
Marian Gheorghe
Grzegorz Rozenberg
Arto Salomaa
Claudio Zandron (Eds.)

 123

LN
CS

 1
07

25

18th International Conference, CMC 2017
Bradford, UK, July 25–28, 2017
Revised Selected Papers

Membrane Computing

Lecture Notes in Computer Science 10725

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Marian Gheorghe • Grzegorz Rozenberg
Arto Salomaa • Claudio Zandron (Eds.)

Membrane Computing
18th International Conference, CMC 2017
Bradford, UK, July 25–28, 2017
Revised Selected Papers

123

Editors
Marian Gheorghe
University of Bradford
Bradford
UK

Grzegorz Rozenberg
Leiden University
Leiden
The Netherlands

Arto Salomaa
Turku Centre for Computer Science
Turku
Finland

Claudio Zandron
University of Milan-Bicocca
Milan
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-73358-6 ISBN 978-3-319-73359-3 (eBook)
https://doi.org/10.1007/978-3-319-73359-3

Library of Congress Control Number: 2017962884

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the invited contributions and a selection of papers presented at
the 18th International Conference on Membrane Computing (CMC 18), which was
held in Bradford, UK, during July 25–28, 2017 (further information can be found on
the website at the following address: http://computing.brad.ac.uk/cmc18/), as well as
one selected paper from the Asian Conference on Membrane Computing (ACMC
2017), which was held in Chengdu, China, during September 21–25, 2017 (website
address: http://2017.asiancmc.org/).

The CMC series started with three workshops that were organized in Curtea de
Argeş, Romania, in 2000, 2001 and 2002. The workshops were then held in Tarragona,
Spain (2003), Milan, Italy (2004), Vienna, Austria (2005), Leiden, The Netherlands
(2006), Thessaloniki, Greece (2007), and in Edinburgh, UK (2008).

The 10th edition was organized again in Curtea de Argeş, in August 2009, where it
was decided to continue the series as the Conference on Membrane Computing (CMC).
The following editions were held in Jena, Germany (2010), Fontainebleau, France
(2011), Budapest, Hungary (2012), Chişinău, Moldova (2013), Prague, Czech
Republic (2014), Valencia, Spain (2015), and Milan, Italy (2016).

A regional version of CMC, the Asian Conference on Membrane Computing,
ACMC, started in 2012 in Wuhan (China), and continued in Chengdu, China (2013),
Coimbatore, India (2014), Hefei, Anhui, China (2015), and Bangi, Selangor, Malaysia
(2016).

CMC 18 was organized under the auspices of the International Membrane Com-
puting Society and by the Modelling, Testing and Verification Research Group, School
of Electrical Engineering and Computer Science, the University of Bradford, UK.

CMC 18 consisted of two parts: standard sessions, held from Tuesday to Thursday,
and an interaction day between participants, held on Friday. Monday was the arrival
day for most of the participants. The standard sessions included invited lectures given
by Erzsébet Csuhaj-Varjú (Budapest, Hungary), Harold Fellermann (Newcastle, UK),
Michael Fessing (Bradford, UK), and Maciej Koutny (Newcastle, UK).

The Best Student Paper Award, sponsored by Springer, was given to the paper
“Generalized P Colony Automata and Their Relation to P automata,” by Kristóf Kántor
and György Vaszil.

The editors express their gratitude to the Program Committee, the invited speakers,
the authors of the papers, the reviewers, and all the participants for their contributions
to the success of CMC 18. The support of the School of Electrical Engineering and
Computer Science of the University of Bradford and the Prize for the Best Student
Paper award granted by Springer are gratefully acknowledged.

November 2017 Marian Gheorghe
Grzegorz Rozenberg

Arto Salomaa
Claudio Zandron

http://computing.brad.ac.uk/cmc18/
http://2017.asiancmc.org/

Organization

CMC and ACMC Steering Committee

Henry Adorna Quezon City, Philippines
Artiom Alhazov Chişinău, Moldova
Bogdan Aman Iaşi, Romania
Matteo Cavaliere Edinburgh, UK
Erzsébet Csuhaj-Varjú Budapest, Hungary
Rudolf Freund Vienna, Austria
Marian Gheorghe (Honorary

Member)
Bradford, UK

Thomas Hinze Jena, Germany
Florentin Ipate Bucharest, Romania
Shankara N. Krishna Bombay, India
Alberto Leporati Milan, Italy
Taishin Y. Nishida Toyama, Japan
Linqiang Pan (Co-chair) Wuhan, China
Gheorghe Păun (Honorary

Member)
Bucharest, Romania

Mario J. Pérez-Jiménez Seville, Spain
Agustín Riscos-Núñez Seville, Spain
Petr Sosík Opava, Czech Republic
Kumbakonam Govindarajan

Subramanian
Penang, Malaysia

György Vaszil Debrecen, Hungary
Sergey Verlan Paris, France
Claudio Zandron (Co-chair) Milan, Italy
Gexiang Zhang Chengdu, China

CMC 18 Organizing Committee

Marian Gheorghe (Co-chair) Bradford, UK
Savas Konur (Co-chair) Bradford, UK
Raluca Lefticaru

(Communication Chair)
Bradford, UK

Daniel Neagu (Publicity Chair) Bradford, UK

CMC 18 Program Committee

Henry Adorna Quezon City, Philippines
Artiom Alhazov Chişinău, Moldova
Bogdan Aman Iaşi, Romania

Lucie Ciencialová Opava, Czech Republic
Erzsébet Csuhaj-Varjú Budapest, Hungary
Giuditta Franco Verona, Italy
Rudolf Freund Vienna, Austria
Marian Gheorghe (Co-chair) Bradford, UK
Thomas Hinze Jena, Germany
Florentin Ipate Bucharest, Romania
Shankara N. Krishna Bombay, India
Alberto Leporati Milan, Italy
Vincenzo Manca Verona, Italy
Giancarlo Mauri Milan, Italy
Radu Nicolescu Auckland, New Zealand
Linqiang Pan Wuhan, China
Gheorghe Păun Bucharest, Romania
Mario J. Pérez–Jiménez Seville, Spain
Antonio E. Porreca Milan, Italy
Agustín Riscos-Núñez Seville, Spain
José M. Sempere Valencia, Spain
Petr Sosík Opava, Czech Republic
György Vaszil Debrecen, Hungary
Sergey Verlan Paris, France
Claudio Zandron (Co-chair) Milan, Italy
Gexiang Zhang Chengdu, China

Additional Reviewer

Luca Manzoni Milan, Italy

VIII Organization

Invited Talks

Simple and Small: On Two Concepts
in P Systems Theory
(Extended Abstract)

Erzsébet Csuhaj-Varjú

Department of Algorithms and Their Applications,
Faculty of Informatics, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/c, Budapest, 1117, Hungary

csuhaj@inf.elte.hu

In membrane computing, a lot of research has been devoted to the computational power
of different variants of P systems, with special emphasis put on models with restricted
size. It has been shown that several types of membrane systems even with limited size
are very powerful, in some cases as powerful as Turing machines. Usually, the con-
sidered size parameters were the number of cells (compartments or nodes), the size and
the number of rules in the component cells, the number of (distinguished) symbols
of the P system or that of its components, even the size of the P system as a whole,
represented by a word: all of them are standard static size complexity parameters of
computing devices. Investigations in some well-known variants of P systems like
standard symbol-object P systems, symport/antiport P systems, generalized commu-
nicating P systems, P colonies exemplify these approaches and results (see [3, 6, 8]).

Although mainly static size complexity parameters have been in the focus of
interest, dynamic parameters, i.e. size parameters under functioning are important
characteristics as well since they provide information on the use of the static structure
of the P system. That is, the change of (maximum, minimum) number of cells, the
(maximum, minimum) number of executed rules or rule types, the (maximal, minimal)
number of (distinguished) symbols under functioning describe properties of the
behaviour of the membrane system. This problem area still has a lot of open questions.

P systems can also be considered as models of biological complex systems and
modeling tools for biological phenomena at the cell and tissue level. From this aspect,
the concept small may obtain new interpretation. Can we state that small as a notion has
biological relevance? Is a cell small? Can a tissue be considered small? These questions
motivate us to define the concept of a small P system that also incorporates the relation
of the P system and its environment. From this point of view, those parameters are
particularly interesting which describe the relation of the size (some size parameter)
of the P system and that of the environment available or observable for its components.
(Notice that in case of certain P system variants the environment is generated or will be
available step by step; see, for example [1, 2].)

Simple as a term can also play important role in P systems theory. Several
approaches to this concept can be considered, starting from syntactic simplicity to
simplicity in functioning. Structural simplicity, among others, may refer to the mutual
relations of the constituents of the membrane system. Can a P system be obtained from

some basic P systems by some elementary operations? If this is the case, what can we
say about the minimal (optimal) number of these operations? We may consider
operations like merge, separation, release, division; see for other operations [8].
Composition and transmission are also important: we may generate P system classes
from a finite set of very simple P systems [7]. In the literature, we find several examples
for P systems obtained from some basic types of P systems by some operations or
mappings (for example, kernel P systems [5], networks of cells [4]). One other
approach to simplicity is the so-called functional simplicity, i.e., cases where the P
systems or their components are able to perform only one type of functional activities
(for example, P colonies, see [3]). Determining P systems which consist of functionally
simple components (ingredients) would imply useful conclusions on the computational
process and also on the efficiency of these P systems in problem solving.

In our talk, we analyzed some important P system models from the point of view of
being small and attempted to provide some general conditions that a P system should
satisfy to be called simple. We also discussed the limits of using such simple P systems
as computing devices. We concluded that simple and small are important general
concepts in P systems theory, investigations in descriptional complexity of membrane
systems are essential research directions. However, to define proper concepts and
measures, in addition to aspects of computability, biological relevance should also be
considered.

This work was supported by the National Research, Development, and Innovation
Office - NKFIH, Hungary, Grant no. K 120558.

References

1. Balaskó, Á., Csuhaj-Varjú, E., Vaszil, G.: Dynamically changing environment for generalized
communicating p systems. In: Rozenberg, G., et al. (eds.) CMC 2016. LNCS, vol. 9504,
pp. 92–105. Springer, Switzerland (2015)

2. Ciencialová, L., Cienciala, L., Sosk, P.: P colonies with evolving environment. In: Leporati, A.,
et al. (eds.) CMC 2017. LNCS, vol. 1015, pp. 105–118. Springer, Switzerland (2016)

3. Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., Sosík, P.: P colonies. Bull. Int. Membrane
Comput. Soc. 2, 129–156 (2016)

4. Freund, R., Verlan, S.: A formal framework for static (tissue) p systems. In: Eleftherakis, G.,
et al. (eds.) WMC 2008. LNCS, vol. 4860, pp. 271–284. Springer, Berlin (2007)

5. Gheorghe, M., Ipate, F.: A kernel p systems survey. In: Alhazov, A., et al. (eds.) CMC 2013.
LNCS, vol. 8340, pp. 1–9. Springer, Berlin (2014)

6. Gheorghe, M., Păun, G., Pérez-Jiménez, M.-J., Rozenberg, G.: Research frontiers of mem-
brane computing: open problems and research topics. Int. J. Found. Comp. Sci. 24(5),
547–624 (2013)

7. Long, H., Fu, Y.: A general approach for building combinational p automata. Int. J. Comput.
Math. 84(12), 1715–1730 (2007)

8. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing.
Oxford University Press, Inc., New York (2010)

XII E. Csuhaj-Varjú

Petri Net Based Synthesis of Tissue Systems

Maciej Koutny

School of Computing, Newcastle University,
1 Science Square, Newcastle upon Tyne, NE4 5TG, UK

Tissue systems, generalising membrane systems, are a computational model inspired
by the functioning of living cells. In particular, they reflect the way in which chemical
reactions take place in cells and molecules move from one compartment to another
[4, 14]. Reactions are represented by evolution rules that specify which and how many
molecules can be produced from given molecules of a certain kind and quantity.
Membrane systems model the computational and communication processes within a
single cell divided by membranes into compartments; rules belong to compartments
and the molecules that are produced either remain in the compartment or can be
delivered to a neighbouring (i.e., enclosed or surrounding) compartment. Hence a
membrane system has an associated tree-like structure describing the connections that
can be used for the transport of molecules. This is generalised in tissue structures to
arbitrary graphs allowing communication along all edges. The nodes of the graph
associated with a tissue system represent, e.g., cells in a tissue, and the edges are the
channels along which molecules are passed. Both membrane and tissue systems are
essentially multiset rewriting systems with their dynamic aspects including potential
behaviour (computations), deriving from their evolution rules. Consequently, they are
similar to Petri nets. In particular, there is a canonical way of translating membrane
systems into Petri nets with transitions corresponding to evolution rules [10]. This
translation is faithful in the sense that it relates computation steps at the lowest level
and induces in a natural way extensions and interpretations of Petri net structure and
behaviour. The membrane structure is translated into localities associated with tran-
sitions. The locality of a transition represents the compartment to which the corre-
sponding evolution rule belongs. The localities of transitions make it possible to define
a locally maximal step semantics in addition to the more common sequential semantics
and (maximal) step semantics. Locally maximal steps model localised synchronised
pulses with maximal concurrency restricted to compartments.

Petri nets are a well-established general model for distributed computation [5, 6, 15]
with an extensive range of tools and methods for construction, analysis, and verification
of concurrent systems. The strong semantical link between the two models invites to
extend existing Petri net techniques, bringing them to the domain of membrane systems.
An example is the process semantics of Petri nets that can help to understand the
dynamics and causality in the biological evolutions represented by membrane systems
[8, 10]. More details on the relationship between Petri nets and membrane systems can
be found in, e.g., [7, 11].

This talk will focus on the synthesis problem understood as the problem of the
algorithmic construction of a system from a specification of its observed or desired
behaviour. Automated synthesis from behavioural specifications is an attractive and
powerful way of constructing correct concurrent systems [1–3, 13]. The paper [9]
considered the synthesis of membrane systems from (step) transition systems, and the
paper [12] discussed the same problem for membrane systems. Both papers demon-
strated how a solution to the synthesis problem of Petri nets, based on the notion of
regions of a transition system, leads to a method for the automated synthesis of
membrane systems. The talk will show how the synthesis problem for tissue systems
(with locally maximal concurrency) can be solved when the tissue structure of the
system to be constructed is given together with the step transition system. Following
this, a method for extending the basic solution to cope with situations when the
structure of the target tissue system has to be constructed will be presented.

Acknowledgement. This talk is based on research conducted in collaboration with
Jetty Kleijn, Marta Pietkiewicz-Koutny, and Grzegorz Rozenberg.

References

1. Badouel, E., Darondeau, P.: Theory of regions. In: Part I of [15], pp. 529–586
2. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of nets with

step firing policies. Fundamenta Informaticae. 94, 275–303 (2009)
3. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Acta Informatica 27, 315–368

(1989)
4. Păun, G., Rozenberg, G., Salomaa A. (eds.): The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2010)
5. Koch, I., Reisig, W., Schreiber F. (eds.): Modeling in Systems Biology — The Petri Net

Approach. Springer, London (2010)
6. Jensen, K., van der Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.): Transactions on

Petri Nets and Other Models of Concurrency VII (2013)
7. Kleijn, J., Koutny, M.: Petri nets and membrane computing. In: [4], pp. 389–412
8. Kleijn, J., Koutny, M.: Processes of membrane systems with promoters and inhibitors.

Theoret. Comput. Sci. 404, 112–126 (2008)
9. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Membrane systems and petri

net synthesis. MeCBIC. EPTCS 100, 1–13 (2012)
10. Kleijn, J., Koutny, M., Rozenberg, G.: Process semantics for membrane systems.

J. Automata, Lang. Comb. 11, 321–340 (2006)
11. Kleijn, J., Koutny, M., Rozenberg, G.: Petri nets for biologically motivated computing. Sci.

Ann. Comput. Sci. 21, 199–225 (2011)
12. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M.: Tissue systems and Petri net synthesis. In:

Transactions on Petri Nets and Other Models of Concurrency IX, pp. 124–146 (2014)
13. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Applying regions. Theoret.

Comput. Sci. 658, 205–215 (2017)
14. Păun, G.: Membrane Computing, An Introduction. Springer, Berlin (2002)
15. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I & II. LNCS, vol. 1491 & 1492.

Springer, Berlin (1998)

XIV M. Koutny

Contents

Simulating Evolutional Symport/Antiport by Evolution-Communication
and vice versa in Tissue P Systems with Parallel Communication 1

Henry Adorna, Artiom Alhazov, Linqiang Pan, and Bosheng Song

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 15
Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

Controlled Reversibility in Reaction Systems . 40
Bogdan Aman and Gabriel Ciobanu

Multiset Patterns and Their Application to Dynamic Causalities
in Membrane Systems . 54

Roberto Barbuti, Roberta Gori, and Paolo Milazzo

Counting Membrane Systems . 74
Luis Valencia-Cabrera, David Orellana-Martín,
Agustín Riscos-Núñez, and Mario J. Pérez-Jiménez

APCol Systems with Teams . 88
Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

Bi-simulation Between P Colonies and P Systems
with Multi-stable Catalysts . 105

Erzsébet Csuhaj-Varjú and Sergey Verlan

Computationally Complete Generalized Communicating P Systems
with Three Cells . 118

Erzsébet Csuhaj-Varjú and Sergey Verlan

Event-Based Life in a Nutshell: How Evaluation of Individual Life Cycles
Can Reveal Statistical Inferences Using Action-Accumulating P Systems 129

Thomas Hinze and Benjamin Förster

On Evolution-Communication P Systems with Energy Having Bounded
and Unbounded Communication . 151

Richelle Ann B. Juayong, Nestine Hope S. Hernandez,
Francis George C. Cabarle, Kelvin C. Buño, and Henry N. Adorna

Generalized P Colony Automata and Their Relation to P Automata. 167
Kristóf Kántor and György Vaszil

http://dx.doi.org/10.1007/978-3-319-73359-3_1
http://dx.doi.org/10.1007/978-3-319-73359-3_1
http://dx.doi.org/10.1007/978-3-319-73359-3_2
http://dx.doi.org/10.1007/978-3-319-73359-3_3
http://dx.doi.org/10.1007/978-3-319-73359-3_4
http://dx.doi.org/10.1007/978-3-319-73359-3_4
http://dx.doi.org/10.1007/978-3-319-73359-3_5
http://dx.doi.org/10.1007/978-3-319-73359-3_6
http://dx.doi.org/10.1007/978-3-319-73359-3_7
http://dx.doi.org/10.1007/978-3-319-73359-3_7
http://dx.doi.org/10.1007/978-3-319-73359-3_8
http://dx.doi.org/10.1007/978-3-319-73359-3_8
http://dx.doi.org/10.1007/978-3-319-73359-3_9
http://dx.doi.org/10.1007/978-3-319-73359-3_9
http://dx.doi.org/10.1007/978-3-319-73359-3_10
http://dx.doi.org/10.1007/978-3-319-73359-3_10
http://dx.doi.org/10.1007/978-3-319-73359-3_11

Modelling and Validating an Engineering Application
in Kernel P Systems . 183

Raluca Lefticaru, Mehmet Emin Bakir, Savas Konur,
Mike Stannett, and Florentin Ipate

Solving a Special Case of the P Conjecture Using Dependency Graphs
with Dissolution . 196

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, and Claudio Zandron

Most Common Words – A cP Systems Solution . 214
Radu Nicolescu

Tissue P Systems with Rule Production/Removal . 230
Linqiang Pan, Bosheng Song, and Gexiang Zhang

Reversing Steps in Membrane Systems Computations 245
G. Michele Pinna

Families of Languages Encoded by SN P Systems 262
José M. Sempere

On the Robust Power of Morphogenetic Systems for Time
Bounded Computation . 270

Petr Sosík, Vladimír Smolka, Jan Drastík, Jaroslav Bradík,
and Max Garzon

Author Index . 293

XVI Contents

http://dx.doi.org/10.1007/978-3-319-73359-3_12
http://dx.doi.org/10.1007/978-3-319-73359-3_12
http://dx.doi.org/10.1007/978-3-319-73359-3_13
http://dx.doi.org/10.1007/978-3-319-73359-3_13
http://dx.doi.org/10.1007/978-3-319-73359-3_14
http://dx.doi.org/10.1007/978-3-319-73359-3_15
http://dx.doi.org/10.1007/978-3-319-73359-3_16
http://dx.doi.org/10.1007/978-3-319-73359-3_17
http://dx.doi.org/10.1007/978-3-319-73359-3_18
http://dx.doi.org/10.1007/978-3-319-73359-3_18

Simulating Evolutional Symport/Antiport by
Evolution-Communication and vice versa in

Tissue P Systems with Parallel Communication

Henry Adorna1,2, Artiom Alhazov1,3(B), Linqiang Pan1,4, and Bosheng Song1

1 Key Laboratory of Image Information Processing and Intelligent Control
of Education Ministry of China, School of Automation,

Huazhong University of Science and Technology, Wuhan 430074, China
lqpan@mail.hust.edu.cn, boshengsong@hust.edu.cn

2 Department of Computer Science (Algorithm and Complexity),
University of the Philippines Diliman, 1101 Quezon City, Philippines

hnadorna@dcs.upd.edu.ph
3 Institute of Mathematics and Computer Science Academy of Science of Moldova,

Academiei 5, 2028 Chişinău, Moldova
artiom@math.md

4 School of Electric and Information Engineering,
Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract. We aim to compare functionality of symport/antiport with
embedded rewriting to that of symport/antiport accompanied by rewrit-
ing, by two-way simulation, in case of tissue P systems with parallel com-
munication. A simulation in both directions with constant slowdown is
constructed.

Keywords: Membrane computing · Evolution-communication
Evolutional symport/antiport · Simulation

1 Introduction

Membrane systems with symbol-objects are a theoretical framework of paral-
lel distributed multiset processing. Its two essential features are rewriting (also
sometimes called evolution) and communication. One extreme case is using
rewriting alone, then in the non-cooperative case the computational power is
rather weak, while cooperation of two symbols already leads to the computa-
tional completeness. To use distributivity, some mechanism of passing informa-
tion between regions is necessary, and moving objects is most natural choice.

The second extreme case is using communication alone: moving objects with-
out creating, destroying or modifying them. In one of the most studied models
the rules are called symport/antiport rules, respectively if objects are moved
across a membrane or channel in one/both directions. Clearly, without creating
objects, for being able to use more symbols in the computation and/or result

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 1–14, 2018.
https://doi.org/10.1007/978-3-319-73359-3_1

2 H. Adorna et al.

than there are initially in the system, some unbounded source of them is needed,
e.g. the environment. Note that communication rules across the skin membrane
can do the same work as rewriting rules do. It follows that already with a single
membrane, communication rules involving up to three objects is already enough
for computational completeness, while further restricting rules makes the second
membrane necessary, and the proof become much more complicated.

The historically first model of membrane computing is the transitional one:
communication is embedded into rewriting by target indications for objects in
the right hand side of rules. While not increasing the computational power, it
brings additional benefits from the structure, for example, generating languages
is considered.

A different approach is to allow both rewriting (which may be restricted
to be non-cooperative) and communication rules (no longer needing unbounded
object supply in the environment). The model is called evolution-communication.
It allows computational completeness constructions already with communica-
tion rules of up to two objects, and the proofs are simpler than in pure sym-
port/antiport case.

Finally, a model embedding rewriting into communication rule has been
recently introduced in [9], called evolutional symport/antiport. It has been
shown to either reach the computational completeness or efficiency (i.e., solving
intractable problems in polynomial number of steps) with smaller bounds on the
size of rules, or improve existing symport/antiport results due to a more refined
complexity measure, accounting for both the number of reactants and number
of products.

Overall in the literature on membrane computing, a huge number of results
are those establishing computational completeness of some model or variant by
simulating another model, which is usually sequential. However, simulating P
systems (except the classes P systems having considerably less power than the
computational completeness) by something (significantly different P systems or
completely different models of computation) are much more rare, and one of the
reasons for it is immediate: implementing maximal parallelism itself is consid-
erably more tedious than establishing the computational completeness. We can
mention two example appearing in the literature: simulating a two-membrane
proton pumping system (a special particular case of evolution-communication P
system) with one proton by a P system with one bi-stable catalyst [1] and sim-
ulating spiking neural P systems with delays by those without delays [2]. How-
ever, the first one is a one-way simulation, and the latter is a simulation staying
within the same model. Imagine that requiring the slowdown to be bounded by
a constant would pose a significant additional difficulty. Yet, this is the kind of
question to be addressed in this paper.

There was a discussion about how evolution-communication relates with evo-
lutional symport/antiport; even though both models are known to be computa-
tionally complete, the proofs are rather different. Hence, it presents an interest
to simulate by one model the process of computation in the other model and
vice versa. To keep simulation transparent and “nice,” we impose a condition

Simulating Evolutional Symport/Antiport by Evolution-Communication 3

that the simulation slowdown must be (limited by a) constant, and the configu-
rations of the simulated system should be obtainable from the configurations of
the simulating system in some easy way, e.g., a morphism. Note that we allow
the simulation to be incorrect, as long as the corresponding computation of the
simulating system is not halting. As it will be clear later, it is easily decidable
which steps of simulation are incorrect, e.g., by checking for appearance of the
special symbol #.

We should note that due to the nature of the problem, we assume two features
of the models: tissue structure and parallel communication; we now explain the
reasons for that. First, in evolution-communication model objects may be mas-
sively renamed in parallel; to be able to simulate this with a constant slowdown,
communication rules must also be applicable in a massively parallel way. Second,
without the tissue structure it would be very difficult to synchronize evolution
with communication. Indeed, in pure symport systems the information is prop-
agated such that the signal would return to the same region in even number of
steps, while it could reach the neighboring region in odd number of steps. Using
antiport, circumventing this problem does not seem easy either, since we assume
the rules my be simulated in massively parallel way.

This paper is organized as follows: the necessary definitions are given,
then some easy cases of the problem formulation are solved. Next, evolution-
communication P systems are simulated by evolutional symport/antiport. The
converse direction in general is more involved. After some preliminary arguments,
the solution is incrementally constructed. First, the case of simulating one rule
without idle objects is solved, also handling incorrect assignment of objects to
rules. Second, idle objects are handled, also verifying the maximality of paral-
lelism. Third, halting is approached within the same model. Finally, a complete
solution is given in tables in the end of the paper. Having accomplished the goal
and formulated the results, we give concluding remarks.

2 Definitions

This paper will be dealing with simulating evolution, and communication rules
within the framework of tissue P systems with parallel communication. In par-
ticular, the well known evolution-communication rules are compared to the so-
called evolutional symport/antiport rule introduced in [9]. We provide here only
essential definitions that would be needed in the development of the result.

The basic P system structure that we will consider in doing simulations in
both direction is the so-called tissue P systems, first considered in [8]. We now
recall their definition, keeping in mind that we do not use states of cells, that
the membrane channels can be easily deduced from the rules, and that the set
of symport/antiport rules (evolutional or not) is global.

We denote k-th symbol of string u, 1 ≤ k ≤ |u|, by u[k].

Definition 1. Tissue P Systems [8] A tissue P system or tP system, of degree
m ≥ 1, is a construct

Π = (O,w1, w1, . . . , wm, R, iout),

4 H. Adorna et al.

where:

1. O is a finite non-empty alphabet (of objects);
2. iout ∈ {1, 2, . . . ,m} indicates the output cell;
3. wi specifies the initial multiset of objects in cell i, 1 ≤ i ≤ m;
4. R is a finite set of rules.

Before proceeding with formal definition of rules, we would like to recall
some notations existing in the literature. First of all, the most general case of
distributed rewriting was introduced in the model called network of cells, [4].
Omitting permitting and forbidden conditions (not needed for the scope of this
paper) and interchanging region and multiset for better readability, we obtain
form

(1, u1) · · · (n, un) → (1, v1) · · · (n, vn),

meaning for every region i, multiset ui is consumed, and for every region i,
multiset vi is produced.

Traditionally in membrane computing, rewriting rules were defined for every
region i as a set Ri of rules of form u → v, corresponding to (i, u) → (i, v) in
the network of cells model. Here, we prefer to have a single set of rules, and use
a short notation (i, u → v); we may still write u → v if there is a single working
region in a membrane system.

For symport/antiport rules in the evolution–communication model [3], the
following notations were used: (u, in), (v, out), (v, out;u, in), and such rules were
grouped in sets R′

i corresponding to moving across membrane i. When consider-
ing symport/antiport rules for the tissue structure, a single set of rules is defined,
and rules have forms (i, u, j) and (i, u/v, j), corresponding to (i, u) → (j, u) and
(i, u)(j, v) → (i, v)(j/u) in the network of cells model, respectively. We recall
that by (i, u, j) we mean from cell i a multiset of objects represented by u is sent
to cell j; and (i, u/v, j) means that cell i brings u to cell j, while cell j brings v
to cell i at the same time.

Finally, evolutional symport/antiport is a generalization of symport/antiport
where the multisets that are moved between cells may also be modified: [u]i[]j →
[]i[u′]j corresponds to (i, u) → (j, u′) in the network of cells model, and [u]i[v]j →
[v′]i[u′]j corresponds to (i, u)(j, v) → (i, v′)(j, u′) in the network of cells model.
In the rest of the paper we use the network of cells notation for these rules. We
now continue with definitions.

Definition 2. Evolution-Communication Rules

1. Evolution rule: r : (i, a → u), where a ∈ O and u ∈ O∗. Rule r is non-
cooperative.

2. Symport rule: (i, u, j), where u represents a multiset of symbols from O.
The length of a symport rule is equal to |u|.

3. Antiport rule: (i, u/v, j), where u and v represent multisets of symbols from
O. The length of an antiport rule is equal to |u| + |v|.
The following definition is a system with rules introduced in [9] via the fol-

lowing P system variant, excluding cell division:

Simulating Evolutional Symport/Antiport by Evolution-Communication 5

Definition 3 [9]. A tissue P system (of degree q ≥ 1) with evolutional sym-
port/antiport rules is a tuple

Π = (Γ,E,M1,M2, . . . ,Mq, R, iout),

where

1. Γ is an alphabet of objects.
2. E ⊆ Γ is a set of objects initially located in the environment in unboundedly

many copies.
3. Mi, 1 ≤ i ≤ q, is a finite multiset over Γ .
4. R is a finite set of evolutional communication rules.
5. iout ∈ {1, 2, . . . , q}.

In our purposes, we explicitly state the evolutional symport/antiport rules
as follows:

Definition 4. Evolutional Symport/Antiport Rules [9]

1. Evolutional symport rules: (i, u) → (j, u′), where 1 < i ≤ q, 0 < j ≤ q,
i �= j; u ∈ Γ+, u′ ∈ Γ ∗ or i = 0, 1 < j ≤ q; u ∈ Γ+, u′ ∈ Γ ∗, and if i = 0,
then u contains at least one object a ∈ Γ \ E;

2. Evolutional antiport rules: (i, u)(j, v) → (i, v′)(j, u′), where 0 ≤ i ≤ q,
0 ≤ j ≤ q, i �= j, u, v ∈ Γ+, u′, v′ ∈ Γ ∗.

It is straightforward to see that with evolution (either present besides com-
munication, or embedded into it), the unbounded supply of objects is no longer
needed (unlike in pure symport/antiport model), so the environment does not
need to be treated as a special reasons. In what follows we do not use the envi-
ronment; if it is needed for some reason, it can be regarded as a usual cell, and
we enumerate cells from 1 to m.

We recall that either model operates in the usual maximally parallel mode:
at each step, a non-extendable multiset of rules is chosen and applied. We call
an object idle if no rule has been assigned to it, and it is carried over to the next
configuration unchanged. Clearly, no rule may be applicable to all idle objects.

The typical assumption for tissue P systems is that at most one communi-
cation rule may be applied for each channel (i.e., for any unordered pair (i, j)
of cells). Throughout this paper we consider tissue P systems with parallel com-
munication, meaning that each channel works in the maximally parallel way,
similarly to the typical functioning of symport/antiport in cell-like P systems.

Definition 5. Simulation
We say that a rule A is simulated by a set of rules B, if there exists an injective
morphism h from configurations of a simulated system into configurations of a
simulating system such that for any configuration x, if A(x) denotes the output
of applying rule A on x, there exist applications of rules in B, possible taking
multiple steps, such that their output B(h(x)) on input h(x) equals h(A(x)).
Moreover, any halting computation of the simulating system starting with h(x)
should correspond, in the manner described above, to a halting computation of
the simulated system starting with x.

6 H. Adorna et al.

3 Unrestricted Cases are Easy

It is not hard to see that if rewriting in the evolution-communication model is not
required to be non-cooperative, then evolutional symport/antiport can be sim-
ulated by rewriting alone. This is a particular case of evolution-communication.
The rule of the form (i, u)(j, v) → (i, v′)(j, u′) could be converted into rule of
the form hi(u)hj(v) → hi(v′)hj(u′), where hk(a) = ak for a ∈ O, 1 ≤ k ≤ m;
this procedure appears many times in the literature, and usually referred to as
“flattening”.

Moreover, if we allow the underlying structure of tissue P systems to allow
self-loops (note that throughout this paper, we assume that all cells have dif-
ferent labels), then the converse simulation is trivial. Indeed, standard sym-
port/antiport is a particular case of evolutional symport/antiport, while evolu-
tion rule (i, a → u) would correspond to an evolutional symport rule on a loop:
(i, a) → (i, u).

In the rest of the paper, we follow standard assumptions: rewriting is
restricted to the non-cooperative case, and self-loops are not allowed.

4 Evolution-Communication via Evolutional
Symport/Antiport

Theorem 1. Let Π be a tissue P system with non-cooperative evolution and
parallel communication rules. Let r : (i, a → u) be a rewriting/evolution rule in
Π. Then there exist two evolutional symport/antiport rules that simulate r in
two steps.

Moreover, the simulation needs rules of size at most 1 + |u|, for a rewriting
rule of size 1 + |u|.
Proof. We use the following two evolutional symport/antiport rules and two
cells, namely, i and i′ in the simulation. The application of the rules is sequential.

(i, a) → (i′, r), (i′, r) → (i, u).

Note that the size of (i, a → u) is 1 + |u|. Clearly, the maximal size of our
evolutional symport rules is |u| + |a| = |u| + 1.

In the non-trivial case (at least two cells) we may take as i′ the first cell
different from i, only in the trivial case we need an additional cell.

Although symport/antiport rules are already a particular case of evolutional
symport/antiport rules, our goal is a synchronized simulation.

Theorem 2. Let Π be a tissue P system with non-cooperative evolution and
parallel communication rules. Let r : (i, u, j) be a symport rule in Π. Then there
exist two evolutional symport rules that simulate r in two steps.

Moreover, the simulation needs rule of size at most |u| + 1 for an antiport
rule of size |u| + 1.

Simulating Evolutional Symport/Antiport by Evolution-Communication 7

Proof. The following two evolutional symport/antiport rules simulate r :
(i, u, j) :

(i, a) → (i′, r), (i′, r) → (j, u).
In the non-trivial case (at least three cells) we may take as i′ the first cell

different from i and j, only in the trivial case we need an additional cell.
The simulation is done in two steps using two appropriate rules of the simu-

lating system. Also, the simulation needs rule of size at most |u| + |v| + 2 for an
antiport rule of size |u| + |v|.
Theorem 3. Let Π be a tissue P system with non-cooperative evolution and
parallel communication rules. Let r : (i, u/v, j) be an antiport rule in Π. Then
there exist two evolutional antiport rules that simulate r in two steps.

Moreover, the simulation needs rule of size at most |u|+|v|+2 for an antiport
rule of size |u| + |v|.
Proof. The following two evolutional symport/antiport rules simulate r :
(i, u/v, j):

(i, u)(j, v) → (i, r′)(j, r′′), (i, r′)(j, r′′) → (i, v)(j, u).

The simulation is done in two steps using two appropriate rules of the simu-
lating system. Also, the simulation needs rule of size at most |u| + |v| + 2 for an
antiport rule of size |u| + |v|.

5 Evolutional Symport/Antiport via Evolution-
Communication

First, we look at the following example, before providing the results of this
section:
Example 1. Consider the following evolutional symport/antiport rules of a par-
ticular P system Π below.

(1, ab) → (2, x), (1, ac) → (2, y), (1, bc) → (2, z),

where a, b, c, x, y, z ∈ O.
Let a2b2c2 be found in cell 1 of Π. Then in a single step, objects a2b2c2 can

be transformed into xyz in cell 2.
Let us try simulating these rules in a P system with evolution-communication

rules where evolution rules are restricted to be non-cooperative.
Observation 1. If we first do communications, then we would have moved
a2b2c2. Since rewriting is non-cooperative, we end up with an even number of
copies of all objects. Thus, we fail.

Observation 2. Rewriting is also needed after the communication. In the case,
when the right hand side of the rule is shorter than that of the left hand side of
the rule, before some symbols are removed, the communication rules must verify
their correspondence to the other objects of the rule.

Hence, at least three steps are necessary for the simulation. Since evolution
is non-cooperative, non-determinism seems to be unavoidable.

8 H. Adorna et al.

5.1 Simulating a Rule with No Idle Objects

Now consider each rule r : (i, u)(j, v) → (i, v′)(j, u′) of the simulated system.
Assume that the objects at the left hand side of each rule are ordered, that is,

given by strings. Then we provide the simulating system with rules (i, u[k] → rk).
These rules rewrite objects represented by u[k], for each position k, 1 ≤ k ≤ |u|
of string u. Similarly, we provide the simulating system with the same kind of
rules, that is, (j, v[k] → r′

k), for each k, 1 ≤ k ≤ |v|.
In the next step, the simulating system performs the following antiport (com-

munication) rule (i, r1 · · · r|u|/r′
1 · · · r′

|v|, j). This rule allows objects r1 · · · r|u| and
r′
1 · · · r′

|v| to be sent to regions j and i, respectively, in one step.
Finally, the simulating system will do the final rewriting rules in regions i

and j to complete the simulation. In particular, we will have (i, r′
1 → v′) and

(i, r′
k → λ), 2 ≤ k ≤ |v|, as well as (j, r1 → u′) and (j, rk → λ), 2 ≤ k ≤ |u|,

respectively.
Note that the above construction suffices alone only if the objects are cor-

rectly assigned to the rules and no object remains idle.
We summarize this construction as follows:

Proposition 1. Let Π be a tissue P system with evolutional symport/antiport
rules without idle objects appearing in reachable configurations. An evolutional
antiport rule can be simulated with evolution-communication (antiport) rules.

Clearly, evolutional symport can be simulated as a degenerate case of evolu-
tional antiport. We let one of the u or v be empty (string). Thus we have

Corollary 1. Let Π be some tissue-like P system with evolutional symport/
antiport without any object remaining idle.

Remark 1. To handle objects that are incorrectly assigned to the rules, we add
the following trap rules: (i, rk → #), (i,# → #) for 1 ≤ k ≤ |u| and (j, r′

k → #),
(j,# → #) for 1 ≤ k ≤ |v|.

5.2 Simulations with Idle Objects

Idle objects are those objects in a region or cell that are not supposed to be
evolved or communicated yet in a particular moment. These objects must wait
until they are allowed to evolve or be communicated by the system, or until the
system halts.

Observation 3. We conclude that in the first simulation step, each object non-
deterministically decides between evolving and staying idle. This adds the follow-
ing rules: (i, a → a0), (i, a0, i

′), (i′, a0 → a), (i′, a, i), a ∈ O, 1 ≤ i ≤ m, where
m is the number of cells in the system being simulated and O is its alphabet.

But the simulated system is not asynchronous, rather it is maximally parallel.

Simulating Evolutional Symport/Antiport by Evolution-Communication 9

We proceed with the construction that would also verify that the parallelism
of applied rule is maximal.

In order to consider maximality of parallelism during the simulation, we
use a technique we call technique of pairs of objects. In this technique, one of
the objects would be used to test the needed condition (such as absence of
something), while the other one is for verifying that the first object passed the
test. Thus, the rules we had for the idle objects would now be: (i, a → a(i)a0),
(i, a0 → a1), (i, a(i)a1, i

′), (i′, a1 → a), (i′, a, i), a ∈ O, 1 ≤ i ≤ m. Note that we
could have a rule erasing a(i) in region i′, but it is not necessary.

After applying these rules, objects a(i) wait for one step. We use this time
to test that no rule should be applicable to the objects that are chosen to be
idle: (i, h(i)(u)/h(j)(v), j), where h(k)(a) = a(k), a ∈ O, 1 ≤ k ≤ m define the
corresponding morphism.

In the case that there was any applicable rule which was not chosen, we could
force to disregard such computation by the following rules: (j, h(i)(a) → #) and
(i, h(j)(a) → #).

Note that the simulation of one step for the idle objects takes five steps. To
synchronize the simulation of rule applications we add two more steps. Hence,
rules (j, r1 → u′), (i, r′

1 → v′) are replaced by (j, r1 → (u′, 2), (i, r′
1 → (v′, 2))

where (·, 2) is a morphism naturally defined on O. Also, we add rules (k, (a, 2) →
(a, 1), (k, (a, 1) → a) for 1 ≤ k ≤ m, a ∈ O. This ends process of simulation and
we summarize it in the following statement:

Theorem 4. Let Π be a tissue-like P system with evolutional symport/antiport
rules with no objects remaining idle. There exist evolution–communication sys-
tem that handles such idle objects in maximally parallel manner.

Corollary 2. There is an evolution-communication system that handles idle
objects of a tissue-like P system with evolutional symport/antiport rules.

Proof. We replace the rules for the idle objects with the following rules: (i, a →
a(i)a0), (i, a0, i

′), (i′, a0 → a(i)), (1, a(i)/a1, i
′), (i, a1 → a).

Note that unless the simulated system halts with all the regions being empty,
the simulating system never halts.

At this point we would like to mention two “cheating” possibilities to avoid
further complexity. The first one is to define for the simulated system, in case
of no applicable rules the next configuration to be the same as the current
one, and redefine halting as repeating the configuration after a specified number
of steps, replacing (i,# → #) by (i,# → ##). The second possibility is to
globally produce specific additional objects in simulating the application of rules,
erased after one step, and use them as promoters to continue the computation.
However, we are interested in staying within the same model: classical definition
of maximal parallelism and halting and no additional features.

5.3 To Halt or Not to Halt

So far, in the first step of the simulation, each object had two alternatives; to be
used in some rule (possibly having choice between multiple rules), or to stay idle;

10 H. Adorna et al.

with verification that no rule is further applicable to the idle objects and that the
rule assignment is correct. Now, these objects should have a third alternative:
to halt. Indeed, recall that our goal is a simulation with a slowdown by a factor
of constant, and the population of objects in unbounded.

On objects choosing between these three alternatives, we need to verify the
following additional conditions. First, either all objects choose halting, or none.
Second, no rule should be applicable to the “halting” objects. Third, none of the
objects should choose to be “idle, but not halting” if no rule is applicable in the
whole system.

Observation 4. The second condition is similar to that for the idle objects. The
first one could be implemented by the pairs technique. The third condition is the
most difficult. We verify it with the help of one additional control object in the
system.

We proceed by listing the following rules for the simulating system:

Applying a rule:
We replace (i, u[k] → rk) by (i, u[k] → rkee0) if i �= 1, and by (1, u[k] →
rk(e, 1)) if i = 1.
Producing witnesses of rule applications throughout the system:
Add rules (1, (e, 1) → ee0), (i, e, 1), (i, e0, 1), (1, e0 → e1), (1, ee1, 1′).
Control object:
(will halt)

(1, I0 → I1), (1, I1 → I2I), (1, I2 → I3), (1, I3I, 1′).

(continue the computation)

(2, I → I4), (2, I4, 1), (1, I3I4, 1′), (1′, I4 → (I0, 2)),

(1′, (I0, 2), 1), (1, (I0, 2) → (I0, 1)), (1, (I0, 1) → I0).

Notice that object e returns to region 1 from region 2 and moves with an
extra object e1 to region 1′ by the previous rule.
Checking for absence of “idle but not halting objects.”

(1, I → f (1)f
(1)
0 · · · f (m)f

(m)
0), (1′, f (i), i), (1′, f (i)

0 , i),

(i, f (i)
0 → f

(i)
1 , (i, f (i)f

(i)
1 , 2)

will be done in the seventh step of the simulation, in each region i by the idle
object f (i).
Idle objects:
Replace (i, a → a(i)a0) by (i, a → a(i)a−5), adding rules (i, ak → ak+1, −5 ≤
k ≤ −1.
Add rules (i, a(i)f (i), 2′), (i, f (i)

1 → #).
Halting objects:
Add rules (i, a → a

(i)
h).

Simulating Evolutional Symport/Antiport by Evolution-Communication 11

Checking inapplicability:

(i,H(i)(u)/H(j)(v), j), where H(k)(a) = a(k), a ∈ O, 1 ≤ k ≤ m,

define the corresponding morphisms.
In case there was any additionally applicable rule which was not chosen,
rules (j,H(i)(a) → #) and (i,H(j)(a) → #) will force such computations to
be disregarded.

Table 1. Simulation Synchronization Table, F = f (1)f
(1)
0 · · · f (m)f

(m)
0 , G = g(1)g

(1)
0

· · · g(m)g
(m)
0

Evolve

12 H. Adorna et al.

Checking absence of a
(i)
h in regions i by both rule applications and by “idle

but not halting” objects:
Add g(1)g

(1)
0 · · · g(m)g

(m)
0 to the right sides of the rules

(i, a → a(i)a−5), i �= 1, (i, u[k] → rkee0), i �= 1 and (1, u[k] → rk(e, 1)).

Add rules

(i, g(k), k), (i, g(k)0 , k), (i, g(i)0 → g
(i)
1),

(i, g(i)g(i)1 , 2′), (i, g(i)a(i)
h , 2), (i, g(i)1 → #).

Now, if we put together all these rules that we listed for the systems simulat-
ing evolutional symport/antiport, see also the simulation synchronization tables,
we would have the following results (Table 1):

Theorem 5. An evolutional symport/antiport rule on a tissue-like P system
with parallel communication could be simulated by evolution-communication sym-
port/antiport rule with constant slowdown.

Finally, we give our main result:

Theorem 6. (Main Results)
In a tissue P system with parallel communication and non-cooperative evolution
rules, we have.

1. An evolutional symport/antiport rule simulates evolution–communication
symport/antiport rule.

2. An evolutional symport/antiport rule could be simulated by evolution–
communication symport/antiport rule.

Moreover, the simulation in both directions is with a constant slowdown.

6 Concluding Remarks

We have constructed a simulation of evolutional symport/antiport rule by
evolution-communication rules and also, evolution-communication rule being
simulated by a system with evolutional symport/antiport rules. We restricted
our systems to be tissue P systems with non-cooperative evolution rules and
performing parallel communications. The construction is rather challenging and
involved, if not very difficult in one direction, but fairly easy in the other direc-
tion. Additionally, we presented simulations in both directions with constant
slowdown.

We have recalled previous results that provided results relating some model
of P systems to another one; transition P systems in evolution–communication
P systems with energy [5,6], and transition P Systems in weighted SN P Sys-
tems [7], among others. As we have commented earlier, these are mostly one-way
simulation of one model by another. These one-way simulations suggests that

Simulating Evolutional Symport/Antiport by Evolution-Communication 13

there is some homomorphism between these P systems involved. And that under
this homomorphism, one could investigate the capability of the simulated system
with respect to the properties of the simulating systems under such homomor-
phism.

In this paper, we somehow suggest that we could have a stronger relation with
respect to some homomorphism between these systems. However, we focused on
simulating rules of the system itself. It may not be hard to notice that corollary
to some simulation results reported in the literature, same analysis as we did in
this paper, could be obtained from their construction, say in [1,2,5–7], among
others.

Our result could spring board some ideas for further investigations:

1. Since we could somehow establish a two-way simulations of rules from dif-
ferent P systems, it might be nice to ask: how could we define the idea of
isomorphic P systems?

2. Since we introduce a two-way simulations of rules that allow constant slow-
down, could we suggest to have created an idea of a “reasonable” reduction
scheme for P systems.

3. Since, we have somehow suggested an idea to define “reducibility” in P sys-
tems, we might want to realize some complete problems in P systems, also.

Acknowledgments. The work is supported by the National Natural Science Founda-
tion of China (61320106005, 61033003, 61772214, and 61602192), the Innovation Scien-
tists and Technicians Troop Construction Projects of Henan Province (154200510012),
and the China Postdoctoral Science Foundation (2016M600592, 2017T100554).

References

1. Alhazov, A.: Number of protons/bi-stable catalysts and membranes in P systems.
time-freeness. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 79–95. Springer, Heidelberg (2006). https://doi.org/10.
1007/11603047 6

2. Cabarle, F.G.C., Buño, K.C., Adorna, H.N.: Time after time: notes on delays in
spiking neural P systems. In: Nishizaki, S., Numao, M., Caro, J., Suarez, M.T.
(eds.) PICT 2013, vol. 7. Springer, Tokyo (2013). https://doi.org/10.1007/978-4-
431-54436-4 6

3. Cavaliere, M.: Evolution–communication P systems. In: Păun, G., Rozenberg, G.,
Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36490-0 10

4. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In:
Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77312-2 17

5. Juayong, R.A.B, Adorna, H.N.: On simulating cooperative transition P system-
sin evolution–communication P systems with energy. Nat. Comput. 1–11 (2016).
https://doi.org/10.1007/s11047-016-9589-7

https://doi.org/10.1007/11603047_6
https://doi.org/10.1007/11603047_6
https://doi.org/10.1007/978-4-431-54436-4_6
https://doi.org/10.1007/978-4-431-54436-4_6
https://doi.org/10.1007/3-540-36490-0_10
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/s11047-016-9589-7

14 H. Adorna et al.

6. Juayong, R.A.B., Adorna, H.N.: Relating computations in non-cooperative transi-
tion P systems and evolution-communication P systems with energy. Fundamenta
Informaticae 136(3), 209–217 (2015). https://doi.org/10.3233/FI-2015-1152

7. Juayong, R.A.B., Hernandez, N.H.S., Cabarle, F.G.C., Adorna, H.N.: A simulation
of transition P systems in weighted spiking neural P systems. In: Nishizaki, S., et al.
(eds.) Proceedings of Workshop on Computation: Theory and Practice 2013, WCTP
2013, pp. 62–78. World Scientific (2014)

8. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodriguez-Patón, A.: Tissue P systems. Theor.
Comput. Sci. 296, 295–326 (2003). https://doi.org/10.1016/S0304-3975(02)00659-X

9. Song, B., Zhang, C., Pan, L.: Tissue-like P systems with evolutional sym-
port/antiport rules. Inf. Sci. 378, 177–193 (2017). https://doi.org/10.1016/j.ins.
2016.10.046

https://doi.org/10.3233/FI-2015-1152
https://doi.org/10.1016/S0304-3975(02)00659-X
https://doi.org/10.1016/j.ins.2016.10.046
https://doi.org/10.1016/j.ins.2016.10.046

Hierarchical P Systems with Randomized
Right-Hand Sides of Rules

Artiom Alhazov1,2, Rudolf Freund3, and Sergiu Ivanov4,5(B)

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,
Academiei 5, 2028 Chişinău, Moldova

artiom@math.md
2 Key Laboratory of Image Information Processing and Intelligent Control

of Education Ministry of China, School of Automation,
Huazhong University of Science and Technology, Wuhan 430074, China

3 Faculty of Informatics, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

4 LACL, Université Paris Est – Créteil Val de Marne, 61, av. Général de Gaulle,
94010 Créteil, France

sergiu.ivanov@u-pec.fr
5 TIMC-IMAG/DyCTiM, Faculty of Medicine of Grenoble,

5 avenue du Grand Sablon, 38700 La Tronche, France
sergiu.ivanov@univ-grenoble-alpes.fr

Abstract. P systems are a model of hierarchically compartmentalized
multiset rewriting. We introduce a novel kind of P systems in which rules
are dynamically constructed in each step by non-deterministic pairing of
left-hand and right-hand sides. We define three variants of right-hand side
randomization and compare each of them with the power of conventional
P systems. It turns out that all three variants enable non-cooperative
P systems to generate exponential (and thus non-semi-linear) number
languages. We also give a binary normal form for one of the variants of
P systems with randomized rule right-hand sides.

1 Introduction

Membrane computing is a research field originally founded by Păun in 1998,
see [13]. Membrane systems (also known as P systems) are a model of computing
based on the abstract notion of a membrane. Formally, a membrane is treated
as a container delimiting a region; a region may contain objects which are acted
upon by the rewriting rules associated with the membranes. Quite often, the
objects are plain symbols coming from a finite alphabet, but P systems operating
on more complex objects (e.g., strings, arrays) are often considered, too, e.g.,
see [10].

A. Alhazov—The work is supported by National Natural Science Foundation of
China (61320106005, 61033003, and 61772214) and the Innovation Scientists and
Technicians Troop Construction Projects of Henan Province (154200510012).

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 15–39, 2018.
https://doi.org/10.1007/978-3-319-73359-3_2

16 A. Alhazov et al.

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [14]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [17], as well as to the bulletin series of the International Membrane
Computing Society [16].

Dynamic evolution of the set of available rules has been considered from the
very beginning of membrane computing. Already in 1999, generalized P systems
were introduced in [9]; in these systems the membranes, alongside the objects,
contain operators which act on these objects, while the P system itself acts on
the operators, thereby modifying the transformations which will be carried out
on the objects in the subsequent steps. Among further ideas on dynamic rules,
one may list rule creation [5], activators [1], inhibiting/deinhibiting rules [8],
and symport/antiport of rules [7]. One of the more recent developments in this
direction are polymorphic P systems [3,4,12], in which rules are defined by pairs
of membranes, whose contents may be modified by moving objects in or out.

We remark that the previous studies on dynamic rule sets either treated
the rules as atomic entities (symport/antiport of rules, operators in generalized
P systems), or allowed virtually unlimited possibilities of tampering with their
shape (polymorphic P systems). In the present work, we propose a yet different
approach which can be seen as an intermediate one.

In hierarchical P systems with randomized rule-right-hand sides (or with ran-
domized RHS, for short), the available left-hand sides and right-hand sides of
rules are fixed, but the associations between them are re-evaluated in every step:
a left-hand side may pick a right-hand side arbitrarily (randomly). In Sect. 3,
we present three different formal definitions of this intuitive idea of randomized
RHS:

1. rules exchange their RHS,
2. each rule randomly picks an RHS from a common collection of RHS, shared

between the rules,
3. each rule randomly picks an RHS from a possible collection of RHS associated

with the rule itself.

P systems with randomized RHS may have a real-world (possibly biological)
application for representing systems in a hostile environment. The modifications
such P systems effect on their rules may be used to represent perturbations
caused by the environment (mutations), somewhat in the spirit of faulty Turing
machines (e.g., see [6]).

In this article, we will focus on the expressive power of P systems with ran-
domized RHS, as well as on comparing them to the classical model with or
without cooperative rules. One of the central conclusions of the present work is
that non-cooperative P systems with randomized RHS can generate exponen-
tial number languages, thus (partially) surpassing the power of conventional P
systems.

This paper is structured as follows. Section 2 recalls some preliminaries about
multisets, strings, permutations, as well as conventional P systems. Section 3

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 17

defines the three variants of RHS randomization. Section 4 discusses the compu-
tational power of the three variants of P systems with randomized RHS. Section 5
shows a binary normal form for one of the variants of P systems with random-
ized RHS. Finally, Sect. 6 summarizes the results of the article and gives some
directions for future work.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N
+,

the set of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N.
Given k ∈ N

+, we will call the set N
+

k = {x ∈ N
+ | 1 ≤ x ≤ k} an initial

segment of N
+.

An alphabet V is a finite set. The families of recursively enumerable, context-
free, linear, and regular languages, and of languages generated by tabled Lin-
denmayer systems are denoted by RE,CF,LIN,REG, and ET0L, respectively.
The families of sets of Parikh vectors as well as of sets of natural numbers (mul-
tiset languages over one-symbol alphabets) obtained from a language family F
are denoted by PsF and NF , respectively.

For further introduction to the theory of formal languages and computability,
we refer the reader to [14,15].

2.1 Linear Sets over N

A linear set over N generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂fin N
n

(here A ⊂fin B indicates that A is a finite subset of B) and an offset a0 ∈ N
n is

defined as follows:

〈A,a0〉N =

{
a0 +

∑d

i=1
kiai

∣∣∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector 0, we call the corresponding linear set homoge-
neous; we also use the short notation 〈A〉N = 〈A,0〉N.

We use the notation N
nLINN = {〈A,a0〉N | A ⊂fin N

n, a0 ∈ N
n}, to refer to

the class of all linear sets of n-dimensional vectors over N. Semi-linear sets are
defined as finite unions of linear sets. We use the notation N

nSLINN to refer to
the classes of semi-linear sets of n-dimensional vectors. In case no restriction is
imposed on the dimension, n is replaced by ∗. We may omit n if n = 1. A finite
union of linear sets which only differ in the starting vectors is called uniform
semilinear:

N
nSLINU

N
=

{⋃
b∈B〈A,b〉N | A ⊂fin N

n, B ⊂fin N
n
}

Let us denote such a set by 〈A,B〉N.
Note that a uniform semilinear set 〈A,B〉N can be seen as a pairwise sum of

the finite set B and the homogeneous linear set 〈A〉N:

〈A,B〉N = {a + b | a ∈ 〈A〉N,b ∈ B}.

18 A. Alhazov et al.

This observation immediately yields the conclusion that the sum of two uniform
semilinear sets 〈A1, B1〉N and 〈A2, B2〉N is uniform semilinear as well and can be
computed in the following way:

〈A1, B1〉N + 〈A2, B2〉N = {a + b | a ∈ 〈A1 ∪ A2〉N,b ∈ B1 + B2}.

As is folklore,

PsCF = PsLIN = PsREG = N
∗SLINN.

2.2 Multisets

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V . The set of all multisets over the alphabet V is
denoted by V ◦. By abusing string notation, the empty multiset is denoted by λ.
The projection (restriction) of w over a sub-alphabet V ′ ⊆ V is the multiset w|V ′

defined as follows:

w|V ′(a) =

{
w(a), a ∈ V ′;
0, a ∈ V � V ′.

Example 1. The string aab can represent the multiset w : {a, b} → N with
w(a) = 2 and w(b) = 1. The projection w|{a} = w′ is defined as w′(a) = w(a) = 2
and w′(b) = 0.

We will (ab)use the symbol ∈ to denote the relation “is a member of” for
multisets. Therefore, for a multiset w, a ∈ w will stand for w(a) > 0.

2.3 Strings and Permutations

A (non-empty) string s over an alphabet V traditionally is defined as a finite
ordered sequence of elements of V . Equivalently, we can define a string of length
k as a function assigning symbols to positions: s : N

+
k → V . Thus, the string

s = aab can be equivalently defined as the function s : N
+
3 → {a, b} with

s(1) = a, s(2) = a, and s(3) = b. We will use the traditional notation |s| to
refer to the length of the string s (i.e., the size k of the initial segment N

+
k it is

defined on). In addition, the size of the empty string λ is 0.
A string s : N

+
k → V is not necessarily surjective (there may be symbols

from V that do not appear in s). We will use the notation set(s) to refer to the
set of symbols appearing in s (the image of s):

set(s) =
{
a ∈ V | a = s(i) for some i ∈ N

+|s|
}

.

Given a string s : N
+

k → V , a prefix of length k′ ≤ k of s is the restriction
of s to N

+
k′ ⊆ N

+
k. For example, aa is a prefix of length 2 of the string aab.

We will use the notation prefk′(s) to denote the prefix of length k′ of s.
Given a finite set A, a permutation of A is any bijection ρ : A → A. Given a

permutation σ : N
+

k → N
+

k and a string s : N
+

k → V of length k, applying σ
to s is defined as σ(s) = s ◦ σ (where ◦ is the function composition operator).

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 19

Example 2. Following the widespread tradition, we will write permutations in
Cauchy’s two-line notation. The permutation σrev of N

+
3 which “reverses the

order” of the numbers, can be written as follows:

σrev =
(

1 2 3
3 2 1

)
.

Applying σrev to a string reverses it:

σrev(aab) = baa.

Any finite set B trivially can be represented by one of the strings listing all of
its elements exactly once. All such strings are equivalent modulo permutations.
Given a fixed enumeration B = {b1, . . . , bn}, we define the canonical string
representation of B to be the string δ(B) = b1 . . . bn.

2.4 Rule Sides

We consider arbitrary labeled multiset rules r : u → v over an alphabet V ,
where r is the rule label we attach for convenience, and u and v are strings
over V representing multisets. As usual, the application of such a rule means
replacing the multiset represented by u by the multiset represented by v.

For a given rule r : u → v, we define the left-hand-side and the right-hand-
side functions as follows:

lhs(u → v) = lhs(r) = (u),
rhs(u → v) = rhs(r) = (v).

Using the brackets (and), for a given string w, the notation (w) is used to
describe the multiset represented by w. As usual, we will extend the notations
for these functions lhs and rhs lifted to sets of rules: given a set of rules R,
lhs(R) = {lhs(r) | r ∈ R} and rhs(R) = {rhs(r) | r ∈ R}. Furthermore, for any
string (finite ordered sequence) of rules ρ : N

+
k → R we define the strings of

left-hand sides lhs(ρ) = lhs ◦ ρ and of right-hand sides rhs(ρ) = rhs ◦ ρ.

Example 3. Take R = {r1 : aa → ab, r2 : cc → cd} and consider the string of
rules ρ = r1r1r2. Then lhs(ρ) = (aa)(aa)(cc) and rhs(ρ) = (ab)(ab)(cd). Thus,
lhs(ρ) and rhs(ρ) can be considered as strings of multisets.

We will (ab)use the symbol → for combining two strings of multisets α, β :
N

+
k → V ◦ of the same length k. The string α → β will be defined as follows,

for any i ∈ N
+

k:
(α → β)(i) = α(i) → β(i).

Example 4. Consider the following two strings of multisets: α = (aa)(aa)(cc)
and β = (ab)(ab)(cd). α → β is simply the string of rules that can be obtained
by taking the multisets from α as left-hand sides and β as right-hand sides, in
the given order: α → β = (aa) → (ab)(aa) → (ab)(cc) → (cd) (which exactly
corresponds with ρ from Example 3).

20 A. Alhazov et al.

2.5 (Hierarchical) P Systems

A (hierarchical) P system is a construct

Π = (O, T, μ,w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
μ is the membrane structure injectively labeled by the numbers from {1, . . . , n}
and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1 ≤ i ≤ n), Ri is the finite set of
rules associated with membrane i (1 ≤ i ≤ n), and hi and ho are the labels of
the input and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case, in which Π
will be used as a multiset language-generating device. We therefore will system-
atically omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules
(or special cases of such rules). Multiset rewriting rules have the form u → v,
with u ∈ Oo \ {λ} and v ∈ Oo. If |u| = 1, the rule u → v is called non-
cooperative; otherwise it is called cooperative. Rules may additionally be allowed
to send symbols to the neighboring membranes. In this case, for rules in Ri, v ∈
O × Tari, where Tari contains the targets out (corresponding to sending the
symbol to the parent membrane), here (indicating that the symbol should be
kept in membrane i), and inh (indicating that the symbol should be sent into
the child membrane h of membrane i). Note that all variants of the function rhs,
as well as the operator → from the previous section can be naturally extended
to rules having right-hand sides with target indications (from O × Tari).

In P systems, rules are often applied in the maximally parallel way: in
any derivation step, a non-extendable multiset of rules has to be applied. The
rules are not allowed to consume the same instance of a symbol twice, which
creates competition for objects and may lead to the P system choosing non-
deterministically between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence
of configurations it can successively pass through, stopping at the halting con-
figuration. A halting configuration is a configuration in which no rule can be
applied any more, in any membrane. The result of a computation of a P system
Π as defined above is the contents of the output membrane ho projected over
the terminal alphabet T .

Example 5. For readability, we will often prefer a graphical representation of P
systems. For example, the P system Π1 = ({a, b}, {b}, [1]1, a, R, 1) with the rule
set R = {a → aa, a → b} may be depicted as in Fig. 1.

Due to maximal parallelism, at every step Π1 may double some of the sym-
bols a, while rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating the set
of numbers of the powers of two, it will actually generate the whole of N

+ (due
to halting). Indeed, for any n ∈ N

+, an can be generated in n steps by choosing
to apply, in the first n − 1 steps, a → aa to exactly one instance of a and a → b

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 21

a → aa

a → b

a
1

Fig. 1. The example P system Π1

to all the other instances, and by applying a → b to every a in the last step
(in fact, for n > 1, in each step except the last one, in which a → b is applied
twice, both rules are applied exactly once, as exactly two symbols a are present,
whereas all other symbols are copies of b).

While maximal parallelism and halting by inapplicability are staple ingredi-
ents, various other derivation modes and halting conditions have been considered
for P systems, e.g., see [14].

We will use the notation OPn(coo) to denote the family of P systems with
at most n membranes, with cooperative rules. To denote the family of such
P systems with non-cooperative rules, we replace coo by ncoo. To denote the
family of languages of multisets generated by these P systems, we prepend Ps
to the notation, and to denote the family of the generated number languages,
we prepend N .

3 P Systems with Randomized RHS

In this section we consider three different variants of defining P systems with
randomized RHS. We immediately point out that, despite the common intuitive
background, the details of the resulting semantics vary quite a lot.

3.1 Variant 1: Random RHS Exchange

In this variant of P systems, rules randomly exchange right-hand sides at the
beginning of every evolution step. This variant was the first to be conceived and
is the closest to the classical definition.

A P system with random RHS exchange is a construct

Π = (O, T, μ,w1, . . . , wn, R1, . . . Rn, ho),

where the components of the tuple are defined as in the classical model
(Sect. 2.5).

As different from conventional P systems, Π does not apply the rules from
Ri directly. Instead, for each membrane 1 ≤ i ≤ n, we take the canonical rep-
resentation of Ri, i.e., δ(Ri), and non-deterministically (randomly) choose a
permutation σ : N

+|Ri| → N
+|Ri| to compute the canonical representation of Rσ

i

from δ(Ri) as follows:

δ(Rσ
i) = lhs(δ(Ri)) → σ(rhs(δ(Ri))).

22 A. Alhazov et al.

We now extract the set of rules Rσ
i = set(δ(Rσ

i)) described by the string δ(Rσ
i)

as constructed above. Π will then apply the rules from Rσ
i according to the usual

maximally parallel semantics in membrane i.
In other words, Π non-deterministically permutes the right-hand sides of

rules in each membrane i, and then applies the obtained rules according to the
maximally parallel semantics.

Note that we first have to transform the set Ri into its canonical string
representation δ(Ri) in order to be able to obtain a correct representation of the
|Ri| rules and from that a correct representation of the |Ri| rules in Rσ

i , even if
the number of different left-hand sides and/or different right-hand sides of rules
does not equal |Ri|.
Example 6. Consider the P system Π2 = ({a, b}, {b}, [1]1, a, R, 1) with the rule
set R = {a → aa, c → b}. Π2 is graphically represented in Fig. 2.

a → aa

c → b

a
1

Fig. 2. The P system Π2 with random RHS exchange generating the number language
{2n | n ∈ N}.

The number language generated by Π2 (the set of numbers of instances of
b that may appear in the skin after Π2 has halted) is exactly {2n | n ∈ N

+}.
Indeed, while Π2 applies the identity permutation on the right-hand sides, a →
aa will double the number of symbols a, while the rule c → b will never be
applicable. When Π2 exchanges the right-hand sides of the rules, the rule a → b
will rewrite every symbol a into a symbol b. After this has happened, no rule
will ever be applicable any more and Π2 will halt with 2n symbols b in the skin,
where n + 1 is the number of computation steps taken.

We will use the notation

OPn(rhsExchange, coo)

to denote the family of P systems with random RHS exchange, with at most n
membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and
to denote the family of the generated number languages, we prepend N .

3.2 Variant 2: Randomized Pools of RHS

In this variant of P systems, every membrane has some fixed left-hand sides and
a pool of available right-hand sides to build rules from. An RHS from the pool
can only be used once.

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 23

A P system with randomized pools of RHS is a construct

Π = (O, T, μ,w1, . . . , wn,H1, . . . Hn, ho),

where Hi defines the left- and right-hand sides available in membrane i and the
other components of the tuple are defined as in the classical model (Sect. 2.5).

For 1 ≤ i ≤ n,Hi = (li, ri) is a pair of strings of multisets over O. The string
ri may contain target indications (i.e., be a string of multisets over O × Tari).
The strings li and ri are not necessarily of the same length. The length of the
shortest of the two strings li and ri is denoted by

ki = min(|li|, |ri|).
At the beginning of every computation step in Π, for every membrane i, we

construct the set of rules it will apply in the following way:

1. non-deterministically choose two (random) permutations

σl : N
+|li| → N

+|li|, σr : N
+|ri| → N

+|ri|;

2. take the first ki elements out of σl(li) and σr(ri):

l′i = prefki
(σl(li)), r′

i = prefki
(σr(ri));

3. construct the set of rules Ri to be applied in membrane i by combining the
left- and right-hand sides from l′i and r′

i:

Ri = set(l′i → r′
i).

In step (3), we combine the strings l′i and r′
i using the operator → defined in

Subsect. 2.4 and then apply the operator set to obtain the corresponding set of
rules from the string representation.

After having constructed the set Ri for each membrane i, Π will proceed to
applying the obtained rules according to the usual maximally parallel semantics.

When computing the strings l′i and r′
i, we apply two different permutations σl

and σr to li and ri, in order to ensure fairness for the participation of left-hand
and right-hand sides when |li| �= |ri|. For example, if we only permuted ri in the
case in which |li| > |ri|, the left-hand sides located at positions k > |ri| in li
would never be used.

We do not explicitly prohibit repetitions in li or in ri, but we avoid repeated
rules by constructing Ri using the set function.

Example 7. Consider the following P system with randomized pools of RHS:
Π3 = ({a, b}, {b}, [

1
]
1
, a,H, 1), with H =

(
(a), (aa)(b)

)
; (a) stands for the mul-

tiset containing an instance of a, while (aa)(b) is the string denoting the two
multisets (aa) and (b). The graphical representation of Π3 is given in Fig. 3.

The pair H = (l, r) of strings of multisets is represented by listing the mul-
tisets of l and r in two columns and by drawing a vertical line between the two
columns.

24 A. Alhazov et al.

a aa
b

a
1

Fig. 3. The P system Π3 with randomized pools of RHS generating the number lan-
guage {2n | n ∈ N}.

Π3 follows exactly the same pattern as Π2 from Example 6: while the identity
permutation is applied to r,Π3 keeps doubling the symbols a in the skin. Once
the multisets (aa) and (b) are permuted in r, and thus the rule a → b is formed,
all symbols a are rewritten into symbols b in one step and Π3 must halt. Note
that randomly taking the right-hand sides from a given pool avoids having the
extra dummy rule c → b in Π2.

We will use the notation

OPn(rhsPools, coo)

to denote the family of P systems with randomized pools of RHS, with at most n
membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and
to denote the family of the generated number languages, we prepend N .

3.3 Variant 3: Individual Randomized RHS

In this variant of P systems, each rule is constructed from a left-hand side and
a set of possible right-hand sides.

A P system with individual randomized RHS is a construct

Π = (O, T, μ,w1, . . . , wn, P1, . . . Pn, ho),

where Pi is the set of productions associated with the membrane i and the other
components of the tuple are defined as in the classical model (Sect. 2.5).

A production is a pair u → R, where u ∈ O◦ is the left-hand side and
R ⊆ O◦ is a finite set of right-hand sides. The right-hand sides in R may have
target indications, i.e., for a production in membrane i, we may consider R ⊆
(O × Tari)◦. At the beginning of each computation step, for every membrane i,
for each production u → R ∈ Ri,Π will non-deterministically (randomly) pick
a right-hand side v from R and will construct the rule u → v (this happens once
per production). Π will then apply the rules thus constructed according to the
maximally parallel semantics.

Example 8. Generating the language of the powers of two is the easiest com-
pared with Variants 1 and 2. Indeed, consider the P system with individ-
ual randomized RHS Π4 = ({a, b}, {b}, [1]1, a, P, 1) with only one production:
P = {a → {aa, b})}. Its graphical representation is given in Fig. 4.

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 25

a → {aa, b}
a

1

Fig. 4. The P system Π4 with individual randomized RHS generating the number
language {2n | n ∈ N}.

Π4 works exactly like Π2 and Π3 from Examples 6 and 7: it doubles the
number of symbols a and halts by rewriting them to b in the last step.

We will use the notation

OPn(rndRhs, coo)

to denote the family of P systems with individual randomized RHS, with at most
n membranes, with cooperative rules. To denote the family of such P systems
with non-cooperative rules, we replace coo by ncoo. To denote the family of lan-
guages of multisets generated by these P systems, we prepend Ps to the notation,
and to denote the family of the generated number languages, we prepend N .

We will sometimes want to set an upper bound k on the number of right-
hand sides per production. To refer to the family of P systems with individual
randomized RHS with such an upper bound, we will replace rndRhs by rndRhsk

in the notation above.

3.4 Halting with Randomized RHS

The conventional (total) halting condition for P systems can be naturally lifted to
randomized RHS: a P system Π with randomized RHS (Variant 1, 2, or 3) halts
on a configuration C if, however it permutes rule right-hand sides in Variant 1,
or however it builds rules out of the available rule sides in Variants 2 and 3, no
rule can be applied in C, in any membrane.

Note that, for Variants 1 and 3, the permutations chosen do not affect the
applicability of rules, because applicability only depends on left-hand sides,
which are always the same in any membrane. The situation is different for Vari-
ant 2, because the number of available left-hand sides in a membrane of Π may
be bigger than the number of available right-hand sides. Therefore, if Π is a P
system with randomized pools of RHS, the way rule sides are permuted may
affect the number of rules applicable in a given configuration. This is why, for
Π to halt on C, we require no rule to be applicable for any permutation.

In this paper, we will mainly consider P systems with randomized pools of
RHS in which, in every membrane, there are at least as many right-hand sides
as there are left-hand sides. To refer to P systems with this restriction, we will
use the notation rhsPools′. In these systems, the problem with the applicability
of rules as described above can be avoided.

26 A. Alhazov et al.

3.5 Equivalence Between Variants 1 and 2

Before discussing the computational power of the P systems with randomized
RHS in general, we will briefly point out a strong relationship between P systems
with random RHS exchange and P systems with randomized pools of RHS, with
the restriction that every membrane contains at least as many right-hand sides as
it has left-hand sides, i.e., for P systems with randomized RHS of type rhsPools′.

Theorem 1. For any k ∈ {coo, ncoo}, the following holds:

PsOPn(rhsExchange, k) = PsOPn(rhsPools′, k).

Proof. Any membrane with random RHS exchange trivially can be transformed
into a membrane with randomized pools of RHS by listing the left-hand sides of
the rules in the pool of LHS and the right-hand sides of the rules in the pool of
RHS.

Conversely, consider a membrane i with randomized pools of RHS, with the
string li of LHS and the string ri of RHS, |li| ≤ |ri|. We can transform it into
a membrane with random RHS exchange as follows. For every LHS u from li,
pick (and remove) an RHS v from ri, and construct the rule u → v. According
to our supposition, we will exhaust the LHS before (or at the same time as) the
RHS. For every RHS v′ which is left, we add a new (dummy) symbol z′ to the
alphabet, and add the rule z′ → v′. Since the symbol z′ is new and does not
appear in any RHS, it will never be produced and the rule z′ → v′ will essentially
serve as a stash for the RHS v′. �

3.6 Flattening

The folklore flattening construction (see [14] for several examples as well as [11]
for a general construction) is quite directly applicable to P systems with indi-
vidual randomized RHS.

Proposition 1 (flattening). For any k ∈ {coo, ncoo}, the following is true:

PsOP1(rndRhs, k) = PsOPn(rndRhs, k).

Proof (sketch). Since in the case of individual randomized RHS, randomiza-
tion has per rule granularity (whereas in the other two variants randomization
occurs at the level of membranes), we can simulate multiple membranes by
attaching membrane labels to symbols. For example, a production ab → {cd, f}
in membrane h becomes ahbh → {chdh, fh}, while the send-in production
a → {(b, ini), (b, inj)} becomes ah → {bi, bj}. �

On the other hand, for Variants 1 and 2 similar results cannot be proved in
such a way, a situation which happens very seldom in the area of P systems,
especially in the case of variants of the standard model. Yet intuitively, it is easy
to understand why this happens, as in both Variants 1 and 2 the right-hand sides
in just one membrane can randomly be chosen for any left-hand side, whereas

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 27

different membranes can separate the possible combinations of left-hand sides
and right-hand sides of rules. A formal proof showing that flattening is impossible
for the types rhsExchange and rhsPools′ will be given in the succeeding section
by constructing a suitable example.

4 Computational Power of Randomized RHS

In this section, we look into the computational power of the three different
versions of P systems with randomized right-hand sides. We first shortly consider
the case of cooperative rules and then focus on the case of non-cooperative rules.

4.1 Cooperative Rules

The following result concerning the relationship between P systems with indi-
vidual randomized RHS and conventional P systems holds for both cooperative
and non-cooperative rules:

Proposition 2. For any n ∈ N
+ and α ∈ {ncoo, coo}, P sOPn(rndRhs, α) ⊇

PsOPn(α).

Proof. Any conventional P system can be trivially seen as a P system with
individual randomized RHS in which every production has exactly one right-
hand side. �

Now, the computational completeness of cooperative P systems trivially
implies the computational completeness of P systems with individual random-
ized RHS.

Corollary 1. For any n ∈ N
+, PsOPn(rndRhs, coo) = PsRE.

4.2 Non-cooperative Rules

First we mention an upper bound for the families PsOPn(ρ, ncoo), for any vari-
ant ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

Proposition 3. For any n ∈ N
+ and ρ ∈ {rhsExchange, rhsPools′, rndRhs},

PsOPn(ρ, ncoo) ⊆ PsET0L.

Proof. No matter how the rule sets are constructed in the three different vari-
ants, we always get a finite set of different sets of rules – tables – correspond-
ing to tables in ET0L-systems, which can also mimic the contents of different
membranes in the usual way by using symbols marked with the corresponding
membrane label. �

Next we show one of the central results of this paper: randomized rule right-
hand sides allow for generating non-semilinear languages already in the non-
cooperative case.

28 A. Alhazov et al.

Theorem 2. The following is true for ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

{2m | m ∈ N} ∈ NOPn(ρ, ncoo) \ NOPn(ncoo).

Proof. The statement follows (for n ≥ 1) from the constructions given in Exam-
ples 6, 7, and 8 and from the well-known fact that non-cooperative P systems
operating under the total halting condition cannot generate non-semilinear num-
ber languages (for example, see [14]). �

This result is somewhat surprising at a first glance, but becomes less so when
one remarks that the constructions from all three examples only effectively use
one rule to do the multiplication, which is non-deterministically changed to a
“halting” rule. Since there is only one rule acting at any time, randomized right-
hand sides allow for clearly delimiting different derivation phases.

It turns out that this approach of synchronization by randomization can be
exploited to generate even more complex non-semilinear languages.

Theorem 3. Given a fixed subset of natural factors {f1, . . . , fk} ⊆ N, the fol-
lowing is true for any ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

L = {fn1
1 · . . . · fnk

k | n1, . . . , nk ∈ N} ∈ NOP1(ρ, ncoo).

Proof. First consider the P system with randomized pools of RHS Π5 =
({a, b}, {b}, [1]1, a,H, 1) with H = (l, r), l = (a) and r =

(
af1

)
. . .

(
afk

) (
b
)
.

This P system is graphically represented in Fig. 5.
Similarly to the P systems from Examples 6, 7, and 8, Π5 halts by choosing to

pick the right-hand side b and constructing the rule a → b. If Π5 picks a different
right-hand side, it will multiply the contents of the skin membrane (membrane 1)
by one of the factors fi, 1 ≤ i ≤ k. This proves that L ∈ NOP1(rhsPools′, ncoo),
and, according to Theorem 1, L ∈ NOP1(rhsExchange, ncoo) as well: take the P
system with the rules {a → af1 , z2 → af2 , . . . , zk → afk , zk+1 → b} (the rules
with zj in their left-hand sides are dummy rules).

To show that L ∈ NOP1(rndRhs, ncoo), just construct a P system with the
only production a → {af1 , . . . , afk , b}. �

a af1

...
afk

b

a
1

Fig. 5. The P system Π5 with randomized pools of RHS generating the number lan-
guage {fn1

1 · . . . · f
nk
k | n1, . . . , nk ∈ N}.

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 29

Therefore, randomizing the right-hand sides of rules in non-cooperative P
systems allows for generating non-semilinear languages which cannot be gener-
ated without randomization. A natural question to ask is whether randomizing
the RHS leads to a strict increase in the computational power. The answer is
trivially positive for P systems with individual randomized RHS (Variant 3).

Proposition 4. For any n ∈ N
+, PsOPn(rndRhs, ncoo) � PsOPn(ncoo).

Proof. The inclusion follows from Proposition 2, as any conventional P system
can be trivially seen as a P system with individual randomized RHS in which
every production has exactly one right-hand side. Theorem3 proves the strictness
of the inclusion. �

On the other hand, the other two variants of randomizing right-hand sides—
random RHS exchange (Variant 1) and randomized pools of RHS (Variant 2)—
actually prevent one-membrane P systems with non-cooperative rules from gen-
erating some semilinear languages, which result also shows that flattening is not
possible for these two variants.

In what follows, we will use the expression “only one rule is applied” to refer
to the fact that only one given rule u → v is applied in a certain configuration,
possibly in multiple copies. Dually, by saying “at least two rules are applied”, we
mean that at least two different rules, u → v and u′ → v′, are applied, possibly
in multiple copies each.

Theorem 4. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

Lab = {an | n ∈ N} ∪ {bn | n ∈ N} /∈ PsOP1(ρ, ncoo).

Proof. Consider a P system Π with randomized RHS of the variant given by ρ
and with non-cooperative rules. We immediately remark that no left-hand side
in Π may be a or b, because in this case Π will never be able to halt with its
only (skin) membrane containing either the multiset an or bn. Furthermore, any
RHS of Π contains combinations of symbols a, b, or LHS symbols. Indeed, if an
RHS contained a symbol not belonging to these three classes, instances of this
symbol would pollute the halting configuration. Finally, Π contains no RHS v
such that a ∈ v and b ∈ v. If Π did contain such an RHS, then any computation
could be hijacked to produce a mixture of symbols a and b.

With these remarks in mind, the statement of the theorem follows from the
contradicting Lemmas 1 and 2, which are shown immediately after this proof. �
Lemma 1. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that
it generates the number language Ps(Π) = Lab. Then it must have a compu-
tation in which more than one rule is applied (two different left-hand sides are
employed) in at least one step.

Proof. Suppose that Π applies exactly one rule in every step of every computa-
tion. We make the following two remarks:

30 A. Alhazov et al.

1. Since the words in Lab are of unbounded length, Π must have an LHS t and
an RHS v such that t ∈ v, otherwise all computations of Π would have one
step and would only produce words of bounded length.

2. Every such RHS v must contain at most one kind of LHS, i.e., if t1 and t2
are two LHS of Π then t1 ∈ v and t2 ∈ v implies t1 = t2. If this were not the
case, after using v,Π would have to apply two different rules (assuming that
Π has at least as many RHS as LHS).

According to these observations, as well as to those from the proof of Theo-
rem 4, any RHS v of Π is the of the form v = αβ, where α ∈ {ak, bk | k ∈ N}, β ∈
{tk | k ∈ N}, and t is an LHS of Π. Note that both α and β may be empty.
According to observation (1), Π must have at least an RHS for which β �= λ
and there exists such an RHS which must be applied an unbounded number of
times.

In what follows, we will separately treat the cases in which Π contains or
does not contain mixed RHS, i.e., RHS for which both α �= λ and β �= λ.

No mixed RHS: Suppose that any RHS of Π which contains a left-hand side is of
the form tk2 . Then, according to our previous observations on the possible forms
of the RHS of Π, all RHS containing a are of the form ai and all RHS containing
b are of the form bj . According to the remarks from the proof of Theorem4, a
and b must not be LHS of Π. Therefore, in any computation of Π, all of a’s
and b’s are produced in the last step. But then, the number of terminal symbols
Π produces in a computation can be calculated as a product of the sizes of the
RHS of the rules it has applied, which implies that there exists such a p ∈ N

such that ap /∈ Ps(Π) and therefore Ps(Π) �= Lab. (p may be picked to be the
smallest prime number greater than the length of the longest RHS of Π.)

Mixed RHS: It follows from the previous paragraph that, in order to generate
the number language Lab,Π should contain and apply at least one RHS of the
form aitk1

1 and at least one RHS of the form bjtk2
2 . Take a computation C of

Π producing a and applying the rule t → aitk1
1 at a certain step. Instead of

this rule, apply t → bjtk2
2 , and, in the following step, the rule t2 → aitk1

1 . (We
can do so because Π is allowed to pick any permutation of RHS.) Now, Π may
continue applying the same rules as in C and eventually halt with a configuration
containing both a and b. This implies that Ps(Π) �= Lab.

It follows from our reasoning that, if Π applies exactly one rule in any step
of any computation, it cannot produce Lab, which proves the lemma. �
Lemma 2. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that
it generates the number language Ps(Π) = Lab. Then, in every computation of
Π, exactly one rule is applied (one left-hand side is employed) in every step.

Proof. Suppose that, in every computation of Π, there exists a step at which
at least two different rules are applied. This immediately implies that Π has no
RHS of the form ai or bj , for i, j ≥ 0. Indeed, consider a computation producing
the multiset an and a step in it at which more than one rule is applied. Then

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 31

Π can replace one of the RHS introduced into the system at this step by bj and
thus end up with a mix of a’s and b’s in the halting configuration. Therefore,
all RHS of Π containing a have the form aiva and all RHS containing b have
the form bjvb, where va and vb are non-empty multisets which only contain LHS
symbols (which are neither a nor b).

Now, consider a computation Ca of Π halting on the multiset an, and take the
last step sa at which at least two different rules are applied. We will consider three
different cases, based on whether a and an LHS t appear in the configurations
of Ca after step sa.

Both a and t are present: Suppose both a and an LHS t are present at step sa +1
in computation Ca. Then t is the only LHS present, because, by our hypothesis,
only one rule is applied (maybe in multiple instances) at step sa + 1. In this
case, replace the rule applied at step sa + 1 in Ca by t → bjvb, where bjvb is a
right-hand side of Π used in a computation Cb producing b’s. From step sa + 2
on in the modified computation, just apply the same rules as applied to the
symbols of vb (and to those derived from vb) in Cb. The modified computation
will reach a halting configuration containing a mix of a’s and b’s.

Only a is present: Suppose only a is present at step sa + 1 in computation Ca.
Then all of the RHS used at step sa are λ, because Π has no RHS of the form ai.
Then, replace one of these empty RHS by bjvb, where bjvb is a right-hand side of
Π used in a computation Cb producing b’s. As before, just apply the same rules
as in Cb in the modified computation to get a mix of a’s and b’s in the halting
configuration.

No symbols a are present: Suppose now that there are no instances of a present
at step sa + 1 in computation Ca. Recall that Π has no RHS of the form ai.
Since we suppose that sa is the last step at which at least two different rules are
applied, this means that, in order to produce any a’s in Ca,Π must have and
use an RHS of the form aitk. This RHS contains (multiple copies of) exactly one
kind of LHS symbol: t.

Consider a computation Cb halting on the multiset bn. We pick n sufficiently
big to ensure that Cb uses at least two RHS containing b: bjvb and bj′

v′
b (possibly

the same). Without losing generality, we may suppose that these two RHS are
either used at the same step in Cb or that bj′

v′
b is used at a later step than bjvb.

Then, replace bj′
v′

b by aitk, pick one of the LHS symbols t′ ∈ v′
b and apply the

same rules to t (and to the symbols derived from t) in the modified derivation
as were applied to t′ (and to the symbols derived from t′) in Cb. The modified
derivation will therefore contain a mix of a’s and b’s in the halting configuration.

It follows from our reasoning that, if in any derivation of Π there is a step at
which at least two different rules are applied, then Ps(Π) �= Lab, which proves
the lemma. �

The previous two lemmas are contradicting each other, which means that
there exist no one-membrane P systems with random RHS exchange or with
random pools of RHS which generate the union language Lab = {an | n ∈ N} ∪
{bn | n ∈ N} (this is the statement of Theorem 4). Together with Theorem 3, this

32 A. Alhazov et al.

leads us to the curious conclusion that one-membrane non-cooperative P systems
with random RHS exchange or with randomized pools of RHS are incomparable
in power to the conventional P systems.

Corollary 2. For ρ ∈ {rhsExchange, rhsPools′}, the following two statements
are true:

PsOP1(ρ, ncoo) \ PsOP1(ncoo) �= ∅, (1)
PsOP1(ncoo) \ PsOP1(ρ, ncoo) �= ∅. (2)

Proof. Statement (1) follows from Theorem 3. Statement (2) follows from The-
orem 4. �

Theorem 4 also allows us to draw a negative conclusion as to the computa-
tional completeness of one-membrane non-cooperative P systems with random
RHS exchange (Variant 1) and non-cooperative P systems with randomized pools
of RHS (Variant 2).

Corollary 3. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

PsOP1(ρ, ncoo) � PsRE.

It turns out that allowing multiple membranes strictly increases the expres-
sive power of Variants 1 and 2 and allows for easily generating all semilinear
languages, as shown by the following theorem.

Theorem 5. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

N
∗SLINN ∈ PsOP∗(ρ, ncoo).

Proof. Consider the following semilinear language of d-dimensional vectors L =⋃
1≤i≤n〈Ai,bi〉N, where Ai ⊂fin N

d and bi ∈ N
d. We construct the correspond-

ing P system with randomised pools of RHS:

Π6 =
(
O, T, [[]2 . . . []n+1]1, w0, λ, . . . , λ,H1, . . . Hn+1, 1

)
,

with the alphabet and the initial contents of the skin defined as follows:

– O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

– T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
– w0 = t.

The pools of LHS and RHS H1 = (l1, r1) associated with the skin membrane 1
of Π6 are:

l1 = (t), r1 =
(
u1 (t, in2)

)
. . .

(
un (t, inn+1)

)
,

where the multiset ui corresponds to the offset bi: Ps(ui) = bi, 1 ≤ i ≤ n.
Finally, the pools of rule sides Hi+1 = (li+1, ri+1) associated with inner mem-
brane i + 1 are defined as follows:

li+1 = (t), ri+1 =
(
t (vi1, out)

)
. . .

(
t (viki

, out)
) (

λ
)
,

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 33

t t (v11, out)
. . .

t (v1k1 , out)
λ

λ
2

t t (vn1, out)
. . .

t (vnkn , out)
λ

λ
n + 1

. . .

t u1 (t, in2)
. . .

un (t, inn+1)

t

1

Fig. 6. The P system Π6 with randomized pools of RHS generating the semilinear
language L =

⋃
1≤i≤n〈Ai,bi〉N.

where the multisets vij , 1 ≤ j ≤ ki, correspond to the vectors of the set Ai =
{ai1, . . . ,aiki

}: Ps(vij) = aij , 1 ≤ j ≤ ki. By abuse of notation, we write (w, out)
to mean that every symbol instance in w gets the target indication out. Π6 is
graphically represented in Fig. 6.

Π6 starts by non-deterministically building one of the rules t → ui (t, ini+1)
in the skin membrane. An application of this rule adds the multiset corresponding
to the offset bi to the skin membrane and puts t into inner membrane i + 1.
In the following steps only rules in membrane i + 1 may become applicable. In
this membrane, Π6 may build rules of the form t → t (vij , out), 1 ≤ j ≤ ki,
which will sustain t while also sending the multiset vij corresponding to the
vector aij ∈ Ai out into the skin. Alternatively, Π6 may choose to build the
rule t → λ, an application of which will erase t and halt the system. In such
a computation, Π6 generates the multiset language corresponding to 〈Ai,bi〉N.
Since Π6 can choose to send t into any one of its inner membranes in the first
step and since the computations of said membranes cannot interfere, we conclude
that Ps(Π6) = L.

To complete the proof, we evoke Theorem 1 to show that there exists a P sys-
tem with random RHS exchange (Variant 1) generating the same language L.

This theorem allows us to draw a definitive conclusion about the impossibility
of flattening for non-cooperative Variants 1 and 2, in contrast to Proposition 1
showing the opposite result for Variant 3.

Corollary 4. For ρ ∈ {rhsExchange, rhsPools′} and any k ≥ 2, the following
holds:

PsOP1(ρ, ncoo) � PsOPk(ρ, ncoo).

We conclude this section with two more observations regarding the compu-
tational power of the Variants 1 and 2. We have seen that, with a single mem-
brane and without cooperation, such P systems cannot generate all semilinear
languages; yet it turns out they can generate all uniform semilinear languages.

Theorem 6. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

N
∗SLINU

N
⊆ PsOP1(ρ, ncoo).

34 A. Alhazov et al.

Proof. Consider two finite sets of d-dimensional vectors A,B ⊂fin N
d, A =

{x1, . . . ,xn}, B = {y1 . . . ,ym}, and the uniform semilinear set 〈A,B〉N. We will
now construct the P system Π = (O, T, []

1
, w0,H, 1) with pools of randomized

RHS in the following way:

– O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

– T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
– w0 = t,
– H = (l, r), with l = (t) and r = (w′

1t) . . . (w′
nt) (v′

1) . . . (v′
m),

such that Ps(w′
i) = xi, 1 ≤ i ≤ n, and Ps(v′

j) = yj , 1 ≤ j ≤ m.

In every step, Π either chooses one of the RHS (w′
it) which will enable it to

reuse the left-hand side symbol t in the following step, or it constructs a rule
of the form t → v′

j , which erases the only instance of t and halts the system.
Thus, Π performs arbitrary additions of vectors xi ∈ A and then, in the last
step of the computation, introduces one of the initial offsets yj ∈ B. Therefore,
Ps(Π) = 〈A,B〉N. The fact that we can construct such a P system Π for any
uniform semilinear set proves the statement of the theorem. �

Even though one-membrane non-cooperative P systems with random RHS
exchange and with randomized pools of RHS cannot generate all unions of linear
languages (Theorem 4), they can still generate some limited unions of exponential
languages.

Theorem 7. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

L′
ab =

{
a2n | n ∈ N

}
∪

{
b2

n | n ∈ N

}
∈ PsOP1(ρ, ncoo).

Proof. A P system Π7 generating the language L′
ab can be constructed as follows:

Π7 = ({a, b, t}, {a, b}, []1, t,H, 1), where H = (l, r), l = (t) and r = (tt)(a)(b).
A graphical representation of Π7 is given in Fig. 7.

Π7 works by sequentially multiplying the number of symbols t by 2, until it
decides to rewrite every instance of t to a or every instance of t to b. Therefore,
Ps(Π7) = L′

ab. According to Proposition 1, there also exists a P system with
random RHS exchange generating L′

ab, which completes the proof. �

t tt
a
b

t
1

Fig. 7. The P system Π7 with randomized pools of RHS generating the union language

L′
ab =

{
a2n | n ∈ N

}
∪

{
b2

n | n ∈ N

}

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 35

The construction from the previous proof can be clearly extended to any
number of distinct terminal symbols and to any function of the number of steps
f(n) given by a product of exponentials (like in Theorem3). That is, one can
construct a P systems with random RHS exchange or with randomized pools of
RHS generating the union language

{
a

f(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ m
}

, for some fixed
number m. Note, however, that we cannot use the same approach to generate
unions of two different exponential functions. We conjecture that generating such
unions is entirely impossible with Variants 1 and 2 of randomized RHS.

5 Variant 3: A Binary Normal Form

In this section we present a binary normal form for P systems with individual
randomized RHS: we prove that, for any such P system, there exists an equivalent
one in which every production has at most two right-hand sides.

We now introduce a (rather common) construction: symbols with finite timers
attached to them. Given an alphabet O, we define the following two functions:

timerso(t, O) =
t⋃

i=1

{〈a, i〉 | a ∈ O} ,

timersr(t) = {〈a, i〉 → 〈a, i − 1〉 | 2 ≤ i ≤ t}
∪ {〈a, 1〉 → a | a ∈ O}.

Informally, timerso(t, O) attaches a t-valued timer to every symbol in O, while
timersr(t) contains the rules making this timer work.

We also define the following function setting a timer to the value t > 0 for
each symbol in a given string a1 . . . an:

wait(t, a1 . . . an) = 〈a1, t〉 . . . 〈an, t〉.
For t = 0, wait is defined to be the identity function: wait(0, a1 . . . an) =
a1 . . . an.

We can now show that, for any P system with individual randomized RHS
there exists an equivalent one having at most two RHS per production.

Theorem 8 (normal form). For any Π ∈ OPn(rndRhs, k), k ∈ {coo, ncoo},
there exists a Π ′ ∈ OPn(rndRhs2, k) such that Ps(Π ′) = Ps(Π).

Proof. Consider the following P system with individual randomized RHS Π =
(O, T, μ,w1, . . . , wn, P1, . . . Pn, ho) that has at least one production with more
than two RHS. We will construct another P system with individual randomized
RHS Π ′ = (O′, T, μ, w1, . . . , wn, P ′

1, . . . P
′
n, ho) such that Ps(Π ′) = Ps(Π). The

new alphabet will be defined as

O′ = O ∪ timerso(t, O) ∪ {p1, . . . , pt | p ∈ Vp},

where t + 2 is the number of right-hand sides in the productions of Π having
the most of them, and Vp is an alphabet containing a symbol for each of the

36 A. Alhazov et al.

individual productions of Π. (If there are two identical productions in Π which
belong to two different membranes, Vp will contain one different symbol for each
of these two productions.)

For every membrane 1 ≤ i ≤ n, the new set of productions P ′
i is constructed

by applying the following procedure to every production p ∈ Pi:

– If p has the form u → {v}, we add the production u → {wait(t, v)} to P ′
i .

– If p has the form u → {v1, v2}, we add u → {wait(t, v1), wait(t, v2)} to P ′
i .

– If p has the form u → {v1, . . . , vk}, with k ≥ 3, we add the following produc-
tions to Pi: {

u → {wait(t, v1), p1}
}

∪ {
pj → {wait(t − j, vj+1), pj+1} | 1 ≤ j < k − 2

}
∪ {

pk−2 → {wait(t − k + 2, vk−1), wait(t − k + 2, vk)}}
.

These productions are graphically represented in Fig. 8, in which arrows go
from LHS to the associated RHS.

u p1

wait(t, v1)

. . . pj pj+1

wait(t − j, vj+1)

. . . pk−2 wait(t − k + 2, vk)

wait(t − k + 2, vk−1)

Fig. 8. Timers allow sequential choice between any number of right-hand sides.

Finally we add the rules from timersr(t), treated as one-RHS production, to
every P ′

i .
Instead of directly choosing between the right hand-sides of a production

p : u → {v1, . . . , vk} in one step, Π ′ chooses between v1 and delaying the choice
to the next step, by producing p1. This choice between settling on an RHS or
continuing the enumeration in the next step may be kept on until k − 2 RHS
have been discarded. If pk−2 is reached, Π ′ must choose one of the two remaining
RHS.

Thus, Π ′ evolves in “macro-steps”, each consisting of exactly t steps. In the
first step of a “macro-step”, Π ′ acts on the symbols from O, producing some
symbols with timers and delaying some of the choices by producing symbols pj .
All symbols with timers wait exactly until the t-th step of the “macro-step” to
turn into the corresponding clean versions from O. Since t + 2 is the number
of RHS in the biggest production of Π,Π ′ has the time to enumerate all of the
RHS of this production.

Since every delayed choice of Π ′ is uniquely identified by a production-specific
symbol pj , and since only the productions from timersr(t) can act upon the
symbols with timers in Π ′, the simulations of two different productions of Π
cannot interfere. This concludes the proof of the normal form. �

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 37

6 Conclusions and Open Problems

In this article, we introduced and partially studied P systems with randomized
rule right-hand sides. This is a model of P systems with dynamic rules, in which the
matching between left-hand and right-hand sides is non-deterministically changed
during the evolution. In each step, such P systems first construct the rules from
the available rule sides and then apply them, in a maximally parallel way.

We defined three different randomization semantics: random RHS exchange
(Variant 1), randomized pools of RHS (Variant 2), and individual randomized
RHS (Variant 3). We studied the computational power of the three variants
and showed that Variant 3 is quite different in power from Variants 1 and 2.
Indeed, P systems with individual randomized RHS (Variant 3) appear as a strict
extension of conventional P systems, while random RHS exchange (Variant 1)
and randomized pools of RHS (Variant 2) seem to increase the power when only
one LHS is used, but to decrease the power when more LHS are present. Finally,
we gave a binary normal form for P systems with individual randomized RHS
(Variant 3).

6.1 Open Questions

The present work leaves open quite a number of open questions. We list the ones
appearing important to us, in no particular order.

Full power of Variants 1 and 2: Are cooperative, multi-membrane P systems
with random RHS exchange (Variant 1) or with randomized pools of RHS (Vari-
ant 2) computationally complete? If not, what would be the upper bound on
their power? In this article, we showed that applying these two randomization
semantics to the non-cooperative, one-membrane case, yields a family of multi-
set languages incomparable with the family of semi-linear vector sets. How much
more can be achieved with cooperativity? We conjecture that, even with LHS
containing more than one symbol, Variants 1 and 2 will not be computationally
complete. However, we expect that considering systems with multiple membranes
may actually bring a substantial boost in computational power, because, in both
Variants 1 and 2, randomization happens over each single membrane, meaning
that one might use a rich membrane structure to finely control its effects.

Compare the variants: How do the three variants of RHS randomization compare
among one another when applied to non-cooperative rules? We saw that, in all
three cases, exponential number languages can be generated. We also saw that
individual randomized RHS (Variant 3) produce a strict superset of the semi-
linear languages (Proposition 4). Does it imply that Variant 3 is strictly more
powerful than Variants 1 and 2? We conjecture a positive answer to this question.

Excess of LHS: In the case of P systems with randomized pools of RHS (Vari-
ant 2), what is the consequence of having more LHS available in a membrane
than there are RHS? The results in this paper concern a “restricted” version of

38 A. Alhazov et al.

Variant 2, in which we require that LHS are never in excess. How strong is this
restriction? Our conjecture is that allowing an excess of LHS does not increase
the computational power.

Applications to vulnerable systems: As noted in the introduction to the present
work, randomized RHS can be seen as a representation of systems mutating in
a toxic environment. However, we did not give any concrete examples. It would
be interesting to look up any such concrete cases and to evaluate the relevance
of this unconventional modeling approach.

6.2 Further Variants

Forbidding identical rules: In any of the three variants, it may happen that
identical rules are constructed, in any membrane. In the previous chapters, in
this case this rule was simply taken into the set of rules. Yet we could also forbid
such a situation to happen and in such a case completely abandon the whole
rule set. Another solution can be to take out all rules having been constructed
more than once from the constructed rule set.

The situation of getting identical rules can easily be avoided by avoiding
identical RHS: the right-hand sides of rules can be made different by adding
suitable powers of a dummy symbol d, which does not count for the final result
(i.e., d is no terminal symbol). As d also does not appear on the left-hand side
of a rule, the computational power of any of the P systems variant considered in
this paper will not be changed by this changing of the set of RHS available for
constructing the set of rules.

Identical RHS in Variant 3: In P systems with individual randomized RHS the
computational power mainly arises from the possibility to specify different sets
of RHS for the left-hand sides of rules. What happens if the set R of RHS must
be the same for all left-hand sides?

Tissue P systems with randomized RHS: The idea of randomizing right-hand
sides can be extended from hierarchical P systems, i.e., from P systems with
a tree-like membrane structure, to tissue P systems, i.e., P systems with cells
arranged in an arbitrary graph structure.

Several issues, especially the variants of tissue P systems with randomized
RHS, are discussed together with some first results in a preliminary but extended
version of this paper, see [2].

References

1. Alhazov, A.: A note on P systems with activators. In: Păun, G., Riscos-Núñez, A.,
Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on
Membrane Computing, Sevilla, Spain, 2–7 February 2004, pp. 16–19 (2004)

2. Alhazov, A., Freund, R., Ivanov, S.: P systems with randomized right-hand sides
of rules. In: 15th Brainstorming Week on Membrane Computing, Sevilla, Spain,
31 January–5 February 2017 (2017)

Hierarchical P Systems with Randomized Right-Hand Sides of Rules 39

3. Alhazov, A., Freund, R., Ivanov, S., Oswald, M.: Observations on P systems with
states. In: Gheorghe, M., Petre, I., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa,
A. (eds.) Multidisciplinary Creativity. Hommage to Gheorghe Păun on His 65th
Birthday, Spandugino (2015)

4. Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In: Gheorghe, M.,
Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol.
6501, pp. 81–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
18123-8 9

5. Arroyo, F., Baranda, A.V., Castellanos, J., Păun, G.: Membrane computing: the
power of (rule) creation. J. Univers. Comput. Sci. 8, 369–381 (2002)

6. Çapuni, I., Gács, P.: A turing machine resisting isolated bursts of faults. CoRR,
abs/1203.1335 (2012)

7. Cavaliere, M., Genova, D.: P systems with symport/antiport of rules. In: Păun,
G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second
Brainstorming Week on Membrane Computing, Sevilla, Spain, 2–7 February 2004,
pp. 102–116 (2004)

8. Cavaliere, M., Ionescu, M., Ishdorj, T.-O.: Inhibiting/de-inhibiting rules in P sys-
tems. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A.
(eds.) WMC 2004. LNCS, vol. 3365, pp. 224–238. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31837-8 13

9. Freund, R.: Generalized P-systems. In: Ciobanu, G., Păun, G. (eds.) FCT 1999.
LNCS, vol. 1684, pp. 281–292. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48321-7 23

10. Freund, R.: P systems working in the sequential mode on arrays and strings. In:
Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
188–199. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30550-
7 16

11. Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.:
Flattening in (tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M.,
Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp.
173–188. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54239-
8 13

12. Ivanov, S.: Polymorphic P systems with non-cooperative rules and no ingredients.
In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) CMC
2014. LNCS, vol. 8961, pp. 258–273. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14370-5 16

13. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (1998)
14. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press Inc., New York (2010)
15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.

Springer, New York (1997). https://doi.org/10.1007/978-3-642-59126-6
16. Bulletin of the International Membrane Computing Society (IMCS). http://

membranecomputing.net/IMCSBulletin/index.php
17. The P Systems Website. http://ppage.psystems.eu/

https://doi.org/10.1007/978-3-642-18123-8_9
https://doi.org/10.1007/978-3-642-18123-8_9
https://doi.org/10.1007/978-3-540-31837-8_13
https://doi.org/10.1007/3-540-48321-7_23
https://doi.org/10.1007/3-540-48321-7_23
https://doi.org/10.1007/978-3-540-30550-7_16
https://doi.org/10.1007/978-3-540-30550-7_16
https://doi.org/10.1007/978-3-642-54239-8_13
https://doi.org/10.1007/978-3-642-54239-8_13
https://doi.org/10.1007/978-3-319-14370-5_16
https://doi.org/10.1007/978-3-319-14370-5_16
https://doi.org/10.1007/978-3-642-59126-6
http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php
http://ppage.psystems.eu/

Controlled Reversibility in Reaction Systems

Bogdan Aman(B) and Gabriel Ciobanu

Institute of Computer Science, Romanian Academy,
Blvd. Carol I no. 8, 700505 Iaşi, Romania

bogdan.aman@gmail.com, gabriel@info.uaic.ro

Abstract. We study the controlled reversibility in reaction systems, a
bio-inspired formalism in which the reactions take place only if some
inhibitors are not present. Forward reactions are exactly those of the
reaction systems, while reverse reactions happen when a special symbol
indicates a change in the environment. The reversible reaction systems
are translated into rewriting systems which are executable on the Maude
software platform. Given such an implementation, several properties of
the reversible reaction systems could be verified.

1 Introduction

In this paper we investigate the reversibility of biochemical reactions in the
framework of natural computing. Natural computing [16] is the field of research
dealing with models and computational techniques inspired by nature, helping us
to understand the biochemical world around us in terms of information process-
ing. Two important theories of natural computing inspired by the functioning of
living cells are membrane computing [22] and reaction systems [13].

Membrane computing deals with multisets of symbols processed in the com-
partments of a membrane structure according to some multiset rewriting rules.
The symbols are present with their multiplicity within the regions delimited
by membranes. Some of these symbols evolve in parallel according to the rules
associated with their membranes, while the others remain unchanged and can
be used in the subsequent steps. The situation is different in reaction systems.
These systems represent a qualitative model, and they deal with sets rather than
multisets. Two major assumptions set the reaction systems apart from the mem-
brane systems: (i) threshold assumption claiming that if a resource is present in
the system, then it is present in a “sufficient amount” such that several reactions
needing such a resource will not be in conflict (this means that reaction systems
have actually an infinite multiplicity for their resources); (ii) no permanency
assumption claiming that an entity will vanish from the current state unless it
is produced by one of the reactions enabled in that state.

Reversible computation is an emerging paradigm extending the standard
forwards-only mode of computation with the ability to execute also reversely,
such that a computation can run backwards as naturally as it can go forwards.
It has been studied for Turing machines [9,21] and register machines [20] in

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 40–53, 2018.
https://doi.org/10.1007/978-3-319-73359-3_3

Controlled Reversibility in Reaction Systems 41

which the reversible computation provides the possibility of returning to the ini-
tial state from any reachable state. It is worth pointing out that there exist both
uncontrolled and controlled reversibility. Uncontrolled reversibility means that
reversing a system is done without indicating exactly when backward steps are
executed. Reversibility appears naturally in chemical and biological systems, and
it is probably related to the fault tolerance and stability of these systems. How-
ever, some steps are reversed only when there exist a specific context, an environ-
mental modification which activates the computation in a backward direction.
Taking care of the systems in which backward and forward evolutions depend on
specific physical conditions, in this paper we consider a controlled reversibility in
reaction systems. In order to control the reversibility, a special rollback symbol
ρ is used to activate the backward evolution. We use specific sequences includ-
ing this special symbol coming from the environment; these sequences control
the direction of the computation in order to recover from failures or to avoid
deadlocks, for instance.

Rewrite theories and rewriting logic [19] has been used for more than two
decades as computational frameworks able to express several paradigms. Com-
putationally, rewriting logic represents a semantic framework in which various
models are naturally formalized; for instance, membrane systems can be executed
and analyzed as rewrite theories [2,6]. Logically, rewriting logic is a framework
within which various logics can be represented. A list of calculi, logics, program-
ming languages and models described as rewrite theory and rewriting logic is
presented in [19]. We use rewriting logic and present an implementation of the
reversible reaction systems in the rewriting engine Maude based on a correspon-
dence between their operational semantics and their rewriting logic translation.
This allows the automated verification of their properties.

2 Reaction Systems

Reaction systems (abbreviated as RS) are used for modelling processes driven
by biochemical reactions; the fundamental idea in this framework is that the
biochemical reactions are based on the mechanisms of facilitation and inhibi-
tion [10]. Thus a reaction is modelled as a triplet: a set of reactants, a set of
inhibitors, and a set of products. A reaction can take place in a given state if
all its reactants are present in that state, and none of its inhibitors are present;
when triggered, the reaction creates its products. We recall in what follows some
elementary notions and notations about reaction systems, as presented in [10].

Let S be an alphabet (its elements are called molecules, or simply symbols).
A reaction over S is a triple a = (R, I, P), where R, I, P are non-empty subsets
of S such that R ∩ I = ∅. R is the reactant set of a, I is the inhibitor set of a,
and P is the product set of a; R, I, P are also denoted as Ra, Ia, Pa, respectively.
We denote by rac(S) the set of all reactions in S.

Given a configuration T ⊆ S and a reaction a ∈ rac(S), a is enabled by T
(denoted by a en T) if Ra ⊆ T and Ia ∩ T = ∅. The result res(a, T) of a on T is
defined by res(a, T) = Pa. This reaction can be written as a rewrite of the form
T

a−→ res(a, T). If a is not enabled by T , then res(a, T) = ∅; the fact that T

cannot be rewritten by applying a is written as T � a−→.

42 B. Aman and G. Ciobanu

If A is a finite set of reactions, then the result of A on T is defined by
res(A, T) =

⋃
a∈A res(a, T). This can be written as T

A−→ res(A, T). The activity
of a set of reactions A on a finite set T is defined by en(A, T) = {a ∈ A | a en T}.
Thus, en(A, T) is the set of all reactions from A that are enabled by T . Note
that res(A, T) = res(en(A, T), T); this means that only the reactions from A
which are enabled on T contribute to the result of A on T .

A reaction system is an ordered pair A = (S,A), where S is an alphabet and
A ⊆ rac(S). The dynamic behaviour of the reaction systems is captured through
the notion of an interactive process defined as follows.

Definition 1. Let A = (S,A) be a reaction system. An interactive process in A
is a pair π = (γ, δ) of finite sequences such that γ = C0, C1, . . . , Cn−1, δ =
D1, . . . , Dn with n ≥ 1, where C0, . . . , Cn−1,D1, . . . , Dn ⊆ S,D1 = res(A,C0),
and Di = res(A,Di−1 ∪ Ci−1) for each 2 ≤ i ≤ n.

The sequences C0, . . . , Cn−1 and D1, . . . , Dn are the context and result
sequences of π, respectively. Context C0 represents the initial state of π (the
state in which the interactive process is initiated), and the contexts C1, . . . , Cn−1

represent the influence of the environment to the computation. It should be
noticed that the context sequence γ = C0, C1, . . . , Cn−1 is described by a reg-
ular expression over S. This sequence formalizes the fact that we work with
an open system interacting with the environment, somehow similar to what
happens in the spiking neural P systems with input neurons [14]. The sequence
sts(π) = W0, . . . ,Wn denotes the state sequence of π, where W0 = C0 (the initial
state), and Wi = Di ∪ Ci for all 1 ≤ i ≤ n. The sequence act(π) = E0, . . . , En−1

of subsets of A such that Ei = en(A,Wi) for all 0 ≤ i ≤ n − 1 represents the
activity sequence of π. Thus, the evolution can be written as

W0
E0−−→ W1

E1−−→ . . .
En−1−−−→ Wn.

In the definition of the result of a set A of reactions on a set T of molecules, it
is easy to note the two assumptions mentioned in the previous section: a molecule
can evolve by means of several reactions (or can inhibit several reactions if it
appears in inhibitor sets), hence the multiplicity of each molecule is unbounded,
while all the molecules present at a given time “disappear” after the reactions
are enabled and the computation continues with the set of molecules produced
by the reactions.

Example 1. We describe the self-assembly of intermediate filaments from
vimentin tetramers presented in [8] by using the reaction systems. Two tetramers
(denoted by T) join to form an octamer (denoted by O), two octamers join to
form a hexadecamer (denoted by H), while two hexadecamer join to form a unit
length filament ULF . We consider the ULF s as elementary filaments (generi-
cally denoted by F). Two longer filaments join by end-to-end interactions, and
form a longer complex. We present the molecular model of this basic representa-
tion and the corresponding reactions in the following reaction system A = (S,A)
with S = {T,O,H, F, dI}:

Controlled Reversibility in Reaction Systems 43

Reaction in the molecular model Reaction in the reaction system

2T → O ({T}, {dI}, {O})
2O → H ({O}, {dI}, {H})
2H → F ({H}, {dI}, {F})
2F → F ({F}, {dI}, {F})

The dummy variable dI is used only to respect the constraint that the set of
inhibitors should be non-empty in each reaction.

A possible evolution of this system is into a loop after the third state, a loop
from which every state Wi with i ≥ 3 contains all the species of the system:

State Ci Di Wi

0 {T} ∅ {T}
1 {T} {O} {T, O}
2 {T} {O, H} {T, O, H}
3 {T} {O, H, F} {T, O, H, F}
4 {T} {O, H, F} {T, O, H, F}

This evolution is obtained if the context sequence γ has the form γ = Tn,
namely Ci = {T} for all 0 ≤ i ≤ n − 1.

Another possible evolution of the system is into a loop after the initial state
from which every state Wi with i ≥ 1 contains only the initial input:

State Ci Di Wi

0 {F} ∅ {F}
1 ∅ {F} {F}
2 ∅ {F} {F}

This alternative evolution is obtained if the context sequence γ has the form
γ = T , namely C0 = {F} and Ci = ∅ for all 1 ≤ i ≤ n − 1. As C0 represents the
initial state, we have C0 �= ∅.

3 Reversible Reaction Systems

In order to have backward computations, we add to each state Wi a regis-
ter Ti keeping track of the symbols that will disappear after step i as they were
not created by the reactions of the current step (to assure the no permanency
assumption). This is required by the fact that these symbols need to be recreated
when we intend to reverse the computation. Thus, we work with register states
W ′

i = (Wi, Ti), where Ti ⊆ S × N is the set of objects disappearing during the

44 B. Aman and G. Ciobanu

evolution together with a number indicating how many steps ago this happened.
We can see each state Wi as an equivalence relation of register states obtained by
ignoring the sets Ti; namely, we define a relation ≡ over register states given by
(Wi, T) = (Wi, T

′) for all T, T ′ ⊆ S ×N. Obviously, ≡ is an equivalence relation.

Proposition 1. The set S×(S×N)/≡ of equivalence classes is isomorphic with
the set S of states of the reaction system A.

Proof. We define φ : S × (S ×N) → S inductively by φ((W,T)) = W . This map
induces a bijection φ : S × (S × N)/≡ → S.

The evolution W0
E0−−→ W1 described in Sect. 2 becomes (W0, T0)

E0−−→
(W1, T1), where T0 = ∅ and T1 =

⋃
t∈W0\lhs(E0)

(t, 0). In a similar man-

ner, Wi
Ei−→ Wi+1 for i ≥ 1 becomes (Wi, Ti)

Ei−→ (Wi+1, Ti+1), where
Ti+1 = inc(Ti) ∪ ⋃

t∈Wi\lhs(Ei)
(t, 0) and inc(T) =

⋃
(t,i)∈T (t, i + 1). The set

lhs(E) =
⋃

(R,I,P)∈E R is the collection of all reactants from the set of enabled
reactions E, while W\lhs(E) is used to compute the set of molecules that van-
ishes after the reactions from E are applied to W .

To reverse a computation, a natural approach is to reverse its reactions.
Reversing a reaction a = (Ra, Ia, Pa) means that its reverse ã is able to undo
the effects of a. According to [2], if the rule does not contain inhibitors, then
(P, ∅, R) is the reverse of (R, ∅, P); this means to switch the position of reactants
and products. If in a step a reaction a is applied, then its inhibitors Ia are not
present (and not modified by rules of A). This means that the set of inhibitors
remains the same when we reverse the effect of such a reaction.

Definition 2. The reverse of a reaction a = (Ra, Ia, Pa) is given by the reaction
ã = (Pa, Ia, Ra). Similarly, the reverse of a set A of reactions is the set Ã = {ã |
a ∈ A}.

Since in Sect. 2 we imposed R ∩ I = ∅ for a reaction a = (R, I, P), the
definition above has the problem that the reverse ã = (R′, I ′, P ′) might not
be a reaction because R′ ∩ I ′ �= ∅. For example, let us consider the reaction
a = (b, c, c) and assume that res(A, c) = ∅. The resulting reverse reaction would
be ã = (c, c, b), which is not a reaction because reactants and inhibitors have a
non-empty intersection. To overcome this problem, we impose from now on that
we work only with reactions a = (R, I, P) satisfying that R ∩ I = P ∩ I = ∅.
It should be noticed that the principle of double negation is valid when we use
Definition 2, namely we have ˜̃a = a.

To avoid going backward and forward between two states for an infinite num-
ber of times, we also impose that the reverse computation is realized only when
a special object ρ is introduced from the environment (context). The control is
therefore performed by an (active) environment that provides at certain steps
the special rollback symbol ρ signalling the system that it has to reverse its
computation. This ρ is an abstraction of a physical reality in which a system is
informed that a certain change in the environment has an effect on its evolution,
as happens in heat shock response modelled previously by using the reaction

Controlled Reversibility in Reaction Systems 45

systems in [7]. We assume also that this special symbol cannot be created by
any reaction of A.

In this general framework, the evolution can take place by applying one of
the following two rules:

(fwd)
ρ �∈ Wi Ei �= ∅

(Wi, Ti)
Ei−→ (Wi+1, Ti+1)

where Ti+1 = inc(Ti) ∪ ⋃
t∈Wi\lhs(Ei)

(t, 0), inc(T) =
⋃

(t,i)∈T (t, i + 1) and
Wi+1 = res(Ei,Wi);

(rev)
ρ ∈ Wi Ẽi �= ∅

(Wi+1, Ti+1)
Ẽi� (Wi, Ti)

where Ti = dec(Ti+1), dec(Td) =
⋃

(t,i)∈Td;i>0(t, i − 1) and Wi = res(Ẽi,Wi+1)
∪ zero(Ti+1) with zero(T) =

⋃
(t,0)∈T t. Also, Ẽi = en(Ã,Wi+1).

This means that if Ci ∩ {ρ} = ∅ then a forward computation takes place,
while if Ci ∩ {ρ} �= ∅ then a backward computation takes place.

Example 2. To reverse a computation, we first construct the reversed reactions:

a ã

({T}, {dI}, {O}) ({O}, {dI}, {T})
({O}, {dI}, {H}) ({H}, {dI}, {O})
({H}, {dI}, {F}) ({F}, {dI}, {H})
({F}, {dI}, {F}) ({F}, {dI}, {F})

As dI is a dummy variable, then it is kept also in the reversed reactions.
We present now a possible evolution of the reaction system describing the

self-assembly of intermediate filaments from vimentin tetramers by using also
the reversed reactions when the special symbol ρ appears:

State Ci Di Wi Ti

0 {T} ∅ {T} ∅
1 {T} {O} {T, O} ∅
2 {ρ} {O, H} {ρ, O, H} ∅
3 {∅} {T, O} {T, O} ∅
4 {T} {O, H} {T, O, H} ∅
5 {T} {O, H, F} {T, O, H, F} ∅
6 {ρ} {O, H, F} {ρ, O, H, F} ∅
7 ∅ {T, O, H, F} {T, O, H, F} ∅

46 B. Aman and G. Ciobanu

It can be easily noticed that if the rollback symbol ρ is introduced from the
environment, then the system reaches the previous state going backward.

Another possible evolution of the system is:

State Ci Di Wi Ti

0 {F} ∅ {F} ∅
1 ρ {F} {ρ, F} ∅
2 ρ {H, F} {ρ, H, F} ∅
3 ρ {O, H, F} {ρ, O, H, F} ∅
4 ∅ {T, O, H, F} {T, O, H, F} ∅
5 ∅ {O, H, F} {O, H, F} ∅
6 ∅ {H, F} {H, F} ∅
7 ∅ {F} {F} ∅

In this case it is worth noting that even if we start from a system containing
only F , the forward evolution keeps the same state while the backward evolution
reaches the state {T,O,H, F} from which going forward we reach again the
state F (whenever the environment does not offer other rollback symbols).

Remark 1. For the purpose of this paper it is enough to consider the controlled
reversibility by using context sequences with symbols from {∅; ρ} for Ci, i > 0.
The case of considering scenarios using symbols from an extended set represents
further work.

Our reversible reaction systems (RRS) represent only a decoration of the
reaction systems (RS) defined in the previous sections. In fact, as for the most of
the existing reversible approaches, such decorations can be erased by a forgetful
map φ : RRS → RS defined as φ((Wi, Ti)) = Wi. Conversely, one can lift any
RS configuration to an RRS configuration by using the map l : RS → RRS
defined by l(Wi) = (Wi, ∅), namely by adding an empty register to a state.

It is enough to forget about backward rules by considering Ci = ∅ (i > 0) in
the reversible reaction systems. In this way, there is no object ρ coming from the
environment to inhibit the forward rules. This is formally stated in what follows;
the next result shows that a step in the initial reaction system can be modelled
by a forward step in the reversible reaction system.

Proposition 2. W
E−→ W ′ if and only if (W,T) E−→ (W ′, T ′).

Proof. ⇒: If W
E−→ W ′, then W ′ = res(E,W). According to our constructions,

for each configuration W of a reaction system there exist a corresponding con-
figuration of a reversible reaction system given by l(W) = (W, ∅). By applying
the rule (fwd) to (W,T) where T = ∅, we obtain the configuration (W ′′, T ′)
where W ′′ = res(E′,W) and T ′ =

⋃
t∈W\lhs(E)(t, 0). Due to the threshold

Controlled Reversibility in Reaction Systems 47

assumption of the reaction systems, we got that E = E′; namely, there is an
unique set of reactions applicable to W . This means that W ′′ = W ′, and so
(W,T) E−→ (W ′, T ′) holds.

⇐: If (W,T) E−→ (W ′, T ′), then T ′ = ∪(t,i)∈T (t, i+1)∪⋃
t∈W\lhs(E)(t, 0) and

W ′ = res(E,W). By applying the forgetful map φ to the configuration (W,T)
of the reversible reaction systems, we obtain the configuration W of the reaction
systems. By applying all the possible reactions to this configuration, we obtain

W
E′
−→ W ′′, where W ′′ = res(E′,W). Due to the threshold assumption of the

reaction systems, we got that E = E′; namely, there is a unique set of reactions
applicable to W . This means that W ′′ = W ′, and so W

E−→ W ′ holds. ��
Remark 2. Note that by using a reaction system, it is possible to reverse a
computation beyond its initial state. This means that there are cases in which the
construction provided before produces, by going backward from a certain state
(W,T), a state (W ′, T ′) in which W ′ is not contained in the set of pre-images
of W . Our approach is similar with the one presented in [17], where a process
calculus for the out-of-causal order reversible computation was proposed. This
approach is illustrated by the last case of Example 2, where starting from {F}
and going backward some steps without performing any forward step previously,
we reach a new state {T,O,H, F} which is not contained in the set of pre-images
of {F}.

The following two theorems show that, in certain cases, if the current state is
related to the new obtained one by certain relations, then the reversible reaction
systems enjoy a standard property of reversible calculi described by so-called
loop lemma in [12]: backward reductions are the inverse of the forward ones,
and vice-versa. It is worth noting that the following two theorems specify the
necessary conditions such that the reverse reactions defined as in Definition 2
are able to provide, together with the additional memory, a way of “going back”
one step in the computation (i.e., a causal reversibility).

Theorem 1. If W = res(Ẽ,W ′) ∪ zero(T ′) and ρ ∈ W ′, then

(W,T) E−→ (W ′, T ′) implies (W ′, T ′) Ẽ� (W,T).

Proof. If (W,T) E−→ (W ′, T ′), then T ′ = inc(T) ∪ ⋃
t∈W\lhs(E)(t, 0), inc(T) =

⋃
(t,i)∈T (t, i + 1) and W ′ = res(E,W). Since ρ ∈ W ′, then a (rev) rule can

be applied, and so (W ′, T ′) Ẽ� (W ′′, T ′′) with T ′′ = dec(T ′) and dec(T ′) =⋃
(t,i)∈T ′;i>0(t, i − 1), as well as W ′′ = res(Ẽ,W ′) ∪ zero(T ′) with zero(T ′) =

⋃
(t,0)∈T ′ t. Notice that T ′′ = dec(T ′) = dec(inc(T) ∪ ⋃

t∈W\lhs(E)(t, 0)) =
dec(inc(T))∪dec(

⋃
t∈W\lhs(E)(t, 0)) = T ∪∅ = T , and also due to the hypothesis

that W ′′ = res(Ẽ,W ′) ∪ zero(T ′) = W . This means that we got (W ′, T ′) Ẽ�
(W,T), as desired. ��

48 B. Aman and G. Ciobanu

Theorem 2. If W ′ = res(E,W) and ρ �∈ W , then

(W ′, T ′) Ẽ� (W,T) implies (W,T) E−→ (W ′, T ′).

Proof. If (W ′, T ′) Ẽ� (W,T), then T = dec(T ′) where dec(T ′) =
⋃

(t,i)∈T ′;i>0

(t, i − 1) and W = res(Ẽ,W ′) ∪ zero(T ′) with zero(T ′) =
⋃

(t,0)∈T ′ t. Since

ρ �∈ W , then a (fwd) rule can be applied, and so (W,T) E−→ (W ′′, T ′′) with
T ′′ = inc(T)∪⋃

t∈W\lhs(E)(t, 0), inc(T) =
⋃

(t,i)∈T (t, i+1) and W ′′ = res(E,W).
It should be noticed that T ′′ = inc(T) ∪ ⋃

t∈W\lhs(E)(t, 0)
= inc(dec(T ′)) ∪ ⋃

t∈(res(Ẽ,W ′)∪zero(T ′))\lhs(E)(t, 0)
= (T ′\⋃

t∈zero(T ′)(t, 0)) ∪ ⋃
t∈(rhs(Ẽ)∪zero(T ′))\lhs(E)(t, 0)

= (T ′\⋃
t∈zero(T ′)(t, 0)) ∪ ⋃

t∈(lhs(E)∪zero(T ′))\lhs(E)(t, 0)
= (T ′\⋃

t∈zero(T ′)(t, 0)) ∪ ⋃
t∈zero(T ′)(t, 0) = T ′

and also due to the hypothesis that W ′′ = res(E,W) = W ′. This means that
we got (W,T) E−→ (W ′, T ′), as desired. ��
Remark 3. The hypotheses of the above two theorems could appear too strong,
and that these theorems are applicable indifferent of the reversibility for a reac-
tion given in Definition 2. We present a counterexample for Theorem 1 to illus-
trate that this in not true.

Let us consider A = {r1, r2}, where r1 = (a, b, c) and r2 = (b, a, c). By
applying Definition 2, we get the reverse rules r̃1 = (c, b, a) and r̃2 = (c, a, b).
If (W,T) = (a, ∅), it implies that E = en(A,W) = r1 and (W,T) E−→ (W ′, T ′)
with W ′ = c and T ′ = T = ∅. By definition, Ẽ = en(Ã,W ′) = {r̃1, r̃2}; thus

(W ′, T ′) Ẽ−→ (W ′′, T ′′) with W ′′ = res(Ẽ,W ′) ∪ zero(T ′) = ab and T ′′ = T ′ = ∅.
This implies that W ′′ �= W , and so the theorem is not applicable as the theorem
holds only if the set of reversed rules Ẽ is able to recreate the initial configuration
W . This is why we have added the strong hypothesis stating that only in certain
conditions the step of a system is truly reversible.

4 Implementation of Reversible Reaction Systems

Rewriting logic is a computational logic which combines equational logic with
term rewriting. According to [11], a rewrite theory is a triple (Σ,E,R), where Σ
is a signature of function symbols, E a set of (possibly conditional) Σ-equations,
and R a set of (possibly conditional) Σ-rewrite rules. The conditions for a rewrite
rule can involve both equations and rewrite rules. Generally, a typed setting is
used in [18] under the form of an order-sorted equational logic (Σ,E) which
has sorts, subsort inclusions and kinds (connected components of sorts). The
notation R � t → t′ is used to express that t → t′ is provable in the theory R
using the inference rules of the rewriting logic. For a kind k and a set of kinded
variables X,TΣ(X)k denotes the set of Σ-terms of kind k over the variables
in X. If s is a sort in the kind k, TΣ(X)s is the subset of TΣ(X)k consisting of
Σ-terms of sort s over X. Given a rewrite theory R = (Σ,E,R), the sentences

Controlled Reversibility in Reaction Systems 49

which R proves are of form (∀X)t → t′, with t, t′ ∈ TΣ(X)k for some kind k.
These sentences are obtained from the following inference rules:

Reflexivity. For each t ∈ TΣ(X), R � t → t

Equality.
(∀X)u → v,E � u = u′, E � v = v′

(∀X)u′ → v′

Congruence. For each f ∈ Σs1...sn,s, ti ∈ TΣ(X)si

(∀X)tj → t′j , j ∈ J ⊆ [n]
(∀X)f(t1, . . . , tn) → f(t′1, . . . , t

′
n)

, where t′i := ti whenever i �∈ J ;

Replacement. For each θ : X → TΣ(Y) and for each rule in R of the form
(∀X)t → t′ if (

∧
i ui = u′

i) ∧ (
∧

wj → w′
j), we have

∧
x(∀Y)θ(x) → θ′(x)) ∧ (

∧
i(∀Y)θ(ui) = θ(u′

i)) ∧ (
∧

j(∀Y)θ(wj) → θ(w′
j))

(∀Y)θ(x) → θ(x′)
where θ′ is the substitution obtained from θ by some rewritings θ(x) → θ′(x)
for each x ∈ X;

Transitivity.
(∀X)t1 → t2, (∀X)t2 → t3

(∀X)t1 → t3
.

In what follows we use the rewriting engine Maude to describe a rewriting
theory corresponding to the semantics of the reversible reaction systems. In order
to translate the syntax of reversible reaction systems, we use several sorts with
easy-to-understand names: e.g., ESymbol is used to represent symbols from the
environment. Between the given sorts there exist some subsorting relations, from
which we mention subsorts ESymbol < ESymbols illustrating the fact that an
environment symbol is part of a set of environment symbols. The sort TSymbol is
used to count the number of steps since a symbol was removed from the system.

sorts Symbol Symbols ESymbol ESymbols TSymbol TSymbols
RState Reaction Reactions.

subsorts Symbol < ESymbol Symbols.
subsorts Symbols < ESymbols.
subsorts ESymbol < ESymbols.
subsorts TSymbol < TSymbols.
subsorts Reaction < Reactions.

To represent the symbols, reactions and states of the reaction systems, we use the
constructors described below. The sets of symbols and reactions are described
by using associative and commutative constructors.

op es : -> Symbol [ctor].
op _ | _ : Symbols Symbols -> Symbols [assoc comm id: es].
op rho : -> ESymbol [ctor].
op fw : -> ESymbol [ctor].
op _ ~ _ : ESymbols ESymbols -> ESymbols [assoc].
op et : -> TSymbol [ctor].
op _ || _ : TSymbols TSymbols -> TSymbols [assoc comm id: et].
op [_ , _] : Symbols Nat -> TSymbols.
op {_ , _ , _} : Symbols Symbols Symbols -> Reaction.
op er : -> Reaction [ctor].
op _ ; _ : Reactions Reactions -> Reactions [assoc comm id: er].
op < _ $ _ $ _ $ _ > : ESymbols Symbols TSymbols Reactions -> RState.

50 B. Aman and G. Ciobanu

The reactions are simulated as conditional rewrite rules:

crl [Fwd] : < fw ~ E $ X $ ts $ A > =>
< E $ res(A, X) $ inc(ts) || addtime(rem(lhs(A), X)) $ A >

if en(A, X) =/= er.

crl [FwdFin] : < fw $ X $ ts $ A > =>
< es $ res(A, X) $ inc(ts) || addtime(rem(lhs(A), X)) $ A >

if en(A, X) =/= er.

crl [Rev] : < rho ~ E $ X $ ts $ A > =>
< E $ res(rev(A, A), X) | zero(ts) $ dec(ts) $ A >

if en(rev(A, A), X) =/= er.

crl [RevFin] : < rho $ X $ ts $ A > =>
< es $ res(rev(A, A), X) | zero(ts) $ dec(ts) $ A >

if en(rev(A, A), X) =/= er.

crl [FwdStop] : < fw ~ E $ X $ ts $ A > =>
< E $ es $ inc(ts) || addtime(X) $ A >

if en(A, X) == er /\ X =/= es.

crl [RevStop] : < rho ~ E $ X $ ts $ A > =>
< E $ es $ inc(ts) || addtime(X) $ A >

if en(A, X) == er /\ X =/= es.

It should be noticed that there are three instances for both reactions (fwd)
and (rev). The need for these instances is due to the fact that either the input
provided by the environment ends or the system cannot evolve anymore. The
functions res, addtime, rem, lhs, en, zero, inc and dec are used to compute the
next configurations and to test if rules are applicable. They are defined similarly
to the ones used in the reactions (fwd) and (rev).

The correspondence between the operational semantics of the reversible reac-
tion systems on one hand and the rewrite theory on the other hand is given by
a mapping ψ : RRS → RState defined inductively by

ψ((Wi, Ti), A) = <Ci ∼ Ci+1 . . . ∼ CnDiTi$A>,

where Wi = Ci ∪ Di and Ci+1 ∼ . . . ∼ Cn represents the remaining of the
external input. For simplification and a more straightforward translation, we
could use a function that after using the current Ci provides the next input
from the environment.

By RRRS we denote the rewrite theory defined by the rewrite rules [Fwd],
[FwdFin], [Rev], [RevFin], [FwdStop] and [RevStop] together with the oper-
ators and equations defining them. The next theorem proves the correspondence
between the dynamics of a reversible reaction system and its rewrite theory.

Theorem 3. (W,T) E−→ (W ′, T ′) iff RRRS � ψ((W,T), A) ⇒ ψ((W ′, T ′), A).

Proof. By structural induction. The proof follows by using the mapping ψ and
the definition of the rewrite theory RRRS presented above.

Controlled Reversibility in Reaction Systems 51

Example 3. We provide a small example of a reversible reaction system, and
then analyze it by using the Maude implementation. We can verify that the
rules are applied properly, and the results are the desired ones.

Consider the following reversible reaction system:

< fw ~ fw ~ rho ~ fw $ (c|d|f) $ et $ ({c,d1,d}; {f,d1,c}) >.

When using the rewrite command rew on the above system, Maude executes
the specification by applying the previously presented rules and equations, and
finally returns the output below. Since sometime we are not interested to display
all the steps and states, the command rew [n] can be used to obtain systems
reachable in n steps:

rewrite [1] in RS-EXAMPLE : < fw ~ fw ~ rho ~ fw $ c | d | f $ et $
{c,d1,d}; {f,d1,c} >.

rewrites: 121 in 0ms cpu (0ms real) (~ rewrites/second)
result RState: < fw ~ rho ~ fw $ c | d $ [d,0] $

{c,d1,d}; {f,d1,c} >
==
rewrite [2] in RS-EXAMPLE : < fw ~ fw ~ rho ~ fw $ c | d | f $ et $

{c,d1,d}; {f,d1,c} >.
rewrites: 304 in 0ms cpu (0ms real) (~ rewrites/second)
result RState: < rho ~ fw $ d $ [d,0] || [d,1] $

{c,d1,d}; {f,d1,c} >
==
rewrite [3] in RS-EXAMPLE : < fw ~ fw ~ rho ~ fw $ c | d | f $ et $

{c,d1,d}; {f,d1,c} >.
rewrites: 569 in 4ms cpu (1ms real) (142250 rewrites/second)
result RState: < fw $ c | d $ [d,0] $ {c,d1,d} ; {f,d1,c} >
==
rewrite [4] in RS-EXAMPLE : < fw ~ fw ~ rho ~ fw $ c | d | f $ et $

{c,d1,d} ; {f,d1,c} >.
rewrites: 696 in 0ms cpu (1ms real) (~ rewrites/ second)
result RState: < es $ d $ [d,0] || [d,1] $ {c,d1,d} ; {f,d1,c} >

It is easy to notice that, ignoring the context symbols, the configurations after
one and three rewrites and after two and four rewrites are equal, meaning that
the reversing evolution works as desired.

5 Conclusion

Membrane computing [22] and reaction systems [13] are branches of natural com-
puting aiming to define computing models from the structure and functioning
of the living cell. Membrane systems represent a quantitative model of multiset
rewriting, while reaction systems represent a qualitative model of set rewrit-
ing. Some research comparing them was done in [23], while in [4] are presented
membrane systems with no-persistence assumption of reaction systems from the
viewpoint of the computational power.

Reversible membrane systems were considered in [15], but the model does
not uses maximal parallel rewriting; the main result is the simulation of the
Fredkin gate, and so it actually studies the reversible circuits. The reversibility of
membrane systems with maximal parallelism systems only from a computability

52 B. Aman and G. Ciobanu

point of view was studied in [5]. The dual P systems [1] present reversibility in
membrane systems as duality (under the influence of category theory). A full
description of this kind of reversibility in membrane systems is given in [3].

In this paper we presented a controlled reversibility in the context of reaction
systems. An important aspect of this approach is given by considering additional
reversing reactions to the initial set of reactions with inhibitors, as well as by
adding an external control by means of a special symbol ρ informing the sys-
tem that a rollback is needed. Specific results (including so-called loop results)
are proved, as well as an operational correspondence between reaction systems
and rewriting theory. This operational correspondence allows to translate the
reversible reaction systems into rewriting systems which are executable in the
rewriting engine Maude. Given such an implementation, several properties of
the reversible reaction systems can be verified.

Acknowledgements. We thank the reviewers for their helpful comments and
suggestions. This work was partially supported by the COST Action IC1405.

References

1. Agrigoroaiei, O., Ciobanu, G.: Dual P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 95–107.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7 7

2. Agrigoroaiei, O., Ciobanu, G.: Rewriting logic specification of membrane systems
with promoters and inhibitors. Electron. Notes Theor. Comput. Sci. 238, 5–22
(2009)

3. Agrigoroaiei, O., Ciobanu, G.: Reversing computation in membrane systems. J.
Logic Algebraic Program. 79, 278–288 (2010)

4. Alhazov, A., Aman, B., Freund, R., Ivanov, S.: Simulating R systems by P systems.
In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS,
vol. 10105, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54072-6 4

5. Alhazov, A., Morita, K.: On reversibility and determinism in P systems. In: Păun,
G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.)
WMC 2009. LNCS, vol. 5957, pp. 158–168. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11467-0 12

6. Andrei, O., Ciobanu, G., Lucanu, D.: Executable specifications of P systems. In:
Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC
2004. LNCS, vol. 3365, pp. 126–145. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31837-8 7

7. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response.
Fundamenta Informaticae 131(3–4), 299–312 (2014)

8. Azimi, S., Panchal, C., Czeizler, E., Petre, I.: Reaction systems models for the
self-assembly of intermediate filaments. Ann. Univ. Buchar. LXII(2), 9–24 (2015)

9. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

10. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

https://doi.org/10.1007/978-3-540-95885-7_7
https://doi.org/10.1007/978-3-319-54072-6_4
https://doi.org/10.1007/978-3-319-54072-6_4
https://doi.org/10.1007/978-3-642-11467-0_12
https://doi.org/10.1007/978-3-642-11467-0_12
https://doi.org/10.1007/978-3-540-31837-8_7
https://doi.org/10.1007/978-3-540-31837-8_7

Controlled Reversibility in Reaction Systems 53

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude - A High Performance Logical Framework: How to Specify,
Program, and Verify Systems in Rewriting Logic. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71999-1

12. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

13. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae
75(1), 263–280 (2007)

14. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Infor-
maticae 71(2), 279–308 (2006)

15. Leporati, A., Zandron, C., Mauri, G.: Reversible P systems to simulate Fredkin
circuits. Fundamenta Informaticae 74(4), 529–548 (2006)

16. Kari, L., Rozenberg, G.: The many facets of natural computing. Commun. ACM
51, 72–83 (2008)

17. Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese, I.
(eds.) RC 2016. LNCS, vol. 9720, pp. 20–35. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40578-0 2

18. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

19. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81(7–8),
721–781 (2012)

20. Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci.
168, 303–320 (1996)

21. Morita, K., Yamaguchi, Y.: A universal reversible Turing machine. In: Durand-
Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8 8

22. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (1998)
23. Păun, G., Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P sys-

tems and R systems. Theor. Comput. Sci. 429, 258–264 (2012)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/978-3-540-74593-8_8

Multiset Patterns and Their Application
to Dynamic Causalities in Membrane Systems

Roberto Barbuti, Roberta Gori, and Paolo Milazzo(B)

Dipartimento di Informatica, Università di Pisa,
Largo Pontecorvo 3, 56127 Pisa, Italy

{barbuti,gori,milazzo}@di.unipi.it

Abstract. In this paper we investigate dynamic causalities in membrane
systems by proposing the concept of “predictor”, originally defined in the
context of Ehrenfeucht and Rozemberg’s reaction systems. The goal is to
characterize sufficient conditions for the presence of a molecule of inter-
est in the configuration of a P system after a given number of evolution
steps (independently from the non-deterministic choices taken). Such
conditions can be used to study causal relationships between molecules.
To achieve our goal, we introduce the new concept of “multiset pattern”
representing a logical formula on multisets. A predictor can be expressed
as a pattern characterizing the initial multisets that will surely lead (suf-
ficient condition) to the presence of the molecule of interest after the
given number of evolution steps. We define also an operator that com-
putes such a predictor.

1 Introduction

The understanding of causal relationships among the events happening in a
biological (or bio-inspired) system is an issue investigated in the context both of
systems biology (see e.g. [6,7,12]) and of natural computing (see e.g. [10]).

In [9] Brijder et al. initiate an investigation of causalities in reaction systems
[8,11]. Causalities deal with the ways entities of a reaction system influence
each other. In [9], both static/structural causalities and dynamic causalities are
discussed, introducing the idea of predictor. A predictor can be used to determine
whether a molecule of interest s will be produced after k steps of execution of
the reaction system, without executing the system itself.

The environment is the only source of non-determinism in a reaction system.
Knowledge about the molecules which will be provided at each step by the
environment is necessary to determine whether a molecule s will be produced
after k steps. Moreover, not all molecules are relevant for the production of a
molecule of interest s. On the basis of these two observations, a predictor is
defined as the subset of molecules Q whose supply by the environment should
be observed in order to determine whether s will be produced or not after k
steps.

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 54–73, 2018.
https://doi.org/10.1007/978-3-319-73359-3_4

Multiset Patterns and Their Application to Dynamic Causalities 55

In [1–4] we pushed forward the idea of predictors by defining the notion of
formula based predictor. A formula based predictor consists in a propositional
logic formula to be satisfied by the sequence of sets of molecules provided by the
environment to the reaction system. Such a logic formula precisely discriminates
the cases in which a particular molecule s will be produced after a given number
of steps from the cases in which it will not.

P systems [13] are much more powerful and complex than reaction systems.
They are based on multisets rather than sets and evolution rules are applied with
maximal parallelism and with a non-deterministic competition for reactants.

The behaviour of a P system is determined only by the initial multiset and
by the non-deterministic choices made at each maximally parallel step. In this
context, a notion of predictor may correspond to a logical formula to be satisfied
by the initial multiset (representing either a sufficient condition or a necessary
condition) for a molecule of interest s to be present after a given number of evo-
lution steps. Sufficient and necessary conditions have to be dealt with separately
due to the intrinsically non-deterministic nature of P systems.

In this paper we propose a notion of multiset pattern as a way to express
a logical formula on multisets: if the initial multiset of the P systems satisfies
(matches) a given pattern, the molecule of interest will be for sure present after
k steps; nothing can be said otherwise (sufficient condition). Moreover, we will
define an operator that recursively computes the pattern for the production of a
molecule of interest (actually, a multiset of molecules of interest) in k steps. The
pattern obtained from the operator will be a sound predictor, but, in general,
not a complete predictor. There can be multisets that do not match the pattern,
but that always lead to the presence of the molecules of interest in k steps.

Section 2 introduces preliminary notions on multisets and membrane sys-
tems. The new notion of multiset patterns can be found in Sect. 3. In Sect. 4 we
introduce the notion of predictor, an operator to compute it and we prove some
properties. Section 5 presents an application of our approach.

2 Preliminaries

Let U be an arbitrary set. A multiset (over U) is a mapping M : U → IN; with
|M |a, for a ∈ U , we denote the multiplicity of a in the multiset M. The support
of a multiset M is the set supp(M) = {a | |M |a > 0}. A multiset is empty when
its support is empty and it is denoted by ∅.

In order to distinguish multiset operations from standard set operations we
use the following notations: ⊆∗ for multiset inclusion, ∪∗ for multiset union, ∩∗

for multiset intersection. For multisets defined over a set of molecules (an alpha-
bet) V , we will use also the standard string representation, with ε representing
the empty multiset and V ∗ representing the set of all multisets over V . With
℘(V ∗) we indicate the power set of the set V ∗.

We consider flat P systems, namely in which the membrane structure consists
only of the skin membrane. Flat P systems are defined as follows.

Definition 1. A flat P system is a construct Π = (V,w,R) where:

56 R. Barbuti et al.

– V is an alphabet whose elements are called molecules;
– w ∈ V ∗ is the initial multiset;
– R is a finite set of evolution rules.

From [5] it follows that a P system with a standard membrane structure can
be translated into an equivalent P system having a (flat) membrane structure
that consists only of the skin.

In this paper we assume P systems to be closed computational devices,
namely we assume that molecules cannot be sent out of the skin membrane
(i.e. rules sending molecules out are not allowed in the skin membrane) and
molecules cannot be received by the skin membrane from outside.

As a consequence, evolution rules will have the simple form u → v with
u, v ∈ V ∗. We denote with R the set of all evolution rules.

Given an evolution rule r = u → v, we denote with react(r) and prod(r)
its multisets of reactants u and products v, respectively. The same notations
extend naturally to multisets of rules: given a multiset of rules M ∈ R∗, we have
react(M) =

⋃∗
r∈supp(M) react(r)|M |r and prod(M) =

⋃∗
r∈supp(M) prod(r)|M |r .

We assume evolution rules to be applied with standard maximal parallelism.
Since we consider P systems which do not send/receive molecules to/from the
external environment, we obtain that the behaviour of a P system is determined
only its initial multiset and by the non-deterministic choices made at each max-
imally parallel step.

3 Multiset Patterns

3.1 Definition

Given an alphabet V , a multiset pattern expresses a condition on multisets
in V ∗. A basic multiset pattern is denoted by a pair (u, {u1, . . . , un}) where
u, u1, . . . , un are multisets in V ∗. More complex patterns can be obtained by
composing basic patterns by using propositional logic connectives ∧ and ∨. The
syntax of multiset patterns is defined as follows.

Definition 2 (Multiset Patterns). Given an alphabet V , PV is the set of
multiset patterns on V ∗ inductively defined as follows:

– true, false ∈ PV ,
– if p ∈ (V ∗ × ℘(V ∗)) then p ∈ PV ,
– if p1, p2 ∈ PV then p1 ∨ p2, p1 ∧ p2 ∈ PV .

When the reference alphabet V is clear from the context, we will denote the
set PV simply as P.

Now, we formally define the notion of satisfaction of a pattern by a multiset,
that is the semantics of multiset patterns. The idea is that a multiset w satisfies a
basic pattern (u, {u1, . . . , un}) if by removing from w the multisets u1, . . . , un in
any maximal way (i.e. so that what remains does not include any of u1, . . . , un)
we always obtain a multiset that includes u. For example, multiset A4B2 satisfies
the pattern (A, {AB}) since after removing AB a maximal number of times (two
times) we obtain A2 that includes A.

The semantics of multiset patterns is formally defined as follows.

Multiset Patterns and Their Application to Dynamic Causalities 57

Definition 3. Given an alphabet V , the satisfaction relation |= ⊆ V ∗ × PV is
the smallest relation inductively defined as follows:

w |= true
w |= (u, {u1, . . . , un}) iff ∀o1, . . . on ∈ IN such that w ⊇∗ uo1

1 uo2
2 . . . uon

n ,
it holds w ⊇∗ uuo1

1 uo2
2 . . . uon

n

w |= p1 ∧ p2 iff w |= p1 and w |= p2
w |= p1 ∨ p2 iff either w |= p1 or w |= p2

For the case of a basic pattern (u, {u1, . . . , un}), Definition 3 includes a
requirement on all possible values o1, . . . , on ∈ IN used as multiplicities of the
occurrences of u1, . . . , un in w. It is easy to see that the requirement can be
checked by considering only the maximal combinations of values o1, . . . , on such
that w ⊇∗ uo1

1 uo2
2 . . . uon

n .

3.2 Multiset Patterns and Multiset Languages

Maximal patterns can be used to express complex conditions on multisets. For
example, the pattern p1 = (AB, {BC,BE}) is satisfied by multisets that contain
at least one A and one B, and where the sum of the numbers of C and of E is
smaller than the number of B. Indeed, the set of multisets satisfying the pattern
corresponds to the multiset language

Lp1 = {w ∈ V ∗ | |w|A > 0, |w|B > 0, |w|B > |w|C + |w|E}.

Patterns can express also conditions that are not in the “greater than” form.
For example, pattern (A, {AA}) is satisfied by multisets with an odd number of
A. Namely, it characterizes the language

Lp2 = {w ∈ V ∗ | |w|A ≡mod 2 1}.

More generally, given any n ∈ IN, the multiset pattern (A, {An}) is such that
w |= (A, {An}) iff w satisfies |w|A ≡mod n 0.

The examples we have given show that multiset patterns could be used to
characterize multiset languages. It could be interesting to investigate the classes
of languages characterized by multiset patterns. Although such an investigation
is out of the scope of this paper, we give a few more examples of patterns
characterizing interesting languages.

Let us look for a pattern characterizing the language consisting only of the
A3 multiset. The pattern p3 = (A3, {}) is not correct, since it is satisfied by any
multiset with at least three instances of A. We could combine p3 with a pattern
satisfied by multiset containing at most three instances of A. The latter pattern
can be obtained by considering an additional molecule O, assumed to be present
only once in the multiset, as follows: p4 = (O, {OA4}). By combining the two
patterns (and by generalizing them to any fixed value k ∈ IN) we obtain p5 =
(Ak, {}) ∧ (O, {OAk+1}) that is actually equivalent to p′

5 = (OAk, {OAk+1}).
The characterized language is

Lp5 = {w ∈ V ∗ | |w|O > 0, |w|A = k + (|w|O − 1)(k + 1)}

58 R. Barbuti et al.

that, by the assumption |w|O = 1, becomes

L′
p5

= {w ∈ V ∗ | |w|O = 1, |w|A = k}.

A few more examples: (A, {AB}) characterizes the language AmBn with
m > n. Consequently, (A, {AB})∨ (B, {AB}) characterizes the language AmBn

with m = n. It seems not possible to define a pattern that characterizes the com-
plement of the previous language, namely AnBn, even if we consider additional
molecules (like O in a previous example). This would be possible by including
logical negation in the syntax of patterns.

3.3 Simplification of Multiset Patterns

Multiset patterns express logical conditions on multisets, hence they can be sim-
plified using standard logic rules. For instance, a conjunction of basic patterns
can be simplified to false every time the basic patterns implicitly express oppo-
site constraints. Moreover, the following properties of the satisfaction relation |=
allow us to consider further simplification rules for multiset patterns. The proof
of the two properties follows immediately from Definition 3.

Lemma 1. Let (w, {u1, . . . , un}) be a basic multiset pattern and v ∈ V ∗. Then
v |= (w, {u1, . . . , un}) iff v |= (w, {ui | ui ∩∗ w = ∅}).

Using the previous result a basic pattern (w, {u1, . . . , un}) can be always sim-
plified into (w, {ui | ui ∩∗ w = ∅}).

Lemma 2. Let (w, {u1, . . . , un}) be a basic pattern. If there exists i ∈ {1, . . . , n}
such that ui ⊆∗ w, then for all v ∈ V ∗ it holds v |= w{u1, . . . , un}.
Using the previous result a basic pattern (w, {u1, . . . , un}) such that ui ⊆∗ w for
some i ∈ {1, . . . , n} can be simplified into false.

4 Multiset Patterns as Predictors

In this section we propose a methodology based on multiset patterns to compute
a sufficient condition for the presence of a molecule s after k evolution steps of
a given P system. The sufficient condition will be expressed as a pattern (called
predictor) to be satisfied by the initial multiset w of the P system.

The idea is to define an operator that computes the predictor by starting from
the pattern (u, {}) and by rewriting it by taking the set of rules of the P system
into account. The pattern will be rewritten k times, each time simulating (in an
abstract way) a backward step in the evolution of the P system. At each step,
for each rule that is assumed to be applied the result will include information of
the rules competing with it for application.

The definition of the operator that computes a predictor for a molecule s in
k steps is quite complex. We start with the definition of a few auxiliary functions
and sets. Then, we choose to introduce the concepts by giving several examples of
incremental complexity. Examples will be alternated with definitions of functions
that formalize the introduced concepts. The complete definition of the operator,
together with the related theoretical results, will conclude this section.

Multiset Patterns and Their Application to Dynamic Causalities 59

4.1 Auxiliary Functions and Sets

Function AppRules gives the set of all the minimal multisets of rules necessary
to produce v.

Definition 4. Given a multiset v ∈ V ∗ and a set of rules R ∈ ℘(R), we define
the function AppRules : V ∗ × ℘(R) → ℘(R∗) as

AppRules(v,R) = {M ∈ R∗ | v ⊆∗ ⋃∗
r∈supp(M) prod(r)|M |r and

 ∃M ′ ⊆∗ M s.t. v ⊆∗ ⋃∗
r∈supp(M ′) prod(r)|M ′|r}

Example 1. Consider the P system Π = ({A,B,C,D,E}, w,R) where evolution
rules of the set R are:

r0 : AB → C r1 : BD → C r2 : C → AC r3 : E → A

We have: AppRules(CCA,R) = {r0r0r3, r0r1r3, r1r1r3, r0r2, r1r2, r2r2}.

In order to simulate a backward step in the evolution of a P system we have
to take into account that a molecule might be obtained as the product of an
applied evolution rule, but also might be obtained since it was present in the
previous step and no rules used it. This is not possible if there is a rule in the P
system having such a molecule as the only reactant. As a consequence, in order
to simulate the backward step of a P system, we consider an extended set of
evolution rules that includes also self rules rewriting each molecule into itself,
for each molecule that is not the only reactant of a rule of the P system.

Definition 5. Given a set of rules R ⊆ R, the set of self rules SelfR is

SelfR = {v → v | |v| = 1 and ∀r ∈ R, react(r) = v}

Example 2. For the P system of Example 1 we have

SelfR = {r4 : A → A, r5 : B → B, r6 : D → D}

4.2 Competition for Reactants

Example 3. Consider the P system Π1 = ({A,B,C,D}, w,R1) where the evolu-
tion rules R1 are:

r0 : AB → D r1 : BD → C

A visual representation of evolution rules in R1∪SelfR1
is given by the graph

in Fig. 1. The nodes in the top of the graph represent molecules used as reactants
(associated with index 1), while the nodes in the bottom of the graph represent
products (associated with index 2). Reactions are represented as nodes in the
middle of the graph and by the arcs connecting such nodes to reactants and
products. Solid arcs represent the evolution rules in R1, while dashed arcs the
evolution rules in SelfR1

= {r2, r3, r4, r5}.

60 R. Barbuti et al.

r2

A2

A1

r0 r3

B2

B1

r1 r4

C2

C1D1

r5

D2

Fig. 1. Rules R1 ∪ SelfR1

The graph representation helps us to reason on backward steps of the P sys-
tem. For instance, in order to obtain D in one step, we need to have either A
and B, or D itself in the previous step. Moreover, the graph makes explicit the
competition of evolution rules on common reactants. For example, the produc-
tion of D by rule r0 competes with the application of rule r1 since both rules
have B as a reactant. Similarly, the self rule r5 : D → D competes with rule r1.
Note however that the contrary does not hold, indeed rule r1 does not compete
with the self rule r5 : D → D because self rules represent molecules which are
not consumed by the evolutions steps of rule in R1.

The information on evolution rules competition is essential. In order to be
sure that D is present after one step we need to be sure that either r0 has been
applied or D was already present and it has not been consumed by any other
evolution rule not producing D.

We now define the function competitor1, which results in the set of evolution
rules competing for reactants with a given evolution rule r which produces a
molecule of interest s.

Definition 6. Given a rule r ∈ R, a set of rules R ⊆ R and a molecule s ∈ V
such that s ∈ supp(prod(r)), we define

competitor1(r,R, s) = {r′ ∈ R | react(r) ∩∗ react(r′) = ∅ and s ∈ prod(r′)}.

A pattern that characterizes a sufficient condition for the presence of D after
one step can be easily obtained by combining the reactants of evolution rules
producing D (including self rules) with the information on the reactants of the
other evolution rules that compete with them and do not produce D.

For the case of Example 3, we can express a pattern that characterizes a
sufficient condition for the production of D in one step as follows

∨

r∈AppRules(D,R1∪SelfR1
)

(react(r), react(competitor1(r,R1,D))

that corresponds to (AB, {BD}) ∨ (D, {BD}). This pattern shows that D can
be produced in two ways: through AB, that are the reactants of r0, or through
D itself. In both cases the only competitor is r1, whose reactants are BD. So in

Multiset Patterns and Their Application to Dynamic Causalities 61

both cases the pattern requires that AB or D remains after removing instances
of BD in a maximal way. In other words, the pattern expresses the condition
that either the multiset includes AB and the instances of B are more than the
instances of D, or there is at least one D and the instances of D are more than
the instances of B. Examples of multisets that satisfy the pattern (leading to
the production of D) are ABB, AD, ABBD, etc.

Note that rule r2 is not considered as a competitor since it is a self rule. Such
a kind of rules cannot compete with other rules since they simply represent
molecules that are not consumed by actual evolution rules of the P system.

In order to perform more than one backward step we will have to general-
ize the computation of the pattern representing the sufficient condition to the
case in which we are interested in the production of a multiset of molecules,
rather a single molecule. For instance, in the case of Example 3, performing one
more backward step would require to compute the sufficient condition for the
production of AB or of D, that will then be used to obtain D.

In order to show how to compute a pattern for the presence of a multiset of
molecules after one step, consider, in the case of Example 3, the multiset DC.
The pattern representing a sufficient condition for the presence of DC in one
step could be obtained by combining the already seen pattern for the presence
of D with analogous pattern for the presence of C, that is (BD, {AB})∨ (C, {}).
Since D and C are two different molecules (the case of repeated molecules is
more complex and will be treated separately in Sect. 4.3) we can combine the
two patterns by simply using a conjunction, thus obtaining:

((AB, {BD}) ∨ (D, {BD})) ∧ ((BD, {AB}) ∨ (C, {})) .

Multisets satisfying the pattern are DC, ABC, ADC, ABBD, etc. Indeed,
such multisets allow us to obtain DC after one step according to the rules in R1.
On the other hand, multisets not satisfying the pattern are for instance ABD,
DCB and ABDC. The latter, in particular, could lead to the production of DC
(actually DDC), but also to the production of ACC that does not include DC.

Example 4. Consider now a P system Π2 = ({A,B,C,D}, w,R2) where R2

(depicted in Fig. 2) is the same as R1 of Example 3, but with r0 extended with
one more product, namely

r0 : AB → DC r1 : BD → C

While the sufficient conditions for molecule D to be present after one step are
the same as in the previous example, the condition for the presence of C after
one step has to take into account that now r0 produces C, therefore it does not
compete with r1 for the production of C. This is correctly taken into account
by the function competitor1, indeed competitor1(r0, R2, C) = ∅. Therefore, the
pattern for the presence of C in one step, defined as

∨

r∈AppRules(C,R2∪SelfR2
)

(react(r), react(competitor1(r,R2, C))),

turns out to be (AB, {}) ∨ (BD, {}) ∨ (C, {}).

62 R. Barbuti et al.

r2

A2

A1

r0 r3

B2

B1

r1r4

C2

C1

D2

D1

r5

Fig. 2. Rules R2 ∪ SelfR2

4.3 Competitors Dealing with Multiple Occurrences of Molecules

When multiple occurrences of the same molecule come into the picture, things
get quickly more complicated.

r2

A2

A1

r0 r3

B2

B1

r1 r4

C2

C1

r5

D2

D1

Fig. 3. Rules R3 ∪ SelfR3

Example 5. Consider the P system Π3 = ({A,B,C,D}, w,R3) where the evolu-
tion rules R3 = {r0, r1}, depicted in Fig. 3, are

r0 : AB → D r1 : BC → D

Assume we are interested in the multiset DD. To produce DD in the P
system Π3 we may either apply one rule twice, or the two rules together. The
pattern for the presence of DD in one step cannot be obtained just as a con-
junction of a pattern p expressing the sufficient condition for D with itself, since
p ∧ p is equivalent to p.

In order to deal with multiple occurrences of molecules we have to consider,
in the computation of the backward step, the possible multisets of evolution rules
that could have been applied in order to produce such molecules. These multisets
of rules are given by the auxiliary function AppRules defined in Sect. 4.1.

At a first glance one may think of defining the pattern for the presence of
DD in one step as follows:

∨

n∈AppRules(DD,R3∪SelfR3
)

∧

r∈supp(n)

(react(r)|n|r , react(competitor1(r,R3,D)))

Multiset Patterns and Their Application to Dynamic Causalities 63

that would give the following result:

(ABAB, {}) ∨ ((AB, {}) ∧ (BC, {})) ∨ ((AB, {}) ∧ (D, {}))
∨ ((BC, {}) ∧ (D, {})) ∨ (BCBC, {}) ∨ (DD, {}))

This pattern is however not correct, since it is satisfied by multiset ABC
(because ABC |= (AB, {}) ∧ (BC, {})) that does not lead to DD in one step.

The point in this case is that there are two different rules that produce
the same product D competing for the same reactant B. Since more than one
instance of D has to be produced, we have to take also this form of competition
into account. To this purpose, we define the function competitor2.

Definition 7. Given a rule r ∈ R, a set of rules R ⊆ R and an multiset of
rules n ∈ R∗, we define

competitor2(r,R, n) = {r′ ∈ R | r′ ∈ supp(n), r′ = r, react(r) ∩∗ react(r′) = ∅}
Now, the pattern for DD can be expressed as

∨

n∈AppRules(DD,R3∪SelfR3
)

∧

r∈supp(n)

(react(r)|n|r , react(C12))

where C12 = competitor1(r,R3,D) ∪ competitor2(r,R3, n). The formula gives
the following result:

(ABAB{}) ∨ ((AB, {BC}) ∧ (BC, {AB})) ∨ ((AB, {}) ∧ (D, {}))
∨ ((BC, {}) ∧ (D, {})) ∨ (BCBC, {}) ∨ (DD, {})

which now correctly models the required property.

4.4 Competition for Products

Example 6. Consider the P system Π4 = ({A,B,C,D,E}, w,R4) where the
evolution rules R4 = {r0, r1, r2, r3}, depicted in Fig. 4, are

r0 : AB → D r1 : BC → D r2 : BB → DD r3 : ACE → D

Assume that, as in Example 5, we are interested in the presence of multiset
DD after one step. The multiset DD can be produced by several combinations
of rules in R4. Rule r2 has DD as product, but suffers from the competition of r0
and of r1 that, although producing the same kind of molecule, produce only one
instance of such a molecule. Indeed, by starting from multisets ABB or BBC,
we may obtain DD through r2, but we may also obtain only one D, through r0
or r1, respectively.

Similarly, there are cases in which DD can be obtained by applying r0 and
r1 together. Rule r3, however, may compete with such a combination of rules,
since in presence of E it may consume reactants necessary for the application of
r0 and r1 giving only one D as a result.

64 R. Barbuti et al.

r4

A2

A1

r0 r3r5

B2

B1

r1r2 r6

C2

C1

r7

D2

E1

r8

E2

D1

Fig. 4. Rules R4 ∪ SelfR4

This example suggests that the concept of competitor has to be enriched with
a definition that takes into account when a rule competes with a multiset of rules
n ∈ R∗ that produce more than one occurrence of a molecule. Intuitively, this
occurs when the use of such a rule prevents the application of a subset of the
rules in n without producing an equivalent number of occurrences of the required
molecule. This form of competition is formalized by the function competitor3
defined as follows.

Definition 8. Given a rule r ∈ R, a set of rules R ⊆ R, a multiset of rules
n ∈ R∗ and a molecule s ∈ V , we define:

competitor3(r,R, n, s) =
{r′ ∈ R |s ∈ prod(r′), r′ ∈ supp(n), react(r) ∩ react(r′) = ∅,

∃m ⊆∗ n, {r} ⊆∗ m, react(m) ∩∗ react(r′) = react(n) ∩∗ react(r′),
∀m′ ⊂∗ m, react(m′) ∩∗ react(r′) = react(n) ∩∗ react(r′),
|prod(m)|s ⊃∗ |prod(r′)|s}

Assume as before that we are interested in the production of DD in one step.
The pattern expressing a sufficient conditions is then

∨

n∈AppRules(DD,R3∪SelfR3
)

∧

r∈supp(n)

(react(r)|n|r , react(C123))

where
C123 = competitor1(r,R3,D) ∪ competitor2(r,R3, n) ∪ competitor3(r,R3, n,D).
The formula gives the following result:

((AB, {BC,ACE}) ∧ (BC, {AB,ACE})) ∨ (BB, {AB,BC}) ∨
((AB, {ACE,BC}) ∧ (ACE, {AB,BC})) ∨

((BC, {ACE,AB}) ∧ (ACE, {BC,AB})) ∨ (DD, {})

In the obtained pattern, conjunction (AB, {ACE,BC})∧(ACE, {AB,BC})
is not satisfiable, since on the one hand it requires ABACE to be included in
the multiset, but at the same time it requires BC not to be included. The same

Multiset Patterns and Their Application to Dynamic Causalities 65

holds for (BC, {ACE,AB}) ∧ (ACE, {BC,AB}) with BCACE and AB. As a
consequence, the pattern can be simplified into

((AB, {BC,ACE}) ∧ (BC, {AB,ACE})) ∨ (BB, {AB,BC}) ∨ (DD, {})

According to this pattern, for example, all multisets that contain BB lead to
the presence of DD after one step as long as they contain enough instances of B
(two more than the instances of A and C). As required, neither multiset ABB
nor BBC satisfy the pattern.

This example shows also a situation in which the pattern does not describe
multisets that actually lead to the presence of DD in one step, such as the
multiset ABBCE. What happens in this case is that rule r3 is identified as a
competitor of both r0 and r1. However, in a multiset like ABBCE the application
of r3 (that actually prevents r0 and r1 to be applied) causes also r2 to be applied,
obtaining DDD as result. This shows that the proposed notions of competitor
are not able to characterize all multisets that lead to the presence of a required
multiset in a given number of steps. In this case it is not able to recognize that
the application of a competitor rule has as a side effect the application of some
other rules that actually lead to the wanted result.

4.5 Multiple Backward Steps

We now describe how to obtain a pattern that expresses sufficient conditions
for the presence of a molecule after two or more steps starting from patterns
expressing sufficient conditions after one step.

Example 7. Let us consider the P system Π5 = ({A,B,C,D,E, F}, w,R5) where
the evolution rules in R5, depicted in Fig. 5, are

r0 : AB → D r1 : BD → C r2 : ED → B

Note that rule r0 and r1 are the ones of Example 3 and the pattern for the
presence of molecule D in one step is as in the previous example, namely p =
(AB, {BD}) ∨ (D, {BD,ED}). In order to obtain the pattern expressing the
sufficient condition for the presence of D after two steps, intuitively we have to
consider all the ways a multiset satisfying p can be obtained in one step.

The pattern p is satisfied by multiset containing A and B, or D. Hence, we
could compute the patterns that predict the presence of A, B and D in one step,
and use them to construct a pattern for the satisfaction of p after one step. In
addition to this, we have to pay attention to the competitors of A, B and D
mentioned in p, namely the set {BD,ED}. In order to construct the pattern
for the satisfiability of p in one step we have to consider also all the ways the
competitors BD and ED can be obtained in one step.

We formally define an operator that considers all the possible ways a set of
multisets representing competitors can be obtained in one step.

66 R. Barbuti et al.

r3

A2

A1

r0 r4

B2

B1

r1 r2

D1

r6

E1

r7 r5

C2

C1

D2 E2

Fig. 5. Rules R5 ∪ SelfR5

Definition 9. Given a set of rules R ⊆ R, a set of multiset {u1, . . . , un} with
each ui ∈ V ∗, we define

Cr(R, {u1, . . . , un}) = {react(n) | n ∈ AppRules(ui, R ∪ SelfR))
and ui ∈ {u1, . . . , un}}

From the predictor of A in one step (A, {AB}), the predictor of B in one step
(ED, {BD}) ∨ (B, {AB,BD}), the predictor of D in one step (AB, {BD}) ∨
(D, {BD}), Cr(R5, {BD}) = {BD,EDD,ABB} = C5 and Cr(R5, {ED}) =
{ED,EAB} = C6 we can construct a pattern that predicts the presence of D
in two steps as follows:

((A, {AB,BD,EDD}) ∧ (ED, {BD} ∪ C5))
∨ (A, {AB,BD,EDD}) ∧ (B, {AB,BD,EDD}))

∨ (AB, {BD} ∪ C5 ∪ {ED}) ∨ (D, {BD} ∪ C5 ∪ C6)

The initial multiset AED satisfies the pattern, indeed, in one step we obtain AB
using the only enabled rule r2 and in two steps we obtain D applying the only
enabled rule r0. Consider AEDD that does not satisfy the pattern, after one
step we obtain ABD using the only enabled rule r2 but also rule r1 is enabled
and by applying it we obtain AC that does not contain D.

4.6 Definition of the Main Operator and Theoretical Results

In the previous sections we have described the ingredients for the computation
of a pattern expressing sufficient conditions for the presence of an molecule s
after k steps. Now, we formally define an operator ScΠ that performs such a
computation.

Definition 10. Let Π = (V,w,R) be P system and u ∈ V ∗. We define a func-
tion ScΠ : V ∗ × IN → P as follows:

ScΠ(u, k) = ScaΠ((u, {}), k)

Multiset Patterns and Their Application to Dynamic Causalities 67

where the auxiliary function ScaΠ : P × IN → P is recursively defined as follows:

ScaΠ(p, 0) = p

ScaΠ(p1 ∨ p2, k) = ScaΠ(p1, k) ∨ ScaΠ(p2, k)
ScaΠ(p1 ∧ p2, k) = ScaΠ(p1, k) ∧ ScaΠ(p2, k)

ScaΠ((u, {u1, . . . , um}), k) = ScaΠ

(∧

s∈supp(u)

p(s|u|s , {u1, . . . , um}), k − 1
)

where

p(si, U) =
∨

n∈AppRules(si,R ∪ SelfR)

⎛

⎝
∧

r∈supp(n)

(react(r)|n|r ,
⋃

r′∈C123

{react(r′)} ∪ Cr(R,U))

⎞

⎠

and

C123 = competitor1(r,R, s) ∪ competitor2(r,R, n) ∪ competitor3(r,R, n, s)

Now we present some lemmata that, step by step, lead to the main theorem
stating that the ScΠ(u, k) operator actually computes a pattern representing a
sufficient condition for the presence of u after k steps. In the lemmata and in the
main theorem, given two multisets w and w′ and a set of evolution rules R, we
will denote with w →R w′ the fact that w′ can be obtained from w by applying
rules in R in a maximally parallel way.

The first lemma states that the portion of the pattern computed by the
operator and defined as p(si, U) in Definition 10 is a predictor for the presence
of i instances of molecule s after one step of evolution of the P system.

Lemma 3. Given a P system Π = (V,w0, R), w ∈ V ∗ and si ∈ V ∗ with s ∈ V
and i > 0, if w |= p(si, ∅) then ∀w′ ∈ V ∗ such that w →R w′, it holds si ⊆∗ w′.

Proof. By definition, Cr(R, ∅) = ∅, therefore, in this case, we have p(si, ∅) =∨
n∈AppRules(si,R ∪SelfR)(

∧
r∈supp(n)(react(r)|n|r , {react(r′)|r′ ∈ C123})). Assume

now, by contradiction, that w |= p(si, ∅) but there exists w′ such that w →R w′

and si ⊆∗ w′. This implies that w |= ∧
r∈supp(n)(react(r)|n|r , {react(r′)|r′ ∈

C123}) for at least one multiset n of rules in R ∪ SelfR such that si ∈ prod(n).
Let us denote the conjunction

∧
r∈supp(n)(react(r)|n|r , {react(r′)|r′ ∈ C123})

simply as CP . Note that w |= CP implies that, for each r ∈ supp(n), w ⊇∗
react(r)|n|r . Intuitively, this means that w could be rewritten applying each rule
r ∈ supp(n) for the number of times required by the multiset n but we still are
left to prove that all rules r ∈ supp(n) could be applied simultaneously each one
for the number of times required by the multiset n. Assume, by contradiction that
this is not the case, then there exists at least two rules r and r′′ belonging to n
such that react(r) ∩ react(r′′) = ∅ and such that w ⊇∗ react(r)|n|rreact(r′′)|n|r′′ .
Note that at most one can be a self rule s → s. Assume that if one is a self
rule than it is the one called r. As a consequence, we are sure that r′′ does

68 R. Barbuti et al.

not belong to SelfR. Since r′′ ∈ R and, by hypothesis, it belongs to n and it
is such that react(r) ∩ react(r′′) = ∅ then, by definition, we have that r′′ ∈
competitor2(r,R, n). Therefore, when verifying that w |= CP , react(r′′) has
to be maximally matched in w before matching with react(r)|n|r . Since w ⊇∗
react(r′′)|n|r′′ but w ⊇∗ react(r)|n|rreact(r′′)|r′′|n , this gives a contradiction.
Hence, we can conclude that w ⊇∗ react(r1)|n|r1 . . . react(rt)|n|rt for r1, . . . , rt ∈
supp(n).

Now assume that w could be maximally rewritten with rules r̃o1
1 . . . r̃oh

h (of R)
that, by hypothesis, give a w′ satisfying vj ∈ w′ ⇒ j < i.

Therefore, there exist some rules in {r1, . . . , rt} such that they are not applied
with the multiplicity required by n, when applying r̃o1

1 . . . r̃oh

h . In more detail,
the self rule s → s belongs to such set if the instances of s in w that are left
unchanged when applying r̃o1

1 . . . r̃oh
t are less than the multiplicity of the self rule

s → s in n.
Among all the rules of {r1, . . . , rt} satisfying the above property, let us con-

sider the case in which there exists r that also satisfies the following property:

{r̃ | r̃ ∈ {r̃1, . . . , r̃h}, s ∈ prod(r̃), r̃ ∈ supp(n), react(r̃) ∩ react(r) = ∅} ⊆
competitor3(r,R, n, s) (1)

In this case, since r̃o1
1 . . . r̃oh

h is a maximal rewriting of w such that r
is not applied with the multiplicity required by n, it means that w |=
(react(r)|n|r , {react(r̃) | r̃ ∈ {r̃1, . . . , r̃t}, r̃ = r, react(r) ∩ react(r̃) = ∅}). Since
we have assumed that (1) holds, we have three cases for each r̃ ∈ {r̃1, . . . , r̃h} ⊆ R
such that r = r̃ and react(r) ∩ react(r̃) = ∅:

1. s ∈ prod(r̃) then, by definition, r̃ ∈ competitor1(r,R, s).
2. s ∈ prod(r̃), r̃ ∈ n, then, by definition, r̃ ∈ competitor2(r,R, n).
3. s ∈ prod(r̃), r̃ ∈ n, in this case, since we have assumed that (1) holds, we can

be sure that r̃ ∈ competitor3(r,R, n, s).

As a consequence, we have that {react(r̃) | r̃ ∈ {r̃1, . . . , r̃h}, r̃ = r, react(r) ∩
react(r̃) = ∅} ⊆ {react(r′)|r′ ∈ C123}. Then, we have a contradiction since,
from the last reasoning, we can conclude that w |= (react(r)|n|r , {react(r̃) | r̃ ∈
{r̃1, . . . , r̃t}, r̃ = r, react(r) ∩ react(r̃) = ∅}) but, by hypothesis, w |= CP and,
as a consequence, since r ∈ n, w |= (react(r)|n|r , {react(r′)|r′ ∈ C123}).

Assume now that does not exist an r satisfying (1). This implies that for each
ri (with i = 1, . . . , t) there exist (at least one) r̂i

1 . . . r̂i
zi

∈ {r̃1, . . . , r̃h} such that
for j = 1, . . . zi, r̂i

j = ri, react(r̂i
j) ∩ react(ri) = ∅, and r̂i

j ∈ C123. Therefore, for
i = 1, . . . , t and j = 1, . . . zi, by definition, we have that it must be the case that
s ∈ prod(r̂i

j) (otherwise r̂i
j would belong to C1) and r̂i

j ∈ supp(n) (otherwise r̂i
j

would belong to C2) and, for each combination m of rules of n that could not
be maximally applied because we apply r̂i

j , we have that prod(m) ⊆∗ prod(r̂i
j)

(otherwise r̂i
j would belong to C3). For simplicity, let us say that a rule r̂ covers a

multiset m ⊆∗ n iff react(m) ∩∗ react(r̂) = react(n) ∩∗ react(r̂) and, ∀m′ ⊂∗ m,
react(m′) ∩∗ react(r̂) = react(n) ∩∗ react(r̂). It is worth noting that using a
rule r̂ ∈ {r̂11 . . . r̂1z1

, . . . , r̂t
1 . . . r̂t

zt
} instead of rules r1, . . . , rt to rewrite w cannot

Multiset Patterns and Their Application to Dynamic Causalities 69

give any w′ that does not contain si. This is because for each multiset m of
rules r1, . . . , rt such thatm ⊆∗ n, if r̂ covers m, then |prod(r̂)|s ⊂∗ |prod(m)|s.
Therefore we have a contradiction. ��

The second lemma states that if a multiset w satisfies p(si, U), then the
multiset obtained after one evolution step will satisfy the basic pattern (si, U).

Lemma 4. Given a P system Π = (V,w0, R), w ∈ V ∗ and a basic pattern
(si, U) with s ∈ V and i > 0, if w |= p(si, U) then ∀w′ ∈ V ∗ such that w →R w′,
it holds w′ |= (si, U).

Proof. By definition, from w |= p(si, U), it follows w |= p(si, ∅). By applying
Lemma 3 we can conclude that ∀w′ such that w →R w′, w′ ⊇∗ si. For simplicity
assume that w′ ⊇∗ si but w′ ⊇∗ si+1. The more general case can be obtained by
applying the following reasoning more than once.

Assume now, by contradiction, that w′ |= (si, U). Then, there must be the
case that w′ ⊇∗ uo1

1 , . . . , uot
t for {u1, . . . , ut} = U but w′ ⊇∗ uo1

1 , . . . , uot
t si. This

implies that there exists at least one uj with j ∈ {1, . . . , t} such that s ∈ uj

and oj > 0, that is uj ⊆∗ w′. Consider the multiset of rules n = r̃õ1
1 . . . r̃

õp
p , let

us assume there is just one, used to obtain w′ from w where the proper rule
r̃ ∈ SelfR is used to indicate that an occurrence of a molecule is left unchanged.
Then w = pred(r̃1)õ1 , . . . , pred(r̃p)õp . Since w′ ⊇∗ uj ⊇∗ s we can conclude
that there exists a minimal multiset of rules m ⊆ n such that prod(m) ⊇∗ uj .
Note that m ∈ AppliedRules(uj , R ∪ SelfR), therefore react(m) ∈ Cr(R,U)
and react(m) ⊆∗ w. Since s ∈ uj , there exists a rule in m, let us call it r̃h,
such that s ∈ prod(r̃h). By react(m) ⊆∗ w, we derive that also react(r̃h) ⊆∗ w.
Therefore, there exists at least one rule r̃h with h ∈ {1, . . . , p} such that r̃h ∈
supp(n) such that w |= (react(r̃)|n|r̃ ,

⋃
r′∈C123

{react(r′)}∪Cr(R,U)). Therefore
w |= ∧

r∈supp(n)(react(r)|n|r ,
⋃

r′∈C123
{react(r′)} ∪ Cr(R,U)). ��

The following result comes directly from the definition of multiset patterns.

Lemma 5. If w |= (u, {u1, . . . , us}) and w |= (u, {u1, . . . , us}) with u ∩ u = ∅,
then w |= (uu, {u1, . . . , us}).

Finally, the following lemma states that if a multiset w satisfies the pattern∧
s∈supp(u) p(s|u|s , U) with u a generic multiset, then the multiset obtained after

one evolution step will satisfy the basic pattern (u,U).

Lemma 6. Given a P system Π = (V,w0, R), u ∈ V ∗, w ∈ V ∗ and a basic
pattern (u,U) with u ∈ V ∗, if w |= ∧

s∈supp(u) p(s|u|s , U) then ∀w′ ∈ V ∗ such
that w →R w′, it holds w′ |= (u,U).

Proof. Assume that w |= ∧
s∈supp(u) p(s|u|s , U). This implies that w |=

p(s|u|s , U) for each s ∈ supp(u). By Lemma 4 we have that ∀w′ such that
w →R w′, w′ |= (s|u|s , U) with s ∈ supp(u). Therefore, we can conclude that
∀w′ such that w →R w′, w′ |= ∧

s∈supp(u)(s
|u|s , U). Since vs

|u|s1
1 ∩ s

|u|s2
2 = ∅ for

s1, s2 ∈ supp(u), s1 = s2, by Lemma 5, we can conclude that w′ |= (u,U).

70 R. Barbuti et al.

Theorem 1. Let Π = (V,w0, R) be P system and let p ∈ P be a multiset
pattern. If w0 |= ScaΠ(p, k) then for any w1, . . . , wk such that wi∈{1,...,k} ∈ V ∗

and w0 →R w1 →R . . . →R wk, it holds wk |= p.

Proof. Assume that w0 |= ScaΠ(p, k), the proof is by induction on the pair
(p, k) considering the order � on P × IN defined as P × IN, (p1, n1) � (p2, n2) iff
n1 < n2 or n1 = n2 and p2 is a multiset pattern that contains p1.

The base case is when p is a basic multiset pattern p = (u,U) and k =
0. In this case ScaΠ((u,U), 0) = (u, {}), therefore, since by hypothesis w0 |=
ScaΠ(p, 0) we have that w0 |= p.

For the inductive case, we have that either p is not a basic multiset pattern
or p = (u,U) and k > 0. We consider these cases separately.

– p = p1∧p2. In this case since ScaΠ(p, k) = ScaΠ(p1, k)∧ScaΠ(p2, k), if w0 |=
ScaΠ(p, k) then w0 |= ScaΠ(p1, k) and w0 |= ScaΠ(p2, k). By induction
hypothesis, for any w1, . . . , wk such that wi∈{1,...,k} ∈ V ∗ and w0 →R w1 →R

. . . →R wk, it holds wk |= p1 and for any w1, . . . , wk such that wi∈{1,...,k} ∈
V ∗ and w0 →R w1 →R . . . →R wk, it holds wk |= p1 and wk |= p2.
Hence, we can conclude that for any w1, . . . , wk such that wi∈{1,...,k} ∈ V ∗

and w0 →R w1 →R . . . →R wk, it holds wk |= (p1 ∧ p2) = p.
– p = p1 ∨ p2. In this case the proof is analogous to the previous case.
– p = (u,U) and k > 0. In this case since ScaΠ(p, k) =
ScaΠ(

∧
s∈supp(u) p(s|u|s , {u1, . . . , ut}), k − 1), if w0 |= ScaΠ(p, k) then w0 |=

ScaΠ(
∧

s∈supp(u) p(s|u|s , {u1, . . . , ut}), k − 1). By induction hypothesis, we
have that for any w1, . . . , wk−1 such that wi∈{1,...,k−1} ∈ V ∗ and w0 →R

w1 →R . . . →R wk−1, it holds wk−1 |= ∧
s∈supp(u) p(s|u|s , {u1, . . . , ut}).

By Lemma 6 we have that ∀wk ∈ V ∗ such that wk−1 →R wk, it holds
wk |= (u,U) = p. ��
We are now ready to state the main result of this paper based on Theorem 1.

Corollary 1 (Sufficient Condition). Let Π = (V,w0, R) be P system and
u ∈ V ∗. If w0 |= ScΠ(u, k) then for any w1, . . . , wk such that wi∈[1,k] ∈ V ∗ and
w0 →R w1 →R . . . →R wk, it holds u ⊆∗ wk.

Proof. Since ScΠ(u, k) = ScaΠ((u, {}), k), if w0 |= ScΠ(u, k) then we have that
w0 |= ScaΠ((u, {}), k). By Theorem 1 we have that for any w1, . . . , wk such
that wi∈{1,...,k} ∈ V ∗ and w0 →R w1 →R . . . →R wk, it holds wk |= (u, {}). By
definition of multiset pattern note that wk |= (u, {}) iff wk ⊇∗ u. ��

The corollary essentially states that the pattern computed by the ScΠ oper-
ator is actually a sound sufficient predictor.

5 Applications

Let us consider again the example of the multiset language consisting only of
the multiset A3 we described in Sect. 3.2. An acceptor for such a language can

Multiset Patterns and Their Application to Dynamic Causalities 71

be represented by the P system Π6 = ({O,A, T, F}, w0, R6), where R6 consists
of the following rules:

r0 : OA3 → T r1 : TA → F

The acceptor works by assuming that |w0|O = 1 and |w0|T = |w0|F = 0. If
|w0|A = 3, then in one step T is produced and it is left unchanged in the second
step (actually, the P system terminates after one step). If |w0|A = 3, then either
T is not produced, or it is replaced by F in the second step. As a consequence,
T will be present after two steps iff |w0|A = 3.

Let us compute the predictor of T in two steps for the P system Π6 by
applying the ScΠ6 operator:

ScΠ6(T, 2) = ScaΠ6((T, {}), 2) = ScaΠ6((OA3, {TA}) ∨ (T, {TA}), 1)

= ScaΠ6((OA3, {TA}), 1) ∨ ScaΠ6((T, {TA}), 1)

= ScaΠ6((OA3, {TA,OA4}), 0) ∨ ScaΠ6((OA3, {TA,OA4}) ∨ (T, {TA}), 0)

= ScaΠ6((OA3, {TA,OA4}), 0) ∨ ScaΠ6((OA3, {TA,OA4}), 0)

∨ ScaΠ6((T, {TA}), 0)

= (OA3, {TA,OA4}) ∨ (OA3, {TA,OA4}) ∨ (T, {TA})

= (OA3, {TA,OA4}) ∨ (T, {TA}).

Assumptions |w0|O = 1 and |w0|T = 0 allow us to simplify the obtained pattern
into (OA3, {OA4}) that is exactly the pattern p′

5 we considered in Sect. 3.2.
We now consider an acceptor for the language AnBn. As in Sect. 3.2, we

start by focusing on the complement of AnBn, namely AnBm with n = m. Let
Π7 = ({O,D,A,B,C, T, F}, w0, R7) be a P system where rules in R7 are:

r0 : AB → C r1 : AD → T r2 : BD → T r3 : O → D r4 : FT → T

If we assume that the initial multiset w0 contains exactly one F , one O and no
instances of T and of D, namely |w0|F = |w0|O = 1 and |w0|T = |w0|D = 0.
Under such an assumption, the evolution of the P system is as follows: in the
first step a maximal number of AB pairs are consumed by rule r0 and, at the
same time, molecule O is transformed into D by rule r3. In the second step, if
either some A or some B is still present, that is if the number of A was not
the same as the number of B in the initial multiset, then one instance of T is
produced by either r1 or r2. If T is produced, it causes F to be removed in the
third step due to the application of rule r4. As a consequence, after three steps
molecule T is present iff the initial multiset contained different numbers of A
and of B. Otherwise, molecule F is present instead of T .

Let us compute the predictor of T after three steps for the P system Π7 by
applying the ScΠ7 operator:

72 R. Barbuti et al.

ScΠ7(T, 3) = ScaΠ7((T, {}), 3)
= ScaΠ7((T, {}) ∨ (FT, {}) ∨ (BD, {AB}) ∨ (AD, {AB}), 2)
= ScaΠ7((T, {}), 2) ∨ ScaΠ7((FT, {}), 2)

∨ ScaΠ7((BD, {AB}), 2) ∨ ScaΠ7((AD, {AB}), 2)
= ScaΠ7((T, {}), 1) ∨ ScaΠ7((FT, {}), 1)

∨ ScaΠ7((BD, {AB}), 1) ∨ ScaΠ7((AD, {AB}), 1)
∨ ScaΠ7((BO, {AB}), 1) ∨ ScaΠ7((AO, {AB}), 1)

= ScaΠ7((T, {}), 0) ∨ ScaΠ7((FT, {}), 0)
∨ ScaΠ7((BD, {AB}), 0) ∨ ScaΠ7((AD, {AB}), 0)
∨ ScaΠ7((BO, {AB}), 0) ∨ ScaΠ7((AO, {AB}), 0)

= (T, {}) ∨ (FT, {}) ∨ (BD, {AB}) ∨ (AD, {AB})
∨ (BO, {AB}) ∨ (AO, {AB})

= (T, {}) ∨ (BD, {AB}) ∨ (AD, {AB}) ∨ (BO, {AB}) ∨ (AO, {AB}).

The assumptions on the absence of T and D and on the presence of B in the
initial multiset make the obtained pattern equivalent to (B, {AB})∨ (A, {AB}),
that is exactly the pattern we identified in Sect. 3.2 for AnBm with n = m.

For the same P systems Π7, let us now compute the predictor for the presence
of F after three steps. This actually should be a pattern characterizing AnBn

(that we have seen in Sect. 3.2 cannot be expressed by the version of multiset
patterns as they are introduced in this paper).

ScΠ7(F, 3) = ScaΠ7((F, {}), 3) = ScaΠ7((F, {FT}), 2)
= ScaΠ7((F, {FT, FAD,FBD,FFT}), 1)
= (F, {FT, FAD,FBD,FFT, FAO,FBO}).

From the assumption on the absence of T and D in the initial multiset we have
that the obtained pattern corresponds to (F, {FAO,FBO}). Moreover, from
the assumption on the presence of F and O we can conclude that the pattern is
actually satisfied only when |w0|A = |w0|B = 0. Hence, the pattern is a correct
predictor (since A0B0 belongs to the AnBn language), but it does not capture
all the initial multisets that would lead to the presence of F in three steps.

The pattern obtained by the proposed operator represents a sufficient condi-
tion for the presence of some molecules after a given number of steps. The last
example shows that there are cases in which a complete condition (without false
negatives) cannot be expressed with the current definition of multiset patterns.
However, the limited expressiveness of multiset patterns is not the only reason
for the incompleteness of the ScΠ operator. Indeed, there are also cases in which
the operator fails in computing a complete pattern, even if the such a pattern
could be expressed. We have shown this kind of situations in Example 6.

Multiset Patterns and Their Application to Dynamic Causalities 73

6 Conclusions and Further Developments

In this paper we have defined multiset patterns. Such patterns were exploited
to express sufficient conditions on initial multisets that ensure the presence a
multiset of molecules after a given number of evolution steps. Necessary condi-
tions could also be expressed with multiset patterns and computed by a very
simple operator that simulates the backward application of rules without con-
sidering any competition between different rules. For example, in the case of the
P systems Π4 of Example 6 the necessary condition for the presence of DD after
1 step is expressed by the following pattern (AABCE, {}) ∨ (ABCCE, {}) ∨
(AACCEE, {}) ∨ (BB, {}).

Further developments of our work include the investigation of multiset pat-
terns under the viewpoint of the multiset languages they characterize. Moreover,
extensions of multiset patterns could be studied in order to enrich their expres-
siveness, this would be useful also to allow a new notion of predictor to be
proposed which satisfies the completeness property (absence of false negatives).

References

1. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction sys-
tems with context properties. In: Proceedings of the 24th International Workshop
on Concurrency, Specification and Programming, CS&P 2015, pp. 31–43 (2015)

2. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in
reaction systems. Theor. Comput. Sci. 623, 114–145 (2016)

3. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction sys-
tems with context properties. Fundamenta Informaticae 147(2–3), 173–191 (2016)

4. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Generalized contexts for reaction
systems: definition and study of dynamic causalities. Acta Informatica (2017).
https://doi.org/10.1007/s00236-017-0296-3

5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Flat form preserving
step-by-step behaviour. Fundamenta Informaticae 87, 1–34 (2008)

6. Bodei, C., Gori, R., Levi, F.: An analysis for causal properties of membrane inter-
actions. Electron. Notes Theor. Comput. Sci. 299, 15–31 (2013)

7. Bodei, C., Gori, R., Levi, F.: Causal static analysis for brane calculi. Theor. Com-
put. Sci. 587, 73–103 (2015)

8. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

9. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: A Note on causalities in reaction
systems. ECEASST 30 (2010)

10. Busi, N.: Causality in membrane systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 160–171.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77312-2 10

11. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae
75(1–4), 263–280 (2007)

12. Gori, R., Levi, F.: Abstract interpretation based verification of temporal properties
for bioambients. Inf. Comput. 208(8), 869–921 (2010)

13. Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)

https://doi.org/10.1007/s00236-017-0296-3
https://doi.org/10.1007/978-3-540-77312-2_10

Counting Membrane Systems

Luis Valencia-Cabrera, David Orellana-Mart́ın(B), Agust́ın Riscos-Núñez,
and Mario J. Pérez-Jiménez

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence, Universidad de Sevilla,

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{lvalencia,dorellana,ariscosn,marper}@us.es

Abstract. A decision problem is one that has a yes/no answer, while
a counting problem asks how many possible solutions exist associated
with each instance. Every decision problem X has associated a counting
problem, denoted by #X, in a natural way by replacing the question
“is there a solution?” with “how many solutions are there?”. Counting
problems are very attractive from a computational complexity point of
view: if X is an NP-complete problem then the counting version #X
is NP-hard, but the counting version of some problems in class P can
also be NP-hard. In this paper, a new class of membrane systems is pre-
sented in order to provide a natural framework to solve counting prob-
lems. The class is inspired in a special kind of non-deterministic Turing
machines, called counting Turing machines, introduced by L. Valiant. A
polynomial-time and uniform solution to the counting version of the SAT

problem (a well-known #P-complete problem) is also provided, by using
a family of counting polarizationless P systems with active membranes,
without dissolution rules and division rules for non-elementary mem-
branes but where only very restrictive cooperation (minimal cooperation
and minimal production) in object evolution rules is allowed.

Keywords: Membrane computing
Polarizationless P systems with active membranes · Cooperative rules
The P versus NP problem · #SAT problem

1 Introduction

Membrane Computing is a computational paradigm inspired by the structure
and functioning of the living cells as well as from the cooperation of cells in
tissues, organs, and organisms. This paradigm provides distributed parallel and
non-deterministic computing models. All of them share the main syntactical
ingredients: a finite alphabet (the working alphabet whose elements are called
objects), a finite set of processor units delimiting compartments (called mem-
branes, cells or neurons) interconnected by a graph-structure in such manner
that initially each processor contains a multiset of objects, a finite set of evolu-
tion rules which provides the dynamic of the system, and an environment.
c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 74–87, 2018.
https://doi.org/10.1007/978-3-319-73359-3_5

Counting Membrane Systems 75

According with the type of structure underlying the systems, there are basi-
cally three approaches: cell-like P systems where the compartments are arran-
ged in a hierarchical structure (formally, a rooted tree), like in a living cell [7];
tissue-like P systems with a directed graph structure associated inspired from
the living tissues where cells bump into each other and communicate through
pores or other membrane mechanisms [20]; and neural-like P systems with a
directed graph structure associated which mimic the way that neurons commu-
nicate with each other by means of short electrical impulses, identical in shape
(voltage), but emitted at precise moments of time [10]. In this paper, the term
membrane system is used to refer to cell-like P systems, tissue-like P systems or
neural-like P systems indistinctly.

Usually, in cell-like and neural-like P systems the environment plays a “pas-
sive” role in the sense that it only receives objects, but cannot contribute objects
to the system. However, in tissue-like P systems the role played by the environ-
ment is “active” in the sense that it can receive objects from the system and
also send objects inside the system, and the objects initially placed in the envi-
ronment have an arbitrarily large number of copies.

Decision problems (those having a yes/no answer) have associated a language
in a natural way (the set of instances having yes as an answer), in such manner
that solving a decision problem is expressed in terms of the recognition of the
language associated with it. In this context, recognizer membrane systems were
introduced in order to define what solving a decision problem means in the
framework of Membrane Computing [12]. P systems with active membranes
were introduced in [8]. These cell-like models make use of electrical charges
associated with membranes and rules of the following types: object evolution,
send-in communication, send-out communication, dissolution and division rules.
By means of these rules, membranes can change their electrical charges but
not their label. P systems with active membranes can provide efficient solutions
to computationally hard problems, by making use of an exponential workspace
(expressed in terms of number of objects and number of membranes) created
in a polynomial time. The class of decision problems which can be solved by
families of P systems with active membranes with dissolution rules and which use
division for elementary and non-elementary membranes is equal to PSPACE
[14]. However, if electrical charges are removed from the usual framework of
P systems with active membranes, then dissolution rules come to play a relevant
role (without them, only problems in class P can be solved in an efficient way,
even in the case that division for non-elementary membranes are permitted [5]). P
systems with active membranes and without polarizations were initially studied
in [1,2] by replacing electrical charges by the ability to change the label of the
membranes.

Counting problems (those asking how many possible solutions exist associ-
ated with each instance) have a natural number instead of a yes/no as an answer.
Each decision problem has associated a counting problem in a natural way by
replacing “there exists a solution” with “how many solutions”. For instance, the
counting problem associated with the SAT problem, denoted by #SAT, is the

76 L. Valencia-Cabrera et al.

following: given a Boolean formula ϕ in conjunctive normal form, how many
truth assignments make true ϕ? It is worth pointing out that the counting pro-
blem #X associated with a decision problem X may be harder than the decision
problem, from a complexity point of view.

The main goal of this paper is twofold. On the one hand, to provide a formal
framework in Membrane Computing to solve counting problems by introducing
counting membrane systems. This approach was first initiated by Alhazov et al.
[3] and now, the computing model is formally defined inspired by counting Tur-
ing machines introduced by L. Valiant in 1979: “a standard nondeterministic
TM with an auxiliary output device that (magically) prints in binary notation
on a special tape the number of accepting computations induced by the input”.
L. Valiant also introduced the complexity class #P of functions that can be
computed by counting Turing machines running in polynomial time [19]. The
concept of #P-complete problems is defined in a natural way by considering
parsimonious reduction, that is reduction which preserves the number of solu-
tions.

On the other hand, following the works initiated in [15–17], a uniform and
polynomial-time solution to the #SAT problem, a well-known #P-complete
problem, is provided by means of a family of counting membrane systems
from DAM0

c(mcmp,+c,−d,−n) whose elements are (counting) polarizationless
P systems with active membranes where labels of membranes keep unchanged
by the application of rules, but where dissolution rules and division rules for
non-elementary membranes are forbidden and some kind of very restrictive coop-
eration in object evolution rules is allowed.

The paper is structured as follows. Next, we shortly recall some prelimi-
nary basic definitions related to abstract problems. Section 3 introduces counting
membrane systems, and the concept of uniform polynomial-time solvability of
counting problems by means of families of counting membrane systems is pre-
sented (specifically, the class DAM0

c(mcmp,+c,−d,−n) is defined). Section 4 is
devoted to showing a uniform and polynomial-time solution of the #SAT by using
a family of counting polarizationless P systems with active membranes, without
dissolution rules and with division only for elementary membranes where min-
imal cooperation and minimal production is allowed in object evolution rules.
The paper ends with some conclusions and final remarks.

2 Abstract Problems

Roughly speaking, an abstract problem is a “general question to be answered,
usually possessing several parameters whose values are left unspecified” [4]. Solv-
ing an abstract problem consists of answering the question associated with it.
Thus, an abstract problem consists of a (finite or infinite) set of concrete prob-
lems, called instances, obtained by specifying particular values for all parameters.
Each instance has an associated set (eventually empty) of possible solutions and
the answer to the general question of the problem is related to that set.

Counting Membrane Systems 77

A search problem (or function problem) is an abstract problem such that the
question is to identify/find one solution to the set of possible solutions associ-
ated with each instance. For example, given a Boolean formula ϕ in conjunctive
normal form to find any truth assignment which makes it true, or if there is no
such truth assignment, answer “no”. That is, in this problem a “function” must
be computed in such manner that for every input formula ϕ, this “function”
may have many possible outcomes (any satisfying truth assignment) or none.

A decision problem is a particular case of search problem. Specifically, a deci-
sion problem can be viewed as an abstract problem that has a yes or no answer.
This kind of problems can be formulated by specifying a generic instance of the
problem and by stating a yes/no question concerning to the generic instance [4].
For example, the SAT problem is the following decision problem: given a Boolean
formula in conjunctive normal form, is there a truth assignment that makes the
formula true?

Informally, a counting problem is an abstract problem such that one asks how
many possible solutions exist associated with each generic instance, that is, in
this kind of problems the output is a natural number rather than just yes or no
as in a decision problem. For example, the #SAT problem previously defined is
a particular case of a counting problem.

In optimization problems we seek to find a best solution associated with each
instance among a collection of feasible solutions, according to a concept of opti-
mality given by an objective function associated with the problem. For example,
the MIN-VERTEX-COVER problem is the following optimization problem: given an
undirected graph, to find a smallest set of vertexes covering the graph.

Next, we formally define the previous concepts. A search problem (or function
problem) X is a tuple (ΣX , IX , SX) such that: (a) ΣX is a finite alphabet; (b)
IX is a language over ΣX whose elements are called instances of X; and (c) SX

is a function whose domain is IX and for each u ∈ IX , SX(u) is a set whose
elements are called solutions for u. To solve a search problem X means the
following: for each instance u ∈ IX return one element of SX(u) in the case that
SX(u) �= ∅; otherwise, return “no”. Each search problem X = (ΣX , IX , SX) has
an associated binary relation QX defined as follows: QX = {(u, z) | u ∈ IX ∧ z ∈
SX(u)}. Then, solving the search problem X can be interpreted as follows: given
an instance u ∈ X, find one element z such that (u, z) ∈ QX . We say that a
deterministic Turing machine M solves a search problem X if, given as input any
instance u ∈ IX , the machine M with input u returns some element belonging
to SX(u) (M accepts u) in the case that SX(u) �= ∅; otherwise, it returns “no”
(M rejects u). That is, the Turing machine M computes a multivalued function
F on IX : this function may have many possible outcomes or none.

An optimization problem X is a tuple (ΣX , IX , SX , OX) such that:

– (ΣX , IX , SX) is a search problem.
– OX is a function whose domain is IX and for each instance u ∈ IX and for

each possible solution a ∈ SX(u) associated with u, OX(u, a) is a positive
rational number.

78 L. Valencia-Cabrera et al.

– For each instance u ∈ IX there exists a solution a ∈ SX(u) such that either
∀b (b ∈ SX(u) ⇒ OX(u, b) ≤ OX(u, a)) (we say that a is a maximal solution
to instance u), or ∀b (b ∈ SX(u) ⇒ OX(u, b) ≥ OX(u, a)) (we say that a is a
minimal solution to instance u).

To solve an optimization problem X means the following: for each instance u ∈
IX return a maximal solution or for each instance u ∈ IX return a minimal
solution. We say that a deterministic Turing machine M solves an optimization
problem X if, given an instance u ∈ IX , the machine M with input u returns
one optimal (maximal or minimal) solution associated with that instance.

A decision problem X is a search problem (ΣX , IX , SX) such that for each
instance u ∈ IX , SX(u) = {0} or SX(u) = {1}. In the case SX(u) = {0} we say
that the answer of the decision problem is negative (no) for instance u. In the
case SX(u) = {1} we say that the answer of the decision problem is affirmative
(yes) for instance u. To solve a decision problem X means the following: for
each instance u ∈ IX , return yes in the case SX(u) = {1}, otherwise, return
no. Let us notice that a decision problem X = (ΣX , IX , SX) can be viewed as
an optimization problem (ΣX , IX , SX , OX) where OX(u, a) is constant, always
equal to 1 (recall that for each instance u ∈ IX the set of possible solutions SX(u)
is a singleton, either {0} or {1}). Each decision problem X = (ΣX , IX , SX)
has an associated language LX defined as follows: LX = {u ∈ Σ∗

X | SX(u) =
{1}}. Conversely, each language L over an alphabet Γ has an associated decision
problem XL = (ΣXL

, IXL
, SXL

) defined as follows: ΣXL
= Γ , IXL

= Γ ∗ and
SXL

(u) = {1}, for each u ∈ L, and SXL
(u) = {0}, for each u /∈ L. According

with these definitions, for each decision problem X we have XLX
= X and for

each language L we have LXL
= L. A deterministic Turing machine M is said

to solve a decision problem X if machine M recognizes or decides the language
LX associated with the problem X, that is, for any string u over ΣX , if u ∈ LX ,
then the answer of M on input u is yes (that is, M accepts u), and the answer
is no otherwise (that is, M rejects u). A non-deterministic Turing machine M is
said to solve a decision problem X if machine M recognizes LX , that is, for any
string u over ΣX , u ∈ LX if and only if there exists at least one computation of
M with input u such that the answer is yes.

A counting problem X is a tuple (ΣX , IX , SX , FX) such that (ΣX , IX , SX)
is a search problem and FX is the function whose domain is IX , defined as
follows: FX(u) = |SX(u)|, where |SX(u)| denotes the number of elements of the
set SX(u), for each instance u ∈ IX . A counting problem X can be considered
as a particular case of a search problem expressed as follows: given an instance
u ∈ IX , how many z are there such that (u, z) ∈ QX? (where QX is the binary
relation associated with the search problem). A counting Turing machine M
solves a counting problem X if, given an instance u ∈ IX , the number of the
accepting computations of M with input u is equal to the number of elements
of the set SX(u), i.e., the number of possible solutions associated with u.

Counting Membrane Systems 79

3 Counting Membrane Systems

The main purpose of computational complexity theory is to provide bounds
on the amount of computational resources necessary for any mechanical proce-
dure that solves an abstract problem. Usually, this theory deals with languages
encoding/representing decision problems. The solvability of decision problems is
expressed in terms of recognize/decide the languages associated with them. In
order to formally define what it means to solve decision problems in Membrane
Computing, a new variant called recognizer membrane systems was introduced in
[12] (so-called accepting P systems) for cell-like P systems, in [11] for tissue-like
P systems, and in [6] for neural-like P systems (so-called accepting spiking neural
P systems). Next, a new class of membrane systems, called counting membrane
systems, is introduced as a framework where counting problems can be solved
in a natural way. These systems are inspired from counting Turing machines
introduced by Valiant [19] and from recognizer membrane systems where the
Boolean answer of these systems is replaced by an answer encoded by a natural
number expressed in a binary notation (placed in the environment associated
with the halting configuration).

Definition 1. A counting membrane system Π is a membrane system such that:

– There exist two distinguished disjoint alphabets Σ (input alphabet) and Φ
(final alphabet) both of them strictly contained in the working alphabet Γ of
Π. A total order in the final alphabet Φ = {a0, a1, . . . , an} is also considered.

– The membrane system has an input compartment labelled by iin.
– All computations of the system halt.
– For each computation of the system, the environment associated with the cor-

responding halting configuration, may contain objects from Φ, but each of
them with multiplicity at most one.

According to Definition 1, the result of any computation C of a counting P system
is a natural number whose binary expression is encoded by the objects from the
final alphabet placed the environment associated with its halting configuration,
according with the following criterion: (a) if the set of objects in Φ placed in
the environment of the corresponding halting configuration is the nonempty set
{ai1 , . . . , air}, then the answer of C is the natural number 2i1 + · · ·+2ir ; and (b)
otherwise, the answer of C is 0.

For each finite multiset m over the input alphabet Σ, a computation of a
counting membrane system Π with input multiset m starts from the initial
configuration, where the input multiset m is added to the content of the input
compartment iin. That is, we have an initial configuration associated with each
input multiset m over Σ in counting membrane systems. We denote by Π + m
the counting membrane system Π with input multiset m.

Many different classes of counting membrane systems depending on the kind
of rules can be considered. For example, counting transition P systems, counting
polarizationless P systems with active membranes, counting tissue P systems
with symport/antiport rules can be defined in a natural way. Then, we will

80 L. Valencia-Cabrera et al.

use a subscript c to emphasize that we are dealing with some kind of counting
membrane system. For instance, DAM0

c(+e,+c,−d,−n) denotes the class of
all counting polarizationless P systems with active membranes which use object
evolution rules, communication rules and division rules only for elementary mem-
branes, but dissolution rules are forbidden.

It is worth pointing out that any recognizer membrane system Π can be
considered as a “particular case” of counting membrane system, where the final
alphabet Φ is a singleton alphabet {a0} and the rules of the counting system
are obtained from the rules of the recognizer system replacing yes with a0 and
replacing object no with a garbage object � different of a0.

3.1 Polynomial Complexity Classes for Counting Membrane
Systems

The concept of polynomial encoding in recognizer membrane systems was intro-
duced in [13] and polynomial encodings are stable under polynomial-time reduc-
tions. This concept can be translated to counting membrane systems in a natural
way.

Definition 2. Let X be a counting problem whose set of instances is IX . Let
Π = {Π(t) : t ∈ N} be a family of counting membrane systems. A polynomial
encoding of X in Π is a pair (cod, s) of polynomial-time computable functions
over IX such that s(u) is a natural number (obtained by means of a reasonable
encoding scheme) and cod(u) is a multiset over the input alphabet of Π(s(u)),
for each instance u ∈ IX , and s−1(k) is a finite set, for each k ∈ N.

Definition 3. A counting problem X = (ΣX , IX , SX , FX) is solvable in poly-
nomial time and in a uniform way by a family of counting membrane systems
Π = {Π(t) : t ∈ N} from a class Rc, denoted by X ∈ PCMSRc

, if the following
holds:

– The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which con-
structs the system Π(t) from t ∈ N (t is expressed in unary notation).

– There exists a polynomial encoding (cod, s) of X in Π such that:
• The family Π is polynomially bounded with respect to (X, cod, s), that is,

there exists a natural number k ∈ N such that for each instance u ∈ IX ,
every computation of the system Π(s(u)) with input cod(u) performs at
most |u|k steps.

• For each instance u ∈ IX and for each computation C of Π(s(u)) with
input cod(u) we have the result of C is FX(u).

It is easy to prove that the class PCMSRc
is closed under polynomial-time

reduction and under complement, by adapting the corresponding demostrations
for PMCR, being R any class of recognizer membrane systems [12].

Having in mind that any recognizer membrane system Π can be considered as
a “particular case” of counting membrane system, we have PMCR ⊆ PCMSR,
for any class of recognizer systems R.

Counting Membrane Systems 81

3.2 Counting Membrane Systems from DAM0
c(mcmp,+c,−d,−n)

Let us recall that DAM0(+e,+c,−d,−n) denotes the class of all recognizer
polarizationless P systems with active membranes (μ denotes the membrane
structure, Γ denotes the working alphabet and H denotes the set of labels) such
that the set of rules is of the following forms:

� [a → u]h for h ∈ H, a ∈ Γ , u is a finite multiset over Γ (object evolution rules).
� a []h → [b]h for h ∈ H, a, b ∈ Γ and h is not the label of the root of μ (send-in
communication rules).
� [a]h → b []h for h ∈ H, a, b ∈ Γ (send-out communication rules).
� [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ and h is the label of an elementary
membrane different of the root of μ (division rules for elementary membranes).

It is well known [5] that only problems in class P can be solved in polynomial
time (and in a uniform way) by means of families from DAM0(+e,+c,−d,−n).
Moreover, this holds even in the case that division rules for elementary and
non-elementary membranes are permitted.

By incorporating a restricted cooperation in object evolution rules, a uni-
form polynomial-time solution to the SAT problem, a well-known NP-complete
problem [4], has been provided [17]. Specifically, minimal cooperation and mini-
mal production (mcmp) in object evolution rules has been considered, that is,
rules of the forms [a → b]h or [a b → c]h, where a, b, c ∈ Γ , but at least one
object evolution rule is of the second type. The corresponding class of recog-
nizer P systems was denoted by DAM0(mcmp,+c,−d,−n). Then we denote
by DAM0

c(mcmp,+c,−d,−n) the class of all counting polarizationless P sys-
tems with active membranes, with minimal cooperation and minimal production
in object evolution rules, with communication rules and division rules only for
elementary membranes, but without dissolution rules.

4 A Solution to #SAT in DAM0
c(mcmp,+c,−d,−n)

In this section a polynomial-time uniform solution to the counting problem
#SAT, a well-known #P-complete problem, is provided by means of a family
of counting membrane systems from DAM0

c(mcmp,+c,−d,−n). For that, the
solution to SAT problem given in [17] by using a family of membrane systems
from DAM0(mcmp,+c,−d,−n) is adapted, basically, in the output stage.

Let us recall that the polynomial-time computable function (the Cantor pair
function) defined as 〈n, p〉 = ((n + p)(n + p + 1)/2) + n, is a primitive recursive
and bijective function from N × N to N. The family Π = {Π(t) | t ∈ N} is
defined in such a manner that system Π(t) will process any Boolean formula
ϕ in conjunctive normal form (CNF) with n variables and p clauses, where
t = 〈n, p〉, provided that the appropriate input multiset cod(ϕ) is supplied to
the system (through the corresponding input membrane), and will answer how
many truth assignments make true the input formula ϕ.

82 L. Valencia-Cabrera et al.

For each n, p ∈ N, we consider the recognizer counting P system

Π(〈n, p〉) = (Γ,Σ,Φ,H, μ,M1,M2,R, iin)

from DAM0(mcmp,+c,−d,−n), defined as follows:

(1) Working alphabet Γ = {β, �} ∪ {αi | 0 ≤ i ≤ 2n + 2p + 1}∪
{ai,j , | 0 ≤ i ≤ n − 1, 0 ≤ j ≤ i} ∪ {ai, γi | 0 ≤ i ≤ n − 1}∪
{bi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ i} ∪ {cj | 1 ≤ j ≤ p}∪
{dj | 2 ≤ j ≤ p} ∪ {ti,k, fi,k | 1 ≤ i ≤ n, i ≤ k ≤ n + p − 1}∪
{Ti,k, Fi,k | 1 ≤ i ≤ n, 0 ≤ k ≤ n − 1} ∪ {Ti, Fi | 1 ≤ i ≤ n}∪
{xi,j,k, xi,j,k, x

∗
i,j,k | 0 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n + p}.

(2) Input alphabet Σ = {xi,j,0, xi,j,0, x
∗
i,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

(3) Final alphabet Φ = {ai | 0 ≤ i ≤ n − 1}.
(4) H = {1, 2}.
(5) Membrane structure: μ = [[]2]1, that is, μ = (V,E) where V = {1, 2} and

E = {(1, 2)}.
(6) Initial multisets: M1 = {αn

0 }, M2 = {β, bi,1, T
p
i,0, F

p
i,0 | 1 ≤ i ≤ n}.

(7) The set of rules R consists of the following rules:
7.1 Rules for a general counter.

[αk −→ αk+1]1, for 0 ≤ k ≤ 2n + 2p
7.2 Rules to generate all truth assignments.

[bi,i]2 −→ [ti,i]2 [fi,i]2, for 1 ≤ i ≤ n
[bi,k −→ bi,k+1]2, for 2 ≤ i ≤ n ∧ 1 ≤ k ≤ i − 1

7.3 Rules to generate suitable objects in order to start the next stage.
[ti,k −→ ti,k+1]2
[fi,k −→ fi,k+1]2

}
1 ≤ i ≤ n − 1 ∧ i ≤ k ≤ n − 1

[Ti,k −→ Ti,k+1]2
[Fi,k −→ Fi,k+1]2

}
1 ≤ i ≤ n, 0 ≤ k ≤ n − 2

[Ti,n−1 −→ Ti]2
[Fi,n−1 −→ Fi]2

}
1 ≤ i ≤ n

7.4 Rules to produce exactly p copies of each truth assignment.
[ti,k Fi −→ ti,k+1]2
[fi,k Ti −→ fi,k+1]2

}
1 ≤ i ≤ n ∧ n ≤ k ≤ n + p − 2

[ti,n+p−1 Fi −→ �]2
[fi,n+p−1 Ti −→ �]2

}
1 ≤ i ≤ n

7.5 Rules to prepare the input formula for check clauses:
[xi,j,k −→ xi,j,k+1]2
[xi,j,k −→ xi,j,k+1]2
[x∗

i,j,k −→ x∗
i,j,k+1]2

⎫⎬
⎭ 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n + p − 1

7.6 Rules for the first checking stage.
[Ti xi,j,n+p −→ cj]2
[Ti xi,j,n+p −→ �]2
[Ti x∗

i,j,n+p −→ �]2
[Fi xi,j,n+p −→ �]2
[Fi xi,j,n+p −→ cj]2
[Fi x∗

i,j,n+p −→ �]2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1 ≤ i ≤ n ∧ 1 ≤ j ≤ p

Counting Membrane Systems 83

7.7 Rules for the second checking stage.
[c1 c2 −→ d2]2
[dj cj+1 −→ dj+1]2, for 2 ≤ j ≤ p − 1

7.8 Rules to prepare objects in the skin membrane.
[β dp −→ γ0]2
[γ0]2 −→ γ0 []2, for 0 ≤ i ≤ n − 1

7.9 Rules to prepare objects encoding the binary output.
[γ2

i −→ γi+1]1, for 0 ≤ i ≤ n − 2
[α2n+2p+1 γi −→ ai,0]1, for 0 ≤ i ≤ n − 1
[ai,j −→ ai,j+1]1, for 1 ≤ i ≤ n − 1, 0 ≤ j ≤ i − 1

7.10 Rules to produce the output.
[ai,i]1 −→ ai []1, for 0 ≤ i ≤ n − 1

(8) The input membrane is the membrane labelled by 2 (iin = 2) and the output
region is the environment.

4.1 An Overview of the Computation

It is easy to check that Π(〈n, p〉), previously defined, is a deterministic counting
membrane system, for each (n, p) ∈ N × N.

We consider the polynomial encoding (cod, s) from #SAT in Π defined as
follows: let ϕ be a Boolean formula in conjunctive normal form. Let V ar(ϕ) =
{x1, · · · , xn} be the set of propositional variables and {C1, · · · , Cp} the set of
clauses of ϕ. Let us assume that both the number of variables and clauses of the
input formula ϕ, are greater than or equal to 2. We define s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 | ¬xi ∈ Cj} ∪ {x∗
i,j,0 | xi /∈ Cj ,¬xi /∈ Cj}

Notice that cod(ϕ) can be represented as a matrix, in such a way that the j-th
row (1 ≤ j ≤ p) encodes the j-th clause Cj of ϕ, and the columns (1 ≤ i ≤ n)
are associated with variables. We denote by codk(ϕ) the multiset cod(ϕ) when
the third index of all objects is equal to k.

The Boolean formula ϕ will be processed by the system Π(s(ϕ)) with input
multiset cod(ϕ). Next, we informally describe how that system works.

The solution proposed is inspired in the solution provided to the SAT problem
in [17], consisting of the following stages:

– Generation stage: by applying division rules from 7.2, all truth assignments
for the variables {x1, . . . , xn} associated with ϕ are produced. This stage
takes exactly n computation steps and at the i-th step, 1 ≤ i ≤ n, of this
stage, division rule is triggered by object bi,i, producing two new membranes
with all its remaining contents replicated in the new membranes labelled by
2. Simultaneously to these divisions, objects ti,k, fi,k, Ti,k, Fi,k (by applying
rules from 7.3) and objects xi,j,k, xi,j,k, x

∗
i,j,k (by applying rules from 7.5)

evolve during this stage in such manner that at configuration Cn:

84 L. Valencia-Cabrera et al.

(a) There is a membrane labelled by 1 which contains n copies of object αn.
(b) There are 2n membranes labelled by 2 such that each of them contains: a

copy of object β, the set codn(ϕ), the multiset {T p
i , F p

i | 1 ≤ i ≤ n}; and
a different subset {r1,n, . . . , rn,n}, being r ∈ {t, f}.

– Production of enough copies for each truth assignment : in this stage p copies
(p is the number of clauses of ϕ) of each truth assignment are produced, to
allow the checking of the literal associated with each variable in each clause.
By using minimal cooperation and minimal production (applying rules from
7.4), objects ti,k (respectively, object fi,k) are used to remove all copies of Fi

(respectively, Ti). This stage takes p steps and at configuration Cn+p:
(a) The root membrane (labelled by 1) contains n copies of object αn+p.
(b) There are 2n membranes labelled by 2 such that each of them contains:

a copy of object β, n copies of the garbage object �, the set codn+p(ϕ),
and a different multiset {Rp

1,n, . . . , Rp
n,n}, being R ∈ {T, F}.

– First Checking stage: by applying rules from 7.6, we check whether or not each
clause of the input formula ϕ is satisfied by the truth assignments generated
in the previous stage, encoded by each membrane labelled by 2. This stage
takes exactly one computation step and at configuration Cn+p+1:
(a) The root membrane (labelled by 1) contains n copies of object αn+p+1.
(b) There are 2n membranes labelled by 2 such that each of them contains:

a copy of object β, many copies of the garbage object � (which they will
not evolve in the rest of the computation), and copies of objects cj whose
presence means that clause Cj is true for the truth assignment encoded
by that membrane.

– Second Checking stage: by applying rules from 7.7, we check whether or not
all clauses of the input formula ϕ are satisfied by some truth assignment
encoded by a membrane labelled by 2. This stage takes exactly p − 1 steps
and at configuration Cn+2p:
(a) The root membrane (labelled by 1) contains n copies of object αn+2p.
(b) There are 2n membranes labelled by 2 such that each of them contains:

a copy of object β, many copies of the garbage object � (which they will
not evolve in the rest of the computation), and copies of objects dj and
cj , in such manner that the truth assignment encoded by such membrane
makes true ϕ if and only if contains some object dp.

– Output stage. Negative answer: if the input formula is not satisfiable, then
any rule from 7.8 is not applicable and from Cn+2p on, no rules are applied
in the system except those from 7.1 until reaching a halting configuration at
C2n+2p+1. Therefore, in this case, the system answers 0.

– Output stage. Affirmative answer: if the input formula is satisfiable, by apply-
ing rules from 7.8 some objects γ0 are produced at membrane labelled by 1.
Due to the semantics of these membrane systems, this stage takes exactly two
steps. Thus, at configuration Cn+2p+2 the multiplicity of γ0 in the skin mem-
brane equals to the number of truth assignment of variables {x1, . . . , xn} that
makes true ϕ. Next, by applying rules from 7.9, some objects γi, 0 ≤ i ≤ n−1,
with multiplicity 1 will be generated after, at most, n − 1 computation steps.
Then, at configuration C(n+2p+2)+n−1 = C2n+2p+1 at the skin membrane we

Counting Membrane Systems 85

have n copies of object α2n+2p+1 and some objects γi, 0 ≤ i ≤ n − 1, with
multiplicity 1. By applying the second rule from 7.9, some objects ai,0 with
multiplicity 1 are produced at that membrane. In order to make deterministic
the system, objects ai,0 evolves until ai,i by applying the third rules from 7.9.
Finally, the system sends to the environment the right answer according to
the results of the previous stage, by applying rules from 7.10, for instance,
object ai,i is released to the environment as object ai. This stage takes, at
most, n computation steps. Specifically, if object ai,0 appears in membrane
1 at configuration C2n+2p+2 then object ai is sent out to the environment at
(i + 1)-th step of this stage.

5 Main Results

Theorem 1. #SAT ∈ PCMSDAM0
c(mcmp,+c,−d,−n).

Proof. The family of P systems previously constructed verifies the following:

(a) Every system of the family Π belongs to DAM0
c(mcmp,+c,−d,−n).

(b) The family Π is polynomially uniform by Turing machines because for each
n, p ∈ N, the amount of resources needed to build Π(〈n, p〉) is of a polynomial
order in max{n, p}:
• Size of the alphabet: is of the order O(n2 · p2).
• Initial number of membranes: 2 ∈ Θ(1).
• Initial number of objects in membranes: 2np + n + 1 ∈ Θ(n · p).
• Number of rules: is of the order O(n2 · p2).
• Maximal number of objects involved in any rule: 3 ∈ Θ(1).

(c) The pair (cod, s) of polynomial-time computable functions defined fulfill the
following: for each input formula ϕ of the #SAT problem, s(ϕ) is a natural
number, cod(ϕ) is an input multiset of the system Π(s(ϕ)), and for each
k ∈ N, s−1(k) is a finite set.

(d) The family Π is polynomially bounded: indeed, for each input formula ϕ of
the #SAT problem, the P system Π(s(ϕ))+cod(ϕ) takes at most 2n+2p+1
computation steps in the case of the input formula is not satisfiable and, on
the contrary, takes at most 2n+2p+2 steps, n being the number of variables
of ϕ and p the number of clauses.

(e) The family Π is sound and complete with regard to (X, cod, s): indeed, this
can be deduced from the computations previously described.

Therefore, the family Π of P systems previously constructed solves the #SAT
problem in polynomial time in a uniform way.

Corollary 1. #P ⊆ PCMSDAM0
c(mcmp,+c,−d,−n).

Proof. It suffices to note that the #SAT problem is a #P-complete problem,
#SAT ∈ PCMSDAM0

c(mcmp,+c,−d,−n), and class PCMSDAM0
c(mcmp,+c,−d,−n) is

closed under polynomial-time reduction and under complement.

86 L. Valencia-Cabrera et al.

6 Conclusions

In order to provided a natural framework to solve counting problems in the con-
text of Membrane Computing, a new class of membrane systems, called counting
membrane systems, is presented in this paper. The new kind of models is inspired
from counting Turing machines [19] and from recognizer membrane systems [12].

The computational efficiency of the new variant has been explored. Specifi-
cally, a polynomial-time and uniform solution to the #SAT problem, a well-known
#P-complete problem, is provided by using a family of counting polarizationless
P systems with active membranes, without dissolution rules and division rules
for non-elementary membranes but where very restrictive cooperation (minimal
cooperation and minimal production) in object evolution rules is allowed.

As future works we suggest to analyze the computational efficiency of count-
ing membrane systems from the previous class but where minimal cooperation
and minimal production only is considered for communication rules (maybe only
send-in rules or only send-out rules) instead of object evolution rules, following
the work initiated in [18]. Besides, it would be interesting to explore the ability
to use separation rules (distribution of objects) instead of division rules (replica-
tion of objects) in counting membrane systems, from a computational complexity
point of view.

References

1. Alhazov, A., Pan, L.: Polarizationless P systems with active membranes. Grammars
7, 141–159 (2004)

2. Alhazov, A., Pan, L., Păun, G.: Trading polarizations for labels in P systems with
active membranes. Acta Informaticae 41(2–3), 111–144 (2004)

3. Alhazov, A., Burtseva, L., Cojocaru, S., Rogozhin, Y.: Solving PP-complete and
#P-complete problems by P systems with active membranes. In: Corne, D.W.,
Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol.
5391, pp. 108–117. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
540-95885-7 8

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H Freeman and Company, San Francisco (1979)

5. Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–
Campero, F.J.: On the power of dissolution in P systems with active mem-
branes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006). https://doi.org/10.
1007/11603047 16

6. Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform
solutions to SAT and Subset Sum by spiking neural P systems. Nat. Comput.
8(4), 681–702 (2009)

7. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
8. Păun, G.: Computing with membranes: attacking NP-complete problems. In: Anto-

niou, I., Calude, C.S., Dinneen, M.J. (eds.) UMC’2K. DISCMATH. Springer, Lon-
don (2000). https://doi.org/10.1007/978-1-4471-0313-4 7

9. Păun, G.: P systems with active membranes: attacking NP-complete problems. J.
Automata Lang. Comb. 6, 75–90 (2001)

https://doi.org/10.1007/978-3-540-95885-7_8
https://doi.org/10.1007/978-3-540-95885-7_8
https://doi.org/10.1007/11603047_16
https://doi.org/10.1007/11603047_16
https://doi.org/10.1007/978-1-4471-0313-4_7

Counting Membrane Systems 87

10. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P
systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)

11. Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P systems with cell divi-
sion. Int. J. Comput. Commun. Control III(3), 295–303 (2008)

12. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity
classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–
285 (2003)

13. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. J. Automata Lang. Comb.
11(4), 423–434 (2006)

14. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: a
characterization of PSPACE. J. Comput. Syst. Sci. 73, 137–152 (2007)

15. Valencia-Cabrera, L., Orellana-Mart́ın, D., Mart́ınez-del-Amor, M.A., Riscos-
Núñez, A., Pérez-Jiménez, M.J.: Polarizationless P systems with active membranes:
Computational complexity aspects. J. Automata Lang. Comb. 21(1–2), 107–123
(2016)

16. Valencia-Cabrera, L., Orellana-Mart́ın, D., Riscos-Núñez, A., Pérez-Jiménez, M.J.:
Minimal cooperation in polarizationless P systems with active membranes. In: Gra-
ciani, C., Păun, G., Orellana-Mart́ın, D., Riscos-Núñez, A., Valencia-Cabrera, L.
(eds.) Proceedings of the Fourteenth Brainstorming Week on Membrane Comput-
ing, 1–5 February 2016, Sevilla, Spain, pp. 327–356. Fénix Editora (2016)

17. Valencia-Cabrera, L., Orellana-Mart́ın, D., Mart́ınez-del-Amor, M.A., Riscos-
Núñez, A., Pérez-Jiménez, M.J.: Reaching efficiency through collaboration in mem-
brane systems: dissolution, polarization and cooperation. Theoret. Comput. Sci.
(2017, in press). https://doi.org/10.1016/j.tcs.2017.04.015

18. Valencia-Cabrera, L., Orellana-Mart́ın, D., Mart́ınez-del-Amor, M.A., Riscos-
Núñez, A., Pérez-Jiménez, M.J.: Cooperation in transport of chemical substances:
a complexity approach. Fundamenta Informaticae 154(1–4), 373–385 (2017)

19. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979)

20. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life Applications with Mem-
brane Computing. ECC, vol. 25. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55989-6. X + 367 p.

https://doi.org/10.1016/j.tcs.2017.04.015
https://doi.org/10.1007/978-3-319-55989-6
https://doi.org/10.1007/978-3-319-55989-6

APCol Systems with Teams

Lucie Ciencialová1, Luděk Cienciala1, and Erzsébet Csuhaj-Varjú2(B)

1 Institute of Computer Science and Research Institute of the IT4Innovations
Centre of Excellence, Silesian University in Opava, Opava, Czech Republic

{lucie.ciencialova,ludek.cienciala}@fpf.slu.cz
2 Department of Algorithms and Their Applications, Faculty of Informatics,

ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c,
Budapest 1117, Hungary
csuhaj@inf.elte.hu

Abstract. We investigate the possibility of “going beyond” Turing in
the terms of Automaton-like P Colonies (APCol systems, for short),
variants of P colonies processing strings as their environments. We use
the notion of teams of agents as a restriction for the maximal parallelism
of the computation. In addition, we assign a colour to each team. In the
course of the computation, the colour is changing according to the team
that is currently active. We show that we can simulate red-green counter
machines with APCol systems with two-coloured teams of minimal size.
Red-green counter machines are computing devices with infinite run on
finite input that exceed the power of Turing machines.

Keywords: Automaton-like P colonies · APCol systems
Red-green counter machine · Unbounded computation · Teams

1 Introduction

Recently, both unconventional Turing equivalent computing devices and com-
putational models which “go beyond” Turing, i.e., which are able to compute
more than recursively enumerable sets of strings or numbers are in the focus of
interest. In membrane computing, we can find examples for both types of such
constructs.

APCol systems (Automaton-like P colonies) were introduced in [4] as an
extension of P colonies (introduced in [8]) - a very simple variant of membrane
systems inspired by colonies of formal grammars. (The reader is referred to
[12] for more information in membrane systems and to [9] and [6] for details
on grammar systems theory.) An APCol system consists of a finite number of
agents - finite collections of objects embedded in a membrane - and a shared
environment. The agents are equipped with programs which are composed from
rules that allow them to interact with their environment that is represented by
a string. For this reason, the agents use their own objects and the objects of the
environment. The number of objects inside each agent is set by definition and it

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 88–104, 2018.
https://doi.org/10.1007/978-3-319-73359-3_6

APCol Systems with Teams 89

is usually a very small number: 1, 2 or 3. The environmental string is processed
by the agents and it is used as a communication channel for the agents as well.
Through the string, the agents are able to affect the behaviour of another agent.

The activity of the agents is based on rules that can be rewriting, communi-
cation or checking rules [8]. A rewriting rule a → b allows the agent to rewrite
(evolve) one object a to object b. Both objects are placed inside the agent. Com-
munication rule c ↔ d makes possible to exchange object c placed inside the
agent with object d in the string. A checking rule is formed from two rules r1, r2
of type rewriting or communication. It sets a kind of priority between the two
rules r1 and r2. The agent tries to apply the first rule and if it cannot be per-
formed, then the agent executes the second rule. The rules are combined into
programs in such a way that all objects inside the agent are affected by execution
of the rules. Consequently, the number of rules in the program is the same as
the number of objects inside the agent.

The interested reader can find more details on P colonies in [3,7,12].
In this paper, we focus on APCol systems with agents forming teams; the con-

cept was first proposed in [5]. The team is a finite number of agents of the APCol
system. These collections can be so-called prescribed teams (given together with
the components of the APCol system) or so-called free teams where only the size
of the teams, i.e., the number of the agents in the team is given in advance. The
notion is inspired by the concept of team grammar systems (see [13]). APCol
systems with prescribed or with free teams function in the following manner:
in every computation step only one team is allowed to work (only one team is
active) and all of its components should perform a program in parallel.

Another interesting extension is to assign colours to programs, instructions
or rules and observing how the currently used colour changes under the com-
putation. This method is well-known for observing unbounded computations.
Motivated by the notion of red-green Turing machines [11] (red-green register
machines) and related notions in P systems theory [2], we introduce the concept
of APCol systems with coloured teams. These constructs are APCol systems
with teams where each team is associated with a colour. A string is accepted by
an APCol system with coloured teams, if starting with the string as initial string
the computation is unbounded and its teams with the final colour are active in
an infinite number of steps and the teams of the other colours are active only in
a finite number of steps.

Red-green Turing machines, introduced in [11] exceed the power of Turing
machines since they recognize exactly the Σ2-sets of the Arithmetical Hierarchy.
These machines are deterministic and their state sets are divided into two disjoint
sets, called the set of red states and the set of green states. Red-green Turing
machines work on finite input words with the following recognition criterion on
infinite runs: no red state is visited infinitely often and one or more green states
are visited infinitely often. A change from a green state to a red state or reversely
is called a mind change; we may speak of a change of the “colour”. In [11], it is
shown that every recursively enumerable language can be recognized by a red-
green Turing machine with one mind change. It is also proved that if more than

90 L. Ciencialová et al.

one mind changes may take place, then red-green Turing machines are able to
recognize the complement of any recursively enumerable language.

Our paper is structured as follows: the second section is devoted to definitions
and notations used in the paper. The third section contains results obtained on
APCol systems with coloured teams, namely, we show that any red-green counter
machine can be simulated with an APCol system with coloured teams, where
there are two colours. The teams either consist of only one agent and then the
system works sequentially, or the APCol system has teams of at most two agents
acting in parallel. Finally, some conclusions are derived.

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics of
formal language and automata theory; for further details consult [13]. We list
the notations used in the paper.

We use N·RE to denote the family of recursively enumerable sets of natural
numbers and N to denote the set of natural numbers.

For an alphabet Σ, Σ∗ denotes the set of all words over Σ (including empty
word ε). For the length of the word w ∈ Σ∗, we use notation |w| and for the
number of occurrences of symbol a ∈ Σ in w notation |w|a is used.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets over the set of objects
V is denoted by V ∗. The set V ′ is called the support of M and denoted by
supp(M) if for all x ∈ V ′ f(x) �= 0. The cardinality of M , denoted by card(M),
is defined by card(M) =

∑
a∈V f(a). Any multiset of objects M with the set of

objects V = {ai, . . . , an} can be represented as a string w over alphabet V with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent M , and ε represents the empty multiset.

2.1 Register and Counter Machines

We briefly recall the basic notions, following the notations used in [2].
A register machine [10] is a construct M = (m,B, l0, lh, P), where m is the

number of registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the
final label, and P is the set of instructions bijectively labelled by elements of B.
The instructions of M can be of the following forms:

– l1 : (ADD(r), l2, l3), with l1 ∈ (B − {lh}), l2, l3 ∈ B, 1 ≤ j ≤ m. It increases
the value of register r by one and the next instruction to be performed is non-
deterministically chosen, it is labelled by l2 or l3. This instruction is called
increment.

– l1 : (SUB(r), l2, l3), with l1 ∈ (B − {lh}), l2, l3 ∈ B, 1 ≤ j ≤ m. If the value
of register r is zero, then the label of the next instruction to be performed
is l3; otherwise, the value of register r is decreased by one and the label of
the next instruction to be executed is l2. The first case is called zero-test, the
second case is called decrement.

– lh : HALT . The register machine stops executing instructions.

APCol Systems with Teams 91

A configuration of a register machine is described by the numbers stored in the
registers and by the label of the next instruction to be performed. Computations
start by executing the instruction l0 of P , and terminate by execution of the
HALT-instruction lh.

This model of register machines can be extended by instructions for reading
from an input tape and writing to an output tape containing strings over an
input alphabet Tin and an output alphabet Tout, respectively, see [2]:

– l1 : (read(a), l2), with l1 ∈ (B − {lh}), l2 ∈ B, a ∈ Tin. This instruction reads
symbol a from the input tape and the next instruction is l2.

– l1 : (write(a), l2), with l1 ∈ (B − {lh}), l2 ∈ B, a ∈ Tout. This instruction
writes symbol a to the output tape and the next instruction is l2.

This extended register machine, working with strings is also called a counter
automaton and is denoted by M = (m,B, l0, lh, P, Tin, Tout). If no output is writ-
ten, Tout is not indicated. The language L(M) accepted by a counter automaton
M = (m,B, l0, lh, P, Tin) consists of all input words over Tin for which there is
a halting computation by M .

It is known (see e.g. [10]) that register machines with (at most) three reg-
isters can compute all recursively enumerable sets of natural numbers. Counter
automata with two registers can simulate the computations of Turing machines
and thus characterize RE. All these results are obtained with deterministic reg-
ister machines, where the ADD-instructions are of the form l1 : (ADD(r), l2),
with l1 ∈ (B − {lh}), l2 ∈ B, 1 ≤ j ≤ m. More details can be found in [2].

2.2 Red-Green Turing Machines

We briefly recall the most important notions and statements concerning red-
green Turing machines and their variants, following [1,2,11].

Red-green Turing machines, introduced in [11], exceed the power of the stan-
dard Turing machines, since they recognize exactly the Σ2-sets of the Arithmeti-
cal Hierarchy. As we told before, they are deterministic and their state sets are
divided into two disjoint sets, namely, the set of red states and the set of green
states. Red-green Turing machines work on finite inputs with the recognition
criterion on infinite runs that no red state is visited infinitely often and one or
more green states are visited infinitely often. A change from a green state to a
red state or reversely is called a mind change; we may speak of a change of the
“colour”. In [11], it was shown that every recursively enumerable language can
be recognized by a red-green Turing machine with one mind change. It was also
proved that if more than one mind change may take place, then they are able to
recognize the complement of any recursively enumerable language.

In the analogy of the concept of red-green Turing machines, red-green counter
machines (red-green register machines) were defined and examined [1]. The
authors proved that the computations of a red-green Turing machine TM can be
simulated by a red-green register machine RM with two registers and with string
input in such a way that during the simulation of a transition of TM leading

92 L. Ciencialová et al.

from a state p with colour c to a state p′ with colour c′ the simulating register
machine uses instructions with labels (states) of colour c and only in the last
step of the simulation changes the label (state) to colour c′. They showed that
the reverse simulation works as well: the computations of a red-green register
machine RM with an arbitrary number of registers and with string input can
be simulated by a red-green Turing machine TM in such a way that during the
simulation of a computation step of RM from an instruction with label (state)
p with colour c to an instruction with label (state) p′ with colour c′, the sim-
ulating Turing machine TM are in states of colour c and only in the last step
of the simulation changes to a state of colour c′. The language recognized by a
red-green Turing machine is the set of input words on which the red-green TM
has a computation which stabilizes in green, i.e., there is an infinite run that
no red state is visited infinitely often and one or more green states are visited
infinitely often.

In [2], the above notions were implemented for membrane systems: the
notions of a red-green P automaton and its variants, as counterparts were intro-
duced. It was shown that these devices are able to “go beyond” Turing, in the
sense as red-green Turing machines are able to do.

2.3 APCol Systems

In the following we recall the concept of APCol systems, particular variants of P
colonies, where the environment of the agents is given in the form of a string [4].

The agents of APCol systems contain objects, each object is an element of
a finite alphabet. With every agent, a set of programs is associated. There are
two types of rules in the programs. The first one is of the form a → b and it is
called an evolution rule. It means that object a inside of the agent is rewritten
(evolved) to object b. The second type of rules is called a communication rule
and it is in the form c ↔ d. When this rule is performed, then the object c inside
the agent and a symbol d in the string are exchanged. If c = e, then the agent
erases d from the input string and if d = e, then the symbol c is inserted into
the string.

During the work of the APCol system, the agents perform programs. The
number of objects inside the agents remain unchanged during the functioning of
the system, it is usually 2.

Since both rules in a program can be communication rules, an agent can
work with two objects in the string in one step of the computation. In the case
of program 〈a ↔ b; c ↔ d〉, a substring bd of the input string is replaced by string
ac. If the program is of the form 〈c ↔ d; a ↔ b〉, then a substring db of the input
string is replaced by string ca. That is, the agent can act only in one place in a
computation step and the change of the string depends both on the order of the
rules in the program and on the interacting objects. In particular, the following
types of programs with two communication rules are considered:

– 〈a ↔ b; c ↔ e〉 - b in the string is replaced by ac,
– 〈c ↔ e; a ↔ b〉 - b in the string is replaced by ca,

APCol Systems with Teams 93

– 〈a ↔ e; c ↔ e〉 - ac is inserted in a non-deterministically chosen place in the
string,

– 〈e ↔ b; e ↔ d〉 - bd is erased from the string,
– 〈e ↔ d; e ↔ b〉 - db is erased from the string,
– 〈e ↔ e; e ↔ d〉; 〈e ↔ e; c ↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e → e; c ↔ d〉.
The program is said to be restricted if it is formed from one rewriting and

one communication rule. The APCol system is restricted if all of the programs
of the agents are restricted.

To help the reader in the easier understanding the technical details of the
paper, we recall the formal definition of an APCol system.

Definition 1 [4]. An APCol system is a construct

Π = (O, e,A1, . . . , An), where

– O is an alphabet; its elements are called the objects,
– e ∈ O, called the basic object,
– Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

• ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

• Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
* a → b, where a, b ∈ O, called an evolution rule,
* c ↔ d, where c, d ∈ O, called a communication rule,

• Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

At the beginning of the computation of the APCol system is in initial con-
figuration which is an (n + 1)-tuple c = (ω;ω1, . . . , ωn) where ω is the initial
state of the environment and the other n components are multisets of strings of
objects, given in the form of strings, the initial states of the agents. The initial
state of the environment does not contain object e.

A configuration of an APCol system Π is given by (w;w1, . . . , wn), where
|wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th agent
and w ∈ (O − {e})∗ is the string to be processed.

In each computation step every agent attempts to find one of its programs to
use. If it has applicable programs, then it non-deterministically chooses one of
them and applies it. As usual in membrane computing, APCol systems work in
the maximally parallel manner, i.e., as many agents perform one of its programs
in parallel as possible. We note that other working modes can also be defined.

By applying programs, the APCol system passes from one configuration to
another configuration. A sequence of configurations starting from the initial con-
figuration is called a computation. A configuration is halting if the APCol system
has no applicable program.

A string ω is accepted by APCol system Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and ends by halting

94 L. Ciencialová et al.

in a configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi for 1 ≤ i ≤ n.
The set of strings accepted by Π is its accepted language, denoted by L(Π).

An APCol system Π can accept a set of numbers as well, i.e., |L(Π)|.

2.4 APCol Systems with Coloured Teams of Agents

As a restriction of the computation process, we can introduce teams into the
concept of APCol system, as proposed in [5]. The team is a finite set of agents.
These teams can be prescribed teams (given together with the components of the
APCol system) or free teams where only the size of the teams, i.e., the number
of agents in the team is given in advance. The notion is inspired by the concept
of team grammar systems (see [13]).

APCol systems with prescribed or with free teams work in the following
manner: at any computation step only one team is allowed to work (only one
team is active) and all of its components should perform a program in parallel.
We note that such a variant where a maximal number of components of the team
should act in parallel can also be considered.

One other extension of the concept of APCol system is associating “colour”
to the agents or, if the APCol system is with teams, to the teams. The concept is
inspired by red-green Turing machines; the idea was first presented in [5], given
in an informal manner, using only two colours, red and green.

Definition 2. An APCol system with coloured teams is a construct

Π = (O, e,A1, . . . , An, C, f,B,Bcolours, Bteams), where

– O is an alphabet; its elements are called the objects,
– e ∈ O, called the basic object,
– Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

• ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

• Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
* a → b, where a, b ∈ O, called an evolution rule,
* c ↔ d, where c, d ∈ O, called a communication rule,

• Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai,
– C is a set of labels of colours,
– f ∈ C is the final colour,
– B is a set of labels of teams,
– Bcolour is a set of pairs (Bs, ct) assigning to every team its colour, where

Bs ∈ B, ct ∈ C,
– Bteams is a set of pairs (Ai, Bs) assigning the label of team Bs ∈ B to each

agent Ai.

APCol Systems with Teams 95

Infinite computations. Due to the results of the computational power of APCol
systems, it can easily be seen that for finite computations colours and teams do
not add more, they can only be used for defining restricted classes of APCol
systems. However, this is not the case if we consider infinite computations.

We say that a string is recognized by an APCol system with coloured teams,
if starting with the string as initial string the computation is infinite and its
teams with the final colour are active in an infinite number of steps and the
teams of the other colours are active only in a finite number of steps.

Now we provide an illustrative example of APCol system with coloured
teams.

Example 1. We construct an APCol system with three teams assigned to three
different colours - red, green and orange, simulating work of streets lights con-
nected with speed radar. The green light is on the traffic light at the beginning.
If the vehicle is approaching faster than allowed, the traffic light changes to
orange and red. In the case that the vehicle stops before the traffic lights (or it
drives away while the red is on), the traffic light lights up orange and then green
again. The input string for computation is a sequence of signals coming from
speed radar. The signals are encoded into symbols in such a way that F means
fast speed over limit, S means slow speed within the limits, Z means that car
stopped and finally E which means that street is empty. The signals are encoded
and inserted into the string with given frequency. Every input string starts with
special symbol $.

The constructed APCol system

Π = ({e,E, Z, S, F, o, r, g, $, R, P}, e,
A1, A2, A3, {green, orange, red}, green,
{B1, B2, B3}, {(B1, green), (B2, orange), (B3, red)},
{(A1, B1), (A2, B2), (A3, B3)})

has three teams - one green, one orange and one red. Each team is formed from
only one agent. Agent A1 has initial configuration ge and the following programs:

1 : 〈g ↔ $; e ↔ X〉 X ∈ {E,Z, S}
2 : 〈$ ↔ g;X → e〉
The green team is active only if the current symbol is in accordance with the

speed limit or the street is empty. When the speed of the arriving vehicle is over
the speed limit, only the orange team can work.

The initial configuration of the agent A2 is oe and it executes following pro-
grams:

3 : 〈o ↔ $; e ↔ F 〉
4 : 〈$ → $;F → R〉
5 : 〈$ → $;R ↔ o〉
The agent from the orange team consumes symbol F and replaces symbol $

by R. When this symbol appears in the string, only the red team can work.
The initial configuration of the agent A3 is re and it performs the following

programs:

96 L. Ciencialová et al.

6 : 〈r ↔ R; e ↔ X〉 , X ∈ {E,F, S, Z}
7 : 〈R → R;Y → e〉 , Y ∈ {F, S}
8 : 〈R ↔ r; e → e〉
9 : 〈R → P ;K → e〉 , K ∈ {Z,E}

10 : 〈P ↔ r; e → e〉
The agent from the red team consumes symbol R and the neighbouring sym-

bol from the string. The following behaviour of the agent depends on consumed
symbol. If the symbol is F or it is S, then the agent puts to the string symbol R
and in this way it calls itself to work. In the case of symbol Z or E, (the vehicle
stopped or the street is empty) then the agent puts the symbol P to the string
and the agent from the orange team has an applicable program.

11 : 〈$ → $; o ↔ P 〉
12 : 〈$ → $;P → e〉
13 : 〈$ ↔ o; e → e〉
After executing program 13, symbol $ appears in the string and it can be

consumed by agent from the green team or the orange team. Although the
computation over a finite string is not unbounded, but one can assume that if
there is no output from the speed radar, encoder puts symbols E into the string
with a given frequency (it is similar to the endless tape of Turing machine) and
the computation can continue with executing programs of the agent from the
green team.

3 APCol Systems with Coloured Teams and Red-Green
Counter Machines

In this section we study the interconnection between red-green counter machines
and APCol systems with coloured teams. First we present a result where the
number of agents within every team is minimal, namely, one.

Theorem 1. For every red-green counter machine

CM = (m,B,Bred, Bgreen, l0, P, Tin)

we can construct an APCol system

Π = (O, e,A1, . . . , An, C,B,Bcolours, Bteams)

with teams having only one agent and being associated with two colours such that
L(Π)= {#}L(CM), where # /∈ Tin ∪ {e}.

Proof. Consider a red-green counter machine CM =(2, B,Bred, Bgreen, l0, P, Tin)
recognizing language L(CM). To every such counter machine there exists a red-
green counter machine CM ′ = (2, B ∪ {l′0}, B′

red, B
′
green, l′0, P, Tin ∪ {#}) that

recognizes language L(CM ′) = # · L(CM), where {#} ∩ Tin = ∅ and the first
instruction of CM ′ to be executed is instruction l′0 : (read(#), l0). Then it contin-
ues the computation in the same way as machine CM . We construct an APCol
system Π with coloured teams as follows: all labels from the set B ∪ Tin are

APCol Systems with Teams 97

objects of the APCol system. The content of register i is represented by the
number of copies of objects i occurring in the string. All teams have one agent
only. At the beginning of the computation only one team of agents can work -
red team of one agent that generates symbols and puts them to the beginning
of the string.

Team: B1

Colour: Red
Agent: A1 = (ee, P1, ∅)
Programs: 1 : 〈e → #1; e → O1〉 ; 6 :

〈
R© → R ;R ↔ e

〉
;

2 : 〈#1 ↔ #;O1 ↔ e〉 ; 7 :
〈

R → G©; e → G
〉
;

3 : 〈# → #2; e → $〉 ; 8 :
〈

G© → G ;G ↔ e
〉
;

4 : 〈#2 ↔ e; $ ↔ O1 〉 ; 9 :
〈

G → L©; e → X0

〉
;

5 : 〈O1 → R; e → R©〉 ; 10 :
〈

L© → L ;X0 ↔ e
〉
;

Symbol X is an element from the set {l, r, g} and it is selected as follows:
let l1 be the currently simulated instruction and let l2 be the label of the next
instruction. If l2 is a read-instruction and the colour of instruction is red (or
green) then X = r (or X = g). Otherwise X = l.

The APCol system starts its computation on string #ω. Agent A1 uses pro-
grams 1, 2, 3 and 4 to replace symbol # by substring #1#2$. Then it places
three symbols (R,G,X0) into random positions in the string.

Symbols R and G are consumed by two agents from two teams.

Team: B2

Colour: Red
Agent: A2 = (ee, P2, ∅)
Programs: 11 : 〈e ↔ R; e → e〉 ;

Team: B3

Colour: Green
Agent: A3 = (ee, P3, ∅)
Programs: 12 : 〈e ↔ G; e → e〉 ;

Let l1 be a read-instruction l1 : (read(a), l2). We construct two similar teams
of different colours to execute the first phase of the simulation of the read-
instruction. The agent from such a team checks whether the symbol currently
read from the input string is a or not. The team of the working agent has the
same colour as the previously simulated instruction.

Team: BX1 for X ∈ {r, g}
Colour: Br1 is Red, Bg1 is Green
Agent: Ax1 = (ee, Px1 , ∅)
Programs: 13 : 〈e ↔ X1; e → e〉 ;

14 : 〈X1 → L′
1; e → e〉 ;

15 : 〈L′
1 ↔ $; e ↔ y〉 ;

for all y ∈ Tin

Team: B2 or B3

Colour: B2 is Red, B3 is Green
Agent: A2 or A3; d ∈ {R,G}
Programs: 16 : 〈d ↔ L′

1; e → M1〉 ;
17 : 〈L′

1 → N1;M1 → M1〉 ;
18 : 〈M1 ↔ d;N1 ↔ e〉 ;

When agent AX1 successfully finishes its work, then agent from a team with
the same colour as l1 inserts symbol l2 into the string in the same position. In
the other case, when the read-instruction cannot be performed, agent from red
team starts to be active for an unbounded number of steps.

98 L. Ciencialová et al.

Team: BX1 for X ∈ {r, g}
Colour: Br1 is Red, Bg1 is Green
Agent: AX1

Programs: 19 : 〈$ ↔ M1; a → e〉 ; 22 : 〈$ ↔ M1; y ↔ N1〉 ; y ∈ Tin − {a};
20 : 〈M1 → Q1; e ↔ N1〉 ; 23 : 〈M1 → W ;N1 → e〉 ;
21 : 〈Q1 ↔ e;N1 → E〉 ; 24 : 〈W ↔ e; e → e〉 ;

Team: Bl1

Colour: Red or Green (depends on l1)
Agent: Al1 = (ee, Pl1 , ∅)
Programs: 25 : 〈e ↔ Q1; e → X2〉 ;

26 : 〈X1 ↔ e;Q1 → e〉 ;
X ∈ {l, r, g}

Team: B4

Colour: Red
Agent: A4

Programs: 27 : 〈e ↔ W ; e → e〉 ;
28 : 〈W → W ; e → e〉 ;

For each ADD-instruction l1 : (ADD(r), l2), there are two teams of agents
of the same colour as the ADD-instruction has.

Team: Bl1

Colour: Red or Green (depends on the instruction colour)
Agent: Al1

Programs: 29 : 〈e ↔ l1; a → e〉 ; 32 : 〈#r ↔ M1; r ↔ e〉 ;
30 : 〈l1 → L1; e → e〉 ; 33 : 〈M1 → X2; e → e〉 ;X ∈ {l, r, g}
31 : 〈L1 ↔ #r; e → r〉 ; 34 : 〈X2 ↔ e; e → e〉 ;

Team: B2 or B3

Colour: B2 is Red, B3 is Green
Agent: A2 or A3; d ∈ {R,G}
Programs: 35 : 〈d ↔ L1; e → M1〉 ;

36 : 〈M1 ↔ d;L1 → e〉 ;

The first agent consumes the corresponding symbol of the actually simulated
instruction. At the following steps, the agent rewrites the symbol l1 to L1 and
exchanges this symbol by #r. In the same time, the agent generates symbol r.
Now it is time for the second team to work. The agent from the second team
replaces symbol L1 by R or G - it depends on the colour of the instruction,
rewrites it to symbol M1 and puts the symbol M1 to the string instead of symbol
R or G. When symbol M1 appears in the string, then the agent B1 exchanges it
by two symbols - #r and r.

For SUB-instruction l1 : (SUB(r), l2, l3), there are two teams of the same
colour, too. The first team with one agent is for execution of the instruction and
the second team is preparing the symbols for further use (symbol L1 is replaced
with M1).

APCol Systems with Teams 99

Team: Bl1

Colour: Red or Green
(depends on the colour of l1)

Agent: Al1

Programs: 37 : 〈e ↔ l1; e → e〉 ;
38 : 〈l1 → L1; e → e〉 ;
39 : 〈L1 ↔ #r; e ↔ r〉 ;
40 : 〈L1 ↔ #r; e ↔ Z〉 ;

Z ∈ {#r+1, $}

Team: B2 or B3

Colour: B2 is Red, B3 is Green
Agent: A2 or A3; d ∈ {R,G}
Programs: 41 : 〈d ↔ L1; e → M1〉 ;

42 : 〈L1 ↔ N1;M1 → M1〉 ;
43 : 〈M1 ↔ d;N1 ↔ e〉 ;

The idea of simulation of SUB-instruction is that the agent consumes symbol
#r together with symbol r - if the counter r is not empty -, or with symbol #r+1

(or $) - if the counter r is empty and it is not the last counter (or it is the last
counter). According to its content, the agent generates the label of the next
instruction.

Team: Bl1

Colour: Red or Green (depends on the colour of l1)
Agent: Al1

Programs: 44 : 〈#r → #r; r → l′2〉 ; 49 : 〈#r ↔ M1;Z ↔ N1〉 ;
45 : 〈#r ↔ M1; l′2 → l′′2 〉 ; 50 : 〈M1 → Y3;N1 → e〉 ;
46 : 〈M1 → e; l′′2 → l′′′2 〉 ; 51 : 〈Y3 ↔ e; e → e〉 ;
47 : 〈e ↔ N1; l′′′2 → X2〉 ; X,Y ∈ {l, r, g};
48 : 〈N1 → e;X2 ↔ e〉 ; Z ∈ {#r+1, $}

We construct the APCol system

Π = (O, e,A1, . . . , An, C,B,Bcolours, Bteams) with:

− O = Tin ∪ {li, l′i, l′′i , l′′′i , Li, L
′
i,Mi, Ni, gi, ri, Qi|li ∈ H} ∪ {i|1 ≤ i ≤ m}

∪ {e,G,R, R©, G©, R , G , L©, L ,W, $,#1,#2, Oi},

− n = |H| + 2 × number of read-instructions + 4
− B = {Bj}, 1 ≤ j ≤ n
− C = {Red,Green}
− The sets Bcolours, Bteams and the agents A1, . . . , An

are defined in the previous part of the text.
The computation of the APCol system starts with string #w. The first steps

are done by the red team B1. Teams B2 and B3 must go through initialization
before they are used the first time during simulation of the first red or green
instruction. It can imply only a finite number of mind changes. After initializa-
tion of these two agents, the APCol system goes through the same mind changes
as the red-green counter machine CM goes through during the corresponding
computation. Therefore, if red-green counter machine CM recognizes string w,
then APCol system Π recognizes it too and vice versa. ��

100 L. Ciencialová et al.

Although the APCol system from proof of Theorem1. uses the maximally
parallel working mode, its work is limited to the use of one team at each step,
therefore, to one agent. As a matter of fact, it works sequentially.

Next we provide another simulation of the red-green counter machines with
APCol systems with teams and colours where the parallelism is used.

Theorem 2. For every red-green counter machine

CM = (m,B,Bred, Bgreen, l0, P, Tin)

we can construct an APCol system

Π = (O, e,A1, . . . , An, C,B,Bcolours, Bteams)

with two colours and with at least one team formed from two agents such that
L(Π)= {#}L(CM), where # /∈ Tin ∪ {e}.
Proof. As in proof of Theorem 1, let us consider red-green counter machine

CM = (2, B,Bred, Bgreen, l0, P, Tin)

recognizing language L(CM). To every such a red-green counter machine there
exists a red-green counter machine

CM ′ = (2, B ∪ {l′0}, B′
red, B

′
green, l′0, P, Tin ∪ {#})

that recognizes language L(CM ′) = #·L(CM), where {#}∩Tin = ∅ and the first
instruction of the machine CM ′ to be executed is instruction l′0 : (read(#), l0).
Then, it continues the computation in the same way as machine CM . We con-
struct an APCol system Π with coloured teams as follows: All labels from the
set B ∪ Tin are objects of the APCol system. The content of register i is rep-
resented by the number of copies of objects i in the string. At the beginning of
the computation only one team of agents can work - red team of one agent that
generates symbols to the beginning of the string.

Team: B1

Colour: Red
Agent: A1 = (ee, P1, ∅)
Programs: 1 : 〈e → #1; e → O1〉 ; 4 : 〈#2 ↔ e; $ ↔ O1 〉 ;

2 : 〈#1 ↔ #;O1 ↔ e〉 ; 5 : 〈O1 → l0; e → T 〉 ;
3 : 〈# → #2; e → $〉 ; 6 : 〈T → T ; l0 ↔ e〉 ;

The APCol system starts its computation on string #ω. Agent A1 uses pro-
grams 1, 2, 3 and 4 to replace symbol # by substring #1#2$. Then it places
symbol l0 into some random position in the string.

Let l1 be a read-instruction l1 : (read(a), l2). We construct a team of the
same colour as the read-instruction has. The team is formed from two agents.
Because they work as a team, either they both execute their programs or none
of them works.

APCol Systems with Teams 101

Team: Bl1

Colour: Red or Green (it depends on the colour of l1)
Agent: Aa1 = (ee, Pa1 , ∅) Agent: Ab1 = (ee, Pb1 , ∅)
Programs: 7 : 〈e ↔ l1; e → e〉 ;

8 : 〈l1 → $; e → e〉 ;
9 : 〈$ ↔ R1; e → e〉 ;

10 : 〈R1 → e; e → e〉 ;

Programs: 11 : 〈e → R1; e → e〉 ;
12 : 〈R1 ↔ $; e → x〉 ;

for all x ∈ Tin

13 : 〈$ → l2; a → e〉 ;
14 : 〈$ → W ; y → e〉 ;

for all y ∈ Tin − {a}
15 : 〈l2 ↔ e; e → e〉 ;
16 : 〈W ↔ e; e → e〉 ;

Although agent Ab1 has an applicable program it must stay inactive until
the first agent has an applicable program, too, i.e., until symbol l1 appears in
the string.

Team: B1

Colour: Red
Agent: A1

Programs: 17 : 〈e ↔ W ;T → T 〉 ;
18 : 〈W → W ;T → T 〉 ;

When the read-instruction cannot be performed, agent A1 from red team
starts working for an unbounded number of steps.

For each ADD-instruction l1 : (ADD(r), l2), there is one team of agents of
the same colour as the ADD-instruction has.

Team: Bl1

Colour: Red or Green (it depends on the colour of l1)
Agent: Aa1 = (ee, Pa1 , ∅) Agent: Ab1 = (ee, Pb1 , ∅)
Programs: 19 : 〈e ↔ l1; e → L1〉 ;

20 : 〈L1 ↔ #r; l1 → K1〉 ;
21 : 〈#r → #r;K1 → K2〉 ;
22 : 〈#r ↔ M1;K2 → K3〉 ;
23 : 〈M1 → e;K3 → e〉 ;

Programs: 24 : 〈e → r′; e → e〉 ;
25 : 〈r′ → r; e → M1〉 ;
26 : 〈M1 ↔ L1; r ↔ e〉 ;
27 : 〈L1 → l2; e → e〉 ;
28 : 〈l2 ↔ e; e → e〉 ;

The first agent consumes the symbol corresponding to the actually simulated
instruction. In the same time, the second agent starts to generate symbol r. At
the following steps, the first agent rewrites symbol l1 to L1 and exchanges this
symbol by #r. The first agent can put symbol #r back to the string only by
replacing it by symbol M1 generated by the second agent. The second agent
inserts the label of the next instruction at some random place in the string.

For SUB-instruction l1 : (SUB(r), l2, l3), there is one team of the same colour
as the instruction has.

102 L. Ciencialová et al.

Team: Bl1

Colour: Red or Green (it depends on the colour of l1)
Agent: Aa1 = (ee, Pa1 , ∅) Agent: Ab1 = (ee, Pb1 , ∅)
Programs: 29 : 〈e ↔ l1; e → L1〉 ;

30 : 〈L1 ↔ #r; l1 → K1〉 ;
31 : 〈#r → #r;K1 → K2〉 ;
32 : 〈#r ↔ M1;K2 → K2〉 ;
33 : 〈M1 → M ′

1;K2 → K2〉 ;
34 : 〈M ′

1 ↔ N1;K2 → K2〉 ;
35 : 〈N1 → e;K2 → K2〉 ;
36 : 〈e → e;K2 → e〉 ;

Programs: 37 : 〈e → M1; e → K1〉 ;
38 : 〈M1 → M1;K1 → e〉 ;
39 : 〈M1 ↔ L1; e ↔ d〉 ;

for all d ∈ {r,#r+1, $}
40 : 〈L1 → N1; r → K1〉 ;
41 : 〈L1 → N1; d′ → d′〉 ;

for all d′ ∈ {#r+1, $}
42 : 〈N1 ↔ #r;K1 → K2〉 ;
43 : 〈N1 ↔ #r; d′ → d′〉 ;
44 : 〈#r → #r;K1 → K2〉 ;
45 : 〈#r → #r;K2 → K3〉 ;
46 : 〈#r ↔ M ′

1;K3 → l2〉 ;
47 : 〈#r → l2; e → e〉 ;
48 : 〈N1 ↔ #r; d′ ↔ e〉 ;
49 : 〈#r → #r; e → K〉 ;
50 : 〈#r ↔ M ′

1;K → l3〉 ;
51 : 〈l2 ↔ e;M ′

1 → e〉 ;
52 : 〈l3 ↔ e;M ′

1 → e〉 ;

The idea of simulation of SUB-instruction is that agent consumes symbol #r

together with the right neighbouring symbol. According to content of the agent,
it generates the label of the next instruction.

We construct the APCol system

Π = (O, e,A1, . . . , An, C,Green, B,Bcolours, Bteams) with:

− O = Tin ∪ {li, Li,Mi,M
′
1, Ni, Ri|li ∈ H} ∪ {i, i′|1 ≤ i ≤ m}

∪ {e,K1,K2,K3,W, $,#1,#2},

− n = 2 × |H| + 1
− B = {Bj}, 1 ≤ j ≤ p; p = |H| + 1
− C = {Red,Green}
− The sets Bcolours, Bteams and the agents A1, . . . , An

are defined in the previous part of the text.

The computation of the APCol system starts with string $w. The first steps
are done by the red team B1. After initialization, the APCol system goes through
the same mind changes as the counter machine goes through during the corre-
sponding computation. Therefore, if red-green counter machine CM recognizes
string w, then APCol system Π recognizes string #w too, and vice versa. ��

APCol Systems with Teams 103

4 Conclusions

In this paper, we investigated the possibility of “going beyond” Turing in the
terms of APCol systems. We introduced the notion of teams of agents as a
restriction for the maximal parallelism of computation. In addition, we assigned a
colour to each team. The unbounded computation was described by the sequence
of the colours associated to the acting teams. We have shown that we can simu-
late red-green counter machines with APCol systems with two-coloured teams.
Red-green counter machines are computing devices with infinite run on finite
input that exceed the power of Turing machines.

As we mentioned in the Introduction, there are concepts in P systems theory
which are motivated and mimic the behaviour of red-green Turing machines,
for example [2]. The proofs of the theorems in Sect. 3 demonstrate that finite
communities of very simple and very small computing devices (i.e. agents and
programs) in a suitable environment and using a simple cooperation protocol
(based on colours) can produce a behaviour which may not be computable in the
sense of Turing machines. These results add further information on the behaviour
of communities of agents and ideas to constructs networks of computing agents.

Acknowledgments. This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainability (NPU II) project
IT4Innovations excellence in science - LQ1602, by SGS/13/2016 and by the National
Research, Development, and Innovation Office - NKFIH, Hungary, Grant No. K 120558.

References

1. Alhazov, A., Aman, B., Freund, R., Păun, G.: Matter and anti-matter in membrane
systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 65–76. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09704-6 7

2. Aman, B., Csuhaj-Varjú, E., Freund, R.: Red–green P automata. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) CMC 2014. LNCS,
vol. 8961, pp. 139–157. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14370-5 9

3. Cienciala, L., Ciencialová, L.: P colonies and their extensions. In: Kelemen, J.,
Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp.
158–169. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20000-
7 13

4. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: Towards on P colonies processing
strings. In: Proceedings of the BWMC 2014, Sevilla, pp. 102–118. Fénix Editora,
Sevilla (2014)

5. Csuhaj-Varjú, E.: Extensions of P colonies (extended abstract). In: Leporati, A.,
Zandron, C. (eds.) Proceedings of the CMC17, Milan, pp. 281–286. University
Milano-Bicocca & IMCS, Italy (2014)

6. Csuhaj-Varjú, E., Kelemen, J., Păun, G., Dassow, J. (eds.): Grammar Systems:
A Grammatical Approach to Distribution and Cooperation. Gordon and Breach
Science Publishers Inc., Newark (1994)

https://doi.org/10.1007/978-3-319-09704-6_7
https://doi.org/10.1007/978-3-319-09704-6_7
https://doi.org/10.1007/978-3-319-14370-5_9
https://doi.org/10.1007/978-3-319-14370-5_9
https://doi.org/10.1007/978-3-642-20000-7_13
https://doi.org/10.1007/978-3-642-20000-7_13

104 L. Ciencialová et al.

7. Kelemenová, A.: P colonies. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The
Oxford Handbook of Membrane Computing, pp. 584–593. Oxford University Press,
Oxford (2010). Chapter 23.1

8. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P colonies: a biochemically
inspired computing model. In: Workshop and Tutorial Proceedings of the Ninth
International Conference on the Simulation and Synthesis of Living Systems (Alife
IX), Boston, Mass, pp. 82–86 (2004)

9. Kelemen, J., Kelemenová, A.: A grammar-theoretic treatment of multiagent sys-
tems. Cybern. Syst. 23(6), 621–633 (1992)

10. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

11. van Leeuwen, J., Wiedermann, J.: Computation as an unbounded process. Theor.
Comput. Sci. 429, 202–212 (2012)

12. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press Inc., New York (2010)

13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vols. I–III.
Springer, Berin/Heidelberg/New York (1997)

Bi-simulation Between P Colonies
and P Systems with Multi-stable Catalysts

Erzsébet Csuhaj-Varjú1(B) and Sergey Verlan2

1 Department of Algorithms and Their Applications, Faculty of Informatics,
ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary

csuhaj@inf.elte.hu
2 Université Paris Est, LACL (EA 4219), UPEC, 94010 Créteil, France

verlan@u-pec.fr

Abstract. The general concept, called the formal framework of P sys-
tems provides a representation to study and analyze different variants
of P systems. In this paper, two well-known models, P colonies and P
systems with multi-stable catalysts are considered. We show that the
obtained representations are identical, thus both models can be related
using a bi-simulation. This fact opens new approaches for studying both
P colonies and catalytic P systems.

1 Introduction

Due to different motivations, there have been several variants of P systems intro-
duced. However, all models have some common basic features as summarized
in [5,9]. Among these characteristics we find

– a description of the initial structure or architecture (indicating the graph
relation between the compartments and any additional information as labels,
charges, etc.),

– a list of the initial multisets of objects present in each compartment at the
beginning of the computation,

– a set of rules, acting over objects and/or over the structure.

Usually, the configuration of a P system is represented by the current contents
of the compartments and the current structure of the system.

P systems work with transitions between configurations; a finite sequence of
such transitions of a P system Π starting with the initial configuration and end-
ing in some final configuration is called a computation. The final configuration
is usually given by halting.

To give a more precise description of the semantics, the following notions
(functions) were defined:

– Applicable(Π, C, δ) – the set of multisets of rules of Π applicable to the con-
figuration C, according to some derivation mode δ.

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 105–117, 2018.
https://doi.org/10.1007/978-3-319-73359-3_7

106 E. Csuhaj-Varjú and S. Verlan

– Apply(Π, C, R) – the configuration obtained by the (usually parallel) appli-
cation of the multiset of rules R to the configuration C.

– Halt(Π, C, δ) – a predicate that yields true if C is a halting configuration of
the system Π using the derivation mode δ.

– Result(Π, C) – a function giving the result of the computation of the P system
Π when the halting configuration C has been reached. Usually, this is an
integer function. However, generalizations as for example, Boolean or vector
functions can also be considered.

We note that δ, above, differs from the dissolution symbol used in some P
system models.

The transition of a P system Π according to the derivation mode δ (usually,
the maximally parallel derivation mode) is defined as follows: the system changes
from a configuration C to C′ (written as C ⇒ C′) iff

C′ = Apply(Π, C, R), for some R ∈ Applicable(Π, C, δ)

The result of the computation of a P system is usually interpreted as the
union of the results of all possible computations.

The precise interpretation of the four notions (functions) above depends on
the chosen model of P systems. The goal of works [4,5,9] was to provide a con-
crete family of P systems based on the structure of network of cells together
with a series of definitions of the functions above. The obtained model as well
as the accompanying tools and methods together are called the formal frame-
work of P systems. It has the property that most of the existing models of
P systems could be obtained by a strong bi-simulation of a restricted version
(eventually, using a simple encoding) of this formal framework with respect to
different parameters, see [10] for some examples. We recall that a simulation
of one transitional system by another one corresponds to an order relation on
corresponding equivalent states [6]. Basically, this means that a step in the sim-
ulated system corresponds to one or several steps in the simulating one. In the
case of a strong simulation, one step of the simulated system is performed using
one step in the simulating system. If two systems can simulate each other, then
we speak about bi-simulation.

In this paper, based on formal framework we provide a strong bi-simulation
between two well-known models, namely P colonies and multi-stable (purely)
catalytic P systems. P colonies are a finite collection of agents which interact with
a shared environment via their own sets of programs. Each program is a limited
number of very simple rules. Under functioning, the agents act in a maximally
parallel manner and they change their own state and exchange symbols with
the environment. Purely catalytic P systems are given with multiset rewriting
rules where each rule has occurrences of distinguished symbols called catalysts.
In the original model, catalysts cannot change, in case of multi-stable catalytic
P systems catalysts are allowed to change only to some other, distinguished
catalysts.

The bi-simulation we provide demonstrates that although the two models are
formally different, one can be used to solve problems concerning the other one.

P Colonies and P Systems with Multi-stable Catalysts 107

For example, both models are computationally complete, thus a proof for one of
the models can be “translated” to a proof for the other one.

After providing the bi-simulation and some examples, we discuss the results
and propose topics for future research.

2 Definitions and Notations

We assume that the reader is familiar with basic notions of formal language
theory and membrane computing; for further details consult [7,8].

For a finite multiset of symbols M over an alphabet V , supp(M) denotes the
set of symbols in M (the support of M) and |M | denotes its size, i.e., the total
number of its symbols. By |M |x, the number of occurrences of symbol x in M
is denoted. By V ◦ we denote the set of all finite multisets over V .

Throughout the paper, every finite multiset M is given as a string w, where
M and w have the same number of occurrences of symbol a, for each a ∈ V .

2.1 Network of Cells

In this section we provide a summarized version of the definition of a network of
cells, the class containing all networks of cells forming the structure of the formal
framework. The definitions are based on those given in [5]. This version considers
only static P systems where the membrane structure does not change under the
computation (this also includes systems with the dissolution of membranes).
We note that in [4], an extension of the formal framework to P systems with
dynamically evolving structure is proposed. However, in order to have a more
simple presentation, in this paper we will only consider the first variant. We
remark that in the case of static structures both variants coincide, although the
notation is slightly different.

Definition 1 [5]. A network of cells of degree n ≥ 1 is a construct

Π = (n, V,w, Inf,R)

where

1. n is the number of cells;
2. V is an alphabet;
3. w = (w1, . . . , wn) where wi ∈ V ◦, for all 1 ≤ i ≤ n, is the finite multiset

initially associated to cell i;
4. Inf = (Inf1, . . . , Infn) where Infi ⊆ V , for all 1 ≤ i ≤ n, is the set

of symbols occurring infinitely often in cell i (in most of the cases, only
one cell, called the environment, will contain symbols occurring with infinite
multiplicity);

108 E. Csuhaj-Varjú and S. Verlan

5. R is a finite set of rules of the form

(X → Y ;P,Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors
of multisets over V and P = (p1, . . . , pn), Q = (q1, . . . , qn), pi, qi, 1 ≤ i ≤ n
are finite sets of multisets over V . We will also use the notation

(1, x1) . . . (n, xn) → (1, y1) . . . (n, yn); [(1, p1) . . . (1, pn)]; [(1, q1) . . . (n, qn)]

for a rule (X → Y ;P,Q); moreover, if some pi or qi is an empty set or some
xi or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from
the specification of the rule.

The semantics of the above rule is as follows: objects xi from cells i are
rewritten into objects yj in cells j, 1 ≤ i, j ≤ n, if every cell k, 1 ≤ k ≤ n,
contains all multisets from pk and does not contain any multiset from qk. In
other words, the first part of the rule specifies the rewriting of symbols, the
second part of the rule specifies permitting conditions and the third part of the
rule specifies the forbidding conditions.

For a rule r of the form above, the set

{i | xi �= λ or yi �= λ or pi �= ∅ or qi �= ∅}

induces a (hypergraph) relation between the interacting cells. However, this rela-
tion does not need to give rise to a structure relation like a tree as in P systems
or a graph as in tissue P systems.

A configuration C of Π is an n-tuple of multisets over V (u1, . . . , un) satis-
fying ui ∩ Infi = ∅, 1 ≤ i ≤ n.

In the sequel, networks of cells as intermediate models will assist to establish
a bi-simulation between two variants of P systems, namely P colonies and P
systems with multi-stable catalysts.

2.2 P Colonies

Next we provide the concept of a P colony, based on the formalism given in [7].
A P colony Π = (O, e, f, C1, . . . , Cn), consists of n cells (agents) Ci,

1 ≤ i ≤ n, each of them consisting of a multiset of exactly k symbols and
an environment which consists initially of an unbounded number of copies of
a distinguished symbol e. Every cell Ci has a set of programs {pi,1, . . . , pi,ki

},
where each program pi,j consists of exactly k rules of the forms a → b (evolution
rule or internal point mutation), c ↔ d (one object exchange with the environ-
ment), or r1/r2 (priority rule, where r1 and r2 are arbitrary combinations of
point mutation and/or exchange rules).

The computation starts in the initial configuration, i.e., the n-tuple of the
initial contents of the cells. It can be performed in the maximally parallel (par)
or in the sequential (seq) mode, the computation mode is assigned to the system

P Colonies and P Systems with Multi-stable Catalysts 109

at the beginning. If no more program is applicable, then the P colony halts and
the result of the computation is collected as the number of distinguished symbols
f in the environment. The result of the computation of Π is denoted by N(Π).

We note that the result can also be defined in such a way that we consider
the number of all symbols in the environment which are different from e.

The number of cells, the maximal number of programs in a cell, and the
maximal number of rules in each program in a given P colony Π are called the
degree, the height, and the capacity of Π, respectively.

The family of sets of numbers computed in the derivation mode x for x ∈
{par, seq} by P colonies of capacity k, degree at most n ≥ 1 and height at most
h ≥ 1, without (resp. with) using priority rules in their programs, is denoted by
NPColx(k, n, h) (resp. NPColxK(k, n, h)).

Notice that a strong bi-simulation of the P colony model and the formal
framework can be given as follows.

– each rule a → b in pij becomes rij : (i, a) → (i, b);
– each rule a ↔ b in pij becomes rij : (i, a)(0, b) → (i, b)(0, a);
– each rule r1/r2 in pij becomes:

• p1ij : r1, p2ij : r2; [∅]; [{(i, a)}] if r1 is an evolution rule (a → b)
• p1ij : r1, p2ij : r2; [∅]; [{(i, a)(0, b)}] if r1 is an exchange rule (a ↔ b).

For the derivation mode, each program becomes a rule partition and then
the derivation mode requires to be maximal, but using exactly k rules from
each partition (or using all rules from a partition). In the sequential case, the
derivation mode prescribes to use only one partition (but all rules from that
partition).

Example 1 [10]. Consider the following P colony Π having 3 cells. For simplicity,
we provide only the initial multisets and the programs of the cells.

– C1 contains the initial multiset aa and the following programs: p11 : a →
b, a ↔ e, p12 : a → c, a ↔ e, p13 : b → a, e → a.

– C2 contains the initial multiset be and the following program: p21 : b ↔ e,
e → b.

– C3 contains the initial multiset ee and the following programs: p31 : e ↔
a, e ↔ b, p32 : b → f, a → b, p33 : f ↔ a, b → b.

Figure 1 shows a graphical representation of this system.
We transform this system to a network of cells Π ′ having 4 cells (numbered

from 0 to 3). Cell 0 corresponds to the environment. Cells 1, 2, 3 correspond to
the cells of Π and have the same initial contents as the corresponding agent. We
define Inf0 = {e}. System Π ′ contains the following rules:

Rules simulating programs from the first cell:

r111 : (1, a) → (1, b) r112 : (1, a)(0, e) → (1, e)(0, a)
r121 : (1, a) → (1, c) r122 : (1, a)(0, e) → (1, e)(0, a)
r131 : (1, b) → (1, a) r132 : (1, e) → (1, a)

110 E. Csuhaj-Varjú and S. Verlan

Fig. 1. The P colony from Example 1.

Rules simulating programs from the second cell:

r211 : (2, b)(0, e) → (2, e)(0, b) r212 : (2, e) → (2, b)

Rules simulating programs from the third cell:

r311 : (3, e)(0, a) → (3, a)(0, e) r312 : (3, e)(0, b) → (3, b)(0, e)
r321 : (3, b) → (3, f) r322 : (3, a) → (3, b)
r331 : (3, f)(0, a) → (3, a)(0, f) r332 : (3, b) → (3, b)

We remark that the derivation mode of P colonies groups rules corresponding
to programs, uses maximal parallelism or sequential mode, and it requires that all
rules from a group should be used. Since working with one symbol, the group r111
and r112 from the above example is equivalent to the application of a single rule
r11 : (1, aa)(0, e) → (1, be)(0, a). Hence, we obtain that a program corresponds
to a more complicated rule, and k is the size of the left-hand side (LSH) of this
rule (and equal to the right-hand side, i.e., RHS). By considering such rules, the
evolution of a P colony becomes just maximally parallel or sequential.

This consideration yields the following network of cells Π ′′ (working in
sequential or maximally-parallel manner):

r11 : (1, aa)(0, e) → (1, be)(0, a) r12 : (1, aa)(0, e) → (1, ce)(0, a)
r13 : (1, be) → (1, aa)
r21 : (2, be)(0, e) → (2, be)(0, b)
r31 : (3, ee)(0, ab) → (3, ab)(0, ee) r32 : (3, ab) → (3, fb)
r33 : (3, bf)(0, a) → (3, ab)(0, f)

Since the number of combinations of objects in an agent is finite, it can be
represented by a single symbol, a state. Furthermore, symbol e from cell 0 can
be ignored as it carries no information. This permits to deduce that a P colony
corresponds to a cooperative rewriting mechanism with the size of LHS or RHS

P Colonies and P Systems with Multi-stable Catalysts 111

at most k + 1 and with forbidding conditions (if checking rules are present).
In the next section we refine this observation by showing that the rewriting is
performed in a catalytic-like manner.

2.3 P Systems with Multi-stable Catalysts

In this section we extend the notion of a P system with catalysts to that variant
where the catalysts can have multiple states. For catalytic P systems, consult [7].

Let V and C be two disjoint alphabets, let k > 0, and let C have a partition
C = C1 ∪ · · · ∪ Cn such that 1 ≤ |Ci| ≤ k. We say that each partition is a
multi-stable catalyst and we define Period(Ci) = |Ci| the period of the catalyst
Ci, 1 ≤ i ≤ n.

In the sequel, the elements of a multi-stable catalyst Ci having period k will
be denoted by c

(j)
i , 1 ≤ j ≤ k.

A k-states multi-stable (purely) catalytic P system with n catalysts is a
construct Γ = (V,C,R,w), where V is the set of non-catalytic objects of Γ ,
C = C1 ∪ · · · ∪ Cn with catalysts Ci, having period at most k, 1 ≤ i ≤ n.

R is a finite set of rules where each rule is of the following form

c
(j)
i u → c

(t)
i v, where 1 ≤ j, t ≤ Period(Ci), 1 ≤ i ≤ n and u, v ∈ V ◦.

The initial configuration of Γ , w is a multiset over V ∪ C, with at most one
element of each multi-stable catalyst Ci, i.e., w ⊆ (V ∪ C)◦, with the condition
that

∑Period(Ci)
j=1 |w|

c
(j)
i

≤ 1, 1 ≤ i ≤ n.
Notice that by [5,10] the rules of a multi-stable catalytic P system with

multiple states can easily be represented in the formal framework as follows:

(0, c
(j)
i u) → (0, c

(t)
i v), for all c

(j)
i u → c

(t)
i v ∈ R.

As standard P systems, the k-states multi-stable (purely) catalytic P systems
Γ with n catalysts work by transitions of their configurations where the rules are
applied in the maximally parallel manner. A successful computation performed
by Γ is a finite sequence of transitions starting in its initial configuration and
ending by halting; the result of the computation is the number of non-catalytic
objects in the halting configuration. The result of the computation is denoted
by N(Γ).

3 Bi-simulation of the Two Models

In this section we demonstrate the equivalence of P colonies and multi-stable
(purely) catalytic P systems by using their representation in the above formal
framework.

We first show that any (recursively enumerable) set of numbers that can be
computed by a P colony (in the sense defined above) can be computed by a
multi-stable catalytic P system as well.

112 E. Csuhaj-Varjú and S. Verlan

Theorem 1. For any P colony Π = (O, e, w0, P1, . . . , Pn) of size (k, n, h) there
exists a h′-states multi-stable purely catalytic P system Γ = (O,C,w,R) with n
catalysts with h′ ≤ h + 1 such that N(Π) = N(Γ).

Proof. To simplify the presentation, we consider P colonies that do not contain
priority rules (checking rules), since P colonies both with and without checking
rules are computationally complete (see [7]).

According to the discussion above (see also [10]), every P colony can be
represented by the formal framework. To this goal, any program p located in cell
i is replaced by a rule of the corresponding network of cells. Let p = p1 ∪ p2,
where pc contains all the communication rules and pr contains all the rewriting
rules of p. Let lhsc(p) (resp. rhsc(p)) denote the multiset of letters of all left-
hand (resp. right-hand) sides of the communication rules; we consider the same
notation for the rewriting rules, using the index r. For simplicity, we will speak
of sum of the left-hand sides (resp. right-hand sides) of the rules in the sequel
and we will use notation +.

Since the definition of the P colony requires that if a program is used, then all
of its rules should be applied, therefore we obtain that the execution of a program
p is equivalent to the following rule given in terms of the formal framework:

(i, x)(0, y) → (i, x′)(0, y′), where (1)
x = lhsc(p) + lhsr(p), y = rhsc(p),
x′ = rhsc(p) + rhsr(p), y′ = lhsc(p).

Since in every step of the computation every cell in a P colony contains a
constant number of objects equal to its capacity k, each cell contents can be
interpreted as a number z in base k + 1 having exactly |O| bits. Alphabet O is
equal to {o1, . . . , os} and any oi (and e) can appear in any contents in at most
k copies. Thus |O| bits represent the number of occurrences of object oi in a cell
contents c. Under this interpretation, the rules of a program specify some other
number z′ equal to the value of the contents of the cell after the application
of the program. Since the number of rules in a program is exactly k, for each
number z and program p there is exactly one number z′ associated.

We remark that for a cell i having h programs there are at most h+1 different
possible configurations of the cell contents. We number these configurations from
1 to ih, where ih ≤ h + 1. Let f be a bijection between all possible values of cell
configurations and 1, . . . , ih. Thus, we can rewrite 1 as follows:

(i, c(f(z)))(0, y) → (i, c(f(z
′)))(0, y′), where (2)

y = rhsc(p), y′ = lhsc(p), 1 ≤ z, z′ ≤ ih.

We can further transform this rule as follows:

(0, c
(f(z))
i y) → (0, c

(f(z′))
i y′) (3)

It can clearly be seen that this rule corresponds to a rule of a multi-stable
(purely) catalytic P system.

P Colonies and P Systems with Multi-stable Catalysts 113

Hence, starting from the P colony Π, components of Γ can be constructed.
We first remark that object e in P colonies acts as an empty symbol, so we
replace all its occurrences by λ in the obtained catalytic rules. First, the initial
multiset of Γ is determined from the initial configuration of Π. Since every rule
c
(f(z))
i y → c

(f(z′))
i y′ of Γ correspond to the application of a program p in Π

described above, it can easily be seen that any transition from configuration
c1 to configuration c2 of Π corresponds to the application of an m-tuple of
rules in Γ , where m ≤ n. Notice that depending on the applicability of their
programs, some components may remain inactive. Since the initial multiset of
Γ contains at most n catalysts, Γ has only catalytic rules, at any computation
step as many catalytic rules are applied in parallel as possible, i.e. at most n.
Since these rules correspond to programs of pairwise different components of Π,
every computation in Γ corresponds to a computation in Π as well. Thus, it is
easy to see that the number of non-catalytic objects at halting of Γ is equal to
the number of objects in the environment of Π which are different from e at
halting. �
Example 2. Let us consider P colony Π from Example 1. We recall the corre-
sponding rules.

– C1 contains the initial multiset aa and the following programs:
p11 : a → b, a ↔ e, p12 : a → c, a ↔ e, p13 : b → a, e → a.

– C2 contains the initial multiset be and the following program:
p21 : b ↔ e, e → b.

– C3 contains the initial multiset ee and the following programs:
p31 : e ↔ a, e ↔ b, p32 : b → f, a → b, p33 : f ↔ a, b → b.

Let O = {a, b, c, e, f}, and let o1 = a, . . . , o5 = f , in this order. The different
cell contents are A = (aa, be, ce, ee, ab, bf) which correspond to numbers 00002,
01010, 01100, 02000, 00011, 010010 in base k + 1 = 6. For simplicity, let us
denote these numbers by s1, s2, s3, s4, s5, and s6, respectively.

Then by constructing the multi-stable catalytic P system we obtain the
following rules:

– Cs1
1 → Cs2

1 a, Cs1
1 → Cs3

1 a, Cs2
1 → Cs1

1 ,
– Cs2

2 → Cs2
2 b,

– Cs4
3 ab → Cs5

3 , Cs5
3 → Cs6

3 , Cs6
3 a → Cs5

3 f .

Next we show that the sets of numbers computed by multi-stable catalytic
P systems can be computed by P colonies as well.

Theorem 2. For any h-states multi-stable catalytic P system Γ = (O,C,w,R)
with n catalysts there exists a P colony Π = (O, e, w0, P1, . . . , Pn) of size (k, n, h)
such that N(Π) = N(Γ) holds.

Proof. We construct Π as follows. P colony Π has n cells and each cell i has
Period(Ci) programs. Now we will show how these programs are constructed.

114 E. Csuhaj-Varjú and S. Verlan

Consider a rule cjiu → ctiv ∈ R. We suppose that |u| = |v|. If this is not the
case, then we complement the smaller multiset by adding the needed amount of
symbols e. That is, if |u| < |v| then let u′ = u+e|v|−|u|. Suppose that u = u1 . . . us

and v = v1 . . . vs. We will construct the program pj corresponding to this rule.
It will be composed from two parts. The first part will contain communication
rules that simulate the rewriting of u to v in the above rule. The second part
contains rewriting rules that allow to complement the encoding of the catalyst
state by the contents of the cell.

In order to determine the corresponding rewriting rules we should first find
an encoding for each state of the catalyst. This encoding can be obtained as a
solution of the following integer optimization problem.

k → min,
∑

a∈O

xi,j
a = k, 1 ≤ j ≤ Period(Ci),

xi,j
a ≥ |v|a, xi,t

a ≥ |u|a, for any cjiu → ctiv ∈ R, (4)

xi,j
a ∈ N, a ∈ O, 1 ≤ i ≤ n, 1 ≤ j ≤ Period(Ci).

The inequalities state that the symbols that are sent out (resp. received in)
by the exchange rules of the P colony belong to the coding of state j (resp. t) of
the catalyst Ci.

We remark that since inequalities 4 do not impose an upper bound value
for xi,j

a , there is always a solution for this system. In case of several possible
solutions, we prefer solutions having the maximal number of symbols e.

The capacity of the P colony is the value k.
Let xi,j

a , a ∈ O, 1 ≤ j ≤ Period(Ci) be a solution of the above problem.
Let Code(cji) =

∑
a∈O axi,j

a . Let cjiu → ctiv ∈ R and let |u| = |v| = s, dj =
Code(cji)−v and dt = Code(cti)−u. Suppose that dl = dl1 . . . dlm, l ∈ {j, t}. Then

pj = (v1 ↔ u1; . . . vs ↔ us; d
j
1 → dt1; . . . d

j
m → dtm).

Now we are able to construct the colony: for every Ci, 1 ≤ i ≤ n, P colony
Π will have component Pi. The programs belonging to Pi are obtained from
the rules Cj

i u → Ct
iv, in the above described manner. Notice that any program

of Π, determined above encodes the application of the corresponding catalytic
rule, thus, the programs to be applied and the catalytic rules correspond to each
other. Since at the beginning of the computation the initial state of Γ contains
at most one element of each multi-stable catalyst and both systems apply the
maximally parallel computation, we obtain that the two systems compute the
same set of numbers. �
Example 3. To demonstrate the previous construction, we add an example.

Consider the following multi-stable catalytic P system Π = (O,C,w1, R1).

1.1 : C1
1a → C2

1bc 2.1 : C1
2 → C2

2 3.1 : C1
3 → C2

3a
1.2 : C1

1a → C3
1c 2.2 : C2

2b → C2
2 3.2 : C2

3c → C1
3b

1.3 : C2
1ac → C1

1aa 3.3 : C1
3 → C3

3

P Colonies and P Systems with Multi-stable Catalysts 115

We transform rules 1.1, 2.2 and 3.1 by adding symbol e in order to balance
the number of symbols at both sides:

1.1 : C1
1ae → C2

1bc 2.2 : C2
2b → C2

2e 3.1 : C1
3 → C2

3a

Then the corresponding minimization problem is the following:

k → min

xi,j
a + xi,j

b + xi,j
c + xi,j

e = k, 1 ≤ i, j ≤ 3

x1,1
b ≥ 1, x1,1

c ≥ 1, x1,2
a ≥ 1, x1,2

e ≥ 1,

x1,1
c ≥ 1, x1,3

a ≥ 1,

x1,1
a ≥ 1, x1,1

c ≥ 1, x1,2
a ≥ 2

x2,2
e ≥ 1, x2,2

b ≥ 1

x3,1
a ≥ 1, x3,2

e ≥ 1, x3,1
c ≥ 1, x3,2

b ≥ 1

xi,j
a ∈ N, a ∈ O, 1 ≤ i, j ≤ 3.

We can regroup inequalities by the corresponding state:

k → min

xi,j
a + xi,j

b + xi,j
c + xi,j

e = k, 1 ≤ i, j ≤ 3

x1,1
a ≥ 1, x1,1

b ≥ 1, x1,1
c ≥ 1

x1,2
a ≥ 2, x1,2

e ≥ 1

x1,3
a ≥ 1

x2,2
b ≥ 1, x2,2

e ≥ 1

x3,1
a ≥ 1, x3,1

c ≥ 1

x3,2
b ≥ 1, x3,2

e ≥ 1

xi,j
a ∈ N, a ∈ O, 1 ≤ i, j ≤ 3.

The minimal value of k is equal to 3 and one of possible solutions yields to
the following codes for cji :

x c11 c21 c31 c12 c22 c13 c23 c33
Code(x) abc aae aaa eee bee ace bee eee

We remark that catalysts C2 and C3 can be represented only using two
symbols.

The obtained P colony is shown in Fig. 2.

116 E. Csuhaj-Varjú and S. Verlan

Fig. 2. The P colony constructed in Example 3.

4 Conclusions

In this paper we have shown a strong bi-simulation between the model of P
colonies and pure multi-stable catalytic P systems. This result was obtained by
using the formal framework for P systems as an intermediate step.

As an immediate consequence of the results of this paper, it is possible to
rewrite existing results from the area of P colonies in terms of multi-stable
catalytic P systems and conversely. These investigations are topics of future
research. Another consequence is the possibility to conduct proofs in terms of
purely catalytic P systems (that tend to be simpler) and automatically transform
them to P colonies.

Furthermore, this article allows to establish the correspondence between dif-
ferent extensions of P colonies (see [3]) and particular variants of catalytic P
systems. For example, the evolving environment extension [2] corresponds to
the same multi-stable catalytic P systems, so it can be simulated by a P colony
with a greater capacity. Homogeneous P colonies [1] correspond to catalytic P
systems having same rules for all catalysts.

Other possible extensions can also be discussed. For example, non-pure cat-
alytic systems would correspond to P colonies having special rules allowing to
evolve objects by themselves in the environment. Another possibility that follows
from our constructions is to consider P colonies where the capacity is different
in each cell.

Acknowledgement. The work of E. CS-V. was supported by the National Research,
Development, and Innovation Office - NKFIH, Hungary, Grant no. K 120558.

P Colonies and P Systems with Multi-stable Catalysts 117

References

1. Cienciala, L., Ciencialová, L., Kelemenová, A.: Homogeneous P colonies. Comput.
Inform. 27(3), 481–496 (2008)

2. Ciencialová, L., Cienciala, L., Sośık, P.: P colonies with evolving environment. In:
Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS,
vol. 10105, pp. 151–164. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-54072-6 10

3. Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., Sośık, P.: P colonies. Bull. Int.
Membr. Comput. Soc. 1(2), 119–156 (2016)

4. Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., Verlan, S.: A formalization of
membrane systems with dynamically evolving structures. Int. J. Comput. Math.
90(4), 801–815 (2013)

5. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleft-
herakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007.
LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77312-2 17

6. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings
of the 2nd International Joint Conference on Artificial Intelligence, IJCAI 1971,
San Francisco, CA, USA, pp. 481–489. Morgan Kaufmann Publishers Inc. (1971)

7. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2009)

8. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vols. 1–3.
Springer, Heidelberg (1997)

9. Verlan, S.: Study of language-theoretic computational paradigms inspired by biol-
ogy. Habilitation thesis, Université Paris Est (2010)

10. Verlan, S.: Using the formal framework for P systems. In: Alhazov, A., Cojocaru,
S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013.
LNCS, vol. 8340, pp. 56–79. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54239-8 6

https://doi.org/10.1007/978-3-319-54072-6_10
https://doi.org/10.1007/978-3-319-54072-6_10
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-642-54239-8_6
https://doi.org/10.1007/978-3-642-54239-8_6

Computationally Complete Generalized
Communicating P Systems with Three Cells

Erzsébet Csuhaj-Varjú1(B) and Sergey Verlan2

1 Department of Algorithms and Their Applications, Faculty of Informatics,
ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary

csuhaj@inf.elte.hu
2 Université Paris Est, LACL (EA 4219), UPEC, 94010 Créteil, France

verlan@u-pec.fr

Abstract. Generalized communicating P systems are particular vari-
ants of networks of cells where each rule moves only two objects. In
this paper we show that GCPSs with three cells and with only join, or
only split, or only chain rules are computationally complete computing
devices. These bounds are improvements of the previous results.

1 Introduction

Purely communicating P systems are of particular interest in membrane com-
puting [9]. These membrane systems work without any change of their objects
but only with importing/exporting objects from and/or to the environment and
communicating objects between their regions. A lot of these P system variants
are computationally complete, demonstrating that rewriting can be replaced by
communication with the environment where some objects are supposed to be
found in an unbounded number of copies. This means that whenever to com-
plete a transition the P system needs more (a finite number of new) objects than
it has inside, then these objects are always available.

Generalized communicating P systems, introduced in [12] are such models,
originally with the aim of providing a common generalization of various purely
communicating models.

A generalized communicating P system, or a GCPS for short, is a tissue-like
P system where each node represents a cell and each edge is represented by a
rule. Every node contains a multiset of objects that can be communicated, i.e.,
it may move between the cells according to interaction (communication) rules.

The form of an interaction rule is (a, i)(b, j) → (a, k)(b, l) where a and b are
objects and i, j, k, l are labels identifying the input and the output cells. Such
a rule means that an object a from cell i and an object b from cell j move
synchronously (in one step) to cell k and cell l, respectively. These rules are
particularly simple, since they describe the move of only two objects.

The system is embedded in an environment, represented by cell 0, which
may have certain objects in an infinite number of copies and certain objects
only in a finite number of copies. The generalized communicating P system and
c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 118–128, 2018.
https://doi.org/10.1007/978-3-319-73359-3_8

Computationally Complete Generalized Communicating P Systems 119

the environment interact by using the communication (interaction) rules given
above, with the restriction that at every computation step only a finite number
of objects is allowed to enter in any cell from the environment.

The rules are applied in a maximally parallel manner, possibly changing the
multisets representing the contents of the cells (the configuration of the GCPS).
A computation in a GCPS is a sequence of configurations directly following
each other, starting from the initial configuration and ending in a halting con-
figuration. The result of the computation is the number of objects found in a
distinguished cell, the output cell.

Due to their simplicity and relation to other fields like the theory of Petri
nets, GCPSs have been studied in details. It has been shown that even restricted
variants of these constructs (with respect to the form of rules) are able to gen-
erate any recursively enumerable set of numbers. Furthermore, several of them
even with relatively small numbers of cells and with simple underlying hyper-
graph architectures are computationally complete [3,5–7]. It is also shown that
the maximal expressive power can also be obtained with GCPSs where the alpha-
bet of objects is a singleton [2]. Furthermore, computational completeness with
small number of cells can also be obtained if the objects of the environment are
provided step by step with a multiset generating system [1].

In the paper, we demonstrate that computational completeness of three
restricted variants, namely, GCPSs with only three cells and with only join
rules, or only split rules, or only chain rules are computationally complete. The
proofs are based on simulating the register machines [8] and by using the formal
framework of P systems [4].

2 Basic Notions

The reader is supposed to be familiar with formal language theory and membrane
computing; for further details consult [9,10].

For a finite multiset of symbols M over an alphabet V , supp(M) denotes the
set of symbols in M (the support of M) and |M | denotes the total number of
its symbols (its size). The number of occurrences of symbol x in M is denoted
by |M |x. The set of all finite multisets over V is denoted by V ◦.

Throughout the paper, every finite multiset M is presented as a string w,
where M and w have the same number of occurrences of symbol a, for each
a ∈ V . The empty multiset is denoted by λ.

A register machine [8] is a 5-tuple M = (Q,R, q0, qf , P), where Q is a finite
non-empty set, called the set of states, R = {A1, . . . , Ak}, k ≥ 1, is a set of
registers, q0 ∈ Q is the initial state, and qf ∈ Q is the final state. P is a set of
instructions of the following forms: (p,A+, q, s), where p, q, s ∈ Q, p �= qf , A ∈ R,
called an increment instruction, or (p,A−, q, s), where p, q, s ∈ Q, p �= qf , A ∈ R,
called a decrement instruction. For every p ∈ Q, (p �= qf), there is exactly one
instruction of the form either (p,A+, q, s) or (p,A−, q, s).

A configuration of a register machine M , defined above, is a (k + 1)-tuple
(q,m1, . . . ,mk), where q ∈ Q and m1, . . . ,mk are non-negative integers; q is

120 E. Csuhaj-Varjú and S. Verlan

the current state of M and m1, . . . ,mk are the current numbers stored in the
registers (the current contents of the registers or the value of the registers)
A1, . . . Ak, respectively.

A transition of the register machine consists in executing an instruction. An
increment instruction (p,A+, q, s) ∈ P is performed if M is in state p, the number
stored in register A is increased by 1, and after that M enters either state q or
state s, chosen non-deterministically. A decrement instruction (p,A−, q, s) ∈ P
is performed if M is in state p, and if the number stored in register A is positive,
then it is decreased by 1, and then M enters state q, and if the number stored
in A is 0, then the contents of A remains unchanged and M enters state s.

A register machine M = (Q,R, q0, qf , P), with k registers, given as above,
generates a non-negative integer n if starting from the initial configuration
(q0, 0, 0, . . . , 0) it enters the final configuration (qf , n, 0, . . . , 0). The set of non-
negative integers generated by M is denoted by N(M).

Next we recall the basic definitions concerning generalized communicating P
systems [12].

A generalized communicating P system (a GCPS) of degree n, where n ≥ 1,
is an (n + 4)-tuple Π = (O,E,w1, . . . , wn, R, h) where

1. O is an alphabet, called the set of objects of Π;
2. E ⊆ O; called the set of environmental objects of Π;
3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated to cell i;
4. R is a finite set of interaction rules or communication rules of the form

(a, i)(b, j) → (a, k)(b, l), where a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0
and j = 0, then {a, b} ∩ (O \ E) �= ∅; i.e., a /∈ E and/or b /∈ E;

5. h ∈ {1, . . . , n} is the output cell.

The system consists of n cells, labeled by natural numbers from 1 to n,
which contain multisets of objects over O. Initially, cell i contains multiset wi

(the initial contents of cell i is wi). An additional special cell, labeled by 0 and
called the environment is distinguished. The environment contains objects of E
in an infinite number of copies.

The cells interact by means of the rules (a, i)(b, j) → (a, k)(b, l), with a, b ∈ O
and 0 ≤ i, j, k, l ≤ n. As the result of the application of the rule, object a moves
from cell i to cell k and b moves from cell j to cell l. If two objects from the
environment move to some other cell or cells, then at least one of them must not
appear in the environment in an infinite number of copies.

A configuration of a GCPS Π, as above, is an (n + 1)-tuple (z0, z1, . . . , zn)
with z0 ∈ (O \ E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n; z0 is the multiset of objects
present in the environment in a finite number of copies, whereas, for all 1 ≤ i ≤ n,
zi is the multiset of objects present inside cell i. The initial configuration of Π
is the (n + 1)-tuple (λ,w1, . . . , wn).

Given a multiset of rules R over R and a configuration u = (z0, z1, . . . , zn) of
Π, we say that R is applicable to u if all its elements can be applied simultane-
ously to the objects of multisets z0, z1, . . . , zn such that every object is used by
at most one rule. Then, a configuration u′ of Π is obtained from a configuration
u by applying the rules of R in a non-deterministic maximally parallel manner

Computationally Complete Generalized Communicating P Systems 121

if it is obtained by applying rules of an applicable multiset R over R to u and
there is no other applicable multiset of rules R′ over R which properly contains
R and its application to u results in u′.

One such application of a multiset of rules satisfying the conditions listed
above represents a transition in Π from configuration u to configuration u′. A
transition sequence is said to be a successful generation by Π if it starts with
the initial configuration of Π and ends with a halting configurations, i.e., with
a configuration where no further transition step can be performed.

Π generates a non-negative integer n if there is a successful generation by Π
such that n is the size of the multiset of objects present inside the output cell in
the halting configuration. The set of non-negative integers generated by a GCPS
Π in this way is denoted by N(Π).

In the following we recall the notions of the possible restrictions on the
interaction rules (modulo symmetry). We distinguish the following cases, called
GCPSs with minimal interaction:

1. i = j = k �= l: the conditional-uniport-out rule (the uout rule) sends b to cell
l provided that a and b are in cell i [11];

2. i = k = l �= j: the conditional-uniport-in rule (the uin rule) brings b to cell i
provided that a is in that cell;

3. i = j, k = l, i �= k: the symport2 rule (the sym2 rule) corresponds to the
minimal symport rule [9], i.e., a and b move together from cell i to k;

4. i = l, j = k, i �= j: the antiport1 rule (the anti1 rule) corresponds to the
minimal antiport rule [9], i.e., a and b are exchanged in cells i and k;

5. i = k and i �= j, i �= l, j �= l: the presence-move rule (the presence rule)
moves the object b from cell j to l, provided that there is an object a in cell
i and i, j, l are pairwise different cells;

6. i = j, i �= k, i �= l, k �= l: the split rule sends a and b from cell i to cells k
and l, respectively;

7. k = l, i �= j, k �= i, k �= j: the join rule brings a and b together to cell k;
8. l = i, i �= j, i �= k and j �= k: the chain rule moves a from cell i to cell k while

b is moved from cell j to cell i, i.e., to the cell where a located previously;
9. i, j, k, l are pairwise different numbers: the parallel-shift rule (the shift rule)

moves a and b from two different cells to another two different cells.

NOtPk(x) denotes the set of numbers generated by generalized communi-
cating P systems with minimal interaction of degree k, k ≥ 1, and with rules
of type x, where x ∈ {uout, uin, sym2, anti1, presence, split, join, chain, shift}.
NOtP∗(x) is the notation for

⋃∞
k=1 NOtPk(x).

Generalized communicating P systems are particular variants of network of
cells, constructs introduced in [4] as a formal framework of P systems.

A network of cells of degree n ≥ 1 is a construct Π = (n,O,w, Inf,R) where

– n is the number of cells;
– O is an alphabet;
– w = (w1, . . . , wn) where wi ∈ O◦, for all 1 ≤ i ≤ n, is the finite multiset

initially associated to cell i;

122 E. Csuhaj-Varjú and S. Verlan

– Inf = (Inf1, . . . , Infn) where Infi ⊆ O, for all 1 ≤ i ≤ n, is the set of
symbols which may occur in infinitely many copies in cell i (in most of the
cases, only one cell, called the environment, may contain symbols with infinite
multiplicity);

– R is a finite set of rules of the form (X → Y ;P,Q) where X = (x1, . . . , xn),
Y = (y1, . . . , yn), xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors of multisets over O and
P = (p1, . . . , pn), Q = (q1, . . . , qn), pi, qi, 1 ≤ i ≤ n are finite sets of multisets
over O. We will also use the notation

(1, x1) . . . (n, xn) → (1, y1) . . . (n, yn) ; [(1, p1) . . . (1, pn)]; [(1, q1) . . . (n, qn)]

for a rule (X → Y ;P,Q); moreover, if some pi or qi is an empty set or some
xi or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from
the specification of the rule.

The above rule means the following: objects xi from cells i are rewritten into
objects yj in cells j, 1 ≤ i, j ≤ n, if every cell k, 1 ≤ k ≤ n, contains all multisets
from pk and does not contain any multiset from qk.

A configuration C of Π is an n-tuple of multisets (u1, . . . , un) over O where
ui ∩ Infi = ∅, 1 ≤ i ≤ n.

Networks of cells compute sets of numbers; the result of the computation
can be defined in several manners, among other by the number of objects in a
distinguished cell in a halting configuration.

It is easy to see that GCPSs are particular variants of networks of cells:
any rule (a, i)(b, j) → (a, k)(b, l) of a generalized communicating P system cor-
responds to a rule (i, a)(j, b) → (k, a)(l, b) in the corresponding network of cells.
Obviously, if the GCPS is with minimal interaction, the form of the rules in the
corresponding network of cells is modified accordingly.

Thus, without any proof, we may state that for any generalized communi-
cating P system Π = (O,E,w1, . . . , wn, R, h), 1 ≤ h ≤ n, there exists a network
of cells Π ′ = (n + 1, O,w, Inf,R) such that N(Π) = N(Π ′) and Π and Π ′

strongly simulate each other. (In the case of a strong simulation, one step of the
simulated system is performed using one step in the simulating system. If two
systems can simulate each other, then we speak about bi-simulation.) Notice
that the difference between the degree of Π and that of Π ′ is due to the fact
that in the case of networks of cells the environment is counted as a cell.

3 Main Results

In the following we present the computational completeness results concerning
generalized communicating P systems with minimal interaction. For simplicity,
throughout the paper we follow the notations used for networks of cells.

In [3] it was shown that GCPSs with 7 cells and only join rules are computa-
tionally complete. The result was improved in [5,6] to bound 4. Here we present
a further improvement.

Computationally Complete Generalized Communicating P Systems 123

Theorem 1. NOtP3(join) = NRE.

Proof. Let us consider an arbitrary register machine M = (Q,R, q0, qf , P) with
R = {A1, . . . An}, n ≥ 1, given as in Sect. 2. To prove the statement, we construct
a generalized communicating P system Π = (O,E,w1, w2, w3, R1, 2) with join
rules such that N(Π) = N(M). The proof is based on the simulation of M by
Π and conversely, i.e., by showing that for any successful generation in M there
exists a successful generation in Π and conversely such that the two generation
processes yield the same number as result.

Since for every p ∈ Q, (p �= qf), there is exactly one instruction of the form
either (p,A+, q, s) or (p,A−, q, s), the set of instructions R of M can be labeled
by the elements of Q in a one-to-one manner.

Let Q+ and Q− be the sets of labels of the increment instructions and the
decrement instructions of M , respectively.

Let us define the alphabet of objects of Π as O = Q∪R∪{p′ | p ∈ Q}∪{p̄, p1 |
p ∈ Q−} ∪ {Ci | Ai ∈ R}.

Let E = Q ∪ R ∪ {p′ | p ∈ Q+} ∪ {p1 | p ∈ Q−} ∪ {Ci | Ai ∈ R}. and
w1 = {q0}, w2 = ∅, w3 = {p̄ | p ∈ Q−}.

The set of rules R1 of Π is defined as follows.
For any instruction (p,Ai+, q, s) of M we add the following rules to R1:

p.1 : (1, p)(0, q′) → (3, pq′) p.1′ : (1, p)(0, s′) → (3, ps′)
p.2 : (3, p)(0, Ai) → (2, pAi)

For any instruction (p,Ai−, q, s) of M we add the following rules to R1:

p.1 : (1, p)(0, Ci) → (3, pCi) p.2 : (3, p)(0, p1) → (2, pp1)
p.3 : (2, p1)(3, p̄) → (0, p1p̄) p.4 : (0, p̄)(3, Ci) → (1, p̄Ci)
p.5 : (0, p̄)(1, Ci) → (2, p̄Ci) p.6 : (2, p̄)(0, q′) → (3, p̄q′)
p.7 : (1, p̄)(0, s′′) → (3, p̄s′′) p.8 : (3, s′′)(1, Ci) → (2, s′′Ci)
p.9 : (2, s′′)(0, s′) → (3, s′′s′) p.10 : (3, s′′)(2, Ci) → (0, s′′Ci)

We also add the following rules to R1:

p.p′ : (3, p′)(0, p) → (1, p′p), for all p ∈ Q

p.q : (2, p)(1, q′) → (0, pq′), for all p, q ∈ Q

ci.1 : (3, Ci)(2, Ai) → (1, CiA)
ci.2 : (2, Ci)(1, Ai) → (0, CiAi)

Now we prove that Π simulates M . For this, we show how the rules given
above simulate the instructions of M . We first note that the simulation of any
instruction of M starts with a symbol p in cell 1 which the corresponds to a state
of M and no other symbol corresponding to a state of M can be found in this
cell. However, cell 1 contains symbol p̄ for any state p of M which appears in a

124 E. Csuhaj-Varjú and S. Verlan

decrement instruction. During the simulation of any instruction of M , Π cannot
start the simulation of some other instruction, thus the simulating phases do not
interfere. The contents of register Ai is represented by the number of symbols
Ai appearing in the cells, symbol Ci assists the simulation of the decrement of
register Ai, 1 ≤ i ≤ n.

We start with the simulation of instructions of the form (p,Ai+, q, s). After
applying rule p.1 or p.1′, respectively, symbols q′ or s′ move to cell 3. Then by
applying rules p.2 and p.p′ in parallel, cell 2 will contain one more symbol Ai.
In the next step, by applying rules q.q′ or s.s′ and p.q or p.s, respectively, in
parallel, symbol q or s enters cell 1 and q′ or s′ leave the system. Thus, the
simulation of (p,Ai+, q, s) has completed.

The simulation of instruction (p,Ai−, q, s) is as follows: First rule p.1 is
applied and thus p and Ci enter cell 3. Then, depending on whether or not cell
2 contains at least one copy of Ai (register Ai is empty or not) the following
rules are applied. If cell 2 contains at least one Ai, then by rule ci.1 symbols Ci

and Ai move to cell 1. Meantime, by applying rule p.2, and then p.3 and p.5,
p̄ enters cell 2 and Ci moves from cell 1 to cell 2. Then, by rule ci.2, symbols
Ai and Ci leave the system and by rule p.6 symbol p̄ introduces a copy of q′ in
cell 3. Then, by performing rule q.q′ and p.q, symbol q arrives in cell 1, and the
simulation of the next instruction (if q �= qf) may start. If cell 2 does not contain
any copy of Ai, then Ci in cell 3 introduces from the environment the copy of p̄
that was sent out the system before. Then by rules p.7, p.8 and p.9 symbols s′′

and s′ move to cell 3 and Ci moves to cell 2. After that, by executing rule p.10,
symbols Ci and s′′ leave the system, meantime by rules s.s′ and p.s symbol s
moves to cell 1, and thus the simulation of the instruction ends.

The reader may notice that the rules can be performed only in the manner
described above. This implies that any computation in M can correctly be sim-
ulated by Π and N(M) = N(Π) holds. Since N(M) is a recursively enumerable
set of numbers, the statement of the theorem holds.

Next we show that three cells (and the environment) are sufficient to obtain
computational completeness in case of GCPSs with only split rules. In [3] it
was shown that GCPSs with 9 cells and only split rules are computationally
complete, in [5,6] the bound was improved to 5.

Theorem 2. NOtP3(split) = NRE.

Proof. Let us consider an arbitrary register machine M = (Q,R, q0, qf , P) with
R = {A1, . . . An}, n ≥ 1, given as in Sect. 2. To prove the statement, we construct
a generalized communicating P system Π = (O,E,w1, w2, w3, R1, 2) with split
rules such that N(Π) = N(M). The proof is based on the simulation of M by
Π and vice versa, i.e., by showing that for any successful generation in M there
exists a successful generation in Π and conversely such that the two generation
processes yield the same number as result.

Let Q+ and Q− be the sets of labels of the increment instructions and the
decrement instructions of M , respectively.

Computationally Complete Generalized Communicating P Systems 125

Let us define the alphabet of objects of Π as O = Q ∪ R ∪ {p′ | p ∈ Q} ∪
{p̄, p1, p2, p3 | p ∈ Q−} ∪ {Si | Ai ∈ R} ∪ {Z,Z ′, Z ′′}.

Let E = Q ∪ R ∪ {Z ′′} and w1 = {q0} ∪ {Si | Ai ∈ R} ∪ {p1 | p ∈ Q−},
w2 = {Z}, w3 = {Z ′} ∪ {q′ | q ∈ Q} ∪ {p2, p3 | p ∈ Q−}.

The set of rules R1 of Π is defined as follows.
For any instruction (p,Ai+, q, s) of M we add the following rules to R1:

p.1 : (1, pSi) → (0, Si)(3, p) p.2 : (0, SiAi) → (1, Si)(2, Ai)
p.3 : (3, pq′) → (2, p)(0, q′) p.3′ : (3, ps′) → (2, p)(0, s′)
p.4 : (0, qq′) → (3, q′)(1, q) p.4′ : (0, ss′) → (3, s′)(1, s)
p.5 : (2, pZ) → (0, p)(3, Z) p.6 : (3, ZZ ′) → (2, Z)(0, Z ′)
p.7 : (0, Z ′Z ′′) → (3, Z ′)(1, Z ′′)

For any instruction (p,Ai−, q, s) of M we add the following rules to R1:

p.1 : (1, pp1) → (3, p)(2, p1) p.2 : (2, p1Ai) → (3, p1)(0, Ai)
p.3 : (3, pp2) → (0, p)(2, p2) p.4 : (3, p1p3) → (1, p1)(2, p3)
p.5 : (2, p1p2) → (1, p1)(0, p2) p.6 : (0, p2s) → (3, p2)(1, s)
p.7 : (2, p2p3) → (0, p3)(3, p2) p.8 : (0, p3q) → (3, p3)(1, q)

Now we prove that any instruction of M can be simulated by a set of rules
of Π. We first note that during the functioning of Π there is no more than one
symbol p ∈ Q in cell 1, and the simulation of any instruction of M can only
start if an element of Q is in cell 1.

We start with instructions of the form (p,Ai+, q, s). The simulations starts
with p in cell 1. Then rule p.1 is applied, after that p.2 and p.3 or p2 and p.3′

are performed in parallel. At the end of this phase of the computation, p and
one more copy of Ai will be in cell 2 and q′ or s′, respectively, moves to the
environment. At the next moment, either rules p.4 and p.5 or p.4′ and p.5 are
applied in parallel, resulting in symbols q or s in cell 1, p being sent out to the
environment, and Z is in cell 3. Now, the simulation of a new instruction of
M can start. However, two more rules are still applied in the next two steps,
p.6 and p.7. These two rules provide Z in cell 2 and Z ′ in cell 3; these symbols
will be needed later. Notice that the application of these rules does not interfere
with the simulation of any instruction of M , thus they can be performed. We
also note that during the computation symbols Z ′′ are accumulated in cell 1,
but this fact does not influence the simulation. It is easy to see that the rules
can be performed only in the order above and that this computation phase of Π
corresponds to the execution of instruction (p,Ai+, q, s).

We continue with the simulation of instructions of the form (p,Ai−, q, s). At
the first step, rule p.1 is applied which moves symbol p to cell 3 and symbol p1
to cell 2. If cell 2 contains at least one copy of Ai, then in the next step rules
p.2 and p.3 can be applied in parallel, otherwise only p.3 is applicable. Suppose
that cell 2 contains at least one Ai. Then one copy of Ai and p leave the system,
p1 moves to cell 3 and p2 to cell 2. After then rules p.4, p.7, and p.8 are applied,

126 E. Csuhaj-Varjú and S. Verlan

thus p1 and symbol q enter cell 1, and symbols p2 and p3 return to their original
location, namely to cell 3. If cell 2 does not contain any copy of Ai, then after
applying rule p.3, rules p.5 and p.6 are applied one after each other. Thus, the
zero check has been simulated since cell 1 contains symbols s and p1 and cell 3
has p2 and p3. The reader may easily see that these rules of Π can be applied
only in the order given above. This means that they simulate the instruction
(p,Ai−, q, s) of Π and only that.

By the previous considerations, we obtain that any computation in M can
correctly be simulated by Π and conversely and N(M) = N(Π) holds. Since
N(M) is a recursively enumerable set of numbers, the statement of the theorem
is valid.

As in the previous cases, generalized communicating P systems with three
cells and with only chain rules are computationally complete computing devices.
In [3] computational completeness was proved, however no size bound was pre-
sented.

Theorem 3. NOtP3(chain) = NRE.

Proof. Let us consider an arbitrary register machine M = (Q,R, q0, qf , P) with
R = {A1, . . . An}, n ≥ 1, given as in Sect. 2. To prove the statement, we construct
a generalized communicating P system Π = (O,E,w1, w2, w3, R1, 2) with chain
rules such that N(M) = N(Π). The proof is based on the bisimulation of M
by Π, i.e., by showing that for any successful generation in M there exists a
successful generation in Π and conversely such that the two generation processes
yield the same number as result.

Let Q+ and Q− be the sets of labels of the increment instructions and the
decrement instructions of M , respectively.

Let us define the alphabet of objects of Π as
O = Q ∪ R ∪ {p′, p̄ | p ∈ Q} ∪ {p1, p2 | p ∈ Q−} ∪ {Z}.

Let E = Q∪R∪{p′ | p ∈ Q+}∪{p1, p2 | p ∈ Q−}∪{Z} and w1 = {q0}∪{p̄ |
p ∈ Q}, w2 = ∅, w3 = ∅.

The set of rules R1 of Π is defined as follows.
For any rule (p,Ai+, q, s) of M we add the following rules to R1:

p.1 : (1, p)(0, p′) → (2, p)(1, p′) p.2 : (1, p′)(0, q) → (2, p′)(1, q)
p.2′ : (1, p′)(0, s) → (2, p′)(1, s) p.3 : (2, p)(0, Ai) → (3, p)(2, Ai)
p.4 : (3, p)(2, p′) → (0, p)(3, p′) p.5 : (0, Z)(3, p′) → (1, Z)(0, p′)

For any rule (p,Ai−, q, s) of M we add the following rules to R1:

p.1 : (1, p)(0, p1) → (3, p)(1, p1) p.2 : (1, p1)(0, p2) → (2, p1)(1, p2)
p.3 : (3, p)(2, Ai) → (0, p)(3, Ai) p.4 : (3, Ai)(2, p1) → (0, Ai)(3, p1)
p.5 : (3, p)(1, p2) → (0, p)(3, p2) p.6 : (0, q)(3, p1) → (2, q)(0, p1)
p.7 : (3, p2)(1, s̄) → (0, p)(3, s̄) p.8 : (1, p2)(2, q) → (0, p2)(1, q)
p.9 : (0, s)(3, s̄) → (1, s)(0, s̄) p.10 : (0, s̄)(2, p1) → (1, s̄)(0, p1)

Computationally Complete Generalized Communicating P Systems 127

We show that any instruction of M can be simulated by applying rules of
Π, and conversely, any successful computation in Π corresponds to a successful
computation in M . We note that as in the proofs of the previous theorems, cell
1 contains at most one symbol that corresponds to a state of M .

Let us consider instructions of M of the form (p,Ai+, q, s). To simulate this
instruction, first rule p.1 and after that either rule p.2 or rule p.2′ is applied
(depending on whether the next state of M will be q or s) in parallel with
rule p.3. Then, the number of symbols Ai in cell 2 is increased by one and the
symbol representing the new state, i.e., q or s enters cell 1. (During the work of
Π, cell 2 will store symbols Ai which represent the contents of the corresponding
register.) Still we need to remove p and p′ from the system. This is done by rules
p.4 and p.5. Notice that the simulation of a new instruction may start before
the application of rules p.4 and p.5, but these two rules do not interfere with
any such computation phase, so these two rules may be applied. It can also be
seen that the above rules, performed in the above order, simulate instruction
(p,Ai+, q, s) and only that. We note that symbols Z are accumulated in cell 1,
but the presence of these symbols in cell 1 has no effect on the simulation.

Now let us consider instructions of the form (p,Ai−, q, s). First rule p.1 is
applied and then either rules p.2 and p.3 are applied in parallel (cell 2 contains at
least one Ai) or only rule p.2 can be applied (cell 2 does not contain Ai). Suppose
that cell 2 has at least one symbol Ai. Then, by applying rules p.4, p.5, p.6 and
p.8 in this order, one copy of Ai leaves the system, symbol q enters the system
and finally moves to cell 1, and assistant symbols p1 and p2 leave the systems as
well. No other rule can be applied during this phase of the computation. Suppose
now that cell 2 does not contain any occurrence of Ai. Then, only rule p.2 can be
applied. Then, p is present in cell 3, p1 in cell 2, and p2 in cell 1. After then, rules
p.5, p.7, p.9 and p.10 are applied in this order. As a result, s enters the system
and enters cell 1, assistant symbols p1 and p2 leave the system, and the further
assistant symbol s̄ enters cell 1 and remains there. The presence of this symbol
in cell 1 and the fact that rule p.10 is applied after s reaches its destination, cell
1, do not affect the computation.

We may easily notice that the rules can be performed only in the manner
described above. Thus, any computation in M can correctly be simulated by Π
and conversely, and N(M) = N(Π) holds. Since N(M) is a recursively enumer-
able set of numbers, the theorem holds.

4 Conclusion

In this paper we proved that GCPSs with three cells and with only join, or only
split, or only chain rules are computationally complete computing devices. These
bounds are improvements of the previous results. We guess that the number of
cells can also be significantly reduced (to 3) in the case of other variants of
generalized communicating P systems with minimal interaction, we plan inves-
tigations in this direction in the near future.

128 E. Csuhaj-Varjú and S. Verlan

Acknowledgment. The work of E. CS-V. was supported by the National Research,
Development, and Innovation Office - NKFIH, Hungary, Grant no. K 120558.

References

1. Balaskó, Á., Csuhaj-Varjú, E., Vaszil, G.: Dynamically changing environment for
generalized communicating P systems. In: Rozenberg, G., Salomaa, A., Sempere,
J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 92–105. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-28475-0 7

2. Csuhaj-Varjú, E., Vaszil, G., Verlan, S.: On generalized communicating P systems
with one symbol. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 160–174. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-18123-8 14

3. Csuhaj-Varjú, E., Verlan, S.: On generalized communicating P systems with min-
imal interaction rules. Theor. Comput. Sci. 412, 124–135 (2011)

4. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleft-
herakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007.
LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77312-2 17

5. Krishna, S.N., Gheorghe, M., Dragomir, C.: Some classes of generalised commu-
nicating P systems and simple kernel P systems. Technical report, CS-12-03, Uni-
versity of Sheffield (2013). http://staffwww.dcs.shef.ac.uk/people/M.Gheorghe/
research/paperlist.html

6. Krishna, S.N., Gheorghe, M., Dragomir, C.: Some classes of generalised commu-
nicating P systems and simple kernel P systems. In: Bonizzoni, P., Brattka, V.,
Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 284–293. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39053-1 33

7. Krishna, S.N., Gheorghe, M., Ipate, F., Csuhaj-Varjú, E., Ceterchi, R.: Further
results on generalised communicating P systems. Theor. Comput. Sci. (2017, in
press). https://doi.org/10.1016/j.tcs.2017.05.020

8. Minsky, M.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)
9. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3.

Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5
11. Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Computational com-

pleteness of tissue P systems with conditional uniport. In: Hoogeboom, H.J., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 521–535.
Springer, Heidelberg (2006). https://doi.org/10.1007/11963516 33

12. Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized communi-
cating P systems. Theor. Comput. Sci. 404(1–2), 170–184 (2008)

https://doi.org/10.1007/978-3-319-28475-0_7
https://doi.org/10.1007/978-3-642-18123-8_14
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
http://staffwww.dcs.shef.ac.uk/people/M.Gheorghe/research/paperlist.html
http://staffwww.dcs.shef.ac.uk/people/M.Gheorghe/research/paperlist.html
https://doi.org/10.1007/978-3-642-39053-1_33
https://doi.org/10.1016/j.tcs.2017.05.020
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/11963516_33

Event-Based Life in a Nutshell: How Evaluation
of Individual Life Cycles Can Reveal Statistical

Inferences Using Action-Accumulating
P Systems

Thomas Hinze1(B) and Benjamin Förster2

1 Department of Bioinformatics, Friedrich Schiller University Jena,
Ernst-Abbe-Platz 2, 07743 Jena, Germany

thomas.hinze@uni-jena.de
2 Institute of Computer Science, Brandenburg University of Technology,

Postfach 10 13 44, 03013 Cottbus, Germany
benjamin.foerster@b-tu.de

Abstract. A sequence of perceivable events or recorded observations
over time commonly witnesses the life cycle of an individual at a macro-
scopic perspective. In case of a human being, birth could make the start-
ing point followed by successive maturation along with increase of indi-
vidual skills. Further events like foundation of a family, stages of career,
coping with dramatic diseases, loss of abilities, and finally the death
mark crucial events within a human life cycle. Even beyond biology,
life cycles are present in various contexts, for instance when elucidating
the quality of durable technical products such as cars. Social scenarios
or games with several players incorporate consideration of life cycles as
well. Provided by logfiles or monitoring reports, dedicated accumulation
of events facilitates identification of life cycles whose statistical analysis
promises valuable insights. To this end, we formalise an individual by
a set of attributes. Based on its underlying initial assignment (“genetic
potential”), events can update corresponding attribute values. Further-
more, events might create new individuals but also kill or merge existing
ones. For modelling and evaluation of life cycles, we introduce action-
accumulating P systems inspired by dealing with events which in turn
result in actions at the system’s level. Two case studies demonstrate
practical benefits from our approach: We explore the survival of pieces
in the board game Mensch ärgere Dich nicht (Man, don’t get annoyed
– a variation of Ludo). Secondly, we interpret pseudonymised data from
1,108 students who attended our university course Introduction to Pro-
gramming stating main factors to improve the final grade with emphasis
on the effect of passing a line of exercises and practical training offers.

1 Introduction and Background

In the end of 2016, the total amount of electronically stored data worldwide sums
up to approximately 8 ·1021 bytes (8 zettabytes) based on the overall capacity of
c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 129–150, 2018.
https://doi.org/10.1007/978-3-319-73359-3_9

130 T. Hinze and B. Förster

sold storage media taking into account an average period of usage by five years
[9]. Complementary studies conclude that this pool of data doubles every two
up to three years which implies an exponential growth [14]. No doubt, generation
and presence of processible data emerged as an essential part of modern life and
for sciences in many facets during the last decades. Terms like data mining
[13], big data [6,7], knowledge retrieval [1,5], or machine learning [16,25] reflect
this development. Interestingly, a variety of different sources and contexts exists
in which data have been produced. On the one hand, human activities in the
internet, especially in social networks, newsgroups, or online services, originate
a plethora of abundant data streams. On the other hand, more and more data
come into existence by measurement, technical cognition, smart devices, and
monitoring. It is said that one minute of autonomous driving induces more than
10 gigabytes [4].

It seems that the tremendous acceleration in throughput is closely connected
with shortening the period of time in which new media, new tools, and new
techniques for processing of corresponding data become established [23]. For the
early mankind, it took more than 100, 000 years to form spoken natural languages
for individual communication. Handwriting dates back for nearly 7, 000 years,
while printing is available for more than 500 years now. Afterwards, the periods
noticeably diminish: Around 120 years ago, the telephone was invented. Mobile
phones needed less than 10 years to outperform the conventional telephone in use.
The internet gave a further acceleration. First-generation social media platforms
reduced its introductory phase to 5 years. Meanwhile, messenger applications
have already found widespread practice after two years. What stands out is
that each new innovation entails more and more recorded data accompanying
everybody’s life.

From a perspective exclusively focussing on data tracks, a typical human life
consists of a sequence of events at different points in time in which every event
contributes an additional record of data. In the long term, effects initiated by
these events can accumulate in an appropriate manner. The underlying processes
gradually imply the formation of a personality with an individual setting of skills,
capabilities, properties, and qualities. Coinciding with a basic law of dialectics,
quantitative change leads to qualitative change: A simple example is given by
students attending a university course. During the course, they receive knowledge
within the regular lectures. From time to time, taken as data-producing events,
they submit solutions to mandatory or optional exercises whose degree of success
becomes individually evaluated together with a feedback. After a certain period
of training, most of the students possess new or extended abilities related to the
topics of the course at various levels of quality, see Fig. 1.

In more general terms, the life cycle of an individual can be abstractly
expressed by a temporal sequence of events in which each event might slightly
modify one or more attributes. We assume that every individual is equipped
with quantifiable attributes which stand for dedicated skills or qualities. For a
majority of events, an update or reset of corresponding attribute values in a spe-
cific subset of individuals is sufficient in order to describe the underlying effect.
But in some cases, an event affects the existence of individuals under study. To

Event-Based Life in a Nutshell 131

exercise6 examinationexercise5exercise4exercise3exercise2exercise1test

+1
0

attribute values

initial setting of

+1
10

+9
5

+3
0

+1
2

+1
0

E34F
physics

2014

0
25
60
80

individual with

life cycles of individuals affected by events over time − update of credits

+3
+1

2
+5

final evaluation

+4
+3

+9
+1

+1
2

+4

+2
+1

2
+1

2
+0

+5
+8

+1
1

+2

+3
+1

2
+1

2

+0

sedulousness
talent
experience
credits

enrolled since

pseudonym
subject

passed failed

Fig. 1. Students attending a university course constitute individuals attached with
attributes such as subject or credits. Initial attribute values symbolise the personal
potential together with classifiable identity information. During the semester, several
tests and exercises act as events at certain points in time. Events are able to update
some attributes for a selection of students. Some students join the course late, others
leave prematurely. Finally, the students can be classified according to an evaluation of
their attribute values. The temporal evolution of attribute values opens employment
of statistical analysis techniques.

this end, we distinguish several types of events whose effects enlarge or reduce
the population of individuals in a dynamical manner. Event-based creation of
a new individual enables scenarios in which controlled (re)production of indi-
viduals over time forms an essential feature. Attribute values of new individuals
can be either cloned from present ones or alternatively set from scratch. In the
opposite sense, an event might result in killing a specific subset of individuals
from the population. Moreover, it appears to be helpful to have at hand a type
of event able to merge two previously separate individuals into one individual
whose attribute values arise from its precursors in a freely configurable way.

We start with a given multiset of individuals, each of them independently
equipped with initial attribute values assuming that all individuals comprise
the same composition of attributes. Additionally, we employ a set of events in
which each event is characterised by its point in time, its type and necessary
parameters and arithmetic functions in order to formalise its effect. A global
clock controls progression of time. Processing of events follows the chronological
order. Concurrent events are allowed iff they are independent from each other
or they are confluent meaning that the final outcome of their effects remain the
same. In the course of processing the events, the evolution of individuals and
their specific attribute values gets permanently recorded at the granularity of a

132 T. Hinze and B. Förster

global clock tick. Based on this cumulative record, final evaluations as a part of
the overall system might give new insights into behavioural patterns and their
laws. Due to its principle of operation, we name the resulting framework action-
accumulating P systems aimed at practical exploration of life cycles in various
contexts but apart from pure theoretical aspects covered by temporal logics of
actions [10,19] or related formalisms. Instead, our contribution is dedicated to
learn more about crucial indicators and indications responsible for clustering [17]
or distribution of qualitative factors, their correlations and significance within a
dynamical population of individuals. In consequence, this can lead to optimised
and efficient behavioural strategies.

Within a large pool of comparable life cycles, statistical methods might allow
identification of significant patterns able to substantiate prognoses and infer-
ences. Social and medical sciences frequently practise this idea preferably by
questionnaires or behavioural experiments acting in the role of events [8,22].
Mainly inspired by this concept, our paper presents a way to utilise the frame-
work of P systems in order to capture event-based life cycles for a dynamically
managed multiset of attributed individuals together with purposive instruments
for evaluation and hypothesis tests. Due to the algebraic nature of all relevant
components and due to the fact that clusters of individuals with similar quali-
ties constitute virtual membranes, we have an intuitive relation to the field of
membrane computing. To our best knowledge, this is the first attempt to do
so. Please note that an individual’s membership in a membrane following the
classical intention of membrane computing can be managed by a corresponding
attribute as well without any loss of information or expressiveness.

Exploration of event-based life cycles is not restricted to studies in systems
biology, medicine, and social sciences [12]. Modern technical products like cars
or computers exhibit a high degree of inherent complexity. Commonly, they con-
sist of numerous assembled components which in turn have been put together
from subcomponents up to the level of elementary parts. Industry and customers
are interested in getting detailed statistical information about durability of the
entire product and about the resilience of components and parts on their own. As
a result, the failure rate of a technical product over time can be obtained based
on a representative sample [21]. Typically, the corresponding curve resembles
the shape of a bathtub [26]: Shortly after putting into operation, some products
fail at an early stage. For a long subsequent period, the failure rate remains low.
Finally, failures agglomerate due to ascending wearout and worse connectivity
between components. Having all relevant parameters at hand, questions like this
can be answered: Which components form improvable bottlenecks? Is there any
evidence for planned obsolescence [11]? From a practical point of view, underly-
ing data represented by a pool of individuals together with temporally staggered
events have been made available by logfiles or monitoring reports in tabular form
ready for import and analysis. Using action-accumulating P systems, we open
the potential of multisets in terms of membrane computing to a beneficial field
of applications focusing on data mining.

Event-Based Life in a Nutshell 133

When addressing related work, it makes sense to take into consideration dif-
ferent aspects from adjacent fields of research. Basically, our approach adopts
some ideas from the object-oriented paradigm of programming [20]. Here, individ-
uals called objects carry attributes able to get modified using dedicated methods.
Objects can be created and destroyed. Indeed, this paradigm was invented to
facilitate abstract modelling of real things for processing on a computer. Never-
theless, objects are typically managed as addressable entities instead of multisets.
Event-based simulation by means of a queue of events is a well-known technique
[2]. In contrast to our approach, events on their own produce further events in
the future to keep the system running. Within the world of P systems, a loose
relation to blotting P systems [15] and population P systems [3,18] becomes
visible due to the consideration of individuals and groups of individuals form-
ing populations. While migration between areas and membranes together with
communication among individuals is mainly focussed in population P systems,
we emphasise the notion of attributes and events. We are aware of the fact that
a setting of attribute values can be interpreted as a location or position referred
to a graph-based or nested membrane structure but we believe that attributes
are more flexible and more intuitive for our purpose of application.

In Sect. 2, we familiarise the reader with the formal definition of action-
accumulating P systems together with all required prerequisites. Hereafter, two
case studies selected from different application scenarios demonstrate its prac-
tical use. First, as an introductory example, the popular board game “Mensch
ärgere Dich nicht” (Man, don’t get annoyed, a variation of Ludo) is taken under
examination in Sect. 3. Survival, lifetime, and success of pieces running over the
board follow specific distributions to be obtained. It is of interest whether a more
protective/defensive or a more propulsive strategy offers higher chances to win.
The second case study introduced in Sect. 4 is dedicated to our teaching expe-
riences within the university course “Introduction to Programming” attended
by 1,108 students from 2012 to 2016. We identify factors and training strategies
suitable for improving the final grade. A final discussion concludes benefits and
challenges raising open questions for future work.

2 Action-Accumulating P Systems

Formal Prerequisites

Let A and B be arbitrary sets, ∅ the empty set, N the set of natural numbers
including zero and R the set of real numbers. A and B are disjoint (share no
common elements) iff A ∩ B = ∅. The Cartesian product A × B = {(a, b) | a ∈
A ∧ b ∈ B} collects all tuples from A and B. For A × A, we write A2 for short.
A Cartesian product might result from more than two sets formalised by
n-tuples:

n

X
i=1

Ai = {(a1, . . . , an) | a1 ∈ A1 ∧ . . . ∧ an ∈ An}

134 T. Hinze and B. Förster

The term card(A), also written as |A|, denotes the number of elements in A
(cardinality). ℘(A) symbolises the power set of A containing all 2|A| subsets of
A as elements. A multiset over A is a mapping F : A −→ N ∪ {+∞}. Mul-
tisets in general can be written as an elementwise enumeration of the form
{(a1,F(a1)), (a2,F(a2)), . . .} since ∀(a, b1), (a, b2) ∈ F : b1 = b2. A multiset
can also be specified by unordered enumeration of multiple elements like for
instance {a, a, b, a, b} instead of {(a, 3), (b, 2)}. The support supp(F) ⊆ A of F
is defined by supp(F) = {a ∈ A | F(a) > 0}. A multiset F over A is said to be
empty iff ∀a ∈ A : F(a) = 0. The cardinality |F| of F over A is |F| =

∑

a∈A

F(a).

Let F and G be multisets. It holds F ⊆ G iff supp(F) ⊆ supp(G) ∧ ∀f ∈
supp(F) : (F(f) ≤ G(f)). Respectively, F ⊂ G iff supp(F) ⊆ supp(G) ∧ ∃f ∈
supp(F) : (F(f)<G(f)). F and G are equal, written as F =G, iff F ⊆G ∧G ⊆ F .

The multiset union F ∪ G is defined by
F ∪ G = {(a, h) | a ∈ supp(F) ∪ supp(G) ∧ h = max (F(a),G(a))},
the multiset intersection F ∩ G by
F ∩ G = {(a, h) | a ∈ supp(F) ∩ supp(G) ∧ h = min (F(a),G(a))},
the multiset sum F � G by
F � G = {(a, h) | a ∈ supp(F) ∪ supp(G) ∧ h = F(a) + G(a)},
and the multiset difference F � G by
F � G = {(a, h) | a ∈ supp(F) ∪ supp(G) ∧ h = max (F(a) − G(a), 0)}.

Definition of Systems Components

Let a domain be an arbitrary non-empty set. An action-accumulating P system
Π� is a construct

Π� = (C, n,D1, . . . , Dn, I, R,E,m, S1, . . . , Sm, s1, . . . , sm)

with its components
C ⊆ N . domain of points in time (global clock)
n ∈ N \ {0} . number of distinct attributes
Di with i = 1, . . . , n .domain of attribute i

I :
n

X
i=1

Di −→ N ∪ {+∞}

final multiset of initial individuals in which each individual is rep-
resented by the n-tuple of its initial attribute values in conjunction
with the number of copies of the individual.

R set of actions available for events (see details in the next subsection)

E ⊆ C × ℘

((
n

X
i=1

Di

)

× (N ∪ {+∞})

)

× R

final set of events. Each event is described by its point in time ∈ C
followed by the multiset of affected individuals which is a subset
of all individuals currently available within the system. Finally, a
rule from R expresses the action initiated by the event.

Event-Based Life in a Nutshell 135

m ∈ N \ {0} .number of response functions
Si with i = 1, . . . ,m . domain of response i

si :

(
n

X
i=1

Di −→ N ∪ {+∞}
)

× C −→ Si with i = 1, . . . ,m

response function si. Each response function provides an output
of the system taking into account the whole cumulative record
tracing the evolution of individuals over time starting with the
initial setting I up to the point in time in which all events from
E have been processed and the corresponding actions are done.
A typical response function might include statistical analysis.

Systems Behaviour and Available Types of Actions

The systems behaviour aims at tracing of the individuals together with their
attribute values. In order to enable subsequent statistical analysis and interpre-
tation of behavioural patterns, we emphasise the formulation of an algebraic
framework able to have at hand the entire systems configuration record com-
prising the life cycles of all individuals together with the temporal progression
of their attribute values. To do so, we define a transition function

Q :

⎛

⎝
n

X
i=1

Di

⎞

⎠ × (N ∪ {+∞}) × N −→
⎛

⎝
n

X
i=1

Di

⎞

⎠ × (N ∪ {+∞})

whose function value collects all individuals (including multiple copies) with
their attribute values available in the system at time t. Along with the evolution
of the system, Q(t+1) is obtained from Q(t) taking into account all events from
E occurring at time t with t ∈ C. Initially, we set

Q(0) = I

In case there is no event in E at time t, a non-modifying transition is carried out
which results in Q(t + 1) = Q(t). For all other cases, the transition from Q(t)
to Q(t + 1) needs to evaluate all events in E defined at time t. We distinguish
different types of events which imply specific actions to perform the transition.
Since each event from E comes with an action taken from the set R of available
actions, we list the corresponding behaviour.

Let (t,P, r) ∈ E be an event at time t ∈ C affecting a multiset of individuals

captured by P ⊆
⎛

⎝
n

X
i=1

Di

⎞

⎠ × (N ∪ {+∞}) and initiating an action r ∈ R, we

specify the action types modify, merge, create, kill, and clone as follows:

136 T. Hinze and B. Förster

r = modify (f1, . . . , fn)

modifies the attribute values of all individuals from P using the update
functions fi : D1 × . . .×Dn −→ Di whereas i = 1, . . . , n. Technically, the
transition first removes those individuals from Q(t) whose attribute val-
ues have to be renewed followed by addition of corresponding individuals
with the updated attribute values:

Q(t + 1) = Q(t) � V � W with
V = {v ∈ P | (t,P, modify(f1, . . . , fn)) ∈ E}

W = {((f1(a1, . . . , an), . . . , fn(a1, . . . , an)), μ) | ((a1, . . . , an), μ)∈V}

Attention must be paid to the fact that several modify actions might
take place simultaneously. In order to maintain a deterministic systems
behaviour, we require a confluent course in which the sequence of process-
ing the events does not matter. Formally, let (t,P1, modify(f1, . . . , fn))
and (t,P2, modify(g1, . . . , gn)) two concurrent events. It must hold either
P1 ∩ P2 = ∅ (disjoint individuals) or f1(g1) = g1(f1), . . . , fn(gn) = gn(fn)
for all individuals in P1 ∩ P2.

r = merge(f1, . . . , fn)

removes all individuals in P and adds one new individual whose initial
attribute values are composed from its ancestors in P using the recom-
bination functions fi : (D1 × . . . × Dn)|P| −→ Di whereas i = 1, . . . , n.

Q(t + 1) = Q(t) � V � W with
V = {v ∈ P | (t,P, merge(f1, . . . , fn)) ∈ E}

W = {((f1(a1,1, . . . , a|P|,n), . . . , fn(a1,1, . . . , a|P|,n)), 1)}

Analogously to modify actions, merge actions can influence each other
and among others if they run simultaneously. To overcome this ambi-
guity, we technically process merge actions after concurrent modify
actions. Furthermore, simultaneous merge actions are required to be
independent from each other or confluent to each other. Formally, let
(t,P1, merge(f1, . . . , fn)) and (t,P2, merge(g1, . . . , gn)) be two concur-
rent events. It must hold either P1 ∩ P2 = ∅ (disjoint individuals) or
f1(g1) = g1(f1), . . . , fn(gn) = gn(fn) for all individuals in P1 ∩ P2.

r = create(a1, . . . , an)

creates a new individual with initial attribute values a1 ∈ D1, . . . , an ∈
Dn and adds this individual to the population.

Q(t + 1) = Q(t) � {((a1, . . . , an), 1)}

A create action cannot interact with other types of action.

Event-Based Life in a Nutshell 137

r = kill

removes all individuals in P from the population.

Q(t + 1) = Q(t) � P

A kill action does not influence the resulting composition of the popu-
lation if other actions occur at the same time.

r = clone

duplicates each individual from P with its attribute values.

Q(t + 1) = Q(t) � P

It might happen that a clone action interferes with one or more modify
or merge actions at the same time. To avoid nondeterminism, we state
that clone actions get always executed after modify and merge actions.

In order to finalise the system’s description, we still need to mention its
response expressed by m freely definable response functions. In this context,
we initiate response domains S1 to Sm capturing all of the system’s potential
outputs. Based on that, each response function si (i = 1, . . . , m) is allowed to
access the entire record Q(0),Q(1),Q(2), . . . ,Q(τ) of individuals present in the
system over time whereas τ marks the temporally last event in E. Formulation of
response functions might include statistical tests and/or some dedicated reason-
ing. Hence, their formal description within application scenarios might become
rather extensive.

3 Board Game “Mensch ärgere Dich Nicht”

For more than 100 years, people worldwide enjoy the board game “Mensch ärgere
Dich nicht” [24], a variation of the English Ludo developed in Germany following
the notion of a cross and circle game. Its most popular version is made for four
players. Here, the board consists of a directed ring forming a cross with 40 places,
see Fig. 2. Every 10th place serves as a starting position for a player. Directly in
front of each starting place is a junction to four consecutive goal places (“safe
heaven”) of the player according to the starting place. Each player controls four
pieces of the same colour. His task is to maneuver all own pieces through the
whole cross and place them afterwards inside the safe heaven. The winner is the
player who succeeds in placing all of his pieces in the safe heaven before the
competitors do. Remaining players continue in a way to successively complete
the game on their own. The last one loses the game. The four players act in a
cyclic order: black, yellow, green, red. Every player features four pieces initially
not in the game but placed outside. The players throw a six-sided dice one after
the other. At the beginning and in a situation when all own pieces are outside
the game, the player is allowed to throw the dice up to three times. As soon as
the dice shows 6 dots, the player sets one of his outside pieces into the game

138 T. Hinze and B. Förster

Fig. 2. Excerpt of the sample game course after 120 dice throws (upper left configura-
tion of the board). The yellow player sets a new piece (y3) into the game and moves
it 5 places forward. In the next step, piece g2 controlled by the green player reaches
the place occupied by piece r4 which in turn is taken out of the game. Dice throws
along with decisions of the player on which piece to move result in corresponding events
depicted informally and in its formal notation. (Color figure online)

at the starting position and throws the dice again. After throwing the dice, the
player is obliged to move one of his pieces in the game forward along the places
by the exact number of dots on top of the dice. If the destination place of a move
is occupied by a piece of his own, the move is not allowed. In case it is occupied
by an opponent’s piece, this one is taken out of the game and has to start the
circle anew. Each player is free in choice to select among his pieces to move but
two constraints have to be fulfilled: (1) The starting position has to be cleared
up with highest priority if there are own pieces outside the game. (2) In case, a
piece of another player can be taken out of the game, it is mandatory to do so.
After finalising the whole ring, each piece enters its safe heaven. Pieces are not
allowed to pass each other inside the safe heaven.

We utilise the toy example “Mensch ärgere Dich nicht” in order to illus-
trate descriptive and evaluative capabilities of action-accumulating P systems.
Based on the common rules of the game together with a comprehensive set of

Event-Based Life in a Nutshell 139

monitoring data from a typical game course, we formulate the system

Π� = (C, 2,D1,D2, I, R,E, 4, S1, s1, S2, s2, S3, s3, S4, s4)

with its components:

C = {0, . . . , 360}
Each time the dice is thrown, the global clock performs a tick increment-
ing the point in time. The sample game ends after 360 time steps.

D1 = {b1, b2, b3, b4, y1, y2, y3, y4, g1, g2, g3, g4, r1, r2, r3, r4}
We distinguish a total amount of 16 individual pieces assigned to four
players by colour. b1 to b4 stand for black pieces, r1 to r4 for red, y1 to
y4 for yellow, and g1 to g4 for green.

D2 = {0, . . . , 44}
This attribute symbolises the place occupied by a piece. 0 marks the
position outside the game. Inside the ring, the places have been consec-
utively enumerated from the individual piece’s starting position 1 up to
40. Values between 41 and 44 identify places within each player’s safe
heaven.

I = ∅
The game starts with an empty population. Pieces act as individuals.
Once a piece is set into the game, the corresponding individual gets
created. As soon as a piece is taken out of the game, its life cycle finishes.
Pieces within the safe heaven remain in the population for the rest of
the game course.

R = {create(piece, 1) | piece ∈ D1} ∪
{modify(a1, a2 + d) | d ∈ {1, . . . , 6}} ∪ {kill}

Piece’s life cycles might be affected by three types of actions: Individuals
enter the game by create setting the name of the piece and its starting
place 1 as attribute values. Moreover, a move of a piece is reflected by
modify in which the value of its second attribute a2 gets increased by
the number d shown on top of the dice.

E = {(0, ∅, create(b1, 1)),
(1, {((b1, 1), 1)}, modify(a1, a2 + 3)),
(6, ∅, create(g1, 1)),
(7, {((g1, 1), 1)}, modify(a1, a2 + 2)),
(11, {((b1, 4), 1)}, modify(a1, a2 + 1)),
(15, {((g1, 3), 1)}, modify(a1, a2 + 2)),

...
(120, ∅, create(y3, 1)),

140 T. Hinze and B. Förster

(121, {((y3, 1), 1)}, modify(a1, a2 + 5)),
(122, {((g2, 16), 1)}, modify(a1, a2 + 5)),
(122, {((r4, 11), 1)}, kill),

...
(357, {((b4, 36), 1)}, modify(a1, a2 + 2)),
(358, {((g3, 4), 1)}, modify(a1, a2 + 5)),
(359, {((b4, 38), 1)}, modify(a1, a2 + 3)) }
Our sample game course comprises |E| = 379 events in total. In 32 cases,
a piece is taken out of the game by kill.

Before finalisation of system’s specification by four response domains S1 to S4

and dedicated response functions s1 to s4 for evaluation of the game, we illustrate
the system’s behaviour by means of the transition function over time. Inspired by
the idea to attract more interest in the overall game course, the players follow
different strategies. Red acts in a highly propulsive manner forcing one piece
to run the ring as fast as possible while its further pieces reside outside the
game or near the starting place. A more moderate but still propulsive strategy
is exhibited by the yellow player who avoids setting its top piece onto places
with a high risk of danger. The strategy of the black player is dominated by a
defensive but present style of action. Keeping many pieces inside the game and
close to each other, this strategy aims at mutual protection of pieces. In contrast
to all others, the green “infant” player moves its pieces in a more or less naive
way without any visible strategy.

By evolution of the transition function Q processing the events from E, we
obtain the configuration of the game successively for all points in time:

Q(0) = ∅
Q(6) = Q(5) = Q(4) = Q(3) = Q(2) = Q(1) = {((b1, 1), 1)}
Q(7) = {((b1, 4), 1), ((g1, 1), 1)}
Q(8) = {((b1, 4), 1), ((g1, 3), 1)}

...
Q(120) = {((b1, 5), 1), ((b2, 25), 1), ((b3, 6), 1), ((y1, 44), 1), ((y2, 2), 1), ((g1, 6), 1),

((g2, 16), 1), ((g3, 4), 1), ((r1, 44), 1), ((r3, 3), 1), ((r4, 11), 1)}...
Q(360) = {((b1, 42), 1), ((b2, 43), 1), ((b3, 44), 1), ((b4, 41), 1), . . . , ((r4, 41), 1)}

Evaluation 1: Identification of the ranking among all players

Having the transition function at hand, we can figure out the ranking of all
players in the game. The ranking is determined by the point in time in which
the last piece of a player enters its safe heaven. To this end, we formulate all
necessary constraints to express the corresponding response function:

Event-Based Life in a Nutshell 141

Fig. 3. Board game “Mensch ärgere Dich nicht”, condensed representation of evalua-
tion results. Upper left part: final configuration of the game captured by Q(360) and
ranking of the players. Part A: frequency of entering safe heavens during the game
corresponding to evaluation 2. Part B: frequency of taking out figures during the game
(evaluation 3). Part C: distribution of lifetimes for taken pieces (evaluation 4). (Color
figure online)

S1 = C

s1 : {b, y, g, r} −→ S1

s1 = {(b, tb), (y, ty), (g, tg), (r, tr) |
∃tb ∈ C.∀p ∈ {b1, b2, b3, b4}.[((p, z), 1) ∈ Q(tb) ∧ (z > 40) ∧ ((p, z), 1) �∈ Q(tb − 1)] ∨
∃ty ∈ C.∀p ∈ {y1, y2, y3, y4}.[((p, z), 1) ∈ Q(ty) ∧ (z > 40) ∧ ((p, z), 1) �∈ Q(ty − 1)] ∨
∃tg ∈ C.∀p ∈ {g1, g2, g3, g4}.[((p, z), 1) ∈ Q(tg) ∧ (z > 40) ∧ ((p, z), 1) �∈ Q(tg − 1)] ∨
∃tr ∈ C.∀p ∈ {r1, r2, r3, r4}.[((p, z), 1) ∈ Q(tr) ∧ (z > 40) ∧ ((p, z), 1) �∈ Q(tr − 1)]}

We obtain s1 = {(b, 360), (y, 355), (r, 291)}. Thus, the red player was the win-
ner followed by the yellow and then by the black player. The green player lost
the game since he failed in placing all of his pieces in the save heaven. The
ranking gives evidence to hypothesise that a highly propulsive strategy could
be a promising way. Indeed, after performing an amount of 10 games, the most
propulsive player succeeded in winning 8 times. A defensive strategy commonly
prevents the player from losing the game but also from the winner state.

Evaluation 2: Frequency of entering safe heavens during the game

In this evaluation, we would like to answer the question about the distribution
of arrivals of the pieces in the safe heavens during the game course. Obviously,
from the beginning of the game it needs a certain amount of steps before the first

142 T. Hinze and B. Förster

piece reaches its final destination. The response function denoted as a multiset
(allowed to be written as a set containing multiple copies of elements) reads as
follows:

S2 = N

s2 : {p0, . . . , p360} −→ S2

s2 = {penter | ∃enter ∈ C . ∃y, z ∈ D2 . ∃x ∈ D1 .[((x, y), 1) ∈ Q(enter) ∧ (y > 40) ∧
((x, z), 1) ∈ Q(enter − 1) ∧ (z ≤ 40) ∧ ∀t ∈ C with (t > enter) . [((x, α), 1) ∈ Q(t)]]}

Altogether, 14 out of 16 pieces in total finally reside inside one of the safe heavens.
Response function s2 = {p96, p99, p199, p220, p244, p253, p259, p291, p309, p316,
p347, p349, p355, p360} identifies all points in time in which a piece enters a safe
heaven. It turns out that the majority of pieces arrives during the second half of
the game course with the highest frequency in the last quarter. Figure 3A shows
a more condensed view of the frequency distribution.

Evaluation 3: Frequency of killing during the game

In this study, we would like to know in which phase of the game most pieces get
killed. To this end, we elaborate a distribution of the according frequencies over
the game course resulting in the response function denoted as a multiset:

S3 = N

s3 : {p0, . . . , p360} −→ S3

s3 = {pend | ∃begin ∈ C . ∃end ∈ C . ∃y ∈ D2 . ∃z ∈ D2 . ∃x ∈ D1 .

[((x, y), 1) ∈ Q(begin) ∧ ((x, y), 1) �∈ Q(begin − 1) ∧ ((x, z), 1) ∈ Q(end) ∧
((x, z), 1) �∈ Q(end + 1) ∧ (y > 0) ∧ (y ≤ 40) ∧ (z > 0) ∧ (z ≤ 40) ∧ (z ≥ y) ∧
(∀w ∈ {begin, . . . , end} . [((x, α), 1) ∈ Q(w) ∧ (α > 0) ∧ (α ≤ 40)])]}

This evaluation categorises the life cycles of pieces whose lifetime terminates
before the end of the game. For this purpose, the trace of prematurely killed
individuals through the transition function has to be identified. Obviously, the
life of a piece begins when set into the game. Prior to this point in time indicated
by begin, the piece is not present. The death of this piece (taking out of the
game) also occurs at a certain point in time called end . In between, the piece
must persist without any interruption. Additionally, we require that the life cycle
of a piece ends within the ring (places 1 to 40). After processing the evaluation,
we obtain: s3 = {p36, p56, p58, p59, p73, p81, p93, p99, p121, p127, p128, p135, p137,
p157, p158, p165, p166, p171, p180, p181, p189, p192, p210, p219, p223, p224, p248, p264,
p277, p280, p295, p304}. In total, 32 pieces get killed during the game. It stands
out that pieces lose their life most frequently around half of the game. Within
the first fifth and within the last fifth of the game, merely few pieces are taken.
Figure 3B subsumes the underlying distribution in condensed form.

Event-Based Life in a Nutshell 143

Evaluation 4: Lifetime distribution of killed pieces

In addition to evaluation 3, we focus on the distribution of age reached by those
pieces killed during the game. This lifetime distribution resembles the shape of a
bathtub in many real-world scenarios since a number of individuals dies shortly
after birth while most individuals survive for a long time before they die as well.
In our study, the lifetime distribution results from following response function
denoted as a multiset by enumeration of its (multiple) elements:

S4 = N

s4 : {p0, . . . , p360} −→ S4

s4 = {pend−begin | ∃begin ∈ C . ∃end ∈ C . ∃y ∈ D2 . ∃z ∈ D2 . ∃x ∈ D1 .

[((x, y), 1) ∈ Q(begin) ∧ ((x, y), 1) �∈ Q(begin − 1) ∧ ((x, z), 1) ∈ Q(end) ∧
((x, z), 1) �∈ Q(end + 1) ∧ (y > 0) ∧ (y ≤ 40) ∧ (z > 0) ∧ (z ≤ 40) ∧ (z ≥ y) ∧
(∀w ∈ {begin, . . . , end} . [((x, α), 1) ∈ Q(w) ∧ (α > 0) ∧ (α ≤ 40)])]}

Analogously to evaluation 3, for each piece x the time point of “birth” has
been identified by begin and the time point of “killing” by end , respectively.
Moreover, we select those individuals taken inside the ring which means that
their attribute value for the place must be between 1 and 40. Furthermore, we
demand that every piece permanently exists from its birth to its death without
any interruption. The outcome discloses the desired lifetime distribution taking
into account all 32 prematurely killed pieces: s4 = {p4, p5, p6, p8, p9, p11,
p14, p15, p16, p17, p33, p34, p37, p37, p38, p38, p39, p40, p41, p44, p52, p54, p55,
p56, p57, p61, p69, p72, p74, p79, p80, p94}. In contrast to the bathtub-shape, we
observe three instead of two peaks due to the fact that pieces preferably get killed
near the starting places of opponent players. For a more condensed illustrative
representation of the lifetime distribution, see Fig. 3C.

4 University Course “Introduction to Programming”

A basic knowledge in computer programming and software development belongs
to essential skills in many disciplines of engineering, natural, and life sciences.
Thus, university courses addressing an introduction to programming using a
popular programming language like Java have been regularly offered at more
than 100 public universities in Germany. In this case study, we analyse the one-
semester course held by us eight times within the period from autumn 2012 to
summer 2016 having sole responsibility. In total, 1108 students attended this
course from which 808 finally got graded. Each student participating in this
course represents an individual whose life cycle indicates 10 consecutive phases
of the course passed over 18 weeks. After the initial enrolment at the begin-
ning of the semester, two lectures per week take place flanked by exercises and
practical trainings in small groups. Approximately every two weeks, a written
report with solutions and self-made source code to diverse tasks needs to be
submitted whereas an annotated feedback about success (passed/failed) is given

144 T. Hinze and B. Förster

Fig. 4. Summary of evaluations for our one-semester university course “Introduction
to Programming” held eight times from autumn 2012 to summer 2016. A: phases of the
course, B: overall distribution of grades, C: effect of passing all exercises and additional
bonus training, D: frequency of phases in which course was left prematurely

afterwards. Altogether, six separate submissions according to the topics of exer-
cises are planned from which at least five have to be passed to finalise the course.
In addition, around midterm a rated written test is carried out in which up to
30 scores can be reached. At the end of the lecture period, the students can
take part in an optional programming contest for gaining an additional bonus
of up to five scores if appropriate. At last, the final written exam is mandatory
to graduate from the course. Here, up to 70 scores are available. Based on the
individual number of scores in total (0, . . . , 105) in conjunction with the num-
ber of passed exercise submissions (0, . . . , 6), the final grade has been assigned.
To this end, according to the common German classification system, the grades
ordered from best to worst cover 1.0, 1.3 (excellent level), 1.7, 2.0, 2.3 (good),
2.7, 3.0, 3.3 (satisfactory), 3.7, 4.0 (fair), and 5.0 (fail). Beyond various informal
and subjective quality indicators, a cumulative statistical evaluation taking into
account pseudonymised quantifiable data from the participating students can
support a comparison between different course offers among competing univer-
sities or departments. Having at hand the underlying recorded data organised
into the structure of events associated with the predefined phases of the course,
we create the corresponding action-accumulating P system as follows:

Event-Based Life in a Nutshell 145

Π� = (C, 11,D1, . . . , D11, I, R,E, 3, S1, s1, S2, s2, S3, s3)

with its components:
C = {0, . . . , 10}

Points in time reflecting the consecutive phases of the course such as
0: enrolment; 1, 2: submission to exercise one and two; 3: midterm test,
4, 5, 6, 7: submission to exercise three, four, five, and six; 8: optional pro-
gramming contest for additional bonus; 9: final examination and grade.

D1 = ({A, . . . ,Z} ∪ {0, . . . , 9})∗

Finite sequence of characters acting as pseudonym that identifies an indi-
vidual. It uniquely results from the student’s ID along with an indicator
of the semester in which the course was attended (like summer term
2016) and a random number. A pseudonym is allowed to be empty.

D2 = D3 = D4 = D5 = D6 = D7 = {0, 1}
For each exercise with report submission in ascending order, the corre-
sponding attribute indicates either passed (1) or failed/skipped (0).

D8 = {0, . . . , 30}
Number of scores reached in the midterm test.

D9 = {0, . . . , 5}
Number of scores reached in the optional programming contest (addi-
tional bonus).

D10 = {0, . . . , 70}
Number of scores reached in the final examination.

D11 = {1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, 3.3, 3.7, 4.0, 5.0} ∪ {∞}
Range of grades. The auxiliary symbol ∞ stands for no grade.

I = {((326C638, 0, 0, 0, 0, 0, 0, 0, 0, 0,∞), 1), . . . ,
((2F56771, 0, 0, 0, 0, 0, 0, 0, 0, 0,∞), 1)}
Multiset of enrolled student’s individuals, each at the begin of the course.

R = {create(d1, . . . , d11) | d1 ∈ D1 ∧ . . . ∧ d11 ∈ D11} ∪ {kill} ∪ {clone} ∪
{modify(d1, d2 + e1, . . . , d7 + e6, z, d9 + b, p, g) | e1 ∈ D2 ∧ . . . ∧ e6 ∈ D7 ∧

z ∈ D8 ∧ b ∈ D9 ∧ s ∈ D10 ∧ g ∈ D11)} ∪
{merge(⊗

d1 with
(d1, . . . , d11) ∈ P

d1,
∑

d2 with
(d1, . . . , d11) ∈ P

d2, . . . ,
∑

d7 with
(d1, . . . , d11) ∈ P

d7, 0, 0, 0,∞)}

146 T. Hinze and B. Förster

Events of type create enable addition of individuals joining the course
late. By means of modify, the numerical attributes might get updated
after each phase of the course. Individuals who leave the course pre-
maturely imply kill events. The merge event allows for unification of
individuals representing the same student attending the course more
than once in a line of semesters. Here, ⊗ symbolises successive concate-
nation of underlying pseudonymous character strings. Events of type
clone have been induced when a student continues the course after
interruption one or more semesters later. In this case, the partial ful-
filment of selected course phases can be approved by maintaining the
corresponding attribute values.

E = {(1, {((342D5B8, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∞), 1)}, modify(d1, d2 + 1, d3, . . . , d11)),
...

(9, {((3356B8, d2, . . . , d10, ∞), 1) | di ∈ Di ∧ i = 2, . . . , 10}, modify(d1, . . . ,

d10, 1.7))}
The entire set of events consists of 7, 219 entries resulting from eight
editions of the course.

Based on the aforementioned Π� components, the transition function Q is deter-
mined revealing all system’s configurations from Q(0) to Q(10). Now, we turn
to three evaluation studies suitable to shed light on the course attractiveness for
students and a potential for improvement of grades.

Evaluation 1: Overall distribution of grades

For gaining the overall distribution of grades, we define at first an auxiliary index
function g : {1, . . . , 11} −→ D11 \ {∞} with g(1) = 1.0, g(2) = 1.3, g(3) = 1.7,
g(4) = 2.0, g(5) = 2.3, g(6) = 2.7, g(7) = 3.0, g(8) = 3.3, g(9) = 3.7, g(10) = 4.0,
and g(11) = 5.0. Using this function, we can denote the response function s1
representing a multiset whose elements may appear in multiple copies:

S1 = N

s1 : D11 \ {∞} −→ S1

s1 = {g(i) | ∃x ∈ D1 . ∃d2 ∈ D2 . . . ∃d10 ∈ D10 . ∃grade ∈ D11 \ {∞} . ∃i ∈ {1, . . . , 11} .

[(((x, d2, . . . , d10, grade), 1) ∈ Q(10)) ∧ (grade = g(i)) ∧
(

7∑
k=2

dk ≥ 5

)
]}

The evaluation result discloses the distribution of grades whose shape resembles
a bell according to a Gaussian curve of distribution which is typical for the spread
of talents, diligence, and motivation. The outcome of s1 in detail reads: s1 =
{(5.0, 66), (4.0, 78), (3.7, 83), (3.3, 130), (3.0, 108), (2.7, 75), (2.3, 76), (2.0, 66),
(1.7, 59), (1.3, 36), (1.0, 31)}. As a consequence, 742 out of 808 attendees – which
is approximately 91.8% – taking part in the final examination successfully passed
the course but merely 67 students (ca. 8.3%) graduated with an excellent mark.
For a graphical illustration, see Fig. 4B. The overall average grade is:

Event-Based Life in a Nutshell 147

avg =

11∑

i=1

g(i) · s1(g(i))

|s1| ≈ 2.96

Evaluation 2: Impact of extensive training

It seems to be obvious that achievement of the best possible grade is closely
related with the amount of practical training regardless of intrinsic factors like
talent. Now, we disclose the impact of passing all six exercises and the optional
programming contest for additional bonus. To this end, we divide the pool of
individuals into three disjoint groups such that the first one (secondary index
1) contains all students passed the minimum number of five exercises without
any significant additional bonus. The second group (2) comprises all students
managed to finalise all six exercises, and the third group (3) in addition attained
three or more bonus credits in the optional programming contest. We make use
of the same auxiliary index function g introduced in the previous evaluation.

S2,1 = N

s2,1 : D11 \ {∞} −→ S2,1

s2,1 = {g(i) | ∃x ∈ D1 . ∃d2 ∈ D2 . . . ∃d10 ∈ D10 . ∃grade ∈ D11 \ {∞} . ∃i ∈ {1, . . . , 11} .

[(((x, d2, . . . , d10, grade), 1) ∈ Q(10)) ∧ (grade = g(i)) ∧
(

7∑
k=2

dk = 5

)
∧ (d9 ≤ 2)]}

S2,2 = N

s2,2 : D11 \ {∞} −→ S2,2

s2,2 = {g(i) | ∃x ∈ D1 . ∃d2 ∈ D2 . . . ∃d10 ∈ D10 . ∃grade ∈ D11 \ {∞} . ∃i ∈ {1, . . . , 11} .

[(((x, d2, . . . , d10, grade), 1) ∈ Q(10)) ∧ (grade = g(i)) ∧
(

7∑
k=2

dk = 6

)
∧ (d9 ≤ 2)]}

S2,3 = N

s2,3 : D11 \ {∞} −→ S2,3

s2,3 = {g(i) | ∃x ∈ D1 . ∃d2 ∈ D2 . . . ∃d10 ∈ D10 . ∃grade ∈ D11 \ {∞} . ∃i ∈ {1, . . . , 11} .

[(((x, d2, . . . , d10, grade), 1) ∈ Q(10)) ∧ (grade = g(i)) ∧
(

7∑
k=2

dk ≥ 5

)
∧ (d9 > 2)]}

It clearly turns out that the frequency of better grades increases with more prac-
tical training. Figure 4C subsumes the outcome. Corresponding average grades

for the groups k = 1, 2, 3 by avgk =

11∑

i=1
g(i)·s2,k(g(i))

|s2,k| constitute avg1 ≈ 3.32,
avg2 ≈ 2.75, avg3 ≈ 1.92 which results roughly spoken in a tremendous improve-
ment of two stages from one group to the next one. Training matters.

Evaluation 3: Phase in which course was left prematurely

From 1,108 students in total, 808 got graded which implies a difference of exactly
300 individuals who left the course prematurely. In this study, we want to clarify

148 T. Hinze and B. Förster

in which phase this predominantly happens in order to propose adequate coun-
teractions and stimuli. Formally, for each relevant phase of the course we accu-
mulate the number of students dropping out directly afterwards by s3.

S3 = N

s3 : {p1, . . . , p8} −→ S3

s3 = {pt | ∃t ∈ C . ∀i ∈ {1, . . . , 10} . [∃hi ∈ Di+1] . [(((x, h1, . . . , h10), 1) ∈ Q(t)) ∧
(h10 = ∞) ∧ (ht > 0) ∧ (∀τ ∈ {t + 1, . . . , 9} . [(((x, l2, . . . , l11), 1) ∈ Q(τ)) ∧ (lτ = 0)])]}

Figure 4D shows the resulting distribution. By detailed inspection of s3 =
{(p1, 134), (p2, 23), (p3, 6), (p4, 52), (p5, 14), (p6, 6), (p7, 1), (p8, 64)} it becomes
visible that 134 students enrolled but were absent from the beginning. 52 stu-
dents left after the midterm test, and 64 students passed enough exercises but
did not take part in the final examination. The number of students leaving the
course in between is negligible.

5 Conclusions

Our concept of action-accumulating P systems is mainly motivated by interdisci-
plinary applications in data mining, data science, and information retrieval which
benefits from the growing availability of logfiles and time-stamped data records.
Gaining insights into hidden laws of life cycles and generalised behavioural pat-
terns within complex systems exclusively from observed events promises a fas-
cinating field opened for membrane computing. Particularly, the combination
of multiset-based modelling with evaluation techniques incorporating predicate
logic turns out to be an exploitably powerful tool to cope with descriptive and
inferential statistics for bridging empirical knowledge with scientific expressive-
ness. We believe that our proposed framework of action-accumulating P systems
provides a flexible toolbox able to be efficiently adopted in numerous scenarios.
Future work will be directed at extension of our approach by dynamical attributes
which might arise or disappear over time triggered by dedicated events.

References

1. Alhazov, A., Cojocaru, S., Colesnicov, A., Malahov, L., Petic, M.: A P system
for annotation of Romanian affixes. In: Alhazov, A., Cojocaru, S., Gheorghe, M.,
Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp.
80–87. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54239-8 7

2. Banks, J. (ed.): Handbook of Simulation. Wiley, Hoboken (1998)
3. Bernardini, F., Gheorghe, M.: Population P systems. J. Univ. Comput. Sci. 10(5),

509–539 (2004)
4. Broggi, A., Buzzoni, M., Debattisti, S., Grisleri, P., Laghi, M.C., Medici, P., Versari,

P.: Extensive tests of autonomous driving technologies. IEEE Trans. Intell. Transp.
Syst. 14(3), 1403–1415 (2013)

https://doi.org/10.1007/978-3-642-54239-8_7

Event-Based Life in a Nutshell 149

5. Bakir, M.E., Gheorghe, M., Konur, S., Stannett, M.: Comparative analysis of sta-
tistical model checking tools. In: Leporati, A., Rozenberg, G., Salomaa, A., Zan-
dron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 119–135. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54072-6 8

6. Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from
big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

7. Ciobanu, A., Ipate, F.: Implementation of P systems by using big data technolo-
gies. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G.,
Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 117–137. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54239-8 10

8. Cunha, F., Heckman, J.J., Lochner, L.J., Masterov, D.V.: Interpreting the evidence
on life cycle skill formation. In: Handbook of the Economics of Education, Chap.
12, pp. 697–812. Elsevier (2006)

9. Erevelles, S., Fukawa, N., Swayne, L.: Big data consumer analytics and the trans-
formation of marketing. Elsevier J. Bus. Res. 69(2), 897–904 (2016)

10. Estrin, A., Kaminski, M.: The expressive power of temporal logic of actions. J.
Logic Comput. 12(5), 839–859 (2002)

11. Grout, P.A., Park, I.U.: Competitive planned obsolescence. RAND J. Econ. 36(3),
596–612 (2005)

12. Guinee, J.B.: Handbook on life cycle assessment operational guide to the ISO
standards. Int. J. Life Cycle Assess. 7(3), 158–166 (2002)

13. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques. Morgan
Kaufmann and Elsevier, Burlington (2012)

14. Hilbert, M., Lopez, P.: The world’s technological capacity to store, communicate,
and compute information. Science 332, 60–65 (2011)

15. Hinze, T., Grützmann, K., Höckner, B., Sauer, P., Hayat, S.: Categorised count-
ing mediated by blotting membrane systems for particle-based data mining and
numerical algorithms. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sośık, P.,
Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 241–257. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-14370-5 15

16. Hinze, T., Weber, L.L., Hatnik, U.: Walking membranes: grid-exploring P systems
with artificial evolution for multi-purpose topological optimisation of cascaded pro-
cesses. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016.
LNCS, vol. 10105, pp. 251–271. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54072-6 16

17. Jiang, Y., Peng, H., Huang, X., Zhang, J., Shi, P.: A novel clustering algorithm
based on P systems. Int. J. Innov. Comput. Inf. Control 10(2), 753–765 (2014)

18. Kefalas, P., Stamatopoulou, I., Eleftherakis, G., Gheorghe, M.: Transforming state-
based models to P systems models in practice. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 260–273.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7 19

19. Lamport, L.: The temporal logics of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

20. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, New York (1997)
21. O’Leary, D.E.: Enterprise Resource Planning Systems: Systems, Life Cycle, Elec-

tronic Commerce, and Risk. Cambridge University Press, Cambridge (2000)
22. Neugarten, L.: Time, age, and the life cycle. Am. J. Psychiatry 136(7), 887–894

(1979)
23. Stüber, G.L.: Principles of Mobile Communication. Springer, New York (2011).

https://doi.org/10.1007/978-1-4614-0364-7

https://doi.org/10.1007/978-3-319-54072-6_8
https://doi.org/10.1007/978-3-642-54239-8_10
https://doi.org/10.1007/978-3-319-14370-5_15
https://doi.org/10.1007/978-3-319-54072-6_16
https://doi.org/10.1007/978-3-319-54072-6_16
https://doi.org/10.1007/978-3-540-95885-7_19
https://doi.org/10.1007/978-1-4614-0364-7

150 T. Hinze and B. Förster

24. Wallhoff, F., Bannat, A., Gast, J., Rehrl, T., Dausinger, M., Rigoll, G.: Statistics-
based cognitive human-robot interfaces for board games – let’s play!. In: Salvendy,
G., Smith, M.J. (eds.) Human Interface 2009. LNCS, vol. 5618, pp. 708–715.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02559-4 77

25. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann and Elsevier, Burlington (2017)

26. Yang, G.: Life Cycle Reliability Engineering. Wiley, Hoboken (2007)

https://doi.org/10.1007/978-3-642-02559-4_77

On Evolution-Communication P Systems
with Energy Having Bounded and Unbounded

Communication

Richelle Ann B. Juayong(B), Nestine Hope S. Hernandez,
Francis George C. Cabarle, Kelvin C. Buño, and Henry N. Adorna

Algorithms and Complexity Lab, Department of Computer Science,
University of the Philippines Diliman, Diliman, 1101 Quezon City, Philippines

{rbjuayong,fccabarle,hnadorna}@up.edu.ph,
{nshernandez,kcbuno}@dcs.upd.edu.ph

Abstract. We explore the computing power of Evolution-Communi-
cation P systems with energy (ECPe systems) considering dynamical
communication measures, ComN , ComR and ComW . These measures
consider the number of communication steps, communication rules and
total energy used per communication step, respectively. In this paper,
we address a previous conjecture that states that only semilinear sets
can be generated with bounded ComX, X ∈ {N, R, W}. Our result on
bounded ComW seems to support such conjecture while the conjecture
is not true for bounded ComN and ComR. We also show that the class of
recursively enumerable sets can be computed using ECPe systems with
two membranes. This improves a previous result that makes use of four
membranes to show computational completeness.

Keywords: Membrane computing
Evolution-Communication P systems with energy
Dynamical communication measures

1 Introduction

Evolution-Communication P systems with energy (ECPe systems) is proposed
in [1] as a model for studying communication complexity in a membrane system.
ECPe system is similar to a variant called Evolution-Communication P systems
(ECP systems) introduced in an earlier work [3]. These models are interesting
variants for analyzing communication since distinct forms of rules are utilized
for evolution and communication. However, in ECPe systems, a special object
e, for energy, is presented as a form of communication cost. These e’s can be
earned or produced during evolution and consumed as requirement for every
communication.

An approach adapted from classical communication complexity [11] was pro-
posed to introduce a different way of analyzing communication in [1]. Specifically,

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 151–166, 2018.
https://doi.org/10.1007/978-3-319-73359-3_10

152 R. A. B. Juayong et al.

dynamical communication measures were presented. For every successful compu-
tation, these measures consider the number of communication steps (or ComN),
total number of communication rules (or ComR) and total energy used for all
communication steps (or ComW). Several ways of using these measures for com-
munication analysis were also proposed, e.g. determining the sets computed given
these measures, using these measures as restrictions imposed on computations
and determining problems decided given such measures, also explored in [4,5,7].

In this paper, we explore the set of numbers that can be computed with
(un)bounded dynamical communication measures. First, we improve a previous
result on computational completeness of ECPe systems. In [1], and in a follow-up
work in [8], ECPe systems having four membranes were shown to be computa-
tionally complete. In this paper, we show computational completeness using only
two membranes by simulating a matrix grammar with appearance checking. We
also address a conjecture given in [1] stating that the set of numbers computed
with bounded ComX, X ∈ {N,R,W} are restricted to semilinear sets. We first
show that only semilinear sets can be computed with bounded ComW if the out-
put region only acts as a receiver. We then show a class of non-semilinear sets
that can be computed with only two membranes and bounded communication
steps.

The paper is organized as follows: we first discuss some preliminaries, includ-
ing the formal definition of ECPe systems in Sect. 2. We present our main results
in Sect. 3 and provide our conclusions in Sect. 4.

2 Preliminaries

It is assumed that the readers are familiar with concepts in formal languages [6]
and membrane computing [10]. We mention some concepts used throughout this
paper.

Definition 1 (Matrix Grammar with appearance checking). A matrix
grammar with appearance checking is a tuple G = (N,T, S,M,F) where N is
a set of non-terminal symbols, T is a set of terminal symbols, S ∈ N is the
start symbol, and M is a set of matrices; each matrix has the form (A1 →
x1, . . . , An → xn) where n ≥ 1, Ai ∈ N , xi ∈ (N ∪ T)∗ for 1 ≤ i ≤ n. The set
F is a set of occurrences of rules in the matrices of M , i.e. A → x ∈ F , if and
only if, there is a matrix m ∈ M that contains the rule A → x.

Let m: (A1 → x1, . . . , An → xn) be a matrix in a matrix grammar with
appearance checking G. Matrix m derives z from w, denoted by w ⇒m z, if
there is a set of strings w1, . . . , wn, wn+1 such that w = w1, z = wn+1, and for
each i = 1, 2, . . . , n, one of two cases hold: (a) wi = w′

iAiw
′′
i and wi+1 = w′

ixiw
′′
i

(b) wi = wi+1, Ai does not appear in wi and Ai → xi ∈ F . When w results to
z through some matrix, we write w ⇒ z. We write w ⇒∗ z to denote the case
when w results to z through zero or more applications of matrices in M . The
language of G is then L(G) = {w ∈ T ∗ | S ⇒∗ w}.

On ECPe System Having Bounded and Unbounded Communication 153

Definition 2 (Matrix Grammar with appearance checking in binary
normal form). A matrix grammar with appearance checking in binary normal
form is a matrix grammar G = (N,T, S,M,F) where N = N1 ∪ N2 ∪ {S,#},
these three sets are mutually disjoint and matrices are in the following forms:

1. (S → XA) where X ∈ N1, A ∈ N2,
2. (X → Y,A → x), where X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y,A → #) where X,Y ∈ N1, A ∈ N2,
4. (X → λ,A → x) where X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

There is only one rule of type 1 and F consists of all rules A → # contained
in matrices of type 3.

The following are known results [10]: First, the length sets of family of lan-
guages computed using matrix grammars with appearance checking is equal to
the class of recursively enumerable sets of numbers. Also, the language of any
matrix grammar with appearance checking can be computed by a matrix gram-
mar with appearance checking in binary normal form.

2.1 ECPe Systems

The following formal definition of ECPe systems is based on the definition given
in [1]:

Definition 3 (ECPe systems). An Evolution-Communication P system with
energy (ECPe system) is a construct of the form Π = (O, e, μ, w1, . . . , wm, R1,
R′

1, . . . , Rm, R′
m, io) where m is the total number of membranes; O is the alphabet

of objects; e /∈ O is a special object, μ is a hierarchical membrane structure, wh

is the initial multiset over O∗ in region h (1 ≤ h ≤ m).
The set Rh consists of evolution rules for region h; each evolution rule has the

form a → v where a ∈ O, v ∈ (O ∪ {e})∗. The set R′
h is the set of communication

rules for membrane h. There are three types of communication rules: symport-
in, symport-out and antiport. A symport rule takes one of the following forms:
(aei, in) or (aei, out), where a ∈ O, i ≥ 1. An antiport rule takes the form
(aei, out; bej , in) where a, b ∈ O and i, j ≥ 1. The value io ∈ {0, 1, . . . ,m} is the
output region. When io = 0, then the output region is the environment.

In an ECPe system, evolution rules are in the form of multiset-rewriting, how-
ever, only one object is located in the left-hand side of the rule (also called
non-cooperative). Upon application of an evolution rule a → v ∈ Rh, a copy of
a in region h is removed and replaced with a multiset v. Note that while some
copies of e can occur in the multiset v, the object a in the left-hand side cannot
be e, i.e. this special object cannot evolve. The form of communication rules are
adapted from a variant called P systems with symport and antiport [9]. Upon
application of a symport-in rule (aei, in) ∈ R′

h, i copies of e outside of mem-
brane h are consumed to transport inside region h a copy of a from the outside

154 R. A. B. Juayong et al.

region. The reverse of such process is performed when applying a symport-out
rule (aei, out) ∈ R′

h. We say that the energy of either symport rule (aei, in) or
(aei, out) is equal to i. When applying an antiport rule (aei, in; bej , out) ∈ R′

h,
aside from a copy of a outside and a copy of b inside membrane h, there should
be i copies of e outside and j copies of e inside membrane h. During application,
a and b swap position, and the copies of e used are consumed. We say that the
energy of antiport rule (aei, in; bej , out) is equal to i + j.

In this paper, we focus on ECPe systems that apply rules in the same manner
as most P systems, i.e. rules are applied in a nondeterministic and maximally
parallel manner. We say that a configuration is a state of an ECPe system,
consisting of the multiset at each region. A transition from a configuration C
to another configuration C ′ through a maximally parallel application of rules is
denoted by C ⇒ C ′; a sequence of zero or more transitions from a configuration
C to another configuration C ′ is denoted by C ⇒∗ C ′. The configuration of
an ECPe system at a time unit i is denoted by Ci (i ≥ 0). An ECPe system
computes by starting from the initial configuration C0 to a halting configuration
Ch such that C0 ⇒∗ Ch. We say that C0 ⇒∗ Ch is a successful computation.
A halting configuration Ch is a configuration where no more rules can be applied
to any copies of objects in each region.

A set of numbers can be computed by an ECPe system as follows: the natural
number produced as output by a successful computation is the number of objects
(including count of e’s) in the output region of the halting configuration; the set
of numbers generated in this way is exactly the set of numbers computed by an
ECPe system. We shall denote this set by N(Π).

2.2 Dynamical Communication Measures for ECPe Systems

The dynamical communication complexity parameters introduced in [1] are ini-
tially determined at the transition level:

ComN(Ci ⇒ Ci+1) =

⎧
⎨

⎩

1 if at least one communication rule is used
in the transition Ci ⇒ Ci+1,

0 otherwise
ComR(Ci ⇒ Ci+1) = the number of communication rules

used in the transition Ci ⇒ Ci+1

ComW (Ci ⇒ Ci+1) = the total energy considering all applications
of communication rules used
in the transition Ci ⇒ Ci+1

These parameters are related as follows: ComN ≤ ComR ≤ ComW . Let X ∈
{N,R,W}:

ComX(δ) =
∑h−1

i=0 ComX(Ci ⇒ Ci+1) where δ : C0 ⇒ C1 ⇒
. . . ⇒ Ch is a halting computation,

ComX(n,Π) = min{ComX(δ) | δ : C0 ⇒ C1 ⇒ . . . ⇒ Ch in
Π with the result n},

ComX(Π) = max{ComX(n,Π) | n ∈ N(Π)}
ComX(Q) = min{ComX(Π) | Q = N(Π)}

On ECPe System Having Bounded and Unbounded Communication 155

We let NFComXm(k, symp, antiq) be the class of set of numbers computed by
ECPe systems Π with at most m ≥ 1 membranes, ComX(Π) ≤ k, symport
rules of maximal energy at most p ≥ 0 and antiport rules of maximal energy at
most q ≥ 0. When one of the parameters m, k, p, q is not bounded, we replace
the respective value by ∗. When k = 0, we simply omit sym0 and anti0. When
m = 1, since it is obvious that no antiport rules can be applied, we simply omit
anti0.

In this study, we also explore ECPe systems with a particular restriction
on output, i.e. when the output region is the environment (out = env), and
when the output region only functions as a receiving region (out = rec). The
class of set of numbers computed with such a restriction is represented by the
following notation: NFComXm(k, symp, antiq, out = α) where α ∈ {rec, env}.
When m = 2 and out = rec, we simply omit anti0.

The inclusions below directly follow from the definitions (as stated in [1]).

Lemma 1 [1]. NFComXm(k, symp, antiq) ⊆ NFComXm′(k′, symp′ , antiq′)
⊆ NRE for X ∈ {N,R,W} and for all 1 ≤ m ≤ m′, 0 ≤ p ≤ p′, 0 ≤ q ≤ q′;
each of m′, p′, q′ can also be equal to ∗.
From [10] (and mentioned in [1]), the class of set of numbers computed by an
ECPe system with no communication is the same as the class of semilinear sets.

Theorem 1 [10]. NFComX∗(0)=NFComX1(0)=SLIN for X ∈{N,R,W},
m ≥ 1.

The system considered in [10] is a one-membrane Transition P system where the
output region is the skin membrane. The set of numbers computed in a single
membrane system with no communication and counting objects in the skin, like
the systems in Theorem 1, is exactly the class of semilinear sets. When assigning
the environment as output region, the output numbers are determined from
the set of communication rules. Thus, the following observation is true about
bounded ComW .

Fact 1. NFComW1(k, sym∗, out = env) ⊂ NFIN for k ≥ 0.

We now observe that when communication is unbounded, ECPe systems
having environment as output holder can compute semilinear sets. We use the
relation in Theorem 1.

Fact 2. NFComW1(∗, symp, out = env) ⊇ SLIN for p ≥ 1.

Proof. To prove this, we let Π be a one-membrane ECPe system without com-
munication rules. We then show that there is a one-membrane ECPe system Π̄
having environment as output region and N(Π) = N(Π̄).

Given Π = (O, e, [1]1, w1, R1, ∅, 1), we construct Π̄ = (Ō, e, [1]1, w1, R̄1,
R̄′

1, 0) as follows: first, we replace all occurrences of e in Π with e′. We determine
the set O′ = {α | α ∈ O ∪ {e′} and �r : α → v, v ∈ (O ∪ {e′})∗}. The set O′ is
the set of all objects not used in the left hand side of any rule, thus, N(Π) only

156 R. A. B. Juayong et al.

considers the count of objects in O′. For every α ∈ O′, the following rules are
added: (a) α → ᾱe ∈ R̄1 (b) (ᾱe, out) ∈ R̄′

1. This provides Ō = O∪{ᾱ | α ∈ O′}.
�

Whether only semilinear sets can be generated by one-membrane ECPe systems
with unbounded communication, i.e. NFComW1(∗, sym∗, out = env) = SLIN ,
is yet to be proven.

We now recall the results about the computing power of ECPe systems having
unbounded communication.

Theorem 2 [1,8]. For X ∈ {N,R,W}:
– NFComXm(∗, symp, antiq) = NRE for m ≥ 4, p ≥ 2, q ≥ 0.
– NFComXm(∗, symp, antiq) = NRE for m ≥ 4, p ≥ 1, q ≥ 2.

As can be observed, the previous result shows that four membranes suffice to
show computational completeness. When only symport rules are allowed, the
maximum energy used in a rule is at most two, while when incorporating antiport
rules the maximum energy for both symport and antiport rules are the lowest
possible values.

3 Main Results

3.1 On ECPe Systems with Unbounded Communication

We now show that we can generate the class of recursively enumerable sets of
numbers with two membranes and unbounded communication.

Theorem 3. Let G = (N,T, S,M,F) be a matrix grammar with appearance
checking. There is a two-membrane ECPe system Π that computes the length-
set of L(G).

Proof. We shall use a matrix grammar in binary normal form given in Defini-
tion 2 for our proof. We impose a total order on the matrices in M so that we
can label each matrix from 1 to |M | and uniquely label each matrix as mi where
1 ≤ i ≤ |M |. We construct an ECPe system Π as follows:

Π = (O, e, [1[2]2]1, w1, w2, R1, ∅, R2, R
′
2, 1)

where O = N ∪ T ∪ {mch,#} ∪ {mi,m
s
i ,m

v
ij ,m

′
ij ,m

′′
ij ,m

′′′
ij ,m

ā1
i2 ,mā2

i2 ,mā3
i2 | 1 ≤

i ≤ |M |, 1 ≤ j ≤ 2}, w1 = XA where (S → XA) ∈ M and w2 = mch. The sets
R1, R′

2 and R2 of rules include the rules given in Tables 1 and 2, as well as the
following rules:

for region 1: for membrane 2: for region 2:
ms

j → # (Ae, in;mā1
j2e, out) mch → mi mv

k2 → #
→ # mv

i1 → # # → #

On ECPe System Having Bounded and Unbounded Communication 157

Table 1. Simulating a type 2 or 4 rule

Step Region 1 Membrane 2 Region 2

1 mi → m′
i1m

′′
i1e

2 (m′
i1e, out) m′′

i1 → m
′′′
i1

3 m′
i1 → e m′′′

i1 → mv
i1m

′
i2e

4 (Xe, in;mv
i1e, out) m′

i2 → m′′
i2

5 mv
i1 → e X → e m′′

i2 → mv
i2

6 (Ae, in;mv
i2e, out)

7 mv
i2 → ms

iαe
where α = Y x if type 2
or α = x if type 4

A → λ

8 (ms
i e, in)

9 ms
i → mch

Table 2. Simulating a type 3 rule where a nonterminal symbol A does not occur in
the current derivation

Step Region 1 Membrane 2 Region 2

1 mi → m′
i1m

′′
i1e

2 (m′
i1e, out) m′′

i1 → m
′′′
i1

3 m′
i1 → e m′′′

i1 → mv
i1m

′
i2e

4 (Xe, in;mv
i1e, out) m′

i2 → m′′
i2

5 mv
i1 → e X → e m′′

i2 → mā1
i2 mā2

i2 e

6 (mā2
i2 e, out)

7 mā2
i2 → ms

iY

8 (ms
i e, in;m

ā1
i2 e, out)

9 mā1
i2 → λ ms

i → mch

where 1 ≤ i ≤ |M |, mj (1 ≤ j ≤ |M |) is a type 3 matrix in M and mk

(1 ≤ k ≤ |M |) is a type 2 or type 4 matrix in M . Computation of Π proceeds
as follows:

Initially, region 1 contains two nonterminal symbols, X and A where the
matrix (S → XA) occurs in M . This simulates the application of the first matrix
in G. Region 2 contains an object mch. The system Π nondeterministically
chooses a matrix in M that can be applied to the current derivation given in
region 1. Shown in Table 1 is the step-by-step computation that simulates a type
2 or a type 4 rule, whereas Table 2 shows computations simulating a type 3 rule.

Suppose in a transition, a rule mch → mi is in region 2 and mi is a type 2
matrix where mi: (X → Y,A → x). In order for mi to be correctly simulated,
symbols X and A must be present in region 1. Steps 2 to 4 in Table 1 are used
to validate and remove the occurrence of the symbol X in region 2 while steps
5 to 6 in the table validate and remove the occurrence A. The occurrence of

158 R. A. B. Juayong et al.

the object ms
i in region 2 at step 8 indicates a successful validation. The rule

ms
i → mch signals completion of simulating mi. Shown below is the computation

for a successful simulation of a type 2 matrix mi: (X → Y,A → x):

Step 0: [1 XA [2 mi]2]1
Step 1: [1 XA [2 m′

i1m
′′
i1e]2]1

Step 2: [1 XAm′
i1 [2 m′′′

i1]2]1
Step 3: [1 XAe [2 mv

i1m
′
i2e]2]1

Step 4: [1 mv
i1A [2 Xm′′

i2]2]1

Step 5: [1 eA [2 emv
i2]2]1

Step 6: [1 mv
i2 [2 A]2]1

Step 7: [1 ms
iY xe [2]2]1

Step 8: [1 Y x [2 ms
i]2]1

Step 9: [1 Y x [2 mch]2]1
If mi is a type 4 matrix mi: (X → λ,A → x), then Y x in steps 7 to 9 is

replaced with x. Note that in cases where either X or A doesn’t occur in region
1, the antiport rules (Xe, in;mv

i1e, out) or (Ae, in;mv
i2e, out), respectively, cannot

be executed. Instead, rule mv
i1 → # is executed in the former case while mv

i2 → #
is executed in the latter case. In both cases, the trap symbol # occurs in region
1. This signals a non-halting computation due to the evolution rule # → #.

Suppose in a transition, a rule mch → mi is in region 2 and mi is a type
3 matrix where mi: (X → Y,A → #). Since mi is of type 3, the occurrence of
both X and A in the current derivation leads to an unacceptable string when
mi is applied. In such case, A becomes # and any succeeding derivations will
produce a non-acceptable string. When only X occurs and A does not exist in
the current derivation, rule mi is applied such that X becomes Y . Table 2 shows
the sequence of rules that simulates matrix mi when only X exists in the current
derivation (i.e. when only X exists in region 1). Shown below is the computation
for such successful simulation:

Step 0: [1 X [2 mi]2]1
Step 1: [1 X [2 m′

i1m
′′
i1e]2]1

Step 2: [1 Xm′
i1 [2 m′′′

i1]2]1
Step 3: [1 Xe [2 mv

i1m
′
i2e]2]1

Step 4: [1 mv
i1 [2 Xm′′

i2]2]1

Step 5: [1 e [2 emā1
i2 mā2

i2 e]2]1
Step 6: [1 emā2

i2 [2 emā1
i2]2]1

Step 7: [1 ems
iY [2 emā1

i2]2]1
Step 8: [1 mā1

i2 Y [2 ms
i]2]1

Step 9: [1 Y [2 mch]2]1
As can be observed, similar to simulating a type 2 or type 4 matrix, absence

of X in region 2 leads to application of rule mv
i1 → # in membrane 2 leading to a

non-halting computation. In the case where both X and A occurs in region 2, the
rule (Ae, in;mā1

i2 e, out) is applied simultaneously with (mā2
i2 e, out) in step 5 so

that in step 6, both mā1
i2 and mā2

i2 are in region 1. This will prevent the application
of the antiport rule (ms

i e, in;mā1
i2 e, out) in step 7. Instead, the evolution rule

ms
i → # is applied, leading to a non-halting computation.

Corollary 1. NFComXm(∗, symp, antiq) = NRE for X ∈ {N,R,W}, m ≥ 2,
p ≥ 1, q ≥ 2.

Proof. Follows from Theorem 3.

3.2 On ECPe Systems with Bounded ComW

In this section, we consider systems where every communication always uses the
output region as receiver.

On ECPe System Having Bounded and Unbounded Communication 159

Lemma 2. NFComW2(k, sym∗, out = rec) = SLIN for k ≥ 0.

Proof. Let Π be a two-membrane ECPe system where ComW (Π) = k and the
output region is only a receiving region. We show that there is a one-membrane
ECPe system Π̄ having ComW (Π̄) = 0 and N(Π) = N(Π̄).

If the output region of Π is the environment, then this is true via Fact 1.
Without loss of generality, let us assume the output region is the skin. Let
Π = (O, e, [1[2]2]1, w1, w2, R1, R

′
1, R2, R

′
2, 1). Suppose only one object is commu-

nicated so that ComW (Π) = 1. This also implies that only one communication
rule is applied in a computation. Let this rule be r : (ae, out) ∈ R′

2, a ∈ O. Since
evolution rules are non-cooperative, the communicated object a will be subjected
to the same rules (and thus, production of the same multiset) regardless of the
time it was communicated in the output region. If another computation exists
such that rule r is used at a later or earlier time, the output region in the halt-
ing configurations of the two computation paths contain the same multiset. This
same multiset is also obtained in the halting configuration when a is in the initial
multiset of the output region. This means, Π̄ can be generated having only the
rules for the output region and including the object a in the initial multiset.

For cases where there is a halting computation path in Π without appli-
cation of any communication rule, a rule a → λ can be included. For cases
where there are several halting computation paths having distinct communica-
tion rules applied (e.g. (b1e, out) in one computation path, (b2e, out) in another,
until (bje, out) in the jth computation path), we can set an initial symbol, say
α, in Π̄. We then include the rules α → b1, α → b2 and α → bj in Π̄.

To extend this to the case where ComW (Π) = k, we shall follow the same
technique as discussed above. We construct a one-membrane ECPe system Π̄
having the following characteristics: (a) Rules of its skin contain the rules in the
output region of Π and (b) the initial multiset of its skin is composed of w1 and
an initial symbol α. Let V be the set of multisets communicated to the skin for
all halting computations of Π. We add |V | production rules α → v where v ∈ V .

The set V can be obtained as follows: Suppose R′
2 = {r1: (a1e

p1 , out),
r2: (a2e

p2 , out), . . . , rn: (anepn , out)}. For each halting computation path δ, let
App(δ) = (c1, c2, . . . , cn) where each value ci refers to the total number of appli-
cations of rule ri in the halting computation δ. Since ComW (Π) = k, the total
energy used for communication in a halting computation is at most k. Thus,
App(δ) = (c1, c2, . . . , cn) must follow the constraint:

0 ≤ c1 + c2 + . . . + cn ≤ k (1)

Let Q = {(c1, c2, . . . , cn) | (c1, c2, . . . , cn) satisfies the Inequality (1)}. Also, let
Qv = {v = ac1

1 ac2
2 . . . acn

n | (c1, c2, . . . , cn) ∈ Q}. Then, set V is a subset of Qv

(V ⊆ Qv). �
This result can be extended to handle multiple membranes. In such a case,

all neighboring regions will be considered in determining the set V of possible
multisets communicated to the output region. Thus, the following theorem is
given.

160 R. A. B. Juayong et al.

Theorem 4. NFComW∗(k, sym∗, anti∗, out = rec) = SLIN for k ≥ 0.

Let Π be an ECPe system having the following characteristics: (a) only symport
rules are used, (b) ComW (Π) = k and (c) communicated objects are not used
in their respective receiving regions. The set V of all possible multisets com-
municated to the output region in Π can be obtained as a subset of multisets
obtained via an inequality similar to Inequality (1). Since any multiset v ∈ V is
not influenced by the multiset communicated from the output region (and vice
versa), we can use the same technique of Lemma 2 to construct a one-membrane
ECPe system Π̄ having the following characteristics: (a) Evolution rules of the
skin of Π̄ contain the evolution rules in the output region of Π and (b) the
initial multiset of the skin of Π̄ is composed of the initial multiset in the output
region as well as a symbol α. We add |V | production rules α → v where v ∈ V
and R′

1 of Π̄ is constructed in the following way: for all (aep, tar), p ≥ 1 and
tar ∈ {in, out}, having the output region as the sending region, (aep, out) ∈ R′

1.
Thus, the following corollary is given.

Corollary 2. Let Π be an m-membrane ECPe system where ComW (Π) = k,
only symport rules are used (m ≥ 2, k ≥ 0) and all communicated objects are
not used in their respective receiving regions. There is a one-membrane ECPe
system Π̄ having N(Π) = N(Π̄) and ComW (Π̄) ≤ k.

Corollary 2 holds as long as the succeeding evolutions from the communicated
objects do not produce e’s or objects that can possibly be communicated in the
succeeding transitions.

3.3 On ECPe Systems with Bounded ComX, X ∈ {N,R}
The example below shows a non-semilinear set that can be computed with
bounded communication steps.

Example 1
Π̄ = (O, e, [1[2]2]1, w1, w2, R1, ∅, R2, R

′
2, 1)

where O = {a′, a, b, α, β, θ} ∪ {ci | 1 ≤ i ≤ 5}, R1 = {a′ → ae, a → c1, c5 →
aaee, b → β, θ → α} ∪ {ci → ci+1 | 1 ≤ i ≤ 4}, R2 = {a → be, β → θe, α → α},
and R′

2 = {(ae, in), (be, out), (βe, in), (θe, out), (αe, in)}.
Computation of Π proceeds as follows: Initially, the objects a′ in region 1

evolve via rules a′ → ae.
These rules produce a copy of a and e in region 1. At time t = 1, the system

nondeterministically chooses between application of rules a → c1 or applying the
symport rule (ae, in). In the latter case, the e’s produced from the previous rule
will be consumed to transfer object a in region 2. In the next three time steps,
the system reaches a halting configuration via consecutive use of rules a → be,
(be, out) and b → β. Such computation produces the number 1 since only the
object β is present in region 1.

When the symport rule is not used at time t = 1, the computation proceeds
by continuously applying the sequence, a → c1, ci → ci+1 (1 ≤ i ≤ 4) and

On ECPe System Having Bounded and Unbounded Communication 161

c5 → aaee in region 1. At step 1 + 6n, n ≥ 0, there are 2n copies of a and
2n+1 − 1 copies of e in region 1. A successful computation applies the symport
rule (ae, in) to all copies of a so that in the next step, there are 2n − 1 copies
of e in region 1 and 2n copies of a in region 2. In the next two time steps, the
copies of a in region 2 evolve via consecutive use of rules a → be and (be, in) so
that there will be an additional 2n copies of b in region 1.

The copies of b in region 1 will evolve via the rule b → β. Since there are
only 2n − 1 copies of e in region 1, there will only be 2n − 1 applications of rule
(βe, in) in the succeeding step. After such applications, there will only be one
copy of β in region 1 and 2n − 1 copies of β in region 2. The next two steps
proceeds as follows: the copies of β in region 2 evolve via rule β → θe and the
θs are communicated to region 1 via rule (θe, out). The copies of θ in region 1
evolve via rule θ → α. At this point, no more rules are applicable, leading the
system to a halting state. Region 1 has 2n − 1 copies of α and one copy of β,
thus the system outputs 2n.

We now look at the case where copies of a in region 1 are not communicated
at the same time. Let step 1+6n be the step where the first symport rule (ae, in)
is applied. Also, let us say there are only k < 2n applications of this symport
rule. The next sequence of transitions proceeds as follows:

1. At step 1 + 6n + 3, there are k copies of b (k < 2n) and the remaining copies
of e are at least 2n in region 1.

2. At step 1 + 6n + 4, each b produces β.
3. At step 1 + 6n + 5, since there are at least 2n copies of e and less than 2n

copies of β, there are some e’s left in region 1 after the application of rule
(βe, in).

4. At step 1 + 7n, rule β → θe is applied in region 2 and at step 1 + 7n + 1, the
rule (θe, out) is applied in membrane 2. At step 1 + 7n + 2, the rule θ → α is
applied in region 1.

5. At step 1+7n+3, since there are some e’s left in region 1, the communication
rule (αe, in) is applied, leading the system to a non-halting computation due
to the rule α → α in region 2.

Note that since not all copies of a are communicated at step 1 + 6n, at step
1 + 7n there are some copies of a and additional copies of e in region 1. If
some of these copies trigger the rule (ae, in) in the next step, application of rule
(βe, in) happens at step 1 + 7n + 5, which occurs after item 5.

The description of the above computation shows that N(Π̄) = {2n | n ≥ 0}.
For each successful computation, exactly four communication steps were used,
and in each communication step, only one communication rule is used. Thus,
ComN(Π̄) = ComR(Π̄) = 4.

The example above leads to the following theorem.

Theorem 5. NFComXm(k, symp, antiq)−SLIN �= ∅ for X ∈ {N,R}, m ≥ 2,
k ≥ 4, p ≥ 1, q ≥ 0.

In the next theorem, we extend the construction in Example 1 to generate any
set composed of powers of j.

162 R. A. B. Juayong et al.

Theorem 6. For Nj = {jn | n ≥ 0}, j > 1:

1. ComN(Nj) = ComR(Nj) ≤ 4.
2. Nj ∈ NFComXm(k, symp, anti0) for X ∈ {N,R}, m ≥ 2, k ≥ 4, p ≥ j − 1.

Proof. For every j > 1, we construct an ECPe system Π̄j :

Π̄j = (O, e, [1[2]2]1, w1, w2, R1, ∅, R2, R
′
2, 1)

where O = {a′, a, b, α, β, θ} ∪ {ci | 1 ≤ i ≤ 5}, R1 = {a′ → aej−1, a → c1, c5 →
ajej(j−1), b → β, θ → α} ∪ {ci → ci+1 | 1 ≤ i ≤ 4}, R2 = {a → be, β →
θe, α → α}, and R′

2 = {(aej−1, in), (be, out), (βe, in), (θe, out), (αe, in)}. It can
be observed that Π̄j = {jn | n ≥ 0} and ComN(Π) = ComR(Π) = 4.

The idea for how the system computes is similar to the ECPe system given
in Example 1 for generating 2n. At step 1 + 6n, n ≥ 0, there are jn copies of a
and jn+1 − 1 copies of e in region 1. The latter value is computed as

n∑

i=0

(ji)(j − 1) = (j − 1)
n∑

i=0

(ji)

= (j − 1)
(

1 − jn+1

1 − j

)

= jn+1 − 1

A successful computation applies the symport rule (aej−1, in) to all copies of
a so that in the next step, there are jn copies of a in region 2 and jn − 1 copies
of e in region 1. The value jn − 1 is computed as (jn(j) − 1) − jn(j − 1) where
the subtrahend is obtained from the copies of e consumed due to applications
of rule r′

21. The copies of a in region 2 becomes b and gets transported back
to region 1 via the rule a → be and (be, out), respectively. The copies of b in
region 1 becomes β via rule r18. Since there are only jn − 1 copies of e in region
1, there will only be jn − 1 applications of rule (βe, in) in the succeeding step.
This leaves one copy of β in region 1. The copies of β in region 2 becomes θ and
gets transported back to region 1 via the rule β → θe and (θe, out), respectively.
Afterwards, no more rules are applicable leaving region 1 with one copy of β and
jn − 1 copies of θ.

In the event that the symport rule (aej−1, in) is not applied to all copies of
a in region 1 at the same time, then after the first application of this symport
rule, say at time step 1 + 6n, there will be less than jn copies of β and at least
jn copies of e at step 1 + 6n + 5. As a consequence, not all e’s will be used for
the rule (βe, in). The extra e’s will be used in executing at least one application
of rule (αe, in) at step 1 + 7n + 3 leading the system to a non-halting state. �

Although a bounded number of communication steps is enough to compute
any set {jn | n ≥ 0}, the ECPe system constructed for Theorem 6 needed a
symport rule having energy j − 1 to compute jn. It is interesting to determine
whether computing the set {jn | n ≥ 0} using four communication steps can be
done using rules with maximum energy of less than j − 1.

On ECPe System Having Bounded and Unbounded Communication 163

The next theorem shows that classes of sets of numbers involving summation
of exponential terms with several distinct bases can still be computed with four
communication steps. However, the number of communication rules depends on
the number of bases. Let Q ∈ NFComNRm(k, k′, symp, antiq) if and only if
Q ∈ NFComNm(k, symp, antiq) and Q ∈ NFComRm(k′, symp, antiq).

Theorem 7. Let N ∈ SLIN and Q =

{
s∑

t=1

jnt + α | n ≥ 0, jt > 1, α ∈ N

}

.

Then Q ∈ NFComNRm(k, k′, symp, antiq) for m ≥ 2, k ≥ 4, k′ ≥ s + 3,
p ≥ j − 1, q ≥ 0, j = max{j1, . . . , js}.
Proof. We construct a 2-membrane ECPe system Π generating Q as follows:
first, since N ∈ SLIN , there is a set of evolution rules that can be defined in
the output region in order to produce α objects in a halting configuration. For
each jnt , we shall use multisets and rules similar to those given in Example 1.
Also, for each object a, a′, c1 to c5, we append a subscript t e.g. a becomes at.
In the first communication step of a successful computation, rules (aie

j−1, in)
for 1 ≤ i ≤ s are used. In the next three communication steps, rule (be, out),
(βe, in) and (θe, out) are used, respectively. �

3.4 The Power of Including Antiport Rules

Notice that we use symport rules only in the ECPe system constructions
described in the previous section. In the next theorem, we reduce the values
of ComN and ComR in Theorem 6 (from four to two) by including an antiport
rule.

a′

2
1

θ → θ

a → c1
a′ → ae

c2 → aaee
c1 → c2

b → αβ β → θe

b → c1
b′ → be

c2 → bbee
c1 → c2

(αe, in; θe, out)

(ae, in; be, out)
(βe, in)

b′

Fig. 1. An ECPe system generating {2n + 1 | n ≥ 0}. The output region is the skin.

Theorem 8. For Nj = {jn + 1 | n ≥ 0}, j > 1:

1. ComN(Nj) = ComR(Nj) ≤ 2.
2. Nj ∈ NFComXm(k, symp, antiq) for X ∈ {N,R}, m ≥ 2, k ≥ 2, p ≥ 1,

q ≥ j.

164 R. A. B. Juayong et al.

Proof. For this theorem, we construct an ECPe system Πj generating Nj =
{jn + 1 | n ≥ 0} for j > 1 as follows: Πj = (O, e, [1[2]2]1, a′, b′, R1, ∅, R2, R

′
2, 1)

where O = {a′, b′, a, b, c1, c2, α, β, θ}, R1 = {a′ → aej−1, a → c1, c1 → c2, c2 →
ajej(j−1), b → αβ, θ → θ}, R2 = {b′ → be, b → c1, c1 → c2, c2 → bjej , β →
θe}, and R′

2 = {(aej−1, in; be, out), (βe, in), (αe, in; θe, out)}. Figure 1 shows the
description of an ECPe system Πj when j = 2.

Computation for Πj with j > 1 proceeds as follows: At step 1 + 3n, n ≥ 0,
there are jn copies of a and jn+1 − 1 copies of e in region 1. In region 2, there
are jn copies of b and at least jn copies of e. A successful computation applies
the antiport rule (aej−1, in; be, out) to all copies of a so that in the next step,
there are jn copies of b and jn − 1 copies of e in region 1. (The a’s transported
in region 2 as well as the remaining e’s in the region will no longer be used in
the next steps). The copies of b in region 1 will evolve via the rule b → αβ. Since
there are only jn−1 copies of e in region 1, there will only be jn−1 applications
of rule (βe, in) in the succeeding step. The remaining copies of objects in region
1 will then be jn copies of α and a copy of β. After the production of copies of
θ via rule β → θe, no more rules are applicable in the next step.

In the event that antiport rule (aej−1, in; be, out) is not applied to all copies
of a in region 1 at the same time, then after the first application of the antiport
rule, say at time step 1+3n, there will be less than jn copies of β at step 1+4n
and at least jn copies of e. The extra e’s will be used in executing at least one
application of rule (αe, in; θe, out) leading the system to a non-halting state. �
The idea for how ECPe systems for Theorem 8 compute is similar to the ECPe
systems given in Theorem 6. Combining separate symport rules (ae, in) and
(be, out) into one antiport rule (ae, in; be, out) results to a reduction of steps
from four to two. However, the resulting output of the system is increased by
one (generating jn + 1 instead of jn). Note also that the construction for The-
orem 8 requires an antiport rule having energy j to compute jn + 1 in just two
communication steps.

The proof for the next theorem is similar to the proof given in Theorem7.

Theorem 9. Let N ∈SLIN and Q=

{
s∑

t=1

(jnt + 1) + α | n ≥ 0, jt > 1, α∈N

}

.

Then Q ∈ NFComNRm(k, k′, symp, antiq) for m ≥ 2, k ≥ 2, k′ ≥ s+1, p ≥ 1,
q ≥ j, j = max{j1, . . . , js}.

4 Summary

We analyze the computing power of ECPe systems with (un)bounded dynamical
communication measures ComX, where X ∈ {N,R,W}. We provide insights
on the class of numbers computed for one-membrane ECPe systems where the
environment is set as output region. When using bounded ComW , only a finite
set of numbers can be computed. When using unbounded ComW , semilinear
sets of numbers can be computed. Whether only semilinear sets of numbers can

On ECPe System Having Bounded and Unbounded Communication 165

be generated by such systems remains an open problem. Also, the class of sets of
numbers computed using one-membrane ECPe systems that use skin as output
region and (un)bounded non-zero communication has not been addressed.

Our result about computational completeness using only two membranes
is an improvement from the results given in [1,8] that use four membranes.
The resources used are almost similar to universality proofs in ECP systems,
e.g. as presented in [2]. We now ask the following question: can we construct
computationally complete two-membrane ECPe systems that only make use of
symport rules? We know that a four-membrane ECPe system is computationally
complete even using only symport rules (as presented in [1]). Note, however, that
the energy required in the rules are not optimal.

We presented result on ECPe systems having bounded ComW and where the
output region only acts as a receiving end of communication. We have shown
that:

SLIN = NFComW∗(0) = NFComW∗(k, sym∗, anti∗, out = rec)

We also extended such result to two-way communication with bounded
ComW where the communicated objects are not used in their receiving regions.
Any set of numbers computed by such systems can also be computed by a one-
membrane ECPe system.

Shown below is a hierarchy of relations considering our results and the results
given in [1,8]. Let X ∈ {N,R},

SLIN =NFComX∗(0) ⊂ NFComX2(4, sym1, anti0) ⊆
NFComX4(∗, sym2, anti0) = NRE

SLIN =NFComX∗(0) ⊂ NFComX2(2, sym1, anti2) ⊆
NFComX2(∗, sym1, anti2) = NRE

Contrary to a previous conjecture (in [1]), this shows that the class of numbers
computed with bounded ComX is strictly greater than the numbers computed
with no communication. The relation between no communication and only one
ComX remains an open problem. It is also interesting to determine the exact
class of sets of numbers computed with ComX of two and ComX greater than
two.

In showing the power of bounded communication, we are able to explore
a class of set of numbers computed with increasing maximum energy cost, as
shown below. Let j > 1 and X ∈ {N,R}:

{jn | n ≥ 0} ∈ NFComX2(4, symj−1, anti0)
{jn + 1 | n ≥ 0} ∈ NFComX2(2, sym1, antij)

It is interesting to determine if we can reduce the cost of the energy used in
the rules when computing these sets with two membranes and ComX having
the same bounded values. Specifically, is {jn | n ≥ 0} /∈ NFComX2(4, symj−2,
anti0)? Is {jn + 1 | n ≥ 0} /∈ NFComX2(2, sym1, antij−1)? Can computing
powers of j, j > 1 be done using only one communication step?

166 R. A. B. Juayong et al.

Acknowledgements. R. Juayong would like to thank the DOST-ERDT Scholarship
Program, OVPAA-OIL and the College of Engineering, UP Diliman. N. Hernandez is
supported by the Vea Family Technology for All Centennial professorial chair. F.G.C.
Cabarle is grateful for a Faculty Research Incentive Award (2016–2017) from the Col-
lege of Engineering of UP Diliman, the PhDIA Project No. 161606 and RLC grant
2016–2017 both from the UP Diliman OVCRD, and the Soy and Tess Medina Pro-
fessorial Chair Award for 2016–2017. H. Adorna is supported by the Semirara Mining
Corp. professorial chair, UP Diliman.

References

1. Adorna, H.N., Păun, G., Pérez-Jiménez, M.J.: On communication complexity in
evolution-communication P systems. Rom. J. Inf. Sci. Technol. 13(2), 113–130
(2010)

2. Alhazov, A.: Communication in membrane systems with symbol objects. Ph.D.
thesis, Universitat Rovira I Virgili (2006)

3. Cavaliere, M.: Evolution–communication P systems. In: Păun, G., Rozenberg,
G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36490-0 10

4. Donor, B., Juayong, R.A.B., Adorna, H.N.: On the communication complexity of
sorting in evolution-communication P systems with energy. In: 12th Philippine
Computing Science Congress (PCSC 2012), Canlubang, Laguna, pp. 15–25 (2002)

5. Francia, S.L., Francisco, D.A.A., Juayong, R.A.B., Adorna, H.N.: On communi-
cation complexity of some hard problems in ECPe systems with priority. Philipp.
Comput. J. 9(2), 14–25 (2014)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

7. Hernandez, N.H.S., Juayong, R.A.B., Adorna, H.N.: On communication complex-
ity of some hard problems in ECPe systems. In: Alhazov, A., Cojocaru, S., Ghe-
orghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS,
vol. 8340, pp. 206–224. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54239-8 15

8. Juayong, R.A.B., Adorna, H.N.: A note on the universality of EC P systems with
energy. In: 2nd International Conference on Information Technology Convergence
and Services (ITCS), pp. 1–6, August 2010

9. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Gener. Comput. 20(3), 295–305 (2002)

10. Păun, G.: Membrane Computing. Springer, Heidelberg (2002). https://doi.org/10.
1007/978-3-642-56196-2

11. Yao, A.C.: Some complexity questions related to distributed computing. In: ACM
Symposium on Theory of Computing, pp. 209–213 (1979)

https://doi.org/10.1007/3-540-36490-0_10
https://doi.org/10.1007/978-3-642-54239-8_15
https://doi.org/10.1007/978-3-642-54239-8_15
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-56196-2

Generalized P Colony Automata and Their
Relation to P Automata

Kristóf Kántor and György Vaszil(B)

Department of Computer Science, Faculty of Informatics, University of Debrecen,
Kassai út 26, Debrecen 4028, Hungary

{kantor.kristof,vaszil.gyorgy}@inf.unideb.hu

Abstract. We investigate genPCol automata with input mappings that
can be realized through the application of finite transducers to the
string representations of multisets. We show that using unrestricted pro-
grams, these automata characterize the class of recursively enumerable
languages. The same holds for systems with all-tape programs, having
capacity at least two. In the case of systems with com-tape programs, we
show that they characterize language classes which are closely related to
those characterized by variants of P automata.

1 Introduction

Cells and their life cycle interactions through a common and shared environment
are modeled by P colonies. They are tissue-like membrane systems, where cells
represent a community of very simple computing agents, see [20,21]. In the
theory of grammar systems (see [7]), a field so called colony of grammars exists,
where the name colony comes from. These colonies of grammars (see also [19])
consist of a collection of simple generative grammars (generating finite languages
each), even so their behavior is cooperating, creating a system able to generate
fairly complicated languages. The computing power of the whole system is a lot
more complex compared to the power of the individual components.

This behavioral complexity is modeled by P colonies in the framework of
membrane computing. This model is very much like tissue-like membrane sys-
tems, where multisets of objects are used to describe the contents of the cells
and environment and then are processed by the cells in the corresponding colony
using rules which enable the evolution of the objects present in the cells and the
exchange of objects between the environment and the cells. These computing
agents have a very confined functionality: they can store a restricted amount of
objects at a given time (this is called the capacity of the system) and they can
process a restricted amount of information. The way the information processing

Supported in part by project no. K 120558, implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary, financed
under the K 16 funding scheme. Also supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002, a project supported by the European Union, co-financed by
the European Social Fund.

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 167–182, 2018.
https://doi.org/10.1007/978-3-319-73359-3_11

168 K. Kántor and G. Vaszil

is done is really simple: The rules are either of the form a → b (for changing an
object a into an object b inside the cell), or a ↔ b (for exchanging an object
a inside a cell with an object b in the environment). A rule set is often called
a program, that consists exactly the same number of rules as the capacity of
the system. When a program gets executed, the k (the capacity of the system)
rules that it contains are applied to the k objects simultaneously. A sequence
of program executions where in each step a program is applied for every cell is
called a computation. During a computational step, every colony member cell
execute one of their programs in parallel. A computation ends when the system
reaches one of its the final configurations (usually given as the set of halting
configurations, that is, those situations when no programs can be applied by
any of the cells). The result of the computation is a multiset, thus multiplicities
of different objects present in each cell and the environment. It is natural to
observe these results as sets of vectors, or sets of numbers.

There are many theoretical results concerning P colonies. Despite the fact
that they are extremely simple computing systems, they are computationally
complete, even with very restricted size parameters and other syntactic or func-
tioning restrictions. For these, and more topics, results, see [3–6,10,11,15,16].

P colony automata were introduced in [1] for a sole purpose, that is, the
capability of describing sets of strings. P colony automata accept string languages
by assuming an initial input tape and an input string in the environment and
extending the available types of rules by tape rules. These types of rules in
addition to their non-tape counterparts, also read the processed objects from the
input tape. This computational model comes with a difficulty: The possibility
of applying more than one tape rule simultaneously, that is, the possibility of
reading several different objects in the same computational step. Even so, [1]
and later [2] provides adequate proofs in regard of several variants of P colony
automata being computationally complete.

To overcome this difficulty, generalized P colony automata were introduced in
[18] and studied further in [17]. The main idea of this computational model was
to get the process of input reading closer to other kinds of membrane systems,
especially to antiport P systems and P automata. The latter, introduced in [12]
(see also [8]) are P systems using symport and antiport rules (see [23]), charac-
terizing string languages. They do this not by having an input tape, but rather
associating strings to their computations by keeping track of the communication
with the environment. In this model, membranes communicate freely with the
environment and each object that could be requested for input by the commu-
nication rules is assumed to be available in an unlimited supply. During every
computational step, a multiset of objects enter the system from the environment.
The computation is a sequence of computational steps, therefore a sequence of
multisets, which defines the accepted strings by mapping the sequence of multi-
sets to a string.

This generality is used in the generalized P colony automata theory, that is,
the idea of characterizing strings through the sequences of multisets processed
during computations. A computation in this model defines accepted multiset

Generalized P Colony Automata and Their Relation to P Automata 169

sequences, which are transformed into accepted symbol sequences/strings. In this
model there is no input string, but there are tape and non-tape rules equally for
evolution and communication rules. In a single computational step, this system
is able to read more than one symbol, thus reading a multiset. This way gen-
eralized P colony automata are able to avoid the conflicts present in P Colony
automata, where simultaneous usage of tape rules in a single computational
step can arise problems. After getting the result of a computation, that is, the
accepted sequence of multisets, it is possible to map them to strings in a similar
way as shown in P automata.

In [18], some basic variants of the model were introduced and studied from
the point of view of their computational power. In [17] we continued the investi-
gations structuring our results around the capacity of the systems, and different
types of restrictions imposed on the use of tape rules in the programs of the
systems. We considered three possible ways of dealing with tape rules in the pro-
grams: (1) the unrestricted case, (2) the case when all programs must contain at
least one tape rule (all-tape programs), and (3) the case when all communication
rules are tape rules (com-tape programs).

2 Generalized P Colony Automata

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗,
and let ε be the empty word. We denote the number of occurrences of a symbol
a ∈ V in w by |w|a.

A multiset over a set V is a mapping M : V → N where N denotes the set of
non-negative integers. This mapping assigns to each object a ∈ V its multiplicity
M(a) in M . The set supp(M) = {a | M(a) ≥ 1} is the support of M . If V is
a finite set, then M is called a finite multiset. A multiset M is empty if its
support is empty, supp(M) = ∅. The set of finite multisets over the alphabet V
is denoted by M(V). A finite multiset M over V will also be represented by a
string w over the alphabet V with |w|a = M(a), a ∈ V , the empty multiset will
be denoted by ∅.

We say that a ∈ M if M(a) ≥ 1, and the cardinality of M , card(M) is
defined as card(M) = Σa∈MM(a). For two multisets M1,M2 ∈ M(V), M1 ⊆ M2

holds, if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as
(M1 ∪ M2) : V → N with (M1 ∪ M2)(a) = M1(a) + M2(a) for all a ∈ V , the
difference is defined for M2 ⊆ M1 as (M1 − M2) : V → N with (M1 − M2)(a) =
M1(a) − M2(a) for all a ∈ V .

A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a construct

Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F)

where

– V is an alphabet, the alphabet of the automaton, its elements are called objects;
– e ∈ V is the environmental object of the automaton, the only object which is

assumed to be available in an arbitrary, unbounded number of copies in the
environment;

170 K. Kántor and G. Vaszil

– wE ∈ (V − {e})∗ is a string representing a multiset from M(V − {e}), the
multiset of objects different from e which is found in the environment initially;

– (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is (the representation
of) a multiset over V , it determines the initial contents of the cell, and its
cardinality |wi| = k is called the capacity of the system. Pi is a set of programs,
each program is formed from k rules of the following types (where a, b ∈ V):

• tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or

• nontape rules of the form a → b, or a ↔ b, called rewriting (nontape)
rules and communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.
– F is a set of accepting configurations of the automaton which we will specify

in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbols) is read during each
configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system.

A configuration of a genPCol automaton is an (n+1)-tuple (uE , u1, . . . , un),
where uE ∈ M(V − {e}) is the multiset of objects different from e in the envi-
ronment, and ui ∈ M(V), 1 ≤ i ≤ n, are the contents of the i-th cell. The
initial configuration is given by (wE , w1, . . . , wn), the initial contents of the envi-
ronment and the cells. The elements of the set F of accepting configurations are
given as configurations of the form (vE , v1, . . . , vn), where

– vE ∈ M(V − {e}) denotes a multiset of objects different from e being in the
environment, and

– vi ∈ M(V), 1 ≤ i ≤ n, is the contents of the i-th cell.

In order to describe the functioning of genPCol automata, let us define the
following multisets. Let r be a rewriting or a communication rule (tape or non-
tape), and let us denote by left(r) and right(r) the objects on the left and on the
right side of r, respectively. Let also, for α ∈ {left, right} and for any program
p, α(p) =

⋃
r∈p α(r) where the union denotes multiset union (as defined above),

and for a rule r and program p = 〈r1, . . . , rk〉, the notation r ∈ p denotes the fact
that r is one of the rules of the program, that is, r = rj for some j, 1 ≤ j ≤ k.

Moreover, for any tape program p we also define read(p) as the multiset of
symbols (different from e) on the right side of rewriting tape rules and on the left
side of communication tape rules, that is, read(p) =

⋃

r∈p,r=a
T→b,b �=e

right(r) ∪
⋃

r∈p,r=a
T↔b,a �=e

left(r).
Let us also denote by export(p) and import(p) the multiset of objects that

are sent out to the environment and brought inside the cell when applying
the program p, respectively, that is, export(p) =

⋃
r∈p left(r), import(p) =⋃

r∈p right(r) for all communication rules r of the program p. Moreover,

Generalized P Colony Automata and Their Relation to P Automata 171

by create(p) we denote the multiset of symbols produced by the rewriting rules
of program p, thus, create(p) =

⋃
r∈p right(p) for the rewriting rules r of p.

Let c = (uE , u1, . . . , un) be a configuration of a genPCol automaton Π, and
let UE = uE ∪ {e, e, . . .}, thus, the multiset of objects found in the environment
(together with the infinite number of es which are always present). The set of
programs, Pc is applicable in configuration c, if the following conditions hold.

– At most one program is selected for each cell, that is, if p, p′ ∈ Pc, p �= p′ and
p ∈ Pi, p

′ ∈ Pj , then i �= j;
– The selected programs are applicable in the cells (the left sides of the rules

contain the same symbols that are present in the cell), that is, for each p ∈ Pc,
if p ∈ Pi then left(p) = ui;

– The symbols to be brought inside the cells by the programs are present in
the environment, that is,

⋃
p∈Pc

import(p) ⊆ UE ;
– Pc is maximal, that is, if any other program is added to it, then some of the

above conditions are not satisfied.

Let c = (uE , u1, . . . , un) be a configuration of the genPCol automaton. By
applying a set Pc of applicable programs, the configuration c is changed to a con-
figuration c′ = (u′

E , u′
1, . . . , u

′
n), denoted by c

Pc=⇒ c′, if the following properties
hold:

– If there is a p ∈ Pc such that p ∈ Pi, then u′
i = create(p) ∪ import(p),

otherwise u′
i = ui, 1 ≤ i ≤ n; and

– U ′
E = UE − ⋃

p∈Pc
import(p) ∪ ⋃

p∈Pc
export(p) (where U ′

E again denotes
u′

E ∪ {e, e, . . .} with an infinite number of es).

Thus, in genPCol automata, we apply the programs in the maximally parallel
way, that is, in each computational step, every component cell nondeterministi-
cally applies one of its applicable programs. Then we collect all the symbols that
the tape rules “read” (these multisets are denoted by read(p) for a program p
above): this is the multiset read by the system in the given computational step.
For any Pc, a set of applicable programs in a configuration c, let us denote by
read(Pc) the multiset of objects read by the tape rules of the programs of Pc.

Then we can also define the set of multisets which can be read in any con-
figuration of the genPCol automaton Π as

in(Π) = {read(Pc) | Pc is a set of applicable programs in a configuration c}.

Remark 1. Although the set of configurations of a genPCol automaton Π is infi-
nite (because the multiset corresponding to the contents of the environment is
not necessarily finite), the set in(Π) is finite. To see this, note that the appli-
cability of a program by a component cell also depends on the contents of the
particular component. Since at most one program can be applied in a compo-
nent in one computational step, and the number of programs associated to each
component is finite, the number of different sets of applicable programs in any
configuration, that is, the set {Pc | c is a configuration of Π} is also finite.

172 K. Kántor and G. Vaszil

A successful computation defines this way an accepted sequence of multisets:
u1u2 . . . us, ui ∈ in(Π), for 1 ≤ i ≤ s, that is, the sequence of multisets entering
the system during the steps of the computation.

Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F) be a genPCol automaton. The
set of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ in(Π), 1 ≤ i ≤ s, and there is a configuration
sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, and

ci

Pci=⇒ ci+1 with ui+1 = read(Pci) for all 0 ≤ i ≤ s − 1}.

Remark 2. Note that this way of functioning is different from the computational
modes used for P colony automata in [1] where only one symbol can be read
by the system in one computational step, so all tape rules that are applied
simultaneously must read one and the same symbol.

Let Π be a genPCol automaton, and let f : in(Π) → 2Σ∗
be a mapping,

such that f(u) = {ε} if and only if u is the empty multiset.
The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

We define the following language classes.

– L(genPCol,F , com-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where
all the communication rules are tape rules,

– L(genPCol,F , all-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where
all the programs must have at least one tape rule,

– L(genPCol,F , ∗(k)) is the class of languages accepted by generalized PCol
automata with capacity k and with mappings from the class F where unre-
stricted programs are used, that is, where programs with any kinds of rules
are allowed.

Let V and Σ be two alphabets, and let MFIN (V) ⊆ M(V) denote the set
of finite subsets of the set of finite multisets over an alphabet V . Consider a
mapping f : D → 2Σ∗

for some D ∈ MFIN (V). We say that f ∈ FTRANS, if
for any v ∈ D, we have |f(v)| = 1, and we can obtain f(v) = {w}, w ∈ Σ∗

by applying a deterministic finite transducer to any string representation of the
multiset v, (as w is unique, the transducer must be constructed in such a way that
all string representations of the multiset v as input result in the same w ∈ Σ∗

as output, and moreover, as f should be nonerasing, the transducer produces a
result with w �= ε for any nonempty input).

Besides the above defined class of mappings, we also use the so called permu-
tation mapping. Let fperm : M(V) → 2Σ∗

where V = Σ be defined as follows.
For all v ∈ M(V), we have

f(v) = {a1a2 . . . as | |v| = s, a1a2 . . . as is a permutation of the elements of v}.

Generalized P Colony Automata and Their Relation to P Automata 173

We denote the language classes that can be characterized with these types
of input mappings as LX(genPCol, Y (k)), where X ∈ {fperm,TRANS}, Y ∈
{com-tape, all-tape, ∗}.

Now we present an example to demonstrate the above defined notions.

Example 1. Let Π = ({a, b, c}, e, ∅, (ea, P), F) be a genPCol automaton where

P = {〈e → a, a
T↔ e〉, 〈e → b, a

T↔ e〉, 〈e → b, b
T↔ a〉, 〈e → c, b

T↔ a〉,
〈a → b, b

T↔ a〉, 〈a → c, b
T↔ a〉}

with all the communication rules being tape rules. Let also F = {(v, ca) | a �∈ v}
be the set of final configurations.

A possible computation of this system is the following:

(∅, ea) ⇒ (a, ea) ⇒ (aa, ea) ⇒ (aaa, eb) ⇒ (aab, ba) ⇒ (bba, ba) ⇒ (bbb, ac)

where the first three computational steps read the multiset containing an a,
the last three steps read a multiset containing a b, thus the accepted multiset
sequence of this computation is (a)(a)(a)(b)(b)(b).

It is not difficult to see that similarly to the one above, the computations
which end in a final configuration (a configuration which does not contain the
object a in the environment) accept the set of multiset sequences

A(Π) = {(a)n(b)n | n ≥ 1}.

The set of multisets which can be read by Π is in(Π) = {a, b} (where a and
b denote the multisets containing one copy of the object a and b, respectively).

If we consider fperm as the input mapping, we have

L(Π, fperm) = {anbn | n ≥ 1}.

On the other hand, if we consider the mapping f1 ∈ FTRANS where f1 :
in(Π) → 2Σ∗ with Σ = {c, d, e, f} and f1(a) = {cd}, f1(b) = {ef}, we get the
language

L(Π, f1) = {(cd)n(ef)n | n ≥ 1}.

3 Results on Systems with Unrestricted or All-Tape
Programs

In [17] we have examined the power of genPCol automata with the permutation
mapping, but it is also not difficult to see that in the general case, that is, for
any class of mappings F , we have the following.

1. L(genPCol,F , com-tape(k)) ⊆ L(genPCol,F , ∗(k)) and
L(genPCol,F , all-tape(k)) ⊆ L(genPCol,F , ∗(k)) for k ≥ 1; and

2. L(genPCol,F ,X(k)) ⊆ L(genPCol,F ,X(k + 1)) for k ≥ 1, where X ∈
{com-tape, all-tape, ∗}.

174 K. Kántor and G. Vaszil

The computational capacity of genPCol automata with input mapping fperm

was also investigated in [18]. It was shown that with unrestricted programs
systems of capacity one generate any recursively enumerable language, that is,

Lperm(genPCol, ∗(k)) = L(RE), k ≥ 1. (1)

The same holds also for the class of mappings FTRANS.

Theorem 1
LTRANS(genPCol, ∗(k)) = L(RE), k ≥ 1.

Proof. The statement (1) is proved in Theorem 1 of [17] by showing how genPCol
automata of capacity one can simulate the computations of so called register
machines with input tape. Such machines characterize the class of recursively
enumerable languages. They are similar to register machines introduced in [22],
but instead of processing a numerical input from an input counter, they process
an input string which is present on an input tape. To be able to read the input
string, besides the usual instructions of the types li : (ADD(r), lj) (add 1 to
register r and then go to the instruction with label lj), li : (SUB(r), lj , lk) (if
the value of register r is not zero, subtract one from it and go to instruction lj ,
otherwise leave it unchanged and go to lk), and lh : HALT (stop the machine),
they also have instructions of a different type

– li : (READ(a), lj) for a symbol a ∈ Σ of the input alphabet Σ.

The purpose of these instructions is to read symbol a from the input tape, and
then go to the instruction with label lj . Such an instruction can be applied if
the reading head scans a symbol a ∈ Σ on the input tape, and the head moves
to the next tape cell after the application of the instruction.

It is not difficult to see that register machines with input tape characterize
the class of recursively enumerable languages, as they can simulate two-counter
machines. Two-counter machines (see [14]) are Turing machines with an input
tape (which is read only from left to right in one direction), and worktapes which
are only used as counters (by moving the reading heads left or right without
writing anything to the tape cells).

Let L ⊆ Σ∗ be an arbitrary recursively enumerable language and let Π be
the genPCol automaton constructed in [17] with L(Π, fperm) = L. The idea of
the simulation is to have an object in the environment corresponding to the
label of the instruction which is to be simulated next. The cells of the system
“process” the instruction label in such a way that the necessary modifications
of the configuration are implemented, and the label of the next instruction is
sent to the environment. By observing the components which are responsible
for the simulation of the tape reading instructions, we may notice that there is
one simulating component constructed for each such instruction li : (READ(a), lj)
with label li

Pli = {〈e↔li〉, 〈li T→ a〉, 〈a→lj〉, 〈lj↔e〉}.
These programs can be applied when li appears in the environment. They

read an input symbol a while exchanging li for lj in the environment. Notice

Generalized P Colony Automata and Their Relation to P Automata 175

that the actual “reading” of the input symbol is realized by the tape program
〈li T→ a〉, and note also, that the system is constructed in such a way that at most
one such program might be applied in any computational step. This means, that
the set of input multisets of Π correspond to the singleton multisets consisting of
the symbols of the input alphabet of Π, that is, in(Π) = {a ∈ M(Σ) | a ∈ Σ}.
Thus, if we define f1 ∈ FTRANS as f1 : in(Π) → 2Σ∗

with f1(a) = {a} for
any a ∈ Σ, then we have L = L(Π, fperm) = L(Π, f1). This implies that L ∈
LTRANS(genPCol, ∗(1)), and since L(genPCol,F , ∗(k)) ⊆ L(genPCol,F , ∗(k +
1)) for k ≥ 1, our statement holds.

A similar result holds for all-tape systems with capacity at least two. From
[17] we have that Lperm(genPCol, all-tape(k)) = L(RE) for k ≥ 2, and we can
show the same for systems with input mappings from FTRANS.

Theorem 2

LTRANS(genPCol, all-tape(k)) = L(RE) for k ≥ 2.

Proof. The proof is based on the construction of the proof of Theorem1
above. For any recursively enumerable language L ⊆ Σ∗, we can obtain a
genPCol automaton of capacity two accepting L with all-tape type of pro-
grams by simply putting one more e object into each cell, and adding the
dummy tape rules e

T→ e or e
T↔ e to every program. This way we get that

LTRANS(genPCol, all-tape(2)) = L(RE). Since L(genPCol,F , all-tape(k)) ⊆
L(genPCol,F , all-tape(k + 1)) for any k ≥ 1, the statement also holds for any
k > 2.

As we have seen above, systems of capacity at least two with all-tape pro-
grams are as powerful as Turing machines. For the case of capacity one, we are
able to show that all regular languages, and also some non-regular ones, can be
characterized not only with all-tape, but also with com-tape programs.

Theorem 3

L(REG) ⊂ LTRANS(genPCol,X(1)), for X ∈ {all-tape, com-tape}.

Proof. To prove that any regular language can be described by genPCol
automata of capacity one having all-tape or com-tape type of programs, consider
an arbitrary regular language L, and the finite automaton M = (Q,Σ, q0, A, δ)
with L(M) = L, where Q is the set of internal states, Σ is the input alphabet,
q0 ∈ Q is the initial state, A is the set of final states, and δ : Q × Σ → Q is the
transition function.

Consider the genPCol automaton

Π1 = (V, e, ∅, (w0, P), F)

with V = {(q, a, s) | δ(q, a) = s} ∪ {(q0)}, w0 = (q0) where q0 is the initial state
and the set of accepting configurations is F = {(∅, (s, a, q)), (∅, (q)) | q ∈ A}.

176 K. Kántor and G. Vaszil

The set of all-tape programs is as follows

P = {〈(q0) T→ (q0, a, s)〉 | δ(q0, a) = s} ∪
{〈(q, a, s) T→ (s, b, r)〉 | δ(q, a) = s, δ(s, b) = r}.

The sets of accepted multiset sequences of Π1 are

A(Π1) = {(q0, a1, q1) . . . (qn, an+1, qn+1) | q0, q1, . . . , qn+1 is a sequence
of states ending in an accepting configuration while reading
the string a1 . . . an+1}.

Now, if we define f1 : in(Π) → 2Σ∗
by f1(q, a, s) = {a}, then we have

f1 ∈ FTRANS and L(Π1, f1) = L(M) = L.
For the case of com-tape programs, we construct the following system,

Π2 = (V, e, (q0), (e, P), F)

with V = {(q, a, s) | δ(q, a) = s} ∪ {(q0)}, where q0 is the initial state and the
set of accepting configurations is F = {((s, a, q), u), ((q), u) | q ∈ A}.

The set of com-tape programs is as follows

P = {〈e → (q, a, s)〉, 〈(s, b, r) T↔ (q, a, s), 〈(q0, a, s) T↔ (q0)〉,
〈(q0) → (q, a, s)〉 | δ(q, a) = s, δ(q0, a) = s, δ(s, b) = r}.

The sets of accepted multiset sequences of Π2 are again

A(Π2) = {(q0, a1, q1) . . . (qn, an+1, qn+1) | q0, q1, . . . , qn+1 is a sequence
of states ending in an accepting configuration while reading
the string a1 . . . an+1}.

Taking the same f1 input mapping as above, we have L(Π2, f1) = L(M) = L.
As Π1 and Π2 are systems with all-tape and com-tape programs, respectively, we
have shown that genPCol automata of capacity one with both of these types of
programs and input mappings from FTRANS are able to characterize any regular
language.

To see that the inclusion is strict, we recall the genPCol automaton from
Theorem 2 of [17]

(Σ ∪ {e}, e, wE , (e, P1), (e, P2), (e, P3), F),

with the sets of programs as

P1 = {〈e α→ $〉, 〈$ β↔ e〉},
P2 = {〈e α→ a〉, 〈a β↔ e〉, 〈e α→ b〉, 〈b β↔ $〉},
P3 = {〈e β↔ b〉, 〈b β↔ a〉, 〈a α→ b〉},

Generalized P Colony Automata and Their Relation to P Automata 177

where α, β can be empty, or they also can be T , that is, the rules are either
non-tape rules or tape rules, and set of accepting configurations

F = {(u, $, $, a) | u ∈ M(Σ − {a}), u �= ∅}.
If we have com-tape programs, that is, if α is empty and β = T , then let the

resulting system be denoted by Π1. It accepts the sequences of multisets

A(Π1) = {($a)n($b)n+1($)m | n ≥ 1,m ≥ 0}.

Thus, if we take f1 : in(Π1) → 2{c,d,e}∗
with f1($a) = c, f1($b) = d, and

f1($) = g, then we obtain the language

L(Π1, f1) = {cndn+1gm | n ≥ 1,m ≥ 0},

which is not a regular language.
If α = β = T , that is, if we have all-tape programs, then let the resulting

system be denoted by Π2. The accepted sequences of multisets are

A(Π2) = {($a)2n($b)2n+1($)m | n ≥ 1,m ≥ 0}.

In this case, taking the same f1 as above, the accepted language is

L(Π2, f1) = {c2nd2n+1gm | n ≥ 1,m ≥ 0}.

The accepted language is non-regular, in any of the cases, so the strictness of
the inclusion in the statement follows.

The examination of the case of systems with com-tape programs is an inter-
esting research direction which is still mostly open. What we are able to show, is
the following. Similarly to systems with input mapping fperm, languages that can
be characterized (with any capacity) are included in the class r-1LOGSPACE,
the class of languages characterized by so-called restricted one-way logarithmic
space bounded Turing machines. (For more on this complexity class, see [8].)

Recall that a nondeterministic Turing machine with a one-way input tape
is restricted logarithmic space bounded, if for every accepted input of length n,
there is an accepting computation where the number of nonempty cells on the
work-tape(s) is bounded by O(log d) where d ≤ n is the number of input tape
cells already read, that is, the distance of the reading head from the left end of
the one-way input tape. The class of languages accepted by such machines is
denoted by r-1LOGSPACE.

In [9] it is shown that this class is strictly included in 1LOGSPACE, the
class of languages accepted by Turing machines with a one-way input tape using
logarithmic space on the worktapes.

4 P Automata and genPCol Automata

Now we are going to compare the power of genPCol automata and P automata.
A P automaton is an antiport P system where, similarly to P colony automata,

178 K. Kántor and G. Vaszil

the accepted string language is defined by mapping the accepted multiset
sequence (that is, the sequence of multisets entering the skin membrane dur-
ing the steps of an accepting computation) to symbols of a given alphabet.

More formally, a P automaton, see [8]

Π = (V, μ,w1, . . . , wk, P1, . . . , Pk, F)

is a membrane system with object alphabet V , membrane structure μ, initial
contents (multisets) of the ith region wi ∈ V ∗, 1 ≤ i ≤ k, sets of antiport rules
Pi, 1 ≤ i ≤ k, and a set of accepting configurations F .

An antiport rule is of the form (u, in; v, out), where u, v ∈ M(V) are finite
multisets over V . If such a rule is applied in a region, then the objects of u enter
from the parent region and, in the same step, objects of v leave to the parent
region.

The configurations of the P automaton can be changed by transitions where
the rules are applied in the sequential mode (seq) or in the non-deterministic
maximally parallel mode (par). In the first case one rule is applied in each region
in every step, in the second case as many rules are applied simultaneously in the
regions at the same step as possible. Thus, a transition in the P automaton Π
is (v1, . . . , vk) ∈ δΠ(u0, u1, . . . , uk), where δΠ denotes the transition relation,
u1, . . . , uk are the contents of the k regions, u0 is the multiset entering the
system from the environment, and v1, . . . , vk, respectively, are the contents of
the k regions after performing the transition.

In this way, there is a sequence of multisets which enter the system from the
environment during the steps of its computation. If the computation is accepting,
that is, if it reaches a configuration from F , the set of accepting configurations,
then this multiset sequence is called an accepted multiset sequence, and denoted
by A(Π) for a P automaton Π.

The language accepted by a P automaton Π is defined with the use of input
mappings in the same way as in the case of genPCol automata. Let Π be a
P automaton, let in(Π) the set of possible input multisets, and let f : in(Π) →
2Σ∗

be a mapping, such that f(u) = {ε} if and only if u is the empty multiset.
The accepted language is defined as

LX(Π, f) = {f(u1) . . . f(us) ∈ Σ∗ | u1 . . . us ∈ A(Π)}, X ∈ {par, seq}
where par and seq denotes maximally parallel or sequential application of the
antiport rules, respectively.

The class of languages belonging to r-1LOGSPACE is important from the
point of view of P automata, as the following results are known. If we denote
by LX(PA, fperm), X ∈ {par, seq} the class of languages characterized by
P automata with input mapping fperm (using maximal parallel or sequential
rule application), then we have from [13]

LX(PA, fperm) ⊂ r-1LOGSPACE, X ∈ {par, seq}.

We also know from [13] that

Lperm(genPCol, com-tape(k)) ⊆ r-1LOGSPACE for any k ≥ 1,

Generalized P Colony Automata and Their Relation to P Automata 179

and moreover,

Lperm(genPCol, com-tape(2))\LX(PA, fperm) �= ∅ X ∈ {par, seq}.

Thus, the relationship of languages accepted by P automata and genPCol
automata with com-tape rules using the mapping fperm is still not clear. We
only know that they are both contained in r-1LOGSPACE, and that genPCol
automata can accept languages that P automata cannot.

Now we examine the case of mappings from FTRANS. We show that the class
of languages that characterized by genPCol automata with com-tape rules is
also included in r-1LOGSPACE.

Theorem 4

LTRANS(genPCol, com-tape(k)) ⊆ r-1LOGSPACE, for k ≥ 1.

Proof. We have shown in [17] that a similar inclusion holds for systems with per-
mutation mappings. The idea is based on the proof in [18] where the same result
was shown for capacity two. Consider the number of different configurations that
a genPCol automaton can reach during its computations. The number of differ-
ent possible states of the component cells is (mk)l where we have an alphabet
of cardinality m, and l cells having the capacity k.

To take into account also the different states of the environment, we need to
count how many objects have been exported from the component cells, since all
symbols different from e that are present in the environment during any config-
uration must have been exported from the cells with the use of communication
rules. Since all communication rules are tape rules, the number of objects inside
the multisets of the multiset sequence read by the system cannot be less than
the number of non-e objects present in the environment.

Let us examine now the relationship of the length of the multiset sequence
read and the corresponding string obtained by applying the input mapping to
the multiset sequence. Since the cardinality of the read multisets is at most l · k,
the input mapping is from FTRANS, and each nonempty multiset is mapped to a
nonempty string, the number of objects in the environment is at most c1 ·n where
n is the length of the string obtained by the input mapping from the multiset
sequence that is read so far, and c1 ∈ N is an appropriate constant. Thus, after
reading a string of length n, there can be at most c1 · n non-e symbols in the
environment, that is, the number of different states of the environment is at most
(c1 · n)m where m is the cardinality of the object alphabet.

Summing up the number of different configurations possible, we can conclude
that after reading a string of length n, the genPCol automaton can be in at
most (mk)l · (c1 · n)m different configurations, where m is the size of the object
alphabet, k is the capacity, l is the number of cells of the system, and c1 ∈ N is
an appropriate constant.

Such a system can be simulated by a Turing machine in restricted logarithmic
space by creating a Turing machine program that is able to store the encodings
of the genPCol automaton configurations on the worktapes, and based on the

180 K. Kántor and G. Vaszil

currently stored configuration, is able to simulate its computation by computing
and storing the next configuration and reading the necessary input symbols from
the input tape.

As the number of different configurations that are needed to be stored after
reading n symbols of the input string is (mk)l · (c1 ·n)m = c2 ·nm, we can encode
a configuration on the worktapes in such a way that it uses c3 · log(c2 · nm)
tape cells for some constants c2, c3 ∈ N, that is, the corresponding language has
restricted logarithmic space complexity.

As P automata with sequential rule application and mappings from FTRANS

characterize exactly the class r-1LOGSPACE (see [9]), we also have the following.

Corollary 1

LTRANS(genPCol, com-tape(k)) ⊆ Lseq(PA,FTRANS), k ≥ 1.

The precise relationship of the power of sequential P automata and genPCol
automata with FTRANS, however, remains an open problem.

5 Conclusions

We have investigated genPCol automata with input mappings from the class
FTRANS, the class of mappings between multisets and strings that can be realized
through the application of finite transducers to the string representations of
multisets.

We have shown that using unrestricted programs, these automata character-
ize the class of recursively enumerable languages. The same holds for systems
with all-tape programs, having capacity at least two. The situation is more com-
plicated in the case of systems with com-tape programs, we have shown that they
characterize language classes which are closely related to those characterized by
variants of P automata.

Besides clarifying the power of com-tape programs, the effect of using check-
ing rules, as defined in [20] for P colonies, is also an interesting topic for further
investigations. The study of systems with other classes of input mappings would
be an interesting research topic as well.

References

1. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., Vaszil, G.: PCol automata: rec-
ognizing strings with P colonies. In: Mart́ınez Del Amor, M.A., Păun, G., Pérez
Hurtado, I., Riscos Nuñez, A. (eds.) Eighth Brainstorming Week on Membrane
Computing, Sevilla, 1–5 February 2010, pp. 65–76. Fénix Editora (2010)

2. Cienciala, L., Ciencialová, L.: P colonies and their extensions. In: Kelemen, J.,
Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp.
158–169. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20000-
7 13

https://doi.org/10.1007/978-3-642-20000-7_13
https://doi.org/10.1007/978-3-642-20000-7_13

Generalized P Colony Automata and Their Relation to P Automata 181

3. Cienciala, L., Ciencialová, L., Kelemenová, A.: On the number of agents in
P colonies. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 193–208. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77312-2 12

4. Cienciala, L., Ciencialová, L., Kelemenová, A.: Homogeneous P colonies. Comput.
Inform. 27(3+), 481–496 (2008)

5. Ciencialová, L., Cienciala, L.: Variations on the theme: P colonies. In: Kolăr, D.,
Meduna, A. (eds.) Proceedings of the 1st International Workshop on Formal Mod-
els, pp. 27–34, Ostrava (2006)

6. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, G.: Variants of
P colonies with very simple cell structure. Int. J. Comput. Commun. Control 4(3),
224–233 (2009)

7. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems - A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London
(1994)

8. Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: Paun, G., Rozenberg,
G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing. Oxford
University Press, Inc. (2010)

9. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of
P automata. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol.
3384, pp. 76–89. Springer, Heidelberg (2005). https://doi.org/10.1007/11493785 7

10. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A.: Computing with cells in environ-
ment: P colonies. Mult.-Valued Log. Soft Comput. 12(3–4), 201–215 (2006)

11. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P colonies with a bounded number
of cells and programs. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 352–366. Springer, Heidelberg (2006).
https://doi.org/10.1007/11963516 22

12. Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting
P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC
2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36490-0 14

13. Csuhaj-Varjú, E., Vaszil, G.: P automata with restricted power. Int. J. Found.
Comput. Sci. 25(4), 391–408 (2014)

14. Fischer, P.: Turing machines with restricted memory access. Inf. Control 9, 231–236
(1966)

15. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the
sequential mode. In: Zaharie, D., Petcu, D., Negru, V., Jebelean, T., Ciobanu, G.,
Cicortas, A., Abraham, A., Paprzycki, M. (eds.) Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005),
Timisoara, Romania, 25–29 September 2005, pp. 419–426. IEEE Computer Society
(2005)

16. Freund, R., Oswald, M.: P colonies and prescribed teams. Int. J. Comput. Math.
83(7), 569–592 (2006)

17. Kántor, K., Vaszil, G.: On the class of languages characterized by generalized
P colony automata. Theoret. Comput. Sci. (to appear)

18. Kántor, K., Vaszil, G.: Generalized P colony automata. J. Autom. Lang. Comb.
19(1–4), 145–156 (2014)

19. Kelemen, J., Kelemenová, A.: A grammar-theoretic treatment of multiagent sys-
tems. Cybern. Syst. 23, 621–633 (1992)

https://doi.org/10.1007/978-3-540-77312-2_12
https://doi.org/10.1007/11493785_7
https://doi.org/10.1007/11963516_22
https://doi.org/10.1007/3-540-36490-0_14
https://doi.org/10.1007/3-540-36490-0_14

182 K. Kántor and G. Vaszil

20. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P colonies: a biochemically
inspired computing model. In: Workshop and Tutorial Proceedings, Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems, ALIFE IX,
Boston, Massachusetts, pp. 82–86 (2004)

21. Kelemenová, A.: P colonies. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) The
Oxford Handbook of Membrane Computing, pp. 584–593. Oxford University Press,
Inc. (2010)

22. Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Upper Sad-
dle River (1967)

23. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Gener. Comput. 20(3), 295–306 (2002)

Modelling and Validating an Engineering
Application in Kernel P Systems

Raluca Lefticaru1,2(B), Mehmet Emin Bakir3, Savas Konur1, Mike Stannett3,
and Florentin Ipate2

1 School of Electrical Engineering and Computer Science, University of Bradford,
Bradford, West Yorkshire BD7 1DP, UK
{r.lefticaru,s.konur}@bradford.ac.uk

2 Department of Computer Science, University of Bucharest, Str. Academiei nr. 14,
010014 Bucharest, Romania
florentin.ipate@ifsoft.ro

3 Department of Computer Science, The University of Sheffield,
Regent Court, 211 Portobello, Sheffield S1 4DP, UK

{mebakir1,m.stannett}@sheffield.ac.uk

Abstract. This paper illustrates how kernel P systems (kP systems)
can be used for modelling and validating an engineering application, in
this case a cruise control system of an electric bike. The validity of the
system is demonstrated via formal verification, carried out using the
kPWorkbench tool. Furthermore, we show how the kernel P system
model can be tested using automata and X-machine based techniques.

Keywords: Membrane computing · Kernel P systems
Cruise control · Electric bike · Bicycle · Verification · Testing

1 Introduction

Nature inspired computational approaches have been the focus of research for
several decades. Membrane computing [21] is one of these paradigms that has
recently been through significant developments and achievements. For the most
up to date results, we refer the reader to [22]. The main computational models
are called P systems, inspired by the functioning and structure of the living cells.

In recent years, various types or classes of P systems have been introduced
and applied to different problems. While these variants provide more flexibility
in modelling, this has inevitably resulted in a large pool of P system variants,
which do not have a coherent integrating view.

Kernel P (kP) systems have been introduced to unify many variants of P
system models, and combine a blend of various P system features and concepts,
including (i) complex guards attached to rules, (ii) flexible ways to specify the
system structure and dynamically change it and (iii) various execution strategies
for rules and compartments.

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 183–195, 2018.
https://doi.org/10.1007/978-3-319-73359-3_12

184 R. Lefticaru et al.

Kernel P systems are supported by a software suite, called
kPWorkbench [5]. The platform integrates several tools to simulate and verify
kP systems models written in a modelling language, called kP-Lingua, capable
of mapping the kernel P system specification into a machine readable represen-
tation.

The usability and efficiency of kP systems have been illustrated by a num-
ber of representative case studies, ranging from systems and synthetic biology,
e.g. quorum sensing [18], genetic Boolean gates [23] and synthetic pulse gener-
ators [1], to some classical computational problems, e.g. sorting [6], broadcast-
ing [10] and subset sum [5].

Here, as an engineering application, we focus on an e-bike cruise control sys-
tem. An e-bike (electric bicycle) is a bicycle that uses an integrated rechargeable
battery and an electric motor, which provides propulsion. A cruise control is an
advanced driver-assistance system technology that automatically regulates the
speed of a transportation system (such as motor vehicle or electric bicycle) set
by the user. From a system design perspective, the validation of the operational
safety of any component/feature is very crucial [24].

In this paper, we will model an e-bike cruise control system using kernel P
systems and verify its behaviour using the kPWorkbench verification environ-
ment. We also show how the kernel P system model can be tested using automata
and X-machine based techniques.

This paper is structured as follows: Sect. 2 introduces the preliminaries and
theoretical background. Section 3 presents our modelling approach using kernel
P systems, while Sects. 4 and 5 present the verification and testing approaches.
Finally, conclusions and further work are presented in Sect. 6.

2 Background

This section briefly presents the cruise control system, then gives the basic def-
initions regarding kernel P systems [9], a presentation of the kPWorkbench
software suite, and previous testing approaches for membrane systems.

2.1 Cruise Control System for an Electric Bicycle

In this paper, we focus on an e-bike cruise control system. By controlling the
speed of the e-bike (or other transportation system), this feature makes the
driving experience easier as the user does not have to use the accelerator or
brake. For an e-bike system a cruise control feature also assists the user by
improving the control of the journey time and controlling the level of exercise
undertaken.

From a system design point of view, however, adding a new feature brings
in new challenges for the operational safety of the new functionality [24]. Thus
validation of additional functionalities of any new technology and their impact
on other components of an existing system is important. This will be our focus
in this paper. The behaviour of the e-bike cruise control considered in this paper
is shown in Fig. 1.

Modelling and Validating an Engineering Application in Kernel P Systems 185

PC

PO

CC

BR

PA
PA request

CC request

PA cancelled

CC
 c

an
ce

lle
d

PC
 c

an
ce

lle
d

PC request

br
ak

e

br
ak

e

br
ak

e
ca

nc
el

le
d

Fig. 1. The state machine representing the behaviour of the e-bike cruise control system
considered in this paper. The system works as follows:

– At any time, the system can be at any of the following states:
(i) pedal bike (Pedal Only – PO, for short)
(ii) pedal bike with power assistance (Pedal Assist – PA)
(iii) maintain constant speed (Cruise Control – CC)
(iv) pedal to charge battery (Pedal Charge – PC)
(v) brake (Brake – BR).

– CC can be activated from PO or PA.
– If CC is cancelled, the system returns to the state from where it was activated

i.e., PO or PA, respectively.
– Pedal assist can be requested when the user is pedalling.
– Pedal charge can be requested when the user is pedalling.
– When the user brakes from CC mode, the system returns to PA/PO before

going to BR (if brake is still held).
– BR can be reached from PO, PA or PC.
– If the user releases the brake, the system goes to PO, no matter which was

the state before Brake. This happens because from the Brake state, after
releasing the brake lever, one can only start to pedal and enter in PO mode.
In order to enter in PA mode, the user must first start to pedal and then
make a pedal assist request.

In a previous paper [20], a similar e-bike case study has been used to illustrate
an integrated approach, combining software engineering methodologies (verifi-
cation and model-based testing) with notations and methods from system engi-
neering. Although the two state machines corresponding to the e-bike system
(from current paper and from [20]) have many similarities, the current approach
adopts kernel P systems as modelling formalism and further illustrates how these
can be used for simulating and validating an engineering application.

186 R. Lefticaru et al.

2.2 Kernel P Systems

We first begin recalling the formal definition of kernel P systems (or kP systems).

Definition 1. A kP system of degree n is a tuple kΠ = (A,μ,C1, . . . , Cn, i0),
where

– A is a finite set of elements called objects;
– μ defines the membrane structure, which is a graph, (V,E), where V is a set

of vertices representing components (compartments), and E is a set of edges,
i.e., links between components;

– Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a
compartment type, ti, from a set T and an initial multiset, wi,0 over A; the
type ti = (Ri, ρi) consists of a set of evolution rules, Ri, and an execution
strategy, ρi;

– i0 is the output compartment where the result is obtained.

Kernel P systems have features inspired by object-oriented programming:
one compartment type can have one or more instances. These instances share
the same set of rules and execution strategies (so will deliver the same function-
ality), but they may contain different multisets of objects and different neigh-
bours according to the graph relation specified by (V,E). Within the kP systems
framework, the following types of evolution rules have been considered so far:

– rewriting and communication rule: x −→ y{g}, where x ∈ A+ and y repre-
sents a multiset of objects over A∗ with potential different compartment type
targets (each symbol from the right side of the rule can be sent to a different
compartment, specified by its type; if multiple compartments of the same
type are linked to the current compartment, then one is randomly chosen to
be the target). Unlike cell-like P systems, the targets in kP systems indicate
only the types of compartments to which the objects will be sent, not par-
ticular instances. Also, for kP systems, complex guards can be represented,
using multisets over A with relational and Boolean operators [9].

– structure changing rules: membrane division, membrane dissolution, link cre-
ation and link destruction rules, which all may also incorporate complex
guards and that are covered in detail in [9].

In addition to its evolution rules, each compartment type in a kP system has
an associated execution strategy. The rules corresponding to a compartment can
be grouped in blocks, each having one of the following strategies:

– sequential : if the current rule is applicable, then it is executed, advancing
towards the next rule/block of rules; otherwise, the execution terminates;

– choice: a non-deterministic choice within a set of rules. One and only one
applicable rule will be executed if such a rule exists, otherwise the whole
block is simply skipped;

– arbitrary : the rules from the block can be executed zero or more times by
non-deterministically choosing any of the applicable rules;

– maximal parallel : the classic execution mode used in membrane computing.

Modelling and Validating an Engineering Application in Kernel P Systems 187

These execution strategies and the fact that in any compartment several
blocks with different strategies can be composed and executed offer a lot of
flexibility to the kP system designer, similarly to procedural programming.

2.3 kPWORKBENCH

Kernel P systems are supported by an integrated software suite, kPWorkbench
[5], which employs a set of simulation and formal verification tools and methods
that permit simulating and verifying kP system models, written in kP-Lingua.

The verification component of kPWorkbench checks the correctness of kP
system models by exhaustively analysing all possible behaviours. In order to
facilitate the specification of system requirements, kPWorkbench features a
property language, called kP-Queries, which comprises a list of property patterns
written as natural language statements. The properties expressed in kP-Queries
are verified using the Spin [13] and NuSMV [3] model checkers after being
translated into corresponding Linear Temporal Logic (LTL) and Computation
Tree Logic (CTL) syntax.

The simulation component features a native simulator [2,19], which allows
the users to simulate kP system models efficiently. In addition, kPWorkbench
integrates the Flame simulator [4,23], a general purpose large scale agent based
simulation environment, based on a method that allows users to express kP
systems as a set of communicating X-machines [11].

2.4 Kernel P Systems Testing

When testing a kP system model, an automata model needs to be constructed
first, based on the computation tree of the kP system. As, in general, the com-
putation tree may be infinite and cannot be modelled by a finite automaton,
an approximation of the tree is used. This approximation is obtained by limit-
ing the length of any computation to an upper bound k and considering only
computations up to k transitions in length. This approximation is then used to
construct a deterministic finite cover automaton (DFCA) of the model [6–8].

However, in the case of the e-bike, this can be naturally modelled by a
state-based formalism and, furthermore, the kP system was derived from such a
model (Fig. 1). Therefore one can use this state-based model in testing. It can
be observed, however, that the model is not exactly a finite automaton since
an additional variable is used to decide to which state (PO or PA) the e-bike
returns when the Cruise Control facility is cancelled1. Such a formalism, that

1 One could build a Finite State Automaton with two extra states (CCPO and CCPA,
that allow to come back to PO and PA, respectively, when CC facility is cancelled),
plus other necessary transitions from/to these states, in order to simulate the same
behaviour of the e-bike model. However, the corresponding X-machine model, having
one memory variable instead of the 2 extra states, has the advantage of keeping the
control structure simpler; having less states it’s easier to be read and the states
correspond exactly to the device modes.

188 R. Lefticaru et al.

combines a finite state machine like control with data structures is the stream
X-machine [12].

A stream X-machine (SXM) is like a finite automaton in which the transitions
are labelled by partial functions (or, more generally, relations) instead of mere
symbols. Formally,

Definition 2. A stream X-Machine (abbreviated SXM) is a tuple

Z = (Σ,Γ,Q,M,Φ, F, q0,m0),

where:

– Σ is the finite input alphabet.
– Γ is the finite output alphabet.
– Q is the finite set of states.
– M is a (possibly infinite) set called memory.
– Φ is a finite set of distinct processing functions; a processing function is a

non-empty (partial) function of type M × Σ −→ Γ × M.
– F is the (partial) next-state function, F : Q × Φ −→ Q.
– q0 ∈ Q is the initial state.
– m0 ∈ M is the initial memory value.

Intuitively, an SXM Z can be thought as a finite automaton with the arcs
labelled by functions from the set Φ. The automaton AZ = (Φ,Q, F, q0) over
the alphabet Φ is called the associated finite automaton (abbreviated associated
FA) of Z and is usually described by a state-transition diagram. As with any
automaton, the function F may be extended to take sequences from Φ∗, to form
the function F ∗ : Q × Φ∗ −→ Q. We will write LAZ

(q) = {p ∈ Φ∗ | (q, p) ∈
dom F ∗} to denote the set of paths that can be traced out of state q. When
q = q0, this will be called the language accepted by Z and denoted LAZ

.

3 KP Model for e-bike Cruise Control

In [20], the e-bike cruise control system has been manually coded into different
formal models for verification and model-based testing, which is a very challeng-
ing and time consuming process. Also, any change in the system model requires
the modification of all formal models. This issue, the direct coding from the sys-
tem description, has been highlighted in various engineering applications, e.g.
real-time systems [15], safety critical systems [16], pervasive systems [17].

Using kernel P systems as modelling language provides some practical
advantages. Namely, several verification and simulation methods integrated into
kPWorkbench are readily available; hence several complementary analyses
can be performed, which allows more in-depth analysis of the system. Since
kPWorkbench automatically translates a kP system model written in kP-
Lingua into the corresponding formal syntax, users do not need to carry out
manual encoding to access the tools. In addition, kP-Lingua has a simple lan-
guage, which makes it much easier to express system models.

In this section we present a kP system model for the cruise control system
described as a state machine in Fig. 1. The corresponding kP system has two

Modelling and Validating an Engineering Application in Kernel P Systems 189

compartment types: (1) tEvent, in charge of generating all possible events (or
inputs from the user) and sending them to tEBike; (2) tEBike, receiving these
events and processing them according to state machine rules. The tEBike will
always contain only one element of the set {PO,CC,PC, PA,BR} represent-
ing the current state of the machine, and might have other elements such as
{pa, pc, cc, br, pac, pcc, ccc, brc} representing the event received from tEvent or
{po2cc, pa2cc} as objects recording which was the previous state before CC. The
event names are lower case always, compared to their upper case states counter-
parts, e.g. pa, cc for pedal assist, cruise control request, while brc, pcc represent
brake cancelled or pedal charge cancelled.

Figure 2 presents the kP-Lingua source code corresponding to our model of
e-bike cruise control. The execution strategy is choice for both compartment

type tEvent{

choice{

g -> g, br(tEBike).

g -> g, cc(tEBike).

g -> g, pa(tEBike).

g -> g, pc(tEBike).

g -> g, brc(tEBike).

g -> g, ccc(tEBike).

g -> g, pac(tEBike).

g -> g, pcc(tEBike).

}

}

type tEBike{

choice{

PO, br -> BR.

PO, cc -> CC, po2cc.

PO, pa -> PA.

PO, pc -> PC.

PO, brc -> PO.

PO, ccc -> PO.

PO, pac -> PO.

PO, pcc -> PO.

PA, br -> BR.

PA, cc -> CC, pa2cc.

PA, pa -> PA.

PA, pc -> PA.

PA, brc -> PA.

PA, ccc -> PA.

PA, pac -> PO.

PA, pcc -> PA.

PC, br -> BR.

PC, cc -> PC.

PC, pa -> PC.

PC, pc -> PC.

PC, brc -> PC.

PC, ccc -> PC.

PC, pac -> PC.

PC, pcc -> PO.

CC, br, pa2cc -> PA.

CC, br, po2cc -> PO.

CC, cc -> CC.

CC, pa -> CC.

CC, pc -> CC.

CC, brc -> CC.

CC, ccc, po2cc -> PO.

CC, ccc, pa2cc -> PA.

CC, pac -> CC.

CC, pcc -> CC.

BR, br -> BR.

BR, cc -> BR.

BR, pa -> BR.

BR, pc -> BR.

BR, brc -> PO.

BR, ccc -> BR.

BR, pac -> BR.

BR, pcc -> BR.

}

}

cEvent {g} (tEvent).

cEBike {PO} (tEBike).

cEvent - cEBike.

Fig. 2. kP-Lingua code for the e-bike cruise control system

190 R. Lefticaru et al.

types, but in this particular case the maximal parallelism strategy would have
provided the same functionality. The computation is infinite and due to the non-
determinism of the model we would like to check if some properties hold for any
possible computation. The kP-Lingua model and verification files discussed here
are available for download on the kPWorkbench website2.

4 Verification

In this section, we check various properties of the e-bike model to verify that
the model satisfies the system requirements using the verification component of
kPWorkbench. The tool translates the kP-Lingua model of the e-bike system
into the NuSMV modelling language. Similarly, the properties written in kP-
Queries (using natural language statements) are translated into the NuSMV
property specification language (the translation can be in LTL or CTL).

Table 1 shows the verification results of the e-bike model properties. The
first column shows the property id; the second column describes the properties
informally; the third column shows the formal properties expressed in kP-Queries
(which are then translated into LTL and CTL in NuSMV syntax); and the last
column illustrates the verification result.

The first property checks whether BR is reachable from any state after brake
requested. The property holds because BR can be activated directly from PO, PA
and PC, and there are paths from CC to BR, too, over PO and PA. The second
property verifies that after BR is activated, the system will either stay in BR or
move to PO. As expected, this property also holds, because BR cannot request
any states other than itself or PO. The properties from 3 to 8 test different
transitions from/to the CC state. For example, properties 4 and 5 verify that
after CC is cancelled, the system will return to the state from which it was
activated, i.e., PO or PA. Properties 3–8 all hold, except for property 8, which
is false. This property checks the existence of states (other than PO and PA)
from which we may have direct access to the CC state. However, only PO and
PA can access CC, so the property does not hold. The remaining properties, 9–
12, check the existence/absence of transitions from/to PC. Again, all properties
hold except property 11. This property asserts that PC can be activated from
a state other than PO, whereas in fact only PO can activate PC. Therefore, it
does not hold. The verified properties validate that the e-bike system works as
desired.

5 Testing

In this section we show how the kernel P system model from Sect. 3 can be tested
using automata and X-machine based techniques.

For the kP system described in Sect. 3, the associated stream X-machine
(SXM) will be defined as follows:

2 http://kpworkbench.org/index.php/case-studies.

http://kpworkbench.org/index.php/case-studies

Modelling and Validating an Engineering Application in Kernel P Systems 191

Table 1. Verified properties

Description kP-queries Res.

1 Whenever brake is requested, it
will eventually be activated

ctl: cEBike.br> 0 followed-by
cEBike.BR> 0

T

2 BR either stays same or it can
activate only PO

ltl: always ((cEBike.BR> 0)
implies (next (cEBike.PO> 0 or
cEBike.BR> 0)))

T

3 The user should be able to
request/activate CC only from PO
or PA

ltl: never ((cEBike.BR> 0 or
cEBike.PC> 0) and (next
(cEBike.CC> 0)))

T

4 If CC activated from PO, then the
system will return to PO after CC
cancel or brake request

ltl: always ((cEBike.CC> 0 and
cEBike.po2cc> 0) and
(cEBike.ccc> 0 or cEBike.br> 0)
implies (next(cEBike.PO> 0)))

T

5 If CC activated from PA, then the
system will return to PA after CC
cancel or brake request

ltl: always ((cEBike.CC> 0 and
cEBike.pa2cc> 0) and
(cEBike.ccc> 0 or cEBike.br> 0)
implies (next(cEBike.PA> 0)))

T

6 When brake is requested in CC the
system returns to PA or PO

ltl: always ((cEBike.CC> 0 and
cEBike.br> 0) implies
(cEBike.BR> 0 preceded-by
(cEBike.PO> 0 or
cEBike.PA> 0)))

T

7 The system should not transit
directly from CC to brake directly

ltl: never ((cEBike.CC> 0 and
cEBike.br> 0) and (next
(cEBike.BR> 0)))

T

8 CC can be activated from a state
other than PO or PA

ctl: (not (cEBike.PO> 0 or
cEBike.PA> 0)) until
cEBike.CC> 0

F

9 PA and PC cannot directly
activate each other

ltl: never ((cEBike.PA> 0 and
(next (cEBike.PC> 0))) or
(cEBike.PC> 0 and (next
(cEBike.PO> 0))))

T

10 CC and PC cannot directly
activate each other

ltl: never ((cEBike.CC> 0 and
(next (cEBike.PC> 0))) or
(cEBike.PC> 0 and (next
(cEBike.CC> 0))))

T

11 PC can be activated from a state
other than PO

ctl: (not (cEBike.PO> 0)) until
cEBike.PC> 0

F

12 PC can activate PC, PO or BR
only

ltl: always (cEBike.PC> 0
implies (next ((((cEBike.PC> 0)
or (cEBike.PO> 0)) or
(cEBike.BR> 0)))))

T

192 R. Lefticaru et al.

– the set of states is Q = {PO,PA,PC,CC,BR};
– the set of inputs is Σ = {pa, cc, pc, br, brc, pac, ccc, pcc}
– there are no explicit outputs; in order to make the transition observable we

consider the output to be the next state for each transition, so the set of
outputs is the same as the set of states, Γ = Q.

– the memory is M = {m}, m ∈ {λ, pa2cc, po2cc} (one memory variable m,
where λ represents an undefined value, and pa2cc, po2cc are used to record
the last state before enabling the CC feature);

– each processing function is determined by a rewriting rule in tEBike, e.g.,
the PO, pa → PA rule induces the processing function φPO,pa,PA defined
by φPO,pa,PA(m, pa) = (PA,m), m ∈ M ; the PO, cc → CC, po2cc rule
induces processing function φPO,cc,CC(m, cc) = (CC, po2cc), m ∈ M ; the
CC, ccc, po2cc → PO rule induces processing function φCC,ccc,PO(po2cc, ccc)
= (PO, λ);

– the next-state function is defined by F (q, φq,σ,q′) = q′ for every q, q′ ∈ Q,
σ ∈ Σ such that φq,σ,q′ ∈ Φ;

– the initial state is q0 = PO;
– the initial memory is m0 = λ.

Now, suppose we want to test an implementation of a system specified as
an SXM. The testing techniques presented in [12,14] generate test suites that
guarantee that the implementation conforms to the model, provided that some
design for test conditions are satisfied and the tester is able to estimate the
maximum number of states the implementation may have. We denote by β the
difference between this estimated upper bound on the number of states of the
implementation under test and the number of states of the model.

In order to generate a test suite from a SXM, two set of paths from the associ-
ated automaton will have to be constructed: a state cover and a characterisation
set.

A transition cover of a SXM Z is a set S ⊆ Φ∗ such that for every state
q ∈ Q of Z there is p ∈ S such that p reaches state q, i.e. F ∗(q0, p) = q. In our
example, the empty sequence λ reaches the initial state PO, φPO,pa,PA reaches
PA, φPO,pc,PC reaches PC, φPO,cc,CC reaches CC and φPO,br,BR reaches BR,
thus S = {λ, φPO,pa,PA, φPO,pc,PC , φPO,cc,CC , φPO,br,BR} is a state cover of Z.

A characterization set of a SXM Z is a set W ⊆ Φ∗ such that for every two
distinct states q, q′ ∈ Q there is p ∈ W such that p distinguishes between q and q′,
i.e. F ∗(q, p) is defined and F ∗(q′, p) is not defined or F ∗(q, p) is not defined and
F ∗(q′, p) is defined. In our example, φPO,br,BR distinguishes PO from any other
state of Z, φPA,br,BR distinguishes PA from any other state of Z, φPC,br,BR

distinguishes PC from any other state of Z and φCC,br,PO distinguishes CC
from any other state of Z, so W = {φPO,br,BR, φPA,br,BR, φPC,br,BR, φCC,br,PO}
is a characterization set of Z. Once a transition cover and a characterization set
have been constructed, the test suite is given by the formula

S(Φ0 ∪ Φ1 ∪ · · · ∪ Φβ+1)W,

Modelling and Validating an Engineering Application in Kernel P Systems 193

where S is a transition cover, W is a characterization set, and (as already noted)
β denotes the difference between the estimated maximum number of states of
the implementation under test and the number of states of the model.

In order for the successful application of the test suite to guarantee the
conformance of the implementation to the model, the SXM model has to satisfy
two design for test conditions: output-distinguishability and input-completeness.
The set of processing functions Φ is called output-distinguishable if, for every two
processing functions φ1, φ2 ∈ Φ, if there exists m,m1,m2 ∈ M , σ ∈ Σ, γ ∈ Γ
such that φ1(m,σ) = (γ,m1) and φ2(m,σ) = (γ,m2) then φ1 = φ2. In our
example, Φ is not output-distinguishable since, for example, both φPO,br,BR and
φPA,br,BR produce the output BR while processing any memory value m and
input br. The set Φ can be transformed into one that is output-distinguishable
by suitably augmenting the output alphabet. In our running example we may
enlarge Γ by considering as output for each transition a pair formed by both the
current and the next state of the transition.

The set of processing functions Φ is called input-complete if, for every pro-
cessing function φ ∈ Φ and every memory m ∈ M , there exists an input symbol
σ ∈ Σ such that (m,σ) is in the domain of φ. In our running example, Φ is not
input-complete since, for example, for φCC,br,PA ∈ Φ and po2cc ∈ M , there is
no input σ ∈ Σ such that (po2cc, σ) is in the domain of φCC,br,PA. The set Φ
can be transformed into one that is input-complete by suitably augmenting the
input alphabet and the processing functions. In our running example, φCC,br,PA

can be augmented by introducing an extra input symbol, say σe, and setting
φCC,br,PA(po2cc, σe) = (λ, PA). Naturally, the extra inputs, outputs and transi-
tions will be removed after testing has been completed.

6 Conclusions and Further Work

In this paper, we have presented our current work, focusing on an application of
membrane computing to modelling and analysing engineering systems. As our
initial attempt, we have considered the cruise control system of e-bike as our case
study. We have modelled an e-bike cruise control system using kernel P systems
and validated its behaviour using the kPWorkbench verification environment.
We have also illustrated how the automata and X-machine testing methodologies
can be applied on the kP model of the cruise control system.

As future work, we are planning to show how more complex engineering
problems can be solved, tested and verified by using kP systems.

Acknowledgements. The work of SK is supported by Innovate UK (project no:
KTP010551). MB is supported by a PhD studentship provided by the Turkey Ministry
of Education. FI is supported by a grant of the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0210.

194 R. Lefticaru et al.

References

1. Bakir, M.E., Ipate, F., Konur, S., Mierla, L., Niculescu, I.: Extended simulation
and verification platform for kernel P systems. In: Gheorghe, M., Rozenberg, G.,
Salomaa, A., Sośık, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 158–
178. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14370-5 10

2. Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., Ipate, F.: High performance
simulations of kernel P systems. In: 2014 IEEE International Conference on High
Performance Computing and Communications, HPCC 2014, pp. 409–412 (2014)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

4. Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.:
Exploitation of high performance computing in the FLAME agent-based simu-
lation framework. In: 14th IEEE International Conference on High Performance
Computing and Communication, HPCC 2012, pp. 538–545 (2012)

5. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel
P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg,
G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 151–172. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-642-54239-8 12

6. Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S.: Kernel P systems modelling, test-
ing and verification - sorting case study. In: Leporati, A., Rozenberg, G., Salomaa,
A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 233–250. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-54072-6 15

7. Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S., Lefticaru, R.: Kernel P systems:
from modelling to verification and testing. Theoretical Computer Science (accepted
for publication). http://hdl.handle.net/10454/11720

8. Gheorghe, M., Ipate, F.: On testing P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 204–216.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7 15

9. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P systems - Version I. In: Eleventh
Brainstorming Week on Membrane Computing (11BWMC), pp. 97–124 (2013)

10. Gheorghe, M., Konur, S., Ipate, F., Mierla, L., Bakir, M.E., Stannett, M.: An
integrated model checking toolset for kernel P systems. In: Rozenberg, G., Salomaa,
A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 153–170.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28475-0 11

11. Holcombe, M.: X-machines as a basis for dynamic system specification. Softw. Eng.
J. 3(2), 69–76 (1988)

12. Holcombe, M., Ipate, F.: Correct Systems: Building a Business Process Solution.
Applied computing. Springer, Heidelberg (1998)

13. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 275–295
(1997)

14. Ipate, F., Holcombe, M.: An integration testing method that is proved to find all
faults. Int. J. Comput. Math. 63(3–4), 159–178 (1997)

15. Konur, S.: An event-based fragment of first-order logic over intervals. J. Logic
Lang. Inf. 20(1), 49–68 (2011)

16. Konur, S.: Specifying safety-critical systems with a decidable duration logic. Sci.
Comput. Program. 80(Part B), 264–287 (2014)

https://doi.org/10.1007/978-3-319-14370-5_10
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-54239-8_12
https://doi.org/10.1007/978-3-319-54072-6_15
http://hdl.handle.net/10454/11720
https://doi.org/10.1007/978-3-540-95885-7_15
https://doi.org/10.1007/978-3-319-28475-0_11

Modelling and Validating an Engineering Application in Kernel P Systems 195

17. Konur, S., Fisher, M.: A roadmap to pervasive systems verification. Knowl. Eng.
Rev. 30(3), 324–341 (2015)

18. Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qual-
itative and quantitative analysis of systems and synthetic biology constructs using
P systems. ACS Synth. Biol. 4(1), 83–92 (2015)

19. Konur, S., Kiran, M., Gheorghe, M., Burkitt, M., Ipate, F.: Agent-based high-
performance simulation of biological systems on the GPU. In: 17th IEEE Interna-
tional Conference on High Performance Computing and Communications, HPCC
2015, pp. 84–89 (2015)

20. Lefticaru, R., Konur, S., Yildirim, U., Uddin, A., Campean, F., Gheorghe, M.:
Towards an integrated approach to verification and model-based testing in system
engineering. In: The International Workshop on Engineering Data- & Model-driven
Applications (EDMA-2017) within the IEEE International Conference on Cyber,
Physical and Social Computing (CPSCom), pp. 131–138 (2017). http://hdl.handle.
net/10454/12322

21. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
22. The P systems website. http://ppage.psystems.eu. Accessed 30 Oct 2017
23. Sanassy, D., Fellermann, H., Krasnogor, N., Konur, S., Mierla, L., Gheorghe, M.,

Ladroue, C., Kalvala, S.: Modelling and stochastic simulation of synthetic biolog-
ical boolean gates. In: 2014 IEEE International Conference on High Performance
Computing and Communications, HPCC 2014, Paris, France, August 20–22, 2014,
pp. 404–408 (2014)

24. Varadarajan, A.V., Romijn, M., Oosthoek, B., van de Mortel-Fronczak, J.M., Bei-
jer, J.: Development and validation of functional model of a cruise control sys-
tem. In: Proceedings of the 13th International Workshop on Formal Engineering
Approaches to Software Components and Architectures, pp. 45–58. EPTCS (2016)

http://hdl.handle.net/10454/12322
http://hdl.handle.net/10454/12322
http://ppage.psystems.eu

Solving a Special Case of the P Conjecture
Using Dependency Graphs with Dissolution

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, and Claudio Zandron(B)

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy

{leporati,luca.manzoni,mauri,porreca,zandron}@disco.unimib.it

Abstract. We solve affirmatively a new special case of the P conjec-
ture by Gh. Păun, which states that P systems with active membranes
without charges and without non-elementary membrane division cannot
solve NP-complete problems in polynomial time. The variant we con-
sider is monodirectional, i.e., without send-in communication rules, shal-
low, i.e., with membrane structures consisting of only one level besides
the external membrane, and deterministic, rather than more generally
confluent. We describe a polynomial-time Turing machine simulation of
this variant of P systems, exploiting a generalised version of dependency
graphs for P systems which, unlike the original version introduced by
Cordón-Franco et al., also takes membrane dissolution into account.

1 Introduction

The original variant of P systems with active membranes, which includes mem-
brane charges (or polarisations), solves in polynomial time exactly the problems
in the complexity class PSPACE [13]. However, the variant without charges
appears to be significantly weaker. This led Păun to formulate the P conjecture
in 2005 [11, Problem F], one of the long-standing open problems in membrane
computing:

Can the polarizations be completely avoided? [. . .] The feeling is that this
is not possible — and such a result would be rather sound: passing from no
polarization (which, in fact, means one polarization) to two polarizations
amounts to passing from nonefficiency to efficiency.

While this general formulation of P conjecture is actually false, as P systems
without charges still characterise PSPACE when both non-elementary mem-
brane division and dissolution rules are allowed [2], the statement is true when
dissolution rules are forbidden [6].

This work was partially supported by Fondo d’Ateneo 2016 of Università degli Studi
di Milano-Bicocca, project 2016-ATE-0492 “Sistemi a membrane: classi di comp-
lessità spaziale e temporale”.

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 196–213, 2018.
https://doi.org/10.1007/978-3-319-73359-3_13

Solving a Special Case of the P Conjecture 197

The intermediate case, where dissolution is allowed but non-elementary divi-
sion is not, is still open. The best known upper bound is P#P, the class of
problems solved in polynomial time by Turing machines with an oracle for a
counting problem [7]. However, some restricted special cases actually do have a
P upper bound; this can be proved for P systems having only symmetric division
rules [9], i.e., of the form [a]h → [b]h[b]h, or when the initial membrane struc-
ture is linear, and only dissolution and elementary division are allowed [14]. We
refer the reader to Gazdag and Kolonits [4] for a more detailed survey of related
results.

In this paper we consider another special case of the P conjecture, proving
a P upper bound for P systems with active membranes without charges with
the following three restrictions:

– monodirectional, that is, without send-in communication rules, as previously
investigated for membranes with charges [8];

– shallow, that is, having only one level of elementary membranes in addition
to the outermost one;

– deterministic, that is, having only one computation, instead of having multiple
computations with the same result as in the usual confluent mode.

We believe that these constraints are quite natural and interesting, since monodi-
rectional shallow deterministic P systems with active membranes have long been
known to solve NP-complete problems in polynomial time with only two mem-
brane charges [1]. Furthermore, they have been recently [8] proved to charac-
terise PNP

‖ , which allows parallel queries to an NP oracle, with three charges1;
clearly, the PNP

‖ upper bound also applies to the variant without charges con-
sidered in this paper.

Among the three assumptions above, the most fundamental one is monodi-
rectionality. As we will prove later, this restriction implies that the result of
the computation only depends on at most one elementary membrane, although
establishing which one is nontrivial. We hope, instead, to relax the latter two
constraints in future works.

Besides the P upper bound itself, the main contribution of this paper is the
tool we exploit in order to prove the upper bound. This is a generalisation of
the dependency graphs, introduced by Cordón-Franco et al. [3] to establish the
result of P systems without charges and without dissolution rules, to P systems
which do include dissolving membranes. This generalisation has the potential
to be extended to other variants of P systems for proving upper bounds to the
complexity classes they characterise.

2 Basic Notions

The P systems analysed in this paper are monodirectional P systems with active
membranes [8] without charges [6], using object evolution rules [a → w]h, send-
out communication rules [a]h → []h b, membrane dissolution rules [a]h → b

1 The determinism of the P systems is not explicitly stated in the original paper [8],
but can be easily checked by inspection of the rules.

198 A. Leporati et al.

and elementary membrane division rules [a]h → [b]h[c]h. These P systems do
not use send-in communication rules a[]h → [b]h, or division rules for non-
elementary membranes, either of the “weak” form [a]h → [b]h[c]h or the “strong”
form

[
[]k[]�

]
h

→ [
[]k

]
h

[
[]�

]
h
.

Furthermore, we focus on shallow P systems, which have membrane struc-
tures of depth at most 1, that is, at most one level of elementary membranes
besides the outermost membrane.

Finally, we require our P systems to be deterministic, that is, each config-
uration reachable from the initial one has at most one successor configuration.
Notice that this condition, although much stronger than the usual confluence
requirement (where multiple computations can exist, as long as they all agree
on the result), does not require a single multiset of rules to be applicable at each
computation step, but only that all applicable multisets of rules produce the
same result.

For brevity, in this paper we refer to monodirectional, shallow, deterministic
P systems as MSD P systems.

In particular, we are dealing with recogniser P systems [12], whose alphabet
includes the distinguished result objects yes and no; exactly one result object
must be sent out from the outermost membrane to signal acceptance or rejection,
and only at the last computation step.

A decision problem, or language L ⊆ Σ�, is solved by a family of P sys-
tems Π = {Πx : x ∈ Σ�}, where Πx accepts if and only if x ∈ L. In that case,
we write L(Π) = L. As usual, we require a uniformity condition [10] on families
of P systems:

Definition 1. A family of P systems Π = {Πx : x ∈ Σ�} is (polynomial-
time) uniform if the mapping x �→ Πx can be computed by two polynomial-time
deterministic Turing machines E and F as follows:

– F (1n) = Π(n) is a common P system for all inputs of length n, with a
distinguished input membrane.

– E(x) = wx is an input multiset for Π(|x|), encoding the specific input x.
– Finally, Πx is simply Π(|x|) with wx added to its input membrane.

The family Π is said to be (polynomial-time) semi-uniform if there exists a
single deterministic polynomial-time Turing machine H such that H(x) = Πx

for each x ∈ Σ�.

We denote the class of problems solved by uniform (resp., semi-uniform) fami-
lies of deterministic P systems of type D as DMCD (resp., DMC�

D). We denote
the corresponding class of problems solved in polynomial time by DPMCD
(resp., DPMC�

D).

3 Properties of MSD P Systems

We begin our analysis of MSD P systems by proving that their overall behaviour,
acceptance or rejection, is actually governed by just one or two objects, which

Solving a Special Case of the P Conjecture 199

must moreover be located inside a single membrane. In order to be able to suc-
cinctly formalise this result, we first define a notion of restricted configuration
similar, but more general than the one previously used by the authors [8, Defi-
nition 3].

Definition 2. Given two configurations C, D of a P system, we say that C is
a restriction of D, in symbols C � D, if C is obtained from D by deleting zero
or more membranes, including their whole content (both objects and children
membranes), and zero or more of the remaining objects.

Being based on the subtree partial ordering of membrane structures and on
the submultiset partial order, the relation � is also a partial order.

For the purposes of this paper, we consider as valid restricted configurations
even those obtained by only keeping part of the environment and ignoring the
membrane structure altogether. For instance, given the configuration

D =
[
[a b]k, [c c]�d d d

]
h

e f

the following are all valid restrictions of D:

C1 = [[a b]kd d]h C2 = [[c c]�]h C3 = [d d d]h e C4 = e f

A subclass of restricted configurations that we will focus on in this paper consists
of the “small” configurations, which contain only one object, or up to two objects,
if they are both located inside an internal membrane.

Definition 3. We call a configuration C of an MSD P system Π a small con-
figuration if it consists of the isolated object yes or no in the environment, or
if it is of one of the forms [a]h,

[
[a]k

]
h
, or

[
[a b]k

]
h

where h is the outermost
membrane of Π, k is the label of an internal membrane, and a, b are objects of
the alphabet.

A simple counting argument shows that the number of small configurations
for an MSD P system is bounded by (m2 + m)� + 2 ∈ O(m2�), where m is the
size of the alphabet, and � the number of labels, which corresponds to the initial
number of membranes.

The following result shows that a halting computation of an MSD P system
contains a sequence of small configurations which, alone, suffice to establish the
result of the computation. This theorem is a stronger version of an analogous
result for monodirectional P systems with charges [8, Lemma 1], where a polyno-
mial number of objects and membranes were necessary and sufficient to decide
the result of the computation.

Theorem 1. Let Π be an accepting (resp., rejecting) MSD P system, and let C1

be a configuration reachable in any number of steps from the initial configura-
tion C0 of Π. Let �C = (C1, C2, · · · , Ct) be the halting subcomputation starting
at C1. Then, there exists a sequence of small configurations �D = (D1, . . . ,Dt)
with Di � Ci for 1 ≤ i ≤ t and Dt = yes (resp., Dt = no) and a sequence of
configurations �E = (E2, . . . , Et) such that Di → Ei+1 and Di+1 � Ei+1 � Ci+1 for
all 1 ≤ i < t.

200 A. Leporati et al.

Proof. We construct the sequences �D = (D1, . . . ,Dt) and �E = (E2, . . . , Et) by
recursion on t. If t = 1 then C1 is already an accepting (resp., rejecting) configu-
ration, and thus D1 = yes � C1 (resp, D1 = no � C1); in this case, the sequence �E
is empty.

Now suppose t > 1. Then, the sub-computation �C′ = (C2, . . . , Ct), i.e., the
same computation as �C but starting from the second step, is a halting computa-
tion starting at a configuration reachable from the initial configuration C0 of Π.
By induction hypothesis, there exists a sequence �D′ = (D2, . . . ,Dt) of small
configurations and a sequence �E ′ = (E3, . . . , Et) of configurations satisfying the
statement of the theorem.

We construct D1 and E2 according to the form of D2 and the choice of
rules that may have produced that configuration. The following list exhausts
all possibilities.

(1) If D2 = yes (resp., D2 = no), then there necessarily exists a send-out
rule [a]h → []h yes (resp., [a]h → []h no) which is applied in the step C1 →
C2. In this case, we let D1 = [a]h and E2 = []h yes (resp., E2 = []h no).

(2) If D2 = [a]h and object a is produced by an object evolution rule [b → a w]h,
then let D1 = [b]h and E2 = [a w]h.

(3) If D2 = [a]h and object a is produced by a send-out rule [b]k → []k a, then
let D1 =

[
[b]k

]
h

and E2 = [[]k a]h.
(4) If D2 = [a]h and object a is produced by a dissolution rule [b]k → a, then

let D1 =
[
[b]k

]
h

and E2 = [a]h.
(5) If D2 = [a]h and object a appeared inside an internal membrane k in C1,

but fell out due to another object b applying a dissolution rule [b]k → c,
then let D1 =

[
[a b]k

]
h

and E2 = [a c]h.
(6) If D2 = [a]h and object a evolved from an object b appearing inside an

internal membrane k in C1 using the rule [b → a w]k, and fell out due to
another object c applying a dissolution rule [c]k → d, then let D1 =

[
[b c]k

]
h

and E2 = [a w d]h.
(7) If D2 =

[
[a]k

]
h

and object a is produced by an evolution rule [b → a w]k,
then let D1 =

[
[b]k

]
h

and E2 =
[
[a w]k

]
h
.

(8) If D2 =
[
[a]k

]
h

and object a is produced by a division rule [c]k → [a]k[b]k,
then let D1 =

[
[c]k

]
h

and E2 = [[a]k [b]k]h.
(9) If D2 =

[
[a b]k

]
h

and objects a, b are produced by an object evolution
rule [c → a, b, w]k, then let D1 =

[
[c]k

]
h

and E2 =
[
[a b w]k

]
h
.

(10) If D2 =
[
[a b]k

]
h

and objects a, b are produced by two object evolution
rules [c → a v]k and [d → b w]k, then let D1 =

[
[c d]k

]
h

and E2 =[
[a v b w]k

]
h
.

(11) If D2 =
[
[a b]k

]
h
, object a is produced by an object evolution rule [c →

a w]k, and object b already appeared inside membrane k, then let D1 =[
[c b]k

]
h

and E2 =
[
[a w b]k

]
h
.

(12) If D2 =
[
[a b]k

]
h
, object a is produced by a division rule [c]k → [a]k[d]k,

and object b is produced by an object evolution rule [e → b, w]k, then
let D1 =

[
[c e]k

]
h

and E2 = [[a b w]k, [d b w]k]h.

Solving a Special Case of the P Conjecture 201

(13) If D2 =
[
[a b]k

]
h
, object a is produced by a division rule [c]k → [a]k[d]k,

and object b already appeared inside membrane k, then let D1 =
[
[c b]k

]
h

and E2 = [[a b]k [d b]k]h.

It is easy to check by inspection that in all cases (1)–(13) we have D1 � C1,
D1 → E2, and D2 � E2 � C2 as required.

Figure 1 shows the relationship between the computation �C and the sequences
of configurations �D and �E in the statement of Theorem 1.

Fig. 1. A computation �C = (C0, C1, C2, . . . , Ct−1, Ct) of Π and a sequence of configu-
rations C0 � D0 → E1 � D1 → E2 � D2 → · · · → Et−1 � Dt−1 → Et � Dt

alternating restriction steps (�) and application of the rules from the corresponding
steps of �C (→) limited to the objects in Di. The diagram “commutes” in the sense
that, starting from C0, the two paths either both lead to accepting configurations, or
both to rejecting configurations. Notice that Ei � Ci for all i, since Ei is obtained
from Di−1 � Ci−1 and the P system is deterministic.

Notice that Theorem 1 does not directly provide an algorithm for computing
which sequence �D = (D0, . . . ,Dt) of small configurations gives the result of the
computation. Furthermore, as will be shown in Sect. 4, it is not even sufficient
to check that D0 � C0 and Dt = yes to guarantee the acceptance of Π, due to
the possible interference from objects in �C not appearing in �D.

Another fundamental limitation of MSD P systems is that they always halt
in linear time with respect to the size of the alphabet, otherwise they would
enter an infinite loop.

Theorem 2. Every MSD P system halts within 2m steps, where m is the size
of its alphabet.

Proof. Assume that the P system is accepting, as the rejecting case is symmet-
rical. The object yes descends from an object a contained in the initial configu-
ration of the P system via a sequence of rule applications. The object a is ini-
tially either inside the outermost membrane, or inside an elementary membrane
immediately contained therein; in the latter case, either it reaches the outermost
membrane via communication or by dissolving the membrane, or it reaches the
outermost membrane due to another object dissolving the membrane.

202 A. Leporati et al.

If a is initially located inside the outermost membrane, then it can be rewrit-
ten a number of times by object evolution rules until an object b with an associ-
ated send-out rule [b]h → []h yes is produced; notice that object evolution is the
only way to produce b, as the outermost membrane cannot divide. In the shortest
possible computation, the object b appears after a sequence of at most m − 1
rewriting steps, where at least one new object is introduced at each step: indeed,
since object evolution rules are context-free, each object either (i) becomes b
within m − 1 steps, or (ii) it stops evolving before m − 1 steps without ever
becoming b, or (iii) it enters an infinite rewriting loop. Case (iii) is impossible,
since the P system is a recogniser; case (ii) is also impossible, since reaching b is
necessary in order to send out the result yes. Hence case (i) must hold, and the
computation accepts in at most m steps.

An analogous argument shows that a rule of the form [a]k → []k b or [a]k → b
is applied inside the elementary membrane containing a after at most m−1 steps,
if a is not initially located inside the outermost membrane. After further m − 1
steps, the result is then sent out by a rule [c]h → []h yes as detailed above. In
this case, the accepting computation has a length at most 2m.

This result implies that the class of languages recognised by MSD P systems
with no restriction on computation resources is the same as the class of languages
they recognise in polynomial time.

Corollary 1. DPMCD = DMCD and DPMC�
D = DMC�

D, where D is the
class of MSD P systems.

4 Dependency Graphs with Dissolution

Dependency graphs for P systems were introduced by Cordón-Franco et al. [3] as
a way to track the objects in a P system without charges with non-cooperative
rules and fixed membrane structures, and were later extended to membrane
division rules [5], leaving out only membrane dissolution.

A dependency graph for a P system Π of this kind has, as vertices, all
possible configurations of the form

[
[· · · [a]hd

· · ·]h1

]
h0

, consisting of a linear
sub-membrane structure of the membrane structure of Π, and a single object
contained in the innermost membrane; a single object a in the environment (i.e.,
without any surrounding membrane) is also allowed2. Two configurations V,W
of the dependency graph are connected by an oriented edge if, when applying the
rules of Π from configuration V (recall that, for a confluent P system, multiple
choices are generally possible), we can reach a configuration V ′ containing W,
or W � V ′ in our notation (Definition 2).

The usefulness of the dependency graph for a P system Π without dissolution
lies in the fact that it can be constructed in polynomial time from the description

2 In the original notation [3,5] the surrounding membranes are left implicit, and thus
the vertex

[
[· · · [a]hd · · ·]h1

]
h0

is simply denoted by (a, hd); an object a in the envi-

ronment is denoted by (a, env).

Solving a Special Case of the P Conjecture 203

of Π, and that Π accepts if and only if there exists a vertex V contained in the
initial configuration C0, in symbols V � C0, that is connected with a path to
the node yes, representing the positive answer object in the environment3. This
property can be easily checked in polynomial time, and this proves that the
P conjecture is indeed true limited to P systems without dissolution [5].

The reason why checking reachability on dependency graphs suffices is due
to the fact that such P systems lack cooperation, or, in other words, the only
interaction between objects is due to the fact that the rules (excluding object
evolution) can compete for the same membrane. Indeed, a theorem analogous to
our Theorem 1, but stating that the result of the entire computation depends
only on “very small configurations” containing exactly one single object, can be
easily inferred from the above-mentioned result [5].

Allowing membrane dissolution breaks the entire reasoning, by introducing
cooperation (or context-sensitiveness). Indeed, consider a configuration

[
[a u]k

]
h

with a dissolution rule [a]k → b and zero or more object evolution rules rewriting
the multiset u into v. This configuration leads to [b v]h in one step, and now
the objects in v are subject to a potentially completely different set of rules,
since the label of the membrane containing them was changed by the object a
dissolving k. Thus, the objects in v have been affected by a, which is not possible
in a P system without charges and without dissolution; furthermore, the influence
of a on v cannot be represented by a standard dependency graph, as this tracks
each object separately.

A way to generalise dependency graphs in order to take cooperation into
account is to use larger configurations as vertices, containing multiple objects;
as an extreme case, the whole set of configurations of Π could be kept as set of
vertices. The side effect of this choice is the growth of the dependency graph. In
general, a dependency graph keeping track of n objects per vertex has Θ(nm)
vertices, where m is the size of the alphabet; this value is exponential if n ∈ Θ(m).
If there is no bound on the number of objects per vertex, the dependency graph
might even become infinite.

In the case of MSD P systems, however, we can exploit Theorem 1 to keep
the vertices of the dependency graph small, and thus reducing their number to
polynomial, since at most two objects per vertex are needed even in the presence
of dissolution.

Definition 4. The dependency graph G(Π) =
(
V (Π), E(Π)

)
for an MSD

P system has as vertices V (Π) all small configurations of Π and, as edges, the
set E(Π) =

{
(U ,V) : U → C for some configuration C and V � C}

. We denote
by Y (Π) the subset of V (Π) consisting of all vertices connected with a path to
the small configuration yes.

Figure 2 shows the dependency graph for a simple MSD P system using all
available types of rule.

Notice that yes � C if and only if the object yes is located in the environment
of configuration C, that is, if and only if C is an accepting configuration. Hence,
3 That is, node (yes, env) in the original notation.

204 A. Leporati et al.

[
[yes yes]k

]
h

[
[a a]k

]
h

[
[a yes]k

]
h

[
[a]k

]
h

[
[yes]k

]
h

[
[a no]k

]
h

[
[no]k

]
h

[
[no yes]k

]
h

[
[no no]k

]
h

[no]h[a]h

yes no

[yes]h

d(V) = 0

d(V) = 1

d(V) = 2

Fig. 2. Dependency graph for an MSD P system Π having alphabet Γ = {a, yes, no}
and rules [a]k → [yes]k[no]k, [no]k → a, [yes → a no]k, [no]h → []h no, [a]h → []h yes.
Notice that this dependency graph is neither connected (the vertex [yes]h is iso-
lated), nor acyclic (it even includes a self-loop). Also notice that some vertices, such
as

[
[a no]k

]
h
, show nondeterministic behaviour, since two rules can be applied; this

does not necessarily contradict the determinism of Π, since these vertices V might
not satisfy V � C for any configuration C reachable from the initial configuration.
This P system accepts, for instance, from the initial configuration C0 =

[
[no]k

]
h
, but

rejects from C0 = [no]h. The dashed lines are isolines grouping together the vertices by
distance d (Definition 5).

Solving a Special Case of the P Conjecture 205

the small configurations V ∈ Y (Π) are those that allow a configuration C � V
to ultimately reach an accepting configuration, under certain conditions. Unfor-
tunately, the mere inclusion V � C, which allowed us to establish the result of
P systems without dissolution, does not suffice in the case of MSD P systems,
as shown by the following example.

Example 1. Consider an MSD P system Π with the rules

[a → c]k [b → d]k [c → e]k [d]k → f

[c]h → []h no [e]h → []h yes [g]k → f

The dependency graph for Π includes the following path:

�D =
([

[a b]k
]
h
,
[
[c d]k

]
h
, [e]h, yes

)

If the initial configuration of Π is C0 =
[
[a b]k

]
h
, then Π has indeed the accepting

computation
[
[a b]k

]
h

→ [
[c d]k

]
h

→ [e f]h → [f]h yes

If, on the other hand, the initial configuration is C0 =
[
[a b g]k

]
h
, i.e., also includ-

ing the object g, the resulting computation is rejecting:
[
[a b g]k

]
h

→ [c d f]h → [d f]h no

This shows that it is not sufficient to find a vertex V, in this case V =
[
[a b]k

]
h
,

such that V � C0 and there exists a path from V to yes if dissolution rules are
allowed, since objects such as d may interfere with the path leading to yes.

As a consequence, the use of small configurations alone does not suffice to
correctly determine the result of P systems where dissolution is allowed. A prop-
erty more complex than “being connected via a path to the vertex yes” needs to
be checked for the vertices contained in the initial configuration C0. The rest of
this section is devoted to establishing this property.

We refer to objects such as g in Example 1, which do not appear in a small
configuration V connected by a path to the vertex yes, and yet interfere with
that path, as troublemakers for V. In order to give a formal definition of trou-
blemakers, we first define a few related notions.

First of all, notice that when the current configuration of the P system con-
tains a vertex V of the form [a]h, with an object located inside the outermost
membrane, then no troublemaker can exist, since the outermost membrane can-
not be dissolved. This applies, of course, also when V = yes, that is, after having
reached the halting configuration. For the remaining vertices, we define a notion
of distance from such vertices without troublemakers.

Definition 5. Let Π be an MSD P system; define the function d : Y (Π) → N

by letting d(V) = 0 if V = yes or V = [a]h for some a ∈ Γ , and letting d(V) be
the distance (in terms of oriented edges) of V to the nearest small configuration
of the form [a]h in the subgraph of G(Π) induced by Y (Π), otherwise.

206 A. Leporati et al.

Figure 2 also shows the distances of each node of the example dependency
graph.

Among the troublemakers for a small configuration of the form V =
[
[a]k

]
h

or V =
[
[a b]k

]
h

there are the objects that dissolve membrane k, unless a or b
themselves have dissolution rules. We refer to these objects with the symbol

dis(k) = {a ∈ Γ : there exists a rule [a]k → b for some b ∈ Γ}.

Other troublemakers do not dissolve membrane k immediately, but rather pro-
duce the set of objects X that are troublemakers for vertices reachable from V
with an edge. These may be produced either by object evolution rules, and we
denote them by

evok(X) = {a ∈ Γ : there exists a rule [a → b w]k for some b ∈ X}
or by division rules, and we denote them by

divk(X) = {a ∈ Γ : there exists a rule [a]k → [b]k[c]k for some b, c ∈ X}
Notice that send-out rules cannot produce troublemakers for any connected ver-
tex, since the outermost membrane, where the result of the send-out appears,
cannot be dissolved.

Now let V be a small configuration of the form
[
[a]k

]
h

or
[
[a b]k

]
h
. In order to

recursively compute its set of troublemakers, let us consider all vertices W with
an edge (V,W) ∈ E(Π). Among these, we keep only the vertices W1, . . . ,Wn

having distance d(Wi) = d(V) − 1. The reason to exclude adjacent vertices W
with d(W) ≥ d(V) is that these require more computation steps to reach a
troublemaker-free small configuration and, intuitively, the set of troublemakers
of a vertex can increase with its distance. Furthermore, the troublemakers of V
only depend on the intersection of the troublemakers of W1, . . . ,Wn; indeed, a
troublemaker for Wi that is not simultaneously a troublemaker for some Wj can
be bypassed by following the edge (V,Wj).

Based on this intuition we can now define, for each small configuration V
on a path to yes, the notion of set of troublemakers tm(V) by recursion on the
distance d(V).

Definition 6. Let Π be an MSD P system and let 2Γ be the power set of its
alphabet. Define the function tm: Y (Π) → 2Γ as

tm(V) = ∅ (1)

if d(V) = 0 or d(V) = 1, and

tm(V) = dis(k) ∪ evok

(n⋂

i=1

tm(Wi)
)

∪ divk

(n⋂

i=1

tm(Wi)
)

(2)

if d(V) ≥ 2, where W1, . . . ,Wn are all vertices in Y (Π) such that (V,Wi) ∈ E(Π)
and d(Wi) = d(V) − 1.

Solving a Special Case of the P Conjecture 207

In fact, we can actually prove that the set of troublemakers tm(V) depends
only on the distance d(V) and on the label of the internal membrane, but not
on the actual objects it contains.

Lemma 1. Let Π be an MSD P system, let U ,V be two small configurations
of Π such that, if both U and V contain two nested membranes, then the internal
ones have the same label, and assume that d(U) = d(V). Then tm(U) = tm(V).

Proof. By induction on d(U). If d(U) = d(V) = 0 or d(U) = d(V) = 1, then
tm(U) = ∅ = tm(V). If d(U) = d(V) ≥ 2 then, according to Eq. (2), we have

tm(U) = dis(k) ∪ evok

(n⋂

i=1

tm(Wi)
)

∪ divk

(n⋂

i=1

tm(Wi)
)

tm(V) = dis(k) ∪ evok

(m⋂

i=1

tm(Zi)
)

∪ divk

(m⋂

i=1

tm(Zi)
)

with d(W1) = · · · = d(Wn) = d(Z1) = · · · = d(Zm) < d(U). Hence, by induction
hypothesis we have tm(W1) = · · · = tm(Wn) = tm(Z1) = · · · = tm(Zm), which
implies tm(U) = tm(V).

The following monotonicity result formalises the intuitive notion that, with
the increase of d(V), the possibilities for external objects to interfere with a path
on the dependency graph may also increase.

Lemma 2. Let Π be an MSD P system, let U ,V be two small configurations
of Π such that, if both U and V contain two nested membranes, the internal
ones have the same label, and assume that d(U) ≤ d(V). Then tm(U) ⊆ tm(V).

Proof. It suffices to show that tm(U) ⊆ tm(V) when d(U) = d(V) − 1. We prove
it by induction on d(U). If d(U) = 0 or d(U) = 1, then tm(U) = ∅, which is
always a subset of tm(V).

If d(U) ≥ 2 then d(V) > 2, and both tm(U) and tm(V) are computed using
Eq. (2):

tm(U) = dis(k) ∪ evok

(n⋂

i=1

tm(Wi)
)

∪ divk

(n⋂

i=1

tm(Wi)
)

tm(V) = dis(k) ∪ evok

(m⋂

i=1

tm(Zi)
)

∪ divk

(m⋂

i=1

tm(Zi)
)

Since d(Z1) = · · · = d(Zm) = d(V) − 1 = d(U), then by Lemma 1 we have
tm(Z1) = · · · = tm(Zm) = tm(U), and thus

tm(V) = dis(k) ∪ evok

(m⋂

i=1

tm(U)
)

∪ divk

(m⋂

i=1

tm(U)
)

= dis(k) ∪ evok

(
tm(U)

) ∪ divk

(
tm(U)

)

208 A. Leporati et al.

Since d(W1), . . . , d(Wn) = d(U) − 1, we have tm(W1), . . . , tm(Wn) ⊆ tm(U) by
induction hypothesis, and thus

⋂n
i=1 tm(Wi) ⊆ tm(U), which implies

tm(V) ⊇ dis(k) ∪ evok

(n⋂

i=1

tm(Wi)
)

∪ divk

(n⋂

i=1

tm(Wi)
)

= tm(U)

as needed.

We call a configuration C of an MSD P system Π untroubled if it contains
a vertex V ∈ V (Π) that is connected via a path to the vertex yes, and none
of the troublemakers of V. Notice, however, that a vertex can be contained
multiple times in a given configuration, and each occurrence may or may not
be subject to interference by its troublemakers. For instance, let V =

[
[a b]k

]
h

with tm(V) = {c} and C =
[
[a a b]k [a b c]k

]
h
; the small configuration V occurs

three times in C (twice in the left membrane k, and once in the right one), but
only one occurrence may have interference, since the troublemaker c does not
occur in the left membrane k. In order to formalise the notion of untroubled
membrane, given a configuration of an MSD P system

C =
[
[w1]k1 , · · · , [wn]kn

, w0

]
h

w

we say that L � C is a linear restriction of C if either L = w, or L = [w0]h,
or L =

[
[wi]ki

]
h

for some 1 ≤ i ≤ n. In a linear restriction L, only one membrane
contains objects, and thus the occurrences of a small configuration V � L are
either all subject to interference from a troublemaker, or none of them is.

Definition 7. We say that a configuration C of an MSD P system is untroubled
if there exists a linear restriction L � C and a small configuration V ∈ Y (Π)
such that V � L and no object a ∈ tm(V) appears in L.

The following results show that the property of being untroubled propagates
forwards along a computation step and thus, recursively, all the way to the
halting configuration.

Lemma 3. Let Π be an MSD P system, let C be an untroubled configuration
reachable from the initial configuration C0, and let C → D. Then D is also
untroubled.

Proof. Since C is untroubled, there exists a linear restriction L � C and a small
configuration V � L such that no object of tm(V) belongs to L.

If d(V) ≤ 2, then there exists a small configuration W with d(W) ≤ 1 such
that V → V ′ � W for some configuration V ′, otherwise d(V) would be at least 3.
But then tm(W) = ∅ and thus D is untroubled.

If d(V) ≥ 3, then V → V ′ � W for some W such that d(W) = d(V) − 1 ≥ 2,
and there exists a linear restriction M � D with W � M. By contradiction
suppose that, for all such W, there exists a ∈ tm(W) with a belonging to M.

This object a itself cannot appear in L: since we have tm(W) ⊆ tm(V) by
Lemma 2, we would have simultaneously a ∈ tm(V) and a in L, contradicting our

Solving a Special Case of the P Conjecture 209

assumptions on V. Hence, the object a must be generated by an object evolution
or division rule triggered by an object b in L.

If it is generated by an object evolution rule, then b ∈ evok

(
tm(W)

)
;

since tm only depends on the distance d (Lemma 1), this means that we
have b ∈ evok

(
tm

(⋂n
i=1 Wi

))
, where the Wi are all small configurations, includ-

ing W, such that (V,Wi) ∈ E(Π) with d(Wi) = d(V) − 1. But then b ∈ tm(V)
while simultaneously appearing in L, once again contradicting the hypotheses
on V.

Suppose, instead, that the object a is generated by a division rule of the
form [b]h → [a]h[c]h. We necessarily have c ∈ tm(W), because otherwise there
would exist a linear restriction M′ � D distinct from M with M′ containing the
other copy of W resulting from the division, but without any object in tm(W).
But then we have both a, c ∈ tm(W), which implies that

b ∈ divk

(
tm(W)

)
= divk

(n⋂

i=1

tm(Wi)
)

⊆ tm(V)

once again contradicting the hypotheses on V.
This shows that no object a ∈ tm(W) can belong to M, and thus D is

untroubled.

Lemma 4. Let Π be an MSD P system with untroubled initial configuration C0.
Then Π accepts.

Proof. Suppose that Π has the halting computation �C = (C0, . . . , Ct) with untrou-
bled C0. By Lemma 3, all other configurations of �C, and in particular Ct, are also
untroubled. This means that there exist a linear restriction L � Ct and a small
configuration V ∈ Y (Π) such that V � L and no a ∈ tm(V) appears in L. The
only small configuration in Y (Π) where no rule is applicable is yes. This proves
that the P system accepts.

The property of being untroubled does not only propagate forwards, but also
backwards, all the way to the initial configuration.

Lemma 5. Let Π be an MSD P system, let C be a configuration reachable from
the initial configuration C0, and let C → D with D untroubled. Then C is also
untroubled.

Proof. Since D is untroubled, there exist a linear restriction M � D and a small
configuration W � M such that no object a ∈ tm(W) appears in M.

Since W contains at most two objects, it is generated by at most two rules
applied in C; this means that there exist a linear restriction L � C and a small
configuration V � L such that V → V ′ � W for some configuration V ′. Let us
consider the set tm(V). If d(V) ≤ 1, this set is computed according to Eq. (1),
and then tm(V) = ∅ and C is untroubled.

If d(V) ≥ 2, the set tm(V) is computed according to Eq. (2):

tm(V) = dis(k) ∪ evok

(n⋂

i=1

tm(Wi)
)

∪ divk

(n⋂

i=1

tm(Wi)
)

210 A. Leporati et al.

In this case we have W =
[
[a]k

]
h

or W =
[
[a b]k

]
h
. Let us consider an

object a ∈ tm(V). If a ∈ dis(k), then a does not appear in L, because membrane k
survived the transition V → V ′ � W. If a ∈ evok

(⋂n
i=1 tm(Wi)

)
appeared in L,

then it would evolve into an object of M belonging to
⋂n

i=1 tm(Wi) ⊆ tm(W),
which contradicts the hypotheses on W and is thus impossible. Similarly, if
a ∈ divk

(⋂n
i=1 tm(Wi)

)
appeared in L, then M would contain one of the two

objects on the right-hand side of the division rule involving a, and that object
would belong to tm(W); this contradicts the hypotheses on W, and thus is also
impossible. Hence, no object in tm(V) appears in L, and thus C is untroubled.

Lemma 6. Let Π be an MSD P system with troubled initial configuration C0.
Then Π rejects.

Proof. Suppose that Π has the accepting computation �C = (C0, . . . , Ct). Then
yes � Ct and tm(yes) = ∅, which means that Ct is untroubled. But we have
C0 → C1 → · · · → Ct, and by Lemma 5 all previous configurations, including C0,
are untroubled, which contradicts our hypotheses.

Hence, deciding whether an MSD P system accepts coincides with checking
the troublemakers in its initial configuration.

Theorem 3. An MSD P system accepts if and only if its initial configuration
is untroubled.

If membrane dissolution rules are disallowed, the term dis(k) is always empty
in Eq. (2), and thus tm(V) = ∅ for all small configurations V; this implies that
all configurations are untroubled (Definition 7). Furthermore, the small config-
urations of the form

[
[a b]k

]
h

can be ignored in favour of the smaller configura-
tions

[
[a]k

]
h

and
[
[b]k

]
h
, since a configuration with two objects is only required

when the dissolution caused by one allows the other object to eventually evolve
into yes (cases 5 and 6 of Theorem 1). This shows that, in the absence of disso-
lution, the acceptance condition of Theorem 3 corresponds to the existence of a
path from a small configuration of the form [a]h or

[
[a]k

]
h
, included in the initial

configuration of the P system, to the small configuration yes. This is exactly the
original acceptance condition for standard dependency graphs [3,5].

An analysis of the computational resources required in order to check the con-
dition of Theorem 3 finally allows us to show that MSD P systems characterise
the complexity class P.

Theorem 4. DMC[�]
D = DPMC[�]

D = P, where D is the class of MSD P sys-
tems and [�] denotes optional semi-uniformity.

Proof. Since the following inclusions hold

DPMC�
D

⊆ ⊆
P ⊆ DPMCD DMC�

D⊆ ⊆
DMCD

Solving a Special Case of the P Conjecture 211

it suffices to prove DMC�
D ⊆ P. Let Π be a semi-uniform family of recogniser

MSD P systems constructed in polynomial time by Turing machine H.
Given an input string x ∈ Σ�, simulate H on x in polynomial time in order

to obtain the description of the P system Πx.
The alphabet of Πx and its set of rules have polynomial size, and thus the

dependency graph G(Π) can be constructed in polynomial time (see Gutiérrez-
Naranjo et al. [5] for more details).

The set of vertices Y (Π) connected to the vertex yes, and thus the subgraph
of G(Π) induced by them, can be computed in polynomial time by exploring
the transposed dependency graph (i.e., with all edges reversed) starting from the
vertex yes.

The value d(V) can then be computed in polynomial time for each V ∈ Y (Π)
by using an all-pairs shortest path algorithm on the subgraph induced by Y (Π),
and then choosing the distance from the closest vertex of the form [a]h or yes.

The troublemakers tm(V) are computed recursively in polynomial time using
Eqs. (1) and (2) on the subgraph induced by Y (Π) and based on the distance
function d.

Finally, for each of the (polynomially many) small configurations V and all
(polynomially many) linear restrictions L � C0, where C0 is the initial configura-
tion of Π, we can check whether V � L and simultaneously no object a ∈ tm(V)
appears in L. If this happens at least once, the input string x is accepted, and
otherwise rejected.

5 Conclusions and Open Problems

We have proved that families of monodirectional, deterministic, shallow P sys-
tems with active membranes without charges (MSD P systems) characterise the
complexity class P, both with a polynomial-time uniformity and a polynomial-
time semi-uniformity condition. This solves an open special case of the P conjec-
ture and shows that dissolution does not always allow us to break the P barrier,
even if object evolution, send-out, and membrane division rules are allowed.

In order to prove this result, we developed a generalisation of an important
membrane computing tool, already exploited for several P upper bound results
for P systems without charges: namely, dependency graphs. By proving that a
constant number of objects govern the result of the computation, we were able to
construct polynomial-size dependency graphs that include dissolving membranes.
By checking a property of dependency graphs more complex than the original
one, but still verifiable in polynomial time, we can establish the result of the
computation of an MSD P system without resorting to expensive full simulations.

Even if we only focused on P systems of depth at most one in this paper,
our approach should be straightforward to generalise to MSD P systems of any
constant depth, as long as membrane division is only applicable to the initial ele-
mentary membranes, by tracking a constant number of objects larger than two.
If elementary division rules are associated to membranes that only become ele-
mentary during the computation, there is the additional problem of establishing

212 A. Leporati et al.

when this is the case for the membranes we are tracking (since “being elemen-
tary” depends on untracked membranes having dissolved). Here, we believe it
is worth investigating a combination of our approach with the one proposed by
Woods et al. [14], which deals correctly with dissolution and elementary division
in P systems of arbitrary depth in the absence of other types of rules.

We further conjecture that it is possible to replace the determinism constraint
with the standard confluence condition. This seems, however, to make the for-
wards and backwards propagation of the property of being untroubled harder to
prove, due to the possibility of multiple computations.

We also remarked that several other generalisations of dependency graphs,
for use with other variants of P systems, are possible. Although it is unclear
whether this approach is powerful enough to solve the remaining open cases
of the P conjecture, an interesting open problem is establishing which classes
of P systems admit polynomial-size dependency graphs with polynomial-time
computable accepting conditions. A related question is whether it is possible to
find classes of P systems with larger-than-polynomial dependency graphs that
do not require a complete exploration, and thus still allow their result to be
established in polynomial time.

References

1. Alhazov, A., Freund, R.: On the efficiency of P systems with active membranes and
two polarizations. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 146–160. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31837-8 8

2. Alhazov, A., Pérez-Jiménez, M.J.: Uniform solution of QSAT using polarizationless
active membranes. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS,
vol. 4664, pp. 122–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74593-8 11

3. Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez,
A.: Exploring computation trees associated with P systems. In: Mauri, G., Păun,
G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS,
vol. 3365, pp. 278–286. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31837-8 16

4. Gazdag, Z., Kolonits, G.: Remarks on the computational power of some restricted
variants of P systems with active membranes. In: Leporati, A., Rozenberg, G., Salo-
maa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 209–232. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54072-6 14

5. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: P systems with active membranes, without polarizations and with-
out dissolution: a characterization of P. In: Calude, C.S., Dinneen, M.J., Păun, G.,
Pérez-J́ımenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 105–116.
Springer, Heidelberg (2005). https://doi.org/10.1007/11560319 11

6. Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–
Campero, F.J.: On the power of dissolution in P systems with active mem-
branes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006). https://doi.org/10.
1007/11603047 16

https://doi.org/10.1007/978-3-540-31837-8_8
https://doi.org/10.1007/978-3-540-74593-8_11
https://doi.org/10.1007/978-3-540-74593-8_11
https://doi.org/10.1007/978-3-540-31837-8_16
https://doi.org/10.1007/978-3-540-31837-8_16
https://doi.org/10.1007/978-3-319-54072-6_14
https://doi.org/10.1007/11560319_11
https://doi.org/10.1007/11603047_16
https://doi.org/10.1007/11603047_16

Solving a Special Case of the P Conjecture 213

7. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating ele-
mentary active membranes. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sośık,
P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-14370-5 18

8. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional
P systems. Nat. Comput. 15(4), 551–564 (2016). https://doi.org/10.1007/s11047-
016-9565-2

9. Murphy, N., Woods, D.: Active membrane systems without charges and using
only symmetric elementary division characterise P. In: Eleftherakis, G., Kefalas, P.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 367–
384. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77312-2 23

10. Murphy, N., Woods, D.: The computational power of membrane systems under
tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)

11. Păun, G.: Further twenty six open problems in membrane computing. In: Gut́ıerrez-
Naranjo, M.A., Riscos-Nuñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Pro-
ceedings of the Third Brainstorming Week on Membrane Computing, pp. 249–262.
Fénix Editora (2005)

12. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity
classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–
284 (2003)

13. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: a
characterization of PSPACE. J. Comput. Syst. Sci. 73(1), 137–152 (2007)

14. Woods, D., Murphy, N., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Membrane disso-
lution and division in P. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E.,
Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 262–276. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03745-0 28

https://doi.org/10.1007/978-3-319-14370-5_18
https://doi.org/10.1007/s11047-016-9565-2
https://doi.org/10.1007/s11047-016-9565-2
https://doi.org/10.1007/978-3-540-77312-2_23
https://doi.org/10.1007/978-3-642-03745-0_28

Most Common Words – A cP Systems Solution

Radu Nicolescu(B)

Department of Computer Science, University of Auckland,
Private Bag, 92019 Auckland, New Zealand

r.nicolescu@auckland.ac.nz

Abstract. Finding the most common words in a text file is a famous
“programming pearl”, originally posed by Jon Bentley (1984). Several
interesting solutions have been proposed by Knuth (an exquisite model
of literate programming, 1986), McIlroy (an engineering example of com-
bining a timeless set of tools, 1986), Hanson (an alternate efficient solu-
tion, 1987). Here we propose a concise efficient solution based on the
fast parallel and associative capabilities of cP systems. We also check
their parallel sorting capabilities and propose a dynamic version of the
classical pigeonhole algorithm.

Keywords: Literate programming · Most common words
Membrane computing · P systems · cP systems
Associative data structures · Inter- and intra-cell parallelism
Prolog terms and unification · Parallel sorting · Pigeonhole algorithm

1 Introduction and Background

cP systems share the fundamental features of the traditional cell-like (tree-based)
and tissue (graph-based) P systems: top-cells are organised in graph/digraph net-
works, top-cells contain nested (and labelled) sub-cells, the evolution is governed
by multiset rewriting rules, possibly running in maximal parallel modes.

Although not strictly necessary – but also shared with other versions of the
traditional P systems [10] – our typical rulesets are state based and run in a
weak priority mode.

There are two main innovations in cP systems. First, unlike in traditional
cell-like P systems, sub-cells do NOT have own rules. Basically, the sub-cells are
just nested passive repositories of other sub-cells or atomic symbols; therefore,
they can also be viewed as nested complex objects (or terms).

This seems a severe limitation. However, it is more than compensated by the
provision of higher level rules, which extend the classical multiset rewriting rules
with concepts borrowed from logic programming, namely Prolog unification. In
other words, cP systems may be seen as adapting the classical Prolog unification
from structured terms to multisets – which again is a novel feature.

However, unlike traditional Prolog, where rules are applied in a backward-
chaining mode, with possible backtracks, cP rules work in a forward mode, like
c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 214–229, 2018.
https://doi.org/10.1007/978-3-319-73359-3_14

Most Common Words – cP Systems 215

all known P system rules. This may perhaps allow better parallelism capabilities
than the past and actual parallel versions of Prolog – but this topic will not be
further followed here.

The net result is a powerful system which can crisply and efficiently solve
complex problems, with small fixed-size alphabets and small, fast fixed-size rule-
sets. In particular, cP systems enable a reasonably straightforward creation and
manipulation of high-level data structures typical of high-level languages, such
as: numbers, relations (graphs), associative arrays, lists, trees, strings.

In this sense, cP systems have been successfully used to develop parallel and
distributed models in a large variety of domains, such as distributed algorithms,
graph theory, image processing, NP complete problems.

In this paper, we further assess the “computer science” capabilities of our
cP systems by solving a version of a famous programming pearl, initially posed
by Jon Bentley (1984): printing the most common words in a text file, more
precisely (but still a bit vague) [1]:

Given a text file and an integer k, print the k most common words in the
file (and the number of their occurrences) in decreasing frequency.

Additionally, the integer N is typically used for the number of words, d is
the number of distinct words, and f is the highest frequency count. Of course,
one typically assumes that N > d > k and N − d + 1 ≥ f ≥ N/d, but some
solutions are optimised for the more special case N � d � k.

Several interesting solutions have been proposed by Knuth in 1986 – an
exquisite model of literate programming [1], McIlroy in 1986 – an engineering
example of combining a timeless set of tools [1], Hanson in 1987 – an alternate
efficient solution [12]. All these three solutions can be considered as great literate
programming sample models, if we take “literal programming” in a generic sense
– not just Knuth’s WEB/TANGLE implementation [2].

Here we propose a concise efficient solution, following Hanson’s revised for-
mulation [12] of the original problem specification, which clarifies the slight ambi-
guity of the original:

Given a text file and an integer k, you are to print the words (and their
frequencies of occurrence) whose frequencies of occurrence are among the
k largest in order of decreasing frequency.

A tiny but artificial example may clarify these specifications. Assume that
k = 2 and the input text is:

ccc aa aa aa ccc bb d aa d

Note that, here, N = 9, d = 4, f = 4. Bentley’s original formulation, used
by Knuth and McIlroy [1], essentially requires – a bit ambiguously – one of the
following two outputs:

4 aa
2 ccc

216 R. Nicolescu

or

4 aa
2 d

In contrast, Hanson’s revised formulation [12], requires the following output –
which is unambiguous, if the order of word sublists is not relevant (i.e. ccc d ≡
d ccc):

4 aa
2 ccc d

Schematically, all these solutions follow four main phases: (I) reading and
splitting the text file into words (parsing it); (II) computing the word frequencies;
(III) sorting according to frequencies; and (IV) printing the required output.

Knuth and Hanson provide large monolithic solutions, which include all four
phases. Moreover, they combine phases I and II, by using associative data struc-
tures: Knuth uses a custom hash-trie and Hanson a custom hashtable with splay
(move to front) lists. For phase III, both authors try to use efficient sorting
methods. Knuth uses a fast sorting method, assuming that N � d � k and that
most frequent words tend to appear from the beginning of the text – however,
as McIlroy points out, this does not always hold. Hanson offers a more universal
fast sorting method based on the pigeonhole algorithm, with f holes.

McIlroy’s solution is a textbook example for the separation-of-concerns prin-
ciple, via a pipeline of staple general-purpose utilities initially developed for
UNIX. Each of the four phases is implemented via just one or two commands.
Together, phases II and III take exactly three lines in the pipe [1]:

(3) sort |
(4) uniq -c |
(5) sort -rn |

Line (3) sorts the N input words (lexicographically). Line (4) counts then
discards the duplicates, keeping d unique exemplars and their frequency counts
(as count/word pairs). Line (5) sorts d count/word pairs, in reverse count order
(numerically).

Intentionally not given here are pipe lines (1), (2) and (6), which deal with
phases I and IV. Reading, splitting into words and printing can be defined in a
seemingly endless multiplicity of ways, which may not be worth discussing here.
In particular, the concept of “word” itself may be highly interpretable: does it
include ASCII letters, UNICODE letters, digits, punctuation signs, does it have
a length limit, etc. Here, we will stay away from this discussion.

McIlroy’s solution is also reasonably fast – not as fast as the other two –
but it is extremely crisp and clear, and can be flexibly adapted to other input
and output formats. Such a solution can be developed and deployed in just a
few minutes – this sounds amazing, but does not account for the many man-
months required to develop and tune the used building blocks (UNIX tools).
McIlroy also notes that his solution could be sped up by replacing the more

Most Common Words – cP Systems 217

costlier lines (3) and (4) by a hypothetical tool based on associative arrays – in
fact, this would bring his solution closer to Hanson’s solution for phase II.

Our cP solution – which uses one single top-level cell with data-only
subcells – follows the spirit of McIlroy’s and Hanson’s solutions. It is based on
associative data types and a sorting idea close to Hanson’s pigeonhole algorithm.
It also uses a small fixed number of rules – close to McIlroy’s pipeline size – but,
in contrast, it is built from scratch (not on higher building block as the UNIX
commands).

We offer two alternate solutions: (i) a solution which solves Hanson’s version
of the problem – where the result is a sorted sequence of word multisets; and (ii)
a solution which solves the original problem, as posed by Bentley and used by
Knuth and McIlroy – where the result is a sorted sequence of words.

In this process, we propose and use a dynamic pigeonhole algorithm, adapt-
able to other platforms with strong associative capabilities, where – metaphori-
cally - pigeonholes are only opened one at at time, instantly attracting objects
with matching keys.

In our case, we must first adapt the above problem formulation to typical
P systems, where cells contain multisets of symbols, not ordered structures.
What is a sorted multiset? Ordered structures must be constructed in terms of
multisets – in cP systems, we can create the required high-level structures by
deep nesting of complex symbols (subcells).

As above mentioned, we chose to skip over the reading phase (I) and we
assume that all words are “magically” present at start-time in our single cell.
Our focus is on phases II and III, where all operations are clearly defined and
can be efficiently performed by cP systems.

Finally – as used in our first solution (i) – we simulate the printing phase IV,
by sequentially sending out the required results, in order, over a designated line.
Alternatively – as used in our second solution (ii) – we actually build an ordered
list containing the required results.

For completeness, Sect. 2 introduces a few high-level data structures in cP sys-
tems and Appendix A offers a more complete definition of the cP systems – both
these sections incrementally update the results and definitions given in our ear-
lier paper [7]. The remaining sections discuss our solution.

2 Data Structures in cP Systems

We assume that the reader is familiar with the membrane extensions collec-
tively known as complex symbols, proposed by Nicolescu et al. [6,8,9]. However,
to ensure some degree of self-containment, our revised extensions, (still) called
cP systems, are reproduced in Appendix A.

In this section we sketch the design of high-level data structures, similar
to the data structures used in high-level pseudocode or high-level languages:
numbers, relations, functions, associative arrays, lists, trees, strings, together
with alternative more readable notations.

218 R. Nicolescu

Natural numbers. Natural numbers can be represented via multisets contain-
ing repeated occurrences of the same atom. For example, considering that 1
represents an ad-hoc unary digit, the following complex symbols can be used to
describe the contents of a virtual integer variable a: a() = a(λ)—the value of
a is 0; a(13)—the value of a is 3. For concise expressions, we may alias these num-
ber representations by their corresponding numbers, e.g. a() ≡ a(0), b(13) ≡ b(3).
Nicolescu et al. [8,9] show how the basic arithmetic operations can be efficiently
modelled by P systems with complex symbols.

Here follows a list of simple arithmetic expressions, assignments and
comparisons:

x = 0 ≡ x(λ)
x = 1 ≡ x(1)
x = 2 ≡ x(11)
x = n ≡ x(1n)
x ← y + z ≡ y(Y) z(Z) → x(Y Z) destructive add
x ← y + z ≡ → x(Y Z) | y(Y) z(Z) preserving add
x = y ≡ x(X) y(X)
x ≤ y ≡ x(X) y(XY)
x < y ≡ x(X) y(X1Y)

Relations and functions. Consider the binary relation r, defined by: r =
{(a, b), (b, c), (a, d), (d, c)} (which has a diamond-shaped graph). Using com-
plex symbols, relation r can be represented as a multiset with four r items,
{r(κ(a) υ(b)), r(κ(b) υ(c)), r(κ(a) υ(d)), r(κ(d) υ(c))}, where ad-hoc atoms κ
and υ introduce domain and codomain values (respectively). We may also alias

the items of this multiset by a more expressive notation such as: {(a
r

� b),

(b
r
� c), (a

r
� d), (d

r
� c)}.

If the relation is a functional relation, then we can emphasise this by using
another operator, such as “mapsto”. For example, the functional relation f =
{(a, b), (b, c), (d, c)} can be represented by multiset {f(κ(a) υ(b)), f(κ(b) υ(c)),

f(κ(d) υ(c))} or by the more suggestive notation: {(a
f�→ b), (b

f�→ c), (d
f�→ c)}.

To highlight the actual mapping value, instead of a
f�→ b, we may also use the

succinct abbreviation f [a] = b.
In this context, the � and �→ operators are considered to have a high asso-

ciative priority, so the enclosing parentheses are mostly used for increasing the
readability.

Associative arrays. Consider the associative array x, with the following key-
value mappings (i.e. functional relation): {1 �→ a; 13 �→ c; 17 �→ g}. Using
complex symbols, array x can be represented as a multiset with three items,
{x(κ(1) υ(a)), x(κ(13) υ(c)), x(κ(17) υ(g))}, where ad-hoc atoms κ and υ intro-
duce keys and values (respectively). We may also alias the items of this multiset
by the more expressive notation {1 x�→ a, 13 x�→ c, 17 x�→ g}.

Lists. Consider the list y, containing the following sequence of values: [u; v;w].
List y can be represented as the complex symbol y(γ(u γ(v γ(w γ())))), where

Most Common Words – cP Systems 219

the ad-hoc atom γ represents the list constructor cons and γ() the empty list.
We may also alias this list by the more expressive equivalent notation y(u | v |w)
– or by y(u | y′), y′(v |w) – where operator | separates the head and the tail of
the list. The notation z(|) is shorthand for z(γ()) and indicates an empty list, z.

Trees. Consider the binary tree z, described by the structured expression
(a, (b), (c, (d), (e))), i.e. z points to a root node which has: (i) the value a; (ii) a
left node with value b; and (iii) a right node with value c, left leaf d, and right
leaf e. Tree z can be represented as the complex symbol z(a φ(b) ψ(c φ(d) ψ(e))),
where ad-hoc atoms φ, ψ introduce left subtrees, right subtrees (respectively).

Strings. Consider the string s = “abc”, where a, b, and c are atoms. Obviously,
string s can interpreted as the list s = [a; b; c], i.e. string s can be represented as
the complex symbol s(γ(a γ(b γ(c γ())))), etc.

3 The Parallel cP Algorithm – Solution (i)

3.1 Initial State

We need one single cell with one designated output line. Required data structures
are built as complex symbols (data-only subcells), using the interpretations and
notations defined in Sect. 2. In particular, the N input words are strings built via
functor w; these complex symbols are already extant when the systems starts.
Figure 1 illustrates the initial cell contents for the sample given in Sect. 1.

“ccc” “aa” “aa” “aa” “ccc” “bb” “d” “aa” “d”

(a) High-level strings.

w(c w(c w(c w()))) w(a w(a w())) w(a w(a w())) w(a w(a w()))

w(c w(c w(c w()))) w(b w(b w())) w(d w()) w(a w(a w())) w(d w())

(b) Underlying complex symbols.

Fig. 1. Sample initial word multiset.

3.2 Phase II

Using an associative relation, α, each word is tagged with an initial “frequency”
count of 1 and then we merge all word duplicates and sum their associated
counts. In the end, we get d words, each one with its actual frequency count.

220 R. Nicolescu

Figure 2 shows the three rules for phase II. This ruleset starts in state S0.
Rule (0) establishes relation α between extant strings given by w(X) and the
initial frequency count 1; it runs in max mode, so it completes its job in 1 cP step.

Rule (1) repeatedly merges word duplicates and sums their associated counts;
it runs in max mode, so it completes its job in log(d) cP steps – this rule is non-
deterministic but confluent.

After rule (1) completes, rule (2) moves to the final state of this ruleset, S2.
Table 1 illustrates the evolution of the cell contents for our initial sample.

S0 w(W) →max S1 α(w(W) f(1)) (0)

S1 α(w(W) f(F)) α(w(W) f(F ′)) →max S1 α(w(W) f(FF ′)) (1)

S1 →min S2 (2)

Fig. 2. Ruleset for phase II.

Table 1. Phase II evolution of the sample word multiset.

Apply State Cell contents

(0) S0 “ccc” “aa” “aa” “aa” “ccc” “bb” “d” “aa” “d”

(1) S1 α(“ccc” f(1)) α(“aa” f(1)) α(“aa” f(1)) α(“aa” f(1)) ...

(1) S1 α(“ccc” f(2)) α(“aa” f(2)) α(“aa” f(2)) α(“bb” f(1)) α(“d” f(2))

(2) S1 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

– S2 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

3.3 Phase III

We create maximal word multisets by merging all words sharing the same fre-
quency counts.

Figure 3 shows the two rules for phase III. This ruleset starts in state S2, the
final state for phase II (Sect. 3.2). Rule (3) merges word multisets sharing the
same frequency counts; it runs in max mode, so it completes its job in log(f)
cP steps – this rule is non-deterministic but confluent.

After rule (3) completes, rule (4) moves to the final state of this ruleset, S3.
Table 2 illustrates the evolution of the cell contents for the initial sample.

3.4 Phase IV

We send out all existing word multisets, sequentially, in decreasing order of
their frequency counts. We propose and use a dynamic version of the classical

Most Common Words – cP Systems 221

S2 α(W f(F)) α(W ′ f(F)) →max S2 α(W W ′ f(F)) (3)

S2 →min S3 (4)

Fig. 3. Ruleset for phase III.

Table 2. Phase III evolution of the sample word multiset.

Apply State Cell contents

(3) S2 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

(4) S2 α(“ccc” “d” f(2)) α(“aa” f(4)) α(“bb” f(1))

– S3 α(“ccc” “d” f(2)) α(“aa” f(4)) α(“bb” f(1))

pigeonhole algorithm (adaptable to other platforms with strong associative capa-
bilities), where – metaphorically - pigeonholes are only opened one at time,
instantly attracting objects with matching keys.

First, we determine the highest frequency count. Next, we repeatedly output
the word multiset having the current highest frequency count – if any – and then
decrement this count, until we reach 0. This current highest frequency count is
the “enabled pigeonhole” which “attracts” the word multiset having the same
frequency count. For simplicity, we do not consider the parameter k, but it is
straightforward to include it in this ruleset.

Figure 4 shows the rules for phase IV. This ruleset starts in state S3, the final
state for phase III (Sect. 3.3). Rule (5) extracts frequency counts; it runs in max
mode, so it completes its job in 1 cP steps.

Rule (6) determines the highest frequency count by taking pairwise maxi-
mums (note that all extant frequency counts are different); it runs in max mode,
so it completes its job in log(f) cP steps – this rule is non-deterministic but
confluent.

After rule (6) completes, rule (7) moves to the next state of this ruleset, S5.
Rule (8) outputs the word multiset having the current (highest) non-zero fre-
quency count – if any – and then decrements this count; rule (9) just decrements
this count, if there is no matching word multiset; this pair of rules complete their
job in log(f) cP steps.

After all the word multisets are sent out, the cell remains idle in the final
state, S5 – alternatively, one more rule could clear the remaining f(0) counter
and transit to another state (e.g. S6). Table 3 illustrates the evolution of the
cell contents for the initial sample. Essentially, in this scenario we output the
sequence [(“aa”, 4); (“ccc” “d”, 2); (“bb”, 1)].

222 R. Nicolescu

S3 α(W f(F)) →max S4 α(W f(F)) f(F) (5)

S4 f(F) f(F1F ′) →max S4 f(F1F ′) (6)

S4 →min S5 (7)

S5 α(W f(F1)) f(F1) →min S5 α(W f(F1)) ↓ f(F) (8)

S5 f(F1) →min S5 f(F) (9)

Fig. 4. Ruleset for phase IV.

Table 3. Phase IV evolution of the sample word multiset – each time it is applied, the
highlighted rule (8) outputs one word multiset and its associated frequency count.

Apply State Cell contents

(5) S3 α(“ccc” “d” f(2)) α(“aa” f(4)) α(“bb” f(1))

(6) S4 α(“ccc” “d” f(2)) α(“aa” f(4)) α(“bb” f(1)) f(2) f(4) f(1)

(6) S4 α(“ccc” “d” f(2)) α(“aa” f(4)) α(“bb” f(1)) f(4) f(1)

(7) S4 α(“ccc” “d” f(2)) α(“aa” f(4)) α(“bb” f(1)) f(4)

(8) S5 α(“ccc” “d” f(2)) α(“aa” f(4)) α(“bb” f(1)) f(4)

(9) S5 α(“ccc” “d” f(2)) α(“bb” f(1)) f(3)

(8) S5 α(“ccc” “d” f(2)) α(“bb” f(1)) f(2)

(8) S5 α(“bb” f(1)) f(1)

– S5 f(0)

4 The Parallel cP Algorithm – Alternate Solution (ii)

Here we sketch an alternate implementation, which actually builds a sorted list
of words, ordered on their frequency counts. This solution could be applied to
get a sorted list of word multisets, but here we use it to get a sorted list of words,
i.e. a result closer to the original problem formulation posed by Bentley and used
by Knuth and McIlroy [1].

Conceptually, we start from the interim results of phase II of solution (i)
(Sect. 3.2), but this time we give a complete solution (not explicitly split into
phases).

We create a list of words, sorted in decreasing order of their frequency counts.
As in the earlier phase II (Sect. 3.2) each word is tagged with an initial “fre-
quency” count of 1 and then we merge all word duplicates and sum their asso-
ciated counts. In the end, we get d words, each one with its actual frequency
count.

Then, as in the earlier phase IV (Sect. 3.4), we use a dynamic version of the
classical pigeonhole algorithm, but this time we stack the “attracted” words in
a result list (instead of sending them out).

Most Common Words – cP Systems 223

S0 w(W) →max S1 α(w(W) f(1)) (0)

S1 α(w(W) f(F)) α(w(W) f(F ′)) →max S1 α(w(W) f(FF ′)) (1)

S1 →min S2 f(1) ρ() (2)

S2 α(w(W) f(F)) ρ(R) →max S2 ρ(α(w(W) f(F)) ρ(R)) (3)

| f(F)

S2 f(F) →min S2 f(F1) (4)

| α()

Fig. 5. Ruleset for alternate solution (ii).

First, we “enable a pigeonhole” for frequency 1 and create an empty result
list. Next, we repeatedly stack all words having the current pigeonhole frequency
count – if any – and then increment this count, until we exhaust all extant words.
For simplicity, we again do not consider the parameter k, but it is straightforward
to include it in this ruleset.

Figure 5 shows all rules for this alternate solution. Rules (0) and (1) are
exactly as in the earlier phase II. Rule (2) is modified: to “enable a pigeonhole”
for frequency 1 and to create an empty result list, ρ.

Table 4. Alternate solution (ii): possible evolution of the sample word multiset. Here
the final result is the sorted list [α(“aa” f(4)); α(“d” f(2)); α(“ccc” f(2)); α(“bb”
f(1))].

Apply State Cell contents

(0) S0 “ccc” “aa” “aa” “aa” “ccc” “bb” “d” “aa” “d”

(1) S1 α(“ccc” f(1)) α(“aa” f(1)) α(“aa” f(1)) α(“aa” f(1)) ...

(1) S1 α(“ccc” f(2)) α(“aa” f(2)) α(“aa” f(2)) α(“bb” f(1)) α(“d” f(2))

(2) S1 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

(3) S2 f(1) α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2)) ρ()

(4) S2 f(1) α(“ccc” f(2)) α(“aa” f(4)) α(“d” f(2)) ρ(α(“bb” f(1)) ρ())

(3) S2 f(2) α(“ccc” f(2)) α(“aa” f(4)) α(“d” f(2)) ρ(α(“bb” f(1)) ρ())

(3) S2 f(2) α(“aa” f(4)) α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ()))

(4) S2 f(2) α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ())))

(4) S2 f(3) α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ())))

(3) S2 f(4) α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ())))

– S2 f(4) ρ(α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ()))))

224 R. Nicolescu

Rule (3) repeatedly stacks onto ρ all words having the current frequency
count – if any; the standalone f acts as a promoter. Rule (4) increments this
frequency count, if there are no (more) matching words for this count, but there
are still other words to process; any extant α(...) acts as a promoter. The rules
pair (3) and (4) complete their job in log(f) cP steps.

After all the words are stacked, the cell remains idle in the final state, S2. The
evolution is non-deterministic, which exactly corresponds to the slight vagueness
of the original problem formulation. Table 4 illustrates a possible evolution of the
cell contents for the initial sample. Essentially, in this scenario we obtain the list
[(“aa”, 4); (“d” 2); (“ccc” 2); (“bb”, 1)], but we could have also obtained the
list [(“aa”, 4); (“ccc” 2); (“d” 2); (“bb”, 1)].

5 Reflections and Open Problems

Both our solutions seem to have an optimal runtime complexity, or close to it,
essentially O(log(d) + log(f)) cP steps, which, in the worst case, is O(log(N)),
but typically is much smaller. This optimality is not proven, but seems a believ-
able hypothesis.

Also, our solutions seem to have a very decent static complexity, comparable
to the best known solution in this regard, proposed by McIlroy: 10 or 5 rules – in
our two solutions – vs. 4 lines – the combination of 4 powerful UNIX commands in
McIlroy’s excellent solution. Moreover, in contrast to this, our solutions are build
from “scratch” (including the associative sorting!), not on other complex utilities.
Also, as presented, McIlroy’s solution runs in O(N log(N)) steps (because of the
initial sorting), which makes it slower than ours. In all fairness, McIlroy mentions
potential speed-ups, but these do not seem yet available.

In fact, these comparisons may be misleading, as our solution runs on a highly
parallel engine – cP systems – while the other solutions are purely sequential. It
may be interesting to evaluate other parallel solutions to this problem, including
other P systems solutions, but we are not aware of any.

As earlier mentioned, cP systems rules generalise the traditional P systems
rules by powerful Prolog-like unifications, but the classical Prolog unification
algorithms do not work on multisets. More work is needed to design efficient
unification algorithms which work on multisets and scale out well on parallel
architectures.

It is also interesting to note that our solutions seem to struggle a bit when
they are constrained to run in a purely sequential mode, as in phase IV of solu-
tion (i), but feel more comfortable when they can unleash the parallel associative
potential of cP systems, as in solution (ii).

To the best of our knowledge, this paper proposes a novel sorting algorithm,
with a remarkable crisp expression: a dynamic version of the classical pigeonhole
algorithm, apparently suitable for any platform with strong associative features
(such as many or most versions of P systems).

Finally, as an open problem, it might be worthwhile to invest more effort
into developing a real literate model for P systems and to develop a set of tools
corresponding to Knuth’s WEB toolset – perhaps P-WEB or cP-WEB?

Most Common Words – cP Systems 225

A Appendix cP Systems: P Systems with Complex
Symbols

We present the details of our cP framework, simplified from our earlier
papers [5,6].

A.1 Complex Symbols as Subcells

Complex symbols or subcells, play the roles of cellular micro-compartments or
substructures, such as organelles, vesicles or cytoophidium assemblies (“snakes”),
which are embedded in cells or travel between cells, but without having the full
processing power of a complete cell. In our proposal, subcells represent nested
labelled data compartments which have no own processing power: they are acted
upon by the rules of their enclosing cells.

Our basic vocabulary consists of atoms and variables, collectively known as
simple symbols. Complex symbols are similar to Prolog-like first-order terms,
recursively built from multisets of atoms and variables. Together, complex sym-
bols and simple symbols (atoms, variables) are called symbols and can be defined
by the following formal grammar:

<symbol> ::= <atom> | <variable> | <term>

<term> ::= <functor> ’(’ <argument> ’)’

<functor> ::= <atom>

<argument> ::= λ | (<symbol>)+

Atoms are typically denoted by lower case letters (or, occasionally, digits),
such as a, b, c, 1. Variables are typically denoted by uppercase letters, such as
X, Y , Z. Functors are term (subcell) labels; here functors can only be atoms,
not variables.

For improved readability, we also consider anonymous variables, which are
denoted by underscores (“ ”). Each underscore occurrence represents a new
unnamed variable and indicates that something, in which we are not interested,
must fill that slot.

Symbols that do not contain variables are called ground, e.g.:

– Ground symbols: a, a(λ), a(b), a(bc), a(b2c), a(b(c)), a(bc(λ)), a(b(c)d(e)),
a(b(c)d(e)), a(b(c)d(e(λ))), a(bc2d).

– Symbols which are not ground: X, a(X), a(bX), a(b(X)), a(XY), a(X2),
a(XdY), a(Xc()), a(b(X)d(e)), a(b(c)d(Y)), a(b(X2)d(e(Xf2))); also, using
anonymous variables: , a(b), a(X), a(b(X)d(e())).

– This term-like construct which starts with a variable is not a symbol (this
grammar defines first-order terms only): X(aY).

Note that we may abbreviate the expression of complex symbols by removing
inner λ’s as explicit references to the empty multiset, e.g. a(λ) = a().

226 R. Nicolescu

In concrete models, cells may contain ground symbols only (no variables).
Rules may however contain any kind of symbols, atoms, variables and terms
(whether ground and not).

Unification. All symbols which appear in rules (ground or not) can be (asym-
metrically) matched against ground terms, using an ad-hoc version of pattern
matching, more precisely, a one-way first-order syntactic unification (one-way,
because cells may not contain variables). An atom can only match another copy
of itself, but a variable can match any multiset of ground terms (including λ).
This may create a combinatorial non-determinism, when a combination of two or
more variables are matched against the same multiset, in which case an arbitrary
matching is chosen. For example:

– Matching a(b(X)fY) = a(b(cd(e))f2g) deterministically creates a single set
of unifiers: X,Y = cd(e), fg.

– Matching a(XY 2) = a(de2f) deterministically creates a single set of unifiers:
X,Y = df, e.

– Matching a(b(X)c(1X)) = a(b(12)c(13)) deterministically creates one single
unifier: X = 12.

– Matching a(b(X)c(1X)) = a(b(12)c(12)) fails.
– Matching a(XY) = a(df) non-deterministically creates one of the following

four sets of unifiers: X,Y = λ, df ; X,Y = df, λ; X,Y = d, f ; X,Y = f, d.

A.2 High-Level or Generic Rules

Typically, our rules use states and are applied top-down, in the so-called weak
priority order.
Pattern matching. Rules are matched against cell contents using the above
discussed pattern matching, which involves the rule’s left-hand side, promoters
and inhibitors. Moreover, the matching is valid only if, after substituting vari-
ables by their values, the rule’s right-hand side contains ground terms only (so
no free variables are injected in the cell or sent to its neighbours), as illustrated
by the following sample scenario:

– The cell’s current content includes the ground term:
n(aφ(b φ(c)ψ(d))ψ(e)).

– The following (state-less) rewriting rule is considered:
n(X φ(Y φ(Y1)ψ(Y2))ψ(Z)) → v(X) n(Y φ(Y2)ψ(Y1)) v(Z).

– Our pattern matching determines the following unifiers:
X = a, Y = b, Y1 = c, Y2 = d, Z = e.

– This is a valid matching and, after substitutions, the rule’s right-hand side
gives the new content :
v(a) n(b φ(d)ψ(c)) v(e).

Most Common Words – cP Systems 227

Generic rules format. We consider rules of the following generic format
(we call this format generic, because it actually defines templates involving
variables):

current-state symbols . . . →α target-state (in-symbols) . . .

(out-symbols)δ . . .

| promoters . . . ¬ inhibitors . . .

Where:

– current-state and target-state are atoms or terms;
– symbols, in-symbols, promoters and inhibitors are symbols;
– in-symbols become available after the end of the current step only, as in

traditional P systems (we can imagine that these are sent via an ad-hoc fast
loopback channel);

– subscript α ∈ {min, max}, indicates the application mode, as further discussed
in the example below;

– out-symbols are sent, at the end of the step, to the cell’s structural neighbours.
These symbols are enclosed in round parentheses which further indicate their
destinations, above abbreviated as δ. The most usual scenarios include:

• (a) ↓i indicates that a is sent over outgoing arc i (unicast);
• (a) ↓i, j indicates that a is sent over outgoing arcs i and j(multicast);
• (a) ↓∀ indicates that a is sent over all outgoing arcs (broadcast).

All symbols sent via one generic rule to the same destination form one single
message and they travel together as one single block (even if the generic rule
is applied in mode max).

Example. To explain our rule application mode, let us consider a cell, σ, contain-
ing three counter-like complex symbols, c(12), c(12), c(13), and the two possible
application modes of the following high-level “decrementing” rule:

(ρα) S1 c(1X) →α S2 c(X),where α ∈ {min,max}.

The left-hand side of rule ρα, c(1X), can be unified in three different ways, to
each one of the three c symbols extant in cell σ. Conceptually, we instantiate this
rule in three different ways, each one tied and applicable to a distinct symbol:

(ρ1) S1 c(12) → S2 c(1),
(ρ2) S1 c(12) → S2 c(1),
(ρ3) S1 c(13) → S2 c(12).

1. If α = min, rule ρmin non-deterministically selects and applies one of these
virtual rules ρ1, ρ2, ρ3. Using ρ1 or ρ2, cell σ ends with counters c(1), c(12),
c(13). Using ρ3, cell σ ends with counters c(12), c(12), c(12).

228 R. Nicolescu

2. If α = max, rule ρmax applies in parallel all these virtual rules ρ1, ρ2, ρ3. Cell σ
ends with counters c(1), c(1), c(12).

Special cases. Simple scenarios involving generic rules are sometimes seman-
tically equivalent to loop-based sets of non-generic rules. For example, consider
the rule

S1 a(x(I) y(J)) →max S2 b(I) c(J),

where the cell’s contents guarantee that I and J only match integers in ranges
[1, n] and [1,m], respectively. Under these assumptions, this rule is equivalent to
the following set of non-generic rules:

S1 ai,j → S2 bi cj , ∀i ∈ [1, n], j ∈ [1,m].

However, unification is a much more powerful concept, which cannot be gen-
erally reduced to simple loops.
Benefits. This type of generic rules allow (i) a reasonably fast parsing and pro-
cessing of subcomponents, and (ii) algorithm descriptions with fixed-size alpha-
bets and fixed-sized rulesets, independent of the size of the problem and number
of cells in the system (often impossible with only atomic symbols).
Synchronous vs asynchronous. In our models, we do not make any syntactic
difference between the synchronous and asynchronous scenarios; this is strictly
a runtime assumption [4]. Any model is able to run on both the synchronous
and asynchronous runtime “engines”, albeit the results may differ. Our asyn-
chronous model matches closely the standard definition for asynchronicity used
in distributed algorithms [3,11]; however, this is not needed in this paper so we
don’t follow this topic here.

References

1. Bentley, J., Knuth, D., McIlroy, D.: Programming pearls: a literate program. Com-
mun. ACM 29(6), 471–483 (1986). http://doi.acm.org/10.1145/5948.315654

2. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984).
http://dx.doi.org/10.1093/comjnl/27.2.97

3. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

4. Nicolescu, R.: Parallel and distributed algorithms in P systems. In: Gheorghe, M.,
Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol.
7184, pp. 35–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28024-5 4

5. Nicolescu, R.: Parallel thinning with complex objects and actors. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) CMC 2014. LNCS,
vol. 8961, pp. 330–354. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14370-5 21

6. Nicolescu, R.: Structured grid algorithms modelled with complex objects. In:
Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS,
vol. 9504, pp. 321–337. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
28475-0 22

http://doi.acm.org/10.1145/5948.315654
http://dx.doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1007/978-3-642-28024-5_4
https://doi.org/10.1007/978-3-642-28024-5_4
https://doi.org/10.1007/978-3-319-14370-5_21
https://doi.org/10.1007/978-3-319-14370-5_21
https://doi.org/10.1007/978-3-319-28475-0_22
https://doi.org/10.1007/978-3-319-28475-0_22

Most Common Words – cP Systems 229

7. Nicolescu, R.: Revising the membrane computing model for byzantine agreement.
In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS,
vol. 10105, pp. 317–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-54072-6 20

8. Nicolescu, R., Ipate, F., Wu, H.: Programming P systems with complex objects. In:
Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa,
A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 280–300. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54239-8 20

9. Nicolescu, R., Wu, H.: Complex objects for complex applications. Rom. J. Inf. Sci.
Technol. 17(1), 46–62 (2014)

10. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press Inc., New York (2010)

11. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge (2000)

12. Van Wyk, C.J.: Literate programming. Commun. ACM 30(7), 583–599 (1987).
http://doi.acm.org/10.1145/28569.315738

https://doi.org/10.1007/978-3-319-54072-6_20
https://doi.org/10.1007/978-3-319-54072-6_20
https://doi.org/10.1007/978-3-642-54239-8_20
http://doi.acm.org/10.1145/28569.315738

Tissue P Systems with Rule
Production/Removal

Linqiang Pan1,2, Bosheng Song1(B), and Gexiang Zhang3

1 Key Laboratory of Image Information Processing and Intelligent
Control of Education Ministry of China, School of Automation,

Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
lqpan@mail.hust.edu.cn, boshengsong@hust.edu.cn

2 School of Electric and Information Engineering,
Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China

3 Robotics Research Center and Key Laboratory of Fluid and Power Machinery,
Xihua University, Chengdu 610039, China

zhgxdylan@126.com

Abstract. Tissue P systems are computational models inspired by the
way of biochemical substance movement/exchange between two cells or
between a cell and the environment, where all communication (sym-
port/antiport) rules used in a system are initially set up and keep
unchanged during any computation. In this work, a variant of tissue
P systems, called tissue P systems with rule production/removal (abbre-
viated as TRPR P systems) is considered, where rules in a system are
dynamically changed during a computation, that is, at any computation
step new rules can be produced and some existing rules can be removed.
The computation power of TRPR P systems is investigated. It is proved
that Turing universality is achieved for TRPR P systems with one cell,
and using symport rules of length at most 1, antiport rules of length at
most 2 or symport rules of length at most 2 and working in a maximally
parallel manner. We further show that TRPR P systems with two cells,
using symport rules of length at most 1, and working in a flat maximally
parallel manner, are Turing universal.

Keywords: Bio-inspired computing · Membrane computing
Tissue P system · Symport/antiport rule · Universality

1 Introduction

Cell is the basic unit of life, which can be viewed as an information process-
ing device. Membrane computing is a computational paradigm inspired by the
structure and functioning of living cells, which was initiated in 1998 by Păun
[27] and the literature of this area has grown very fast in both theoretical and
practical aspects. Theoretical results include computation power [6,9], compu-
tation complexity [42,43], the variants of P systems [2,38,47], and the strategies

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 230–244, 2018.
https://doi.org/10.1007/978-3-319-73359-3_15

Tissue P Systems with Rule Production/Removal 231

of using rules in P systems [36,37]. In the practical aspect, P systems are used
to solve real application problems, such as fault diagnosis [32,46], combinato-
rial optimization [48,49], image processing [11,13]. The computation devices in
membrane computing are known as P systems, which have two main families:
cell-like P systems [27], which have a hierarchical arrangement of membranes;
and tissue-like P systems [21] or neural-like P systems [17], which have a net of
cells or neurons. A comprehensive presentation of membrane computing can be
found in [28,30], and the most up-to-date source of information is available on
the P systems webpage http://ppage.psystems.eu. The present work deals with
tissue-like P systems, introduced in [20].

A tissue-like P system consists of cells that are described by a directed graph,
where cells are nodes of a graph, and the environment is considered as a distin-
guished node, an arc between two nodes corresponds to a communication channel
between two regions (two cells or a cell and the environment). If a communication
channel between two regions exists, then objects in these two regions can com-
municate by means of communication (symport/antiport) rules [25,26]. Symport
rules move objects between two regions in one direction, whereas antiport rules
move objects between two regions in opposite directions.

Since the seminal definition of tissue P systems, several research lines have
been developed [1,7,18]. In [29], cell division was introduced into tissue P sys-
tems, and the SAT problem was solved in polynomial time by tissue P systems
with cell division. In [10,44], generalized communicating P systems were proposed,
where only pairs of objects synchronously move across components. Tissue P sys-
tems with evolutional symport/antiport rules were proposed in [41], where objects
can evolve when moving from one region to another region. In [4], energy associ-
ated with each cell is introduced in tissue P systems, and Turing universality is
reached when maximally parallel mode or sequential mode enforced with priorities
are considered. Tissue P systems with channel states controlling the communica-
tion between two cells or between a cell and the environment were proposed in
[15], several Turing universality results are achieved, where the systems work in a
maximally parallel way with sequential behavior on channels. Cell/symbol com-
plexity of tissue P systems with symport/antiport rules was investigated in [5],
it was proved that tissue P systems with two channels between the cell and the
environment are Turing universal when having six cells and one symbol, or two
cells and three symbols, or three cells and two symbols.

In standard tissue P systems and the variants mentioned above, all sym-
port/antiport rules used in a tissue P system are initially set up and keep
unchanged during any computation. Actually, living cells, objects in cells are
moving in order to achieve particular functioning and chemical reactions can be
affected by both the contents in cells and the environmental conditions. Thus, it
is a rather natural idea to consider rule production or removal during the process
of a computation in a tissue P system.

Creating new evolution rules during a computation has been considered in
Subsect. 3.6.4 in [28], where a rule in a P system is used, we say the rule is
“consumed”, that is, we take into consideration the multiplicity of rules, to work

http://ppage.psystems.eu

232 L. Pan et al.

with multisets of rules in the same way as we have worked with multisets of
objects. Specifically, when a rule r : u → v; z is applied, a copy of r is consumed,
and all rules indicated by z are created.

In [3], sequential P systems with regular control were proposed, where all
rules are initially set up and divided into different subsets, and the application
of subsets of rules is controlled by a regular language.

In this work, we consider tissue P systems with rule production/removal
(abbreviated as TRPR P systems), where rules in a system are dynamically
changed during a computation, that is, at any computation step new rules can be
produced and some existing rules can be removed. With this regulation mecha-
nism, the computation power of tissue P systems working in a maximally parallel
manner and in a flat maximally parallel manner is investigated. Specifically, it
is proved Turing universality is achieved for TRPR P systems with one cell, and
using symport rules of length at most 1, antiport rules of length at most 2 or
symport rules of length at most 2 and working in a maximally parallel manner.
We further show that the result holds true also for TRPR P systems with two
cells, using symport rules of length at most 1 and working in a flat maximally
parallel manner.

2 Tissue P Systems with Rule Production/Removal

It is necessary to recall some basic concepts of formal language theory used in
this work, for further details of formal language theory, one can refer to the
monographs [33].

For an alphabet Γ (a finite non-empty set of symbols), we denote by Γ ∗ the
set of all strings over Γ , and by Γ+ = Γ ∗\{λ} we denote the set of non-empty
strings. The number of symbols in a string u is the length of the string, and it is
denoted by |u|. The number of occurrences of symbol a in a string u is denoted
by |u|a.

A multiset over an alphabet Γ is a function m from Γ to the set N of natural
numbers, which gives a nonnegative multiplicity m(x) for each x ∈ Γ . Let m1,
m2 be multisets over Γ . The union of m1 and m2, denoted by m1 + m2, is the
multiset over Γ defined as (m1 + m2)(x) = m1(x) + m2(x) for each x ∈ Γ . The
relative complement of m2 in m1, denoted by m1\m2, is the multiset defined as
(m1\m2)(x) = m1(x)−m2(x) if m1(x) ≥ m2(x), and (m1\m2)(x) = 0 otherwise.

Next we introduce the definition of tissue P systems with rules produc-
tion/removal.

Definition 1. A tissue P system with rule production/removal (abbreviated as
TRPR P systems) of degree q ≥1 is a tuple Π =(Γ, E ,M1, . . . ,Mq,R1,R2, iout),
where

– Γ and E are finite alphabets such that E ⊆ Γ ;
– M1, . . . ,Mq are finite multisets over Γ ;
– R1 is a finite set of rules of the following forms:

– Symport rules: (i, u/λ, j); r, for 0 ≤ i �= j ≤ q, u ∈ Γ+;

Tissue P Systems with Rule Production/Removal 233

– Antiport rules: (i, u/v, j); r, for 0 ≤ i �= j ≤ q, u, v ∈ Γ+;
– R2 is a finite set of rules of the following forms:

– Symport rules with rules production/removal: (i, u/λ, j); r, for 0 ≤ i �=
j ≤ q, u ∈ Γ+, and r is a finite set whose elements are of the type r ∈ R1

or −r with r ∈ R1;
– Antiport rules with rules production/removal: (i, u/v, j); r,for 0 ≤ i �= j ≤

q, u, v ∈ Γ+, and r is a finite set whose elements are of the type r ∈ R1

or −r with r ∈ R1;
– iout ∈ {0, 1, . . . , q}.

A TRPR P system of degree q ≥ 1 can be viewed as a set of q cells labelled
by 1, . . . , q such that: (a) M1, . . . ,Mq represent the finite multisets of objects
initially placed in the q cells of the system; (b) E is the set of objects initially
located in the environment of the system, all of them available in an arbitrary
number of copies; (c) R2 is a finite set of rules initially present in the system;
(d) iout is the label of a distinguished region which will encode the output of
the system. The term region i (0 ≤ i ≤ q) refers to cell i in case 1 ≤ i ≤ q and
refers to the environment in case i = 0. The length of a symport rule with rules
production/removal (i, u/λ, j); r (an antiport rule with rules production/removal
(i, u/v, j); r, respectively) is defined as |u| (|u| + |v|, respectively).

Note that if set r contains both a creation rule r and a removal rule −r,
then it is assumed that first a creation rule r is produced and then this rule
r is removed immediately, this process takes one step. If set r contains a non-
existing removal rule −r, then this removal rule −r will not work in the following
computation steps, that is, this removal rule −r works only if there exists a rule
r in the system.

A configuration of a TRPR P system at any instant is described by all multi-
sets of objects over Γ associated with all cells in the system, and the multiset of
objects over Γ\E associated with the environment at that moment. Note that the
objects from E have an arbitrary number of copies, hence they are not properly
changed along the computation. The initial configuration is (M1, . . . ,Mq; ∅).

A symport rule with rules production/removal (i, u/λ, j); r is applicable to
a configuration at a moment if there is a region i which contains multiset u.
When such a rule is applied, the objects specified by u in region i are sent to
region j, simultaneously, if ri ∈ r then rule ri is produced in the system; if
−ri ∈ r then rule ri is removed from the system. An antiport rule with rules
production/removal (i, u/v, j); r is applicable to a configuration at a moment
if there is a region i which contains multiset u and a region j which contains
multiset v. When such a rule is applied: (a) the objects specified by u in region i
are sent to region j; (b) the objects specified by v in region j are sent to region
i; and (c) if ri ∈ r then rule ri is produced in the system; if −ri ∈ r then rule ri
is removed from the system.

The rules of a TRPR P system in this work are applied in two manners: (1)
maximally parallel manner: at each step, we apply a multiset of rules which is
maximal, no further rule can be added being applicable; (2) flat maximally par-
allel manner: in each step, in each cell, a maximal set of concurrently applicable
rules is chosen and each rule in the set is applied exactly once.

234 L. Pan et al.

Starting from the initial configuration and applying rules as described above,
a sequence of consecutive configurations is obtained. Each passage from a con-
figuration to a successor configuration is called a transition. A configuration is
a halting configuration if no rule of the system is applicable to it. A sequence of
transitions starting in the initial configuration is a computation. Only a compu-
tation reaching a halting configuration gives a result, encoded by the number of
copies of objects present in the output region iout.

We denote by NOtP pr
m (symt1 , antit2 ,max) and NOtP pr

m (symt1 , antit2 ,
fmax) (resp., NOtPm(symt1 , antit2 ,max)) the family of sets of numbers com-
puted by tissue P systems with at most m cells, and using symport rules with
rules production/removal (resp., symport rules) of length at most t1, antiport
rules with rules production/removal (resp., antiport rules) of length at most t2
working in a maximally parallel manner and in a flat maximally parallel manner.
If one of the parameters m, t1, t2 is not bounded, then it is replaced with ∗.

The following fundamental result is known from Theorem 5.9 in Chap. 5
(Freund, Alhazov, Rogozhin, Verlan, Communication P systems) in [30].

Theorem 1. NOtP1(sym1, anti2,max) ∪ NOtP1(sym2,max) ⊆ NFIN (the
family of finite sets of non-negative integers).

3 Universality of Tissue P Systems with Rules
Production/Removal

A very useful characterization of NRE (the family of sets of numbers which are
Turing computable) is obtained by means of register machines, we here introduce
the notion of register machines.

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is a set of labels, l0 is the label of the initial instruction and lh
is the label of the halting instruction, and I is a set of instructions of the form
li: (op(i), lj , lk) such that op(i) is an operation on register i of M , li, lj , lk are
labels from I, li �= lh. Give an instruction li: (op(i), lj , lk), if operation op(i) can
be applied to register i, then one continues with the instruction with label lj ,
otherwise one continues with the instruction with label lk.

The instructions li: (op(i), lj , lk) are of the following forms:

– li: (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk, non-deterministically chosen);

– li: (SUB(r), lj , lk) (if the contents of register r are greater than zero, then
subtract 1 from register i, and go to the instruction with label lj ; otherwise, do
not change the contents of register i, and go to the instruction with label lk);

– lh: HALT (the halt instruction).

A register machine M recognizers the set N(M) of all natural numbers such
that M starts with the initial instruction l0 and halts in halting instruction. It
is known that register machines are equivalent to Turing machines in the sense
that they recognize the same family of sets of numbers, hence they characterize
NRE [22].

Tissue P Systems with Rule Production/Removal 235

3.1 Tissue P Systems with Rules Production/Removal Working
in the Maximally Parallel Manner

In this subsection, we prove that tissue P systems with one cell and using sym-
port rules with rules production/removal of length at most 2 or using symport
rules with rules production/removal of length at most 1, antiport rules with
rules production/removal of length at most 2, and working in the maximally
parallel manner can generate all recursively enumerable sets of numbers, i.e.,
they characterize NRE. However, in the case of standard tissue P systems with
symport/antiport rules, these Turing universality results cannot be obtained by
such P systems (see Theorem 1).

Theorem 2. NOtP pr
1 (sym1, anti2,max) = NRE.

Proof. We only need to prove the inclusion NOtP pr
1 (sym1, anti2,max) ⊇ NRE,

and the reverse inclusion follows from the Church-Turing thesis.
We use the characterization of NRE by means of register machines. Let M =

(m,H, l0, lh, I) be a register machine, which generates the set of numbers N(M).
We construct the TRPR P system of degree 1 to simulate register machine M .

Π = (Γ, E ,M1,R, 1),

where

– Γ = {ai | 1 ≤ i ≤ m} ∪ {b, l, l′, l′′, l′′′ | b, l ∈ H},
– E = {l′, l′′, l′′′ | l ∈ H},
– M1 = {b | b ∈ H} ∪ {l0},

and the set of symport/antiport rules with rules production/removal is as follows:

– For each ADD instruction li: (ADD(r), lj , lk) of M , the following rules are
produced in cell 1:

ri,1: (1, li/l′i, 0); ri,2,
ri,2: (1, bi/ar, 0);−ri,2, ri,3,
ri,3: (1, λ/bi, 0); ri,4, ri,5,
ri,4: (1, l′i/lj , 0);−ri,4, rj,1,−rh,1,
ri,5: (1, l′i/lk, 0);−ri,5, rk,1,−rh,1.

An ADD instruction li is simulated in four steps. At step 1, rule ri,1 is applied,
object li in cell 1 is exchanged with object l′i in the environment, simultaneously,
rule ri,2 is produced. At the next step, rule ri,2 is used, one copy of object ar is
sent into cell 1, object bi is sent to the environment and this object will be sent
back into cell 1 by using the created rule ri,3, moreover, rule ri,2 is removed. At
step 3, by using rule ri,3, rules ri,4, ri,5 are produced. At the next step, rules ri,4
and ri,5 are used non-deterministically. By applying rule ri,4 (resp., ri,5), object l′i
in cell 1 is exchanged with object lj (resp., lk) in the environment; simultaneously,
rule rj,1 (resp., rk,1) is produced, rules ri,4 and rh,1 (if appeared) (resp., ri,5 and
rh,1 (if appeared)) are removed. Hence, one copy of object ar is introduced into
cell 1 (simulating that the number stored in register r is increased by one), the
system starts to simulate an instruction with label lj or lk. So the instruction li
of M is correctly simulated by Π.

236 L. Pan et al.

– For each SUB instruction li: (SUB(r), lj , lk) of M , the following rules are pro-
duced in cell 1:

ri,1: (1, li/l′i, 0); ri,2,
ri,2: (1, bi/l′′i , 0);−ri,2, ri,3, ri,4,
ri,3: (1, ar/bi, 0); ri,5, ri,6,
ri,4: (1, l′i/l′′′i , 0);−ri,4, ri,7,
ri,5: (1, l′′i /λ, 0);−ri,5,−ri,7,
ri,6: (1, l′′′i /lj , 0);−ri,6, rj,1,−rh,1,
ri,7: (1, l′′′i /bi, 0);−ri,7, ri,8,
ri,8: (1, l′′i /lk, 0);−ri,8, rk,1,−rh,1.

A SUB instruction li is simulated in the following way. At step 1, rule ri,1 is
used, object l′i is sent into cell 1, simultaneously, rule ri,2 is produced. At step
2, by using rule ri,2, object bi is sent to the environment, object l′′i is sent into
cell 1, simultaneously, rule ri,2 is removed, and rules ri,3, ri,4 are produced. In
what follows, there are two cases.

– There is at least one copy of object ar in cell 1 (corresponding to that the
number stored in register r is grater than 0). In this case, at step 3, rules ri,3
and ri,4 are enabled. By using rule ri,3, object ar in cell 1 is exchanged with
object bi in the environment, and rules ri,5, ri,6 are produced. By applying
rule ri,4, object l′i in cell 1 is exchanged with l′′′i in the environment, simul-
taneously, rule ri,4 is removed, and rule ri,7 is produced. At the next step,
rules ri,5 and ri,6 are enabled. By using rule ri,5, object l′′i is sent to the
environment, and rules ri,5, ri,7 are removed. By applying rule ri,6, object l′′′i
in cell 1 is exchanged with object lj in the environment, rules ri,6 and rh,1
(if appeared) are removed, and rule rj,1 is produced. In this case, one copy of
object ar in cell 1 is consumed (simulating that the number stored in register
r is decreased by one), and the system starts to simulate the instruction lj .

– There is no object ar in cell 1 (corresponding to that the number stored in
register r is 0). In this case, at step 3, only rule ri,4 can be used, object l′′′i
is sent into cell 1, rule ri,4 is removed, and rule ri,7 is produced. At the next
step, rule ri,7 is enabled and applied, object l′′′i in cell 1 is exchanged with
object bi in the environment, simultaneously, rule ri,7 is removed, rule ri,8
is produced. At step 5, by using rule ri,8, object lk is sent into cell 1, rules
ri,8 and rh,1 (if appeared) are removed, and rule rk,1 is produced. Hence, the
system starts to simulate the instruction lk.

Hence, the SUB instruction of M is correctly simulated by system Π.
When object lh appears in cell 1, rule rh,1 is produced, simultaneously, this

rule is removed at the same step, no rule can be used in the system, and the
computation halts. The number of the copies of object a1 in cell 1 corresponds
to the result of the computation, hence N(M) = N(Π).

Theorem 3. NOtP pr
1 (sym2,max) = NRE.

Tissue P Systems with Rule Production/Removal 237

Proof. We only need to prove the inclusion NOtP pr
1 (sym2,max) ⊇ NRE, and

the reverse inclusion follows from the Church-Turing thesis.
We use the characterization of NRE by means of register machines. Let M =

(m,H, l0, lh, I) be a register machine, which generates the set of numbers N(M).
We construct the TRPR P system of degree 1 to simulate register machine M .

Π = (Γ, E ,M1,R, 1),

where

– Γ = {ai | 1 ≤ i ≤ m} ∪ {b, b′, l, l′, l′′, l′′′ | b, l ∈ H},
– E = {l′, l′′, l′′′ | l ∈ H},
– M1 = {b, b′ | b ∈ H} ∪ {l0},

and the set of symport rules with rules production/removal is as follows:

– For each ADD instruction li: (ADD(r), lj , lk) of M , the following rules are
produced in cell 1:

ri,1: (1, bili/λ, 0); ri,2,
ri,2: (1, λ/arbi, 0);−ri,2, ri,3,
ri,3: (1, bi/λ, 0);−ri,3, ri,4, ri,5,
ri,4: (1, λ/bilj , 0);−ri,4, rj,1,−rh,1,
ri,5: (1, λ/bilk, 0);−ri,5, rk,1,−rh,1.

An ADD instruction li is simulated in four steps. At step 1, rule ri,1 is used,
objects bili in cell 1 are sent to the environment, and rule ri,2 is produced. At the
next step, rule ri,2 is applied, objects arbi are sent into cell 1, simultaneously,
rule ri,2 is removed and rule ri,3 is produced. At step 3, object bi is sent to
the environment, rule ri,3 is removed, and rules ri,4 and ri,5 are produced. At
step 4, rules ri,4 and ri,5 are used non-deterministically. By applying rule ri,4
(resp., ri,5), objects bilj (resp., bilk) are sent into cell 1; simultaneously, rules ri,4
and rh,1 (if appeared) (resp., ri,5 and rh,1 (if appeared)) are removed, rule rj,1
(resp., rk,1) is produced. Hence, one copy of object ar is introduced into cell 1
(simulating that the number stored in register r is increased by one), the system
starts to simulate an instruction with label lj or lk. So the instruction li of M
is correctly simulated by Π.

– For each SUB instruction li: (SUB(r), lj , lk) of M , the following rules are pro-
duced in cell 1:

ri,1: (1, bili/λ, 0); ri,2,
ri,2: (1, λ/bil

′
i, 0);−ri,2, ri,3, ri,4,

ri,3: (1, arbi/λ, 0);−ri,3, ri,6, ri,8,
ri,4: (1, b′

il
′
i/λ, 0); ri,5, ri,10,

ri,5: (1, λ/b′
il

′′
i , 0),

ri,6: (1, λ/bil
′′′
i , 0); ri,7,−ri,10,

ri,7: (1, b′
il

′′′
i /λ, 0); ri,9,

ri,8: (1, l′′i /λ, 0);−ri,8,
ri,9: (1, λ/b′

ilj , 0);−ri,9, rj,1,−rh,1,

238 L. Pan et al.

ri,10: (1, bil′′i /λ, 0);−ri,3, ri,11,
ri,11: (1, λ/bilk, 0);−ri,11, rk,1,−rh,1.

A SUB instruction li is simulated in the following way. At step 1, rule ri,1
is used, objects bili are sent to the environment, simultaneously, rule ri,2 is
produced. At step 2, by using rule ri,2, objects bil

′
i are sent into cell 1, rule ri,2 is

removed, and rules ri,3, ri,4 are produced. In what follows, there are two cases.

– There is at least one copy of object ar in cell 1 (corresponding to that the
number stored in register r is grater than 0). In this case, at step 3, rules
ri,3 and ri,4 are enabled. By using rule ri,3, objects arbi in cell 1 are sent
to the environment, rule ri,3 is removed, and rules ri,6, ri,8 are produced. By
applying rule ri,4, objects b′

il
′
i in cell 1 are sent to the environment, simul-

taneously, rules ri,5, ri,10 are produced. At the next step, rules ri,5 and ri,6
are enabled. By using rule ri,5, objects b′

il
′′
i are sent into cell 1. By applying

rule ri,6, objects bil
′′′
i are sent into cell 1, rule ri,10 is removed, and rule ri,7 is

produced. At step 5, rules ri,7 and ri,8 are enabled. By using rule ri,7, objects
b′
il

′′′
i are sent to the environment, rule ri,9 is produced. By applying rule ri,8,

object l′′i is sent to the environment, and this rule is removed. At step 6,
objects b′

ilj are sent into cell 1 by using rule ri,9, where rule rj,1 is produced,
and rules ri,9 and rh,1 (if appeared) are removed. In this case, one copy of
object ar in cell 1 is consumed (simulating that the number stored in register
r is decreased by one), and the system starts to simulate the instruction lj .

– There is no object ar in cell 1 (corresponding to that the number stored in
register r is 0). In this case, at step 3, only rule ri,4 can be used, objects b′

il
′′′
i

are sent to the environment, rules ri,5 and ri,10 are produced. At the next
step, rule ri,5 is enabled and applied, objects b′

il
′′
i are sent into cell 1. At step

5, by using rule ri,10, objects bil
′′
i are sent to the environment, rule ri,3 is

removed, and rule ri,11 is produced. At step 6, by using rule ri,11, objects bilk
are sent into cell 1, ri,11 and rh,1 (if appeared) are removed, and rule rk,1 is
produced. Hence, the system starts to simulate the instruction lk.

Hence, the SUB instruction of M is correctly simulated by system Π.
When object lh appears in cell 1, rule rh,1 is produced, simultaneously, this

rule is removed at the same ste p, no rule can be used in the system, and the
computation halts. The number of the copies of object a1 in cell 1 corresponds
to the result of the computation, hence N(M) = N(Π).

3.2 Tissue P Systems with Rules Production/Removal Working
in the Flat Maximally Parallel Manner

Flat maximal parallelism of using rules was first considered in [16,45] and then
further investigated in [23,39], where in each step, in each membrane, a maximal
set of applicable rules is chosen and each rule in the set is applied exactly once.
In this subsection, we prove that TRPR P system with two cells and using
symport rules with rules production/removal of length at most 1 working in the
flat maximally parallel manner can generate all recursively enumerable sets of
numbers.

Tissue P Systems with Rule Production/Removal 239

Theorem 4. NOtP pr
2 (sym1, fmax) = NRE.

Proof. We only need to prove the inclusion NOtP pr
1 (sym1, fmax) ⊇ NRE, and

the reverse inclusion follows from the Church-Turing thesis.
We use the characterization of NRE by means of register machines. Let M =

(m,H, l0, lh, I) be a register machine, which generates the set of numbers N(M).
We construct the tissue P system of degree 1 to simulate register machine M .

Π = (Γ, E ,M1,M2,R, 1),

where

– Γ = {ai | 1 ≤ i ≤ m} ∪ {b, l, l′, l′′ | b, l ∈ H},
– E = {l′, l′′ | l ∈ H},
– M1 = {b | b ∈ H} ∪ {l0}, M2 = ∅,

and the set of producing/removing rules is as follows:

– For each ADD instruction li: (ADD(r), lj , lk) of M , the following rules are
produced in cell 1 and in cell 2:

ri,1: (1, li/λ, 0); ri,2, ri,3,
ri,2: (1, λ/ar, 0);−ri,2,
ri,3: (1, bi/λ, 0);−ri,3, ri,4, ri,5,
ri,4: (1, λ/bi, 0); ri,6,
ri,5: (2, λ/bi, 0); ri,7, ri,8,
ri,6: (1, λ/lj , 0);−ri,6, rj,1,−rh,1,
ri,7: (1, λ/bi, 2),
ri,8: (1, λ/lk, 0);−ri,8, rk,1,−rh,1.

An ADD instruction li is simulated in the following way. At step 1, rule ri,1 is
used, object li in cell 1 is sent to the environment, and rules ri,2, ri,3 are produced.
At the next step, rules ri,2 and ri,3 are enabled. By using rule ri,2, one copy of
object ar is sent into cell 1 (due to the flat maximal parallelism), simultaneously,
rule ri,2 is removed. At step 3, object bi is sent to the environment, rule ri,3 is
removed, and rules ri,4 and ri,5 are produced. At step 4, rules ri,4 and ri,5 are
used non-deterministically. By applying rule ri,4 (resp., ri,5), object bi is sent
into cell 1 (resp., cell 2); simultaneously, rule ri,6 (resp., ri,7, ri,8) is produced.
At step 4, by applying rule ri,6, only one copy of object lj is sent into cell 1 due
to the flat maximal parallelism, simultaneously, rules ri,6 and rh,1 (if appeared)
are removed, and rule rj,1 is produced. By using rules ri,7, ri,8, object bi in cell
2 is sent to cell 1, one copy of object lk in the environment is sent into cell 1 due
to the flat maximal parallelism, rules ri,8 and rh,1 (if appeared) are removed,
and rule rk,1 is produced. Hence, one copy of object ar is introduced into cell 1
(simulating that the number stored in register r is increased by one), the system
starts to simulate an instruction with label lj or lk. So the instruction li of M
is correctly simulated by Π.

– For each SUB instruction li: (SUB(r), lj , lk) of M , the following rules are pro-
duced in cell 1:

240 L. Pan et al.

ri,1: (1, li/λ, 0); ri,2, ri,3,
ri,2: (1, ar/λ, 0);−ri,2, ri,4,
ri,3: (1, bi/λ, 0);−ri,2,−ri,3, ri,5, ri,6,
ri,4: (1, λ/l′i, 0);−ri,4, ri,7,
ri,5: (1, λ/l′′i , 0),−ri,5, ri,8,
ri,6: (1, λ/bi, 0);−ri,6,
ri,7: (1, l′i/λ, 0);−ri,7, ri,9,−ri,10,
ri,8: (1, l′′i /λ, 0);−ri,8, ri,10,
ri,9: (1, λ/lj , 0);−ri,9, rj,1,−rh,1,
ri,10: (1, λ/lk, 0);−ri,10, rk,1,−rh,1.

A SUB instruction li is simulated in the following way. At step 1, rule ri,1
is used, object li is sent to the environment, simultaneously, rules ri,2, ri,3 are
produced. In what follows, there are two cases.

– There is at least one copy of object ar in cell 1 (corresponding to that the
number stored in register r is grater than 0). In this case, at step 2, rules
ri,2 and ri,3 are enabled. By using rule ri,2, object ar in cell 1 is sent to the
environment, rule ri,2 is removed, and rule ri,4 is produced. By applying rule
ri,3, object bi in cell 1 is sent to the environment, simultaneously, rules ri,2, ri,3
are removed, rules ri,5, ri,6 are produced. At the next step, rules ri,4, ri,5, ri,6
are enabled. By using rule ri,4, one copy of object l′i is sent into cell 1 due
to the flat maximal parallelism, simultaneously, rule ri,4 is removed and rule
ri,7 is produced. By applying rule ri,5, one copy of object l′′i is sent into cell 1
(flat maximal parallelism), rule ri,5 is removed, and rule ri,8 is produced. By
using rule ri,6, object bi is sent back to cell 1, and this rule is removed. At
step 4, rules ri,7 and ri,8 are enabled. By using rule ri,7, object l′i is sent to the
environment, rules ri,7, ri,10 are removed, rule ri,9 is produced. By applying
rule ri,8, object l′′i is sent to the environment, and this rule is removed, rule
ri,10 is produced. Note that at step 4, rule ri,10 is produced by using rule
ri,8 and this rule is removed by using rule ri,7, hence after step 4, there is no
rule ri,10 in the system. At step 5, only rule ri,9 is enabled and applied, only
one copy of object lj is sent into cell 1 due to the flat maximal parallelism,
simultaneously, rule rj,1 is produced, and rules ri,9 and rh,1 (if appeared) are
removed. In this case, one copy of object ar in cell 1 is consumed (simulating
that the number stored in register r is decreased by one), and the system
starts to simulate the instruction lj .

– There is no object ar in cell 1 (corresponding to that the number stored in
register r is 0). In this case, at step 2, only rule ri,3 can be used, objects bi
is sent to the environment, rules ri,2 and ri,3 are removed, rules ri,5 and ri,6
are produced. At the next step, rules ri,5 and ri,6 are enabled and applied,
and rule ri,8 is produced. At step 4, by using rule ri,8, object l′′i is sent to
the environment, rule ri,10 is produced. At step 5, by using rule ri,10, only
one copy of object lk is sent into cell 1 due to the flat maximal parallelism,
ri,10 and rh,1 (if appeared) are removed, and rule rk,1 is produced. Hence, the
system starts to simulate the instruction lk.

Tissue P Systems with Rule Production/Removal 241

Hence, the SUB instruction of M is correctly simulated by system Π.
When object lh appears in cell 1, rule rh,1 is produced, simultaneously, this

rule is removed at the same step, no rule can be used in the system, and the
computation halts. The number of the copies of object a1 in cell 1 corresponds
to the result of the computation, hence N(M) = N(Π).

4 Conclusions and Discussions

In this work, tissue P systems with rules production/removal have been investi-
gated. With the regulation mechanism of producing or removing rules, we have
shown that Turing universality is achieved for tissue P systems with one cell, and
using symport rules with rules production/removal of length at most 1, antiport
rules with rules production/removal of length at most 2 or symport rules with
rules production/removal of length at most 2 and working in a maximally par-
allel manner. Moreover, the result holds true also for tissue P systems with two
cells, using symport rules with rules production/removal of length at most 1 and
working in a flat maximally parallel manner.

Cell division [12,14] or cell separation [24,31], which can generate an expo-
nential workspace in polynomial time, has been introduced into tissue P systems
to solve NP-complete problems. It remains open how we construct tissue P sys-
tems with rules production/removal and cell division or cell separation to solve
NP-complete problems with the condition that the number of initial rules is as
small as possible.

Time-free manner of using rules was considered to solve NP-complete prob-
lems in membrane computing [34,35,40], where the correctness of the solution
does not depend on the precise timing of the involved rules. It is of interest to
construct tissue P systems with rules production/removal and cell division to
solve NP-complete problems in a time-free manner.

Tissue P systems with cell division or with cell separation and without envi-
ronment were considered in [8,19], where the alphabet of the environment of
such P systems is empty. It would be interesting to consider the computational
efficiency of tissue P systems with rules production/removal and cell division or
cell separation without environment.

Acknowledgements. The work was supported by National Natural Science Founda-
tion of China (61602192, 61772214, 61320106005 and 61033003), China Postdoctoral
Science Foundation (2016M600592, 2017T100554), and the Innovation Scientists and
Technicians Troop Construction Projects of Henan Province (154200510012).

References

1. Alhazov, A., Fernau, H., Freund, R., Ivanov, S., Siromoney, R., Subramanian,
K.G.: Contextual array grammars with matrix control, regular control languages,
and tissue P systems control. Theoret. Comput. Sci. 682, 5–21 (2017)

2. Alhazov, A., Freund, R.: Variants of small universal P systems with catalysts.
Fund. Informa. 138(1–2), 227–250 (2015)

242 L. Pan et al.

3. Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Y., Verlan, S.:
Sequential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M.,
Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp.
112–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36751-
9 9

4. Alhazov, A., Freund, R., Leporati, A., Oswald, M., Zandron, C.: (Tissue) P systems
with unit rules and energy assigned to membranes. Fund. Informa. 74(4), 391–408
(2006)

5. Alhazov, A., Freund, R., Oswald, M.: Cell/symbol complexity of tissue P Systems
with symport/antiport. Int. J. Found. Comput. Sci. 17, 3–26 (2006)

6. Aman, B., Ciobanu, G.: Efficiently solving the bin packing problem through bio-
inspired mobility. Acta Inform. 54(4), 435–445 (2017)

7. Besozzi, D., Busi, N., Cazzaniga, P., Ferretti, C., Leporati, A., Mauri, G., Pescini,
D., Zandron, C.: (Tissue) P systems with cell polarity. Math. Struct. Comput. Sci.
19(6), 1141–1160 (2009)

8. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.:
Tissue-like P systems without environment. In: Proceedings of the Eight Brain-
storming Week on Membrane Computing, Sevilla, Spain, pp. 53–64 (2010)

9. Cienciala, L., Ciencialová, L.: Some new results of p colonies with bounded param-
eters. Nat. Comput. (2016). https://doi.org/10.1007/s11047-016-9591-0

10. Csuhaj-Varjú, E., Verlan, S.: On generalized communicating P systems with min-
imal interaction rules. Theoret. Comput. Sci. 412, 124–135 (2011)

11. Dı́az-Pernil, D., Berciano, A., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Seg-
menting images with gradient-based edge detection using membrane computing.
Pattern Recogn. Let. 34(8), 846–855 (2013)

12. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A uniform family of tissue P system with cell division solving 3-Col in a linear
time. Theoret. Comput. Sci. 404, 76–87 (2008)

13. Dı́az-Pernil, D., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: A parallel algo-
rithm for skeletonizing images by using spiking neural P systems. Neurocomputing
115, 81–91 (2013)

14. Dı́az-Pernil, D., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, Á.:
Computational efficiency of cellular division in tissue-like membrane systems. Rom.
J. Inf. Sci. Tech. 11(3), 229–241 (2008)

15. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue P systems with channel states.
Theoret. Comput. Sci. 330, 101–116 (2005)

16. Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally
or maximally parallel transition mode. Nat. Comput. 10(2), 821–833 (2011)

17. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fund. Informa.
71(2–3), 279–308 (2006)

18. Krishna, S.N., Lakshmanan, K., Rama, R.: Tissue P systems with contextual and
rewriting rules. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC
2002. LNCS, vol. 2597, pp. 339–351. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36490-0 22

19. Maćıas-Ramos, L.F., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius-Font, M.,
Valencia-Cabrera, L.: The efficiency of tissue P systems with cell separation relies
on the environment. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa,
A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 243–256. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36751-9 17

https://doi.org/10.1007/978-3-642-36751-9_9
https://doi.org/10.1007/978-3-642-36751-9_9
https://doi.org/10.1007/s11047-016-9591-0
https://doi.org/10.1007/3-540-36490-0_22
https://doi.org/10.1007/3-540-36490-0_22
https://doi.org/10.1007/978-3-642-36751-9_17

Tissue P Systems with Rule Production/Removal 243

20. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON
2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45655-4 32

21. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: Tissue P systems.
Theoret. Comput. Sci. 296(2), 295–326 (2003)

22. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967)

23. Pan, L., Păun, G., Song, B.: Flat maximal parallelism in P systems with promoters.
Theoret. Comput. Sci. 623, 83–91 (2016)

24. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems.
J. Complexity 26(3), 296–315 (2010)

25. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generat. Comput. 20(3), 295–305 (2002)

26. Păun, A., Păun, G., Rozenberg, G.: Computing by communication in networks of
membranes. Int. J. Found. Comput. Sci. 13, 779–798 (2002)

27. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
28. Păun, G.: Membrane computing. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003.

LNCS, vol. 2751, pp. 284–295. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45077-1 26

29. Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P systems with cell divi-
sion. Int. J. Comput. Commun. 3(3), 295–303 (2008)

30. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, New York (2010)

31. Pérez-Jiménez, M.J., Sośık, P.: An optimal frontier of the efficiency of tissue P
systems with cell separation. Fund. Informa. 138, 45–60 (2015)

32. Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy
reasoning spiking neural P system for fault diagnosis. Inf. Sci. 235, 106–116 (2013)

33. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.
Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-59136-5

34. Song, T., Maćıas-Ramos, L.F., Pérez-Jiménez, M.J.: Time-free solution to SAT
problem using P systems with active membranes. Theoret. Comput. Sci. 529, 61–
68 (2014)

35. Song, B., Pan, L.: Computational efficiency and universality of timed P systems
with active membranes. Theoret. Comput. Sci. 567, 74–86 (2015)

36. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in
maximum spiking strategy. IEEE Trans. Nanobiosci. 14, 465–477 (2015)

37. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in
maximum spikes consumption strategy. IEEE Trans. Nanobiosci. 14, 38–44 (2015)

38. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing
193, 193–200 (2016)

39. Song, B., Pérez-Jiménez, M.J., Păun, G., Pan, L.: Tissue P systems with channel
states working in the flat maximally parallel way. IEEE Trans. Nanobiosci. 15(7),
645–656 (2016)

40. Song, B., Song, T., Pan, L.: A time-free uniform solution to subset sum problem
by tissue P systems with cell division. Math. Struct. Comput. Sci. 27(1), 17–32
(2017)

41. Song, B., Zhang, C., Pan, L.: Tissue-like P systems with evolutional sym-
port/antiport rules. Inf. Sci. 378, 177–193 (2017)

42. Sośık, P., Cienciala, L.: A limitation of cell division in tissue P systems by PSPACE.
J. Comput. Syst. Sci. 81, 473–484 (2015)

https://doi.org/10.1007/3-540-45655-4_32
https://doi.org/10.1007/3-540-45655-4_32
https://doi.org/10.1007/978-3-540-45077-1_26
https://doi.org/10.1007/978-3-540-45077-1_26
https://doi.org/10.1007/978-3-642-59136-5

244 L. Pan et al.

43. Sośık, P., Păun, A., Rodŕıguez-Patón, A.: P systems with proteins on membranes
characterize PSPACE. Theoret. Comput. Sci. 488, 78–95 (2013)

44. Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized communi-
cating P systems. Theoret. Comput. Sci. 404, 170–184 (2008)

45. Verlan, S., Quiros, J.: Fast hardware implementations of P systems. In: Csuhaj-
Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012.
LNCS, vol. 7762, pp. 404–423. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36751-9 27

46. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking
neural P systems. IEEE Trans. Fuzzy Syst. 21(2), 209–220 (2013)

47. Wu, T., Zhang, Z., Păun, G., Pan, L.: Cell-like spiking neural P systems. Theoret.
Comput. Sci. 623, 180–189 (2016)

48. Zhang, G., Gheorghe, M., Pan, L., Pérez-Jiménez, M.J.: Evolutionary membrane
computing: a comprehensive survey and new results. Inf. Sci. 279, 528–551 (2014)

49. Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural
P system for approximately solving combinatorial optimization problems. Int. J.
Neural Syst. 24(5), 1–16 (2014)

https://doi.org/10.1007/978-3-642-36751-9_27
https://doi.org/10.1007/978-3-642-36751-9_27

Reversing Steps in Membrane Systems
Computations

G. Michele Pinna(B)

Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
gmpinna@unica.it

Abstract. The issue of reversibility in computational paradigms has
gained interest in recent years. In this paper we investigate how to reverse
steps in membrane systems computations. The problem is that computa-
tion steps in membrane systems do not preserve all the information that
has to be used when reversing them. We try to formalize the relevant
information needed, and we show that the proposed approach enjoy the
so called loop lemma, which basically assures that the undoing obtained
by reversely applying rules is correct.

1 Introduction

Membrane systems, introduced by Păun (see [22,23] for a first account on mem-
brane systems), are nowadays a popular and extensively studied computational
paradigm inspired by how computations in the living cells take place.

The ingredients of this computational paradigm are a membrane structure
(which is a tree-like structure), a multiset of objects associated to each membrane
(spatial distribution of resources) and a set of evolution rules for each membrane
(acting at local states). A computation step is performed by the application of a
bunch of rules which consume objects from a membrane and produce objects in
this membrane and possibly in the neighbouring membranes as well. All the pos-
sible instances of applicable rules are used, as it happens usually in nature, but
this is not actually always needed to make the computational paradigm Turing
equivalent (for instance, in [21] membrane systems where the rules have a spe-
cial format are considered, and maximality is not required; similarly in [5] or [9]
where, respectively, minimal parallelism or the presence of special objects called
catalysts is considered). The computational paradigm has also been compared
with many other paradigms (see [23] and the chapters therein for a fairly detailed
account), and the relative expressivity has been studied (see, for instance, [6,7]
or [4]).

Reversibility in computation paradigms is an issue that recently has received
great attention1. Reversibility in nature has a quite precise meaning: once

Work partially supported by RAS, Sardinia Regional Government, Convenzione tri-
ennale tra la Fondazione di Sardegna e gli Atenei Sardi Regione Sardegna, (CUP:
F72F16003030002), and P.I.A. 2013 “NOMAD”.

1 This is testified by the series of workshops and conferences entitled Reversible Com-
putation (RC) organized since 2009, which is a conference since 2013.

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 245–261, 2018.
https://doi.org/10.1007/978-3-319-73359-3_16

246 G. Michele Pinna

reached a certain state (say F) from a starting one (say I) with a sequence of
steps, there is the capability of reaching again the state I, possibly applying the
various steps in reverse order. Furthermore in nature also energy is considered,
and the final balance after reversing steps should be zero. When focussing on
computational devices, reversibility in general accounts on understanding how
certain rules are applicable in reverse order and in particular the amount of
information to be preserved. We do not discuss here further why reversibility is
worth to be considered, and we refer to [16] for more motivations.

As already pointed out in [16], when reversibility is backtracking (the feature
that certain non deterministic computations enjoy, which allows to explore all
the possible alternatives), then reversibility is well understood. Just a suitable
coding of the choices and of the applied rules is enough. It is much less clear in
the case of distributed or concurrent systems, where the applications of the rules
is done in a local fashion. Membrane systems have to be considered computing
devices of this kind.

The aim of this paper is to investigate on how to reverse computation steps in
membrane systems in such a way that if a configuration is reached from another
one, there is a way to reverse this step.

Reversing computations can be achieved in various manners. One is to add
suitable rules having the reverse effect of other rules, another approach is orthog-
onal to this one and it is based on devising on how to apply the same rule
reversely. In the first way the fact that a computation is reversed is just a mat-
ter of observation on the results achieved by the computation itself, making the
approach a sort of simulation of reversibility. Still some information about the
computations may have to be considered (for instance, in the approach presented
in [1] some information should be kept, as rules having as effect the dissolution
of membranes are considered). In the case it is necessary to keep track of the
previous existence of some membranes.

Another way focusses on how a rule is reversely applied to a given stage
of the computation, and to apply a rule reversely it is often necessary to keep
some information about the previous stages of the computation. The conditions
to be established are such that a loop lemma can be proven. The loop lemma
simply states that if one goes from a stage of the computation to another one
by applying a bunch of rules together, then from the reached stage it is possible
to go back by reversely applying the same bunch of rules. Though this seems to
be an easy and minimal requirement, it is not obvious that it generally holds for
concurrent and distributed systems. In fact, as discussed in [8] (see also [16]),
further information have to be given in order to be able to reverse computations
steps consistently. The added information have to guarantee that the previous
stage of the computation can be reconstructed properly.

We achieve this result by enriching the notion of configuration of a membrane
system with a memory which records the (minimal) information to be considered
in reversing steps. The notion of memory we adopt is similar to the one of event
structure associated to a membrane system developed in [2,20]. We are able to
prove the loop lemma, though we get a weaker version which we will discuss.

Reversing Steps in Membrane Systems Computations 247

The choice of adding a memory is not the unique solution to the problems posed
when reversing steps, as objects may be enriched with the full history. However
the amount of information the memory may have is able to cover this other
approach, hence we believe that what we propose is general enough.

Though reversibility often means to fully undo some steps, it is important
to observe that this is not actually needed. In fact it seems more reasonable to
allow to undo part of the steps rather than the whole one and this is feasible in
our approach.

The paper in organized as follows. In the remaining part of this introduction
we briefly recall how the issue of reversibility in membrane systems has been
considered in literature.

In the next section we give some background and in Sect. 3 we review the
notion of membrane systems and formalize the notion of membrane systems
computation. In Sect. 4 we first state in general what reversing computations in
membrane systems may be, discussing briefly its limitation, and then develop
our approach: in Subsect. 4.1 we discuss how the information is added to config-
urations. Few ideas for future developments conclude the paper.

Reversibility in membrane systems: other approaches. Reversibility
has been previously considered in membrane systems. In [1] Agrigoroaiei and
Ciobanu present a first attempt to study reversibility in membrane systems.
They develop a way to consider new reversed rules, called dual rules. Dual rules
replace the original rules of the membrane system and reversed computations are
studied with the aim at easing the search of appropriate solutions to problems
backward rather than forward (and indeed the membrane systems introduced
and studied in [1] are also called dual membrane systems). Thus computations
are reversed as the whole system is actually reversed, which is different from
undoing something.

Other papers consider when computations can be reversed, and they usually
require that the membrane systems looked at are deterministic. For instance, [3]
considers membrane systems where reversibility (or strong reversibility) means
that every reachable configuration of the system can be obtained by a single
configuration (and in the stronger version the reachability request is dropped),
and the determinism issue is considered as well, meaning that every reachable
configuration has just one successor configuration (again the strong version is the
one requiring that the reachability request is dropped). In this paper conditions
to achieve reversibility, strong reversibility, determinism and strong determinism
are studied, and the expressivity of the associated systems is made precise. In
[11] the problem of strong reversibility is further studied, and it is shown that
it is decidable if a membrane system is strongly reversible. It is also worth to
stress that the membrane systems considered have just one membrane.

In [18] the author considers membrane systems with symport/antiport rules,
and it is shown that every reversible register machine can be simulated by a deter-
ministic membrane system with symport/antiport rules. In [24] spiking neural
systems are taken into account, and the investigations focus on the expressiv-
ity issue. Indeed it is shown that these systems are reversible because they are

248 G. Michele Pinna

equivalent to reversible computing machines, and in all the above mentioned
approaches the focus is on deterministic systems, whereas we consider reversibil-
ity without constraining it to special cases.

In [17] reversibility is considered as it is shown how to simulate Fredkin
circuits with membrane systems, focussing on energy. Being Fredkin gates the
base for achieving reversibility at circuit level, hence allowing to restore not
only the state but also the energy, the fact that suitable membrane systems can
simulate these circuits is quite relevant.

2 Background

We first fix some notation. With N we denote the set of natural numbers including
zero, and with N

+ the set of positive natural numbers. Given a set X, with 2 X

we indicate the set of subsets of X and with 2 X
fin the set of finite subsets of X.

Given a set X, a partial order � on X is a reflexive, transitive and anti-
symmetric relation. Let (X,�) be a partially ordered set and Y ⊆ X, we say
that Y has a minimum iff there exists x ∈ X such that ∀y ∈ Y it holds that
x � y. Dually it has a maximum iff there exists x ∈ X such that ∀y ∈ Y it
holds that y � x. The elements of Y ⊆ X are referred to as incomparable iff
∀y, y′ ∈ Y. y �= y′ implies that y �� y′ and y′ �� y. Given a partial order (X,�),
with max (X,�) we denote the set of elements Y ⊆ X such that (a) for each
y ∈ Y and for each x ∈ X if y � x then y = x (the element y is not dominated
by any other element of X), and (b) for each x ∈ X such that there is no x′ ∈ X
with x′ �= x and x � x′, then x ∈ Y (the set is the greatest subset of incompa-
rable and maximal elements of X), and similarly with min(X,�) we denote the
greatest subset of elements Y ⊆ X that are minimal with respect to the partial
order relation. Given two elements x, y ∈ X such that x � y, we say that x is an
immediate predecessor of y iff x �= y and ∀z ∈ X. x � z � y either implies x = z
or z = y. If x is the immediate predecessor of y, we indicate this with x �̂ y.

A partial order (X,�) is a tree if � is such that each subset Y ⊆ X of
incomparable elements has no maximum, and each subset Y ⊆ X has a min-
imum. The minimum of X is called the root of the tree. We define some aux-
iliary partial functions over trees. Given a tree (X,�), we define the partial
function father : X → X by father(x) = y whenever y �̂ x. Clearly, the
root of a tree has no father. The function children : X → 2 X is defined by
children(x) = {y ∈ X | x �̂ y}. If x is a leaf, then children(x) = ∅. We assume
that the trees have a finite degree, namely for each node x we assume that
children(x) ∈ 2 X

fin .

Multisets. Given a set S, a multiset over S is a function m : S → N; we denote
by ∂S the set of multisets of S. The multiplicity of an element s in m is given by
m(s). A multiset m over S is finite iff the set dom(m) = {s ∈ S | m(s) �= 0} is
finite and we always consider finite multisets. A multiset m such that dom(m) =
∅ is called empty, and it is denoted by 0. The cardinality of a multiset is defined
as #(m) =

∑
s∈S m(s). Given a multiset in ∂S and a subset S′ ⊆ S, by m|S′

Reversing Steps in Membrane Systems Computations 249

we denote the multiset over S′ such that m|S′(s) = m(s). We write m ⊆ m′ if
m(s) ≤ m′(s) for all s ∈ S, and m ⊂ m′ if m ⊆ m′ and m �= m′. The operator
⊕ denotes multiset union: (m ⊕ m′)(s) = m(s) + m′(s). The operator � denotes
multiset difference: (m � m′)(s) = if m(s) > m′(s) then m(s) − m′(s) else 0.
The scalar product of a number j with a multiset m is (j · m)(s) = j · (m(s)).
We sometimes write a multiset m ∈ ∂S as the sum ⊕s∈Sm(s) · s, where we
omit the summands whenever m(s) is equal to 0. Finally we assume that all
the operations defined so far extend (with overloading of notation) to vectors of
multisets, applying the operations component-wise.

Membranes structure. The language of membrane structure, which we will denote
with MS, is a language over the alphabet {[,]}, and it is defined inductively as
follows:

– [] ∈ MS, and
– if μ1, . . . , μn ∈ MS then also [μ1 . . . μn] ∈ MS.

Two words in MS are equivalent whenever they represent the same tree up to
isomorphisms, and a membrane μ is the equivalence class of all the words with
respect to this equivalence. Observe that, given a membrane μ, a matching pair
of parentheses is any substring of μ which is again a membrane. The number of
membranes appearing in a membrane μ is calculated as follows:

#MS(μ) =
{

1 if μ = []
1 +

∑k
i=1 #MS(μi) if μ = [μ1 . . . μk]

and to each membrane μ′ appearing in a membrane μ, including μ itself, it is
possible to associate an unique index i ranging from 1 to #MS(μ), and we denote
this index with index(μ′). If μi = [μi1 . . . μik] then father(ij) = i for 1 ≤ j ≤ k,
and children(i) = {i1, . . . , ik}. We assume that the index 1 is given to the root.
Obviously the set ({1, . . . ,#MS(μ)},�∗) is a tree, where index(μ′) � index(μi)
whenever μ′ = [μ1 . . . μk], with 1 ≤ i ≤ k, and �∗ is the reflexive and transitive
closure of �.

3 Membrane Systems

We are now ready to recall the notion of membrane system. The main ingredients
of a membrane system are three: a membrane structure, a multiset of objects
associated to each membrane and a set of evolution rules associated to each
membrane. The membrane structure represents the various compartments where
the computations take place (in general simultaneously), and the conditions
under which certain evolution rules can be applied is checked locally, i.e. in the
same membrane to which the rules are associated. The result of the application
of a rule has a more global effect, as it will be clear in the following.

We fix a finite alphabet of (names of) objects (sometimes called molecules),
that we denote with O and we fix an alphabet of rule names, that will be denoted
with Name, and it will be ranged over by n.

250 G. Michele Pinna

Definition 1. A membrane system over a set of objects O is a construct Π =
(O, μ, w0

1, . . . , w
0
n, R1, . . . , Rn) where:

– μ is a membrane structure with n membranes indexed from 1 to n, where
n = #MS(μ),

– each w0
i is a multiset over O associated with membrane i, and

– each Ri is a finite set of reaction (or evolution) rules r associated with the
membrane i, each rule having the format r : u → v, where u is a non empty
finite multiset in ∂O, v is a finite multiset over O × ({here, out} ∪ {inj |
father(j) = i}), and name(r) ∈ Name is the name of the rule r.

The definition is almost standard, the difference is that we omitted the output
membrane which is usually considered when one wishes to focus on what is
calculated by a membrane system, and we focus on a rule format where a multiset
of objects of a membrane are possibly transformed in multisets of objects in the
same membrane and in the neighbouring ones (i.e. the father and the children).
Two rules r, r′ belonging to different sets of reaction rules (thus associated to
different membranes) may be equal, where equal means that if r : u → v and
r′ : u′ → v′ then u = u′ and v = v′. We however assume that all the rules in a
membrane system have distinct names, i.e. for each r, r′ ∈ ⋃

1≤i≤n Ri, if r �= r′

then name(r) �= name(r′) and if r = r′ then there exists k, j ∈ {1, . . . , n} such
that r ∈ Rk, r′ ∈ Rj , k �= j and name(r) �= name(r′). Given a rule r ∈ ⋃

1≤i≤n Ri,
with index(r) we denote the index of the membrane this rule is associated to,
thus if r ∈ Ri then index(r) = i.

The application of a rule r : u → v in a membrane i will consume the
multiset u that must be in the membrane i and may cause the production
of multisets not only in the same membrane i but also in the neighbouring
membranes, if there are, namely those that are children of i and the father(i)
membrane, if this exists. With I(r) we denote the set with the indices of the
membranes where a rule r actually produces an object. Given a rule r, u is
the left hand side of r and v is the right hand side of r, and they are denoted
with lhs(r) and rhs(r), respectively. To simplify the notation, given a multiset z
over O × ({here, out} ∪ {inj | father(j) = i}), with z|α we denote the multiset on
O obtained from z by considering all the elements with the second component
equal to α, where α ∈ {here, out, in1, . . . , inn}. Given a rule r, its rhs(r) = v
may be represented as (v|here, here)⊕ (v|out, out)⊕ (v|inj1 , inj1)⊕· · ·⊕ (v|injk , injk)
where {j1, . . . , jk} = children(index(r)). Observe that it may be that some of
the v|α are equal to 0. Given a rule r, the indices involved in the effect of
this rule are {index(r) | rhs(r)|here �= 0} ∪ {father(index(r)) | rhs(r)|out �= 0} ∪ {i |
i ∈ children(index(r)) ∧ rhs(r)|ini �= 0}. We assume that, for each rule r, it holds
that I(r) �= ∅, hence each rule has an effect different from the annihilation of all
the objects involved2.

2 This requirement is reasonable when one imagine that reversing means undoing the
effects of a rule, thus if a rule just serves to annihilate all the objects to be rewritten
then one can imagine that such a rule can be always reversed, in any multiplicity.

Reversing Steps in Membrane Systems Computations 251

Membrane Systems Evolution. A membrane system Π evolves from a configura-
tion to another configuration as a consequence of the application of (multisets of)
rules in each region. The rules are applied simultaneously. We start formalizing
the notion of configuration of a membrane system.

Definition 2. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

then a configuration is a tuple C = (w1, . . . , wn) where each wi is a multiset
over O. C0 = (w0

1, . . . , w
0
n) is the initial configuration of Π.

A computation step of a membrane system is triggered by the application of
multisets of rules in each membrane. These multisets of rules are collected in a
vector.

Definition 3. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

then a multi-rule vector
−→
R is the tuple (R̂1, . . . , R̂n), where R̂i is a multiset over

Ri.

The multi-rule vector
−→
R contains all the rules that have to be applied simultane-

ously to a configuration of a membrane system, with their proper multiplicities.
A multi-rule vector

−→
R is enabled at a configuration C whenever each multiset

of objects in each region is greater than or equal to what all the rules to be applied
in that region consume. Given a multi-rule vector

−→
R , for each i between 1 and

n we denote with Lhs(
−→
R)i the multiset over O defined as follows:

⊕
r∈Ri

R̂i(r) ·
lhs(r). The tuple of these multisets is denoted with Lhs(

−→
R).

Definition 4. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem,
−→
R a multi-rule vector and C a configuration. Then

−→
R is enabled at

C = (w1, . . . , wn) if ∀i ∈ {1, . . . , n}. Lhs(
−→
R)i ⊆ wi. We denote the enabling

of a multi-rule vector
−→
R at a configuration C with C [

−→
R 〉.

The effects of the application of a multi-rule vector
−→
R (which acts in all

membranes concurrently) in the membrane i are the following: the multiset of
objects

⊕
r∈Ri

R̂i(r) · rhs(r)|here is the effect of the rules in the same membrane,
(
⊕

r∈Rfather(i)
R̂father(i)(r)·rhs(r)|ini) those of the rules in the father membrane, and

finally (
⊕

j∈children(i) (
⊕

r∈Rj
R̂i(r) · rhs(r)|out)) those from the children mem-

branes. Like previously, these three parts are combined by using ⊕. For each
membrane, we denote the effects by Rhs(

−→
R)i. The tuple of these effects is writ-

ten as Rhs(
−→
R).

The following definition captures the notion of evolution of a membrane sys-
tem with the application of a multi-rule vector

−→
R .

Definition 5. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

C = (w1, . . . , wn) be a configuration and
−→
R = (R̂1, . . . , R̂n) be a multi-rule

vector such that C [
−→
R 〉. Then

−→
R can be executed and its execution leads to

a configuration C ′ = (w′
1, . . . , w

′
n) where w′

i = wi � Lhs(
−→
R)i ⊕ Rhs(

−→
R)i. The

execution of a multi-rule vector
−→
R at a configuration C is denoted with C [

−→
R 〉C ′.

252 G. Michele Pinna

For the enabling and the execution of a multi-rule vector we adopt a notation
resembling the one usually adopted for Petri nets, also because of the tight
connections among these two formalisms (see [6,7,12,13,20] among others, or
the chapter in [23]). Sometimes we will call an evolution step of a membrane
system as a reaction step.

We now formalize the chain of “reactions” for a given membrane system: C0

is a reaction sequence, and if C0 [
−→
R 1〉 C1 . . . Cn−1 [

−→
Rn〉 Cn is a reaction sequence,

and Cn [
−→
R 〉 C, then C0 [

−→
R 1〉 C1 . . . Cn [

−→
R 〉 C is also a reaction sequence. A con-

figuration C is said to be reachable if there is a reaction sequence starting from
the initial configuration and leading to C, i.e. C0 [

−→
R 1〉 C1 . . . Cn−1 [

−→
Rn〉 Cn with

C = Cn.
The evolution of membrane systems may have several strategies, and usually

it is assumed that in each membrane all the applicable rules are actually applied
in a maximally parallel way. Thus if

−→
R is enabled at the configuration C (C [

−→
R 〉)

it is implicitly assumed that there is no rule r in any of the rules sets Ri such that
C [

−→
R ′〉 where

−→
R′ is obtained from

−→
R adding an instance of the rule r to the proper

multiset. However, other strategies may be used, for instance maximality with
respect to a specific membrane index (no rule associated to that membrane can
be added to the multi-rule vector), or the rules to be applied are those involving
the presence of a specific object called catalyst, or to each rule a readiness index
can be associated and the criteria is to maximize the sum of these indices, or
simply a priority can be attached to each rule and those enabled with highest
priorities have to be applied. The various strategies that can be adopted have
an influence on the expressiveness of the paradigm, that is not our concern, as
we already mentioned in the introduction.

4 Reversing Membrane System Computations

Reversibility in membrane systems is strongly connected to the idea that com-
putations are deterministic. Here we consider an approach which is more similar
to the one taken when reversibility is considered in the realm of distributed and
concurrent computations.

Rather than introducing new rules (reversed, like in dual membrane systems
where the effect of undoing is obtained applying reversed rules) we formalize
what the reverse application of a multi-rule vector is.

Definition 6. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vector. Then

−→
R is

reversely enabled at C whenever, for all i ∈ {1, . . . , n}, it holds that Rhs(
−→
R)i ⊆

wi, and it is denoted with C 〈−→R].

The intuition is almost trivial: the enabling is done by checking on the effects
of the application of rules. Observe that this fits easily when rule formats like
symport/antiport are considered, or like in [7] where a more general format for
rules is considered.

Reversing Steps in Membrane Systems Computations 253

Definition 7. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vector such that C 〈−→R].

Then
−→
R can be reversed and the effects of reversing this multi-rule vector are,

for all i ∈ {1, . . . , n}, w′
i = wi �Rhs(

−→
R)i ⊕ Lhs(

−→
R)i. We write C 〈−→R]C ′ to state

that the configuration C ′ is the effect of reversing the multi-rule vector
−→
R . In

this case we say that
−→
R is reversely executed.

Once we have established what reversely enabling and reverse execution might
be, we start to connect these notion with the usual forward executions.

Proposition 1. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem, C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vector such that

C [
−→
R 〉, and let C ′ be the configuration reached executing

−→
R , i.e. C [

−→
R 〉C ′. Then

C ′ 〈−→R].

The loop lemma can be easily proven also in this setting:

Lemma 1 (Loop lemma). Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a mem-

brane system, C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vec-

tor such that C [
−→
R 〉, and let C ′ be the configuration reached executing

−→
R , i.e.

C [
−→
R 〉C ′. Then C ′ 〈−→R]C.

The proof of the following theorem is obvious.

Theorem 1. Let Π be a membrane system, C a configuration and
−→
R be a multi-

rule vector such that C [
−→
R 〉C ′. Then there exists a multi-rule vector

−→
R′ such that

C ′ 〈−→R′]C.

Observe that not necessarily
−→
R′ should be equal to

−→
R . In fact they may differ.

Example 1. Consider the membrane system with just one membrane, the unique
rule associated to the membrane are r1 = a → (b, here) and r2 = a ⊕ b →
(2b, here), and the initial configuration is a ⊕ b. The rule r1 is enabled at the

initial configuration and its application leads to the configuration 2b. Now also
r2 can be reversely applied at this configuration and the initial configuration can
be obtained again.

The main problem is that membrane systems do not keep any information about
the past, thus at a certain configuration it could be that a multi-rule vector

−→
R can

be reversely executed even when no
−→
R ′ such that

−→
R ⊆ −→

R ′ has been “forwardly”
executed. This contrasts the idea that reversibility is like undoing something
that has been done previously.

Example 2. Consider the membrane system with 2 membranes [[]2]1, where
the indices are the ones associated to the membranes, and with the following sets
of rules: {r11 : 2a → (a⊕ b, here)⊕ (b, in2), r12 : b → (a, here)⊕ (c, in2), r13 : a⊕ b →

254 G. Michele Pinna

(2a, here)⊕(b, in2), r14 : a → (b, here)⊕(c, in2), r15 : 2a → (b⊕c, in2)} are the rules
associated to the first membrane, and {r21 : b → (2a, out), r22 : c → (b, out), r23 :
b → (a, out), r24 : c → (c, out)} are those associated to the second membrane. The
initial configuration is (w0

1, w
0
2) where w0

1 = 2a⊕b and w0
2 = 0. The configuration

(2a ⊕ b, b ⊕ c) can be reached either executing the multi-rule vector (r11 ⊕ r12,0)
or the one (r13 ⊕ r14,0). At this configuration these two multi-rule vectors are
reversely enabled, but also the multi-rule vector (r15,0), and reversely executing
it we would obtain the configuration (2a,0) which is not reachable using the
rules in the membrane system.

A similar problem is present in all the algebraic process calculi for which
reversibility has been studied (see [8,10,14,15] among others). The solution is
usually to add a memory which helps to keep track of the evolution of the pro-
cesses. Here we pursue a similar idea by adding information to configurations
(membranes). We assume that Name contains ⊥ as a name which is not associ-
ated to any rule.

4.1 Membranes with Memory

Objects of a membrane system may be enriched by adding the name of the
rule producing them. Thus objects would be O × Name, and reversing a step
would be to find out whether there are enough objects with specific rules names.
The forward enabling would ignore the information on which rule produced the
object, and the execution of the step would simply add the proper name of each
object produced. This solution allow to undo just one step, as the information
on the name of the rule of the consumed object are lost.

To be able to undo more steps we have to figure out a different structure,
which we call memory and we will add it to configurations.

We briefly discuss what the memory in this case could be. The idea is rather
simple: the memory is a labeled partial order, where the labeling gives a triple
composed by an object, the index of a membrane and a rules name, thus 〈o, i, n〉
conveys the idea that the object o has been produced in the membrane i using
the rule n.

Definition 8. Let Name be a set of rules names such that ⊥ ∈ Name, let O be
a set of objects and let I be a set of indices. Then a memory m is the labeled
partial order (X,�, l) where (X,�) is a partial order and l : X → O ×I ×Name
is a labeling mapping With Mem we denote the set of memories.

Given an element of (o, i, n) ∈ O×I ×Name, we define some obvious projections
operators, that carry over on multistes of O×I×Name. objm : O×I×Name → O
is defined as objm(o, i, n) = o, im : O × I × Name → I as im(o, i, n) = i, and
finally rulem : O × I ×Name → Name as rulem(o, i, n) = n. Given m = (X,�, l),
with max(m) we denote the (multi)set ⊕x∈max(X,�)l(x).

On memories we define two operations: one to add a vertex and another one
to remove a vertex. These operations are obviously extended to sets of vertices.
Given an element a ∈ O × I × Name and a set of vertices Y ⊆ X, with add we

Reversing Steps in Membrane Systems Computations 255

denote the operation that takes a memory m = (X,�, l), the set of vertices Y
and the element a and add a new vertex, labeled with a, which is greater than all
the vertex in Y . Formally add(m, Y, a) is the memory m′ = (X∪{y},�′, l′) where
y �∈ X, l′(y) = a and l′(x) = l(x) if x ∈ X, and �′ is obtained closing transitively
and reflexively the relation � ∪{(y′, y) | y′ ∈ Y } (though not explicitly stated
here, we imagine that the set Y is not empty and is a subset of max (X,�)).
With remove we denote the operation of removing a vertex x from a memory,
thus given a memory m = (X,�, l), and x ∈ X, with remove(m, x) we denote
the memory m′ = (X\{x},�′, l′) where �′ and l′ are the restriction of � and l
respectively to X\{x} (though not explicitly stated here, we imagine that only
maximal elements are removed). We do need some further notation. Consider
a multiset z over O × {1, . . . , n} × Name, and an index i ∈ {1, . . . , n}, with
�z�i we denote the multiset defined as follows: �z�i(a) = z(a) if im(a) = i and
�z�i(a) = 0 otherwise.

The notion of membrane system does not change, it changes however the one
of configuration (than now has a memory).

Definition 9. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system.

Then a configuration with memory is the pair C = (C,m) where C = (w1, . . . , wn)
is the tuple of multisets over O and m = (X,�, l) is a memory such that for
each i ∈ {1, . . . , n} it holds that wi = objm(�max(m)�i).

The initial configuration C0 is the pair (C0,m0), where C0 = (w0
1, . . . , w

0
n) and

m0 = (X,�, l) is a memory such that ∀x ∈ X, rulem(l(x)) = ⊥ and ∀x, y ∈ X.
x � y implies x = y.

Given a configuration with memory C = (C,m), then η(C) is C and γ(C) is m.
A configuration has now a memory and the requirement is that for each

maximal element of the memory corresponds an object in the membrane con-
figuration. The initial memory is such that the maximal elements carry the
information on the rule stating that they have not been produced by any rule,
and the partial ordering is the discrete one.

Example 3. Consider the membrane system with just one membrane with the set
of rules: {r11 : a → (a, here), r12 : a → (2a, here), r13 : b → (a⊕b, here), r14 : a⊕b →
(a, here)} and the following initial configuration: (a⊕b, ({v1, v2}, id , l)), where

id is the identity relation on {v1, v2}, l(v1) = (a, 1,⊥) and l(v2) = (b, 1,⊥).

The definition of enabling of a multi-rule vector is the same as for membrane
systems: it should be checked on the object part of a configuration (which is
closely related to the memory).

Definition 10. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C = (C,m) a configuration with memory, and
−→
R a multi-rule

vector. Then
−→
R is enabled at C whenever η(C) [

−→
R 〉, We denote the enabling of−→

R at C with C {[−→R 〉.

256 G. Michele Pinna

Consider a memory m = (X,�, l) and a subset of vertex Y ⊆ max (X,�)
with m̃ax(Y) we denote the multiset ⊕y∈Y l(y).

Given a configuration with memory C = ((w1, . . . , wn),m) and a multi-rule
vector

−→
R , for each rule r such that R̂index(r)(r) > 0, with LHSm(r) we denote the

pair (uindex(r), Y) where uindex(r) ⊆ windex(r) is such that lhs(r) = uindex(r), with
windex(r) in η(C), and Y is a subset of the maximal elements in γ(C) = (X,�, l)
such that � m̃ax(Y)�index(r) = uindex(r).

Once a multi-rule vector
−→
R is enabled at a configuration with memory we

have to state the effects of the application of a rule r. The idea is now the
following: for each object of the multiset produced by a rule we add to the
memory a new vertex labeled with the object, the membrane index it belongs
to, and the name of rule r.

Consider a rule r enabled at a configuration C, and consider LHSm(r) =
(uindex(r), {Y }). Consider now rhs(r), and take rhs(r)|α with α ∈ {here, out}∪{ini |
father(i) = index(r)}. Then RHSm(r)i is the multiset in O defined as usual as
Rhs(r)i, and the new memory is obtained from γ(C) = (X,�, l) by adding for
each object o in RHSm(r)i a new vertex y greater than any vertex in Y and
labeled with (o, i, name(r)). We denote this operation as Add(γ(C),RHSm(r)i, Y)
and it is the extension of the operation add defined previously. Given a multi-
rule vector

−→
R , for each i between 1 and n, with overloading of notation, we

denote with LHSm(
−→
R)i the multiset of pairs over O and set of subsets of indices,

defined as
⊕

r∈Ri
R̂i(r) · LHSm(r) (where the sum for pairs acts as the sum

on the multiset part and union on the other), and the tuple of these pairs is
denoted with LHSm(

−→
R), L̂HSm(

−→
R) is the tuple obtained considering only the

first components of LHSm(
−→
R) (thus Lhs(

−→
R)), and

︷ ︸︸ ︷
LHSm(

−→
R) is the set of subsets

of vertices and it is such that ∀Y, Y ′ ∈
︷ ︸︸ ︷
LHSm(

−→
R), Y �= Y ′ implies that Y Y ′ = ∅

(all the involved vertices are distinct). Similarly, for each membrane, we denote
the effects by RHSm(

−→
R)i and RHSm(

−→
R) denotes the tuple of these effects and on

memory is Add(γ(C),RHSm(
−→
R),

︷ ︸︸ ︷
LHSm(

−→
R)) where

︷ ︸︸ ︷
LHSm(

−→
R) is a set of subset

of the maximal elements in γ(C) that have to be followed by the new objects
(thus there is a set of maximal elements for each applied rule).

Definition 11. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane

system with memory, C a configuration with memory, and
−→
R a multi-rule vector

such that C {[−→R 〉, and assume that
︷ ︸︸ ︷
LHSm(

−→
R) is the list of maximal elements of

γ(C) as described above. Then C {[−→R 〉C′ where C′ is obtained by C as follows:
for each membrane index i, w′

i = wi � Lhs(
−→
R)i⊕Rhs(

−→
R)i and the memory is

Add(γ(C),RHSm(
−→
R),

︷ ︸︸ ︷
LHSm(

−→
R)).

The definition is rather obvious: for each object o produced in a membrane i
by the rule n a new vertex is added in the memory which is greater than the
elements consumed by the rule.

Reversing Steps in Membrane Systems Computations 257

Observe that the elements added to the configuration are precisely among
the maximal elements in the memory.

Proposition 2. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C a configuration with memory, and
−→
R a multi-rule vec-

tor such that C {[−→R 〉C′. Take Y = max(γ(C′)) and consider l(Y) which can be
seen as a multiset over O × {1, . . . , n} × Name. Then for each i ∈ {1, . . . , n}.
objm(�l(Y)�i) = w′

i where η(C′) = (w′
1, . . . , w

′
n).

Example 4. Consider the membrane system of Example 3. At the initial configu-
ration the following sets of rules are enabled: {r11⊕r13}, {r12⊕r13}, {r14}. Consider
the last one. The execution of it gives the configuration ((a, r14), ({v1, v2, v3}, id ∪
{(v1, v3), (v2, v3)}, l′)) where l′(v1) = l(v1), l′(v2) = l(v2) and l′(v3) = (b, 1, r14).

Performing another one, for instance {r11⊕r13}, would give a different memory.

We show that this is a conservative extension of membrane systems, as to each
step in a membrane system with memory, a step corresponds in the membrane
system where all the added information is forgotten.

Proposition 3. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem, C a configuration with memory,
−→
R a multi-rule vector such that C {−→R 〉, and

let C {[−→R 〉C′. Then η(C) [
−→
R 〉 and η(C) [

−→
R 〉 η(C′).

We discuss now when a rule r can be reversely applied in this setting. Again
the intuition is rather simple, just check if there are enough objects bearing the
name of the rule r among the maximal elements of the memory. Let m be a
memory, n be a rule name, and i a membrane index, then with �i

name(r) (m) we
denote the multiset on O defined as

�i
name(r) (m) =

⊕

x∈max(m)

{objm(l(x)) | rulem(l(x)) = name(r) ∧ im(l(x)) = i}

Let r be a rule and C be a configuration of a membrane system with memory
Πm. Then r is reversely enabled at C = ((w1, . . . , wn),m) whenever, for all
k ∈ I(r), rhs(r)k ⊆�k

name(r) (m). The reverse enabling is summarized in the
following definition.

Definition 12. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C a configuration, and
−→
R a multi-rule vector. Then

−→
R is

reversely enabled at C if for rule r in
−→
R R̂index(r) · rhs(r)k ⊆�wk

name(r) (γ(C)). The

reverse enabling of a multi-rule vector is denoted with C 〈−→R]}.
In this case we have to find, for each each instance of a given rule, enough objects
produced by an instance of the same rule at the same (local) configuration.

Once a multi-rule vector is reversely enabled, it may be applied. We start
showing what it means to undo a single rule r. Given a configuration C, with
the memory γ(C) = (X,�, l), for each index k ∈ I(r) we have that rhs(r)k

258 G. Michele Pinna

is contained in �k
name(r) (γ(C)). Consider a subset Y ⊆ max (X,�) such that

objm(�⊕y∈Y l(y)�k) = rhs(r)k, then what we have to do on the memory is just to
remove the set Y from the memory. The set of these vertices are denoted with
︷ ︸︸ ︷
RHSm(r) and it extends obviously to

−→
R . Clearly we require that these sets of

vertices are disjoint.

Definition 13. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C = ((w1, . . . , wn),m) be a configuration, and
−→
R a multi-

rule vector such that C 〈−→R]}. Then C′ = ((w′
1, . . . , w

′
n),m′), where w′

i = wi �
Rhs(

−→
R)i⊕Lhs(

−→
R)i and m′ is obtained from m by removing all the vertex in m

corresponding to the object in RHSm(
−→
R), thus m′ = remove(m,

︷ ︸︸ ︷
RHSm(

−→
R)), is

the configuration reached by reversely executing
−→
R at C. As before it is denoted

with C 〈−→R]}C ′.

Example 5. Consider the membrane system of Example 3 and the computation
step done in Example 4. The set {r14} is reversely enabled and

(b, ({v1, v2, v3}, id ∪ {(v1, v3), (v2, v3)}, l′)) 〈{r14}]} (a⊕b, ({v1, v2}, id , l))

where the labeling are those in Examples 3 and 4.
Consider another membrane system with just one membrane with the set of

rules: {r11 : b → (a⊕b, here)} and the initial configuration (b,m0). Applying to
this configuration {r11} we have

(b,m0) {[{r11}〉 (a⊕b,m1)

where m1 = ({v1, v2, v3},�, l) where v1 � v2, v1 � v3 and l is the following:
l(v1) = (b, 1,⊥), l(v2) = (a, 1, r11) and l(v3) = (b, 1, r11). To this configuration we
can apply again the same rule:

(a⊕b,m1) {[{r11}〉 (a⊕a⊕b,m2)

where now m2 is ({v1, v2, v3, v4, v5},�′, l′) with v3 �′ v4, v3 �′ v5 and the new
vertices are labelled as l(v4) = (a, 1, r11) and l(v5) = (b, 1, r11). Reversely applying
the unique rule we could have now a choice: either consider the vertices {v4, v5}
or {v2, v5}. In the latter case we have

((a⊕a⊕b,m2) 〈{r11}} (a⊕b,m3)

where m3 is obtained from m2 by removing the vertices v2 and v5. This choice
(which is investigated in a different setting in [19]) has as consequence that we
cannot further undo going back to the initial configuration.

If the vertices {v4, v5} are taken into accont, then the configuration (a⊕b,m1)
is obtained again.

Again the loop lemma can be proved also in this setting but, as the previous
example points out, it is a weaker version with respect to the one we introduced
previously.

Reversing Steps in Membrane Systems Computations 259

Lemma 2 (Loop lemma for membrane system with memory). Let Πm

= (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system with memory, C a con-

figuration, and
−→
R be a multi-rule vector such that C {[−→R 〉, and let C′ be the

configuration reached by executing
−→
R , i.e. C {[−→R 〉 C′. Then there exists a set of

vertices in γ(C′) associated to the object to be removed by the reverse application
of

−→
R , such that C′ 〈−→R]}C′′ and C = C′′.

Observe that not necessarily the objects consumed by the application of a
multi-rule vector are those used in the reverse application of it. Hence we not
necessarily obtain again the same memory. However, if the memory is the same,
then the vector multi-rule reversely applied is the same we started with.

Theorem 2. Let Πm be a membrane system with memory, C a configuration,
and

−→
R be a multi-rule vector such that C {[−→R 〉 C′. Then for all multi-rule vector−→

R′ such that C′ 〈−→R′]} C it holds that
−→
R′ =

−→
R .

Obviously, the reversing in a membrane system with memory and the revers-
ing in the membrane system where the additional information are forgotten, are
related in a precise way.

Proposition 4. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C a configuration, and
−→
R be a multi-rule vector such that

C {[−→R 〉, and let C′ 〈−→R]} C. Then η(C′) 〈−→R] η(C).

5 Future Works

Reversibility in membrane systems has several facets. One is connected with
determinism and the fact that each configuration has just a single predecessor,
another is related to the amount of information needed to reconstruct past con-
figurations. Concerning this view of reversibility, we have proposed a way to
add all the relevant informations to undo steps properly. It must be said that
many other solutions are conceivable, depending on the amount of information
needed, for instance objects may be enriched to carry the history. The approach
we presented here has the characteristic that the memory not only allow to
reverse steps properly but also keep tracks of the dependencies among steps and
objects.

Beside continuing to investigate on how reversibility can be achieved in mem-
brane systems, we put two possible research issues. Here we have considered that
all the rules are reversible, but this assumption is a maybe too strong when com-
putations that are inspired by nature are considered. We may imagine that some
rules produce irreversible effects, that cannot be undone. This may be modelled
simply forgetting the rules names in both approaches. However this opens many
questions on how to actually reverse computations and also on the notions of
causality as investigated in [20] or [2]. Various situations may be devised in this
setting, similarly to what is done in [19]. Here some events are undone but still

260 G. Michele Pinna

some of their effects may remain. This idea can be possibly implemented also in
membrane systems, opening new interesting feature.

Another issue is the possibility of combining the two ways: a part of the
multi-rule vector is used to compute forward, another part is used to undo some
effects. Again this has to be fully investigated.

Acknowledgement. The author acknowledge the useful remarks and suggestions by
the anonymous reviewers.

References

1. Agrigoroaiei, O., Ciobanu, G.: Reversing computation in membrane systems. J.
Logic Algebraic Program. 79(3–5), 278–288 (2010)

2. Agrigoroaiei, O., Ciobanu, G.: Rule-based and object-based event structures for
membrane systems. J. Logic Algebraic Program. 79(6), 295–303 (2010)

3. Alhazov, A., Freund, R., Morita, K.: Sequential and maximally parallel multiset
rewriting: reversibility and determinism. Nat. Comput. 11(1), 95–106 (2012)

4. Aman, B., Ciobanu, G.: Computational power of protein interaction networks. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 248–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39074-6 25

5. Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal
parallelism. Theoret. Comput. Sci. 378(1), 117–130 (2007)

6. Ciobanu, G., Pinna, G.M.: Catalytic Petri nets are turing complete. In: Dediu,
A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 192–203. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28332-1 17

7. Ciobanu, G., Pinna, G.M.: Catalytic and communicating Petri nets are Turing
complete. Inf. Comput. 239, 55–70 (2014)

8. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

9. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoret. Comput. Sci. 330(2), 251–
266 (2005)

10. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility in
a tuple-based language. In: Daneshtalab, M., Aldinucci, M., Leppänen, V., Lilius,
J., Brorsson, M. (eds.) PDP 2015, pp. 467–475. IEEE Computer Society (2015)

11. Ibarra, O.H.: On strong reversibility in P systems and related problems. Int. J.
Found. Comput. Sci. 22(1), 7–14 (2011)

12. Kleijn, J., Koutny, M.: A Petri net model for membrane systems with dynamic
structure. Nat. Comput. 8(4), 781–796 (2009)

13. Kleijn, J.H.C.M., Koutny, M., Rozenberg, G.: Towards a Petri net semantics for
membrane systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006). https://
doi.org/10.1007/11603047 20

14. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 33

https://doi.org/10.1007/978-3-642-39074-6_25
https://doi.org/10.1007/978-3-642-39074-6_25
https://doi.org/10.1007/978-3-642-28332-1_17
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11603047_20
https://doi.org/10.1007/11603047_20
https://doi.org/10.1007/978-3-642-15375-4_33

Reversing Steps in Membrane Systems Computations 261

15. Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order π-calculus.
Theoret. Comput. Sci. 625, 25–84 (2016)

16. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
(114) (2014)

17. Leporati, A., Zandron, C., Mauri, G.: Reversible P systems to simulate Fredkin
circuits. Fundamenta Informaticae 74(4), 529–548 (2006)

18. Nishida, T.Y.: Reversible P systems with symport/antiport rules. In: Paun, G.,
Pérez-Jiménez, M.J., Riscos-Núñez, A. (eds.) WMC 2010, pp. 452–460 (2010)

19. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Logic Algebraic Methods Program. 84(6), 781–805 (2015)

20. Pinna, G.M., Saba, A.: Modeling dependencies and simultaneity in membrane sys-
tem computations. Theoret. Comput. Sci. 431, 13–39 (2012)

21. Păun, A., Păun, G.: The power of communication: P systems with Sym-
port/Antiport. New Gener. Comput. 20(3), 295–306 (2002)

22. Păun, G.: Computing with membranes: an introduction. Bull. EATCS 67, 139–152
(1999)

23. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Oxford (2010)

24. Song, T., Shi, X., Xu, J.: Reversible spiking neural P systems. Front. Comput. Sci.
7(3), 350–358 (2013)

Families of Languages Encoded by SN P Systems

José M. Sempere(B)

Departamento de Sistemas Informáticos y Computación,
Universitat Politècnica de València, Valencia, Spain

jsempere@dsic.upv.es

Abstract. In this work, we propose the study of SN P systems as clas-
sical information encoders. By taking the spike train of an SN P system
as a (binary) source of information, we can obtain different languages
according to a previously defined encoding alphabet. We provide a char-
acterization of the language families generated by the SN P systems in
this way. This characterization depends on the way we define the encod-
ing scheme: bounded or not bounded and, in the first case, with one-to-
one or non injective encodings. Finally, we propose a network topology
in order to define a cascading encoder.

Keywords: SN P systems · Formal languages · Codes
Word enumerations

1 Introduction

Spiking Neural P systems (SN P systems) were proposed as a model that com-
bines some aspects of neural networks and some others from P systems. Basically,
they have been proposed as acceptor systems, language generators or (encoded)
word transducers. We focus our attention on the generative capacity of this
model. Typically, the language generated by the system is taken as the set of
binary words defined by the spike train that the system outputs. This approach
was first formulated in [5], and later developed in [1].

In this work, we consider a SN P system as a classical information source that
can generate encoded strings as outputs. The binary codes can be established in
an exogenous predefined way and, for a fixed encoding alphabet, the system gen-
erates a (possibly) infinite language. So, any SN P system can generate different
languages depending on the encoding that has been defined. We will overview
different situations within this approach: First, for a fixed integer value we will
distinguish between one-to-one and non-injective cases. Then, different encoding
schemes where the integer value tends to infinity will be overviewed and, finally,
a network topology that connect different SN P systems to produce a cascading
encoder will be proposed.

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 262–269, 2018.
https://doi.org/10.1007/978-3-319-73359-3_17

Families of Languages Encoded by SN P Systems 263

2 Basic Concepts

We consider that the reader knows basic concepts and results from formal lan-
guage theory, otherwise we refer to [10]. In the same way, we consider that the
reader is familiar with the basic concepts and results about P systems and mem-
brane computing, otherwise we refer to [4,8].

In what follows, we provide some basic definitions related to Spiking Neural
P systems from [4].

Definition 1. A spiking neural P system (SN P system, for short) of degree
m ≥ 1 is defined by the tuple Π = (O, σ1, σ2, · · · , σm, syn, in, out) where

1. O = {a} is the singleton alphabet of spikes
2. σ1, σ2, · · · , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where

(a) ni ≥ 0 is the initial number of spikes contained in σi

(b) Ri is a finite set of rules of the following two forms
i. firing or spiking rules E/ac → a; d where E is a regular expression

over a, and c ≥ 1, d ≥ 0 are integer numbers. We will omit E when-
ever it be equal to ac, and we will omit d if it is equal to 0.

ii. forgetting rules as → λ, for s ≥ 1, with the restriction that for each
spiking rule E/ac → a; d then as /∈ L(E) (L(E) is the regular language
defined by E)

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} with (i, i) /∈ syn, for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1 · · · m} indicate the input and the output neurons of Π.

At neuron σi, the firing rules E/ac → a; d are applied as follows: if the neuron
contains k ≥ c spikes and ak ∈ E then c spikes are removed from σi and one
spike is delivered to all the neurons σj connected to σi with (i, j) ∈ syn. If d = 0
the spike is immediately emitted, otherwise it is emitted after d computation
steps (during these computation steps, the neuron is closed, so it cannot receive
spikes, it cannot apply the rules and, subsequently it cannot send new spikes).
At neuron σi, the forgetting rule as → λ is applied as follows: if the neuron σi

contains exactly s spikes and no firing rule can be applied then all the spikes of
the neuron are removed.

A configuration of the system at an instant t during a computation is defined
by the tuple (i1/t1, · · · , im/tm) that denotes the number of spikes that are at
every neuron together with the computation time needed to open the neuron.
The initial configuration of the SN P system is (n1/0, · · · , nm/0). A computation
of Π is a (finite or infinite) sequence of configurations such that: (a) the first
term of the sequence is the initial configuration of the system and each of the
remaining configurations are obtained from the previous one by applying rules
of the system in a maximally parallel manner with the restrictions previously
mentioned; and (b) if the sequence is finite (called halting computation) then
the last term of the sequence is a halting configuration, that is a configuration
where all neurons are open and no rule can be applied to it.

264 J. M. Sempere

During a computation, the moments of time when a spike is emitted by the
output neuron will be marked by ‘1’ while the other moments are marked by ‘0’.
The binary sequence that is obtained in such a way during the computation is
called the spike train of the system. In the sequel, we will omit the input neuron,
and we will work with SN P systems as language generators.

The language generated by any SN P system depends on the interpretation
given to the spike train that it outputs. For any halting computation, we can
take the finite spike train as a string over the binary alphabet B = {0, 1}, or
we can take the intervals between output spikes with different approaches such
as those described in [9]. In what follows, we will consider the spike train as a
generator of binary strings.

For any SN P system Π, the language generated by Π as described before
will be denoted by L1(Π).

3 Languages Encoded by SN P Systems

Our approach to the languages generated by SN P systems is different from
the previously referred ones. Actually, the present research idea occurred in a
framework related to classical communication channels with encoded informa-
tion, where, for every SN P system, different languages can be associated to the
system depending on a parameter that fixes a time window to analyze the spike
train.

For any SN P system Π, we take the binary language L1(Π) and we encode
blocks of k digits, for all the positive integer values k, in such a way that lan-
guages Lk(Π) are obtained. Of course, we have to take care of the case when
the spike train is not of a length which is a multiple of the considered k. In this
case, we add symbols 0 so that the obtained binary string is of a length divisible
by k.

More formally, let B = {0, 1} be the binary alphabet, let k ≥ 1 be a natural
number, let Bk be the set of all strings from B whose length is k, and Vk be
an alphabet. In general, any alphabet can be considered but we will associate a
different symbol for every word in Bk. Consider a mapping ϕk : Bk −→ Vk. For
each string w ∈ B∗ we consider the string kw = w0t, where t = min{n ≥ 0 |
|w0n| is a multiple of k}.

The string kw can be written in the form kw = x1x2 . . . xs, such that |xj | = k
for all j = 1, 2, . . . , s. Then, ϕk can be extended to (Bk)∗ in the natural way:
ϕk(y1y2 . . . yt) = ϕk(y1)ϕk(y2) . . . ϕk(yt) for all yi ∈ Bk, 1 ≤ i ≤ t, t ≥ 0. We can
see the encoding approach that we have just described in Fig. 1.

Thus, for an SN P system Π and an encoding ϕk as above, we can define the
language

Lϕk
(Π) = {ϕk(kw) | w ∈ L1(Π)}.

In what follows, we write Lk(Π) instead of Lϕk
(Π). The language Lk(Π)

depends on the encoding ϕk, hence a family of languages can be associated with
Π by varying k and the mapping ϕk. Observe, that the language L1(Π), as
defined at the end of Sect. 2, is a particular case of Lk(Π) when k = 1, given

Families of Languages Encoded by SN P Systems 265

Fig. 1. SN P systems as language encoders: the case of intervals of lenght k.

that ϕ1 can be trivially defined as the identity mapping. We define the family
of languages F (Π) = {Lk(Π)|k ≥ 1}.

Already at this very general level there appear several research issues. In
what follows, we consider two classes of mappings ϕk and investigate the closure
properties of the corresponding families of languages generated by SN P systems.

3.1 The One-to-One Case

A natural possibility is to order in a precise way, e.g., lexicographically, the
strings in Bk, and to associate with each of them a distinct symbol from an
alphabet Vk with 2k elements, that is, assuming that ϕk is injective.

We can establish the following properties depending on whether L1(Π) is
finite or not.

Property 1. Let Π be an SN P system. Then, if L1(Π) is finite the so are each
Lk(Π) for k > 1.

From the Property 1, we can deduce that if L1(Π) is finite, then the family
F (Π) is finite, up to a renaming of symbols of alphabets Vk.

Property 2. Let Π be an SN P system. Then, if L1(Π) is infinite, then so are
each Lk(Π) for k > 1.

If L1(Π) is infinite, then F (Π) can be an infinite family, because the alphabet
of Lk+1(Π) might be larger than the alphabet of Lk(Π). This is the case, for
instance, for the SN P system Π generating L1(Π) = {1n01m | n,m ≥ 1} (which
is an infinite regular language).

The fact that the encoding is one-to-one is rather restrictive: the passing
from the binary language L1(Π) to a given Lk(Π) can be done by means of
a sequential transducer (a gsm, in the usual terminology, [10]). Conversely, the
passage from Lk(Π) to L1(Π) is done by an one-to-one (non-erasing) morphism,
which implies that the converse passage is done by an inverse morphism. This
observation can be formally formulated as follows.

266 J. M. Sempere

Proposition 1. If L1(Π) ∈ FL, where FL is a family of languages closed under
gsm mappings or under inverse morphisms, then Lk(Π) ∈ FL, for all k ≥
1. If FL is closed under non-erasing morphisms and Lk(Π) ∈ FL, then also
L1(Π) ∈ FL.

Families as FL above are REG,LIN,CF in the Chomsky hierarchy, hence
if L1(Π) is regular, linear or context-free, then so are all languages Lk(Π), and
conversely.

This means that each family F (Π) contains only languages of the same type
in the Chomsky hierarchy (for instance, it is not possible to have a context-free
non-regular language Lk(Π) together with a regular language Lj(Π), for some
k �= j.

3.2 The Non-injective Case

The previous type-preserving Proposition 1 does not hold in the case of using
encodings which are not one-to-one.

Here is an example: Consider Π such that L1(Π) = {1n01n | n ≥ 1} (SN
P systems are universal, [5], hence any language can be taken as the starting
language). Of course, L1(Π) is context-free non-regular.

Consider the encoding ϕk : Bk −→ {a, b} defined by ϕk(w) = a if |w|0 ≤ 1,
and ϕk(w) = b if |w|0 ≥ 2. We get

Lk(Π) = a+ ∪ a∗b, for k ≥ 4,

L3(Π) = a+ ∪ (aa)+b, and L2(Π) = aa+.
Clearly, the languages Lk(Π), k ≥ 2, are regular, in spite of the fact that

L1(Π) is (context-free) non-regular.
The properties of the encoding is crucial for the properties of the obtained

language families (this is true also in other frameworks, see, e.g., [3] and its
references), hence this issue deserves further research efforts.

4 The Unbounded Case

In the previous section, an encoding of the languages based on blocks of length
k has been considered. Now, we consider the limit case, when every string from
L1(Π) encodes a different string while k tends to ∞.

Formally, we consider an alphabet Σ = {a0, a1, · · · , ap}, and the ordered set
of strings Σ∗ = {w0, w1, · · · wi, · · · }. We define the encoding ϕint : B∗ −→ Σ∗

such that for every binary string x, ϕint(x) = wint(x) where int(x) is the integer
value of x by taking x as a binary number. The encoding scheme over the SN P
system is shown at Fig. 2.

For a given alphabet Σ and an application ϕint : B∗ −→ Σ∗, we can define
the encoded language of any SN P system, as we have described before, as follows

L∞(Π) = {w ∈ Σ∗ | ∃x ∈ L1(Π) such that w = zint(x)}

Families of Languages Encoded by SN P Systems 267

Fig. 2. SN P systems as language encoders: the unbounded case.

Observe, that Σ∗ must be ordered within a precise enumeration of all its
words. In this case, the enumeration of the strings in Σ∗ (actually, its order) is
decisive to preserve the language class from L1(Π) to L∞(Π).

For example, let us take L1(Π) = {(01)n | n ≥ 0} that is a regular language
that can be generated by an SN P system given that they have been proved to
be universal.

Let Σ = {a, b} and the languages L1 = {anbn | n ≥ 0} and L2 = Σ∗−L1. We
consider that L1 = {x1, x2, x3, · · · } and L2 = {y1, y2, y3, · · · } are lexicographi-
cally ordered.

We can define the following enumeration over Σ∗ = {z1, z2, · · · , zi, · · · },
where

1. If i mod 2 = 0 then zi = y i
2

∈ L2 (even indexes)
2. If i mod 2 = 1 then zi = x� i

2 � ∈ L1 (odd indexes)

Observe that every string x ∈ L1(Π) = {(01)n : n ≥ 0} encodes an odd
integer number given that the binary string ends with ‘1’. Hence, L∞(Π) is an
infinite subset of L1 given that, for every string x in L1(Π), the string zint(x)

occupies an odd position and, subsequently, it belongs to L1. Hence. L1(Π) is
regular while L∞ is not.

5 Networks of SN P Systems as Cascading Encoders

Finally, we propose a new way of encoding languages by composing a finite
number of SN P systems. In this case we propose a topology based on SN P
systems with a tissue-like configuration within a bus connection. Our proposal
is shown in Fig. 3.

We have a finite set of n SN P systems defined in the usual way. We connect
them in the following way: every time that the SN P system i halts, its spike
train encodes an integer value ki that is the parameter to encode the language
in the SN P system i + 1. Hence, a network of SN P systems can be viewed
as a cascading encoder for languages. If we connect the SN P systems in a bus
topology then, for the iterated case, the last system is connected to the first one.

268 J. M. Sempere

Fig. 3. A network of SN P systems generates a family of languages.

This opens a new framework which is related to previous works on DNA
computing and formal languages [6,7], where iterated transductions were proved
to characterize the entire class of recursively enumerable languages.

6 Final Comments and Future Research

The idea of associating a family of languages with a given P system is rather
natural. We have illustrated it here with the case of SN P systems, but the same
strategy can be applied for any type of P systems producing a language (such
that cell-like P systems with external output, SN P systems generating trace
languages [2], etc.).

A more systematic study of this idea is of interest, starting with relevant
examples, continuing with “standard” formal language theory questions, and
ending with possible applications of this approach (as languages generated by
the same P system are “genetically” related, maybe in this way one can capture
biological connections/dependencies or other types of relationships).

More precisely, we enumerate the following questions related to our proposal:

1. We have described a way to encode languages within SN P systems. Now, the
reverse problem arises i.e., to decode languages from the spike train. Here,
from a spike train we should obtain the set of binary spike trains that encode
it. This issue should be studied in order to complete a classical communication
framework.

2. With respect to the encoding properties, we have overviewed only the aspects
related to the (non) injective property. Different properties from code theory
should produce new results that connect formal language theory, SN P sys-
tems and communications systems.

3. The last issue that we have proposed opens different problems related to it.
If a network of SN P systems is proposed then we should study the effects of
the network topology and the number of SN P systems over the families of
languages. In this sense, the number of SN P system could be considered a
descriptional complexity measure.

These aspects and new ones will be reported in future works.

Families of Languages Encoded by SN P Systems 269

Acknowledgements. Part of this work appeared as Families of Languages Associ-
ated with SN P Systems: Preliminary Ideas, Open Problems. Gh. Păun, J.M. Sempere.
Bulletin of the Membrane Computing Society, Issue 2, December 2016, pp. 161–164.
http://membranecomputing.net/IMCSBulletin/. The author is indebted to Gh. Păun
for his original contribution to this work.

References

1. Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string lan-
guages generated by spiking neural P systems. Fundam. Inf. 75(1–4), 141–162
(2007)

2. Chen, H., Ionescu, M., Păun, A., Păun, G., Popa, B.: On trace languages generated
by spiking neural P systems. In: Eighth International Workshop on Descriptional
Complexity of Formal Systems (DCFS 2006), Las Cruces, New Mexico, USA, pp.
94–105, 21–23 June 2006

3. Csuhaj-Varjú, E., Vaszil, G.: On counter machines versus dP automata. In: Alha-
zov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A.
(eds.) CMC 2013. LNCS, vol. 8340, pp. 138–150. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54239-8 11

4. Ibarra, O.H., Leporati, A., Păun, A., Woodworth, S.: Spiking neural P systems. In:
Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane
Computing, Oxford University Press (2010)

5. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inf.
71(2–3), 279–308 (2006)

6. Manca, V.: On the generative power of iterated transduction. In: Ito, M., Păun, G.,
Yu, S. (eds.) Words, Semigroups, and Transductions, pp. 315–327. World Scientific
(2001)

7. Manca, V., Mart́ın-Vide, C., Păun, G.: New computing paradigms suggested by
DNA computing: computing by carving. BioSystems 52, 47–54 (1999)

8. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-642-56196-2

9. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P
systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.
Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5

http://membranecomputing.net/IMCSBulletin/
https://doi.org/10.1007/978-3-642-54239-8_11
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-59136-5

On the Robust Power of Morphogenetic Systems
for Time Bounded Computation

Petr Sośık2(B), Vladimı́r Smolka2, Jan Drast́ık2, Jaroslav Brad́ık2,
and Max Garzon1

1 Computer Science, The University of Memphis, Memphis, TN, USA
2 Research Institute of the IT4Innovations Centre of Excellence,

Faculty of Philosophy and Science, Silesian University, Opava, Czech Republic
petr.sosik@fpf.slu.cz

Abstract. The time appears ripe to enrich the original idea of mem-
brane computing with principles of self-assembly in space. To this effect,
a first step was taken with the introduction of a new such family of
models M systems (for morphogenetic system) that own a number of
basic macro-properties exhibited by higher living organisms (such as self-
assembly, cell division akin to mitosis and self-healing), while still only
leveraging local interactions of simple atomic components and explicit
geometric constraints of their constituting elements. Here we further
demonstrate that, experimentally in silico, M systems are in general also
capable of demonstrating these properties robustly after being assembled
from scratch from some atomic components and entering a homeostatic
regime. The results are obtained through a series of experiments car-
ried out with an M system simulator designed to implement this kind of
model by researchers interested in exploring new capabilities. We further
define probabilistic complexity classes for M systems and we show that
the model is theoretically capable of solving NP-complete problems in
P-time, despite apparent problems of an implementation, such as kinetic
and concentration bottlenecks.

1 Introduction

The relationship between the macrosciences (such as biology) and the micro-
sciences (such as quantum mechanics and physics) has been a topic of increasing
interest for decades. In a pioneering work, Schrödinger [20] explored this con-
nection and pointed to the future developments of a molecular basis for biology,
later fully validated by the discovery of the structure of DNA [25] in the 1950s,
the development of biotechnology in the 1980s and the genome projects (HGPs,
www.ornl.gov) of the 1990s. Subsequently, the informatics of biology has been
pushed to the forefront by extensive work in ∗-omics in the field of bioinfor-
matics in the 21st century. Bioinformatics can be broadly characterized by the
application of computer science methods to address biological problems, primar-
ily from the point of view of the science and management of large amounts of
data by efficient algorithms. This approach does not address the alternative and
c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 270–292, 2018.
https://doi.org/10.1007/978-3-319-73359-3_18

www.ornl.gov

On the Robust Power of Morphogenetic Systems 271

more fundamental question of whether biological processes are in essence, at
some level, fundamentally information processors, or at least can be understood
from that perspective. Turing’s paper [24] is perhaps the original most famous
attempt at a positive answer, by suggesting a model that would explain why the
patterns in a leopard skin exhibit the morphogenesis and resilience to injuries
typical in biological organisms.

The primary unit in biological sciences is an organism and its fundamental
characteristic is reproduction. A fundamental distinction between biology and the
other natural sciences can be formulated as follows: while physics and chemistry,
for example, are governed by interactions that appear immutable and perennial
over time, a biological organism is conceived by the physics and chemistry of
the world, undergoes a growth process that turns it into an idiosyncratic adult,
but eventually dies back into the material world. In the process, the organism
produces offspring that inherit some of its uniqueness and perpetuate it over
time, but in a very mutable way that creates some sort of living memory and
gives rise to evolution. Understandably, the significance of the answers and the
complexity of evolution have led computer scientists, and perhaps even biologists,
to focus their work on the latter (primarily, natural selection and ∗-omics), which
has resulted in relatively poor attention devoted to the organisms themselves,
e.g., the morphogenetic growth processes, which may nonetheless play an equally
important role in the adult organism itself. A major aim of this work is to focus
on models of morphogenesis and the transition into what we term homeostasis,
i.e., a sustainable, balanced functioning state as a “productive” organism.

There have been two major avenues to address this question, namely mem-
brane computing and virtual cells [23]. The original inspiring idea of membrane
computing, now usually referred to as P systems [17], was to develop models
that could begin to shed light on the role of membranes in the process of mor-
phogenesis of the living cell, while obtaining new insights and approaches to
solving difficult problems in computer science. A survey of membrane comput-
ing (see [18]) shows a number of works hinting at this kind of model. [11] studies
synchronized colonies of membrane-inspired agents, including their behavioral
robustness in cases of agent loss or rule failure. A Spatial P system embed-
ded in a 2D lattice, partly resembling cellular automata, appeared in [4]. The
model was later applied to simulate the collective formation and movement of
herring schools [3]. The same authors introduced the Spatial Calculus of Loop-
ing Sequences (Spatial CLS) [2], assigning to membranes exclusive positions in
2D/3D space. Membrane systems allowing self-assembly of graphs were studied
in [5–7]. A model of morphogenesis of a multicellular body based on abstract
membranes displacement and attachment in 3D space was presented in [13] and
applied to simulate the growth of colonies of Dictyostelium discoideu. Finally,
[1] relates membrane systems to 2D finite interactive systems representing 2D
regular languages. However, all these models assumed an abstract cell as an
atomic assembly unit of an abstract nature. Here, we are interested in explor-
ing the developmental process from scratch, i.e., through self-assembly of 1D or
2D primitives allowing for self-assembly of 3D cell-like forms. To be sure, we
are not interested in cloning biological organisms (an exercise that sheds little

272 P. Sośık et al.

understanding of the key mechanisms at play), but in a deeper examination of
potential mechanisms or strategies whereby they may be achieved through a com-
plexification process distributed in space and time, emerging from the bottom-up
through local interactions among atomic components naturally available in an
environment. Specifically, the objective is to explore higher functions such as
internal dynamical homeostasis, self-reproduction, self-healing, for example, and
their relationships. (We must point out that, to the best of our knowledge, the
actual etiology of these process in biology is not fully known, but even if it
were, knowledge of such mechanisms or strategies may prove useful both within
biology and other fields such as artificial or extraterrestrial life.)

Perhaps the most appealing feature of membranes is that they bring into the
picture an obvious but most fundamental ingredient in the formation of a biolog-
ical cell, namely the walls that separate it from the external world or the various
parts of it. Less known is the more general and primary role of other spatial
relationships and constraints in the organization of biological systems, let alone
the role of geometric shape. An attempt at a general approach to formalization
of spatial and geometrical interaction in complex (biological) systems is the 3π
calculus [10] based on process algebra.

Recent research points to an increasingly important role in biological morpho-
genesis of topological and geometric features such as crevices and wrinkles (see
e.g., [22]). Another example of current interest is the formation of the mammalian
brain cortex. Mechanical and biochemical models have been used. Mechanical
models hypothesize that gyris (foldings) in the brain are the results of anisotropic
differential growth, while numerical solutions to chemically reaction-diffusion
(RD) systems have produced qualitatively approximate patterns in cortex for-
mation, both in 2D and 3D models. Genetic factors, particularly the protein
β-catenin recently, are also implicated in the process. These models can be used
for prognosis of brain malformations during development in terms of coefficients
in the RD model (e.g., polymicrogyria and lissencephaly). Biologists are also now
beginning to discover the importance of the role of even more elementary phys-
ical phenomena, such as electric fields and chemical gradients, including their
role in chemical signaling in the living cell [19], e.g. in critical mechano-sensitive
channels [8].

Simultaneously and from a separate direction, computational ideas from the
field of DNA Computing have developed models and theories of DNA self-
assembly that capture more directly a “morphogenetic” process of sorts in the
form of models of self-assembly of patterns and families of patterns and afford
clues as to the nature of and capabilities of morphogenesis [12]. However, once
again, these models do not directly afford new knowledge on the fundamental
biological problem of morphogenesis and homeostasis that would bring them
anywhere near the kind of contribution that other models in natural sciences
like physics and chemistry provide us about motion and matter transformation.

Inspired by these developments, the time appears ripe to hybridize P sys-
tems and geometric self-assembly in order to explore models of morphogenesis
and homeostasis, balancing three somewhat conflicting properties to the best

On the Robust Power of Morphogenetic Systems 273

degree possible: biological realism, physical-chemical realism and computational
realism. To achieve physical-chemical realism, very critical components and the
corresponding dynamic process occurring in a living cell will be specifically repre-
sented in the model by appropriate data structures and algorithmic interactions.
To achieve computational realism, all components and processes must be mod-
eled at the appropriate level of granularity in both time and resources in order to
maintain the computational feasibility of the model. To achieve biological real-
ism, the aggregate observables accumulated over time and space in the model
must reflect, to some degree, the corresponding macroscopic observables, e.g.,
must reflect to some scale or level of granularity known properties of biologi-
cal organisms at the observable (nano, micro or macro) level, independently of
whether they faithfully describe factual processes in biological organisms.

Therefore, the desirable features of the model are self-assembly, self-
controlled growth and emerging global behavior that is consistent with observ-
able properties of biological organisms, but which arise from nondeterministic
local interactions of elementary components, also consistent with self-assembly
and P systems. Towards this goal, we introduced a new such model, M systems,
in [21], where we also showed its computational universality in the Turing sense.
The model is summarized in Sect. 2 to make this paper self-contained. In Sect. 3,
we discuss arguments that show how these properties may be guaranteed or
to what extent, including a theoretical result and experimental evidence that
these properties actually do emerge with very high probability, and provide a
characterization of their behavior probabilistically. Sections 4 and 5 complete the
view by first defining families of Monte Carlo M systems, and then demonstrat-
ing their computational power under a set of restrictions from the perspective
of traditional complexity theory. Finally, in Sect. 6, we present some discussion
on the significance of the model, some of its implications, and some interest-
ing further problems that could be addressed with plausible extensions of it or
experimentation with a simulator.

2 M Systems

In this section we briefly introduce morphogenetic (M) systems, basically fol-
lowing the more detailed description in [21]. The reader is referred to [21] or
to web sources sosik.zam.slu.cz/msystem or bmc.memphis.edu/cytos for further
information.

As mentioned above, introducing geometric features in P systems is a natural
and interesting idea of its own. First, it is an intriguing question that may help
realize the potential of the original idea of membrane computing, as spatial
arrangement is critical for information processing in living cells, colonies, tissues
and organisms. Second, it may also further our understanding of computation
beyond the scope of traditional computer science, where shape and geometry are
not native concepts, but rather that require enormous amounts of effort to build
back in, while on the other hand, our understanding of the world is inherently
dependent on it. Besides being able to compute in the Turing sense, a model

http://sosik.zam.slu.cz/msystem
http://bmc.memphis.edu/cytos

274 P. Sośık et al.

should be able to interact with and “sense” its physical environment, so as to
be capable of self-modification and unenthropical evolution, i.e., to increase its
fitness (however defined) in its embedding environment.

A primary biological carrier of shape is a protein. This feature is explicitly
used in P systems with proteins on membranes [15,16]. The M system extends
this concept with explicit geometric features and self-assembly capabilities. The
whole system is embedded in an nD Euclidean space R

n There are three types
of objects present in the system: proteins, tiles and floating objects.

Floating objects are small shapeless atomic objects floating freely within the
environment, but having at each moment their specified position in space.
They can pass through protein channels and participate in mutual reactions
with other types of objects, in discrete time steps.

Tiles have their pre-defined size and shape, together with specified position
and orientation in space at each moment. Tiles can stick together along their
edges or at selected points. These edges/points are called connectors and they
are covered with glues. Their connection is controlled by a pre-defined glue
relation. Thus the tiles can self-assemble into interconnected structures.

Proteins are placed on tiles and, apart from acting as protein channels letting
floating objects pass through, they also catalyze their reactions.

Unlike current models of membrane systems, membranes are not present even
implicitly, but they can only be formed of tiles during the evolution of the M
system. Therefore, at the beginning of the evolution, typically no membranes are
present and they must be subsequently self-assembled. The connected tiles can
be also disconnected and/or destroyed under certain conditions. The following
definitions provide the elements to capture these properties in a formal model
(they can be skipped without hindering understanding of Sect. 3).

2.1 Polytopic Tiling

The cornerstone of our concept of morphogenetic self-assembly is an nD tile
shaped as a bounded convex polytope (n-polytope) [29], with faces of dimen-
sion n − 1 called facets. Hence, a 1D tile is a segment/rod whose facets are its
endpoints, a 2D tile is a convex polygon with its edges as facets, a 3D tile is a
convex polyhedron with polygons as facets, and so forth. We usually describe a
polytope by an ordered list of its vertices.

Furthermore, tile may contain connectors defining its connection to other
tiles. Let G be a finite set of glues. A connector of a tile based on an n-polytope
Δ is a triple (Δc, g, ϕ), where

Δc ⊂ Δ is a bounded convex k-polytope where 0 ≤ k < n,
g ∈ G is a glue,
ϕ ∈ (−π, π) is the connecting angle.

On the Robust Power of Morphogenetic Systems 275

We distinguish

– facet connectors with k = n − 1 where Δc is a facet of the polytope Δ;
– non-facet connectors with k ≤ n − 1 placed anywhere on the surface of the

tile.

Two or more connectors can share the same position on a tile. Formally, an
n-dimensional tile is defined as

t = (Δ, {c1, . . . , ck}, gs), for k ≥ 0,

where Δ is a bounded convex n-polytope, c1, . . . , ck are connectors and gs ∈ G
is the surface glue covering the entire surface of the tile except where connectors
are placed.

If an (n − 1)-dimensional tile embedded in R
n we denote its two sides by in

and out. By convention, a 2D tile seen from the side in has its vertices ordered
clockwise. A non-facet connector with positive connecting angle is placed on side
in, one with negative angle is placed on side out, and one with zero angle can
only be located on some facet of the tile.

Definition 1. A polytopic tile system in R
n is a construct T = (Q,G, γ, dg, S),

where

Q is the set of tiles of dimensions ≤ n;
G is the set of glues;
γ ⊆ G × G is the glue relation;
dg ∈R

+
0 is the gluing distance (assumed to be small compared to the size of tiles);

S is the finite multiset of seed tiles from Q randomly distributed in space.

Note that we generalized definitions in the previous paper [21] so that (a)
tiles in R

n can now have dimension from 1 to n, (b) non-facet connectors can
now have dimensions from 1 to n − 1.

Definition 2. Consider tiles

t1 with a connector c1 = (Δ1, g1, ϕ1), where Δ1 = (u1, . . . , uk),
t2 with a connector c2 = (Δ2, g2, ϕ2), where Δ2 = (v1, . . . , vk),

for some k ≥ 1. Connector c2 can connect to c1 if the following conditions
are met:

1. both c1 and c2 are both unconnected;
2. (g1, g2) ∈ γ;
3. t2 can be positioned so that u1, . . . , uk match vk, . . . , v1, in this order;
4. at least one of c1, c2 is a facet connector.

Note that for two 2D tiles connecting with their edges, condition (3) implies
the matching of sides in–in and out–out. As the relation γ is generally non-
symmetric, “c2 can connect to c1” does not imply that also c1 can connect to
c2. This is in accordance with natural morphogenetic processes which are often
irreversible [9].

276 P. Sośık et al.

Tile t2 connects to t1 at angle ϕ1, if the connector is (n−2)-dimensional. The
connecting angle provides a degree of freedom (chosen randomly) to t2 in the
case of k-dimensional connectors, where k ≤ n − 3, on one hand. On the other
hand, the connecting angle is not applicable in the case of (n − 1)D connectors.

If t2, after its connection, still has a free connector(s) c′
2 now positioned

within the distance dg from a free connector c′
1 on another tile already in place,

and either c′
1 can connect to c′

2 or conversely, then they immediately connect
together. Similarly, if a free connector of t2 with a glue g lies within the distance
dg from an existing tile t3 with surface glue gs such that (g, gs) ∈ γ, then t2
connects to the surface of t3.

Example 1. Consider a polytopic tile system in R
3 with a single glue g and

the glue relation γ = {(g, g)}. Let Q contain a 2D tile q shaped as a regular
pentagon, with five facet connectors on its edges, each with the glue g and with
the connecting angle ϕ = 2.0345 rad, which is the inner angle between two faces
in a dodecahedron. Let finally S = {q} be the only seed tile, see the leftmost
image. Then, provided that q is available in enough copies, the system assembles
as follows.

1. Five tiles q would connect to the five connectors of the seed tile in the first
phase, connecting also their five edges starting at vertices of the seed tile as
they stick together. The connecting angle determines them to shape as a cup
with zig-zag rim with 10 edges (central-left image).

2. Another five tiles would connect to these edges, determined by the connecting
angle to form an almost-closed shape (central-right image).

3. Finally, the last attached tile encloses the dodecahedral “soccer-ball”. All
connectors on the tiles match and connect together, hence no further assembly
is possible (rightmost image).

2.2 Morphogenetic Systems

An M system naturally merges principles of both self assembly and membrane
computing. Geometrical structure and growth of each M system is determined by
its underlying polytopic tile system. Unlike usual tiling systems, the M system
does not assume availability of an unlimited number of copies of each tile. The
M system life cycle starts in an initial configuration where only seed tiles are
present. Further structures can only be created by the application of rules of the
M system.

On the Robust Power of Morphogenetic Systems 277

Formally, for a multiset M we denote by |M |a the multiplicity of elements a
in M. A multiset M with the underlying set O can be represented by a string
x ∈ O∗ (by O∗ we denote the free monoid generated by O with respect to the
concatenation and the identity λ) such that the number of occurrences of a ∈ O
in x represents the value |M |a.

Definition 3. A morphogenetic system (M system) in R
n (unless stated other-

wise, we assume R
3) is a tuple

M = (F, P, T, μ,R, r, σ),

where

F = (O,m, ε) is the catalogue of floating objects, where:
O is the set of floating objects;
m : O −→ R

+ is the mean mobility of each floating object in the environment;
ε : O −→ R

+
0 is the concentration of each floating object in the environment:

ε(o) copies of object o per spatial unit 1n;
P is the set of proteins;
T = (Q,G, γ, dg, S) is a polytopic tile system in R

n, with O, P, Q, G all pairwise
disjoint;

μ is the mapping assigning to each tile t ∈ Q a multiset of proteins placed on t
together with their positions: μ(t) ⊂ P ×Δ where Δ is the underlying polytope
of t;

R is a finite set of reaction rules;
r ∈ R

+
0 is the reaction radius; a reaction rule can be applied when all objects

entering the reaction are positioned within this radius;
σ : γ −→ O∗ is the mapping assigning to each glue pair (g1, g2) ∈ γ a multiset

of floating objects which are released to the environment within the reaction
radius from a new connection with (g1, g2), when the connection is established.

A reaction rule from the set R has the form u → v, where u and v are
strings containing floating objects, proteins, glues and tiles due to types of rules
specified bellow. The necessary condition to apply the rule is that all objects in
u are present in the environment within radius r, while certain rules may specify
further conditions on the location of objects.

Metabolic Rules

Let u, v ∈ O+ be non-empty multisets of floating objects and p ∈ P be a protein.
The rules containing the symbol [are applicable only when p is placed on an
(n − 1)-dimensional tile, where object to the left of [in the string correspond to
the side “out” and those to the right correspond to the side “in” of the tile.

Note that these rules are rather powerful and we will mostly consider some
restrictions when studying M systems from the computational power point of
view.

278 P. Sośık et al.

Type Rule Effect

Simple u → v Objects in multiset u react to produce v

Catalytic pu → pv Objects in u react in presence of p to produce v

u[p → v[p Eventually, u, v must both appear on the side “out”

[pu → [pv Or on the side “in” of the tile on which p is placed

Symport u[p → [pu Passing of u through protein channel p

[pu → u[p To the other side of the tile

Antiport u[pv → v[pu Interchange of u and v through protein channel p

Creation Rules. ut → v,

where t ∈ Q and u ∈ O+. The rule creates tile t while consuming the floating
objects in u. It can be applied if the following holds:

(i) there already exists a tile (say s) in the environment with a free connector
cs such that t can connect to cs by some of its connectors, and

(ii) floating objects in u exist in the environment within the distance r from cs.

Then an attempt is made to create tile t and connect it to cs as specified in
Sect. 2.1. If t would intersect another existing tile, say s′, then s′ is pushed away
to make room for t. This may cause a chain reaction of mutual pushing of tiles
in the way. If it is impossible to make enough room for t and t is a polygon,
the rule is not applied, otherwise t is shortened so that it just touches s′. Its
connector(s) at the shortened end (if any) are preserved.

Destruction Rules. ut → v,

where t ∈ Q, u, v ∈ O+. Tile t is destroyed in the presence of the “destructor”
multiset of floating objects u. All connectors on other tiles connected to t are
released. The objects in u are consumed and the multiset v of “waste” objects
is produced.

Division Rules. g u h → g, h,

where g h is a pair of glues on connectors of two connected tiles, and u ∈
O+. The rule can be applied when all objects in u are located within reaction
distance of the pair of connectors. As a result of application, the two connectors
disconnect, while the multiset u is consumed. The connectors remain in their
position but they do not reconnect again automatically.

Configuration of the M system is determined by

– list all tiles in the environment and their relative positions;
– interconnection graph of connectors on these tiles;
– positions of all floating objects modulo the reaction radius.

On the Robust Power of Morphogenetic Systems 279

Hence, two configurations are equivalent if the tiles form the same structures and
floating objects in their respective reaction radii form the same multisets, even
if their exact positions can be different. Configurations where any two objects
(tiles or floating objects) occupy the same position in space or overlap are not
allowed. The initial configuration contains only (unconnected) seed tiles in S
and a random distribution of floating objects given by their concentration ε.

Computation of the M System

The system transits between configurations by application of rules in the set
R. At each step, each floating object can be subject to at most one rule, each
connector can be subject to at most one creation or division rule, and each tile
can be subject to at most one destruction rule.

The rules within each group are chosen nondeterministically until their max-
imum applicable multiset is obtained, subject to possible trade-offs between
rules. Then all the selected rules are applied in parallel to the actual configura-
tion. Finally, each floating object o with mean mobility m(o) changes randomly
its position at each step due to the Maxwell-Boltzmann distribution [28] with
parameter a =

√
π/8 m(o) corresponding to Brownian motion of particles in

liquid media.
A sequence of transitions of an M system between configurations is called

a computation. The computation can be finite (if an M system cannot
apply any rule, it halts) or infinite, and it is, by definition, nondeterminis-
tic. The reader is referred to [21] or to supplementary material available at
sosik.zam.slu.cz/msystem or bmc.memphis.edu/cytos for examples.

3 Robust Computational Morphogenesis and Homeostasis

In [21] we have described an demonstrated that M systems are indeed capable of
self-assembling from scratch from some atomic components, undergo a process
of morphogenesis by the unfolding of the self-assembly rules defined by their
local interactions as given by the catalytic, creation and destruction rules, and
eventually enter a stable dynamical equilibrium of adulthood in which they will
continue to function as long as certain conditions in their environment remain.
The system M0 builds a geometrical structure on two sets of 2D pentagonal tiles:
larger tiles self-assembling in a cell-like membrane, and smaller tiles assembling
a nuclear membrane. These tiles are much alike those in Example 1 but with
different glues on their edges. Some of the larger tiles also contain point connec-
tors on their inner surface, connecting to rod-shaped 1D tiles. Endpoints of rods
bear one (straight-oriented) or two (fork-oriented) connectors allowing the rods
to assemble a tree-like structure of cytoskeleton. Specifically, we established that

Proposition 1. Assuming discrete time and bounded finite resources in the
environment, an arbitrary run of the M system M0 crosses a critical time at
which it stops growing and enters a period of homeostasis, where it will remain
in functional equilibrium despite certain fluctuations in the environment and/or
damage to its internal structure.

http://sosik.zam.slu.cz/msystem
http://bmc.memphis.edu/cytos

280 P. Sośık et al.

We summarize the essential part below to make this paper self-contained. (Full
description of the M system and more proof details are provided as a supple-
mentary material at sosik.zam.slu.cz/msystem or at bmc.memphis.edu/cytos.)

As pointed out above, discrete time interactions guarantee that at any given
time, only a finite number of membranes and objects are contained therein
throughout the life of the model, (although they could potentially contain an
uncountable number of objects as a continuum.) In the terminology of self-
assembly systems, M0 is locally deterministic and attachment of tiles proceeds
as in the aTAM model [26,27]. As illustrated by Example 1, the geometric struc-
ture of the tiles forces them to curve as they are attached and to close upon
themselves to eventually form a dodecahedron and present plain geometric block-
ing for further growth, which thus finishes the membrane building phase when
the last keystone tile is attached. Simultaneously an analogous process creates a
much smaller nuclear membrane. The attached tiles bear proteins triggering the
formation of cytoskeleton by rods, which can grow nondeterministically in vari-
ous directions from both “poles” of the membrane. Eventually, addition of rods
is no longer possible, again for excluded volume reasons, so the cytoskeleton,
and hence morphogenesis, is now complete and M0 enters the “adult” homeo-
static phase. Even before this phase is fully completed, the contact of growing
rods with the nuclear membrane triggers the process of mitosis which proceeds
to create two copies of the cells and separate it into two identical parts, which
will then begin the entire process anew and continue while enough supplies and
room for growth remain. All this is fully controlled only by local interactions of
tiles and floating objects. These properties illustrate how geometry can perform
a great deal of work to control the shape of products in self-assembly that could
only be performed through other means with great effort, e.g. by hard coding it
into the seed, as in the binary counters in the aTAM model [27].

At any point in the morphogenetic process, any “damage” to a configura-
tion of the system M0 such as knocking off tile that has just been attached,
or punching a hole in a membrane) will either simply revert to a previous con-
figuration, or detach a piece of the systems altogether, which will reset it back
to a previous state, from which it may further develop as it did before, perhaps
through a different run as it is a nondeterministic system. Because the stable
equilibrium is achieved again with similar characteristics, perhaps the same orig-
inal individual will not be formed again, but the new individual will bear the
characteristic features of the original one. Therefore, the original organism is
capable of sustaining certain injuries to some degree of severity to its internal
structure, without changing the overall characteristics of the adult organism.

To verify this property quantitatively, we have built an M system simulator
(see the link in the previous proof) for arbitrary M systems and run it on M0

100 times for 40 iterations causing various injuries to it as described in Fig. 1.
As pointed out in the introduction, computational study of characteristic

biological properties has been an intriguing but poorly addressed subject. Most
work has been in the material sciences for simple polymers, gels and even metals,
despite the fact that early experimentation in self-assembly made such properties

http://sosik.zam.slu.cz/msystem
http://bmc.memphis.edu/cytos

On the Robust Power of Morphogenetic Systems 281

Fig. 1. Self-healing properties of the morphogenetic system M0 to a number of simul-
taneous injuries (x-axis) as given by the probability of survival, i.e., to remain in the
same and only homeostatic cycle that would have been obtained before the injuries.
The estimates have been obtained by 100 runs of the system with injuries inflicted
randomly in seven (7) possible ways with up to 80 injuries, as described. The most
damaging harm are injuries to nucleus which drop the probability of survival (y-axis)
most rapidly. The system is self-healing even when inflicted removal of as many as
40 tiles of any kind, except at nuclear tiles, which reflects the few vulnerabilities of
the system. Interestingly, the probability of survival increase with certain number of
injuries to cytoskeleton elements with up to 40 rods!

as self-healing evident [27], with the notable exception of a procedure to re-
factor tiles [27] in aTAM systems to build binary counters and the Sierpinski
triangle that enable self-healing [27] of holes in partial assemblies in linear time.
Here, we generalize the results in Fig. 1 by providing a general definition of
morphogenetic and homeostatic phases in M systems, that enables a general
definition of self-healing in M systems, and demonstrate that a subfamily of M
systems simultaneously exhibits an additional robustness property characteristic
of biological organisms, i.e. a degree of self-healing.

We first define more precisely the concepts of “morphogenesis” and “home-
ostasis”, as follows, assuming that the definition of an M system includes a
bounded amount of resources in the environment throughout the course of

282 P. Sośık et al.

its development. A configuration of an M system is the full list of objects (up to
displacement), including their multiplicity and relative position within mem-
branes, that could be obtained at any point in a valid run of the system. Thus
two configurations are identical if they include the same objects and positions
relative to the membranes.

From the seed as a root, the system defines its configuration space – a
computation-directed graph (digraph) (which we continue to denote M) with
nodes all the possible system configurations obtained from any valid computa-
tions/runs of the system and with directed arcs all the possible one-step tran-
sitions among them. A homeostatic component is defined as the union of the
transitive closure C! of a (directed) cycle C in the computation graph and all the
configuration nodes whose transitive closure fully includes C!, plus all the arcs
joining them to C!. Note that such a component may contain several intersecting
cycles and/or nonintersecting cycles. The homeostatic phase MH consists of the
union of all homeostatic components and their joining arcs. The subdigraph con-
sisting of the complementary nodes and arcs is the morphogenetic phase MM of
the M system. Because the amount of resources available in the environment is
bounded, the computation digraph is finite and is partitioned into the two sub-
digraphs MM and MH . Thus, every morphogenetic configuration x belongs to a
unique maximal homeostatic component (or simply h-component.) For example,
M0 has as many homeostatic components as there are copies of the invidividual
cells it grows. Every mitosis produces one more such component disjoint from
the mother one. The morphogenetic phase consists of the formation of the exter-
nal membrane and some of the cytoskeleton (afforded by the external resources
available and not destroyed during mitosis.)

Thus, we can now define more precisely the concept of “damage”, as follows.

Definition 4. An injury to a morphogenetic system M is a transition of the
system given by a pair of configurations (x, y) such that y cannot be obtained
from x by a valid application of any one rule of the system M . The degree of the
injury is the graph-theoretic distance between x and y. An injury is sustainable
if both x and y belong to the same h-component. The system is self-healing (of
degree m, respectively) if and only it can sustain any injury to any homeostatic
node x (of degree m, respectively) with probability at least 50%.

An injury could be caused by an agent in the environment external to M or by
a malfunction of (the implementation of) the rules of M , and may not necessarily
destroy any objects in the system, e.g. if y is successor of x in a computation of
M . Note that although injuries could cause a transition to a state z that is a not
a node in configuration space, the definition implies that the new configuration
will not lead to the same homeostatic regime as if no injury had occurred, so
that type of injury is never sustainable. Therefore we will only consider injuries
as described in Definition 4. An M system is called locally deterministic if it
leads to a unique terminal assembly (one with no successors by further tile
attachments) that is never destroyed by the M system. The construction of
the terminal assembly is thus the morphogenetic phase, which is followed by

On the Robust Power of Morphogenetic Systems 283

the homeostatic phase. Locally deterministic M systems may have a degree of
nondeterminism in the paths leading the terminal configuration in the assembly.
They are systems with only one possible overall “future”.

Proposition 2. Assuming discrete time and bounded finite resources in the
environment, every locally deterministic M system is self-healing. In particular,
M0 is self-healing.

Proof. It is easy to verify that every deterministic system is self-healing, as an
injury only amounts to time travel to the past or future along a run of the system.
More generally, a locally deterministic system has a unique h-component. 	

Conjecture 1. Assuming discrete time and arbitrary bounded finite resources in
the environment as initial conditions, there exist self-healing systems that are
also computationally universal.

4 Families of Monte Carlo M Systems

Let us denote a decision problem X as a pair (IX , θX) where IX is a language
over a finite alphabet (whose elements are called instances) and θX is a total
boolean function over IX . In order to study the computational efficiency of
membrane systems, a concept of recognizer P systems [14] was introduced. These
P systems always halt, and they use specific objects yes and no such that exactly
one kind of these objects is produced at the end of each computation. However,
halting contradicts the nature of morphogenetic systems whose computation is
probabilistic and often reaches a homeostasis where the system stays alive forever
(or until external conditions change).

Therefore, we define a Monte Carlo M system as follows: it has a distin-
guished floating object yes ∈ O such that ε(yes) = 0 (its concentration in the
environment is zero). Its computation is called accepting if the object yes is even-
tually released to the environment, otherwise it is rejecting. Furthermore, either
at least 1/2 of computations are accepting, or all computations are rejecting. We
say that a Monte Carlo M system accepts in time t if the object yes is released
in first t steps of its arbitrary computation with probability at least 1/2.

Definition 5. We say that a decision problem X = (IX , θX) is solvable in a
semi-uniform way and randomized polynomial time by a family M = {M(w) |
w ∈ IX} of Monte Carlo M systems if the following holds:

1. The family M is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which con-
structs the system M(w) from w.

2. There exists a polynomial function p, such that for each u ∈ IX :
(a) if θX(u) = 0, then every computation of M(u) is rejecting;
(b) if θX(u) = 1, then M(u) accepts in time p(|u|).
Let T be a specific class of morphogenetic systems. We denote by MRP∗

T
the set of all decision problems which can be solved in a semi-uniform way and
randomized polynomial time by means of families of M systems from T . Symbol
T can be omitted when general M systems are considered.

284 P. Sośık et al.

5 Computational Efficiency

In this section we present a semi-uniform family of Monte Carlo M systems which
can probabilistically solve, in a polynomial time, the standard NP-complete
problem 3-SAT. The construction and computation of the family is based on
the classical strategy of trading space for time, often used in the framework of
membrane computing.

Consider a formula Φ = C1 ∧ · · · ∧ Cm in CNF, using the set of variables
{x1, . . . , xn}, for m,n ≥ 1. We define a polytopic tile system Tn = (Q,G, γ, dg, S)
in R

2, where

Q = {u1, u1, vi | 1 ≤ i ≤ n} ∪ {w, s1, s2, tb, tt1, tt2, r}, where
ui, ui 1 ≤ i ≤ n, are rods of length 2;
vi 1 ≤ i ≤ n, are rectangular 2D tiles of size 2 × 1;
w is a rod of length 1;
s1, s2 are rods of length 2n;
tb is a rod of length 2;
tt1, tt2 are rods of length 1;
r is a rod of length 5;

G = {gib, gib, git, gi, gi, giv, giv | 1 ≤ i ≤ n} ∪
{gp, gw, g1sb, g1st, g2sb, g2st, g1tb, g2tb, g1t1, g1t2, g2t1, g2t1};

γ = {(gp, gp), (gnt, g1t1), (g1t2, g1st), (g1sb, g2tb), (g1tb, g2sb), (g2tb, g2t1)} ∪
{(git, g(i+1)b), (git, g(i+1)b) | 1 ≤ i ≤ n − 1} ∪
{(git, gw), (gi, giv), (gi, giv), (giv, gi), (giv, gi) | 1 ≤ i ≤ n};

dg = 0.1;
S = {u1}.

Let us adopt the convention that a rod of length x has its vertices (0, x), and a
rectangular tile of size x × y has vertices ((0, 0), (0, y), (x, y), (x, 0)). Tiles in the
set Q have the following connectors:

ui, 1 ≤ i ≤ n, have
– two facet connectors cib = (0, gib, 0) and cit = (2, git, ϕit) (b stands for

“bottom” and t for “top”), where ϕit = 0 for i < n and ϕnt = π/2;
– two non-facet connectors ci,in = (1, gp, π/2), ci,out = (1, gp,−π/2);
– non-facet 1D connector ci1 = (〈 32 , 1

2 〉, gi, π/2);
ui, 1 ≤ i ≤ n, have

– two facet connectors cib = (0, gib, 0) and cit = (2, git, ϕit);
– two non-facet connectors cin = (1, gp, π/2), cout = (1, gp,−π/2);
– non-facet 1D connector ci1 = (〈 12 , 3

2 〉, gi, π/2);
vi, 1 ≤ i ≤ n, have two facet connectors on their short edges: ci =

(〈(0, 0), (0, 1)〉, giv , 0) and ci = (〈(1, 1), (1, 0)〉, giv, 0);
w has single facet connector cw = (0, gw, 0);
si, 1 ≤ i ≤ 2, have two facet connectors cist = (2n, gist, π/2) (top) and cisb =

(0, gisb, π/2) (bottom);
tb has two facet connectors ctb1 = (0, g1tb, π/2), ctb2 = (2, g2tb, π/2);
tti, 1 ≤ i ≤ 2, have two facet connectors cti1 = (0, git1, π/2), cti2 = (1, git2, π/2);
r has a single facet connector (0, gp, 0).

On the Robust Power of Morphogenetic Systems 285

The set of tiles {u1, u1 | 1 ≤ i ≤ n} represents possible interpretations of
variables x1, . . . , xn : ui stands for xi =true, ui for xi = false. To simplify the
description, let us denote by Ui a tile which is either ui or ui, 1 ≤ i ≤ n.

Consider furthermore an M system MΦ = (F, P, T, μ,R, r, σ) in R
2, where:

F = (O,m, ε), where:
O = {a1, . . . , a6, b1, . . . , bm+1, yes}, are floating objects;
m(o) = 2 for each o ∈ O;
ε(a4) > 0 (see proof of Lemma 4 in the following) and ε(o) = 0 for all other

o ∈ O;
P = C;
T is the polytopic tile system described above;
μ(tt2) = {pt}, μ(s2) = {py}, and μ(ui) = {pi}, μ(ui) = {pi}, 1 ≤ i ≤ n, all

proteins placed in centres of their respective tiles;
R contains several kinds of rules described below.

Metabolic rules:
{ai → ai+1, 1 ≤ i ≤ 5} ∪
{a6 → a1, [pta1 → [ptb1, bm+1 → yes, [pyyes → yes[py} ∪
{bj [pi → bj+1[pi | Cj contains xi, 1 ≤ j ≤ m, 1 ≤ i ≤ n} ∪
{bj [pi → bj+1[pi | Cj contains xi, 1 ≤ j ≤ m, 1 ≤ i ≤ n}.

Creation rules:
{a1 → r, a1 → tt1, a3 → w, a3 → s1, a4 → tb, a5 → s2, a6 → tt2} ∪
{a1 → ui | 2 ≤ i ≤ n} ∪ {a4 → vi, a5 → ui, a5 → ui | 1 ≤ i ≤ n}.

Destruction rules:
{a2r → a3, a6w → a1} ∪ {a6vi → a1 | 1 ≤ i ≤ n}.

r = 2;
σ(gi, gj) = ∅ for all (gi, gj) ∈ γ.

The initial configuration of the M system M contains the seed tile (rod) t1
and a high concentration of objects a in the environment. The computation of the
M system MΦ consist of a generating phase when all possible interpretations of
the logical variables x1, . . . , xn are generated, and a checking phase during which
the interpretations are checked in parallel whether they satisfy the formula.

5.1 Generating Phase

During a computation of the M system the tiles Ui assemble to sequences
U1, . . . , Un. This process completes in n cycles, each consisting of six steps.

Lemma 1. Let the space R
2 where the M system MΦ is placed contains 2k

connected sequences of tiles U1, . . . , Uk, 1 ≤ k ≤ n − 1, covering all possi-
ble truth assignments to variables x1, . . . , xk. Assume that all applicable cre-
ation/destruction rules of MΦ are always applied. Then, after 6 steps, there will
be 2k+1 connected sequences U1, . . . , Uk+1, covering all possible truth assignments
to variables x1, . . . , xk+1.

286 P. Sośık et al.

Proof. The six steps of computation proceed as follows:

1. All tiles Ui, 1 ≤ i ≤ k, create and attach perpendicular rods r to connectors
cin and cout (rule a1 → r) resulting in pushing of tiles in the direction of rods
so that mutual distances between sequences are set to 5. Furthermore, each
tile Uk attaches a new tile uk+1 to its connector ckt (resp. ckt), lengthening
the sequences {Ui} to k + 1 elements (rules a1 → ui, 2 ≤ i ≤ n).

2. Rods r are destroyed (rule a2r → a3).
3. Tiles w are attached to connectors c(k+1)t of tiles uk+1, blocking further

vertical growth in the next two steps (rule a3 → w).
4. Each Ui, 1 ≤ i ≤ k, attaches to its connector ci1 (resp. ci1) tile vi such that

its longer edge is perpendicular to Ui (rules a4 → vi, 1 ≤ i ≤ n).
5. Each vi, 1 ≤ i ≤ k, attaches to its free connector a new tile ui or ui (rule

a5 → ui, a5 → ui, 1 ≤ i ≤ n) such that compositions ui − vi − ui or
ui−vi−ui are produced. Therefore, a “ladder” containing two complementary
sequence U1, . . . , Uk with vi’s as rungs is produce. The new tiles Ui also
connect together by their facet connectors.

6. Tiles w and vi, 1 ≤ i ≤ k, are destroyed, disconnecting old sequences of tiles
and new complementary sequences (rules a6w → a1, a6vi → a1, 1 ≤ i ≤ n).

	

Lemma 2. Assume that all applicable creation/destruction rules of MΦ are
always applied. Then MΦ produces in 6n + 3 initial steps of its computation a
set of 2n interconnected sequences of tiles U1 − · · · − Un covering all possible
assignments to propositional variables x1, . . . , xn. The sequences are enclosed in
separate closed subspaces (“cells”) composed of tiles tt1, s1, tb, s2, tt2.

Proof. The system MΦ starts with a single seed tile u1 and with the environment
containing many objects a4. By Lemma 1, steps 4, 5, 6, also tile u1 is produced.
Then, again by Lemma 1 and by the induction argument, sequences U1−· · ·−Un

covering all possible assignments to x1, . . . , xn are produced in 6(n − 1) steps.
The computation proceeds as follows:

1. Perpendicular tiles tt1 are attached to by their connectors ct11 to tiles Un

ending the sequences (rules a1 → tt1) so that tt1 are oriented towards the
side in of Un. Meantime, rods r are attached to all tiles Ui as in step 1 of
Lemma 1, creating mutual space between sequences.

2. Rods r are destroyed.
3. Vertical tiles s1 are attached to connectors ct11 of tiles tt1 (rules a3 → s1) so

that they are parallel to sides in of all tiles Ui in their associated sequence.
4. Horizontal tiles tb are attached to connectors c1sb of tiles s1 (rules a4 → tb),

forming bottom of a future rectangular cell. Note that tiles vi cannot be
attached to U ′

is as in step 4 of Lemma 1 since their growth is blocked by s1.
5. Vertical tiles s2 are attached to connectors ctb1 of tiles tb (rules a5 → s2) so

that they are parallel to sides out of all tiles Ui in their associated sequence.
6. Finally, tiles tt2 are attached to connectors c2st of tiles s2 (rules a6 → tt2),

enclosing the sequence U1, . . . , Un in a rectangular cell.

On the Robust Power of Morphogenetic Systems 287

Observe that, after assembling the cells, no creation/destruction rules can be
used anymore to alter their structure. 	

5.2 Checking Phase

In this phase the M system MΦ checks in parallel, whether any of the cells
formed in the generating phase represent a model of the formula Φ.

Lemma 3. The M system MΦ can release the object yes to the environment if
and only if there is a sequence of tiles U1 − · · · − Un representing a model of Φ,
enclosed in a “cell” composed of tiles tt1, s1, tb, s2, tt2. In the affirmative case,
the object yes appears in the environment in O(n.m2) steps after forming the
cell with probability p > 3/4.

Proof. Note first that a sequence of rules leading eventually to production of the
object yes must start with the rule [pta1 → [ptb1 using protein pt. This protein
appears only on tile tt2 which is assembled to the remaining tiles only as the
last tile enclosing a cell composed of tt1, s1, tb, s2, tt2. Hence, without forming a
completed cell in the generating phase, no object yes can be produced.

If the cell is formed, the rule is applied with a probability close to 1 due to a
high concentration of objects a1 inside the cell, releasing objects b1 inside. Then
for each clause Cj , 1 ≤ j ≤ m, with k literals, there are k rules of the form

bj [pi → bj+1[pi if Cj contains xi,
bj [pi → bj+1[pi if Cj contains xi,

where proteins pi are placed on tile ui and pi are placed on ui. Hence, object bj+1

can be produced if an only if the interpretation represented by tiles U1−· · ·−Un

in the cell is a model of Cj . By induction, object bm+1 can be produced if and
only if this interpretation is a model of all clauses C1, . . . , Cm, i.e., model of the
whole formula Φ. Finally, by using the rules bm+1 → yes and [pyyes → yes[py,
where protein py is placed on the tile s2, object yes is eventually sent to the
environment.

Assume now that the rules producing object yes can be applied, and calculate
the probability of this event. Let us divide the “cell” into n vertically arranged
rectangles, each containing tile Ui, 1 ≤ i ≤ n. Each tile ui (ui) has a protein pi

(pi) placed inj its center, so that the whole volume of i-th rectangle lies within
its reaction radius r = 2. Therefore, whenever an object bj enters i-th rectangle,
a rule bj [Pi → bj+1[Pi, where Pi ∈ {pi, p}, is applicable.

Let us calculate first the probability that a randomly moving object bj visits
i-th rectangle, for an arbitrary but fixed 1 ≤ i ≤ n, in at least one of n consecutive
steps:

P1 = 1 −
(n − 1

n

)n

> 1 − e−1 for each n ≥ 1,

since the value of the fraction converges from 0 to e−1 as n −→ ∞. Consequently,
the probability that the object bj visits the rectangle during m · n consecutive
steps is greater than 1 − e−m. Hence, provided that the sequence U1 − · · · − Un

represents a model of Φ, each of the rules bj [Pi → bj+1[Pi, 1 ≤ j ≤ m, is applied

288 P. Sośık et al.

in the cell in m ·n steps with probability > 1−e−m. The resulting probability of
application of all these rules in nm2 steps is (1 − e−m)m. The rule bm+1 → yes
is applied with certainty whenever the object bm+1 is produced, and the last
rule [pyyes → yes[py is again applied in m · n steps with probability > 1 − e−m.
Hence the final probability that the checking phase for a formula Φ with m
clauses releases object yes to the environment in nm(m + 1) steps is

Pcheck(m) = (1 − e−m)m+1.

Observe that Pcheck(3) ≈ 0.81 > 3/4 and the value converges quickly to 1 with
growing m. This concludes the proof. 	

Lemma 4. The M system MΦ can send the object yes to the environment if
and only if the formula Φ is satisfiable. Furthermore, in the affirmative case, the
object yes appears in the environment in O(n.m2) steps with probability p > 1/2.

Proof. By Lemma 3, the object yes is never produced in the M system MΦ if
the formula Φ is unsatisfiable.

Consider now the case when Φ has a model corresponding to a connected
sequence of tiles U1, . . . , Un. The “cell” satisfying the assumption of Lemma 3
is assembled if none of the rules participating in construction of the sequence
(creating or destroying tiles) failed due to absence of floating objects involved in
the rule.

By definition, a rule is applied when all the objects at its left-hand side are
present within the reaction radius r. Note that each rule of MΦ has a single
floating object ai at its left-hand side, 1 ≤ i ≤ 6. by definition, the rule is
applied when the floating object is located within a certain “reaction ball” of
radius r with volume v = 4

3πr3. The ball is located in a (large) environment
of a volume V, containing on average V ε(ai) objects. Assuming their uniform
random distribution, the probability that the ball contains no object ai is

P (∅) =
(V − v

V

)V ε(ai)

=
(zv − v

zv

)zvε(ai)

=
[(z − 1

z

)z]vε(ai)

where we used substitution z = V/v. As the environment is large (unbounded),
the expression in square brackets converges from bellow to e−1 with growing V.
Observe furthermore that some of objects ai in the ball can participate simple
rules, too, hence only their fraction α ≈ 1/2 will be available for the chosen
creation/destruction rule ri. Therefore, the probability of application of a single
instance of rule ri using object ai is

P (r) = 1 − P (∅)α > 1 − e−vαε(ai).

To produce a randomly chosen sequence of tiles U1, . . . , Un enclosed in its “cell”
by construction in the proof of Lemma2 requires three rules applied in three ini-
tial steps, then cycles from i = 1 to n−1 such that 3i+4 rules creating/destroying
tiles Ui/vi/w are applied in each of them, and finally five steps to assemble the

On the Robust Power of Morphogenetic Systems 289

“cell.” (We do not count rules creating/destroying perpendicular auxiliary rods
as their failure is repaired in the next cycle.) Hence we get the total number

R(n) = 3 + 5 +
n−1∑

i=1

(3i + 4) =
3
2
n(n − 1) + 4(n − 1) + 8 = O(n2)

of applications of creation/destruction rules. Therefore, it is enough to choose
the concentration ε(a1) such that

P (r)R(n) > (1 − e−vαε(ai))R(n) ≥ 3
4

to guarantee that a “cell” satisfying the assumption of Lemma3 is assembled.
Given the values of the constants vα ≈ 16

3 π ≈ 17, it is easy to verify that a
reasonable concentration satisfies this condition.

Therefore, if the formula Φ is satisfiable, then a cell representing its model
is assembled with probability > 3

4 and by Lemma 3 the object yes is released to
the environment with probability at least 3

4 · 3
4 > 1

2 which concludes the proof.
	

Corollary 1. NP ⊆ MRP∗
MR1

, where MR1 is the class of M systems with
rules contains a single floating object at their left-hand side.

Proof. It is easy to verify that the family of M systems {MΦ | Φ is a formula
in 3CNF} defined above is polynomially uniform by Turing machines. Then the
statement follows by Lemma 4. 	

6 Conclusions

We have further developed a recent new hybrid model, M systems, that leverages
properties of self-assembly and P systems exhibit controlled growth and robust-
ness akin to those observed in cell biology. The model is inspired by P systems
and self-assembly and the new properties are obtained by introducing geomet-
ric concepts of shape and arrangement of atomic objects at specific locations.
Basic abstract operations in the model include reactions among objects, their
transport through protein channels, and their mutual interconnection, leading
to construction and destruction of complex geometric structures, which are cell-
inspired in the examples we have provided, but which can adopt virtually any
geometric forms.

M systems has been proven to be computationally universal in the Turing
sense [21], and in this paper we have studied their computational efficiency, show-
ing that despite restrictions imposed by its geometry, the model is still capable,
in a probabilistic way, to solve NP complete problems in polynomial time. As an
added value, geometrical properties allow to identify some bottlenecks appear-
ing in the simulated processes, as the concentration or kinetic bottlenecks. Note,
e.g., that we define the result of computation by presence of a specific object(s)

290 P. Sośık et al.

in the environment, but their concentration decreases rapidly as the size of the
occupied part of the environment grows exponentially.

As some known models of P systems allow to solve even PSPACE-complete
problems in polynomial time, a natural open question arises whether an analo-
gous result can be obtained in the framework of M system, too.

We have further shown that M systems are universal in a perhaps more
restricted but more biological sense, i.e., they exhibit a morphogenetic and home-
ostatic structure in their life cycle and can live forever by replication, unless
environmental resources are consumed. We have also demonstrated their capa-
bility to grow complex cell-inspired information processing structures, providing
a model of the cytoskeleton growth which in turn controls a process akin to
biological mitosis.

We have also developed a software simulator of M systems to continue
research on this models that is available at url sosik.zam.slu.cz/msystem or
bmc.memphis.edu/cytos. Finally, we have begun to address several questions
poised in by providing natural definitions of “injuries” and “self-repair.” Many
problems of interest arise. What kind of “injuries” will harm the model beyond
repair? How exactly can injury be properly defined to establish more specific
properties and limitations of self-healing? Third, adding evolutionary properties
to the model is an intriguing possibility – the capability to evolve unenthropi-
cally towards more efficient behavior related to its specific goals, which can be of
many kinds. To this end, the model should be equipped with a kind of abstract
genetic code defining shapes of tiles and placement of connectors and other pro-
teins on them. Perhaps the evolution of new floating objects and proteins and
their mutual reactions should be allowed, too, reflecting the evolution of new
“organic” molecules. This evolution may produce new development of models in
silico, a kind of artificial life closer to biological life as we know it.

Acknowledgements. This work was supported by The Ministry of Education, Youth
and Sports Of the Czech Republic from the National Programme of Sustainability
(NPU II) project IT4Innovations Excellence in Science - LQ1602, and by the Silesian
University in Opava under the Student Funding Scheme, project SGS/13/2016.

References

1. Banu-Demergian, I., Stefanescu, G.: The geometric membrane structure of finite
interactive systems scenarios. In: Alhazov, A., Cojocaru, S., Gheorghe, M.,
Rogozhin, Y. (eds.) 14th International Conference on Membrane Computing, pp.
63–80. Institute of Mathematics and Computer Science, Academy of Sciences of
Moldova, Chisinau (2013)

2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of
looping sequences. Theor. Comput. Sci. 412(43), 5976–6001 (2011)

3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simulation of spatial
P system models. Theor. Comput. Sci. 529, 11–45 (2014)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P
systems. Nat. Comput. 10(1), 3–16 (2011)

http://sosik.zam.slu.cz/msystem
http://bmc.memphis.edu/cytos

On the Robust Power of Morphogenetic Systems 291

5. Bernardini, F., Brijder, R., Cavaliere, M., Franco, G., Hoogeboom, H.J., Rozen-
berg, G.: On aggregation in multiset-based self-assembly of graphs. Nat. Comput.
10(1), 17–38 (2011)

6. Bernardini, F., Brijder, R., Rozenberg, G., Zandron, C.: Multiset-based self-
assembly of graphs. Fundamenta Informaticae 75(1–4), 49–75 (2007)

7. Bernardini, F., Gheorghe, M., Krasnogor, N., Giavitto, J.-L.: On self-assembly in
population P systems. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-J́ımenez,
M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 46–57. Springer,
Heidelberg (2005). https://doi.org/10.1007/11560319 6

8. Blount, P., Sukharev, S.I., Moe, P.C., Schroeder, M.J., Guy, H., Kung, C.: Mem-
brane topology and multimeric structure of a mechanosensitive channel protein of
escherichia coli. EMBO J. 15(18), 4798–4805 (1996)

9. Bourgine, P., Lesne, A.: Morphogenesis: Origins of Patterns and Shapes. Springer
complexity. Springer, Heidelberg (2010)

10. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo,
E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13962-8 9

11. Cavaliere, M., Mardare, R., Sedwards, S.: A multiset-based model of synchronizing
agents: computability and robustness. Theor. Comput. Sci. 391(3), 216–238 (2008)

12. Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.: Systems Self-Assembly:
Multidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier Science,
Amsterdam (2011)

13. Manca, V., Pardini, G.: Morphogenesis through moving membranes. Nat. Comput.
13(3), 403–419 (2014)

14. Pérez-Jiménez, M., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes
in models of cellular computing with membranes. Nat. Comput. 2, 265–285 (2003)

15. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Infor-
maticae 72(4), 467–483 (2006)

16. Păun, A., Popa, B.: P systems with proteins on membranes and membrane division.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer,
Heidelberg (2006). https://doi.org/10.1007/11779148 27

17. Păun, G.: Membrane Computing - An Introduction. Springer, Berlin (2002)
18. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
19. Robinson, K., Messerli, M.: Left/right, up/down: the role of endogenous electrical

fields as directional signals in development, repair and invasion. Bioessays 25,
759766 (2003)

20. Schrödinger, E.: What is Life? The Physical Aspect of the Living Cell. Trinity
College, Dublin (1944)

21. Sośık, P., Smolka, V., Drast́ık, J., Moore, T., Garzon, M.: Morphogenetic and
homeostatic self-assembled systems. In: Patitz, M.J., Stannett, M. (eds.) UCNC
2017. LNCS, vol. 10240, pp. 144–159. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58187-3 11

22. Tangirala, K., Caragea, D.: Generating features using burrows wheeler transforma-
tion for biological sequence classification. In: Pastor, O., et al. (eds.) Proceedings of
the International Conference on Bioinformatics Models, Methods and Algorithms,
pp. 196–203. SciTePress (2014)

23. Tomita, M.: Whole-cell simulation: a grand challenge of the 21st century. Trends
Biotechnol. 19(6), 205–210 (2001)

24. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B
237, 7–72 (1950)

https://doi.org/10.1007/11560319_6
https://doi.org/10.1007/978-3-642-13962-8_9
https://doi.org/10.1007/11779148_27
https://doi.org/10.1007/978-3-319-58187-3_11
https://doi.org/10.1007/978-3-319-58187-3_11

292 P. Sośık et al.

25. Watson, J., Crick, F.: A structure for deoxyribose nucleic acid. Nature 171, 737–
738 (1953)

26. Winfree, E.: Models of experimental self-assembly. Ph.D. thesis, Caltech (1998)
27. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.)

Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–66.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-30296-4 4

28. Maxwell-Boltzmann distribution, Wikipedia (cit 2017-1-29). https://en.wikipedia.
org/wiki/Maxwell-Boltzmann distribution

29. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New
York (1995)

https://doi.org/10.1007/3-540-30296-4_4
https://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution
https://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution

Author Index

Adorna, Henry N. 1, 151
Alhazov, Artiom 1, 15
Aman, Bogdan 40

Bakir, Mehmet Emin 183
Barbuti, Roberto 54
Bradík, Jaroslav 270
Buño, Kelvin C. 151

Cabarle, Francis George C. 151
Cienciala, Luděk 88
Ciencialová, Lucie 88
Ciobanu, Gabriel 40
Csuhaj-Varjú, Erzsébet 88, 105, 118

Drastík, Jan 270

Förster, Benjamin 129
Freund, Rudolf 15

Garzon, Max 270
Gori, Roberta 54

Hernandez, Nestine Hope S. 151
Hinze, Thomas 129

Ipate, Florentin 183
Ivanov, Sergiu 15

Juayong, Richelle Ann B. 151

Kántor, Kristóf 167
Konur, Savas 183

Lefticaru, Raluca 183
Leporati, Alberto 196

Manzoni, Luca 196
Mauri, Giancarlo 196
Michele Pinna, G. 245
Milazzo, Paolo 54

Nicolescu, Radu 214

Orellana-Martín, David 74

Pan, Linqiang 1, 230
Pérez-Jiménez, Mario J. 74
Porreca, Antonio E. 196

Riscos-Núñez, Agustín 74

Sempere, José M. 262
Smolka, Vladimír 270
Song, Bosheng 1, 230
Sosík, Petr 270
Stannett, Mike 183

Valencia-Cabrera, Luis 74
Vaszil, György 167
Verlan, Sergey 105, 118

Zandron, Claudio 196
Zhang, Gexiang 230

	Preface
	Organization
	Invited Talks
	Simple and Small: On Two Concepts in P Systems Theory (Extended Abstract)
	Petri Net Based Synthesis of Tissue Systems
	Contents
	Simulating Evolutional Symport/Antiport by Evolution-Communication and vice versa in Tissue P Systems with Parallel Communication
	1 Introduction
	2 Definitions
	3 Unrestricted Cases are Easy
	4 Evolution-Communication via Evolutional Symport/Antiport
	5 Evolutional Symport/Antiport via Evolution-Communication
	5.1 Simulating a Rule with No Idle Objects
	5.2 Simulations with Idle Objects
	5.3 To Halt or Not to Halt

	6 Concluding Remarks
	References

	Hierarchical P Systems with Randomized Right-Hand Sides of Rules
	1 Introduction
	2 Preliminaries
	2.1 Linear Sets over N
	2.2 Multisets
	2.3 Strings and Permutations
	2.4 Rule Sides
	2.5 (Hierarchical) P Systems

	3 P Systems with Randomized RHS
	3.1 Variant 1: Random RHS Exchange
	3.2 Variant 2: Randomized Pools of RHS
	3.3 Variant 3: Individual Randomized RHS
	3.4 Halting with Randomized RHS
	3.5 Equivalence Between Variants 1 and 2
	3.6 Flattening

	4 Computational Power of Randomized RHS
	4.1 Cooperative Rules
	4.2 Non-cooperative Rules

	5 Variant 3: A Binary Normal Form
	6 Conclusions and Open Problems
	6.1 Open Questions
	6.2 Further Variants

	References

	Controlled Reversibility in Reaction Systems
	1 Introduction
	2 Reaction Systems
	3 Reversible Reaction Systems
	4 Implementation of Reversible Reaction Systems
	5 Conclusion
	References

	Multiset Patterns and Their Application to Dynamic Causalities in Membrane Systems
	1 Introduction
	2 Preliminaries
	3 Multiset Patterns
	3.1 Definition
	3.2 Multiset Patterns and Multiset Languages
	3.3 Simplification of Multiset Patterns

	4 Multiset Patterns as Predictors
	4.1 Auxiliary Functions and Sets
	4.2 Competition for Reactants
	4.3 Competitors Dealing with Multiple Occurrences of Molecules
	4.4 Competition for Products
	4.5 Multiple Backward Steps
	4.6 Definition of the Main Operator and Theoretical Results

	5 Applications
	6 Conclusions and Further Developments
	References

	Counting Membrane Systems
	1 Introduction
	2 Abstract Problems
	3 Counting Membrane Systems
	3.1 Polynomial Complexity Classes for Counting Membrane Systems
	3.2 Counting Membrane Systems from DAM0c(mcmp,+c,-d,-n)

	4 A Solution to #SAT in DAM0c(mcmp,+c,-d,-n)
	4.1 An Overview of the Computation

	5 Main Results
	6 Conclusions
	References

	APCol Systems with Teams
	1 Introduction
	2 Definitions
	2.1 Register and Counter Machines
	2.2 Red-Green Turing Machines
	2.3 APCol Systems
	2.4 APCol Systems with Coloured Teams of Agents

	3 APCol Systems with Coloured Teams and Red-Green Counter Machines
	4 Conclusions
	References

	Bi-simulation Between P Colonies and P Systems with Multi-stable Catalysts
	1 Introduction
	2 Definitions and Notations
	2.1 Network of Cells
	2.2 P Colonies
	2.3 P Systems with Multi-stable Catalysts

	3 Bi-simulation of the Two Models
	4 Conclusions
	References

	Computationally Complete Generalized Communicating P Systems with Three Cells
	1 Introduction
	2 Basic Notions
	3 Main Results
	4 Conclusion
	References

	Event-Based Life in a Nutshell: How Evaluation of Individual Life Cycles Can Reveal Statistical Inferences Using Action-Accumulating P Systems
	1 Introduction and Background
	2 Action-Accumulating P Systems
	3 Board Game ``Mensch ärgere Dich Nicht''
	4 University Course ``Introduction to Programming''
	5 Conclusions
	References

	On Evolution-Communication P Systems with Energy Having Bounded and Unbounded Communication
	1 Introduction
	2 Preliminaries
	2.1 ECPe Systems
	2.2 Dynamical Communication Measures for ECPe Systems

	3 Main Results
	3.1 On ECPe Systems with Unbounded Communication
	3.2 On ECPe Systems with Bounded ComW
	3.3 On ECPe Systems with Bounded ComX, X{N,R}
	3.4 The Power of Including Antiport Rules

	4 Summary
	References

	Generalized P Colony Automata and Their Relation to P Automata
	1 Introduction
	2 Generalized P Colony Automata
	3 Results on Systems with Unrestricted or All-Tape Programs
	4 P Automata and genPCol Automata
	5 Conclusions
	References

	Modelling and Validating an Engineering Application in Kernel P Systems
	1 Introduction
	2 Background
	2.1 Cruise Control System for an Electric Bicycle
	2.2 Kernel P Systems
	2.3 kPWORKBENCH
	2.4 Kernel P Systems Testing

	3 KP Model for e-bike Cruise Control
	4 Verification
	5 Testing
	6 Conclusions and Further Work
	References

	Solving a Special Case of the P Conjecture Using Dependency Graphs with Dissolution
	1 Introduction
	2 Basic Notions
	3 Properties of MSD P Systems
	4 Dependency Graphs with Dissolution
	5 Conclusions and Open Problems
	References

	Most Common Words – A cP Systems Solution
	1 Introduction and Background
	2 Data Structures in cP Systems
	3 The Parallel cP Algorithm – Solution (i)
	3.1 Initial State
	3.2 Phase II
	3.3 Phase III
	3.4 Phase IV

	4 The Parallel cP Algorithm – Alternate Solution (ii)
	5 Reflections and Open Problems
	A Appendix cP Systems: P Systems with Complex Symbols
	A.1 Complex Symbols as Subcells
	A.2 High-Level or Generic Rules

	References

	Tissue P Systems with Rule Production/Removal
	1 Introduction
	2 Tissue P Systems with Rule Production/Removal
	3 Universality of Tissue P Systems with Rules Production/Removal
	3.1 Tissue P Systems with Rules Production/Removal Working in the Maximally Parallel Manner
	3.2 Tissue P Systems with Rules Production/Removal Working in the Flat Maximally Parallel Manner

	4 Conclusions and Discussions
	References

	Reversing Steps in Membrane Systems Computations
	1 Introduction
	2 Background
	3 Membrane Systems
	4 Reversing Membrane System Computations
	4.1 Membranes with Memory

	5 Future Works
	References

	Families of Languages Encoded by SN P Systems
	1 Introduction
	2 Basic Concepts
	3 Languages Encoded by SN P Systems
	3.1 The One-to-One Case
	3.2 The Non-injective Case

	4 The Unbounded Case
	5 Networks of SN P Systems as Cascading Encoders
	6 Final Comments and Future Research
	References

	On the Robust Power of Morphogenetic Systems for Time Bounded Computation
	1 Introduction
	2 M Systems
	2.1 Polytopic Tiling
	2.2 Morphogenetic Systems

	3 Robust Computational Morphogenesis and Homeostasis
	4 Families of Monte Carlo M Systems
	5 Computational Efficiency
	5.1 Generating Phase
	5.2 Checking Phase

	6 Conclusions
	References

	Author Index

