm given by the programs of Π during the current step:

Δ1 := 0
...
Δm := 0

Each program pi of the form f(xi1 , . . . , xik)→ a1|x1 + · · ·+ am|xm is simulated
as follows:

f := f(xi1 , . . . , xik)
x′
i1

:= 0
...
x′
ik

:= 0

u := f ÷ (a1 + · · ·+ am)
Δ1 := Δ1 + a1u
...
Δm := Δm + amu

First, the value of the production function is computed. This requires O(1) time,
since by construction Π and M admit the same basic arithmetic operations.
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Then, the copies of the variables occurring on the left-hand side of the program
are zeroed.

The unit u to be distributed according to the repartition protocol is then com-
puted. Here the division is performed in O(1) time if M is a RAM(+,−,×,÷),
but O

(
(log f)2

)
= O

(
(log(atx))2

)
= O(t2) = O(n2k) if it is a RAM(+,−).

Finally, the contributions to the variables of Π are updated according to the
repartition protocol. This only requires O(1) time, as a1, . . . , am are constants.

Programs pi of the form f(xi1 , . . . , xik)|e → a1|x1+ · · ·+am|xm are simulated
analogously, only with an extra test in order to ensure that the value of the
enzyme is larger than the minimum of the variables.

if e > xi1 or e > xi1 or · · · or e > xik then
f := f(xi1 , . . . , xik)
x′
i1
:= 0

...
x′
ik

:= 0

u := f ÷ (a1 + · · ·+ am)
Δ1 := Δ1 + a1u
...
Δm := Δm + amu

end

The time required is again O(1) if Π is an ENP(+,−,×,÷) and O(n2k) if it is
an ENP(+,−).

After all programs have been examined (and applied, when possible), we can
check whether a final configuration is reached: this occurs when, for each vari-
able xi, we have xi = x′

i + Δi, i.e., when the old value xi equals the (possibly
zeroed) value increased by the sum of the contributions it received in the cur-
rent simulated step. If this is not the case, then the values of the variables are
updated:

x1 := x′
1 +Δ1

...
xm := x′

m +Δm

and the next step of Π is simulated.
When a final configuration is actually reached, the machine M checks the

value of the accept variable of Π and provides the same result:

if accept = 1 then
accept

else
reject

end
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The total time required in order to perform the simulation of Π is O(n3k) for
an ENP(+,−), and O(nk) for an ENP(+,−,×,÷). ��

We can now state our main result, summarising the computational efficiency
of EN P systems using arithmetic operations.

Theorem 2. The following complexity classes coincide:

P-ENP(+,−) = P-RAM(+,−) = P

P-ENP(+,−,×,÷) = P-RAM(+,−,×,÷) = PSPACE

Furthermore, the inclusion P-ENP(+,−,×) ⊆ P-RAM(+,−,×) holds. ��

6 Conclusions

We have analysed the computational efficiency of all-parallel EN P systems
and their relationships with more traditional computing devices such as RAMs
and Turing machines. We have showed some efficient simulations of all-parallel
EN P systems by RAMs and vice versa, when the same basic arithmetic opera-
tions are used.

Hence we found that, by using only addition and subtraction, EN P systems
working in polynomial time and all-parallel mode characterise the complexity
class P, whereas by also allowing multiplication and integer division we obtain
a characterisation of PSPACE.

Establishing the precise efficiency of all-parallel EN P systems (as well as
random access machines) with addition, subtraction and multiplication is still
an open problem. The possibility to extend the results exposed in this paper to
EN P systems working in the sequential or in the one-parallel mode, as well as
to numerical P systems not using the enzyme control, is also open.
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1 Department of Computer Science, Faculty of Informatics,
University of Debrecen Kassai út 26, 4028 Debrecen, Hungary
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Abstract. In natural processes, the events represented by communi-
cation rules in membrane computing are taken place in the vicinity
of membranes. Looking at regions as multisets, partial approximation
spaces generalized for multisets give a plausible opportunity to model
membrane boundaries in an abstract way. Thus, motivated by natural
phenomena, the abstract notion of “to be close enough to a membrane”
can be built in membrane computing. Restricting communication rules
to these boundaries, the interactions along the membranes can be con-
trolled locally during the membrane computations.

Keywords: Membrane computing, multiset theory, partial approxima-
tion of multisets.

1 Introduction

Membrane computing invented by Păun [14,15,17] is motivated by biological
and chemical processes. Membranes delimit regions for which a set of rules is
given. Evolution rules model reactions inside regions, whereas communication
rules model movements of objects through membranes.

In natural processes, the events represented by communication rules are taken
place in the vicinity of the membranes. There are some attempts to interpret
membrane boundaries relying on space perception [1,2]. In regions, however,
there is no precise information about the nature of the space of objects or their
positions in general [3].

An abstract, not necessarily space–like, notion of membrane boundary was
proposed in [10]. Accordingly, looking at regions as multisets, partial approxi-
mation spaces generalized for multisets give a plausible model of the abstract
concept of “to be close enough to a membrane”. Restricting communication
rules to these boundaries and keeping the maximal parallelism of membrane
computations, the interactions along the membranes can be controlled locally.
Moreover, it has a special influence on the nondeterministic nature of membrane
computations, and so nondeterminism may change.
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The paper, with the help of examples, undertakes to show what happens when
the executions of communication rules are restricted to membrane boundaries
defined in an abstract way. Having outlined the fundamental notions of partial
multiset approximation spaces in Section 2, Section 3 and 4 present its applica-
tion to membrane computing and the examples indicated before.

2 General Multiset Approximation Spaces

Set approximations were invented by Pawlak [12,13]. There are many different
generalizations of Pawlakian rough set theory, among others, for multisets relying
on equivalence or general multirelations [5,7]. Partial nature of real–life problems,
however, requires working out partial approximation schemes. Such a scheme for
multiset first was proposed in [9,10] in connection with membrane computing.
In this section, the most important features of partial multiset approximation
spaces are summarized (based on [10]).

2.1 Set-Theoretical Relations and Operations for Multisets

Let U be a finite nonempty set. A multiset M , or mset M for short, over U is
a mapping M : U → N ∪ {∞}, where N is the set of natural numbers. The set
M∗ = {a ∈ U |M(a) �= 0} is called the support of M . M is finite if M(a) <∞
for all a ∈M∗. The mset M over U is the empty mset, denoted by ∅, if M∗ = ∅.

LetMS(U) denote the set of all msets over U .
A set M of finite msets over U is called a macroset M over U [8]. We

define the following two fundamental macrosets: MSn(U) (n ∈ N), the set of
all msets M over U such that M(a) ≤ n for all a ∈ U , and MS<∞(U) =⋃∞

n=0MSn(U).
The basic set–theoretical relations can be generalized for msets as follows.

Definition 1 ([10]). Let M , M1, M2 be msets over U .

1. Multiplicity relation for an mset M over U is: a ∈ M (a ∈ U) if
M(a) ≥ 1.

2. Let n ∈ N+ be a positive integer. n–times multiplicity relation for an mset
M over U is: a ∈n M (a ∈ U) if M(a) = n.

3. M1 = M2 if M1(a) = M2(a) for all a ∈ U (mset equality relation).
4. M1 +M2 if M1(a) ≤M2(a) for all a ∈ U (mset inclusion relation).

The next definitions give the generalizations for msets of the basic set–
theoretical operations.

Definition 2 ([10]). Let M,M1,M2 ∈ MS(U) be msets over U and M ⊆
MS(U) be a set of msets over U .

1. (M1 �M2)(a) = min{M1(a),M2(a)} for all a ∈ U ( intersection).
2. (

�M)(a) = min{M(a) |M ∈M} for all a ∈ U .
3. (M1 �M2)(a) = max{M1(a),M2(a)} for all a ∈ U ( set–type union).
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4. (
⊔M)(a) = sup{M(a) |M ∈ M} for all a ∈ U . By definition,

⊔ ∅ = ∅.
5. (M1 ⊕M2)(a) = M1(a) +M2(a) for all a ∈ U (mset addition).
6. For any n ∈ N, n-times addition of M , denoted by ⊕n(M) or simply ⊕nM ,

is given by the following inductive definition:
(a) ⊕0M = ∅;
(b) ⊕1M = M ;
(c) ⊕n+1M = ⊕nM ⊕M .

7. (M1 -M2)(a) = max{M1(a)−M2(a), 0} for all a ∈ U (mset subtraction).

By the n-times addition, the n-times inclusion relation (+n) can be defined.

Definition 3. Let M1 �= ∅,M2 be two msets over U .
For any n ∈ N, M1 +n M2 if ⊕nM1 +M2 but ⊕n+1M1 �+M2.

Corollary 1. Let M1 �= ∅,M2 be two msets over U .
Then for all n ∈ N, M1 +n M2 if and only if nM1(a) ≤ M2(a) for all a ∈ U

but there is an a′ ∈ U such that (n+ 1)M1(a
′) > M2(a

′).

Note that U 〈MS(U),�,�〉 is a complete lattice [4,6], and 〈MS(U),+〉 is
a partially ordered set in which M1 + M2 if and only if M1 �M2 = M2, or
equivalently, M1 �M2 = M1 (M1,M2 ∈MS(U)).

In addition, 〈MS<∞(U),�,�〉 is the sublattice of 〈MS(U),�,�〉. However,
〈MS<∞(U),�,�〉 is not a complete lattice because of it lacks a top element.
For more details, see [11].

2.2 General Multiset Approximation Spaces

A general mset approximation space has four basic components:

– a set of msets as the domain of the space whose members are approximated;
– some distinguished msets of the domain as the basis of approximations;
– definable msets which are derived from base msets in some way and marked

as possible approximations of members of the domain;
– an approximation pair determining the lower and upper approximations of

members of the domain based on definable msets.

Definition 4 ([10]). The ordered 5–tuple MAS(U) = 〈MS<∞(U),B,DB, l, u〉
is a (general) mset approximation space over U with the domain MS<∞(U) if

1. B ⊆MS<∞(U) and if B ∈ B, then B �= ∅ (in notation B = {Bγ | γ ∈ Γ}
where Γ is an arbitrary non–empty set of indexes);
B is called the base system, its members are called the base msets;

2. DB ⊆ MS<∞(U) is an extension of B satisfying the following minimal
requirement: if B ∈ B, then ⊕nB ∈ DB for all n ∈ N; members in DB are
called definable msets;
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3. the functions l, u : MS<∞(U) → MS<∞(U) (called lower and upper ap-
proximations) form a weak approximation pair 〈l, u〉 if

(C0) l(MS<∞(U)), u(MS<∞(U)) ⊆ DB (definability of l, u);1

(C1) the functions l and u are monotone, i.e., for all M1,M2 ∈MS<∞(U) if
M1 +M2, then l(M1) + l(M2), u(M1) + u(M2) (monotonicity of l, u);

(C2) u(∅) = ∅ (normality of u);
(C3) if M ∈ MS<∞(U), then l(M) + u(M) (weak approximation property).

Corollary 2. l(∅) = ∅ (normality of l).

MAS(U) is total, if for any M ∈ MS<∞(U) there is a definable mset D ∈ DB

such that M + D, it is partial otherwise.
It is reasonable to assume that the base msets and their n-times additions are

exactly approximated from “lower side”. In certain cases, it is also required of
definable msets.

Definition 5. A weak approximation pair 〈l, u〉 is
(C4) granular if B ∈ B, then l(⊕nB) = ⊕nB (n ∈ N) (in other words, l is

granular);
(C5) standard if D ∈ DB, then l(D) = D (in other words, l is standard).

An important question is how lower and upper approximations relate to the
approximated mset.

Definition 6. A weak approximation pair 〈l, u〉 is
(C6) lower semi–strong if l(M) +M (M ∈ MS<∞(U)) (l is contractive);
(C7) upper semi–strong if M + u(M) (M ∈MS<∞(U)) (u is extensive);
(C8) strong if it is lower and upper semi–strong simultaneously, i.e., each subset

M ∈MS<∞(U) is bounded by l(M) and u(M): l(M) +M + u(M).

Definition 7. The general mset approximation space MAS(U) is a weak/gran-
ular/standard/lower semi-strong/upper semi-strong/strong mset approximation
space, if the approximation pair 〈l, u〉 is weak/granular/standard/lower semi-
strong/upper semi-strong/strong, respectively.

2.3 Generalized Pawlakian Multiset Approximation Spaces

It is a natural assumption that DB is obtained (derived) from B by some sorts
of transformations, for the most important cases, see [10].

In order to build a generalized Pawlakian mset approximation space, first, we
define DB as follows.

Definition 8 ([10]). MAS(U) is a strictly set–union type mset approximation
space if DB is given by the following inductive definition:

1 l(MS<∞(U)), u(MS<∞(U)) denote the ranges of the functions l and u, respectively.
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1. ∅ ∈ DB;
2. B ⊆ DB;
3. if B⊕ = {⊕nB | B ∈ B, n = 1, 2, . . . } and B′ ⊆ B⊕, then

⊔
B′ ∈ DB.

The next proposition summarizes the most important features of strictly set–
union type mset approximation spaces.

Proposition 1 ([11]). Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly
set–union type mset approximation space over U .

1. For any definable set D ∈ DB,

D =
⊔
{⊕nB ∈ B⊕ | n ∈ N+, B ∈ B, B +n D}.

2. If MAS(U) is granular and lower semi–strong as well, for any M ∈MS<∞(U),

l(M) =
⊔
{⊕nB ∈ B⊕ | n ∈ N+, B ∈ B, B +n M}.

Next, the Pawlakian approximation pair for msets is generalized in strictly
set–union type mset approximation spaces.

Definition 9 ([10]). Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–
union type mset approximation space.

The functions l, u :MS<∞(U) →MS<∞(U) are a (generalized) Pawlakian
mset approximation pair 〈l, u〉 if for any mset M ∈MS<∞(U)

1. l(M) =
⊔{⊕nB | n ∈ N+, B ∈ B and B +n M},

2. b(M) =
⊔{⊕nB | B ∈ B, B �+M, B �M �= ∅ and B �M +n M},

3. u(M) = l(M) � b(M),

where the function b gives the Pawlakian boundary of the mset M .

It is easy to check by Definition 9 that when MAS(U) is a strictly set–union
type mset approximation space with a Pawlakian mset approximation pair,
MAS(U) is a lower semi–strong mset approximation space, and l is granular.
In other words, MAS(U) fulfills the conditions (C0)–(C3), (C4), (C6).

Definition 10. A strictly set–union type approximation space with a Pawlakian
mset approximation pair is called a Pawlakian mset approximation space.

3 Applications in Membrane Computing

Definition 11. A membrane structure μ of degree m (m ≥ 1) is a rooted tree
with m nodes identified with the integers 1, . . . ,m.

A membrane structure μ of degree m (m ≥ 1) can be represented by the set
Rμ ⊆ {1, . . . ,m} × {1, . . . ,m}. 〈i, j〉 ∈ Rμ means that there is an edge from i
(parent) to j (child) of the tree μ which is formulated by parent(j) = i.
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Definition 12. Let μ be a membrane structure with m nodes and V be a finite
alphabet. The tuple

Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉

is a P system if

1. wi ∈ MS<∞(V ) for i = 1, 2, . . . ,m;
2. Ri is a finite set of rules for i = 1, 2, . . . ,m such that if r ∈ Ri, its form is

one of the following:
(a) symport rules: 〈u, in〉, 〈u, out〉, where u �= λ and there is an mset M ∈
MS<∞(V ) such that u represents M ;

(b) antiport rule: 〈u, in; v, out〉, where u �= λ, v �= λ and there are msets
M1,M2 ∈MS<∞(V ) such that u, v represent M1,M2, respectively.

If the P system Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 is given, let
MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be a strictly set–union type mset approx-
imation space with a generalized Pawlakian approximation pair 〈l, u〉. MAS(Π)
is called a joint membrane approximation space.

Having given a membrane system Π and its joint membrane approximation
space MAS(Π), we can define the boundaries of the regions w1, w2, . . . , wm as
msets with the help of approximative functions l, u, b specified in Definition 9.2

Definition 13 ([10]). Let Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 be a P
system and MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be its joint membrane approxi-
mation space. If B ∈ B and i = 1, 2, . . . ,m, let

N(B, i) =

⎧⎨⎩
0, if B + wi or B �wi = ∅;
n, if i = 1 and B � w1 +n w1;
min{k, n | B � wi +k wi, and B - wi +n wparent(i)}, otherwise.

Then, for i = 1, . . . ,m,
bnd(wi) =

⊔{⊕N(B,i)B | B ∈ B};
bndout(wi) = bnd(wi)- wi;
bndin(wi) = bnd(wi)- bndout(wi).

The functions bnd, bndout and bndin give membrane boundaries, outside and
inside membrane boundaries, respectively.

Note that bnd(wi) is definable in MAS(Π), but bndin(wi) and bndout(wi) are
not in general (i = 1, . . . ,m). However, we focus on needs of membrane compu-
tations and so it is not a real restriction to our proposal.

The general notion of boundaries given in Definition 9 cannot be used here,
because membrane boundaries have to follow the given membrane structure μ.
The lower approximations l(wi) (i = 1, . . . ,m) obey the membrane structure.
The upper approximation u(w1) and the Pawlakian boundaries b(w1) are com-
pletely within the environment of the membrane structure. However, the upper
approximation u(wi), therefore the Pawlakian boundary b(wi) (i = 2, . . . ,m) do

2 We are speaking about the boundaries of regions but, to tell the truth, these bound-
aries are the boundaries of msets of different regions.
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not obey the membrane structure necessarily. Thus, the Pawlakian boundaries
have to be adjusted to the membrane structure by the function bnd. Of course,
b(w1) = bnd(w1), but b(wi) �= bnd(wi) (i = 2, . . . ,m) in general. Moreover,
membrane boundaries bnd(wi) (i = 1, . . . ,m) are split into two parts, inside and
outside membrane boundaries.

Using membrane boundaries, the following constraints for rule executions are
prescribed: a rule r ∈ Ri of a membrane i (i = 1, . . . ,m) has to work only in the
membrane boundary of its region. More precisely,

– a symport rule of the form 〈u, in〉 is executed only in the case when
u + bndout(wi);

– a symport rule of the form 〈u, out〉 is executed only in the case when
u + bndin(wi);

– an antiport rule of the form 〈u, in; v, out〉 is executed only in the case when
u + bndout(wi) and v + bndin(wi).

It can be shown that the membrane computation actually works in the mem-
brane boundaries, see [10], Theorem 1.

4 An Illustrative Example

In this section, we follow the customary representations of msets. Accordingly,
if an mset M is finite, it is represented by all permutations of the string w:

w =

{
a
M(ak1

)

k1
a
M(ak2

)

k2
. . . a

M(akl
)

kl
, if M is nonempty;

λ, otherwise;

where M∗ = {ak1 , ak2 , . . . , akl
} ⊆ U and λ is the empty string.

As usual, with a slight abuse of terminology, simply “the mset w” is said
instead of “the mset M represented by the string w and all of its permutations”.
Moreover, any permutation of the string w can also represent M .

4.1 Giving the P System and Its Joint Membrane Approximation
Space

Let the P system be Π = 〈U, μ, w1, R〉, where
– U = {a, b, c, d, e, f} is a finite alphabet;
– μ is a membrane structure of degree 1;
– the region w1 is represented by the multiset w1 = a2b11c3d9e;
– R = {r1, r2, r3} is the set of communication rules with

r1 = 〈ac; out〉, r2 = 〈b6d6; out〉, r3 = 〈d3e; out〉.
Let the joint membrane approximation space MAS(Π) of the P system Π be a

strictly set–union type mset approximation space with a generalized Pawlakian
approximation pair, where MAS(Π) = 〈MS<∞(U),B,DB, l, u〉 with
– MS<∞(U) is the domain of MAS(Π);
– B = {a2b, abcdef, ac, b3cd2, b3d2, b3d2f, c, e3, f2, f4} is the base system;
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– DB is the set of definable sets such that
• ∅ ∈ DB;
• B⊕ = {a2b, a4b2, a6b3, . . . , abcdef, a2b2c2d2e2f2, a3b3c3d2e3f3, . . . ,
ac, a2c2, a3c3, . . . , b3cd2, b6c2d4, b9c3d6, . . . , b3d2, b6d4, b9d6, . . . ,
b3d2f, b6d4f2, b9d6f3, . . . , c, c2, c3 . . . , e3, e6, e9, . . . ,
f2, f4, f6, . . . , f8, f12}, and for any B′ ⊆ B⊕,

⊔
B′ ∈ DB;

• DB does not have any other member;
– 〈l, u〉 is a Pawlakian mset approximation pair.

Throughout the computation processes, we utilize the fact that M1 +n M2 if
and only if ⊕nM1 +1 M2 (M1,M2 ∈ MS<∞(U), n ∈ N+).

4.2 Computing the Pawlakian Lower- and Upper Approximations
and the Boundary

Computation of l(w1) By Definition 9,

l(w1) = l(a2b11c3d9e) =
⊔
{⊕nB | n ∈ N+, B ∈ B and B +n a2b11c3d9e}.

The computation process of l(w1) can be tracked by Table 1. The result is:

l(w1) = ⊕1a
2b � ⊕2ac � ⊕3b

3cd2 �⊕3b
3d2 � ⊕3c

= a2b � a2c2 � b9c3d6 � b9d6 � c3

= a2b9c3d6

Computation of b(w1) By Definition 9,

b(w1) = b(a2b11c3d9e) =
⊔
{⊕nB | B ∈ B, B �+ a2b11c3d9e,B � a2b11c3d9e �= ∅

and B � a2b11c3d9e +n a2b11c3d9e}.

The computation process of b(w1) can be tracked by Table 2. The result is:

b(w1) = ⊕1abcdef � ⊕3b
3d2f � ⊕1e

3

= abcdef � b9d6f3 � e3

= ab9cd6e3f3

Computation of u(w1) By Definition 9, u(w1) = l(w1) � b(w1), and so

u(w1) = u(a2b11c3d9e) = l(a2b11c3d9e) � b(a2b11c3d9e)

= a2b9c3d6 � ab9cd6e3f3

= a2b9c3d6e3f3.



Communication Rules Working in Membrane Boundaries 273

Table 1. Computation of l(w1) = l(a2b11c3d9e)

B ⊕1B
?

�1 w1 ⊕2B
?

�1 w1 ⊕3B
?

�1 w1 ⊕4B
?

�1 w1

a2b
�

�

�

�
a2b �1 a4b2 ��1 - -

abcdef abcdef ��1 - - -

ac ac �1
�

�

�

�
a2c2 �1 a3c3 ��1 -

b3cd2 b3cd2 �1 b6c2d4 �1
�

�

�

�
b9c3d6 �1 b12c4d8 ��1

b3d2 b3d2 �1 b6d4 �1
�

�

�

�
b9d6 �1 b12d8 ��1

b3d2f b3d2f ��1 - - -

c c �1 c2 �1
�

�

�

�
c3 �1 c4 ��1

e3 e3 ��1 - - -

f2 f2 ��1 - - -

f4 f4 ��1 - - -

Table 2. Computation of b(w1) = b(a2b11c3d9e)

Let B′ = B  w1

B B
?

�� w1 B′ ?

�= ∅ ⊕1B
′

?

�1 w1 ⊕2B
′

?

�1 w1 ⊕3B
′

?

�1 w1 ⊕4B
′

?

�1 w1

a2b � - - - - -

abcdef �� abcde �= λ
�

�

�

�
abcde �1 a2b2c2d2e2 ��1 - -

ac � - - - - -

b3cd2 � - - - - -

b3d2 � - - - - -

b3d2f �� b3d2 �= λ b3d2 �1 b6d4 �1
�

�

�

�
b9d6 �1 b12d8 ��1

c � - - - - -

e3 �� e �= λ
�

�

�

�
e �1 e2 ��1 - -

f2 �� = λ - - - -

f4 �� = λ - - - -

Since u(w1) ∈ DB, by Proposition 1(1), u(w1) is decomposable, i.e., u(w1) can
be formed as a set–type unions of base msets. Its computation can be tracked
by Table 3. The result is:

u(w1) = u(ab11c3d9e) = a2b9c3d6e3f3

= a2b � a2b2c2d2e2f2 � a2c2 � b9c3d6 � b9d6 � b9d6f3 � e3 � f2

= ⊕1a
2b � ⊕2abcdef � ⊕2ac � ⊕3b

3cd2 � ⊕3b
3d2 � ⊕3b

3d2f � ⊕3c

� ⊕1 e
3 � ⊕1f

2
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4.3 Computing (Inside/Outside) Membrane Boundaries

Computation of bnd(w1) The membrane boundary and the Pawlakian bound-
ary are equal for the skin membrane, i.e., bnd(w1) = b(w1). Therefore,

bnd(w1) = b(w1) = ab9cd6e3f3.

The Pawlakian boundary b(w1) = ab9cd6e3f3 was computed by Definition 9
with the help of Table 2. In order to check the equality bnd(w1) = b(w1), let us
compute bnd(w1) by Definition 13, too.

The numbers N(B, 1) (B ∈ B) (see Definition 13) can be determined as
follows:

N(a2b, 1) = 0, because a2b + a2b11c3d9e;

N(abcdef, 1) = 1, because abcdef �+ a2b11c3d9e, abcdef � a2b11c3d9e=abcde �=∅,
and abcdef � a2b11c3d9e = abcde +1 a2b11c3d9e;

N(ac, 1) = 0, because ac + a2b11c3d9e;

N(b3cd2, 1) = 0, because b3cd2 + a2b11c3d9e;

N(b3d2, 1) = 0, because b3d2 + a2b11c3d9e;

N(b3d2f, 1) = 3, because b3d2f � a2b11c3d9e = b3d2 +3 a2b11c3d9e;

N(c, 1) = 0, because c + a2b11c3d9e;

N(e3, 1) = 1, because e3 �+ a2b11c3d9e, e3 � a2b11c3d9e = e �= ∅,
and e3 � a2b11c3d9e = e +1 a2b11c3d9e;

N(f2, 1) = 0, because f2 �+ a2b11c3d9e, f2 � a2b11c3d9e = ∅;
N(f4, 1) = 0, because f4 �+ a2b11c3d9e, f4 � a2b11c3d9e = ∅.

Hence, by Definition 13,

bnd(w1) =
⊔
{⊕N(B,1)B | B ∈ {a2b, abcdef, ac, b3cd2, b3d2, b3d2f, c, e3, f2, f4}}

= ⊕0a
2b � ⊕1abcdef � ⊕0ac � ⊕0b

3cd2 �⊕0b
3d2 � ⊕3b

3d2f � ⊕0c

� ⊕1 e
3 � ⊕0f

2 � ⊕0f
4

= ∅ � abcdef � ∅ � ∅ � ∅ � b9d6f3 � ∅ � e3 � ∅ � ∅
= ab9cd6e3f3.

Computation of bndout(w1) By Definition 13,

bndout(w1) = bnd(w1)- w1 = bndout(a2b11c3d9e)

= ab9cd6e3f3 - a2b11c3d9e = e2f3.

Computation of bndin(w1) By Definition 13,

bndin(w1) = bnd(w1)- bndout(w1) = bndin(a2b11c3d9e)

= ab9cd6e3f3 - e2f3 = ab9cd6e.
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The computation of inside/outside membrane boundaries can easily be carried
out when the msets are represented in Parikh vector form:

1. in Table 4, the rows 2, 3, 5 contain Parikh representations of bnd(w1), w1

and bndout(w1), respectively;
2. in Table 5, the rows 2, 3, 5 contain Parikh representations of bnd(w1),

bndout(w1) and bndin(w1), respectively.

4.4 Executions of Communication Rules without Membrane
Boundary

In the present and the next subsections, the communication rules are executed
without and with membrane boundaries.

In this subsection, the communication rules are executed without membrane
boundary, i.e., in the multiset a2b11c3d9e of the region w1.

Let us recall that the set of communication rules residing in w1 is

R = {r1, r2, r3} with r1 = 〈ac; out〉, r2 = 〈b6d6; out〉, r3 = 〈d3e; out〉.
A multiset of rules rn1

1 rn2
2 rn3

3 (n1, n2, n3 ∈ N) over R is applicable to w1 if

⊕n1ac ⊕ ⊕n2b
6d6 ⊕ ⊕n3d

3e + a2b11c3d9e.

Following [16], let us denote the set of all multisets of rules over R which
are applicable to w1 by Appl(R,w1). Then, relying on Appl(R,w1), the set of
multisets of rules applicable to w1 in the maximally parallel mode can formally
be defined as follows:

Applmax(R,w1) = {r | r ∈ Appl(R,w1) and there is no

r′ ∈ Appl(R,w1) with r′ ��= r}

Scanning the communication rules residing in w1, we obtain that

Appl(R,w1) = {r1, r2, r3, r1r2, r1r3, r2r3, r1r2r3, r21 , r21r2, r21r3, r21r2r3}
and

Applmax(R,w1) = {r21r2r3}.
Hence, we can “choose” from only one maximal multiset of rules over R in or-

der to perform a maximally parallel transition step. Consequently, the evolution
of the P system Π ends after one transition step in a deterministic manner:

a2b11c3d9e
r21r2r3=⇒ b5c.

Indeed, the maximal multiset r21r2r3 of rules is applicable to w1 because

⊕2ac ⊕ ⊕1b
6d6 ⊕ ⊕1d

3e = a2c2 ⊕ b6d6 ⊕ d3e = a2b6c2d9e + a2b11c3d9e.

In this case, therefore, the mset a2b6c2d9e leaves the region w1 and enters the
environment, and the computation of the P system Π halts after one transition
step in a deterministic manner with the mset b5c in the region w1.
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Table 3. Computation of the base mset decomposition of u(w1) = a2b9c3d6e3f3

B ⊕1B
?

�1 u(w1) ⊕2B
?

�1 u(w1) ⊕3B
?

�1 u(w1) ⊕4B
?

�1 u(w1)

a2b
�

�

�

�
a2b �1 a4b2 ��1 - -

abcdef abcdef �1
�

�

�

�
a2b2c2d2e2f2 �1 a3b3c3d3e3f3 ��1 -

ac ac �1
�

�

�

�
a2c2 �1 a4c4 ��1 -

b3cd2 b3cd2 �1 b6c2d4 �1
�

�

�

�
b9c3d6 �1 b12c4d8 ��1

b3d2 b3d2 �1 b6d4 �1
�

�

�

�
b9d6 �1 b12d8 ��1

b3d2f b3d2f �1 b6d4f2 �1
�

�

�

�
b9d6f3 �1 b12d8f4 ��1

c c �1 c2 �1
�

�

�

�
c3 �1 c3 ��1

e3
�

�

�

�
e3 �1 e6 ��1 - -

f2
�

�

�

�
f2 �1 f4 ��1 - -

f4 f4 ��1 - - -

Table 4. Computation of bndout(w1)

a b c d e f

bnd(w1) = b(w1) = ab9cd6e3f3 1 9 1 6 3 3

w1 = a2b11c3d9e 2 11 3 9 1 0

row 2 – row 3 -1 -2 -2 -3 2 3

bndout(w1) = bnd(w1)! w1 = e2f3 0 0 0 0 2 3

Table 5. Computation of bndin(w1)

a b c d e f

bnd(w1) = b(w1) = ab9cd6e3f3 1 9 1 6 3 3

bndout(w1) = e2f3 0 0 0 0 2 3

row 2 – row 3 1 9 1 6 1 0

bndin(w1) = bnd(w1)! bndoutw1 = ab9cd6e 1 9 1 6 1 0

4.5 Executions of Communication Rules with Membrane Boundary

In this subsection, the executions of communication rules R = {r1, r2, r3} resid-
ing in w1 are restricted to the membrane boundary

bnd(w1) = ab9cd6e3f3 = ⊕1abcdef � ⊕3b
3d2f � ⊕1e

3.

A symport rule of the form 〈u, out〉 can be executed in bnd(w1) only in the
case when u + bndin(w1). If this condition satisfies, the mset u leaves the in-
side membrane boundary bndin(w1) = ab9cd6e and enters the outside membrane
boundary bndout(w1) = e2f3. Moreover, these movements work within the base
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msets solely which ensures that the joint membrane approximation space will
not change during the executions of communication rules R.

In this particular case, a multiset of rules rn1
1 rn2

2 rn3
3 (n1, n2, n3 ∈ N) over R

is applicable to bnd(w1) if

⊕n1ac ⊕ ⊕n2b
6d6 ⊕ ⊕n3d

3e + bndin(w1) = ab9cd6e.

As before, let us form the set of all multisets of rules applicable to bndin(w1)
and the set of multisets of rules applicable to bndin(w1) in the maximally parallel
mode:

Appl(R, bndin(w1)) = {r1, r2, r3, r1r2, r1r3}
and

Applmax(R, bndin(w1)) = {r1r2, r1r3}.
Hence, we can choose from two maximal multisets of rules over R in order

to perform maximally parallel transition steps. Consequently, the evolution of
the P system Π ramifies and has two branchings chosen in a non–deterministic
manner.

Transition Step 1. The maximal multiset r1r2 of rules is applicable to
bndin(w1) because

⊕1ac ⊕ ⊕2b
6d6 = ab6cd6 + bndin(w1) = ab9cd6e.

If so, r1r2 indicates that the mset ab6cd6 leaves the inside membrane bound-
ary bndin(w1) and enters the outside membrane boundary bndout(w1):

(bndin(w1), bnd
out(w1)) = (ab9cd6e, e2f3)

r1r2=⇒ (b3e, ab6cd6e2f3).

The movements of ac and b6d6 take place within the base msets abcdef and
⊕3b

3d2f , respectively. Therefore, in this transition step, the computation of
the P system Π halts with the mset ab5c2d3e in the region w1.

Transition Step 2. The maximal multiset r1r3 of rules is applicable to
bndin(w1) because

⊕1ac ⊕ ⊕1d
3e = acd3e + bndin(w1) = ab9cd6e.

If so, r1r3 indicates that the mset acd3e leaves the inside membrane boundary
bndin(w1) and enters the outside membrane boundary bndout(w1):

(bndin(w1), bnd
out(w1)) = (ab9cd6e, e2f3)

r1r3=⇒ (b9d3, acd3e3f3).

The movement of ac takes place within the base mset abcdef , and the mem-
bers of d3e move within the base msets ⊕1abcdef,⊕3b

3d2f,⊕1e
3. Therefore,

in this transition step, the computation of the P system Π halts with the
mset ab11c2d6 in the region w1.
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5 Conclusion

In this paper, the boundaries of membranes in P systems relying on multiset
approximation spaces have been investigated. Restricting the communication
rules to these boundaries, the interactions along the membranes can be controlled
locally during the membrane computations. It has been shown that keeping
the maximal parallel mode of membrane computations without as well as with
membrane boundaries, the nondeterministic nature of computations may change.

One of the next possible steps is to investigate the complexity of P systems
with boundaries. Is there any connection between the nature of approximation
spaces and the complexity of membrane computation? The other task is to show
the role of approximation algorithms in membrane computation.
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Abstract. We develop and formalise our earlier complex objects pro-
posal and show that it enables an efficient high-level programming of
P systems.
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1 Introduction

A P system is a formal parallel and distributed computational model inspired
by the structure and interactions of living cells, introduced by Păun [16]; for a
recent overview of the domain, see Păun et al.’s recent monograph [18]. Essen-
tially, a P system is specified by its membrane structure, symbols and rules. The
underlying structure is a network such as a digraph, a directed acyclic graph
(dag) or a tree (which seems the most studied case). Each node, here better
known as cell, transforms its content symbols and sends messages to its neigh-
bours using formal rules inspired by rewriting systems. Rules of the same cell
can be applied in parallel (where possible) and all cells work in parallel.

P modules can be asynchronous, in the sense used in distributed algorithms
and in Nicolescu [13], admitting the more traditional synchronous definitions as
a special case. Sometimes we also make a fine distinction between (i) generated
objects that can be thought, as traditionally in P systems, as being messaged
back to the current cell, via a sort of loopback channel, and (ii) generated objects
which become immediately available for the following rules, a matrix grammars
inspired approach, used by ElGindy et al. [6]. However, here we strictly focus on
single cell systems, so all these fine distinctions can be safely ignored.

In P systems, the practically very important modularity can be achieved by
two distinct complementary ways: (i) an external modularity, for recursively
aggregating groups of cells into higher order P modules, as described in Dinneen
et al. [4], an approach which is not further discussed here, and (ii) an internal

A. Alhazov et al. (Eds.): CMC 2013, LNCS 8340, pp. 280–300, 2014.
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modularity, possible inside each cell, where we recursively aggregate objects and
rules to form higher-order components, a more recent approach which is more
systematically discussed and assessed in this paper.

This article presents evidence that complex objects can enable a high-level pro-
gramming style, with data structures, control flow, and several useful functional
programming elements. We have previously used complex objects to successfully
model and even improve large practical applications, ranging from computer vi-
sion [9,10,8] to complex graph theoretical problems [15,6] and to well-known crit-
ical distributed algorithms [19]. Here we attempt to generalise our field-proven
methods and sketch how to apply similar techniques to other, more theoretical,
domains: numerical P systems and NP-complete problems.

Because of space constraints, for the rest of the paper we assume that the
reader is already familiar with basic definitions used in tissue-like transition
P systems, including state based rules, weak priority, promoters and inhibitors.
Section 2 presents a formal definition for complex objects, slightly beyond what
we have earlier proposed [13,6]. Section 3 shows how fundamental data struc-
tures, such as stacks, trees and dictionaries, can be built and processed using
our proposals. Section 4 sketches the basic ideas behind an integer arithmetic
package, which can be extended to a rational package. Section 5 covers control
flow techniques which can be used to implement higher level operations such
as branching statements, parallel compositions, sequential functions definitions
and invocations. Section 6 proposes a high-level linguistic support for developing
P system models in a simple functional style. Section 7 illustrates a couple of
more theoretical applications, not attempted in our earlier modelling projects:
numerical P systems and NP-complete problems. Note that the ideas of integer
arithmetic, compositional properties and high-level programming, although in
different settings, recall similar ideas also presented to carry out arithmetic and
register-machine computation, for example, in [1,11].

2 P Systems with Complex Objects

2.1 Complex Objects

We consider the following formal definition for complex objects, which are Prolog-
like ground terms, which can include either lists of complex objects or dot-
separated strings (here interpreted as sequences) of complex objects:

<complex-object> ::= <term-object>

<term-object> ::= <atom> | <functor-object> ’(’ <object-arguments> ’)’

<functor-object> ::= <atom> | <complex-object>

<object-arguments> ::= λ | <object-list> | <object-sequence>

<object-list> ::= <complex-object> (’,’ <complex-object>)*

<object-sequence> ::= <complex-object> (’.’ <complex-object>)*
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Atoms (simple objects) are typically denoted by lower case letters, such as
a, b, c, possibly with indices. Example ground complex objects: a, a(), a(b, c),
a(b(c)), a.b().c, a(b.c), a(b(c))(d(e)), a(b(c), d(e)), a(b(c), d.e), a(b(c).d(e)).

We typically reserve sequences to represent natural numbers. For example,
considering that l represents the unary digit, then the following complex objects
can be used to describe the contents of a virtual integer variable a: a() — the
value of a is 0; a(l3) — the value of a is 3.

We are considering to extend our string objects to mean bags (i.e. multisets),
instead of sequences. This could be useful in some scenarios, but we are not
following these ideas here.

2.2 Variables and Pattern Matching

Variables are used for pattern matching on object arguments and are typically
denoted by uppercase letters, such as X , Y , Z, possibly with overbars, e.g. X ,
and with indices, e.g. X1, X2. Variable ’ ’ (underscore) is a wild-card and is
used when pattern matching is required but its value is not further used. Using
variables require the following redefinitions:

<object-list> ::= <var-or-object> (’,’ <var-or-object>)*

<var-or-object> ::= <variable_1> | <complex-object>

<object-sequence> ::= <var-or-object-subsequence>

(’:’ <var-or-object-subsequence>)*

<var-or-object-subsequence> ::= <variable_2>

| λ | <var-or-object> (’.’ <var-or-object>)*

With these definitions, a variable can match either:

1. a complex object in a list of arguments or in a string, or

2. any substring of a complex objects sequence, including λ.

Variables of the type 1 will be denoted by symbols without overbars and
variables of type 2 will have overbars. For example:

– matching a(b(c), d.e.f) = a(X, d.Y ) creates the bindings X,Y = b(c), e.f

– matching a.b().c = X.Y creates the binding X,Y = a, b().c

– matching a.b().c = X.Y creates the binding X,Y = a.b(), c

– matching a.b().c = X.Y nondeterministically creates one of the following
bindings X,Y = λ, a.b().c, X,Y = a, b().c, X,Y = a.b(), c, X,Y = a.b().c, λ

With the exception of subsequence matchings, our pattern matching rules are
a simplified version of term unification in Prolog-like languages, so they can be
implemented with reasonable efficiency. As we will later see, arithmetic opera-
tions are based on particular subsequence matchings on unary sequences: these



Complex Objects 283

matchings can also be efficiently implemented. However, general subsequence
matchings could be expensive, so these should be prudently used, e.g. for proof-
of-concept prototyping.

Type 2 (overbarred) variables and much of the pattern matching complexities
have been mainly introduced to support efficient arithmetic operations (on unary
sequences); the complex objects construction would look much simpler if we
would accept natural numbers as primitives in our P modules.

2.3 Generic Rules

By default, rules are applied top-down, in the so-called weak priority order.
As we are here exclusively focusing on single cell systems, we only consider a
simplified generic rule format (with no messaging), of the following type:

current-state objects→α target-state objects′ | promoters ¬ inhibitors,

where

– left-side objects, right-side objects′, promoters and inhibitors are bags of
complex objects, possibly containing (which makes rules generic) variables,
which are matched (unified) as described in the previous section;

– α ∈ {min.min, min.max, max.min, max.max}, is a combined instantiation and
rewriting mode, as discussed in Nicolescu et al. [13,6] (discussion further
adapted below).

To explain generics, consider a cell, σ, containing three counter-like complex
objects, c(c(a)), c(c(a)), c(c(c(a))), and all four possible instantiation.rewriting
modes of the following “decrementing” rule:

(ρα) S1 c(c(X))→α S2 c(X).

where α ∈ {min.min, min.max, max.min, max.max}.
1. If α = min.min, rule ρmin.min nondeterministically generates one of the fol-

lowing rule instances:

(ρ′1) S1 c(c(a))→min S2 c(a) or

(ρ′′1 ) S1 c(c(c(a)))→min S2 c(c(a)).

In the first case, using (ρ′1), cell σ ends with counters c(a), c(c(a)), c(c(c(a))).
In the second case, using (ρ′′1 ), cell σ ends with counters c(c(a)), c(c(a)),
c(c(a)).

2. If α = max.min, rule ρmax.min generates both following rule instances:

(ρ′2) S1 c(c(a))→min S2 c(a) and

(ρ′′2 ) S1 c(c(c(a)))→min S2 c(c(a)).

In this case, using (ρ′2) and (ρ′′2 ), cell σ ends with counters c(a), c(c(a)),
c(c(a)).
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3. If α = min.max, rule ρmin.max nondeterministically generates one of the fol-
lowing rule instances:

(ρ′3) S1 c(c(a))→max S2 c(a) or

(ρ′′3 ) S1 c(c(c(a)))→max S2 c(c(a)).

In the first case, using (ρ′3), cell σ ends with counters c(a), c(a), c(c(c(a))).
In the second case, using (ρ′′3 ), cell σ ends with counters c(c(a)), c(c(a)),
c(c(a)).

4. If α = max.max, rule ρmin.max generates both following rule instances:

(ρ′4) S1 c(c(a))→max S2 c(a) and

(ρ′′4 ) S1 c(c(c(a)))→max S2 c(c(a)).

In this case, using (ρ′4) and (ρ′′4 ), cell σ ends with counters c(a), c(a), c(c(a)).

The interpretation of min.min, min.max and max.maxmodes is straightforward.
While other interpretations could be considered, the mode max.min indicates that
the generic rule is instantiated as many times as possible, without superfluous
instances (i.e. without duplicates or instances which are not applicable) and each
one of the instantiated rules is applied once, if possible.

For all modes, the instantiations are conceptually created when rules are tested
for applicability and are also ephemeral, i.e. they disappear at the end of the step.
P system implementations are encouraged to directly apply high-level generic
rules, if this is more efficient (it usually is); they may, but need not, start by
transforming high-level rules into low-level rules, by way of instantiations.

This type of generic rules allow (i) a reasonably fast parsing and processing
of subcomponents, and (ii) algorithm descriptions with fixed size alphabets and
fixed sized rulesets, independent of the size of the problem and number of cells
in the system (sometimes impossible with only atomic symbols).

3 Data Structures

3.1 Stacks

A n-size stack s, with contents a1, a2 . . . an−1, an (top), can be represented by a
complex object s(an(an−1(. . . a2(a1()) . . . ))). Essentially, this is a simple linked
list where the list head is the stack top. Examples: s() — an empty stack, s;
s(a(b(c()))) — a stack, s, with contents a, b, c.

Fundamental operations on stacks include:

– construct an empty stack

S1 →min.min S2 s()
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– replace a by b, if s is empty

S1 a→min.min S2 b | s()
– clear a stack

S1 s(X)→min.min S2 s()

– push a, if a is in the current contents

S1 a s(X)→min.min S2 s(a(X))

– push the content of c, if this exists and is a term (not sequence)

S1 c(T ) s(X)→min.min S2 s(T (X))

– conditional pop a, if a is on top

S1 s(a(X))→min.min S2 a s(X)

– unconditional pop, if s is not empty

S1 s(T (X))→min.min S2 T s(X)

– conditional peek a, if a is on top

S1 s(a(X))→min.min S2 a s(a(X))

– unconditional peek, if s is not empty

S1 s(T (X))→min.min S2 T s(T (X))

– reverse stack s on stack t

S1 s(T (X)) t(Y )→max.min S2 s(X) t(T (Y ))

Complexity. Each of the above stack operations can be accomplished in a single
P step, O(1), except the stack reversal, which may take longer (in this case the
number of steps required equals the length of the stack).

Extensions. All preceding stack operations can be formally redefined to work
on strings, instead of nested terms. Queues can also be implemented as strings,
essentially by renaming pop as dequeue, and replacing push by an enqueue op-
eration (adding to the other end):

– unconditional dequeue, if q is not empty

S1 q(T.X)→min.min S2 T q(X)

– enqueue the content of c, if this exists and assuming is a term (not sequence)

S1 c(T ) q(X)→min.min S2 q(X.T )

Alternatively, queues can be also be implemented as pairs of stacks, using
stack reversals when needed. This can be reasonably efficient, as reversal costs
will normally amortize in the long run.
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3.2 Trees

Trees can be represented as nested terms, in a straightforward manner. For ex-
ample: (1) a leaf node with contents X can be represented as f(X); (2) an
intermediary node, with contents X and two subnodes, can be represented as
n(X,Y, Z), where Y and Z can be leaves or other intermediary nodes. For ex-
ample, the following term describes a binary tree consisting of 2 intermediary
nodes and 3 leaves, all with integer contents:

n(l10, n(l20, f(l30), f(l40)), f(l50))

Most tree operations are either recursive or have rather elaborate descriptions
(needed to simulate recursion). As recursion is discussed later in the article,
here we only show a simple operation which, in P systems, does not really need
recursion: a destructive summation of all values in a binary tree, n, with integer
contents. The first rule creates placeholder for the total sum, s, and stores a
copy of the original tree in a backup store, b:

r1 : S0 n(X,Y, Z) →min.min S1 n(X,Y, Z) s() b(n(X,Y, Z))
r2 : S1 s(T ) v(X) →min.min S1 s(T.X)
r3 : S1 v(X) v(Y ) →max.min S1 v(X.Y )
r4 : S1 f(X) →max.min S1 v(X)
r5 : S1 n(X, f(Y ), f(Z)) →max.min S1 v(X) v(Y ) v(Z)
r6 : S1 n(X, f(Y ), n(Z,Z1, Z2)) →max.min S1 v(X) v(Y ) n(Z,Z1, Z2)
r7 : S1 n(X,n(Y, Y1, Y2), f(Z)) →max.min S1 v(X) n(Y, Y1, Y2) v(Z)
r8 : S1 n(X,n(Y, Y1, Y2), n(Z,Z1, Z2))→max.min S1 v(X) n(Y, Y1, Y2) n(Z,Z1, Z2)

For the above sample tree, the result is s(l150), as indicated by the following
traces, where b(. . . ) represents the backed up tree, b(n(l10, n(l20, f(l30), f(l40)),
f(l50))):

n(l10, n(l20, f(l30), f(l40)), f(l50))
r1=⇒ s() n(l10, n(l20, f(l30), f(l40)), f(l50)) b(. . . )
r7=⇒ s() v(l10) n(l20, f(l30), f(l40)) v(l50) b(. . . )
r2=⇒ s(l10) n(l20, f(l30), f(l40)) v(l50) b(. . . )
r5=⇒ s(l10) v(l20) v(l30) v(l40) v(l50) b(. . . )
r2=⇒ s(l30) v(l30) v(l40) v(l50) b(. . . )
r3=⇒ s(l30) v(l120) b(. . . )
r2=⇒ s(l150) b(. . . )

The complexity of this snippet is O(h) P steps, where h is the height of the
tree.

3.3 Dictionaries

Dictionaries are key/value mappings. Typical dictionaries have unique keys; their
efficient implementations use hash tables or balanced trees (e.g. red-black trees).
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A dictionary, d, can be represented by a string of complex objects of the form
m(k, v), where k is the key and v is the value. Examples: d() — an empty
dictionary, d; d(m(a, b).m(c, d)) — a dictionary, d, with two mappings, a → b
and c→ d.

Fundamental operations on dictionaries include:

– construct an empty dictionary

S1 →min.min S2 d()

– clear a dictionary
S1 d(X)→min.min S2 d()

– add a→ b, if key a is not already present (to preserve key uniqueness)

S1 m(a, b) d(X)→min.min S2 d(m(a, b).X) ¬ d(Y .m(a, V ).Z)

– non-destructive query of the mapping for key a, if it exists

S1 a d(X.m(a, V ).Y )→min.min S2 m(a, V ) d(X.m(a, V ).Y )

– reset the mapping for key a to a new value, if a has a mapping (and also
return the old value for this key)

S1 m(a, b) d(X.m(a, V ).Y )→min.min S2 m(a, V ) d(X.m(a, b).Y )

– remove the mapping for key a, if it exists

S1 a d(X.m(a, V ).Y )→min.min S2 d(X.Y )

Complexity. Apparently, each of the above dictionary operations can be ac-
complished in a single P step, O(1). However, these rules use a generalized
string unification which probably is not efficient for practical purposes. Thus,
this dictionary structure should be reserved for theoretical proofs-of-concept or
prototype implementations.

Assuming a natural order on atoms, we can define a more efficient dictionary
implementation based on balanced trees; however, we are not following this idea
here.

4 Arithmetic

Recall that we use complex objects with sequence contents to represent natural
numbers. For example, considering that l represents the unary digit, then the
following complex objects can indicate that: a() — the value of a is 0; a(l3) —
the value of a is 3.
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Fundamental arithmetic operations on natural numbers include:

– c := a+ b, destructive addition:

S1 a(X) b(Y )→min.min S2 c(X.Y )

– c := a− b, destructive subtraction:

S1 a(X.Y ) b(Y )→min.min S2 c(X)

– c := a ∗ b, multiplication, which destroys a:

S1 →min.min S2 c()

S2 a(l.X) b(Y ) c(Z)→max.min S2 a(X) b(Y ) c(Y .Z)

– c, d := a / b, a% b, division, which destroys a:

S1 →min.min S2 c()
S2 a(X.Y ) b(Y ) c(Z)→max.min S2 a(X) b(Y ) c(l Z)
S2 a(X) →max.min S3 d(X)

Complexity. Additions and subtractions can be performed in single P steps,
O(1), but multiplications and divisions may take longer. For multiplication, the
number of steps equals the value of a plus one, whereas for division this is the
value of the quotient c plus two.

If desired, non destructive operations can be implemented in a straightforward
manner. Alternatively, we can define arithmetic operations using counter stacks,
but this is much slower.

These ideas can be extended to define more complete arithmetic packages for
integer numbers and for rational numbers.

5 Control Flow

Composing bigger chunks out of smaller rule snippets can require careful object
relabelling, to ensure continuity and avoid clashes. This is probably best done
automatically, using a well designed composition model. However, we do not
follow this here; we just present a proof of concept where all required relabeling
has been manually done.

5.1 Basic Composition

Basic composition includes sequencing and conditional transfers, which can be
further used to define higher-level structured constructs, such as if-then-else
conditionals and while loops (not detailed here).
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– BR(S′), branch, unconditional branch to state S′:

S →min.min S
′

– BP(S′; p1, p2, . . . ), branch on promoters, branch to state S′, given promoters
p1, p2, . . . :

S →min.min S
′ | p1 p2 . . .

– BI(S′; i1, i2, . . . ), branch on inhibitors, branch to state S′, given inhibitors
i1, i2, . . . :

S →min.min S
′ ¬ i1 i2 . . .

– BPI(S′; p1, p2, . . . ; i1, i2, . . . ), branch on promoters and inhibitors, branch to
state S′, given promoters p1, p2, . . . and inhibitors i1, i2, . . . :

S →min.min S
′ | p1 p2 . . . ¬ i1 i2 . . .

Other branching primitives are described in the sections for function calls.

5.2 Parallel Composition

Consider running in parallel two rule fragments,Π1, with M states, andΠ2, with
N states. In general, the composed system, Π1 × Π2, will need M · N states,
thus it will need O(M ·N) rules.

However, using complex state objects, we can define an equivalent parallel
system, Π2 ‖ Π2, with just O(M+N) rules — essentially the same rules initially
used for describing Π1 and Π2. Additional semantics is required for matching
variables on components of state objects.

We illustrate this on a simple ad-hoc example, not doing any meaningful work,
except that Π1 loops over three states and Π2 loops over two states.

– Π1, a fragment with 3 states and 3 rules:

S1 a→min S2 b
S2 b →min S3 c
S3 c →min S1 a

– Π2, a fragment with 2 states and 2 rules:

S1 d→min S2 e
S2 e →min S1 d

– Π1 ×Π2, has 6 (= 3 · 2) states and 18 (= 3 · 2 · 3) rules:
S11 a d→min S22 b e
S11 a →min S21 b
S11 d →min S12 e
S12 a e →min S21 b d
S12 a →min S22 b
S12 e →min S11 d
S21 b d →min S32 c e
S21 b →min S31 c
S21 d →min S22 e

S22 b e →min S31 c d
S22 b →min S32 c
S22 e →min S21 d
S31 c d→min S12 a e
S31 c →min S11 a
S31 d →min S32 e
S32 c e →min S11 a d
S32 c →min S12 a
S32 e →min S31 d
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– Π1 ‖ Π2, also has 6 (= 3 · 2) states, but only 5 (= 3 + 2) rules:

Θ(S1, Y ) a →min Θ(S2, Y ) b
Θ(S2, Y ) b →min Θ(S3, Y ) c
Θ(S3, Y ) c →min Θ(S1, Y ) a
Θ(X,S1) d→min Θ(X,S2) e
Θ(X,S2) e →min Θ(X,S1) d

Note that, although Π1 ‖ Π2 has, in general, an order of magnitude fewer
user-written rules than Π1×Π2, as O(M +N)/ O(M ·N), their state sets are

isomorphic. Figure 1 shows state charts for Π1, Π2 and Π1×Π2
states� Π1 ‖ Π2.

S1

S3 S2

(a) Π1.

S12

S11

S31 S21

S32 S22

(b) Π1 ×Π2
states" Π1 ‖ Π2.

S1 S2

(c) Π2.

Fig. 1. State charts of Π1, Π2 and Π1 ×Π2
states" Π1 ‖ Π2

5.3 Parameterless Sequential Functions

We need states and a global stack for return states, let it be ρ(). Consider that:
Sf is the entry state of function f ’s ruleset, Sc is the current state and Sr is the
return state (to be entered after function f completes). We define the following
high-level boiler-plate P macros:

– BAL(Sf , Sr), branch and link to state Sf , i.e. to function f , and request
return to state Sr:

Sc ρ(X)→min.min Sf ρ(Sr(X))

– RET, return from function f (assuming that its last state is Sg):

Sg ρ(Z(X))→min.min Z ρ(X)
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5.4 Sequential Functions with Parameters

We need one more stack for each parameter. Alternatively, we can combine all
parameters in a single complex object, so just one additional stack would suffice.
We can even combine this with the return stack, to mimic a typical runtime
stack frame.

Here we consider a single global stack for all parameters, π, and a global
placeholder for function results, φ. If needed, but not shown here, global stack
π could also be used to create slots for local variables. Additional high-level
boiler-plate P macros:

– PUSHP(p1, p2, . . . ), push parameters, push contents of objects with functors
p1, p1, . . . on π, and create an empty φ(), as a placeholder for the expected
results (we assume that this does not yet exist):

Sc p1(X1) p2(X2) . . . π(X)→min.min Sc π(p(X1, X2, . . . )(X)) φ()

– PEEKP(p1, p2, . . . ), peek parameters, peek top of π into contents of objects
with functors p1, p1, . . . :

Sc →min.min Sc p1(X1) p2(X2) . . . | π(p(X1, X2, . . . )(X))

– POPP(), pop parameters, pop top of π:

Sc π(T (X))→min.min Sc π(X)

– POPP(p1, p2, . . . ), pop parameters, pop top of π into contents of objects with
functors p1, p1, . . . :

Sc π(p(X1, X2, . . . )(X))→min.min Sc p1(X1) p2(X2) . . . π(X)

– RESULT(r1, r2, . . . ), set result, set φ using contents of objects with functors
r1, r2, . . . :

Sc r1(X1) r2(X2) . . . φ()→min.min Sc φ(X1, X2, . . . )

– POPR(q1, q2, . . . ), pop results, extract φ’s contents into objects with functors
q1, q2, . . . :

Sc φ(X1, X2, . . . )→min.min Sc q1(X1) q2(X2) . . .

For convenience, the following P macro combinations are also defined:

– CALL(Sf ; p1, p2, . . . ;Sr; q) = PUSHP(p1, p2, . . . ); BAL(Sf , Sr); POPR(q)

– FUNC(p1, p2, . . . ) = PEEKP(p1, p2, . . . )

– RETURN(r1, r2, . . . ) = RESULT(r1, r2, . . . ); POPP; RET
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5.5 A First Example

Consider a snippet calling an arithmetic multiply function, to compute z = x∗y.

– Pseudo P code, using our high-level P macros (its essential two lines are
exactly as given in Section 4):

% calling program % inputs: x(X) y(Y )
Sc CALL(Sm;x, y;Sr; z) % PUSHP(x, y); BAL(Sm, Sr); POPR(z)
Sr... % output: z(Z)

% function mult Sm

Sm FUNC(a, b) % creates: a(X) b(Y )
Sm →min.min Sn c()
Sn a(l.X) b(Y ) c(Z) →max.min Sn a(X) b(Y ) c(Y .Z)
Sn a( ) b( ) →min.min So

So RETURN(c) % RESULT(c); POPP; RET

– Direct translation to P rules:

% calling program: x(X) y(Y )

Sc x(X) y(Y ) π(P ) →min.min Sm π(p(X,Y )(P ) φ()
Sc ρ(R) →min.min Sm ρ(Sr(R))

Sr φ(Z) →min.min Sr z(Z)
. . .
% function mult Sm

Sm →min.min Sn a(X) b(Y ) | π(p(X,Y )(P ))
Sm →min.min Sn c()
Sn a(l.X) b(Y ) c(Z)→max.min Sn a(X) b(Y ) c(Y .Z)
Sn a( ) b( ) →min.min So

So c(Z) φ() →min.min So φ(Z)
So π(T (P )) →min.min So π(P )
So ρ(Z(R)) →min.min Z ρ(R)

5.6 A Recursive Example

As a more elaborated example, consider the classical naive definition of factorial:

fact n = if n = 0 then 1 else (fact (n-1)) * n

The following versions show the call y = fact x.
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– Pseudo P code, using our high-level P macros:

% calling program — % input: x(X)
Sc CALL(Sf ;x;Sr; y) % PUSHP(x); BAL(Sf , Sr); POPR(y)
Sr ... — % output: y(Y )

% function fact Sf — defined with macros

Sf FUNC(n) % creates: n(N)
Sf n() →min.min Sh f(l)
Sf n(l.N) →min.min Sf n(N)
Sf CALL(Sf ;n;Sg; f) % creates: f( )

Sg PEEKP(n) % recreates: n(N)
Sg CALL(Sm; f, n;Sh; f) % call mult

Sh RETURN(f) % RESULT(f); POPP; RET

– The above function definition can be more efficiently (but less readably)
implemented by the following rules, which peek parameter values directly
from the stack, inline the mult call and use two temporary objects, σ and τ ,
to evaluate the product.

% calling program — % input: x(X)

Sc x(X) π(Y ) ρ(R) →min.min Sf φ() π(n(X)(Y )) ρ(Sr(R))

Sr ... — % output: φ(Y )
. . .
% function fact Sf — manually optimised code
Sf φ() π(n()(Y )) ρ(Z(X)) →min.min Z φ(l) π(Y ) ρ(X)

Sf φ() π(n(l.N)(Y )) ρ(Z(X)) →min.min Sf φ() π(n(N)(n(l.N)(Y ))) ρ(Sf (Z(X)))

Sf φ(F ) π(n(N)(Y )) ρ(Z(X)) →min.min Sg φ() σ(N) τ (F ) π(Y ) ρ(Z(X))

Sg φ(P ) σ(l.N) τ (F ) →max.min Sg φ(F .P ) σ(N) τ (F )

Sg σ() τ (F ) ρ(Z(X)) →min.min Z ρ(X)

– In the particular case x = 5: X = l5, Y = l120, y = 120.

6 Linguistic Support

With proper linguistic support, the factorial sample can be rewritten at a more
user-friendly high level, where the user needs only develop application’s specific
“business” P rules and the system completes the required boiler-plate templates
required by function invocations.

As shown in Figure 2, our proposed high-level language includes the following
elements:

– Except hidden system objects, such as a parameter stack and a return stack,
no global objects should be used (but the system does not enforce this rec-
ommendation).
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1 function main =
2 state Sc =
3 →min.min x(l3)
4 set y = fa c t x continue Sr

5 state Sr =
6 . . .
7
8 function f a c t n =
9 state Sf =

10 n() →min.min Sh f(l) % explicit target, Sh

11 →min.min n1(N) | n(l.N ) % implicit target, Sf

12 set f1 = fa c t n1 continue Sg

13 state Sg =
14 set f = mult f1 n continue Sh

15 state Sh =
16 return f
17
18 function mult a b =
19 state Sm =
20 →min.min c()
21 state Sn =

22 a(l.X) b(Y ) c(Z) →max.min a(X) b(Y ) c(Y .Z)
23 return c

Fig. 2. High-level factorial sample. There are only 5 user defined “business” specific
P rules (lines 3, 10, 11, 20, 22); the other P rules are automatically generated.

– States, parameters and variables are local (not visible outside the enclosing
function).

– Statement function introduces a function, followed by an optional (space
separated) list of parameters.

– A function invocation consists of (i) the keyword set, (ii) a parameter or
variable name (which will receive the result), (iii) the function name, (iv) a
(space separated) list of arguments, (v) the keyword continue, and (vi) the
state to which the function must return.

– Each function argument is either (a) the name of a parameter or variable,
or (b) the functor of a complex object.

– Each parameter or variable is implemented by a complex object with the
same functor name, which contains its value.

– Complex objects which implement parameters and variables are automati-
cally managed, but are also fully accessible within P system rules.

– We propose that function invocations use call-by-reference evaluations, fol-
lowed by a copy-on-write, for parameters that are subsequently changed.
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– Statement state starts a group of rules sharing the same start state (which
is now omitted in individual rules). By default, if not explicit, the target
state of each rule remains the current state.

– Inside a group, statements and rules are executed top-down, using a weak
priority order.

– There is no implicit fall-through from one state to the textually following
state.

The traces shown in Table 1 highlight critical steps which occur in the invo-
cation of ( fact 3).

We are still considering a default convention for the implicit return-to state
after a function invocation, and, more important, extensions for parallel function
invocations (which need parallel stacks). However, we are not further developing
these ideas here.

Table 1. Traces for fact of 3. This table asserts the contents of (i) global hidden stacks
and (ii) local parameters and variables, before a line starts. The small intervals between
lines 14–16 indicate calls to mult, which are not detailed here.

Frame Line ρ() π() n() n1() f1() f()

fact 3

” 10 Sr p(l3) l3

” 11 Sr p(l3) l3

” 12 Sr p(l3) l3 l2

fact 2

” 10 Sg(Sr) p(l2)(p(l3)) l2

” 11 Sg(Sr) p(l2)(p(l3)) l2

” 12 Sg(Sr) p(l2)(p(l3)) l2 l

fact 1

” 10 Sg(Sg(Sr)) p(l)(p(l2)(p(l3))) l

” 11 Sg(Sg(Sr)) p(l)(p(l2)(p(l3))) l

” 12 Sg(Sg(Sr)) p(l)(p(l2)(p(l3))) l λ

fact 0

” 10 Sg(Sg(Sg(Sr))) p(λ)(p(l)(p(l2)(p(l3)))) λ

” 16 Sg(Sg(Sg(Sr))) p(λ)(p(l)(p(l2)(p(l3)))) λ l

fact 1

” 14 Sg(Sg(Sr))) p(l)(p(l2)(p(l3))) l l

” 16 Sg(Sg(Sr))) p(l)(p(l2)(p(l3))) l l

fact 2

” 14 Sg(Sr) p(l2)(p(l3)) l2 l

” 16 Sg(Sr) p(l2)(p(l3)) l2 l2

fact 3

” 14 Sr p(l3) l3 l2

” 16 Sr p(l3) l3 l6



296 R. Nicolescu, F. Ipate, and H. Wu

7 Applications

7.1 Numerical P Systems

Consider first the numerical P system sample Π1, given in Păun [17], which
sequentially generates numbers in {n2|n ≥ 0}. Π1 is equivalent to a P module,
Π ′

1, with one single cell and a single generic rule involving three complex objects,
a, b, c:

S1 a(X) b(Y ) c(Z) →min.min S1 a(XY Y l) b(Zl) c(Zl)

Assuming that initially all three objects are empty, a() b() c(), after n steps,

a contains a(ln
2

), which represents the number n2.
Considering the arithmetic operations that can be efficiently modelled in

P modules, we emit the following conjecture:

Conjecture 1. All numerical P systems with arithmetic functions on integers and
rational numbers can be simulated in real-time by single cell P modules with
complex objects.

Note that, if we are not interested in a faithful simulation, the above system
can be straightforwardly implemented by the following single rule, which directly
maps the algebraic rule (n+ 1)2 = n2 + 2n+ 1:

S1 a(X) b(Y ) →min.min S1 a(XY Y l) b(Y l)

7.2 NP-Complete Problems

With complex objects, we can solve NP-complete problems using a single cell, a
fixed-sized alphabet and a fixed-sized set of generic rules.

Consider, for example, the SAT problem; see Nagy [12] for a comprehensive
overview of this problem and current state-of-art P solutions.

We start with an example. Consider the following formula, with n = 3 boolean
variables:

f = (x1 ∨ x̄2) ∧ (x1 ∨ x̄3).

This formula can be expressed as a complex object, in fact a list of disjunc-
tions, where each item is a list of conjunctions:

f = ∧(∨(x1(¬(x2)))(∨(x1(¬x3)))).

As such formulas can quickly become unwieldy, we use a simplified notation
for list structures, inspired from list structures in System F based functional
programming languages:

a(d)(b(e)(c(f))) = [a(d); b(e); c(f)] = [a(d) : [b(e); c(f)]] = [a(d) : [b(e) : [c(f)]]]

With this notation, our formula f can be represented as:

f = ∧[∨[x1;¬(x2)];∨[x1;¬(x3)]].
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To map our formula to a fixed vocabulary, we represent xn by the complex
object x(ln). Finally, our formula f can be represented as:

f = ∧[∨[x(l);¬(x(ll))];∨[x(l);¬(x(lll))]].
To check its satisfiability, we use a naive brute force approach: we create

2n = 23 = 8 dictionary complex objects, all named v, corresponding to all
possible truth (0/1) assignments of our n = 3 variables:

v(m(x(l), 0).m(x(ll), 0).m(x(lll), 0))
v(m(x(l), 0).m(x(ll), 0).m(x(lll), 1))
v(m(x(l), 0).m(x(ll), 1).m(x(lll), 0))
v(m(x(l), 0).m(x(ll), 1).m(x(lll), 1))
v(m(x(l), 1).m(x(ll), 0).m(x(lll), 0))
v(m(x(l), 1).m(x(ll), 0).m(x(lll), 1))
v(m(x(l), 1).m(x(ll), 1).m(x(lll), 0))
v(m(x(l), 1).m(x(ll), 1).m(x(lll), 1))

All these dictionaries can be built in parallel by the following rules, starting
from an empty dictionary, v(), and a variable n(N), which indicates the number
of boolean variables; if this number is not given, it can be easily computed by
scanning the given formula (this step is not detailed here):

S1 n(lN) v(M)→max.min S1 n(N) v(m(x(lN ), 0).M) v(m(x(lN ), 1).M)
S1 n() v(M) →max.min S2 w(t(1), s(0), v(M ))

Next, we evaluate the given formula, f , in parallel over all existing dictionaries,
v, which are now enclosed in larger complex objects, w. The partial results are
stored in variables s, for the current disjunction, initially s(0), and t, for the
whole formula (a conjunction), initially t(1). These variables start with default
values for their corresponding boolean operations and are updated while the
formula is evaluated left-to-right. The evaluation looks at the top variable in the
top conjunction and picks its value from the associated dictionary. When the
top conjunction becomes empty, the value of s is and-ed to the value of t, and
then variable s is reset to 0, s(0), to start the next disjunction. When there is no
other disjunction, the evaluation has ended and t contains the correct evaluation
value according to the current dictionary.

For clarity, we use the convenience abbreviations (abbreviations are not ob-
jects) vijk = v(m(x(l), i).m(x(ll), j).m(x(lll), k), i.e. x1 = i, x2 = j, x3 = k. The
following two derivations illustrate the step-by-step evaluation of our formula,
f , using the dictionaries v000 and v001:

∧[∨[x(l);¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v000)⇒
∧[∨[¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v000)⇒

∧[∨[];∨[x(l);¬(x(lll))]] w(t(1), s(1), v000)⇒
∧[∨[x(l);¬(x(lll))]] w(t(1), s(0), v000)⇒

∧[∨[¬(x(lll))]] w(t(1), s(0), v000)⇒
∧[∨[]] w(t(1), s(1), v000)⇒
∧[] w(t(1), s(0), v000)⇒

t(1)
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and

∧[∨[x(l);¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v001)⇒
∧[∨[¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v001)⇒

∧[∨[];∨[x(l);¬(x(lll))]] w(t(1), s(1), v001)⇒
∧[∨[x(l);¬(x(lll))]] w(t(1), s(0), v001)⇒

∧[∨[¬(x(lll))]] w(t(1), s(0), v001)⇒
∧[∨[]] w(t(1), s(0), v001)⇒
∧[] w(t(0), s(0), v001)⇒

t(0)

Without using usual boolean shortcuts, these evaluations can be completed
by following rules (using the simplified list notation, for clarity):

S2 ∧ [∨[¬(x(X)) : D] : C] w(t(T ), s(S), v(P .m(x(X), V ).Q))
→max.min S2 ∧ [∨[D] : C] w(t(T ), s(Z), v(P .m(x(X), V ).Q)) | e(S, V, Z)

S2 ∧ [∨[x(X) : D] : C] w(t(T ), s(S), v(P .m(x(X), V ).Q))
→max.min S2 ∧ [∨[D] : C] w(t(T ), s(Z), v(P .m(x(X), V ).Q)) | d(S, V, Z)

S2 ∧ [∨[] : C] w(t(T ), s(S), v(M ))

→max.min S2 ∧ [C] w(t(Z), s(0), v(M )) | c(T, S, Z)
S2 ∧ [] w(t(T ), s(S), v(M))
→max.min S3 t(T )

where c(), d() and e are “read-only” internal tables for required boolean opera-
tions, given as complex objects (intuitively, these represent tables for x∧y, x∨y,
x ∨ ȳ, respectively):

c(0, 0, 0) c(0, 1, 0) c(1, 0, 0) c(1, 1, 1)
d(0, 0, 0) d(0, 1, 1) d(1, 0, 1) d(1, 1, 1)
e(0, 0, 1) e(0, 1, 0) e(1, 0, 1) e(1, 1, 1)

The final rules collect and reduce the individual results, t(). In our case, the
formula f is satisfiable, for example for x1 = 0, x2 = 0, x3 = 0.

We have used a single cell, a fixed alphabet, {0, 1, x, l, ∨, ∧, ¬, c, d, e, v,
m, w, s, t}, and essentially just 6 generic rules and 3 states. In this example,
we used only the most basic brute force approach; however, better variants are
possible.

A similar approach seems to work well for other NP-complete problems, for
example, the graph colouring problem; see Gheorghe et al. [7] for state-of-art
P solutions of this problem. We emit the following conjecture:

Conjecture 2. Any NP-complete problems can be solved by a single cell P mod-
ule with a fixed sized atomic alphabet and a fixed sized set of generic rules.

8 Conclusions

Despite their exceptional theoretical and modelling power, P systems seem to
remain difficult to use for large practical applications, apparently requiring large
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varying size unstructured rulesets that can be difficult to verify. We want to show
that this need not be the case, that there are ways to increase their usability.

This paper presents evidence that complex objects can enable a high-level pro-
gramming style, with fixed sized alphabets and rulesets, adequate data struc-
tures and useful functional programming elements. We have previously used
complex objects to successfully model and even improve large practical applica-
tions, ranging from computer vision to complex graph theoretical problems and
to well-known critical distributed algorithms. Here we attempt to generalise our
field-proven methods and sketch how to apply similar techniques to other, more
theoretical, domains: numerical P systems and NP-complete problems.

The presented evidence suggests that complex objects could enable a more ad-
vanced high-level functional programming style, including: local functions (func-
tions inside functions), closures, memoizations (i.e. top-down dynamic program-
ming), combinators (e.g. the Y combinator), monads and meta-programming. A
follow-up paper will address these topics.

Many of our extensions can be directly mapped on modern computing plat-
forms, bypassing a possible translation to traditional simpler objects and rules,
which opens the way towards more efficient general purpose simulators.
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M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS,
vol. 7184, pp. 35–50. Springer, Heidelberg (2012)

14. Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. In: Calude,
C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp.
164–176. Springer, Heidelberg (2011)

15. Nicolescu, R., Wu, H.: New solutions for disjoint paths in P systems. Natural
Computing 11, 637–651 (2012)
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Abstract. The internal structure of the iterations of Koch curve and
Sierpiński gasket—the known fractals [4]—is described in terms of multi-
hypergraphical membrane systems related to membrane structures [13]
and whose membranes are hyperedges of multi-hypergraphs used to de-
fine gluing patterns for the components of the iterations of the considered
fractals.

1 Introduction

One finds in [10] a more or less explicit conclusion that the birth of functional
analysis was accompanied by the emergence of various mathematical structures
(from vector space, abstract metric spaces and topological spaces to Hilbert
spaces, including spaces of functions) which were an antidotum against ‘capri-
cious’ intuitiveness of symbolic ‘calculations’ of early calculus.

This conclusion inspired the author of the present paper to search for struc-
tures of fractals and self-similarity against their intuitive explanations1 proposed
e.g. in [9]:

‘Local’ statements of self-similarity say something like ‘almost any small pat-
tern observed in one part of the object can be observed throughout the object,
at all scales’. Global statements say something like ‘the whole object consists of
several smaller copies of itself glued together’; more generally, there may be a
whole family of objects, each of which can be described as several objects in the
family glued together.

Viewed from another angle, a theory of global self-similarity is a theory of
recursive decomposition.

One should point out here that in a large extent the concepts of fractals and
self-similarity have been already described precisely in terms of iterated function
systems with their attractors constructed by using the tools of functional anal-
ysis (Hahn–Banach fix point theorem) [4] and domain theory (Tarski fix point
theorem) [3]. But a translation from the language of the above intuitive expla-
nation to the language of some derived concepts from the precise description of

1 The explanations suggested by the visual presentations of the iterations of some
fractals seen in the books and many articles about fractals.

A. Alhazov et al. (Eds.): CMC 2013, LNCS 8340, pp. 301–307, 2014.
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fractals and self-similarity (e.g. the trees induced by iterated function systems,
cf. [3]) is not effortless and not yet ready.

Thus searching for structure of fractals and self-similarity is approached by
various mathematicians, cf. [7], [9], not necessarily motivated explicitly by a need
of the above translation.

The goal of the paper is to propose an approach to searching for structure
of fractals which could provide the above translation. We describe in Section 3
the internal structure of the iterations of Koch curve and Sierpiński gasket—the
known fractals [4]—in terms of multi-hypergraphical membrane systems related
to membrane structures [13] and whose membranes are hyperedges of multi-
hypergraphs used to define gluing patterns for the components of the iterations
of the considered fractals.

2 Multi-hypergraphical Membrane Systems

We introduce the following new concepts.
By a directed multi-hypergraph we mean a structure G given by its set E(G)

of hyperedges, its set V (G) of vertices and the source and target mappings

sG : E(G)→ P(V (G)), tG : E(G)→ P(V (G))
such that V (G) together with{

(V1,V2) | sG(e) = V1 and tG(e) = V2 for some e ∈ E(G)}
form a directed hypergraph as in [5], where P(X) denotes the set of all subsets
of a set X .

We say that two directed multi-hypergraphs G,G′ are isomorphic if there
exist two bijections h : V (G)→ V (G′), h′ : E(G)→ E(G′) such that

sG′(h′(e)) = {h(v) |v ∈ sG(e)} and tG′(h′(e)) = {h(v) |v ∈ tG(e)}
for all e ∈ E(G).

Membrane structures in [13] are simply finite trees with nodes labelled by
multisets, where the finite trees have a natural visual presentation by Venn
diagrams and the tree nodes are called membranes.

We introduce (directed) multi-hypergraphical membrane systems to be finite
trees with nodes labelled by (directed) multi-hypergraphs.

We consider directed multi-hypergraphical membrane systems of a special
feature described formally in the following way.

A multi-hyperedge membrane system S is given by:

– the underlying tree TS of S which is a finite graph given by its set V (TS)
of vertices, its set E(TS) ⊆ V (TS) × V (TS) of edges, and its root r which
is a distinguished vertex such that for every vertex v different from r there
exists a unique path from v into r in TS , where for every vertex v we define
rel(v) = {v′ | (v′, v) ∈ E(TS)} and in trivial case V (TS) = {r} we assume
E(TS) = ∅;
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– a family (Gv |v ∈ V (TS)) of finite directed multi-hypergraphs for Gv given
by its set V (Gv) of vertices, its set E(Gv) of edges, its source function sv :
E(Gv) → P(V (Gv)), and its target function tv : E(Gv) → P(V (Gv)) such
that the following conditions hold:
1) E(Gv) = rel(v),
2) V (Gv) is empty for every elementary vertex v, i.e. such that rel(v) is

empty.

The above multi-hypergraphical membrane systems can be drawn by using
Venn diagrams with discs or boxes dv corresponding to vertices v of TS .

One can expect the applications of multi-hypergraphical membrane systems
for modelling various hierarchically organized systems of nested modules (hy-
peredges) interconnected by many input and output lines (vertices), where the
module interactions are described by source and target functions. These systems
of modules appear in computer science, where the modules are complex actions,
instructions, transitions (e.g. of structured Petri nets [2]), etc., from state charts
[6], models of systemC components [17], the systems discussed in [1], to the
semantics of some extensions of formal systems in [12], [17], and hierarchical
specifications [15].

3 Koch Curve and Sierpiński Gasket

We describe in this section the iterations of Koch curve and Sierpiński gasket
[8], [4], [14] in terms of multi-hypergraphical membrane systems.

For natural numbers n > 0 and i ∈ {Koch, Sierp} we define multi-hyperedge
membrane systems Sin in the following way:

– the underlying tree Ti
n of Sin is such that

• the set V (Ti
n) of vertices is the set of all strings (sequences) of length

not greater than n of digits in DSierp = {1, 2, 3} for i = Sierp, and in
DKoch = {1, 2, 3, 4} for i = Koch,
• the set E(Ti

n) of edges of Ti
n is such that E(Ti

n) = {(Γj, Γ ) | {Γj, Γ} ⊂
V (Ti

n) and j ∈ Di} with source and target functions being the projec-
tions on the first and the second component, respectively, where Γj is
the string obtained by juxtaposition a new digit j on the right end of Γ ,

– the family
(
Gi

Γ |Γ ∈ V (Ti
n)
)

of directed multi-hypergraphs of Sin is such
that for every non-elementary vertex Γ ∈ V (Ti

n), i.e. with rel(Γ ) �= ∅, Gi
Γ

is determined in the following way:
• for i = Koch if Γ is the empty string, then the directed multi-hypergraph
Gi

Γ is such that V (Gi
Γ ) is a five element set {v0, . . . , v4}, E(Gi

Γ ) =
{Γj | j ∈ Di}, and the source and target functions of Gi

Γ are given by

sGi
Γ
(Γj) = {vj−1}, tGi

Γ
(Γj) = {vj} for all j ∈ {1, . . . , 4},

where

v0 = (0, 0), v1 = (13 , 0), v2 = (12 ,
2

2
√
3
), v3 = (23 , 0), v4 = (1, 0),
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• for i = Sierp if Γ is the empty string, then the directed multi-hypergraph
Gi

Γ is such that V (Gi
Γ ) is a six element set {v0, . . . , v5}, E(Gi

Γ ) =
{Γj | j ∈ Di}, and the source and target functions of Gi

Γ are given by

sGi
Γ
(Γ3) = {v1, v2}, tGi

Γ
(Γ3) = {v0},

sGi
Γ
(Γj) = {vj+2, vj+3}, tGi

Γ
(Γj) = {vj} for j ∈ {1, 2},

where

v0 = (12 ,
√
3
2 ),

v1 = (14 ,
√
3
4 ), v2 = (34 ,

√
3
4 ),

v3 = (0, 0), v4 = (12 , 0), v5 = (1, 0),

• if a non-elementary vertex Γ of Ti
n is of the form2 kΩ for k ∈ Di and a

string Ω of digits in Di, then

V (Gi
Γ ) =

{
f i
k(v) |v ∈ V (Gi

Ω)
}
, E(Gi

Γ ) = {Γj | j ∈ Di},
and

δGi
Γ
(Γj) =

{
f i
k(v) |v ∈ δGi

Ω
(Ωj)

}
for all j ∈ Di and δ ∈ {s, t}

where f i
k is the k-th function of the iterated function system given in

Appendix for Koch curve in the case i = Koch and for Sierpiński gasket
in the case i = Sierp, respectively.

Lemma. For all natural numbers n > 0 and i ∈ {Koch, Sierp} the multi-
hyperedge membrane system Sin is such that for every non-elementary vertex
Γ of Ti

n the directed multi-hypergraph Gi
Γ is isomorphic to Gi

Λ for empty string
Λ—the root of Ti

n.

Proof. We prove the lemma by induction on n and by using the property of the
functions of the iterated function systems for Koch curve and Sierpiński gasket
that they are injections.

For all natural numbers n > 0 and i ∈ {Koch, Sierp} we define a geometrical
realization of Sin, denoted by space(Sin), to be a subset of R2 (R2 is a Cartesian
product of two copies of the set R of real numbers) which is the n-th iteration of
Koch curve for i = Koch and the n-th iteration of Sierpiński gasket for i = Sierp,
i.e.

space(SKoch
1 ) =

⋃
j∈DKoch

fKoch
j (interval),

space(SSierp1 ) =
⋃

j∈DSierp

fSierp
j (equitriang),

space(Sin+1) =
⋃

j∈Di

f i
j(space(Sin)) for i ∈ {Koch, Sierp}

2 The form kΩ of Γ is understood that the first element of Γ is k followed by the
string Ω.
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where f i
j(X) is the image of a set X for f i

j , interval = {(t, 0) | t ∈ R, 0 ≤ t ≤ 1},
and equitriang is the union of the interior and the frontier of the equilateral
triangle in R2 whose vertices are (0, 0), (12 ,

√
3
2 ), (1, 0).

Theorem. For all natural numbers n > 0 and i ∈ {Koch, Sierp} the set
space (Sin) is not an amorphous set of points of R2 but it is a structured set
by its hierarchically organized decomposition into subsets according to the under-
lying tree Ti

n of Sin, where the components of the decomposition form a family
Ci,n

Γ (Γ ∈ V (Ti
n), Γ is non-empty and is not an elementary vertex of Ti

n) such
that :

– if Γ is of the form jΩ for j ∈ Di and a string Ω of digits in Di, then
• for the empty string Ω the component Ci,n

jΩ is f i
j(space(Sin−1)),

• for a non-empty string Ω the component Ci,n
jΩ is f i

j(C
i,n−1
Ω ) for the Ω-th

component Ci,n−1
Ω of space(Sin−1),

– for mi = maxDi the mi components Ci,n
Γ1 , . . . , C

i,n
Γmi

are glued according to
the pattern given by Gi

Γ understood that

δ(Γj′) ∩ γ(Γj′′) = Ci,n
Γj′ ∩ Ci,n

Γj′′

for all δ, γ, j′, j′′ with {δ, γ} ⊆ {si
Gi

Γ
, ti

Gi
Γ
}, {j′, j′′} ⊆ Di, and j′ �= j′′.

Proof. The theorem is an immediate consequence of the adopted definitions.

The above multi-hypergraphical membrane systems can be drawn by using Venn
diagrams with discs or boxes dΓ corresponding to vertices Γ of Ti

n such that dΓj

is an immediate subset of dΓ .

Conclusion

The above lemma and theorem provide the translation claimed in the intro-
duction of the paper for iterations of fractals in the cases of Koch curve and
Sierpiński gasket. In this translation the main feature of self-similarity described
in its ‘local’ statement corresponds to the isomorphisms of hypergraphs ‘giving’
the gluing patterns (see the above theorem) for every level of hierarchical or-
ganization of the decomposition, where the levels of hierarchical organization
coincide with scale layers.

The iterations of jD-Cantor set (j ∈ {1, 2, 3}) require another approach which
is proposed in [11], where multigraphical membrane systems are used with ver-
tices as membranes. Thus one may say that the approach proposed in the present
paper is a ‘hyperedges as membranes’ approach.
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Appendix

Basing on [14] we present the iterated function systems whose attractors are
Koch curve and Sierpiński gasket, respectively. These iterated function systems
consist of the bijections from R2 onto R2 described in terms of matrices as
follows:

– for Koch curve

fKoch
1 (x) =

[
1/3 0
0 1/3

]
x scale by 1/3

fKoch
2 (x) =

[
1/6 −√3/6√
3/6 1/6

]
x+

[
1/3
0

]
scale by 1/3, rotate by 60◦

fKoch
3 (x) =

[
1/6

√
3/6

−√3/6 1/6

]
x+

[
1/2√
3/6

]
scale by 1/3, rotate by −60◦

fKoch
4 (x) =

[
1/3 0
0 1/3

]
x+

[
2/3
0

]
scale by 1/3

– for Sierpiński gasket

fSierp
1 (x) =

[
1/2 0
0 1/2

]
x scale by 1/2

fSierp
2 (x) =

[
1/2 0
0 1/2

]
x+

[
1/2
0

]
scale by 1/2

fSierp
3 (x) =

[
1/2 0
0 1/2

]
x+

[
1/4√
3/4

]
scale by 1/2
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Abstract. The efficiency of computational devices is usually expressed
in terms of their capability to solve computationally hard problems in
polynomial time. This paper focuses on tissue P systems, whose effi-
ciency has been shown for several scenarios where the number of cells
in the system can grow exponentially, e.g. by using cell division rules or
cell separation rules. Moreover, in the first case it suffices to consider
very short communication rules with length bounded by two, and in the
second one it is enough to consider communication rules with length at
most three. This kind of systems have an environment with the property
that objects initially located in it appear in an arbitrarily large number
of copies, which is a somewhat unfair condition from a computational
complexity point of view. In this context, we study the role played by
the environment and its ability to handle infinitely many objects, in
particular we consider tissue P systems whose environment is initially
empty.

1 Introduction

Several different models of cell-like P systems have been successfully used to
efficiently solve computationally hard problems by trading space for time. An
exponential workspace is created in polynomial time by using some kind of rules,
and then massive parallelism is used to simultaneously check all the candidate so-
lutions. Inspired by living cells, several ways for obtaining exponential workspace
in polynomial time were proposed: membrane division (mitosis) [12], membrane
creation (autopoiesis) [5], and membrane separation (membrane fission) [8]1.
These three ways have given rise to the following models: P systems with active

1 The name separation rule appeared earlier in [1], but with a slightly different
definition.
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membranes, P systems with membrane creation, and P systems with membrane
separation, respectively.

A new type of P systems, the so-called tissue P systems, was introduced in
[7]. The hierarchical membrane structure that was commonly used in the first
models, inspired on the way vesicles and compartments are arranged within a
cell, is discarded. Instead, an arbitrary graph of connections among elementary
membranes (now called cells) is considered. That is, the inspiration comes now
not from a single cell but from a collection of cooperating cells within a multi-
cellular organism, e.g. in a tissue. Moreover, the functioning of tissue P systems
heavily relies on the intercellular communication, since objects can move under
symport/antiport rules, but cannot be rewritten.

This paper addresses two models of tissue P systems which are of a great
interest from a computational complexity point of view. The first one was pre-
sented in [14], where the definition of tissue P systems is combined with aspects
of the definition of P systems with active membranes, yielding tissue P systems
with cell division. In these models, cells may replicate, that is, the two new cells
generated by a division rule have exactly the same objects except for at most
one differing pair of objects. The second model that will be considered is tissue
P systems with cell separation [9]. In this case, an alternative method for gener-
ating an exponential number of cells in linear time is used. When a cell divides,
its contents are not replicated, but distributed, according to a fixed partition of
the alphabet.

The paper is organized as follows. First, we recall the basic mathematical and
theoretical background underlying the definitions of the two tissue P systems
models mentioned above, together with the definition of complexity class in the
membrane computing framework. Then, Section 3 compares the computational
power achieved by cell division and by cell separation, evaluating in both cases
the role of the environment. Some concluding remarks summarizing the border-
lines of efficiency discussed in the paper are given in Section 4.

2 Tissue P Systems

Let us recall that an alphabet Γ is a non–empty set whose elements are called
symbols. A multiset m over an alphabet Γ is a pair m = (Γ, f) where f : Γ → IN
is a mapping. If m = (Γ, f) is a multiset then its support is defined as
supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite
set. Let supp(m) = {a1, . . . , ak} be the support of a finite multiset, m, then we

will denote m = a
f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we say that

f(a1) + . . .+ f(ak) is the cardinal of m, denoted by |m|. The empty multiset is
denoted by λ. We also denote by Mf (Γ ) the set of all finite multisets over Γ .

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ . The union of m1 and
m2, denoted by m1+m2 is the multiset (Γ, g), where g = f1+f2, that is, g(x) =
f1(x) + f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted by
m1 \m2 is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x) and
g(x) = 0 otherwise.
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Definition 1. A basic tissue P system of degree q ≥ 1 is a tuple
Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:
1. Γ is a finite alphabet and E is a subset of Γ .
2. Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅.
3. M1, . . . ,Mq are finite multisets over Γ \Σ.
4. R is a finite set of communication rules of the form (i, u/v, j),

for i, j ∈ {0, 1, 2, . . . , q}, i �= j, u, v ∈Mf(Γ ), and |u+ v| �= 0;
5. iin ∈ {1, 2, . . . , q}, and iout ∈ {0, 1, . . . , q}.
A basic tissue P system Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout) of degree q ≥ 1
can be viewed as a set of q cells, labelled by 1, . . . , q, with an environment
labelled by 0 such that: (a)M1, . . . ,Mq are finite multisets over Γ representing
the objects (elements in Γ ) initially placed in the q cells of the system; (b) Σ is
the input alphabet and E is the set of objects located initially in the environment
of the system, all of them appearing in an arbitrary number of copies; and (c)
iin represents the input cell, and iout ∈ {0, 1, . . . , q} indicates the region that
stores the output of the system (which can be either a distinguished cell when
iout ∈ {1, . . . , q}, or the environment when iout = 0). If E = ∅ then we say that
the tissue P system is without environment.

A communication rule (i, u/v, j) is applicable to regions i, j if the multiset u
is contained in region i and multiset v is contained in region j. When applying
a communication rule (i, u/v, j), the objects of multiset u are sent from region i
to region j and, simultaneously, the objects of multiset v are sent from region j
to region i. The length of communication rule (i, u/v, j) is defined as |u|+ |v|.

The rules are used in a non-deterministic maximally parallel manner as cus-
tomary in membrane computing. At each step, we apply a multiset of rules which
is maximal : no further applicable rule can be added.

A configuration at any instant of a basic tissue P system is described by all
multisets of objects over Γ associated with all the cells present in the system,
and the multiset of objects over Γ \ E associated with the environment at that
moment. Recall that there are infinitely many copies of objects from E in the
environment, and hence this set is not properly changed along the computation.
For each multiset m over the input alphabet Σ, the initial configuration with
input m is C0 = (M1, · · · ,Miin + m, · · · ,Mq; ∅). Therefore, we have an initial
configuration associated with each input multiset m (over the input alphabet
Σ) in this kind of systems. We will use the notation (Π + m) to refer to a P
system Π such that its initial configuration is the one associated with m. A
configuration is a halting configuration if no rule of the system is applicable to
it. We say that configuration C1 yields configuration C2 in one transition step,
denoted by C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from
R following the previous remarks.

A computation of Π is a (finite or infinite) sequence of configurations such
that: (a) the first term of the sequence is the initial configuration C0 of the system
associated with a given input; (b) for each n ≥ 2 the n–th configuration of the
sequence is obtained from the previous configuration by applying a maximal
multiset of rules of the system as described above; and (c) if the sequence is
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finite (called halting computation) then the last term of the sequence must be a
halting configuration. Only halting computations give a result, which is encoded
by the objects present in the output region iout in the halting configuration. The
result of a computation can be defined in various ways, just like in the cell-like
case. Obviously, when the output is collected in the environment, symbols from
E must be ignored.

If C = {Ct}0≤t≤r of Π (r ∈ IN) is a halting computation, then the length of C,
denoted by |C|, is r.

2.1 Cell Division and Cell Separation

Reproduction is doubtlessly one of the fundamental mechanisms on every living
being. Thus, there is a clear motivation to try to get inspiration from the var-
ious processes that generate new cells (or new membranes, in general) and to
adapt them into the tissue P systems framework. Moreover, as mentioned in the
Introduction, division rules (mitosis), and separation rules (membrane fission)
have been already introduced for cell-like P systems [12,8].

Definition 2. A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:
1. Π = (Γ,Σ, E ,M1, . . . ,Mq,Rc, iin, iout) is a basic tissue P system, where Rc

is the set of communication rules in R.
2. R may also contain cell division rules of the form [a]i → [b]i[c]i, where

i ∈ {1, 2, . . . , q}, i �= iout and a, b, c ∈ Γ .

Definition 3. A tissue P system with cell separation of degree q ≥ 1 is a tuple
Π = (Γ, Γ1, Γ2, Σ, E ,M1, . . . ,Mq,R, iout), where:
1. Π = (Γ,Σ, E ,M1, . . . ,Mq,Rc, iin, iout) is a basic tissue P system, where Rc

is the set of communication rules in R.
2. {Γ1, Γ2} is a partition of Γ , that is, Γ = Γ1 ∪ Γ2, Γ1, Γ2 �= ∅, Γ1 ∩ Γ2 = ∅.
3. R may also contain cell separation rules of the form [a]i → [Γ1]i[Γ2]i, where

i ∈ {1, . . . , q}, a ∈ Γ and i �= iout.

A tissue P system with cell division is a basic tissue P system that allows cell
division rules. When applying a division rule [a]i → [b]i[c]i, under the influence
of object a, the cell with label i is divided into two cells with the same label;
in the first copy, object a is replaced by object b, in the second one, object a is
replaced by object c; all the other objects are replicated and copies of them are
placed in the two new cells.

A tissue P system with cell separation is a basic tissue P system that allows cell
separation rules. When applying a separation rule [a]i → [Γ1]i[Γ2]i, in reaction
with an object a, the cell i is separated into two cells with the same label; at the
same time, object a is consumed; all the other objects in the cell are distributed
(not replicated): those from Γ1 are placed in the first cell, while those from Γ2 are
placed in the second cell. The output cell iout cannot be divided nor separated.
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The label of a cell precisely identifies the rules which can be applied to it. Note
that in the previous definitions {1, . . . , q} is used as the set of labels, but without
loss of generality any finite set can be considered instead. The rules are used in
a non-deterministic maximally parallel manner with the following restriction:
when a cell is divided (or separated), the objects inside that cell do not get
involved in any communication rule during this step. The two new resulting
cells could participate in the interaction with other cells or the environment by
means of communication rules at the next step – provided that they are not
divided (or separated) again.

2.2 Recognizer Tissue P Systems

A decision problem is a pair (IX , θX) where IX is a language over a finite alphabet
(whose elements are called instances) and θX is a total Boolean function over IX .
There are many different ways to describe instances of a decision problem, but
we assume that each problem has associated with it a fixed reasonable encoding
scheme (in the sense of [3], page 10) which provides a string associated with
each problem instance. The size of an instance u ∈ IX is the length of the string
associated with it by means of a reasonable encoding scheme.

A correspondence between decision problems and languages over a finite al-
phabet, can be established as follows. Given a decision problem X = (IX , θX),
its associated language is LX = {w ∈ IX : θX(w) = 1}. Conversely, given a lan-
guage L over an alphabet Σ, its associated decision problem is XL = (IXL , θXL),
where IXL = Σ∗, and θXL = {(x, 1) | x ∈ L}∪{(x, 0) | x /∈ L}. The solvability of
decision problems is defined through the recognition of the languages associated
with them by means of language recognizer devices.

Definition 4. A tissue P system of degree q ≥ 1 is a recognizer system if:

1. The working alphabet Γ has two distinguished objects yes and no being, at
least, one copy of them present in some initial multisets, but none of them
are present in the alphabet of the environment.

2. All computations halt.
3. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of
the computation.

Note that, because of the first condition, the presence or absence of objects
yes and no in the environment can be accounted for in any configuration. Note
also that all computations are finite as a consequence of the second condition,
and thus it is possible to refer to their “last step”.

Given a recognizer tissue P system Π and a computation C of Π , we say
that C is an accepting computation (respectively, rejecting computation) if object
yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C. Note that, since Π is a recognizer
system, neither object yes nor no appears in the environment associated with
any non–halting configuration of C.
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For each natural number k ≥ 1, we denote by TDC(k) (respectively, TSC(k))
the class of recognizer tissue P systems with cell division (respectively, with
cell separation) and communication rules with length at most k. We denote by

T̂DC(k) (respectively, T̂SC(k)) the class of recognizer tissue P systems with
cell division (respectively, with cell separation), with communication rules with
length at most k, and without environment.

Now, we define what it means to solve a decision problem in the framework
of tissue P systems efficiently and in a uniform way. Since we define each tissue
P system to work on a finite number of inputs, to solve a decision problem we
define a numerable family of tissue P systems.

Definition 5. We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recognizer
P systems if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ IN.

2. There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
(b) for each n ∈ IN, s−1(n) is a finite set;
(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

(e) the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

From the soundness and completeness conditions above we deduce that every
P systemΠ(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer P systems. We denote by PMCR the set of
all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [16].

3 Computational Efficiency of Tissue P Systems without
Environment

It is well known that tissue P systems with cell division and tissue P systems
with cell separation are able to solve computationally hard problems efficiently.
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Specifically, NP–complete problems have been solved in polynomial time in [19]
by using families of tissue P systems with cell division and communication rules
of length at most 2, and by using families of tissue P systems with cell separation
and communication rules of length at most 3. Thus,

NP ∪ co−NP ⊆ PMCTDC(2) ∩PMCTSC(3)

In [4,9,10] it has been proved that only tractable problems can be efficiently
solved by using families of tissue P systems with cell division and communication
rules of length 1 (or with cell separation and communication rules of length
bounded by 2). That is, P = PMCTDC(1) = PMCTSC(1) = PMCTSC(2).
Therefore, in the framework of tissue P systems with cell division (respectively,
cell separation), passing the maximum length of communication rules of the
systems from 1 to 2 (respectively, from 2 to 3) amounts to passing from non–
efficiency to efficiency, assuming that P �= NP. That is, the cooperation of 2
objects (respectively, 3 objects) in the communication rules is a key feature that
allows efficient solutions of NP–complete problems.

3.1 Efficiency of Tissue P Systems with Cell Division and without
Environment

In this section, we give a family of tissue P systems with cell division, com-
munication rules of length at most 2, and without environment which solves
the HAM-CYCLE problem, a well known NP–complete problem [3], in polynomial
time, according to Definition 5.

Let us recall that the HAM-CYCLE problem is the following: given a directed
graph, to determine whether or not there exists a Hamiltonian cycle in the graph.

Our starting point will be the familyΠ = {Π(n) | n ∈ IN} of tissue P systems
from TDC(2) provided in [19]. We will not recall in detail the definition of this
solution, but let us provide an informal overview of the design. The authors follow
a brute force approach, generating all possible combination of arcs from the
graph, and then checking whether they represent a Hamiltonian cycle or not. Let
us consider an arbitrary instance G = (V,E) of the HAM-CYCLE problem, where
|V | = n. In order to represent the generated paths, there are n special obects
(u, v)1, . . . (u, v)n in the input multiset of the system for each arc (u, v) ∈ E.
Having the object (u, v)i in the multiset of a cell after the generation stage is
completed will mean “the arc (u, v) is the i−th component of the path associated
with this cell”. All possible subsets of the input multiset are generated in the
first stage of the computation, and then there is a checking stage that filters all
invalid paths, as well as those which are not Hamiltonian cycles (a collection of
auxiliary cells and symbols are used, but we will skip the details here). Finally,
the computation ends with a final stage that sends the appropriate answer to
the environment, depending on the results of all those checkings.

The idea of the solution presented here is the following: starting from the above
mentioned family Π, we construct a family Π′ = {Π ′(n) | n ∈ IN} of tissue P

systems from T̂DC(2) such that Π ′(n) processes all instances G of HAM-CYCLE
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with n nodes. The construction is implemented according to Definition 6.2 in [15],
in such a way that each Π ′(n) simulates its counterpart Π(n) in an efficient
way. We refer to [15] for details, but informally speaking, each computation
from Π ′(n) matches (or “simulates”) an equivalent one from Π(n), except for a
polynomial amount of additional auxiliary steps.

Let us recall that for each n ∈ IN, Π(n) is the following tissue P system:

Π(n) = (Γ,Σ, E ,Min,Mh,My,Myes,Mno,Mout,
Mei,j,k(1 ≤ i, j, k ≤ n),Mci(1 ≤ i ≤ n),R, iin, iout)

• The input alphabet is Σ = {(i, j)k | 1 ≤ i, j, k ≤ n}.
• The working alphabet is

Γ = {(i, j)k, (i, j)′k, (i, j)′′k | 1 ≤ i, j, k ≤ n} ∪
{(i, j)k,r, (i, j)′k,r, (i, j)′′k,r | 1 ≤ i, j, k ≤ n ∧ 1 ≤ r ≤ n3} ∪
{wi | 1 ≤ i ≤ n3 + 6} ∪ {cr, hr, yr | 1 ≤ r ≤ n3} ∪
{w, c, c′, c′′, h, h′, h′′, h′′′, y, y′, y′′, y′′′, y′′′′, x, yes, no,#}

• The alphabet of the environment is

E = {wi | 1 ≤ i ≤ n3 + 5} ∪ {w, c′′, y′′, h′′, y′′′, h′′′, y′′′′}
• The initial multisets are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min = cn y h
Mei,j,k = (i, j)′′k,n3 , 1 ≤ i, j, k ≤ n

Mci = cn3 , 1 ≤ i ≤ n
Mh = hn3

My = yn3

Myes = yes
Mno = wn3+6 no
Mout = x

• The set R consists of the following rules:

(1) (no , wr /wr−1 , 0), for 2 ≤ r ≤ n3 + 6.
(2) (no , w1 /w , 0).
(3) [ (i, j)k ]in → [ (i, j)′k ]in [ # ]in, for 1 ≤ i, j, k ≤ n.
(4) [ (i, j)′′k,r ]ei,j,k → [ (i, j)′′k,r−1 ]ei,j,k [ (i, j)′′k,r−1 ]ei,j,k ,

for 1 ≤ i, j, k ≤ n and 2 ≤ r ≤ n3.
(5) [ (i, j)′′k,1 ]ei,j,k → [ (i, j)′′k ]ei,j,k [ (i, j)′′k ]ei,j,k , for 1 ≤ i, j, k ≤ n.

(6) [ cr ]ci → [ cr−1 ]ci [ cr−1 ]ci , for 1 ≤ i ≤ n ∧ 1 ≤ r ≤ n3.
(7) [ yr ]y → [ yr−1 ]y [ yr−1 ]y, for 1 ≤ r ≤ n3.
(8) [hr ]h → [hr−1 ]h [ ar−1 ]h, for 1 ≤ r ≤ n3.
(9) (in , (i, j)′k / (i, j)

′′
k , ei,j,k), for 1 ≤ i, j, k ≤ n.

(10) (in , c / c′ , ci), for 1 ≤ i ≤ n.
(11) (in , y / y′, y).
(12) (in , h / h′, h).
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(13) (in, (i, j)′′k (i, j
′)′′k′ / λ, 0), for 1 ≤ i, j, j′, k, k′ ≤ n.

(14) (in, (i, j)′′k (i
′, j)′′k′ / λ, 0), for 1 ≤ i, i′, j, k, k′ ≤ n.

(15) (in, (i, j)′′k (i
′, j′)′′k+1 / λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n, and j �= i′.

(16) (in, (i, j)′′k (i
′, j′)′′k / λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n.

(17) (in , c′ / c′′ , 0).
(18) (in , y′ / y′′ , 0).
(19) (in , h′ / h′′ , 0).
(20) (in , (i, j)′′k c

′′ / λ , 0) for 1 ≤ i, j, k ≤ n.

(21) (in , y′′ / y′′′ , 0).
(22) (in , h′′ / h′′′ , 0).
(23) (in , c′′ h′′′ / λ , 0).
(24) (in , y′′′ / y′′′′ , 0).
(25) (in , h′′′ y′′′′ / λ , yes).
(26) (yes , y′′′′ yes / λ , out).
(27) (out , x yes / λ , 0).

(28) (no , w no / λ , out).

(29) (out , x no / λ , 0).

• The input cell is iin = in.
• The output region is the environment, iout = 0.

Let us notice that |Γ | = 3n4 +7n3 +23, |E| = n3 +12 and the degree of Π(n) is
q = n3 + n+ 6. Let Labn denote the set of labels of cells in Π(n). Besides, the
execution-time is n3+7 if the answer is affirmative and it is n3+8 if the answer
is negative. We thus consider p(n) = n3 + 8 as the polynomial function needed
for the construction of Π ′(n), according to Definition 6.2 in [15].

Now, for each n ∈ IN, let us construct, using Π(n) as a starting point, a tissue

P system from T̂DC(2) of degree q1 = 1 + (n3 + n+ 6) · (n3 + 10) + (n3 + 12),

Π ′(n) = (Γ ′, Σ′, E ′,M′
0,M′

1, . . . ,M′
q1−1,R′, i′in, i

′
out)

defined as follows:

• Γ ′ = Γ ∪ {αj | 0 ≤ j ≤ n3 + 7}.
• Σ′ = Σ and E ′ = ∅.
• Each one of the q cells of Π(n) provides a cell of Π ′(n) with the same label.
In addition, Π ′(n) has:
− For each one of the q cells of Π(n), n3 + 9 new cells,

labelled by (i, 0), . . . , (i, n3+8), respectively, where i stands for the orig-
inal label of the cell in Π(n).

− A distinguished cell labelled by 0.

− A new cell, labelled by lb, for each b ∈ E .
• M′

lb
= {α0}, for each b ∈ E , M′

(i,0) = Mi, for each i ∈ Labn, and every

other multiset of Π ′(n) is initially empty.
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• R′ = R ∪ {[αj ]lb → [αj+1]lb [αj+1]lb | b ∈ E ∧ 0 ≤ j ≤ n3 + 6}
∪ {[αn3+7]lb → [b]lb [b]lb | b ∈ E}
∪ {(lb, b/λ , 0) | b ∈ E}
∪ {((i, j), a/λ , (i, j + 1)

) | a ∈ Γ ∧ i ∈ Labn ∧ 0 ≤ j ≤ n3 + 7}
∪ {((i, n3 + 8), a/λ , i

) | a ∈ Γ ∧ i ∈ Labn}
• i′in = (iin, 0), and i′out = 0.

Let us notice that Π ′(n) can be considered as an extension of Π(n) without
environment, in the following sense:

� Γ ⊆ Γ ′, Σ ⊆ Σ′ and E ′ = ∅.
� Each cell in Π(n) is also a cell in Π ′(n).
� There is a distinguished cell in Π ′(n) labelled by 0 which plays the role of
environment of Π(n).

� R ⊆ R′, and now 0 is the label of a “normal cell” in Π ′(n).

Note also that this construction does not affect the maximum length of the
communication rules, since the communication rules inR′\R are of type symport
and length 1.

An Overview of the Computations
Let G = (V,E), with V = {1, . . . , n} and E = {(u1, v1), . . . , (up, vp)}, be an
arbitrary instance of the HAM-CYCLE problem.

The size mapping on the set of instances is defined as s(G) = n, and the
encoding of the instance is the multiset

cod(G) = {(ui, vi)k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}

Each object (ui, vi)k can be interpreted as considering arc (ui, vi) being “placed”
in the “k-th position” in a sequence of n arcs that could be a Hamiltonian cycle.

This way of encoding arcs by means of objects is one of the keys to understand
the design of the solution. A brute force approach is followed, generating all
possible combinations by division and subsequently checking for each subset of
n objects from cod(G) whether it represents a Hamiltonian cycle or not.

Let us now informally describe how system Π ′(s(G)) with input multiset
cod(G), denoted by Π ′(s(G)) + cod(G), works, in order to process the instance
G of the HAM-CYCLE problem.

At the initial configuration of Π ′(s(G)) + cod(G) we have the following:

– Cell labelled by 0 is empty.
– For each i ∈ Labn, the contents of cell i is empty and the contents of cell

(i, 0) isMi (except for the case i = iin, whereM′
(in,0) =Min + cod(G)).

– For each i, j (i ∈ Labn and 1 ≤ j ≤ n3 + 8), the contents of cell (i, j) is
empty.

– For each b ∈ E , cell labelled by lb contains only object α0.

It is easy to check that the rules of a system Π(n) of the family are recursively
defined from n and the amount of resources needed to build an element of the
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family is of a polynomial order in n. Therefore, there exists a deterministic
Turing machine that builds the system Π(n) in time polynomial with respect to
n. The same holds for Π ′(n), since only a polynomial number of cells, objects
and rules have been added to the definition.

At the first n3 + 9 steps of any computation C′ of Π ′(n), only the following
rules can be applied:

– {[αj ]lb → [αj+1]lb [αj+1]lb | b ∈ E ∧ 0 ≤ j ≤ n3 + 6}
– {[αn3+7]lb → [b]lb [b]lb | b ∈ E}
– {(lb, b/λ , 0) | b ∈ E}
– {((i, j), a/λ , (i, j + 1)

) | a ∈ Γ ∧ i ∈ Labn ∧ 0 ≤ j ≤ n3 + 7}
– {((i, n3 + 8), a/λ , i

) | a ∈ Γ ∧ i ∈ Labn}
The purpose of the division rules is to generate an exponential amount of copies
of each element of the environment alphabet. After the division process is com-
pleted, all copies of these objects are transferred to cell 0 by symport rules. In the
meantime, the rest of the objects initially present in the system are “delayed”,
by being forced to travel through a sequence of auxiliary cells. More precisely,
the initial multiset of cell i starts from cell (i, 0), then goes through every in-
termediate cell (i, j) until reaching cell (i, n3 + 8). After that, the multiset can
finally be transferred to cell i.

Besides, the above mentioned rules are applied in a deterministic manner.
Then, the configuration C′n3+9 of any computation C′ of Π ′(s(G)) + cod(G) is
characterized by the following:

(1) The contents of cell 0 is b2
n3+8

1 . . . b2
n3+8

α , where E = {b1, . . . , bα}.
(2) For each i ∈ Labn, the contents of cell i isMi (except for the case i = iin,
that containsMin + cod(G)).
(3) For i, j (i ∈ Labn and 0 ≤ j ≤ n3 +8) the contents of cell (i, j) is empty.

(4) For each b ∈ E , there exist 2n
3+8 cells labelled by lb whose content is

empty.

Basically, this is the “initial” configuration of the system Π(s(G)) + cod(G),
with a standard cell labelled by 0 that will play the role of the environment,
and with a large number of spare empty cells. Therefore, from step n3 + 9 any
computation of Π ′(s(G)) + cod(G) “reproduces” a computation of the system
Π(s(G)) + cod(G) with a delay.

Bearing in mind that the family Π = {Π(n) | n ∈ IN} solves HAM-CYCLE

problem in polynomial time, we deduce that the family Π′ = {Π ′(n) | n ∈ IN}
also solves HAM-CYCLE problem in polynomial time. Hence, we have the following
result:

Theorem 1. HAM-CYCLE ∈ PMC
T̂DC(2)

.

That is, a uniform solution working in polynomial time has been found for
an NP–complete problem using an empty environment alphabet. Hence, the
environment does not play a relevant role in recognizer tissue P systems with
cell division with respect to the efficiency of these models.
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3.2 Non-efficiency of Tissue P Systems with Cell Separation and
without Environment

In [6] it has been proved that only tractable problems can be efficiently solved
by using tissue P systems with cell separation where there is no environment
having infinitely many copies of some objects. Thus, tissue P systems with cell
separation and without environment are non-efficient in the sense that they are
not capable to solve NP–complete problems in polynomial time, according to
Definition 5, assuming that P �= NP.

Theorem 2. For each k ∈ IN, k ≥ 1 we have P = PMC
T̂SC(k)

.

Hence, the environment plays a relevant role in recognizer tissue P systems
with cell separation with respect to the efficiency of these models. That is, by
using the environment, NP–complete problems can be solved in polynomial
time, but this is not possible when the initial environment is empty.

Another interesting consequence of the previous result is the following. In
the framework of recognizer tissue P systems without environment, the kind of
rules provides a frontier for the efficiency, that is, passing from division rules to
separation rules amounts to passing from efficiency to non-efficiency, assuming
that P �= NP.

4 Conclusions

In this paper we have discussed how allowing an infinite supply of objects in the
environment determines (or not) that the model of tissue P systems considered
will be efficient or not.

More precisely, we have highlighted the key role that the environment plays
in the case of tissue P systems with cell separation. It does actually constitute
a borderline between efficiency and non-efficiency for the classes TSC(k) and

T̂SC(k), for every k ≥ 3. However, it is important to note that cooperation (of
at least 3 objects) in the communication rules is another important ingredient,
since we cannot get efficient solutions with tissue P systems with cell separation
and communication rules of length bounded by 2, irrespectively of using the
environment or not [10].

On the other hand, the environment has been shown to be an irrelevant in-
gredient in the case of tissue P systems with cell division. Indeed, a uniform
polynomial solution has been described for HAM-CYCLE using a family of tissue

P systems with cell division and without environment from T̂DC(2). Note that
the borderline of efficiency concerning the length of communication rules re-
mains the same as what was already known when the environment is exploited:
symport of length 1 versus cooperation of 2 objects.
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4. Gutiérrez–Escudero, R., Pérez–Jiménez, M.J., Rius–Font, M.: Characterizing
tractability by tissue-like P systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-
Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp.
289–300. Springer, Heidelberg (2010)
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Campero, F.J.: A polynomial alternative to unbounded environment for tissue P
systems with cell division. Int. J. Comput. Math. 90(4), 760–775 (2013)



The Relevance of the Environment for Tissue P Systems 321
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