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Preface

This volume originated in the Workshop on Membrane Computing, WMC-
CdeA 2002, which took place in Curtea de Argeş, Romania, during August 19–
23, 2002. This was the third annual workshop held in Curtea de Argeş. The first
one, Workshop on Multiset Processing, WMP-CdeA 2000, took place in
August 2000, and the proceedings were published in Lecture Notes in Computer
Science, volume 2235. The second one, Workshop on Membrane Comput-
ing, WMC-CdeA 2001, took place in August 2001, and selected papers were
published as a special issue of Fundamenta Informaticae, volume 49, numbers
1–3, 2002.

The aim of these workshops is to provide a stimulating environment for re-
searchers working in the area covered by a given workshop, so that existing scien-
tific collaborations can be strengthened, and new collaborations (and friendships)
can be initiated. Indeed, all three workshops held up to now were of such char-
acter, with very international attendance and collaboration taking place across
national and scientific boundaries.

The 2002 Workshop, WMC-CdeA 2002, was the first workshop of the Molec-
ular Computing Network (MolCoNet) funded by the EU Commission in the
Fifth Framework program Information Society Technologies (project number
IST–2001–32008). The preproceedings of WMC-CdeA 2002, Publication No. 1
of MolCoNet, were available at the meeting. The current volume differs consider-
ably from the preproceedings: some of the papers from the preproceedings were
not selected for this volume, while some papers were invited for this volume al-
though they did not appear in the preproceedings. Moreover, all the papers from
the preproceedings that were selected for this volume are significantly improved
– the new versions reflect discussions that took place in Curtea de Argeş and
the scientific collaborations that were initiated there (also, these papers went
through an additional refereeing round).

Most of the papers are of a mathematical (theoretical computer science)
nature, dealing with: the computational power (D. Besozzi et al.; F. Bernar-
dini and V. Manca; M. Cavaliere; R. Freund and A. Păun; P. Frisco and H.J.
Hoogeboom; M. Madhu and K. Krithivasan) and efficiency (E. Czeizler; M.J.
Perez-Jimenez et al.) of membrane systems, applications (A. Atanasiu; G. Bel
Enguix; G. Ciobanu et al.) and computer implementations/simulations (F. Ar-
royo et al.; D. Balbontin-Noval et al.), and links with other research areas (T.
Bălănescu et al.). Some papers solve open problems from the literature (P. Sośık
and R. Freund), or formulate new research topics (S. Marcus) or new approaches
(R. Ceterchi and C. Martin-Vide; R. Freund and M. Oswald; P. Frisco and S.
Ji; A. Obtulowicz). A number of papers provide mathematical (J.-L. Giavitto et
al.; M. Kudlek and V. Mitrana) and biological backgrounds (I.I. Ardelean; R.
Vasilco et al.). The original motivation for membrane systems came from the
functioning of biological membranes, and although most of the current research
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VI Preface

is oriented towards natural computing (more specifically, human-designed com-
puting inspired by nature), it is hoped that in the long run the research on
membrane computing will provide concepts and results useful for the under-
standing of the biology of membranes, and the role that membranes play in the
functioning of living cells, and in communication between cells. Therefore, it is
a nice alphabetical coincidence that the first and the last papers of the volume
are authored by biologists, providing in this way the “biological bracketing” of
the contents of this volume.

The fact that the WORKshop was really a place of interaction is witnessed by
many papers with several co-authors. A convincing testimony to the creative at-
mosphere of the workshop is the number of papers co-authored by Rudi Freund.
All these papers are the result of the intensive work that took place in Curtea de
Argeş, in spite of the temptations for Rudi to spend more time with his daugh-
ter, Magdalena Franziska Patricia, 15 months in August 2002. In the “official
diploma” that she received during the workshop dinner, she was qualified as “the
most sensible result of the Workshops of Membrane Computing.”

This MolCoNet workshop was organized by the Institute of Mathematics
of the Romanian Academy, Bucharest, the University of Milano-Bicocca, Italy,
and the “Vlaicu Vodă” National College of Curtea de Argeş, under the aus-
pices of the European Molecular Computing Consortium. The workshop was
also supported by the Institute of Microtechnology, Bucharest (grant PNCDI-
MATNANTECH No. 68/2001 BIONANONET). The program committee con-
sisted of Carlos Martin-Vide (Tarragona, Spain), Giancarlo Mauri (Milano, Italy),
Gheorghe Păun (Bucharest, Romania, and Tarragona, Spain), Grzegorz Rozen-
berg (Leiden, The Netherlands), and Arto Salomaa (Turku, Finland).

The editing of this volume was supported by MolCoNet, and by the Rovira
i Virgili University, Tarragona, Spain, where GP works as a researcher on the
Ramon y Cajal program of the Spanish Ministry of Research.

November 2002 Gheorghe Păun
Grzegorz Rozenberg

Arto Salomaa
Claudio Zandron
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Molecular Biology of Bacteria
and Its Relevance for P Systems

Ioan I. Ardelean

Institute of Biology of the Romanian Academy
Centre of Microbiology

Splaiul Independenţei 296
PO Box 56–53, Bucharest 79651, Romania

ioan.ardelean@ibiol.ro

Abstract. We recall several elements of molecular biology of bacteria,
also discussing their (possible) relevance for the membrane computing
area.

1 Introduction

Initiated by G. Păun in 1998, P systems are a branch of natural comput-
ing, rooted in the belief of its creator that “a formal computing device can
be abstracted from the cell functioning” (Păun, 2001). Since then, the con-
tributions to the development of P systems (see, for example, the web page
http://psystems.disco.unimib.it or Păun, 2002) fully argue that the an-
swer is positive. As the introduction of microbiology in P systems is still in its
infancy (Ardelean, 2002) it would be interesting to elaborate on the relevance
of molecular biology of bacteria on P systems. This is really needed because
with the rapid progress in molecular biology (see the reviews by James, 1997;
Boersema et al., 2001; Thieffry and Thomas, 1998; Walsburn and Yates, 2000;
Raamsdonk et al., 2001; Devaux et al., 2001; Gunnevijk et al., 2001; Hess et
al., 2001; Stormo and Tan, 2002; Phelps et al., 2002; Jong, 2002; Bruckner and
Titgemeyer, 2002) and its marriage with computer science (reviews by Spen-
gler, 2000; Meng et al., 2001; Kampfner, 2002; Marijuan, 2002; Ouzounis, 2002;
Gaasterland and Oprea, 2002; Goodman, 2002; see also Conrad, 1972), new ideas
come into the field of (micro)biology, some of them being directly related to P
systems:

– Bray stresses that “many proteins in living cells appear to have as their
primary function the transfer and processing of information, rather that the
chemical transformation of metabolic intermediates or the building of cellular
structures” (Bray, 1995).

– Hartwell et al. argue “for the recognition of functional modules as critical
level of biological organization. Modules are composed of many types of
molecules. They have discrete functions that arise from interactions among
their components (proteins, DNA, RNA and small molecules) but these func-
tions can not easily be predicted by studying the properties of the isolated
components” (Hartwell et al., 1999).

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 1–18, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 Ioan I. Ardelean

– Bruggeman et al., working on glutathione synthetase cascade in E. coli,
showed “that this cascade is much more complex than necessary for simple
regulation of ammonia assimilation. Simulations suggest that the function of
this complexity may lie in quasi-intelligent behaviour, including conditioning
and learning” (Bruggeman et al., 2000).

The aim of this paper is to discuss the relevance of molecular biology of bac-
teria to P systems, with special emphasis on the structure, hierarchy, and some
functions of biological membranes, on the hierarchical control of functions in
bacteria and on new questions that the microbiologists and P systems scientists
will decide as to whether or not they deserve further attention.

The hope is that more P systems scientists will become more interested in
biological realities and more microbiologists will start to learn about P systems.
The work of both microbiologists who are acquainted with P systems and P
systems scientists who have knowledge in microbiology will establish a real sci-
entific bi-directional communication between the two scientific domains for the
benefits of both of them. The reader interested in microbiological details is ad-
vised to consult classical books in microbiology as well as the references cited in
this paper.

2 Cell Membrane Structure and Hierarchy in Bacteria

Bacteria are very small organisms the biological individual being composed of
only one cell, so one say that they are unicellular (there are few interesting
exceptions without relevance for the topic of this paper, however), as compared
with more developed organisms (plants, animals and humans, for example) where
the biological individual is composed of billions of cells.

In bacteria the cell is enclosed by a cell wall and a cell membrane, and contains
cytoplasm and nucleoid. The cell membrane (CM) is basically composed of a lipid
bilayer forming a semifluid matrix in which the membrane proteins are floating.
This model of CM is called “fluid mosaic model” (Singer and Nicolson, 1972;
Singer, 1974) and it is universally accepted. This is the basic structure of CM
found in all biological cells. The huge diversity in CM belonging to different cells
is related to the chemical composition of CM, namely the identity of proteins,
carbohydrates, and lipids.

The general functions of CM, some of them having a strong relevance for P
sytems, are the following:

1. CM serves as a selectively permeable barrier,
2. CM contains transport systems used for such tasks as nutrient uptake, waste

secretion, and protein secretion,
3. CM holds the enzymatic machinery for crucial metabolic processes: respira-

tion and photosynthesis,
4. CM synthesizes lipids and cell wall constituents,
5. CM contains special receptor molecules that help bacteria detect and respond

to signal in their sourroundings thus affecting their behaviour.
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I put forward that all the functions occurring at CM can have relevance
for P systems; however, the P system scientists were so far more interested in
transport, with special emphasis on symport/antiport (Păun et al, 2001; Păun
and Păun, 2002; Martin-Vide et al., 2002; Frisco and Hoogeboom, 2002).

There are two main groups of bacteria according to the hierarchy of CM:
Gram-positive and Gram-negative bacteria.

In Gram-positive bacteria the CM is found only at the exterior of the cyto-
plasm, separating the cell itself from the external medium.

In Gram-negative bacteria, apart from this CM found only at the exterior of
the cytoplasm, there is a second CM, called external membrane (EM), because
it is located at the exterior of first CM, a space being thus delimited in between
CM and external membrane. This space is called periplasmic space and contains
proteins involved in the transport of molecules from the external medium to the
interior of the cell (see below) as well as other organic and inorganic components.
The periplasmic space as well as intrathylakoidal space and cytoplasmatic space
are examples of what in P systems are called regions. In the regions there are
objects (P systems), actually, chemicals (microbiology), either organic (proteins,
nucleic acids, lipids, carbohydrates) or inorganic (water, ions etc). The (spatial)
arrangement of given chemicals/objects in the given space/region is one of the
tasks to be done in the near future. It has to be stressed that, according to
biological realities, as already noticed by Nishida (2002), within the membrane
there are also objects, some of these objects (antiporters, symporters) being
already in use in P systems, but the vast majority of them not yet considered in
the P systems area.

The two membranes, EM and CM, with a structure described by the fluid
mosaic model, have different chemical composition and different functions. For
instance, there are some important differences in what concerns the transport of
ions and molecules across them. Inogranic ions, for exemple, can pass through
the EM while there are special proteins and mechanisms controlling their pas-
sage across CM (see below). Some molecules larger than inorganic ions, such
us some antibiotics (an example is valynomicin), cannot cross the EM, thus of-
fering to Gram-negative bacteria resistence to that antibiotic. Apart from the
biological significance of the presence of EM in Gram-negative bacteria, for P
systems the differences between CM and EM are an example for managing the
communication through two membranes with the same structure but different
chemical composition and functions.

Apart from CM and EM, in some bacteria there are some intracellular mem-
branes (IM), organized in very tiny vesicles and associated with specific metabolic
functions.

For exemple, in the cyanobacterium Synechocystic PCC 6803 (as well as in all
other cyanobacteria with the exception of Gloeobacter violaceus), these vesicles
are called thylakoides and are the site of the photosynthesis (see below). In
Rhodospirillum rubrum, growing in light in the absence of molecular oxygen, the
IM are also the site of photosynthesis. However, during the growth in the presence
of molecular oxygen and in the absence of light, theses IM are no longer found,
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thus the hierarchy of cell organization, is changed. In the presence of molecular
oxygen, the cell gain energy by respiration at the CM, while in light in the
absence of oxygen the main source of energy for the cell is photosynthesis. The
ability of the same cell to grow either in light or in dark, is very important from
a biological point of view; furthermore it could be relevant also for P systems
as an example of changing the hierarchy of CM, a change possibly useful for
considering some selfcontrolling P systems.

It has to be said that IM are not always connected to photosynthesis; in
Nitrosomonas, for exemple, the IM are related to the oxydation of nitrite, a
metabolic function by which this bacterium gains energy.

3 Processes Occurring at Biological Membranes

The processes occurring at biological membranes in bacteria (cell membrane,
external membrane, or intracellular vesicles) are essential for cell life and they
are also important not only to illustrate the impressive achievements in the
molecular biology of bacteria during the last few decades, but also as natural
examples for P system scientists of (types of) developmental rules which were
not (fully) exploited yet in P systems. In this section, we will briefly point out
some aspects related to the transport of chemicals across membranes as well as
to respiration and photosynthesis.

3.1 The Transport of Ions and Molecules Across Cell Membrane

The transport is one fundamental function of CM; when the transport is dras-
tically affected the composition of the cytoplasm changes dramatically and cell
death shortly afterwards occurs.

The study of transport processes across CM in bacteria (as well as in other
living cells) is under strong development, and the systems of classification as
well. For the sake of simplicity, in accord with the aim of this paper, the main
criteria for transport classification are presented (after Nicholls and Ferguson,
1992, simplified; for more information the reader is advised to consult Booth,
1988; Nicholls and Ferguson, 1992; Saier, 1999).

The transport can be passive or active (i.e., directly coupled to metabolism).
The transport is passive when either an ion or a molecule passes across the

membrane from the compartment of a higher concentration to that with a lower
concentration, the driving force of this movement being the concentration gra-
dient of that ion or molecule, and there is no metabolical energy used for this
transport. As an exemple of passive transport we mention the entry of sodium
ions into a cell when, e.g., the cyanobacterium Synechocystis PCC 6803 culti-
vated in a normal medium containing around 50mM sodium ions is passed to
a medium having 500mM sodium ions. Other substrates transported passively
across CM are water, molecular oxygen, and carbon dioxide.

The transport is active when either an ion or a molecule passes across the
membrane from the compartment of a lower concentration to that with a higher
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concentration. There is the need for metabolical energy to accomplish this trans-
port. Following the above exemple, in order to maintain a (relatively) constant
composition of the cytoplasm with respect to sodium ion, the cell starts to trans-
port sodium ions ouside it, from the compartment with a lower concentration
(the cytoplasm) to the compartment with a higher concentration (the external
medium) by consuming metabolic energy. Active transport is widely used by
the cells because by this mechanisms the bacterial cells can maintain a rela-
tively constant chemical composition of the cytoplasm, very different from that
of the growing medium. It seems reasonable to consider that the active trans-
port is more interesting for the development of P systems because the evolution
rules are better illustrated by this type of transport than by passive transport.
However, the significance of passive transport for P systems still waits to be
confirmed.

When one deals with implementation of these modalities of transport in an
abiotic structure (in silico?), passive and active mechanisms seem to be needed,
as well. There is no living cell using only one type of transport, either active
or passive, but in terms of P systems it could be of interest to check if a P
system based totally either on passive transport or on active transport has any
theoretical significance.

The transport can involve a charge transfer across the membrane (electrical
transport) or not (electroneutral transport). Electrical transport is termed elec-
trogenic (“creating a potential”) when an electrically charged molecule or ion
crosses the membrane; the simplest exemple of electrical transport is that of an
ion (sodium, for example) across CM.

Electroneutral transport involves no net charge transfer across the mem-
brane The simplest exemple of electroneutral transport is that of an uncharged
molecule (glucose, for example) crossing the CM.

For electrical transport, it is calculated (Nicholls and Ferguson, 1992) that a
single turnover of all electron-transport components in an individual bacterium
will transport sufficient charge to establish a membrane potential approaching
200mV.

We believe that this aspect of transport is important for P systems, for
instance, because if it is electrical energy to drive the future implemented P
systems, as it seems reasonable to assume, then electrogenic versus electroneutral
transport processes must be carefully handled.

A further interesting situation is the following: the transport of one ion or
molecule across CM can be coupled. This means that it occurs only when another
ion is transported across CM together with the first ion. There are two possibil-
ities: i) both ions are transported in the same direction – this is called symport;
ii) one ion is transported inside the cell and the other ion is simultaneously
transported in the opposite direction, outside the cell – this is called antiport.
Both these systems of transport are used by bacteria; the symport of protons
with different substances nedeed for bacterial growth are very well documented
(Jung, 2001). For example, Escherichia coli uses the symport of protons with
either lactose, arabinose, or galactose. However, the proton is not the only type
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of ions used with symport systems; sodium ions are also used for the symport of
substances such as melobiose and proline.

In what concerns the antiport, a classical example is the proton/sodium
antiporter found in many bacteria. Its major function is to maintain a rather
constant concentration of either protons and sodium ions inside the cell (see
Padan et al., 2001).

For P systems, symport and antiport are nice examples of how bacterial
cells manage the developmental rules (Păun, 2000, 2001) and are already useful
examples for the development of the theory (Păun et al., 2002; Păun and Păun,
2002; Martin-Vide et al., 2002; Frisco and Hoogeboom, 2002).

The P system s with symport/antiport received a special attention from P
system scientists. In the about 12 months since such systems were first considred,
several papers were published: Păun et al., 2001; Păun and Păun, 2002; Martin-
Vide et al., 2002, Păun, 2002, Frisco and Hoogeboom, 2002; Freund, 2002, etc.

This topic is still attractive, at least for the following reasons:

– Symport and uniport, as well as other ways of transport found in different
bacteria (Kelly and Thomas, 2001) could contribute to the further develop-
ment of P systems theory.

– In the case of P systems based on symport/antiport only it is of interest to
take more into account the biological realities of forbidding and permitting
contexts. Learning from cells how they manage the function of each antiport
system by using hierarchical control of cell functions, including the exam-
ples of forbidding and permitting contexts could help P system scientists
to further refine their theories, for instance, with respect to the speed of
calculations.

– The implementation of a P system can maybe make use of symport/antiport.

Strongly related to transport in bacteria there are the concepts of delta and
tau actions used in P systems. Delta corresponds to the increase of passage of
ions or molecules across the membrane, whereas tau corresponds to a decrease.
To illustrate these concepts with microbial realities we will shortly discuss the
mechanosensitive channels, a system (named kdp) for the transport of potassium
ions and of sodium-proton antiporter.

Bacteria are able to maintain a relatively constant turgor pressure (the pres-
sure exerted against the CM and cell wall) of about 15–20 atm in Gram-positive
and 0.9–5 atm in Gram-negative bacteria. In Escherichia coli, for example,
there are channels, named mechanosensitive channels, because they are sensitive
against mechanical factors; they open during an osmotic downshock (the grow-
ing medium become suddently very diluted) (Levina et al., 1999) thus avoiding
the excessive increase in the turgor pressure. This opening is reversible, and once
the downshock gone, the channels close again.

One of the transport systems for potassium ions inside Escherichia coli
(named the kdp system) is rapidly and irreversibly inhibited by moderate exter-
nal potassium concentrations (Roe et al., 2000), thus preventing the overloading
of cytoplasm with potassium ion.
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Na+/H+ antiporter is also involved in maintaining in E. coli the pH of the
cytoplasme around a value of about 7.5. When the external pH shifts from 7.2 to
8.3, the intracellular pH shortly increases to 8.3 and then the antiporter opens
and increases the passage of both ions (delta): the protons come inside the cell
and the sodium ions are extruded. The movement of both type of ions contributes
to the acidification of the cytoplasm that, indeed, reach its normal pH of about
7.5 (for more details about the hierarchical control, see below).

These examples – and (micro) biology is very rich in other examples – not only
prove the biological meaningfulness of delta and tau concepts from P systems,
but also open the opportunity to use the theory of P systems as an alternative
tool to study these biological events.

3.2 Respiration

Respiration is the biological process that allows the cells (from bacteria to hu-
mans) to obtain energy. In short, respiration promotes a flux of electrons from
electron donors to a final electron acceptor, which in most cases is molecular
oxygen. The ability of many bacteria to use molecular oxygen as final elec-
tron acceptor in their respiration is provided by the work of an enzyme named
citocrom c oxidase, which catalyzes the following equation:

O2in + 4H+
in + 4H+

in + 4e−within = 2H2O + 4H+
out.

The subscript“in” means “on the inner face of the membrane”,“out” indi-
cates the outer face of the membrane, while “within” simply means “within
membrane”.

Thus, during the last step of respiration shortly presented above water is
formed from molecular oxygen, protons (4H+) and electrons(4 e−), and 4 protons
are simultaneously transferred across membrane from inside to outside the cell
contributing to energy conservation. Apart from its biological significance, the
function of citocrom c oxidase could offer to P system scientists an example of
a new type of developmental rule, more complex that those already considered
in P systems. In a general formulation, this rule is:

Ain + Bin + Cwithin = Din + Bout.

Moreover, the coefficients before the symbols could be of help in establishing
of whether or not the function of citocrom c oxidase is an example of a biological
computation.

Furthermore, the process of respiration involves a few other steps before that
catalysed by citocrom c oxidase, each of them being an example of a new type
of developmental rule not yet considered in P systems (Ardelean, manuscript in
preparation).

3.3 Photosynthesis

The overall process of photosynthesis as it occurs in cyanobacteria (as well as
in algae and plants) consists in using electrons from water to ultimately reduce
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carbon dioxide thus forming substances such as carbohydrates. This process
is essential for the life on Earth, being the main energy source for almost all
living cells, including humans, the only source of molecular oxygen needed for
respiration (and many oxygen-consuming related activities) as well as a huge
carbon dioxide-consuming process.

The first major event in photosynthesis is splitting of water (at the expense
of light energy, not presented for the sake of simplicity) to molecular oxygen,
protons and electrons, according to the following equation:

2H2Oin = 2H+
in + O2in + 4e−within.

Apart from its biological significance, the splitting of water could offer to P
system scientists an example of a new type of developmental rule more complex
that those already taken into account. In a general formulation, this rule is:

Ain = Bin + Cin + Dwithin.

Moreover, the process of photosynthesis includes a few other steps after the
spitting of water, some of them being examples of a new type of P systems
developmental rules (Ardelean, manuscript in preparation).

It is our belief that a more detailed presentation of respiration and photo-
synthsis, as well as of other biological processes not yet considered in P systems,
could help to further develop the membrane computing by paying more attention
to coefficients and energies related to processes such as those presented above;
the same seems to be true with the examples from (micro)biology of what in P
systems are called forbidding and permitting contexts (see below).

Considering the energetics of biological processes is very common in (mi-
cro)biology and it already started to receive some attention in the P systems
area (Păun et al., 2001; Freund, 2002; Frisco and Ji, 2002; Alford, 2002). For P
systems it would be interesting to pay more attention to the energetics of biolog-
ical processes as this could be both of theoretical interest and can also provide
hints on possible implementations of P systems. Related to energey there are the
coefficients usually found with biochemical ecuations; perhaps such coefficients
could be helpful in demonstrating that living cells really compute. Thus, we can
move the answer to this question from personal opinions/intuitions, to an ob-
jective demonstration, changing our language from metaphoric to scientific, and
moving from analogy – whatever important it is in stimulating creativity – to
objectiv proofs.

Furthermore, related to energy, there is the reality of forbiding and permitting
contexts, fluorishing in P systems. A wealth of examples of promoters/inhibitors
can be found in (micro)biology, thus giving more support to the biological back-
ground and soundness of P systems.

Considering only the splitting of water, the presence of forbidding and per-
mitting contexts are very illustrative. First, the splitting of water does not occur
in darkness – there is an absolute need of light; even in light there is the need
of other permitting conditions, such as:
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– The presence of very complex biological machinery of photosynthesis, be-
cause the overall process of photosynthesis depends on the appropriate func-
tions of different molecules organised in macromolecular structures within
thylakoids.

– The availability of water in appropriate quantitites and concentrations (wa-
ter solutions with high osmotic pressure allways inhibit photosynthesis).

– The availability of carbon dioxide to be reduced by the electrons and protons
liberated during the splitting of water.

These permitting contexts allow both coarse and fine modulations of the
overall process of photosynthesis, and learing from nature how to modulate func-
tions, equations, and developmental rules would probably enhance the impact
of P systems not only in the field of natural computing, but also in biology and
in science in general.

There are also forbidding contexts such as the absence of specific or non
specific inhibitors of water splitting or photosynthesis as a whole.

The interplay between permitting and forbidding contexts in tunning the
activity of photosynthesis is a major trend in modern studies in photosynthesis
and could add new insights to P systems theory. These studies could help P
systems scientists to further refine the pioneering work on using P systems for
simulation of photosynthesis (Nishida, 2002).

4 Hierarchical Control in Bacteria

The control of biochemical reactions taking place in a bacterial cell is performed
at the following hierarchical levels: transcription, translation, and posttransla-
tional modification. Transcription is the synthesis of messenger ribonucleic acid
(mRNA) from a template of DNA, whereas translation is the synthesis of pro-
tein from an mRNA template. Posttranslational modification refers to covalent
alterations of proteins after their translation from mRNA.

4.1 Transcriptional Control

In bacteria the majority of the genes are found grouped together in operons. The
operon is a cluster of genes that encode proteins involved in the same metabolic
process. One of the best known operon – and the first whose structure has been
elucidated forty years ago by Jaques Monod, Francois Jacob and Andre Lwoff –
is the lac operon. The lac operon contains three structural genes, each gene cod-
ing for one type of enzyme involved in the capability of the bacterium E. coli to
use lactose as food: the lacZ, lacY, and lacA code for beta-galactosidase, galac-
tosidase permease, and a transacetylase, respectively. Apart from the structural
genes, the operon contains a control region that contains the promoter region
and the operator region. When the operator region is blocked by a protein named
repressor (coded by the repressor gene I situated outside the operon and NOT
belonging to the operon itself), the structural genes are inactive and their corre-
sponding proteins are not synthesised by the bacterium. This is the case where
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in the growing medium there is glucose (alone or together with lactose, for exam-
ple). After glucose depletion, the growth and multiplication of the cells ceased if
no other carbon source is present; when lactose is present (in the absence of glu-
cose), the repressor is no more acting as a repressor thus the information within
structural genes is used for the synthesis of the corresponding proteins. Thus, in
the presence of lactose, the cells become able to utilise this carbon source (for
more details, see Stulke and Hillen, 1999; Bruckner and Titgemeyer, 2002).

The operon model, a fundamental development in the evolution of micro-
biology and molecular biology, could have major relevance for P systems. The
arguments are as follows:

1. This model offers an example of forbidding and permitting contexts that are
widely discussed in P systems.

2. This model offers an example of hierarchical control in bacteria together
with the suggestion for the professionals of P systems to decide whether or
not such hierarchical control would be of any use in P systems, for example,
in improving the power of a P system, the efficiency, or the elegance of the
calculus.

3. This model could argue that our knowledge on DNA, and in general on
molecular biology, could be useful not only for DNA computing but also for
P systems. More directly, we suggest that the very rich and rapidly advancing
field of molecular biology can “feed” not only H systems but P systems, as
well. Again, the P systems scientists must decide if this statement deserves
their attention.

Nowadays it is known that the control of transcription occurs by very diverse
mechanisms, acting at the level of either single operon or networks of operons.

Here are some details about the transcriptional regulation of individual oper-
ons:

1. Control of transcriptional initiation can be done by one of the following
mechanisms:
(a) The promoter strength, indicating its ability to capture RNA polymerase

molecules and initiate transcription. This ability is significantly enhanced
by activators whose activity changes when small molecular weight ligands
bind to them. One of the best known activators is the cyclic AMP binding
protein that plays a role in positive regulation of the lac operon.

(b) The intervention of alternate sigma factors whose intracellular concen-
tration changes during major events, such as stresses (osmotic, ionic etc.)

(c) The chemical modification of DNA in the promoter region has, in general,
a negative effect on transcription.

(d) The degree of supercoiling of DNA affects its activity.
(e) A repressor protein (encoded by a repressor gene, not belonging to the

operon itself) inactivates the transcription (see lac operon).
(f) Autogenous regulation concerns the regulation of genes that encode re-

pressor protein that is sometimes brought about by their own gene prod-
uct, the repressor they produce; the autogenous regulation thus provides
a mechanism by which a repressor can prevent its own overproduction.
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2. Control of transcription termination occurs when, for example, a specific
protein (e.g., the factor Rho) blocks the activity of the RNA polymerase,
thus receiving the name of transcription termination factor.

The presentation of these processes by which the process of transcription is
controlled in bacteria aims to introduce the P systems scientists to the complex-
ity of regulatory processes occurring in living cells at the level of each cell and
opens the possibility to speculate about their significance for P systems.

The above processes show how the synthesis of mRNA is controlled both by
coarse mechanisms (through a repressor protein, see the lac operon, as the clas-
sical example) and by fine mechanisms that modulates the synthesis of mRNA
within a narrow value thus adjusting the concentration of mRNA to the needs
of the cell at that moment.

Some of the above processes are illustrative of what in P systems is called
forbidding and permitting conditions; furthermore, the fine mechanisms by which
mRNA synthesis is controlled could suggest the introduction of fine tuning with
respect to forbidding and permitting contexts also in P systems.

Introducing coarse (100% inhibition or 100% activity) forbidding and per-
mitting contexts in P systems is very fruitful for P systems. What about fine
forbidding and permitting contexts? How can they be captured in the P systems
formalism? Would they be of any use? Intuitively, the implementation of the
theory and the construction of a “P computer” may benefit from the possibility
to control the rules both at coarse and fine levels.

Furthermore, mainly in the last decade, it became more evident that the
response of a given bacterium to a change involves not only the activity of only
one operon, but also the activities of many operons organised in networks (see
van Bogelen et al., 1999; Thieffry and Thomas, 1998; Stormo and Tau, 2002;
Phelps et al., 2002; Jong, 2002).

These networks involve hierarchical regulatory systems such as regulons and
modulons. A regulon contains a few operons that are regulated by the same
specific repressor or activator, whereas a modulon comprises several regulons and
operons that are modulated by a common regulator; the control of this common
regulator is superimposed on the control at the level of each individual operon
or regulon. The common regulator responds to general conditions like nutrient
starvation (carbon, nitrogen, phosphate, etc.) and other stress conditions (cold
or heat shock, osmotic shift, oxidative stress) that demand major changes in the
metabolism.

The global regulators enable bacteria to respond in a rapid and co-ordinated
way to threats or opportunities presented by their environment (e.g., heat, cold,
presence or absence of essential nutrients, high or low pH) by reconfiguring their
biochemical machinery (McAdams and Arkin, 1998; Nougueira and Springer,
2000). The similarities between the logic of these genetic regulatory circuits
and electronic digital logic in computer chips (McAdams and Arkin, 1998) could
open the question about the capability of P systems theory to further improve the
understanding of these hierarchic regulatory networks by using its own concepts,
theorems etc.
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The control of transcription by global regulators, apart of being a popular
topic in contemporary microbiology could be instructive for P systems at least
in the following directions:

1. The suggestion to control the developmental rules of a P system not only at
the level of each individual/single rule but also at the level of sets or groups
of rules eventually related to a larger mathematical operation within the
process of calculation.

2. The suggestion to improve the response of a P system affected by a given
challenge by mimicking the way a living cell “warms up” different parts of
its capabilities when affected by an environmental challenge.

The above mechanisms are operating at different hierarchical levels within a
cell, but bacteria have developed abilities to control transcription by mechanisms
involving intercelullar communication through the excretion of defined chemicals.

These substances (N acyl-homoserine lactone and Peptide-pheromones in
case of Gram-negative and Gram-positive bacteria, respectively) accumulate in
the external medium and, when the concentration exceeds a threshold value,
they change the expression of some genes, by a mechanism known as quorum
sensing (Bassler, 1999). The quorum sensing participates in the self-regulation
of cell densities (McAdams and Arkin, 1998).

For P systems, self-regulation of cell density discovered in biology is an ex-
ample of how the function of a cell (P system) can be modulated by signals
(peptides in the case with bacteria) produced by other (similar) cells (P sys-
tems); these molecules change the behaviour of other cells and are real examples
of molecular switches. This example can lead to extensions of P systems, able to
control the developmental rules within a network of P systems (cells) (Ardelean,
2002). At the same time, the quorum sensing, an ongrowing topic in microbi-
ology (Bassler, 1999), argues for the importance of intercellular communication
for P systems.

Quorum sensing also plays a critical role in the formation of bacterial biofilms
where bacteria exhibit collective (multicellular) behaviour (Davies et al., 1998)
beneficial with respect to protection from the environment, nutrient availability
and metabolic co-operativity as well as acquisition of new genetic traits. In
biofilms, bacteria localised at different regions display specialised patterns of
gene expression and complex functional differentiation (Bassler, 1999).

This functional differentiation between cells could be suggestive of the func-
tional differentiation of individual P systems organised in a larger structure (P
network?) and/or for the operation in these differentiated P systems of different
evolution rules. It also suggests the possibility of self-assembly of individual P
systems, with or without differentiation within a larger structure.

4.2 Translational Regulation

The translational regulation of individual operon occurs mainly as a control of
RNA stability and of translation initiation. This type of regulation is illustrated
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for flagellum (Aldridge and Huges, 2002). The control of cell processes at this
level could be interesting for P systems as an example of how a chemical object
can be “in the range of” a rule A when it remains as it is, or must obey a rule B,
when undergoes a minor change in its structure; these processes can occur either
in the same compartment or in two compartments separated by a membrane.

4.3 Posttranslational Control and Modification of Proteins

The control of enzymatic activity within enzymatic pathways and the given pool
of other metabolites is a very fast process (at the level of seconds), enabling the
cells to adjust their metabolic activity to unexpected changes in the growth
medium. The following are the main ways of control at this level:

1. Reversible binding to an enzyme of a small size molecule called allosteric
effector, that changes the conformational state of the enzyme. It is assumed
that the allosteric enzymes exist in two conformational states, one in which
the active site of the enzyme has a high affinity for its substrate and another
state which the active site of the enzyme has a low affinity for its substrate.
Positive allosteric effectors increase enzymatic activity (by promoting the
high affinity conformation) while negative allosteric effectors decrease enzy-
matic activities (by promoting the low affinity conformation). It seems that
the property of allosteric enzymes to be either in a high activity conforma-
tion (when the positive allosteric effector is bound to the enzyme) or in a low
activity conformation (when the negative allosteric effector is bound to the
enzyme) can be an useful model for P systems: The object a follows the rule
A (active) when another object b (positive allosteric effector) binds to it, but
the object a follows rule I (inactive) only when another object c (negative
allosteric effector) binds to it.

2. Covalent modification of an enzyme controls the enzyme activity by adding to
or removing from the protein certain chemicals groups such as a phosphate.
Is the reversible change of only one property of a given chemical object within
a P system useful for membrane computing?

3. Control of biosynthetic pathways by feedback inhibition, which means that
the end product of one metabolic pathway inhibits the first enzyme of that
pathway. Again the question is what will happen to a computation when
the first step of computation is affected, negatively or positively, by the last
step?

4. Control by the occurrence of isozymes that are proteins that catalyse exactly
the same chemical reaction.

5. The energy available within a cell greatly affects the enzymatic activities;
briefly, high levels of energy inhibit the energy producing reactions and stim-
ulate the energy consuming reactions.

6. Enzymatic degradation of proteins is another mechanism that is involved in
the regulation of enzymatic activity (by rather drastic methods).

Posttranslational regulation mechanisms govern responses in the range of
about 10−4 − 102 seconds, while transcription and translation govern responses
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in the range of about 102−108 seconds (McAdams and Arkin, 1998) thus covering
a wide range of time scale.

The above presented hierarchical control in bacteria can be influenced by
mutations and (horizontal) exchange of mobile genetic elements, processes that
further stress on the importance of time, a factor that really deserves special
attention both in microbiology and P systems.

To illustrate the hierarchical control of a real process in bacteria, we choose
the antiporter system, because the transport of ions and molecules across the
cell membrane is a major topic of modern microbiology (see, e.g., Booth, 1988;
Jung, 2001; Kelly and Thomas, 2001; Nicholls and Ferguson, 1992; Padan et al.,
2001; Saier, 1999) and a nice example of communication between microbiology
and P systems (Păun et al., 2001; Păun and Păun, 2002; Martin Vide et al.,
2002; Ardelean, 2002, etc.).

Na+/H+ antiporters are membrane proteins that exchange Na+ (or Li+) for
H+ (Padan et al., 2001) that are involved in the maintenance of a relatively
constant concentration (homeostasis) of these two ions inside the cell.

In E. coli cells which grow well in appropriate media having the pH between
6 and 8, the intracellular pH is kept in narrow limits (7.5–8.0). When growing
cells are shifted from an external pH 7.2 to 8.3, the cytoplasm pH rises imme-
diately to 8.3; however, within few minutes the cells restore the pH inside the
cell to approximately the initial value. The mechanism by which E. coli acidifies
its cytoplasm to maintain the pH value is not fully understood, but Na+/H+

antiporters play a role in this process.
Two genes encoding Na+ and Li+ specific antiporters were identified in E.

coli: nhaA and nhaB. The gene nhaA encodes a protein that is the main an-
tiporter which is required to withstand the upper limit concentration of Na+

for growth (0.9M, pH 7.0) and to tolerate the upper pH limit for growth in the
presence of Na+ (0.7M NaCl, pH 8.5). The gene nhaB encodes a protein that
acts as a housekeeper which becomes essential only in the absence of nhaA gene.

The experiments have shown that the increase in Na+ and Li+ concentra-
tions are the environmental signals which turns on the nhaA gene; alkaline pH
potentiates the effect of these ions but neither increase of osmolarity nor of ionic
strength induces this gene. Further results showed that the intracellular Na+ con-
centration is actually the direct signal for the transcription of the nhaA gene.
These results demonstrate for the first time that E. coli has a unique regulatory
network responding specifically to Na+ and Li+ (Padan et al., 2001).

In the presence of Na+, the protein nhaR (encoded by the nhaR gene) un-
dergoes a conformational change thereby inducing the transcription of the nhaA
gene and, consecutively, the synthesis of the nhaA antiporter.

The hierarchical control in the case of Na+/H+ antiporter in E. coli is il-
lustrated by the occurrence of three global regulators; one is the DNA-binding
protein named H-NS which controls the nhaR protein and two sigma factors.
One sigma factor activates promoter two (P2) and the other sigma factor ac-
tivates promoter 1 (P1). P1 is the promoter for the nhaA gene in cells in the
exponential growth phase and its transcription is 10 times higher in Na+ induced
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cells than in cells grown in the absence of Na+. P2 is the main promoter for the
nhaA gene in cells during stationary phase and is not induced by Na+.

Why P1 is the only promoter for the nhaA gene in cells which divide expo-
nentially and P2 the main promoter for cells during the stationary phase is still
an open question in microbiology.

In conclusion, we suggest that the following questions deserve a further at-
tention, believing that the advent of P systems is not only an exciting event in
the field of computer science, but also an opportunity to put new questions in
(micro)biology.

1. Is a happy marriage possible between the type of mathematics used in P sys-
tems and that used so far in the modelling of metabolic pathways (reviews:
Bailey, 1998; Varner and Ramkhrishna ,1999; Szedlacsek, 2000; Stafford and
Stephanopoulos, 2001; Wolkenhauer, 2002) or in studying genome, transcrip-
tome, proteome, and metabolome (Spengler, 2000; Kampfner, 2002; Mari-
juan, 2002; Ouzounis, 2002; Gaasterland and Oprea, 2002; Goodman, 2002;
see also Conrad, 1972)?

2. Would P systems theories be beneficial for microbiology, and biology in gen-
eral, as a new mathematical tool to study the process of life?

3. Could the development of P systems enable the scientists to elaborate new
concepts in (micro)biology and a (nondescriptive) definition of life?

4. Is the computational capacity a new aspect of the living cell? Our opinion
is that the cell computes as naturally as it performs chemical reactions; to
be more specific, these chemical reactions, as those shown to be involved
in respiration and photosynthesis, including their coefficients, could help to
find a scientific answer to this question.

5. Is the P systems paradigm the starting point for a new revolution in biology?
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Abstract. P systems are a parallel and distributed computational mo-
del, based on the membrane structure notion. Membranes define regions.
Inside regions, objects and rules are placed in order to make evolve the
P system. Evolution is achieved by transitions between two consecutive
system configurations. Therefore, a computation can be obtained as a
transitions series between consecutive configurations. Where and how P
systems can be implemented is nowadays an open problem, but imple-
mentation on digital computers could be one way to show the capabilities
of such systems. This paper presents a transition P systems implementa-
tion in Haskell, based on a theoretical framework previously developed.

1 Introduction

Transition P systems were introduced by G. Păun [5]. They are the simplest vari-
ant of P systems, however, they have the essential components of many variants
of P systems. In fact, in any variant of P systems two basic components can be
found: the static structure and the dynamic structure. The static structure con-
sists of the membrane structure and the multisets or strings associated with each
region defined by the membrane structure, while the dynamic structure consists
of the rules associated with the regions defined by the membrane structure of
the P system. These rules are responsible for the P system evolution, making
changes in the static structure, changing the multisets of strings associated with
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each region, or even changing the membrane structure. Rules can be defined in
many different ways, depending on the variant of P system considered.

One of the main goals of the implementation described here is to keep close
enough the software to the philosophy of membrane computing. We try to achieve
this, keeping in the different software modules the fundamental functionality of
the corresponding ingredients of P systems. Therefore, any item (multiset, rule,
region, membrane, etc) has its corresponding module in the developed software.
Moreover, the functionality that the module provides to the software system is
what it is expected from it. The static and dynamic structures of P systems have
also their corresponding projection on the software.

The following sections are devoted to explain the software architecture in
connection with a previous theoretical work of formalization corresponding to
transition P systems. The formalization work has been essential in order to
analyze and design the software architecture.

2 System Architecture Description

The current implementation of transition P system has been written in Haskell.
The language has been chosen in order to keep as close as possible the imple-
mentation to a previously developed theoretical work, see [4],[3],[1] and [2]. Here
we describe the software architecture of the implementation, giving a short de-
scription of the main software modules (implementing Abstract Data Types)
and their functional dependencies.

2.1 Abstract Data Type Multiset

This module, ADTMultiset, implement the multiset concept. The module pro-
vides the Haskell type Multiset defined as follows:

– data Multiset a = CMultiset [(a, Int)]

From the above data definition in Haskell, multisets have been defined as
lists of tuples with two elements: the first one is a char and the second one is
the number of copies of the first element in the multiset.
This module also provides the most commonly used function in transition P
system over multisets. The following list shows the type of such functions in
Haskell:

– Empty multiset:
isEmptyMS :: Multiset a → Bool

– Multiset Union
(.‖:++:‖.) :: Eq a => Multiset a → Multiset a → Multiset a

– Multiset Intersection
(.‖:\/:‖.) :: Eq a => Multiset a → Multiset a → Multiset a

– Multiset Difference
(.‖:\\:‖.) :: Eq a => Multiset a → Multiset a → Multiset a
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– Multiset Size
SizeMS :: Multiset a → Int

– Support Multiset
supportMS :: Multiset a → [a]

For a formal definition of these functions over Multisets we refer to [4]. The
module implements a set of auxiliary functions that complements the Abstract
Data Type, and the input/output functions for Multiset.

2.2 Abstract Data Type Relationship

This module, ADTRelationship, implements in Haskell a general binary relation-
ship defined over rules. It is used for implementing the priority relation, which is
used by the evolution rule module. The module provides all the needed function-
ality for handling any partial order relation defined over a given arbitrary finite
set, including the finding of the maximal and minimal set over the relation, and
its transitive closure.

The module defines the Haskell data type Relationship as follows:

– data Relationship a b = CRelationship [(a, b)]

In this case, the type Relationship has been defined as a list of tuples with
two elements. The relation has been considered as a subset of a general Cartesian
product of two arbitrary sets.

The Haskell type of the most relevant functions from the ADTRelationship
module are the following:

– belonging: (..|:=>.|..)
(..|:=>.|..) :: (Eq a, Eq b) => Relationship a b → (a, b) → Bool

– imageR
imageR :: (Eq a, Eq b) => Relationship a b → [b]

– maximalR
maximalR :: Eq a => Relationship a a → [a] → [a]

– minimalR
minimalR :: Eq a => Relationship a a → [a] → [a]

– transitiveClosureR
transitiveClosureR :: Eq a => Relationship a a → Relationship a a

2.3 Abstract Data Type Multirelationship

During the software development, some very interesting similarities between Re-
lationship and the consequent of one evolution rule were found. These similarities
were responsible for the inclusion of the ADTMultirelationship module into the
software. It can be said that a relationship is to a set what a multirelationship
is to a multiset. If one looks carefully to ADTRelationship and ADTMultirela-
tionship modules, one can see that all the implemented functions on the first
one can be implemented on the second one.
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This module defines the Haskell data type Multirelationship as follows:

– data Multirelationship a b = CMultirelationship [((a, b), Int)]

The module imports two of the modules defined above:

– import ADTMultiset
– import ADTRelationship

These import clauses determine the functional dependency of the module on
the previously defined modules.

The Haskell type of the most relevant functions defined in this module ac-
cording to the software implementation are:

– Support
supportMR :: (Eq a, Eq b) => Multirelationship a b → Relationship a b

– Origin From
originFromMR :: (Eq a, Eq b) => b → Multirelationship a b → Multiset a

– Multirelationship Union
(..‖:++:‖..) :: (Eq a, Eq b) => Multirelationship a b →
Multirelationship a b → Multirelationship a b

2.4 Abstract Data Type Rule

This module implements evolution rules in transition P systems. The function-
ality of the module is based on a previous theoretical work, see [4], [3], [1] and
[2].

The ADTRule module defines the data type Rule as follow:

– data Rule = CRule Int (Multiset Char) (Multirelationship Char Int) Bool

A rule is a tuple with four elements; the first one is a label for the rule, the
second one is the antecedent, the third one is the consequent and the fourth one
is the dissolution capability of the rule.

The module import the following previously defined modules:

– import ADTRelationship
– import ADTMultiset
– import ADTMultirelationship

These import clauses determine the functional dependency of the module on
the previously defined modules ADTRelationship, ADTMultiset and ADTMul-
tirelationship.

The most relevant functions defined in this module are the following:

– LabelRule
LabelRule :: Rule → Int

– inputRule
inputRule :: Rule → Multiset Char
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– outputRule
outputRule :: Rule → Multirelationship Char Int

– dissolvesRule
dissolvesRule :: Rule → Bool

– outputToRule
outputToRule :: Int → Rule → Multiset Char

– isUssefulRule
isUssefulRule :: [Int] → Rule → Bool

– isApplicableRule
isApplicableRule :: Multiset Char → Rule → Bool

– isMinorRuleIn
isMinorRuleIn :: Relationship Int Int → (Rule, Rule) → Bool

– addRule
addRule :: Rule → Rule → Rule

2.5 Abstract Data Type Region

From the computational point of view, the regions are considered as bags where
multisets, rules, and a priority relation among rules are placed.

The Haskell module ADTRegion defines the data type Region as follows:

– data Region = CRegion (Multiset Char) [Rule] (Relationship Int Int)

Hence, a region is defined as a tuple with three elements, the first one is an
object multiset, the second one is a set of evolution rules and the third one is a
priority relation defined among rules. The priority relation could be the empty
relation.

The functional dependencies of this module with others ones are expressed
by the following import clauses:

– import ADTMultiset
– import ADTRelationship
– import ADTRule

The Haskell data type of most important functions of the module are:

– contentRegion :: Region → Multiset Char
– rulesRegion :: Region → [Rule]
– prioritiesRegion :: Region → Relationship Int Int
– reactionRegion :: StdGen → [Int] → Region → Rule

As it can be seen from the list of functions defined above, the module provides
functions in order to obtain all the elements of the tuple: object multiset, set of
rules and priority relation. Region module is responsible for computing one rule
able to make evolve the region in one step. This functionality is implemented in
the reaction function.

The reaction function computes in a random way a complete linear combi-
nation of evolution rules. This means that no other applicable evolution rule
can be included in the linear combination. For more information about complete
multisets of evolution rules and their corresponding linear combinations we refer
to [1].
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2.6 Abstract Data Types Innermembrane and Externmembrane

These two modules, are quite similar. In fact, they have the same number of
functions and the same functionality. However, there is one important differ-
ence between them. The external membrane cannot be dissolved, while inner
membranes can be dissolved. This fact is very important when one wants to im-
plement evolution in transition P systems. Inner membranes can evolve in two
ways: dissolving or not dissolving the membrane; the external membrane evolves
in one way, the dissolution is not allowed. This is the reason why two differ-
ent modules have been implemented in the software. For a more comprehensive
explanation of evolution in transition P systems, we refer to [1].

The Haskell modules ADTInnermembrane and ADTExternalmembrane im-
plement the data type Innermembrane and Externalmembrane respectively. The
data type definitions in both modules are:

– data Innermembrane = CInnermembrane Int Region [Innermemb.]
– data Externalmembrane = CExternalmembrane Int Region [Innermemb.]

The data type definitions are very close because there is only one external
membrane in P systems, the “skin”, and all the other membranes are inner to
it.

Membranes are defined as tuples with three elements: the first one is the
label associated to the membrane, the second one is the region associated to the
membrane (the bag) and the third one is the set of inner membranes. This set
of inner membranes can be the empty set and then, the membrane is said to be
elementary.

The functional dependencies of these modules are defined by the following
import clauses:

– ADTExternalmembrane
• import ADTMultiset
• import ADTRelationship
• import ADTInnermembrane
• import DATRegion
• import ADTRule

– ADTInnermembrane
• import ADTMultiset
• import ADTRelationship
• import DATRegion
• import ADTRule

The functionality of these modules are the following:

– ADTExternalmembrane
• labelEM :: Externalmembrane → Int
• regionEM :: Externalmembrane → Region
• innerMembranesEM :: Externalmembrane → [Innermembrane]
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• contetEM :: Externalmembrane → Multiset Char
• rulesEM :: Externalmembrane → [Rule]
• prioritiesEM :: Externalmembrane → Relationship Int Int
• innerLabelsEM :: Externalmembrane → [Int]
• reactionEM :: StdGen → Externalmembrane → Rule
• evolutionEM :: StdGen → Multiset Char → Externalmembrane →

([Innermembrane], Multiset Char)
– ADTInnermembrane

• labelIM :: Innermembrane → Int
• regionIM :: Innermembrane → Region
• innerMembranesIM :: Innermembrane → [Innermembrane]
• contetIM :: Innermembrane → Multiset Char
• rulesIM :: Innermembrane → [Rule]
• prioritiesIM :: Innermembrane → Relationship Int Int
• innerLabelsIM :: Innermembrane → [Int]
• reactionIM :: StdGen → Innermembrane → Rule
• evolutionIM :: StdGen → Multiset Char → Innermembrane →

([Innermembrane], Multiset Char)

Probably, the most important functions in both modules are those related to
evolution in membranes, and hence in P systems evolution. Functions involved
in evolution are named in two ways: reaction and evolution.

A reaction function obtains from the associated region one evolution rule
able to make evolve the membrane in one step. Once the complete linear com-
bination of evolution rules has been obtained, the evolution is produced inside
the membrane.

2.7 Abstract Data Type PSystem

This Haskell module implements a transition P system. Basically, it provides
the abstract data type PSystem as one output object multiset and one external
membrane. The output object multiset will be the external output of the P
system, if there is any.

The module defines the data type Psystem as follows:

– data PSystem = CPSystem (Multiset Char) Externalmembrane

The functional dependencies are given by the following import clauses:

– import ADTMultiset
– import ADTExternalmembrane

The most important function on this module is:

– evolutionPS :: StdGen → PSystem → PSystem
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This function make evolve the transition P system from one initial configura-
tion to the next one applying evolution to the external membrane. The evolution
is obtained by a random generation of one complete multiset of evolution rules.
Moreover, evolution only gives one evolution step. Hence, it will be necessary to
apply several times the function in order to get a successful computation.

Figure 1 shows the functional dependencies among the main software modules
described until now.

Fig. 1. Functional Dependencies Among Main Software Modules

2.8 The Main Module

This Haskell module implements the external function that makes possible to
launch the program execution. The module imports the following modules:

– import DATPSystem
– import DATMultiset
– import DATExternalMembrane

The functionality of this module is to make evolve several times the transition
P system in order to get a successful computation. The input to this function
is a text file on which the initial configuration of the P system is described (see
Section 3.1 of this paper). The output produced by the program is a new text
file in which the new configuration is stored. This output file must be used as
a new input to the program in order to get one more evolution step of the P
system.
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3 An Example of Use

This section will describe an example of use of the transition P systems software
simulator. In order to check the code execution of our software we have taken
from [5] the first example of Section 6. It will be recalled below for illustrating
the input file definition for our program.

Consider the P system of degree 4

Π = (V, μ, ω1, ..., ω4, (R1, ρ1), ..., (R4, ρ4), 4)
V = {a, b, c, d, e}
μ = [1[2[3]3[4]4]2]1
ω1 = λ,R1 = ∅, ρ1 = ∅
ω2 = λ,R2 = {r1 : a → b, r2 : b → b(c, in4), r3 : d2 → de, r4 : d → eδ},

ρ2 = {r4 < r3}
ω3 = {de}, R3 = {r1 : d → d2, r2 : e → ea, r3 : e → aδ}, ρ3 = ∅
ω4 = λ,R4 = ∅, ρ4 = ∅ (1)

As shown in [5], the set of numbers generated by Π is:

N(Π) = {m2 | m ≥ 1}. (2)

First of all, the initial configuration (1) must be translated to an input file
for the software simulator. The explanation of how this translation is done is
given in the next subsection.

3.1 Structure of the Input File

This section shows the input file containing the initial configuration of the P
system Π described above. Moreover, it explains the way to make the translation
from the formal definition of the P system to an input file. The corresponding
input file for Π will be given below.

The first line of the input file is the object multiset that the P system outputs
after each evolution step. The second line is just the beginning of the ”skin”
membrane and, hence, the beginning of the membrane structure of the P system.
All others membranes are included in it, as it was described in the Haskell
modules ADTExternalmembrane and ADTInnermembrane.

The membrane structure is defined as usual in P systems. Between two square
brackets [n. . . ]n, we will place all the membrane elements in the following order:

1. objects multiset
2. set of evolution rules
3. priority relation among rules
4. set of membranes inner to the membrane we are defining with all theirs

elements (e.g., 1, 2, 3, 4).

The following subsections will describe the different elements of the input
file.
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Example of an Input File. This subsection shows the input file for the P
system Π previously considered. The file is shown without any comments in
order to appreciate the whole structure of it.

{}
[ 1

{}
{}
{}
[ 2

{}
{r 1 : {(’a’, 1)} ---> {((’b’, 0), 1)},
r 2 : {(’b’, 1)} ---> {((’b’, 0), 1), ((’c’, 4), 1)},
r 3 : {(’d’, 2)} ---> {((’d’, 0), 1), ((’e’, 0), 1)},
r 4 : {(’d’, 1)} --<> {((’e’, 0), 1)}}
{(4, 3)}
[ 3

{(’e’, 1), (’a’, 1), (’d’, 2)}
{r 1 : {(’d’, 1)} ---> {((’d’, 0), 2)},
r 2 : {(’e’, 1)} ---> {((’e’, 0), 1), ((’a’, 0), 1)},
r 3 : {(’e’, 1)} --<> {((’a’, 0), 1)}}
{}

] 3
[ 4

{}
{}
{}

] 4
] 2

] 1

Now, some comments have been added to the file, marked with (* *), to
explain some details.

{} (*Output multiset from the P system*)
[ 1 (*Beginning of the
"skin" membrane*)

{} (*Multiset on the ‘‘skin" membrane*)
{} (*Set of rules associated to the ‘‘skin" membrane*)
{} (*Priority relationship among rules on

the ‘‘skin" membrane*)
[ 2 (*Beginning of the inner membrane 2*)

{} (*Multiset of the membrane 2*)
{(*Set of rules associated to membrane 2*)
r 1 : {(’a’, 1)} ---> {((’b’, 0), 1)},
r 2 : {(’b’, 1)} ---> {((’b’, 0), 1), ((’c’, 4), 1)},
r 3 : {(’d’, 2)} ---> {((’d’, 0), 1), ((’e’, 0), 1)},
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(*The rule r 4 dissolves the membrane if it is applied*)
r 4 : {(’d’, 1)} --<> {((’e’, 0), 1)}}
(*Priority relationship among rules on the membrane 2*)
{(4, 3)}
[ 3 (*Beginning of the inner membrane 3*)

(*Multiset of the membrane 3*)
{(’e’, 1), (’a’, 1), (’d’, 2)}
{(*Set of rules associated to the inner membrane 3*)
r 1 : {(’d’, 1)} ---> {((’d’, 0), 2)},
r 2 : {(’e’, 1)} ---> {((’e’, 0), 1), ((’a’, 0), 1)},
(*The rule r 3 dissolves the membrane if it is applied*)
r 3 : {(’e’, 1)} --<> {((’a’, 0), 1)}}
(*Priority relationship among rules on the membrane 3*)
{}

] 3 (*End of the inner membrane 3*)
[ 4 (*Beginning of the inner membrane 4*)

{} (Multiset of the inner membrane 4*)
{} (*Set of rules associated to the membrane 4*)
(*Priority relationship among rules on the membrane 4*)
{}

] 4 (*End of the inner membrane 4*)
] 2 (*End of the inner membrane 2*)

] 1 (*End of the skin membrane. End of P system *)

How it can be appreciated from the input file structure, translation from the
classical formal definition of a transition P system to the file is not very difficult.
We only need to rearrange the data into the file in order to have the input to
the program.

Now, we will explain the way to define the different components of membranes
in the input file.

Multiset of Objects. A multiset of objects is described in the input file as a
set of tuples with two elements, the first one is an element from the alphabet
and the second one is the multiplicity of the object in the multiset. For instance,
the object multiset a2bd is described on the input file as the set:

{(’a’, 2), (’b’, 1), (’d’,1)}

Rules Description. In transition P systems, the rules have three components:
the antecedent, the consequent and the dissolving capability.

Now we will describe step by step all these elements in order to correctly
define rules in the input file.

First of all, in order to implement the priority relation among rules, all the
rules of the membrane must be labelled. The label starts with a character fol-
lowed by a blank, a different number for each rule in the membrane, a blank and
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the character ’:’. In fact, we only used the number associated to each rule for
defining the priority relation.

The antecedent is a multiset of objects as described above.
The consequent has been considered here as a multirelationship, therefore, it

has a special description in the input file. Basically, the consequent is described
as a tuple with two elements, the first one is a tuple containing the object and
the targeting address, where the rule is sending the object; the second one is the
number of copies of the object that the rule is sending to the target membrane.

Targeting is here described by numbers:

– -1 the copies of the object are sent outside of the membrane.
– 0 the copies of the object are preserved in the membrane
– n the copies of the object are sent to the membrane with label n.

Finally, the dissolving capability of the rule is included in the symbol repre-
senting the arrow of the rule.

The following example will clarify the way of defining rules in the input file.
Consider the following two rules:

r1 : b → b(c, in4) (3)

r2 : d → eδ (4)

The rule (3) will not dissolve the membrane, while the rule (4) will do. Their
representation in the input file are the following:

r 1 : {(’b’, 1)} ---> {((’b’, 0), 1), ((’c’, 4), 1)}
r 2 : {(’d’, 1)} --<> {((’e’, 0), 1)}

Note the symbol representing the arrow in rule r 2. This symbol represents
the dissolution capability that the rule has.

We must also note that rules are included in regions arranged in sets. There-
fore, if the membrane contains the two rules described above, the set of rules
are included between { } separated by commas, hence, the representation in the
input file will be:

{r 1 : {(’b’, 1)} ---> {((’b’, 0), 1), ((’c’, 4), 1)},
r 2 : {(’d’, 1)} --<> {((’e’, 0), 1)}}

Priority Relation Description. The last element included in a membrane,
before the set of its inner membranes, is the priority relation among rules. This
relation is described in the input file as a set of tuples with two natural numbers.
Each number in the tuple is the number associated to the label of a rule from the
membrane. The first element of the tuple has a lower priority than the second
one.

The Haskell module ADTRelationship calculates the transitive closure for the
set described in the input file. Therefore, we only need to express the priorities
among rules as it is usual in transition P systems.
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If we consider now the following priority relation among rules (3) and (4)
{r 1 > r 2}, the input file will contain the set:

{(2, 1)}

Inner Membranes Description. Membranes inner to a given membrane must
be placed inside it. The definition of inner membranes follow the same principles
explained until now.

3.2 Running the Program

This section is related to software execution. The software has been written in
Haskell, a functional language, and the chosen interpreter has been Hugs98 for
Microsoft Windows. The interpreter for other operating systems can be found
at: http://cvs.haskell.org/Hugs/pages/downloading.htm. The source code
can also be downloaded from http://psystems.disco.unimib.it, the P sys-
tems web page.

Once we have installed the Hugs98 interpreter, we must follow the steps:

1. Start the Hugs98 interpreter.
2. Open the “Principal” Haskell module
3. Type ”main” + <return> (this will launch the program).
4. The program will ask for a file (containing the transition P system). Type

the name of input file and return.
5. Then it will ask for an output file; type the appropriate name for the output.
6. The program will make evolve only one evolution step and stops. One can

make evolve again the transition P system another evolution step going to
the step #3 and typing the output file of the #5 as the new input file for
the next iteration.

4 Conclusions

This paper shows how a software simulation of transition P systems can be
implemented with some constrains, mainly those due to their inherent parallelism
and non-determinism. The presented implementation is very close to the general
theory of transition P systems, and it does not present many difficulties in order
to translate transition P systems to an input file in order to start the software
execution.

The P system can be easily modified in the input file. The software gives an
additional facility to the user in order to change the static and dynamic structure
of the P system and drive the execution of the computational device in the right
way.

We believe that simulations of P systems on digital computers is a good
alternative to the in vitro implementation as long as we have no other support
(for instance, special hardware devices for executing P systems) where P systems
can be executed.
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Abstract. The paper is an attempt to use P systems in dealing with
a cryptographic issue, that of message authentication. Two algorithms
are proposed, with and without confirmation from the sender, based
on P systems with active membranes. We are not concerned with the
practical usefulness of these algorithms, but with proving the usefulness
of the membrane computing framework in addressing the authentication
question.

1 Prerequisites

For the basic notions, notations, and results about P systems we refer to [5], [7],
[9]. In this paper we use a variant of P systems with active membranes similar
to the one defined and used in [2] and [3].

For the elements of cryptography, authentication, and electronic signature
used here we refer to [6], [11], and [12], and for formal language elements we
refer to [10].

A P system with active membranes is a construct Π = (V, T,H, μ,w0, w1, . . . ,
wn, R), where:

1. n ≥ 1;
2. V is an alphabet (the total alphabet of the system); the strings from V ∗ are

called objects;
3. T ⊆ V (the terminal alphabet);
4. H is a finite set of labels for membranes;
5. μ is a membrane structure, consisting of m membranes, labeled (not nec-

essarily in a one-to-one manner) with elements of H; there is a (unique)
membrane labelled with 0, called skin; all the other membranes are inside of
the skin; the membranes can be neutral or polarized (positive or negative);

6. w0, w1, . . . , wn are strings over V , placed initially in the n + 1 regions of μ;
7. R is a finite set of development rules of the following types:

(a) [ix → y]αi , x ∈ V +, y ∈ V ∗, α ∈ {0,+,−}.
This is an internal rule, having no effect outside the membrane i or on
its polarity.

(b) [ix]αi → y[i ]βi , x ∈ V +, y ∈ V ∗, α, β ∈ {0,+,−}.
A string can go out of a membrane, possibly transformed into another
string.

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 33–42, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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(c) x[i]αi → [iy]
β
i , x ∈ V +, y ∈ V ∗, α, β ∈ {0,+,−}.

A string can go into a membrane, possibly transformed into another
string.

(d) [ix]αi → y, x ∈ V +, y ∈ V ∗, α ∈ {0,+,−}, i �= 0.
The dissolution of a membrane. The skin is never dissolved.

(e) [ix]αi → [iy]
β
i [iz]

β
i , x ∈ V +, y, z ∈ V ∗, α, β ∈ {0,+,−}, i �= 0.

The division of membranes: a membrane can be duplicated in two mem-
branes with the same label. The skin is never divided.

(f) [ix]+i [jy]αj → [ix[jw]αj ]+i , y ∈ V +, x, w ∈ V ∗, α ∈ {0,−}.
The subordonation, which models the biological operation of endocytosis.
The string x (if appears) controls this operation and plays the role of a
catalyst.

These rules are applied according to the following principles ([8]):

– All the operations are applied in parallel to all nonempty strings and all
membranes to which they can be applied. At one step, a string or a membrane
can be used by only one operation, non-deterministically chosen (if there is
no priority relation used), but any string or membrane which can evolve by
an operation of any form, should evolve.

– If a membrane is dissolved, then all the strings and membranes situated in
its region are left free in the region immediately above it.

– All the strings and membranes not involved in the transition do not evolve,
and they are passed unchanged to the next step.

Note that the skin can use only rules of types (a) and (b). The strings which
are sent outside the skin form the output of the P system.

2 Authentication of Messages without Confirmation

Authentication is a widely used term in the process of transmission of messages,
being one of the most important information security objectives. Generally, an
identity authentication technique assures one communication partner (usually
called Alice) of the identity of a second partner (called Bob). This authentication
can be mutual or unilateral (if Bob whishes or not to be sure that Alice was the
right receiver of the message).

The ’bad’ person is often called Oscar; Oscar intercepts the messages, tries
to read them, tries to modify them, and tries to convince Alice that Bob is the
sender of these modified messages.

The two authentication protocols constructed here are based on the idea of
Merkle ([6]) to use a tree structure of information.

Thus, we shall consider the membrane structure Π as a labeled tree, having
the property that there are two strings wi, wj situated in two distinct membranes,
so that the message m is a substring of wi and the sender authentication data
ID forms a substring of wj .

Obviously, m, ID ∈ T+.
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In this context, a P system with active membranes as defined above is called
a comunication membrane system, in short, a CMS.

Both specified information (message and identification data) will be consid-
ered here as sequences whose content will be ignored; so, they can be considered
as objects.

The idea is that both the message and the identification data can be read
when they are outside the skin, and the problem is to find them in the “cell” and
to bring them out without changing the system in an “illegal” (and noticeable)
manner.
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Assume that the membrane i (here the label i concerns the position, not
the membrane label, because the system can contain several membranes labeled
with i) contains the message mBob (written as a string of characters), and the
membrane j contains IDBob (a string of characters identifying Bob: name, birth
data, social security number etc).

Moreover, IDBob contains an address of Bob.
In the first algorithm (authentication of the message mBob without confirma-

tion), we assume that Alice and Bob have two “identification enzymes” αAlice

and respectively αBob; these objects are produced by these two partners and
transmitted before exchanging the messages.

Example 1. Let us consider that Alice is a bank, and Bob is a beneficiary (user).
When Bob opens an account at the bank, he offers for its own identification
αBob (this string can have nothing in common with Bob’s name, address etc);
the bank can also produce such an object for Bob (this is a problem of trustness
between these two partners).

Also, the bank gives Bob its own “key” αAlice (this can be common for several
users).

Let us suppose that Alice receives a CMS Π and wants to read the message
mBob (signed by Bob). She will follow the following protocol:

1. Alice introduces in Π the object αAlice; it will generate the following actions:
(a) Finds a path to the node j;
(b) Takes outside the skin the sequence IDBob (possibly a copy) contained

by this node;
(c) Transforms the CMS Π into a P system Π ′ (possibly a CMS, too).
In this way Alice finds whether Π was previously attacked by Oscar.
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2. Alice identifies Bob (using IDBob); then she selects and introduces the object
αBob in Π ′. This object:
(a) Finds the path to the node i (if αBob is the correct “enzyme”);
(b) Takes outside the skin the message mBob (possibly a copy);
(c) Modifies the P system Π ′;

As a variant, after this protocol is finished, the message mBob can be
destroyed in Π ′.

Example 2. Let us consider the CMS defined by the tree-structure:

3 (x3, IDBob)

1 (x1)

2 (x2)

0 (x0)

1 (x1)

2 (x2,mBob)

�
�
��

�
�
��

�

�

�

Here:

– x0, x2, x3 ∈ V \T are “jailer” objects, which start the destroying of the CMS
Π if they detect the illegal intrusion of any object;

– mBob ∈ V + is a sequence which represents the message sent by Bob;
– IDBob ∈ V + is a sequence which identifies the sender.
– For intermediate transformations also some objects αi, βi ∈ V \T 0 ≤ i ≤ 3,

are used.

Thus, Bob sends to Alice the CMS Π with the initial configuration

[0[1x1[2x2,mBob]02]
0
1[2x2[1x1[3x3, IDBob]03]

0
1]

0
2]

0
0.

The development rules of Π are:

1. (a) αAlice[0]00 → [0α0]−0 ,
(b) αBob[0]00 → [0β0]+0
(the rules for starting the protocols of finding the sender IDBob and respec-
tively the mesage mBob).

2. (a) αi[j ]0j → [jαj ]−j , where (i, j) ∈ {(0, 2), (1, 3), (2, 1)} (the legal path to the
sender identification data);

(b) βi[j ]xj → [jβj ]+j , where (i, j) ∈ {(0, 2), (1, 2), (2, 1)}, x ∈ {0,+} (the legal
path to the message mBob).

3. (a) [iαixi → αi]−i , 0 ≤ i ≤ 3,
(b) [iβixi → βi]+i , 0 ≤ i ≤ 2;
(the “jailer” objects confirm the receiving of correct enzymes);

4. (a) [iαxi → xi]−i , for all α �= αi,
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(b) [iαxi → xi]+i , for all α �= βi

(any illegal object is destroyed by the “jailers”). These rules have top priority
in the P system.

5. (a) [iIDBob]−i → IDBob[i]0i , 0 ≤ i ≤ 3 (the negative polarity creates a path
for the sequence IDBob in order to go out from the CMS Π).

(b) [imBob]+i → mBob[i]0i , 0 ≤ i ≤ 3 (the positive polarity creates a path for
the message mBob in order to go out from the system Π ′)

(after these operations are over, the polarity becomes neutral).
6. [3α3]03 → α1, [1α1]01 → α2, [2α2]02 → [2]+2 , [2]+2 [1]01 → [2[1]01]

+
2 (develop-

ment rules which modify the CMS Π, a new P system Π ′ being obtained).

Using development rules (1a) − (4a), the CMS Π reaches the configuration

[0[1x1[2x2,mBob]02]
0
1[2[1[3α3, IDBob]−3 ]−1 ]−2 ]−0

With rules (5a) the configuration obtained is

IDBob[0[1x1[2x2,mBob]02]
0
1[2[1[3α3]03]

0
1]

0
2]

0
0.

The rules (6) transform this configuration in

IDBob[0[2[1x1[2x2,mBob]02]
0
1]

+
2 ]00,

represented by the following tree (the polarities of the nodes and the sequence
IDBob obtained outside the skin are ignored):

2 (x2,mBob)

1 (x1)

2

0

�

�

�

If Alice introduces the object αBob in this configuration, the development
rules (1b) − (5b) lead to the final result

mBob[0[2[1[2]02]
0
1]

0
2]

0
0.

A remark: if Alice (or Oscar) applies again αAlice to the P system Π ′, then
the behaviour fails on the membrane structure [0[2[1α1[2x2,mBob]02]

−
1 ]−2 ]−0 .

In the same manner, if the object αBob is directly applied in the CMS Π,
the failing appears in the membrane structure

[0[1x1[2x2,mBob]02]
0
1[2[1β1[3x3, IDBob]03]

+
1 ]+2 ]+0 .

Remark 1.
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1. The development rules (1), (3), (4), (5) from Example 2 can be considered
general rules, used by any such a CMS. The particularity of a CMS is
represented by the development rules (2) and (6), which establish the paths
in the tree and respectively modify the CMS Π in Π ′.

2. The manner of defining the development rules (4) in Example 2 represents
a “peaceful” variant of using a CMS: the system is waiting until the legal
objects αAlice and respectively αBob are introduced.
If these rules are replaced by

(4′)
(a) [iαxi → β]−i for all α �= αi,
(b) [iαxi → β]+i for all α �= βi,

and β ∈ V \ T is an object which destroys the whole content of Π or Π ′,
we will obtain a variant where any illegal attempt leads to the erasing of all
informations in the CMS Π (respectively Π ′).
Actually, a hybrid variant is recommended, where the rules (4a) are preserved
as in Example 2, but the development rules (4b) are replaced by (4′b).

If the cryptanalist Oscar intercepts the CMS Π:

1. Without any additional information, the access to the message mBob is im-
possible for him.

2. If he knows αAlice, then he can find IDBob. But any attempt to find the
message mBob without using αBob can lead to the destruction of this message
(when the object β and its development rules are defined in the system Π ′).

3. If Oscar knows αBob, applying it to Π has no effect.
Of course, if Oscar has both identification enzymes, his attack will be suc-
cessful.

As a supplementary precaution, IDBob can generate in the skin – before it
goes out – another object γ ∈ V \ T . This object will ensure a protection of the
new P system Π ′, by eliminating at the first step any object different from αBob,
which is trying to find a path for the message mBob.

3 Authentication of Messages with Confirmation

In the protocol constructed above, if Oscar knows αAlice, then he has a possible
succesfull attack of the following type:

1. He applies αAlice in the CMS Π and finds IDBob.
2. Then, he constructs a new CMS Π1 with IDBob and his own message

mOscar; this CMS is submitted to Alice.

In this way, Alice will accept the message mOscar as being correct and she believes
that Bob is the sender.

To avoid this attack, another message authentication protocol, with confir-
mation, will be proposed. This protocol extends the variant we presented above,
with a password submitted by Bob when Alice asks him to certify.

Let us suppose that Alice receives a CMS Π and wishes to find the message
mBob, authenticated by Bob. She follows the next protocol:
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1. Alice introduces αAlice in the CMS Π and obtains IDBob; in the same time
Π is transformed in another P system Π ′.

2. Alice finds the sender and submits an authentication request to Bob, using
his address contained in IDBob.

3. Bob submits the password γ;
4. Alice introduces the object αBobγ in Π ′ and obtains the message mBob.

In fact, γ acts as a supplementary checking: it allows or forbids the message
mBob to go out of the skin. Usually, the introduction of αBob only has the same
effect as the introduction of an illegal object: the loss of the message.

Example 3. Let us consider a CMS having a similar membrane structure as that
from Example 2, where a new membrane is added in the skin:

3 (x3, IDBob)

1 (x1)

2 (x2)

0 (x0)

1 (x1)

2 (x2,mBob) 2 (ygood)

3

1 (ybad)
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Here ygood, ybad ∈ V \T are new objects. The development rules are the same
as in Example 2, where only the rule (5b) is restricted to 1 ≤ i ≤ 3.

Initially, all polarities are neutral.
At the request of Alice, Bob can use one of two passwords: γgood, which

confirms the message and allows its going out of the skin, and γbad, which blocks
the message going out of the skin (this object can be used by Bob in various
situations: he is not sure of the identity of Alice, he changes his mind and wants
to stop the transmission of the message mBob, etc).

Besides the rules (1) − (6) defined above (with (5b) restricted to 1 ≤ i ≤ 3)
the following development rules are added:

7. (a) γgood[0]x0 → [0γgood]x0 , γgood[i]0i → [iγgood]−i , i = 2, 3;
(b) γbad[0]x0 → [0γbad]x0 , γbad[i]0i → [iγbad]−i , i = 1, 3;
(the passwords γs reach the membrans where there are the objects ys s ∈
{good, bad}; the paths are marked with a negative polarity.

8. [iys]−i → ys, s ∈ {good, bad}, 1 ≤ i ≤ 3;
(the object y is transported in the skin membrane, that labelled by 0);

9. (a) [0ygood]+0 → [0]00,
(b) ybad[2]+2 → [2]−2
(ygood neutralises the skin polarity; ybad changes the polarity of a membrane
from the path of the message, by blocking its output).

10. [0mBob]00 → mBob[0]00
(the message can go out only if the skin is neutrally polarized).
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In this example we assume that all actions are syncronized: the time of entering
membranes is the same for all objects and all membranes. Thus, the membrane
labelled by 2 can be blocked before the message mBob reaches this node.

Let us see how this CMS works: Alice receives the following configuration:

[0[1x1[2x2,mBob]02]
0
1[2x2[1x1[3x3, IDBob]03]

0
1]

0
2[3[2ygood]02[1ybad]01]

0
3]

0
0.

After αAlice is introduced in the skin, by transformations similar to those in
Example 2, the system becomes

IDBob[0[2[1x1[2x2,mBob]02]
0
1]

+
2 [3[2ygood]02[1ybad]01]

0
3]

0
0,

represented by the tree

2 (x2,mBob)

1 (x1)

2

2 (ygood) 1 (ybad)

3

0
�����
�����

�����
������

�

At this moment Alice finds that the CMS was submitted by Bob. From
IDBob she extracts the coordinates of Bob and she requires him to confirm the
message. Two situations arise now:

1. Bob agrees and submits the password γgood. Alice introduces in the skin
of the system the objects αBob and γgood; the membrane structure passes
through the following configurations:
αBobγgood[0[2[1x1[2x2,mBob]02]

0
1]

+
2 [3[2ygood]02[1ybad]01]

0
3]

0
0,

[0β0γgood[2[1x1[2x2,mBob]02]
0
1]

+
2 [3[2ygood]02[1ybad]01]

0
3]

+
0 ,

[0[2β2[1x1[2x2,mBob]02]
0
1]

+
2 [3γgood[2ygood]02[1ybad]01]

−
3 ]+0 ,

[0[2[1β1[2x2,mBob]02]
+
1 ]+2 [3[2γgoodygood]−2 [1ybad]01]

−
3 ]+0 ,

[0[2[1[2β2,mBob]+2 ]+1 ]+2 [3γgoodygood[1ybad]01]
−
3 ]+0 ,

[0[2[1mBob[2β2]02]
+
1 ]+2 γgoodygood[1ybad]01]

+
0 ,

[0[2mBob[1[2β2]02]
0
1]

+
2 γgood[1ybad]01]

0
0,

[0mBob[2[1[2β2]02]
0
1]

0
2γgood[1ybad]01]

0
0,

mBob[0[2[1[2β2]02]
0
1]

0
2γgood[1ybad]01]

0
0,

and the message mBob becomes accessible to Alice.
2. Bob submits the password γbad. In this case, the steps are the following:

αBobγbad[0[2[1x1[2x2,mBob]02]
0
1]

+
2 [3[2ygood]02[1ybad]01]

0
3]

0
0,

[0β0γbad[2[1x1[2x2,mBob]02]
0
1]

+
2 [3[2ygood]02[1ybad]01]

0
3]

+
0 ,

[0[2β0[1x1[2x2,mBob]02]
0
1]

+
2 [3γbad[2ygood]02[1ybad]01]

−
3 ]+0 ,

[0[2[1β1[2x2,mBob]02]
+
1 ]+2 [3[2ygood]02[1γbadybad]−1 ]−3 ]+0 ,

[0[2[1[2β2,mBob]+2 ]+1 ]+2 [3[2ygood]02γbadybad]−3 ]+0 ,
[0[2[1mBob[2β2]02]

+
1 ]+2 [2ygood]02γbadybad]+0 ,

[0[2mBob[1[2β2]02]
0
1]
−
2 [2ygood]02γbad]+0 ,

and the process fails, because mBob cannot go out through membrane 2
which was negatively polarized by ybad (using the rule (9b)).
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We can remark that if in the second case Alice applies only αBob (without
the password γ), then the message mBob cannot pass through the skin, because
the skin is positively polarized by the rule (1b), and the neutralisation of this
membrane can be performed only by ygood.

4 Final Remarks

This paper presents two variants of message authentication protocols, using the
framework of P systems. The approach is mainly intended to prove the possi-
ble usefulness of P systems in addressing this cryptographic issue, to test the
versatility of membrane computing area/language, rather than being a practical
proposal. The constructions are very easy, while their security (not examined
here from a computational complexity point of view) depends on the unicity of
objects which can interact, and on the blocking possibility of the P systems in
case of wrong action.

Among other features which can be considered, we mention:

1. At the second or the third attempt to activate the CMS with wrong “en-
zymes”, the system is self-destroyed. Such a construction is easy to be car-
ried.

2. If the system failed, then the application of the illegal object transforms
the initial CMS in another one, Π ′′; for this, another pair of identification
enzymes (α′′Alice, α

′′
Bob) are necessary.

3. In the same CMS structure several messages and several identifications data
ID can be introduced; the basic idea of CMSs will not be essentially changed.

4. The CMS structure can be adapted for only one use (for example, in the
case of bills).

5. A time interval of validity can be assigned to each CMS; after the expiration
of this time, the object αAlice will be not recognised as legal by the CMS.

The authentication type (and thus the signature type) we present here is
more similar to olograf signatures than to digital signatures. Here the CMS Π
does not depend on the message mBob, but only on the structure CMS chosen
by Bob.

We intend to continue the study of these ideas by looking for algorithms of
signatures and message authentication where the complexity will be also consid-
ered. In this moment this goal seems to be quite difficult, because we know that
NP-complete problems are easy to be solved in the P systems area (e.g., when
membrane division is available).
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Abstract. A class of P systems, called EP systems, with string objects
processed by evolution rules distributed alongside the transitions of an
Eilenberg machine, is introduced. A parallel variant of EP systems, called
EPP systems, is also defined and the power of both EP and EPP systems
is investigated in relationship with three parameters: number of mem-
branes, states and set of distributed rules. It is shown that EPP systems
represent a promising framework for solving NP-complete problems. In
particular linear time solutions are provided for the SAT problem.

1 Introduction

P systems were introduced in the history making paper [21] by Gh. Păun. One
of the main classes of P systems is that of string objects where the evolu-
tion rules are defined as string rewriting operations (see [22,21,6,18,19,20]) (an
up-to-date bibliography of the whole area may be found at the web address
http://psystems.disco.unimib.it). Because rewriting alone even in the con-
text of a highly parallel environment of a membrane structure is not enough
to lead to characterizations of recursively enumerable languages, various other
features have been considered, such as a priority relationship over the set of
rules, permitting or forbidding conditions associated with rules, restrictions on
the derivation mode, the possibility to control the membrane permeability [6] etc
(for more details see [22]). In general the most used priority relationship on the
set of rewriting rules is a partial order relationship, well studied in the context
of generative mechanisms with restrictions in derivation [4]. In this paper the
priority relationship will be replaced by a transition diagram associated with an
Eilenberg machine giving birth to two classes of Eilenberg systems, a sequential
version and a parallel one, called EP systems and EPP systems, respectively. In
both variants, each transition has a specific set of evolution rules acting upon
the string objects contained in different regions of the membrane system. The
system will start in a given state and with an initial set of string objects. Given a
state and a current set of string objects, in the case of EP systems, the machine
will evolve by applying rules associated with one of the transitions going out
from the current state. The system will resume from the destination state of the
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current transition. In the parallel variant, instead of one state and a single set
of string objects we may have a number of states, called active states, that are
able to trigger outgoing transitions and such that each state hosts a different
set of string objects; all the transitions emerging from every active state may be
triggered once the rules associated with them may be applied; then the system
will resume from the next states, which then become active states. EP systems
are models of cells evolving under various conditions when certain factors may
inhibit some evolution rules or some catalysts may activate other rules. EPP sys-
tems introduce a parallel behaviour of the system in respect of the transitions
emerging from active states, model cellular division and parallel development of
the new born cells as well as cell collision when multiple transitions join a target
state. The EP model has some similarities with the grammar systems controlled
by graphs [3], replacing a one-level structure, which is the current sentential
form, with a hierarchical structure defined by a membrane element. It is also
close to the state based model defined by Ji [15] in relation to the living cell,
called molecular machine. Whereas Ji’s molecular machine is a sort of Mealy ma-
chine [17], the proposed model penetrates inside of the cell as usually P systems
do. On the other hand, this P system variant may be viewed as an Eilenberg
machine [5] having sets of evolution rules as basic processing relationships. EP
systems are also similar to the Eilenberg machines based on distributed grammar
systems [8]. Eilenberg machines, generally known under the name of X machines
[5], have been initially used as a software specification language [10], further on
intensively studied in connection with software testing [13], but also utilized as a
model of methabolic pathways [11], bee colony behaviour [9], or reactive agents
[16]; a survey of the whole area at the end of 2000 is given by [12]. EPP systems
present similarities with Petri nets [14], but also with communicating X-machine
systems (see [1], [16]). The main difference between EPP systems and the other
models consists in a structured framework which is a cell like structure, where at
every step, each string object in each region of the system may be transformed
by applying some evolution rules. The style of triggering transitions in parallel
recalls replicated rewriting derivation mode studied for some classes of P systems
[19].

In this paper it is investigated the power of both systems in connection with
three parameters: number of membranes, states and set of distributed rules. On
the other hand it is shown that EPP systems represent a promising framework
for solving NP-complete problems; in particular linear time solutions are pro-
vided for SAT problem. The last result relies heavily on similarities between
EPP systems and P systems with replicated rewriting [19], showing that more
connections with these types of P systems might be further investigated.

2 Definitions

Definition 1. A stream Eilenberg machine is a tuple

X = (Σ,Γ,Q,M,Φ, F, I, T,m0),
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where:

– Σ and Γ are finite sets called the input and the output alphabets, respectively;
– Q is the finite set of states;
– M is a (possibly infinite) set of memory symbols;
– Φ is a set of basic partial relations on Σ ×M ×M × Γ ∗;
– F is the next state function F : Q× Φ → 2Q;
– I and T are the sets of initial and final states;
– m0 is the initial memory value.

Definition 2. An EP system is a construct EΠ = (μ,X), where μ is a mem-
brane structure consisting of m membranes, with the membranes and the regions
labelled in a one to one manner with the elements 1, . . . ,m and an Eilenberg
machine whose memory is defined by the regions 1, . . . ,m of μ. The Eilenberg
machine is a system

X = (V, Γ,Q,M1, . . . ,Mm, Φ, F, I),

having the following properties

– V is the alphabet of the system;
– Γ,Q, F are as in Definition 1; Γ ⊆ V, is called now terminal alphabet;
– M1, . . . ,Mm are finite languages over V and represent the initial values oc-

curring in the regions 1, . . . ,m of the system;
– Φ = {Φ1, . . . , Φp}, Φi = (Ri,1, . . . Ri,m), 1 ≤ i ≤ p and Ri,j is a set of

evolution rules (possibly empty) associated with region j, of the form X →
(u, tar), with X ∈ V, u ∈ V ∗, tar ∈ {here, out, in}; the indication here will
be omitted and the rule will be written X → u;

– I = {q0}, q0 ∈ Q is the initial state; all the states are final states (equivalent
to Q = T ).

It may be observed that the set Σ and m0 from Definition 1 are no longer
used in the context of EP systems. In fact, these concepts have been replaced
by V and M1, . . . ,Mm, respectively.

A P system has m sets of evolution rules, each one associated with a region.
An EP system has the evolution rules distributed among p components Φi, 1 ≤
i ≤ p, each one containing m sets of evolution rules.

A computation in EΠ is defined as follows: it starts from the initial state q0
and an initial configuration of the memory defined by M1, . . .Mm and proceeds
iteratively by applying in parallel rules in all regions, processing in each one
all strings that can be rewritten; in a given state q, each string is processed
by a single rule following the target indication of that rule (for instance, when
rewriting xXv by a rule X → (u, tar), the string xuv obtained will be send to
the region indicated by tar, with the usual meaning in P systems (see [2], [22],
[6])); if several rules may be applied to a string, then one rule and one symbol to
which it is applied are randomly chosen; the rules are from a component Φi which
is associated with one of the transitions emerging from the current state q and
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the resulting strings constitute the new configuration of the membrane structure
with the associated regions; the next state, belonging to F (q, Φi), will be the
target state of the selected transition. The result (a set of strings containing
only symbols from Γ ) is collected outside of the system at the end of a halting
computation.

EPP systems have the same underlying construct (μ,X), with the only dif-
ference that instead of one single membrane structure, it deals with a set of
instances having the same organization (μ), but being distributed across the
system. More precisely, these instances are associated with states called active
states; these instances can divide up giving birth to more instances or collide
into single elements depending on the current configuration of the active states
and the general topology of the underlying machine. Initially only q0 is an active
state and the membrane configuration associated with q0 is M1, . . . ,Mm. All
active states are processed in parallel in one step: all emerging transitions from
these states are processed in parallel (and every single transition processes in
parallel each string object in each region, if evolution rules match them).

Cell division: if qj is one of the active states, Mj,1, . . . ,Mj,m is its associ-
ated membrane configuration instance, and Φj,1, . . . , Φj,t are Φ′s components
associated with the emerging transitions from qj , then the rules occurring in
Φj,i, 1 ≤ i ≤ t, are applied to the string objects from Mj,1, . . . ,Mj,m, the con-
trol passes onto qj,1, . . . , qj,t, which are the target states of the transitions ear-
lier nominated, with Mj,1,1, . . . ,Mj,m,1, . . . ,Mj,1,t, . . . ,Mj,m,t, their associated
membrane configuration instances, obtained from Mj,1, . . . ,Mj,m, by applying
rules of Φj,1, . . . , Φj,t; the target states become active states, q is desactivated and
Mj,1, . . . ,Mj,m vanish. Only Φj,i components that have rules matching the string
objects of Mj,1, . . . ,Mj,m, are triggered and consequently only their target states
become active and associated with memory instances Mj,1,i, . . . ,Mj,m,i. If none
of Φj,i is triggered then in the next step q is desactivated and Mj,1, . . . ,Mj,m

vanish too. If some of Φj,i are indicating the same component of Φ then the cor-
responding memory configurations Mj,1,i, . . . ,Mj,m,i are the same as well; this
means that always identical transitions emerging from a state yield the same
result.

Cell collision: if Φ1, . . . , Φt enter the same state r and some or all of them
emerge from active states, then the result associated with r is the union of
membrane instances produced by those Φ′is emerging from active states and
matching string objects from their membrane instances.

A computation of an EP (EPP) system halts when none of the rules associ-
ated with the transitions emerging from the current states (active states) may
be applied.

The language computed by a system EΠ is denoted by L(EΠ) and consists
of all strings over Γ that are sent out of the system during a halting computation.

The family of languages generated by EP (EPP) systems with at most m
membranes, at most s states and using at most p sets of rules is denoted by
EPm,s,p(EPPm,s,p). If one of these parameters is not bounded, then the corre-
sponding subscript is replaced by ∗. An EP (EPP) system is called pure when
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V = Γ and the family of languages generated by such systems with the above
considered parameters is denoted by PEPm,s,p (PEPPm,s,p).

A matrix grammar with appearance checking in the binary normal form (for
more details see [3]) is a construct G = (N,T, S,M,F ) where N = N1 ∪ N2 ∪
{S,#}, with these three sets mutually disjoint, and the matrices in M with one
of the following forms:

– 1. (S → ZB), with Z ∈ N1, B ∈ N2,
– 2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗,
– 3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,
– 4. (X → λ,A → x), with X ∈ N1, A ∈ N2, x ∈ T ∗.

The set F consists only of rules A → # appearing in matrices of type 3. The
family of languages produced by these devices is denoted by MATac. When rules
of type 3 are not used, then the corresponding family of languages is denoted
by MAT. With RE denoting the set of recursively enumerable languages, the
following relations hold MAT ⊂ MATac = RE, where the inclusion is proper.
It is also known that two nonterminals used in rules A → # suffice to generate
all RE languages [7].

3 Computational Power of EP and EPP Systems

It has been noted that rewriting alone even in a highly structured and parallel
environment of a membrane, does not suffice for characterizing the set of recur-
sively enumerable languages [6]. Thus various priority relationships have been
considered. In this paper, instead of a partial order relationship on the set of
rewriting rules, the rules are first distributed among sets Φi and then controlled
by the next state function which selects the set of rules to be applied in the
current state. Let us first consider an example to illustrate how an EP system
works. Let EΠ = ([1]1, X), where X contains the following elements:

– V = {A,A′, B,B′,#, a, b, c};
– Γ = {a, b, c};
– Φ = {Φ1, Φ2, Φ3, Φ4, Φ5}, where

• Φ1 = ({A → aAb,A′ → B′, B′ → #}),
• Φ2 = ({B → Bc,B′ → A′, A′ → #}),
• Φ3 = ({A → ab,A′ → B′, B′ → #}),
• Φ4 = ({B → (c, out), B′ → λ,A′ → #}),
• Φ5 = {# → #};

– Q = {1}, I = {1};
– F (Φi, 1) = {1}, 1 ≤ i ≤ 5;
– M1 = {aAbBc,A′}.

The region 1 always has one of the following forms:

1. {anAbnBcn+k, A′}, n ≥ 1, k ≥ 0,
2. {an+1Abn+1Bcn+k, B′}, n ≥ 1, k ≥ 0,



48 Tudor Bălănescu et al.

3. {an+1bn+1Bcn+k, B′}, n ≥ 1, k ≥ 0,
4. {an+1bn+1Bcn+1+k, A′}, n ≥ 1, k ≥ 0,
5. {y,#}, y ∈ V ∗,
6. {λ}.

This may be proved by induction on the number of the computation steps.
Initially it has the form 1, with n = 1, k = 0. Next, it may be seen that:

– from 1 it results 5 (applying Φ2 or Φ4), or 2 (applying Φ1), or 3 (applying
Φ3);

– from 2 it results 5 (applying Φ1 or Φ3), or 1 (applying Φ2), or 6 (applying
Φ4);

– from 3 it results 5 (applying Φ1 or Φ3), or 4 (applying Φ2), or 6 (applying
Φ4);

– from 4 it results 5 (applying Φ2 or Φ4), or 3 (applying Φ3);
– from 5 it results 5 (applying any set that matches y; Φ5 may be always

applied);
– in the form 6 the computation halts.

The only way to obtain terminal strings outside the system is to apply Φ4 on
the form 3 and to send out a string of the form an+1bn+1cn+1+k, n ≥ 1, k ≥ 0.
The language of all strings of this form is not context-free. Some lessons may
be learned from this simple example: the computation process of a set of words
cannot be split down into independent computations of the individual elements
(this property will be used further on in some more general proofs); using only
one membrane and one state (i.e., no control mechanism imposed by the next
state function F ), non-context-free languages may be generated.

If we consider the above specification as an EPP system denoted by EΠΠ
then L(EΠΠ) = ∅, because all first four components are triggered, # is intro-
duced, and the computation never halts. The following EΠΠ ′ using the above
defined V and Γ, but redefining Φ,Q, F and M1

– Φ = {Φ1, Φ2, Φ3, Φ4, Φ5}, where
• Φ1 = ({A → aAb,A → aA′b}),
• Φ2 = ({B → Bc,B → B′c}),
• Φ3 = ({A′ → ab}),
• Φ4 = ({B′ → B′c,B′ → Bc}),
• Φ5 = {B → (c, out)};

– Q = {1, 2, 3, 4}, I = {1};
– F (Φ1, 1) = {2},

F (Φ2, 2) = {1},
F (Φ3, 1) = {3},
F (Φ4, 3) = {3},
F (Φ5, 3) = {4};

– M1 = {AB};
leads to L(EΠΠ ′) = L(EΠ). The underlying system computes the same lan-
guage when it is to be considered an EP system as well.
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Some preliminary results follow directly from definitions ([P ] means that the
involved relationships hold for both P being present in both its members or none
of them).

Lemma 1. (i) PEPm,s,p ⊆ EPm,s,p, m, s, p ≥ 1;
(ii) [P ]EPm,s,p ⊆ [P ]EPm+k1,s+k2,p+k3 , k1, k2, k3 ≥ 0.

The next result is similar to Lemma 2 in [6], giving also details about the number
of states and rules used by the proof.

Lemma 2. EPm,s,p ⊆ PEPm+1,s+1,p+2, m, s, p ≥ 1.

Proof. Let us consider an EP system EΠ = (μ,X), with μ a membrane structure
with m regions and X a machine given by

X = (V, Γ,Q,M1, . . .Mm, Φ, F, I),

according to Definition 2. We construct now the pure EP system EΠ ′ = (μ′, X ′),
where μ′ = [0μ]0, and

X ′ = (V ′, V ′, Q′,M ′
0,M

′
1, . . .M

′
m, Φ′, F ′, I),

with

– V ′ = V ∪ {f, }, f /∈ V ;
– Q′ = Q ∪ {q0}, q0 /∈ Q;
– M ′

i = {fw | w ∈ Mi}, 1 ≤ i ≤ m; M ′
0 = ∅;

– Φ′ = {Φ′i | Φi ∈ Φ, 1 ≤ i ≤ p} ∪ {Φ′p+1, Φ
′
p+2}, where

Φ′i = (∅, Ri,1, . . . Ri,m), for Φi = (Ri,1, . . . Ri,m),
Φ′p+1 = ({a → (a, in) | a ∈ V \ Γ}, ∅, . . . ∅) and
Φ′p+2 = ({f → (λ, out)}, ∅, . . . ∅);

– F ′(q, Φ′i) = F (q, Φi), q ∈ Q, Φi ∈ Φ, 1 ≤ i ≤ p, and
F ′(q, Φ′p+1) = {q0}, F ′(q0, Φ′p+2) = {q0}.
According to the above construction any string x processed by EΠ exits the

system iff fx arrives in region 0 of EΠ ′, in a state q ∈ Q. Indeed any application
of a set of rules Φi in EΠ is simulated in EΠ ′ by Φ′i. Any string in region 0 is
checked to contain only elements from Γ, by applying Φ′p+1. All strings in region
0 which contain some symbols in V \ Γ fall down into region 1. Otherwise the
rule f → (λ, out) occurring in Φ′p+2 pops out strings containing only symbols
from Γ. Hence L(EΠ) = L(EΠ ′). 
�

Theorem 1. MAT = EP4,1,1 ⊆ PEP5,2,3.

Proof. An EP system with m membranes, a single state and only one set of rules
is an extended rewriting system [6], and for these systems it has been shown that
4 membranes suffice to generate MAT, and consequently the result holds. 
�
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It is also known that a graph controlling the derivation, = 1 style, in grammar
systems, without appearance checking feature, produces exactly MAT (Theo-
rem 4.7 in [3]). What about an EP system with only one membrane? The only
difference between such a system and a grammar system as described above is
that in an EP system all strings are kept in one membrane and are rewritten in
parallel in one step. From Theorem 1 we have learned that without spreading
the rules and using only one state we do not get more than MAT languages.

Theorem 2. EP1,1,∗ = PEP2,2,∗ = RE.

Proof. According to Turing-Church thesis and Lemma 2, it is only to prove the
inclusion RE ⊆ EP1,1,∗. As usually in such cases a matrix grammar with ap-
pearance checking in the binary normal form G = (N1 ∪N2 ∪{S,#}, T, S,M,F )
is considered. It is also assumed that the rules are labelled in a one to one man-
ner with m1, . . . ,mk1 (the matrices of type 2), mk1+1, . . . ,mk2 (the matrices of
type 3), and mk2+1, . . . ,mk3 (the matrices of type 4). The following EP system
is constructed EΠ = (μ,X), where μ is a membrane structure consisting of a
single membrane, and X an Eilenberg machine

X = (N1 ∪N2 ∪ {S,#} ∪ T, T, {q0},M1, Φ, F, {q0}),
with

– M1 containing Z and B, the symbols occurring in the right hand side of the
matrix of type 1;

– F (q0, Φi) = {q0}, for any Φi ∈ Φ;
– the set Φ containing

• for each matrix mi = (X → Y,A → x), 1 ≤ i ≤ k1, of type 2, a set of
rules
Φi = ({A → x,X → Y } ∪ {U → # | U ∈ N1 ∪N2, U �= X,U �= A});

• for each matrix mi = (X → Y,A → #), k1 + 1 ≤ i ≤ k2, of type 3, a set
of rules
Φi = ({A → #, X → Y } ∪ {U → # | U ∈ N1, U �= X});

• for each matrix mi = (X → λ,A → x), k2 + 1 ≤ i ≤ k3, of type 4, a set
of rules
Φi = ({A → x,X → (λ, out)}∪{U → # | U ∈ N1 ∪N2, U �= X,U �= A})

• a new rule is considered in the set Φ0 = ({# → #});
The computation will start with {Z,B} in the main region defined by the skin
(main) membrane. If {X,uAv} is the current content of the region, then this
corresponds to the sential form XuAv associated with the grammar G. A ma-
trix mi, 1 ≤ i ≤ k1 is succesfully applied to XuAv iff the corresponding rules of
Φi are applied in one step in parallel to both X, and uAv. A failure in correctly
applying this matrix leads to blocking the derivation process in G and accord-
ingly the introduction of # symbol in the current membrane. Similarly, the set
of rules associated with matrices of types 3 and 4, simulate the use of these
matrices in G. Any blocking derivation in G is simulated in EΠ by introducing
’#’ symbol which leads to an endless computation (set Φ0) or to the situation
when a terminal sequence is never sent out of the system. 
�
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The proof of Theorem 2 says that only one membrane and one state suffice to
compute all RE languages, but with an unbounded number of rules. On the other
hand the simulation is very efficient and natural, the number of steps involved
in a computation in EΠ is exactly equal to the number of matrices required
by the corresponding equivalent derivation of G. What can be said when all
three parameters are bounded? The next result shows that by increasing either
the number of membranes or the number of states, EP systems with a bounded
number of functions that compute all RE languages may be found.

Theorem 3. (i)EP1,3,8 = RE; (ii) EP2,1,7 = RE.

Proof. Again we consider a matrix grammar with appearance checking in the
binary normal form G = (N1 ∪N2 ∪ {S,#} ∪ T, T, S,M,F ). It is assumed that
the rules are labelled in a one to one manner with m1, . . . ,mk1 (matrices of type
2), mk1+1, . . . ,mk2 (matrices of type 3), and mk2+1, . . . ,mk3 (matrices of type
4). Also we assume that type 3 matrices (with appearance checking) utilize only
two nonterminals A1, A2 [7]. We denote by Domi the set of nonterminal symbols
occurring in the left hand side of rules of matrices of type i, 1 ≤ i ≤ 4.

(i) Let EΠ = (μ,X) be an EP system with one membrane and three states,
where μ is a membrane structure, and X an Eilenberg machine. The underlying
machine is given by

X = (N1 ∪N2 ∪ {S,#, f} ∪ {ij | 0j ≤ ij ≤ (k3)j , 1 ≤ j ≤ 4} ∪ T,

T,Q,M1, Φ, F, {q1}),
where f and ij are new symbols and

– Q = {q1, q2, q3};
– M1 contains Zf and Bf, with Z and B the symbols occurring in the right

hand side of the rule of type 1, and f is the new symbol introduced by X;
– Φ = {Φ1, . . . , Φ8}, where

• Φ1 = ({X → Y i1 | 11 ≤ i1 ≤ (k1)1, and there is i1 : (X → Y,A → x)
a matrix of type 2 }∪
{X → λi3 | 13 ≤ i3 ≤ (k3)3, and there is i3 : (X → λ,A → x)
a matrix of type 4 }∪
{A → xi2 | 12 ≤ i2 ≤ (k1)2, and there is i2 : (X → Y,A → x)
a matrix of type 2 }∪
{A → xi4 | 14 ≤ i4 ≤ (k3)4, and there is i4 : (X → λ,A → x)
a matrix of type 4 }∪
{U → # | U ∈ N1 ∪N2, U /∈ Dom2 ∪Dom4}),

• Φ2 = ({ij → ij − 1 | 1 ≤ j ≤ 4, 01 < i1 ≤ (k1)1,
02 < i2 ≤ (k1)2, 03 < i3 ≤ (k3)3, 04 < i4 ≤ (k3)4, } ∪ {f → #}),

• Φ3 = ({01 → λ, 02 → λ} ∪ {ij → # | ij > 0, 1 ≤ j ≤ 4}),
• Φ4 = ({f → λ}),
• Φ5 = ({03 → λ, 04 → (λ, out)} ∪ {ij → # | ij > 0, 1 ≤ j ≤ 4}),
• Φ6 = ({X → Y,A1 → # | (X → Y,A1 → #) matrix of type 3 }∪

{U → # | U ∈ N1 \Dom3}),
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• Φ7 = ({X → Y,A2 → # | (X → Y,A2 → #) matrix of type 3 }∪
{U → # | U ∈ N1 \Dom3}),

• Φ8 = ({# → #});
– F (q1, Φi) = {q1}, i ∈ {6, 7, 8}, F (q1, Φ1) = {q2}, F (q2, Φ2) = {q2},

F (q2, Φ3) = {q1}, F (q2, Φ4) = {q3}, F (q3, Φ5) = {q1}.
A computation in EΠ develops as follows:

– the process starts in state q1 with initial configuration {Zf,Bf};
– given a configuration {Xf, αAβf}, one of Φ1, Φ6 or Φ7 may be applied; if

Φ1 is selected then it meant to simulate either matrices i : (X → Y,A → x)
of type 2 or i : (X → λ,A → x) of type 4, by applying X → Y i1, A → xi2
or X → λi3, A → xi4 and leading to {Y i1f, αxi2βf} or {i3f, αxi4βf} in
state q2; in both cases rules of Φ2 are iteratively applied to check whether
the previous rules came from the same matrix (either i1 = i2 or i3 = i4); if
one index, ij reaches 0j and the other not then a # symbol is introduced by
f → #; if Φ2 is left before reaching 0j then either Φ3 or Φ5 introduces # by
one of the rules ij → #; when i1 and i2 or i3 and i4 indicate the same value,
then
• for {Y i1f, αxi2βf}, the two i′s become 01 and 02, respectively, by ap-

plying Φ2; then Φ3 makes them λ and the process successfully simulates
i : (X → Y,A → x);

• similarly for {i3f, αxi4βf}, the two i′s become 03 and 04, respectively,
by applying Φ2; then f is deleted from both strings (using Φ4 and going
to state q3); Φ5 removes both 03 and 04 and 04 → (λ, out) sends out
αxβ;

– when either Φ6 or Φ7 is applied to {Xf, αAβf} this means that the use of
either (X → Y,A1 → #) or (X → Y,A2 → x) is simulated (using Φ6 for the
former or Φ7 for the latter);

– once a symbol # is introduced the process never ends as Φ8 may be always
triggered.

The EP system EΠ computes exactly what G generates.
(ii) The EP systems EΠ = (μ,X) with one state and two membranes is built

as follows: μ is a membrane structure [1[2]2]1 and X the Eilenberg machine:

X = (N1 ∪N2 ∪ {S,#, f1, f2} ∪ {ij | 0j ≤ ij ≤ (k3)j , 1 ≤ j ≤ 4}
∪T, T, {q1},M1,M2, Φ, F, {q1}),

where f1, f2 and ij are new symbols and:

– M1 contains Zf1 and Bf2, with Z and B the symbols occurring in the right
hand side of the rule of type 1, and M2 is empty;

– Φ = {Φ1, . . . , Φ7}, is very similar with Φ built for the above proof (i), but
makes use of the two membranes; Φ contains:

– Φ1 = ({X → (Y i1, in) | 11 ≤ i1 ≤ (k1)1, and there is i1 : (X → Y,A → x)
a matrix of type 2 }∪
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{X → (λi3, in) | 13 ≤ i3 ≤ (k3)3, and there is i3 : (X → λ,A → x)
a matrix of type 4 }∪
{A → (xi2, in) | 12 ≤ i2 ≤ (k1)2, and there is i2 : (X → Y,A → x)
a matrix of type 2 }∪
{A → (xi4, in) | 14 ≤ i4 ≤ (k3)4, and there is i4 : (X → λ,A → x)
a matrix of type 4 }∪
{U → # | U ∈ N1 ∪N2, U /∈ Dom2 ∪Dom4}, ∅),

– Φ2 = (∅, {ij → ij − 1 | 1 ≤ j ≤ 4, 01 < i1 ≤ (k1)1, 02 < i2 ≤ (k1)2,
03 < i3 ≤ (k3)3, 04 < i4 < (k3)4} ∪ {f1 → #, f2 → #}),

– Φ3 = (∅, {0j → (λ, out)} ∪ {ij → # | ij > 0, 1 ≤ j ≤ 4}),
– Φ4 = ({f1 → λ, f2 → (λ, out)}, ∅),
– Φ5 = ({X → Y,A1 → # | (X → Y,A1 → #) matrix of type 3 }∪

{U → # | U ∈ N1 \Dom3}, ∅),
– Φ6 = ({X → Y,A2 → # | (X → Y,A2 → #) matrix of type 3 }∪

{U → # | U ∈ N1 \Dom3}, ∅),
– Φ7 = ({# → #}, {# → #}).

In a manner very similar to the proof of (i) it may be shown that EΠ computes
exactly what G generates. 
�

EPP systems exhibit a parallel behaviour not only inside of the membrane
structure but also at the underlying machine level. Potentially, all transitions
emerging from active states may be triggered in one step giving birth to new
cells or colliding others. One problem addressed in this case is also related to the
power of these mechanisms. One may adopt the previous strategy by considering
a RE language generated by a matrix grammar in binary normal form to find
the EPP systems computing that language. Given that EP systems have been
studied in this respect, another solution would be to compare them with EPP
systems. More precisely, given an EP systems with m membranes, s states and
p production rules associated via Φ components, is it possible to simulate it by
an EPP system? If yes, what are the values for the number of membranes, states
and rules? The next theorem gives an answer to this problem.

Lemma 3. If EΠ is an EP system with m membranes, s states and p sets of
rules then there exists EΠΠ an EPP systems with m′ ≥ m membranes, s′ ≥ s
states and p′ ≥ p rule transitions such that L(EΠ) = L(EΠΠ).

Proof. Let EΠ = (μ,X), be an EP systems where μ is a membrane structure
consisting of m membranes, and X an Eilenberg machine

X = (V, Γ,Q,M1, . . .Mm, Φ, F, I),

where Q has s states and Φ contains p components. The following EPP system
is built EΠΠ = (μ′, X ′), where μ′ = [0μ]0 and

X ′ = (V ′, Γ,Q′,M0,M1, . . .Mm, Φ′, F ′, I),

with
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– V ′ = V ∪{x}∪{k | 1 ≤ k ≤ t}, where t is the maximum number of transitions
going out from every state of X;

– Q′ = Q ∪ {qj,0 | qj ∈ Q} ∪ {qj,k,h | qj ∈ Q, 1 ≤ k ≤ t, 1 ≤ h ≤ 4};
– M0 = {x};
– Φ′ = Φ ∪ {Φx, Φ1x, . . . , Φtx, ΦΓ , ΦV ′}, where

• Φx = ({x → k | 1 ≤ k ≤ t}, ∅, . . . , ∅),
• Φkx = ({k → x}, ∅, . . . , ∅), 1 ≤ k ≤ t,
• ΦΓ = ({a → (a, out) | a ∈ Γ}, ∅, . . . , ∅),
• ΦV ′ = ({X → (X, in) | X ∈ V ′ \ Γ}, ∅, . . . , ∅);

– for any qj ∈ Q if there are 1 ≤ u ≤ t, transitions emerging from qj and
F (qj , Φj,k) = {qjk

}, 1 ≤ k ≤ u (not all Φj,k are supposed to be distinct) then
the following transitions are built in EΠΠ :
F ′(qj , Φx) = {qj,0}, F ′(qj,0, Φkx) = {qj,k,1}, 1 ≤ k ≤ u,
F ′(qj,k,1, Φj,k) = {qj,k,2, qjk

},
F ′(qj,k,2, ΦV ′) = {qj,k,3}, F ′(qj,k,3, ΦΓ ) = {qj,k,4}, 1 ≤ k ≤ u.

A computation in system EΠΠ proceeds in the following way: at the begin-
ning, only the initial state is active and the memory configuration in this state
is M0,M1, . . . ,Mm. If the EPP system EΠ is in a state qj and the memory
configuration is Mj,0,Mj,1, . . . ,Mj,m, then EΠΠ must be in qj as well. We will
show that always EΠΠ has either an active state or at most two active states
but in this case one of them is qj,k,h, 2 ≤ h ≤ 4, and from the last one (qj,k,4)
the membrane configuration will vanish and possibly the EPP system sends out
a string. Indeed, if qj is an active state in EΠΠ and Mj,0,Mj,1, . . . ,Mj,m are
its associated membrane configuration, then in one step x from Mj,0 is changed
by Φx into k, a value between 1 and t; if u is the number of emerging transitions
from qj in EΠ, then k > u implies that in the next step the current membrane
configuration will vanish as no more continuation is then allowed from qj,0; oth-
erwise, when 1 ≤ k ≤ u, only one transition may be triggered from qj,0 and this
is associated with Φkx which restores x back into Mj,0 (the other transitions
emerging from qj,0 cannot be triggered). Φkx leads the EPP system into qj,k,1.
From this state there are two transitions both associated with Φj,k that are
triggered in the same time and consequently Mj,0,Mj,1, . . . ,Mj,m are processed
by both Φj,k’s and yield the same memory configuration M ′

j,0,M
′
j,1, . . . ,M

′
j,m in

both qj,k,2 and qjk
. These are then processed in parallel, being both active states.

From the former the current configuration is checked for nonterminal symbols,
ΦV ′ , and then in the next step only terminal strings are sent out by using ΦΓ ;
then this memory configuration vanishes as no further transition emerges from
qj,k,4. In fact this path introduced from every qj,k,1 has the role of collecting
terminal strings outside of the system. From qj,k the process resumes as from
qj , and in two steps at most one state will be active on the path from qj . In this
way EΠ and EΠΠ compute the same language, thus L(EΠ) = L(EΠΠ). 
�

Note 1. From Lemma 3 it follows that if the EP system EΠ has m membranes,
s states, p components of Φ, and the maximum number of transitions emerging
from every state is t then the equivalent EPP system has m′ = m+1 membranes,
at most s′ = (2 + 4t)s states, and at most p′ = p + t + 3 sets of rules.
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Theorem 4. EPP2,54,15 = EPP3,30,17 = RE.

Proof. By using Note 1 and the constructions from the proof of Theorem 3 the
result follows. 
�

Obviously lower bounds may be obtained for the above discussed parameters
when the two constructions from the proof of Theorem 3 are used in order to get
an EPP equivalent system. This is achieved by applying the procedure provided
by the proof of Lemma 3, but it is left as an exercise for the reader.

4 Linear Solution to SAT Problem

SAT (satisfiability of propositional formulae in conjunctive normal form) is a well
known NP-complete problem. This problem asks whether or not, for a given for-
mula in the conjunctive normal form, there is a truth-assignment of the variables
such that it becomes true. So far some methods to solve in polynomial or just
linear time this problem have been indicated, but at the expense of using an
exponential space of values.

Theorem 5. The SAT problem can be solved in a time linear in the number of
variables and the number of clauses by using an EPP system.

Proof. Let γ be a formula in conjunctive normal form consisting of m clauses,
C1, . . . , Cm, each one being a disjunction, and the variables used are x1, . . . , xn.
The following EPP system, EΠΠ = (μ,X), may be then constructed:

μ = [1[2. . . [m+1]m+1 . . .]2]1,

X = (V, Γ,Q,M1, . . .Mm+1, Φ, F, I),

where:

– V = {ak, tk, fk | 1 ≤ k ≤ n};
– Γ = {tk, fk | 1 ≤ k ≤ n};
– Q = {q1, q2};
– M1 = . . . = Mm = ∅, Mm+1 = {a1};
– Φ = {Φ1, . . . , Φ5};

• Φ1 = (∅, . . . , ∅, {ak → fkak+1 | 1 ≤ k ≤ n− 1}),
• Φ2 = (∅, . . . , ∅, {ak → tkak+1 | 1 ≤ k ≤ n− 1}),
• Φ3 = (∅, . . . , ∅, {an → (fn, out)}),
• Φ4 = (∅, . . . , ∅, {an → (tn, out)}),
• Φ5 = ( {tk → (tk, out) | xk is present in C1, 1 ≤ k ≤ n}∪

{fk → (fk, out) | ¬xk is present in C1, 1 ≤ k ≤ n},
. . . ,
{tk → (tk, out) | xk is present in Cm, 1 ≤ k ≤ n}∪
{fk → (fk, out) | ¬xk is present in Cm, 1 ≤ k ≤ n}, ∅);

– F (q1, Φk) = {q1}, 1 ≤ k ≤ 2, F (q1, Φk) = {q2}, 3 ≤ k ≤ 4, F (q2, Φ5) = {q2};
– I = {q1}.



56 Tudor Bălănescu et al.

EΠΠ starts from state q1 with ∅, . . . , ∅, {a1}. By applying n−1 times Φ1 and Φ2
in parallel and then Φ3 and Φ4 one generates all truth values for the n variables
in the form of 2n strings with tk or fk indicating that variable xk is either true
or false. All these combinations are obtained in n steps in state q2. In the next m
steps Φ5 checks whether or not at least one truth-assignment satisfies all clause;
this, if exists, will exit the system. The SAT problem is solved in this way in
n + m steps. 
�

5 Conclusions

In this paper two types of Eilenberg P systems, namely EP systems and EPP
systems, have been introduced. They combine the control structure of an Eilen-
berg machine as a driven mechanism of the computation with a cell-like structure
having a hierarchical organisation of the objects involved in the computational
process. The computational power of EP systems is investigated in respect of
three parameters: number of membranes, number of states, and number of sets
of rules. It is proved that when only one state and one set of rules are used,
four membranes suffice to compute MAT languages. It may be easily observed
that in this case the number of states is irrelevant as with only one single set of
rules, even distributed across many states, one cannot compute more than with
a single state and the same set of rules, i.e., EPm,s,1 = MAT, m ≥ 4, s ≥ 1.
When at least three states and eight sets of rules or two membranes and seven
sets of rules are used, then the whole set of RE languages may be computed,
i.e., EP1,3,8 = RE or EP2,1,7 = RE. A number of questions regarding lower
limits for the above parameters remain to be further addressed. It is possible to
compute RE by using EP systems with less than three states and/or eight sets
of rules, i.e., EP1,s,p, where s < 3 and/or p < 8? Is it true that EP1,1,7 = RE,
p < 7?

EPP systems represent the parallel counter-part of EP systems, allowing not
only the rules inside of the cell-like structure to develop in parallel, but also the
transitions emerging from the same state. More than this, all states that are
reached during the computation process as target states, may trigger in the next
step all transitions emerging from them. It is shown that a general method to
simulate an EP system as an EPP system computing the same language may be
stated. This result allows us to map all properties concerning computationally
completeness properties of EP systems onto EPP systems. Apart from the fact
that EPP systems might describe interesting biological phenomena like cell di-
vision and collision, it is also a computationally complete device and an effective
mechanism for solving NP-complete problems, like SAT, in linear time.
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Abstract. The main goal of this paper is to present the design of an
MzScheme program that allows us to simulate the behavior of transition
P systems. For that, a library of procedures have been developed that
work in two stages. In the first one, the parsing/compiling stage, the
input P system is checked, and if it is well defined, then it is represented
by means of an internal grammar. In a second stage, the simulation, the
computation tree associated to the P system is generated until a prefixed
level.

1 Introduction

In October 1998, Gheorghe Păun [1] introduced a new computability model of
a non-deterministic and highly parallel type, the membrane systems. They are
based on the synchronized work of several units, called membranes, structured
in a dynamic hierarchy (understood as vesicles in a space) embedded in a skin
membrane that separates the system from the environment. When a membrane
has no membrane inside, it is called elementary. Each membrane encloses a space
between it and the membranes directly included in it (if any). This space (the
region of the membrane) can contain a multiset (a set where the elements can
be repeated) of objects (represented by symbols of a given alphabet) and a set
of (evolution) rules for them. Each membrane defines an unique region.

This model, called transition P systems, is inspired from the observation that
the processes which take place in the complex structure of a living cell can be
viewed as computation–like processes.

We present here a library of MzScheme procedures [5], that allows us both
to input easily a transition P system and to simulate its non-deterministic and
highly parallel behavior. It reads, analyzes and compiles the input data defining
a P system; then, it generates the subsequent computations.

Our implementation is based on the formalization given in [3].
The program runs in two independent stages: parsing/compiling and simula-

tion/running.

Π − input
parser/compiler−−−−−−−−−−→ Π

simulator−−−−−−→ Comp(Π)

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 58–73, 2003.
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At stage one, parsing/compiling, the input data are read and the respective
P system is rewritten as an element of the language generated by a proposed
internal grammar. To get it, the input data have to be syntactically correct
according to the input grammar. Moreover, they have to define a well defined P
system (according to the formalization above mentioned).

Stage two, simulation/running, starts when the parsing/compiling is finished.
Starting from the P system initial configuration, the associated computation tree
is generated. The expansion of that computation tree is made in a progressive
way, level by level (breadth expansion), until to a given depth level. To get it
we follow a breadth-expansion-tree scheme based on the definitions and steps
proposed in [3]:

applicable-rules →
applicability-vectors →

applicability-matrices → configurations

This paper is organized as follows: Section 2 briefly presents some basic con-
cepts about a formalization of transition P systems, following [3]. Section 3 de-
scribes briefly the whole simulator scheme. Section 4 is about the way to input a
P system, showing the proposed input grammar. Section 5 presents the internal
grammar and describes the parser/compiler performance. Section 6 describes the
simulator behavior properly. Finally, in Section 7 we present a complete example
to illustrate the way of working of the program.

2 Preliminaries about a Formalization
of Transition P Systems

Following [3], we recall here the basic concepts and definitions about P systems.

2.1 Membrane Structure and Cells

A membrane structure is a rooted tree, where the nodes are called membranes,
the root is called skin, and the leaves are called elementary membranes.

A cell over an alphabet, A, is a pair (μ,M), where μ = (V (μ), E(μ)) is a
membrane structure, and M is an application, M : V (μ) −→ M(A) (the set of
multisets over A).

2.2 Evolution Rules

Let C = (μ,M) be a cell over an alphabet A. Let x ∈ V (μ). An evolution rule
associated to x is a 3-tuple r = (dr, vr, δr) where dr is the left-side of the rule,
vr is the right-side of the rule, and δr ∈ {¬δ, δ} indicates if the application of
the rule dissolves the membrane.

A collection R of evolution rules associated to C is a function with domain
V (μ) such that for every membrane x ∈ V (μ), Rx = {rx,1, . . . , rx,sx

} is a finite
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set (possibly empty) of (evolution) rules associated to x. A priority relation over
R is a function, ρ, with domain V (μ) such that for every membrane x ∈ V (μ),
ρx is a strict partial order over Rx (possibly empty).

2.3 Transition P Systems

A transition P system is a 4-tuple Π = (A,C0,R, i0), where:

– A is a non-empty finite set (usually called base alphabet).
– C0 = (μ0,M0) is a cell over A.
– R is an ordered pair (R, ρ) where R is a collection of (evolution) rules asso-

ciated to C0, and ρ is a priority relation over R.
– i0 is a node of μ0, which specifies the output membrane of Π.

The number |V (μ0)| is called the degree of Π.

2.4 Configurations

A configuration, C, of a P system, Π = (A,C0,R, i0) with C0 = (μ0,M0), is a
cell C = (μ,M) over A, where V (μ) ⊆ V (μ0), and μ has the same root as μ0.
The configuration C0 will be called the initial configuration of Π.

2.5 Applicability

Let x ∈ V (μ0). We say that the (evolution) rule r ∈ Rx is semi-applicable to C
if the membrane associated to node x exists in C (dissolution is not allowed in
the root node), the membrane associated to x has all the necessary objects to
apply the rule, and nodes where the rule tries to send objects (by means of iny)
are children of x.

We say that the rule r ∈ Rx is applicable to C, if it is semi-applicable to C
and there is no semi-applicable rules in Rx with higher priority.

We say that p ∈ NN is an applicability vector over x ∈ V (μ) for C, and we
will denote it as p ∈ Ap(x,C), if it has correct size (that is, for all j greater the
number of rules associated to x we have p(j) = ∅), every rule can be applied as
many times as the vector p indicates, all the rules can be applied simultaneously,
and it is maximal.

We will say that P : V (μ0) −→ NN is an applicability matrix over C, denoted
P ∈ MAp(C), if for every x ∈ V (μ0) we have that P (x) ∈ Ap(x,C).

2.6 Transitions

The execution of P over C = (μ,M), denoted P (C), returns a new configuration
C ′ = (μ′,M ′) of Π, that can be considered acting in two stages: (μ,M) →
(μ,M ′′) → (μ′,M ′).

In the first stage we suppose that the rules are applied without attending
dissolving actions, and in the second one dissolution and distribution of contents
are carried out.
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We will say that a configuration C1 of a P system Π yields a configuration C2
by a transition in one step of Π, denoted C1 ⇒Π C2, if there exists a non–zero
applicability matrix over C1, P , such that P (C1) = C2.

2.7 Computation Tree

The computation tree of a P system Π, denoted Comp(Π), is a rooted labeled
maximal tree defined as follows: the root of the tree is the initial configuration,
C0, of Π; the children of a node are the configurations that follow in one step
of transition; nodes and edges are labeled by configurations and applicability
matrices, respectively, in such way that two labeled nodes C,C ′ are adjacent in
Comp(Π), by means of an edge labeled with P , if and only if P ∈ MAp(C)−{0}
and C ′ = P (C). The maximal branches of Comp(Π) will be called computations
of Π. We will say that a computation of Π halts if it is a finite branch. The
configurations verifying MAp(C) = {0} will be called halting configurations.

3 Preliminaries about the P Systems Simulator

We consider that the basic features of a computing program able to simulate
transition P systems should be the following:

1. To have a formal definition of transition P systems to be based on.
2. To choose a suitable programming language to implement the simulation.
3. To have an easy way to input the data describing the P system.
4. To choose an efficient internal representation of P systems.
5. To design a parser/compiler to analyze the input data and to obtain the P

system internal representation.
6. To design a P system simulator of computations to generate the respective

computation tree.

As we said previously, the implementation we present here has been deve-
loped on MzScheme (a functional language from Lisp family), and it is based
on the formalization given in the above section, but slightly modified. This mo-
dification arises from the convenience to identify the applicable rules to a given
configuration.

The rules of a P system are static elements. Nevertheless, to determine if a
rule r = (dr, vr, δr) is applicable to an arbitrary configuration C, a new compo-
nent αr ∈ {#t,#f} has been added, getting r∗ = (dr, vr, δr, αr). Initially, αr will
be set to #f; it will be modified to #t if (and only if) the rule r is applicable to
C. Consequently, if we denoted for every x ∈ V (μ0), Rx = {rx,1, . . . , rx,sx

}, then
we have R∗x = {r∗x,1, . . . , r

∗
x,sx

}, with r∗x,j = (dx,j , vx,j , δx,j , αx,j) and αx,j = #f;
then, R∗ =

⋃
x∈V (μ0) R

∗
x, and R = (R∗, ρ).

Moreover, for every configuration, C = (μ,M) and every x ∈ V (μ0), we will
denote by RC

x = {rC
x,1, . . . , r

C
x,sx

}, with rC
x,j = (dx,j , vx,j , δx,j , αx,j) and αx,j = #t

if and only if the rule rx,j is applicable to C, the tagged-rules of x to C. Finally,
we will note RC =

⋃
x∈V (μ0) R

C
x .
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4 The Input of a Transition P System

To define a P system we need to input its membrane structure and describe the
content of every membrane. Each membrane has symbols from a given alphabet,
transition rules and priority relations over them. The membrane structure has
to be a rooted tree and the priority between rules must be a strict partial order.

4.1 Default Settings

In order to introduce easily any P system we have considered, by default, that:

1. Only finite alphabets A will be used, and the elements of A are symbols.
2. A word ∈ A∗ is a string of symbols of A. We will represent the empty word

by ().
3. The membranes will be labeled with the the first N natural numbers, where

N is the degree of the P system.
4. The skin membrane is labeled with 1.
5. A distinguished membrane is considered as the output membrane.
6. We will input the membrane structure of a P system as a list of contain-pairs

(i j), representing the relation “membrane i contains membrane j”.
7. Every rule has a word as its antecedent, and a set of actions as its consequent.

Only the last action could be “delete”. The other ones have the form (word
target).

8. A target could be “here”, “out” or a membrane label.
9. If a membrane has k > 0 rules, then their labels go from 1 to k.

10. We represent the relation “rule r runs before rule s” by the preference-pair
(r s).

11. Every membrane contains a word, a list of rules, and a list of preference-pairs.

4.2 The Input Grammar

With the default settings provided above, any P system of degree N , over an
alphabet A, is recognized by the input grammar defined as follows:
< input − ps > ::= (A N < struct >< objects >< rules >< orders >< output >)
< struct > ::= (< arc >< arc > · · · < arc >)
< arc > ::= (< memb − ref >< memb − ref >)
< memb − ref > ::= 1 | 2 | 3 | . . . |N

< objects > ::= [< word >< word > N. . .< word >]
< word > ::= ∀ w ∈ A∗

< rules > ::= [< memb − rules > N. . .< memb − rules >]
< memb − rules > ::= (< rule >< rule > · · · < rule >)
< rule > ::= (< word > → (< action > · · · < action > delete)) |

(< word > → (< action > · · · < action >))
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< action > ::= (< word >< target >)
< target > ::= here | out | < memb − ref >

< orders > ::= [< memb − or >< memb − or > N. . .< memb − or >]
< memb − or > ::= (< pref − pair >< pref − pair > · · · < pref − pair >)
< pref − pair > ::= (< rule − ref >< rule − ref >)
< rule − ref > ::= 1 | 2 | 3 . . .
< output > ::= < memb − ref >

Here, (a b . . . z) stands for a list (standard MzScheme list), and [a b N). . . z] stands
for a vector of N elements (standard MzScheme vector).

5 The Parser/Compiler

The parser/compiler reads the input data describing a P system and analyzes:
if they are syntactically correct according to the input grammar, if they define
a well defined P system according to the chosen formalization, and, if no error
appears, it returns the P system according to the proposed internal grammar.

Even if the input system is syntactically correct, we cannot conclude that
any input data recognized by the input grammar, define a well-defined P system.
In fact, it could happen that the structure < struct > defined as a list of arcs
(< arc >∗) were not a rooted tree with root at membrane label 1; or, that there
exists a membrane, such that the order relation (< mem − or >) defined as a
list of preference pairs (< pref − pair >∗) were not a strict partial order.

The MzScheme sentence to execute the parser/compiler is:

(parser-ps N A <struct> <objects> <rules> <orders> <output>)

This process of parsing/compiling works as follows:

– The alphabet A is checked.
– The rooted tree μ, associated to the membrane structure, is created.
– For every membrane x, its objects are encoded as a multiset Mx, getting

M : V (μ) −→ M(A).
– Then, the initial configuration, C0 = (μ,M), is built.
– Every rule, r, from the input data is encoded by r∗ = (dr, vr, δr, αr), where

αr is set initially to #f. Then, one gets R∗.
– For every membrane x a strict partial order ρx : Rx × Rx −→ {#t,#f} is

returned, with: ρx(r, t) = #t ⇔ “ r runs before s” at x. So, we obtain ρ.
– From R∗ and ρ we have R = (R∗, ρ).
– The output membrane is checked to be in V (μ), getting i0.

If no error occurs, the parser-ps procedure returns a well-defined P system
Π = (A,C0,R, i0) as an element recognized by the internal grammar below.
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5.1 Internal Grammar

The grammar to represent internally and to deal with P systems of degree N is
the following:

< ps > ::= [< alph > ; < conf > ; < Rules > ; < orders > ; < output >]

< alph > ::= [a1,a2, . . . , aK]

< conf > ::= [< tree > ; < multisets >]

< tree > ::= [< vertices > ; < arcs > ; < root >]
< vertices > ::= {< x > , . . . , < x >}
< arcs > ::= {< arc > , < arc > , . . . , < arc >}
< arc > ::= [< x > ; < x >]
< x > ::= ∀ n ∈ N+ | n ≤ N
< root > ::= 1

< multisets > ::= [< multiset >< multiset > N). . . < multiset >]
< multiset > ::= [< nat >< nat > K). . . < nat >]
< nat > ::= ∀ n ∈ N

< Rules > ::= [< rules >< rules > N). . . < rules >]
< rules > ::= [< rule >< rule > . . . < rule >]
< rule > ::= [< anteced > ; < actions > ; < dissol > ; < app − tag >]
< anteced > ::= < multiset >
< actions > ::= (< action >< action > · · · < action >)
< action > ::= [< multiset > ; < target >]
< target > ::= here | out | < x >
< dissol > ::= #t | #f
< app − tag > ::= #t | #f

< orders > ::= [< test > < test > N). . . < test >]
< test > ::= λ : rules × rules −→ {#t, #f}

< output > ::= < x >

6 The Simulator

Once the parsing/compiling task is finished, we have a well-defined P system,
namely Π = (A,C0,R, i0), and we have to generate the computation tree
Comp(Π). To do that we use the procedure configurations:

Π
configurations−−−−−−−−−→ Comp(Π)

We get the computation tree Comp(Π) through the MzScheme sentence
(configurations Π level).
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The procedure configurations is based on the breadth-expansion-tree
procedure that, starting from the initial configuration C0, generates level by level
the computation tree. It uses the auxiliary procedures applicability-vectors,
tag-rules and apply-matrix. Here we present a brief outline. We will give in
the next sections a detailed description of every one.

The operators to compute the successor configurations of a given configura-
tion, C, are the applicability matrices. The process to generate the elements of
MAP(C) works as follows:

– RC (that is, the tagged-rules of x to C) is obtained by the tag-rules pro-
cedure. For every rule r∗ = (dr, vr, δr, αr) ∈ R∗, it sets αr = #t iff r is
applicable to C.

– Every RC
x , for every membrane x in C, is easily obtained from RC .

– Every Ap(x,C) (that is, the applicability vectors of membrane x in C) is
generated from RC

x , by means of the applicability-vectors procedure.
– Finally, MAp(C) is constructed as a cartesian product from the set of ap-

plicability vectors Ap(x,C), of every membrane x in C.

x1↗ RC
x1

applicability−vectors−−−−−−−−−−−−−−→ Ap(x1, C) ↘
C tag−rules−−−−−−→ RC x2−→ RC

x2
applicability−vectors−−−−−−−−−−−−−−→ Ap(x2, C) → MAP(C)

x3↘ RC
x3

applicability−vectors−−−−−−−−−−−−−−→ Ap(x3, C) ↗

Then, every P ∈ MAp(C) is applied to C to obtain the successor configuration
P (C). To do that the apply-matrix procedure is used.

↗ P1 ∈ MAP(C)
apply−matrix−−−−−−−−→ C1 = P1(C)

MAP(C) → P2 ∈ MAP(C)
apply−matrix−−−−−−−−→ C2 = P2(C)

↘ P3 ∈ MAP(C)
apply−matrix−−−−−−−−→ C3 = P3(C)

6.1 The Breadth-Expansion-Tree Procedure

This procedure is based on a dynamic breadth-search scheme; this means that
for every node of the tree to be built, the applicable operators are generated
dynamically.

To start, the breadth-expansion-tree procedure needs: (1) an initial node,
n0, (2) a test final-node? to check if a node n is or not a final node, (3) a
function generate-op, that, taking a node n, returns the set of operators Opn

to be applied to n and, finally, (4) another function apply-op that, taking a node
n and an operator op ∈ Opn, returns the successor node of n by this operator
op.

The breadth-expansion-tree procedure expands the tree and returns the
set of final nodes.
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Procedure breadth-expansion-tree (n0 final-node? generate-op
apply-op)
final-nodes ← {}
open-nodes ← {n0}
Repeat until open-nodes = ∅ do
n ← the first node in open-nodes
succn ← {}
If (final-node? n) = #t

then final-nodes ← {n}∪ final-nodes
else

Opn ← (generate-op n)
For every op ∈ Opn do

suc ← (apply-op op n)
If suc �= #f ∧ suc /∈ open-nodes then
succn ← succn ∪ {suc}

open-nodes ← (open-nodes−{n}) ∪ succn

Return final-nodes

The procedures configurations and applicability-vectors, to generate
configurations and applicability vectors, respectively, are based on this proce-
dure.

6.2 The Configurations Procedure

For a given P system Π = (A,C0,R, i0), we generate Comp(Π) (until a level
given by the user), through the MzScheme sentence (configurations Π level).
This procedure works as follows:

1. It starts defining locally:

– The node-structure as < node > ::= [C;RC ; pathC ], where C ia a con-
figuration; RC , the tagged-rules for C; and pathC , the list of operators
applied to reach the actual node from the initial one.

– The final-node? test. A node n = [C;RC , path] is a final node if either
it is a halting node, or the path length has reached the value of level.

– The generate-op function. It takes a node n = [C;RC ; path] and re-
turns the applicability matrices MAp(C). It needs the procedure appli-
cability-vectors.

– Finally, the procedure apply-op, which, taking a node n = [C;RC , path]
and an applicability matrix P ∈ MAp(C), returns the successor node
n′ = [C ′;RC′

;P ∪ path]. It needs the procedures apply-matrix and
tag-rules.

2. Then, it builds the init-node: n0 = [C0;RC0 ; ()], making use of the procedure
tag-rules to get RC0 .
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3. It expands the tree through the sentence:
(breadth-expansion-tree

init− node final-node? generate-op apply-op)
4. Finally, it returns the list of final-nodes [C;RC ; pathC ].

Procedure configurations (Π level)

1. Local definitions
< node > ::= [C;RC ; pathC ]
final− node? ::= λ1 : < node > −→ {#t,#f}
generate− op ::= λ2 : < node > −→ MAp(C) = (P1, P2, . . . )
apply− op ::= λ3 : k ×< node > −→ [C ′;RC′

; pathC′ ]
with C ′ = Pk(C)
and, pathC′ = Pk ∪ pathC

2. The initial node
RC0 ← (tag− rules C0 R∗ ρ)
pathC0 ← ()
n0 ← [C0;RC0 ; pathC0 ]

3. The final-nodes
final-nodes ← (breadth-expansion-tree

n0 final-node? generate-op apply-op)
4. Return final-nodes

Notes:

– λ1([C;RC ; pathC ]) = #t ↔ (αr = #f ∀r ∈ RC) ∨ |pathC | = level
– λ2 uses applicability-vectors procedure to get MAp(C).
– λ3 uses apply-matrix procedure to get C ′ = P (C) and then, tag-rules to

get RC′
.

– Every node [C;RC ; pathC ] ∈ final-nodes, contains all the information we
need about the computation tree. Particularly,
• If for every r ∈ RC is αr = #f, then C is a halting configuration, and

pathC is a halting computation of Π.
• Otherwise, C is a non-halting configuration, and the branch pathC could

be extended further than the prefixed level.

6.3 The Applicability-Vectors Procedure

To generate the applicability vectors for a membrane x in C, we only need Mx

and D = [d1, d2, . . . , dsx ], where Mx is the multiset of x, and dr (r = 1, 2, . . . , sx)
is the antecedent of the tagged-rule r in RC

x , provided that αr = #t. (Note: if
αr = #f, then we take dr = #f.) We generate Ap(x,C) through the MzScheme
sentence: (applicability-vectors Mx D). The procedure works as follows:
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1. It starts defining locally:
– The node-structure as < node > ::= [m;V ], where m is a multiset, and

V = [v1, v2, . . . , vsx
].

– The final-node? test. A node n = [m;V ] is a final node if ∀ dr ∈
D (dr = #f ∨m < dr).

– The generate-op function. It returns the operators list (d1, d2, . . . , dsx
).

– The apply-op procedure. From a node n = [m;V ], and an operator
dr �= #f, it returns the successor node n′ = [m′;V ′], with m′ = m −
dr, v′r = vr + 1 , and v′j = vj , ∀ j �= r. If dr = #f, then it returns #f.

2. Then, it builds the init-node: n0 = [Mx; [0, 0, sx. . . , 0]].
3. It expands the tree through the sentence:

(breadth-expansion-tree
init− node final-node? generate-op apply-op)y

4. Finally, it returns the applicability vector V of every final node [m;V ].

Procedure applicability-vectors (Mx D)

1. Local definitions
< node > ::= [m;V ] ; whith V = [v1, v2, . . . , vsx

]
final− node? ::= λ1 : < node > −→ {#t,#f}
generate− op ::= λ2 : < node > −→ (d1, d2, . . . , dsx)
apply− op ::= λ3 : r ×< node > −→ [m′;V ′]

with, m′ = m− dr , V ′ = [v′1, v
′
2, . . . , v

′
sx

],
being, v′r = vr + 1 but, v′j = vj ∀j �= r

2. The initial node
m0 ← Mx

V0 ← [0, 0, sx. . ., 0]
n0 ← [m0;V0]

3. The final-nodes
final-nodes ← (breadth-expansion-tree

n0 final-node? generate-op apply-op)
4. Returns the vector V of every node [m;V ] of final-nodes

Notes:

– Every vr counts the times the rule r could be applied.
– λ1([m;V ]) = #t ↔ ∀ dr ∈ D(dr = #f ∨m < dr)
– λ3(r, [m;V ]) = #f if dr = #f

6.4 The Tag-Rules Procedure

The tag-rules procedure updates the app-tag αr of those rules r of R∗ that
are applicable to a given configuration C = (μ,M). The MzSheme sentence
(tag-rules C R∗ ρ) returns RC . The procedure works as follows:
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1. It starts getting the degree, N , of Π.
2. Then, its work is based on an external and an internal loop, to go through

the membranes and through the rules of every membrane, respectively.
– The external loop generates RC

x , for every x = 1, 2, . . . , N , and, once it is
finished, it builds RC = (RC

1 , R
C
2 , . . . , R

C
N ). If x /∈ V (μ) ∨Mx = ∅, then

RC
x = R∗x, otherwise, RC

x has to be generated by the internal loop.
– The internal loop generates RC

x for a given x ∈ V (μ). It checks the
applicability of every rule rx,j ∈ R∗x to C, it changes αx,j from #f to #t
if so, and it obtains the tagged-rule rC

x,j ; finally, it builds and returns to
the external loop, RC

x = (rC
x,1, r

C
x,2, . . . , r

C
x,sx

).
3. It returns RC .

Procedure tag-rules (C R∗ ρ)
N ← length of ρ
For every x = 1, 2, . . . , N do
If x /∈ V (μ) ∨Mx = 0 then RC

x ← R∗x
else
For every j = 1, 2, . . . , sx do

If rx,j is not semi-applicable to C then rC
x,j ← r∗x,j

else
If ∃k < j | αC

x,k = #t ∧ ρ(k, j) = #t then rC
x,j ← r∗x,j

else rC
x,j ← (dx,j , vx,j , δx,j ,#t)

If αx,j = #t then
For every k < j | αC

x,k = #t ∧ ρ(j, k) = #t do

αC
x,k ← #f

RC
x ← (rC

x,1, r
C
x,2, . . . , r

C
x,sx

)
RC ← (RC

1 , R
C
2 , . . . , R

C
N )

Return RC

6.5 The Apply-Matrix Procedure

The apply-matrix procedure computes one transition step, C ′ = P (C), from
a configuration, C = (μ,M), and an applicability matrix, P ∈ MAp(C). The
MzSheme sentence is (apply-matrix C P RC). It works in two steps:

1. For every membrane x in C and every rule rx,j in RC
x , provided Px,j �= 0:

– rx,j is applied Px,j times without dissolution. So, some objects of mem-
brane x are consumed, and maybe itself and/or, its father and children
receive some objects. A more internal loop identifies the target where
every action of the rule sends its objects,

– then, if rx,j is a dissolution rule, x is stored in Δ as a node to be dissolved.
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2. Then, we visit the nodes of μ in a bottom-up ordered way, the nodes kept on
Δ are dissolved. Every dissolved node sends its objects (and children) to its
father and disappears from μ.

Procedure apply-matrix (C P RC)
M ′ ← M
μ′ ← μ
Δ ← {}
For every x ∈ V (μ′) do
If x �= root(μ′) then fx ← the father of x in μ′ else fx ← #f
For every rx,j = (dx,j , vx,j , δx,j , αx,j) ∈ RC

x do
If Px,j �= 0 then
M ′

j ← M ′
j − Px,j ⊗ dx,j

For every action = (m, tar) ∈ vx,j do
If tar /∈ V (μ′) then

If tar = here then tar ← x else tar ← fx

If tar �= #f then M ′
tar ← M ′

tar + Px,j ⊗m
If δx,j = #t then Δ ← Δ ∪ {x}

nodes ← the bottom-up ordered V (μ′)
For every x ∈ nodes do
If x ∈ Δ then

M ′
fx

← M ′
fx

+ M ′
x

M ′
x ← ∅

μ′ ← delete-node (μ′, x)
Return C ′ = (μ′,M ′)

7 A Complete Example: Generating Squares 12, 22, . . . , n2

Finally we present here a complete example to illustrate the way our simulator
should be used. The P system to be considered is the following one:

4

3
2

1

b b
4

a δ>

5

a c
a c b c

b c δ
f f f

a  c f

gf f δ

g g g g

( e , in   )

n
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7.1 The Input Data

First of all, we have to input the data describing the P system. We do that
defining the different elements: A,N, struct, output, objects, rules, and orders.
As we need the symbol ancf , for the given n, this one is generated by the
auxiliar procedure generate-symbol. The MzScheme sentence (sq1 n), assigns
the respective value to every compound, and invokes the parser/compiler.

> (define sq1
(lambda (n)
(let ((N 5)

(A ’(a b c e f g))
(o_m 4)
(struct ’((1 2) (2 3) (2 4) (3 5)))
(objects
(vector () () () () (generate-symbol

(list ’a n) ’(c 1) ’(f 1))))
(rules
(vector
’()
’((b -> ((b here) (e 4)))
(gg -> ((g here)))
(g -> ((a here) delete)))

’((ff -> ((g here) delete)))
’()
’((ac -> ((bc here)))
(ac -> ((bc here) delete))
(f -> ((ff here))))))

(orders
(vector ’() ’((2 3)) ’() ’() ’())))

(parser-ps N A struct objects rules orders o_m))))

7.2 The Parser-Compiler

The parser/compiler returns the internal representation of the P system, and
displays it in a readable way. So, if n = 4 the sentence

(define ps (sq1 4))
defines, if no error occurs, ps as the representation to be used together with the
configurations procedure.

7.3 Configurations

Finally, using the procedure configurations to expand the computation tree, we
obtain all configurations until the given level. In particular, with an appropriate
level we get all the final configurations. In the previous example it is enough to
use 9 as depth level.
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> (configurations ps 9)
TREE: ((1 2 3 4 5) ((1 2) (2 3) (2 4) (3 5)) 1) ;a non-halting
CONTENTS: ;configuration
Membrane 1 and Membrane 4:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #()

Membrane 2:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #(#f #f #f)

Membrane 3:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #(#f)

Membrane 5:
Multiset: #(0 4 1 0 512 0)
Applic-Rules: #(#f #f #t) ;the third rule could be applied

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(1 4 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 16 0 0)
Applic-Rules: #()

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(2 3 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 9 0 0)
Applic-Rules: #()

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(3 2 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 4 0 0)
Applic-Rules: #()

TREE: ((1 4) ((1 4)) 1) ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(4 1 1 0 0 0)
Applic-Rules: #()

Membrane 4:
Multiset: #(0 0 0 1 0 0)
Applic-Rules: #()

Output Membranes: (() eeeeeeeeeeeeeeee eeeeeeeee eeee e)
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8 Conclusions

Up to now there is no implementation of P systems with a practical usefulness
that allows the researchers to test and improve the abstract designs they make.
The simulation of P systems by conventional programming languages can be
considered not only as a practical approach to this computing model, but also
as an useful way to understand and improved the P systems designed to solve
real problems. We think that, because of the standard grammar it uses, the
program presented here can be used both as a research tool and a teaching tool,
allowing to see the way the P system evolves along its running. The program
has been developed in such a way that it could be improved to simulate different
variants of P systems. In a future work a graphical interface will be added, to
make easier the interaction with the user.
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Abstract. Membrane computing [Păun, 2000] is a new and fruitful pa-
radigm of natural computing. The present paper is devoted to some
preliminary ideas about how membrane computing can be applied to
linguistics. To this end, first some concepts are defined which introduce
what we call linguistic P systems. Then, three examples of quite sim-
ple applications to pragmatics, phonetic evolution, and dialogue are dis-
cussed.

1 Introduction

The most important intuition this paper is based on is that membranes can be
understood as contexts. Contexts may be different words, persons, social groups,
historical periods, languages. They can accept, reject, or produce changes in
elements they have inside. At the same time, contexts/membranes and their
rules evolve, that is, change, appear, vanish, etc.

This analogy gives rise to a quite suggestive framework to deal with language,
understood as an element continuously evolving in a changing world. Language
develops and evolves closely related with the environment and, likewise, it can
be an active factor of change in its environment. Therefore, following our first
analogy, membranes and elements of the system are constantly interacting.

The main elements in the process of communication are the addresser, the
addressee, the message, and the context. Syntax is the branch of linguistics which
deals with the internal structure of the message. This approach does not seem to
be the best to explain how utterances are constructed. Nevertheless, membranes
can explain, simulate, and perhaps predict how the elements involved in the
communicative process are able to modify the structure or the meaning of the
message, and also how the message can create new contexts or transform those
which already exist. Pragmatics, language evolution, semantics, sociolinguistics,
dialogue, belong to the set of sciences of language that are susceptible to be
approached from this perspective.

The present paper is the first attempt to construct a complex game deal-
ing with the simulation of behavior of languages, whose structures, rules, and
meanings depend on the space-time coordinates where utterances are generated.

Bearing these goals in mind, linguistic P systems are introduced in Section
2. In Section 3, a preliminary application to pragmatics is discussed. Section 4

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 74–89, 2003.
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is devoted to define a P system that is able to reproduce linguistic evolution
and, finally, Section 5 is a very preliminary introduction to dialogue in terms of
membrane computing.

2 Linguistic P Systems

The starting point of linguistic P systems are P systems as they were defined in
[Păun, 2000]. Original P systems are designed to generate formal languages, that
is, languages that lack interaction with the environment and semantics. In order
to adapt P systems to the complexity of verbal language, some concepts must
be modified or introduced. In this section, we define some new notions about
domains, alphabets, membranes, operations with membranes, as well as new
rules. These notions refer to phenomena that occur in human verbal language.

2.1 Domains and Alphabets

A linguistic P system has one or more alphabets, which can change or evolve
during the computation. Each alphabet evolves independently.

The domain D of a membrane is the definition of the symbols it accepts.
Domains are related to one or more alphabets (for example, the domain DMn

can be the union of two alphabets, Vm ∪ Vj). The domain of the skin membrane
is the union of the domains of its internal membranes. Several membranes of the
same system can have the same domain.

The function h, called function of emigration, establishes a correspondence
between symbols placed in different membranes. For instance, the function h(Mn

↔ Mm) establishes the correspondence between symbols belonging to the mem-
brane Mn and symbols belonging to the membrane Mm. The rules of this func-
tion have the following form: h(Mn ↔ Mm) = {ainMn

↔ αinMm
, . . . , binMn

↔
βinMm

}. They are called rules of emigration. Sometimes, emigration rules have
the symbol “→” instead “↔”. They are non-return emigration rules.

The subscript i attached to an element in a membrane means that this ele-
ment is not accepted by the domain of the membrane which it belongs to. If a is
not included in the domain of Mm and the rule h(Mn ↔ Mm) = ainMn

↔ αinMm

does not exist, then ainMm
= ai. Elements marked with i are not taken into ac-

count as output of the membrane system when computation stops.
Alphabets can evolve by means of two processes:

1. Some symbols are added to the vocabulary: for example, for V1 = {1, 2, 3},
the rule ADD {4} TO V1 increases the alphabet so as V1 = {1, 2, 3, 4}.

2. Some symbols are erased from the vocabulary: for example, for V1 = {1, 2, 3},
the rule DEL {3} FROM V1 decreases the alphabet so as V1 = {1, 2}.
Domains associated with each membrane can evolve. If they do it, they are

called variable domains. The processes for changing domains are the following
four:
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1. New symbols are added to vocabularies belonging to the domain. For exam-
ple, for V1 = {1, 2, 3} and DMn

= V1, the rule ADD {4} TO V1 increases
the domain.

2. Symbols are deleted from vocabularies belonging to the domain. For example,
for V1 = {1, 2, 3} and DMn

= V1, the rule DEL {3} FROM V1 decreases
the domain.

3. New vocabularies are added to a domain. For example, for V1 = {1, 2, 3},
V2 = {a, b, c} and DMn

= V1, the rule ADD V2 TO DMn
has as result

DMn = V1 ∪ V2.
4. A vocabulary is deleted from a domain. DEL V1 FROM DMn , applied to

DMn
= V1 ∪ V2, has as result DMn

= V2.

2.2 Membranes and Operations with Membranes

We define several operations with the membranes of a linguistic P system.
A membrane Mn, in a linguistic P system, is defined in each state by means

of two items: a) its domain, D, and b) the symbols that the membrane contains
inside, (x..z). Thus, Mn = (DMn, x..z).

Fig. 1. Basic configuration
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A linguistic P system can have one or more than one output membranes.
Deletion is the operation by means of which a membrane Mn is dissolved and

its elements go to the immediately external membrane. These elements will be
accepted or rejected according to the definition of the new membrane. The rule
for deleting membrane Mn is written as δMn.

Fig. 2. Deletion
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Example 1. Let Π be a P system with three membranes, [1 [2 ]2 [3 ]3 ]1, where
V1 = {a, b, c, d}, V2 = {α, β}, DM2 = V1, DM3 = V2, DM1 = DM2 ∪ DM3.
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Assume that after some evolution steps the configuration reached is as shown
in Fig. 1.

In this moment, the rule δM3 is applied, with the result as shown in Fig. 2.

Fig. 3. Expansion
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Expansion is the operation by means of which a membrane Mn can be
expanded to other adjacent or external membranes using the rule ψMn TO
Mm,Mk. That means that membranes Mm and Mk are dissolved in Mn and
their elements must be reformulated following the definition of Mn.

Example 2. By applying the rule ψM3 TO M2 to the system in the previous
example, we obtain the situation in Fig. 3.

Fig. 4. Absorption
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Absorption is the operation by means of which a membrane Mn disappears
dissolved in another adjacent or external membrane Mm. Its elements must be
reformulated according to the definition of Mm. The rule is φMn IN m.

Example 3. If we apply φM3 IN M2 to Π, the result is the system in Fig. 4.

Fig. 5. Erasing
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Erasing is the operation by means of which, given a membrane Mn, this can
completely disappear with all its elements. The rule is χMn
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Example 4. If we apply χM3 to Π, the result is the system in Fig. 5.

Cloning is the operation by means of which a membrane Mn, with exactly
the same domain and elements, is copied somewhere in the system. The rule has
the form κMm IN Mn.

Example 5. For instance, in Π we can apply κM3 IN M2. The result is the
system from Fig. 6.

Fig. 6. Cloning
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In this example, M4 is the clone of M3.

Invasion is the operation by means of which a membrane Mm is generated
in any place in the system using the rule νMm IN Mn. The new membrane is
empty and its domain definition is given by the notation BY Ms, where Ms is
either the membrane where it is generated or the membrane that de rule belongs
to.

Example 6. For instance, we can crate a new membrane in M2 from the mem-
brane M3. The rule is νM4 IN M2 BY M3.

Fig. 7. Invasion

�

�

�

�

�

�

�

�

�

�

�

�


�

�



1

2 3

4
abcβiβiβi

aibibiαβ

In this example M4 has the same domain than M3.

If a linguistic P system has more than one alphabet but only one domain or
more than one domain, but only one alphabet, then it is called non-integrative.

Fact 1. Let Mm and Mn be two adjacent membranes. Then φMn IN Mm =
ψMm TO Mn. Thus, for adjacent membranes, absorption (φ) and expansion (ψ)
are inverse operations.
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Example 7. φMn IN Mm = ψMm TO Mn (Fig. 8).

Fig. 8. Absorption and expansion as inverse operations
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Fact 2. Let Mm be a membrane immediately external to Mn. Then δMn =
φMn IN Mm.

Example 8. δMn = φMn IN Mm (Fig. 9).

Fig. 9. Deletion and absorption as equivalent operations
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2.3 Inactive and Sleeping Rules

Rules belonging to a membrane can only use the elements that the membrane
accepts as domain. If a membrane has any rule with an element that does not
belong to its domain, then that rule becomes inactive. If the membrane evolves
during the computation and it accepts the necessary element, then the rule is
immediately activated.

Sleeping rules are well-formed rules in a given membrane, but they are in-
active until some element activates them. Sleeping rules are denoted by σ. For
example, there can exist a rule such that σrn : c → δ, but this rule cannot be
applied before being activated. There are several ways of activating a sleeping
rule (the symbol ς is used to express the ctivation). These rules are the following:

1. To put the sleeping rule into another one which is active. For example, having
a sleeping rule σr5, we can writte r1 : b → abςr5c.

2. There can exist conditional rules; for instance, consider IF δM3 → ςr5. In
this case, if M3 is deleted, then the rule σr5 is activated.
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3. Finally, there can be a clock regulating the activation of some sleeping rules.
It can be programmed as a counter, so that after some rule or set of rules has
been applied several times, another one is activated. For example, a counter
cx can be considered, that increases each time a rule is applied in a system.
Then, we can have, for instance, a rule of the form rn : cx = 14 → ςr5.

The same procedures may be used for deactivating a rule. The only difference
is the adjunction of σ (the symbol of sleeping) instead of ς.

3 Applications to Pragmatics

Many definitions of pragmatics have been given. We will deal with several ones
that P systems can deal with, those which highlight the connection between
linguistic utterances and addressee. In other words, we think that P systems can
explain the different interpretation of an utterance depending on the context
(personal or social, related to the time or ideology) where it is uttered and
decodified. In this sense, some opinions and formalizations are pointed up.

According to [Levinson, 1983, 1], “the modern usage of the term pragmatics
is attributable to the philosopher [Morris, 1938], who was concerned to outline
(after Locke and Peirce) the general shape of a science of signs, or semiotics.
Within semiotics, Morris distinguished three distinct branches of inquiry: syntax,
being the study of ‘the formal relation of signs to one another’, semantics, the
study of ‘the relations of signs to the objects to which the signs are applicable’,
and pragmatics, the study of ‘the relations of signs to the interpreters’”.

As we have seen, according to Morris, syntax, semantics and pragmatics
are three constituents of a formal model that is able to explain the systems
of meaning. The first and deepest one is syntax, the second one is semantics
and, finally, pragmatics is the last component playing in the game of generating
utterances with meaning.

Some other authors, as Katz and Fodor, understand pragmatics as the theory
concerned with the disambiguation of sentences by the context in which they
were uttered. The formal definition is the following [Katz, 1977, 19]:

Let S be the set of sentences in language L, C the set of possible contexts,
P the set of propositions, and U the cartesian product of S × C, and let the
corresponding lower case letters stand for elements or members of each of those
sets such as s ∈ S, c ∈ C, p ∈ P , u ∈ U ; then

f(s, c) = p.

Thus, when the meaning of a proposition is established, it is necessary to
take into account the utterance plus the context, that is to say, the variations
that the context causes in the meaning.

In this way, [Levinson, 1983, 21] uphold that: Pragmatics is the study of the
relations between language and context that are basic to an account of language
understanding.

As a formal recapitulation of all these definitions, we take the Katz’ formal-
ization f(s, c) = p. We will show the suitability of P systems in the interpretation
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of utterances depending on the context. To do so, we need a P system with at
least two output membranes, since it is necessary to compare the final elements
in each one of them. Rules are thought so as, with only one vocabulary, and the
same membrane definition, languages generated in each of the output membranes
would be the same. Then, there is a unique utterance, which can change depend-
ing on if the addressee accepts or not the message and how it is interpreted by
it.

3.1 An Example

We can imagine a simple P system with two output membranes, M2 and M4, and
generating a regular language in each of them, which are the output membranes.
Specifically, let us consider the system:

Fig. 10. P systems applied to pragmatics
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Π = (V1, V2,M1, ...,M4, DM1, ..,DM4, h(M2,M3 → M4), h(M1 → M4),
(R1, ρ1), ..., (R4, ρ4), 2, 4),

V1 = {a, b, c, d},
V2 = {α, β, γ},
μ = [1[2 ]2 [3 ]3 [4 ]4]1,
M1 = (V1 ∪ V2, α),
M2 = (V1, ∅),
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M3 = (V1, ∅),
M4 = (V2, ∅),
h(M2,M3 → M4) = (ainM2,3 ↔ αinM4

, binM2,3 ↔ βinM4
, dinM2,3 ↔ γinM4

),
h(M1 → M4) = (ainM1

→ αinM4
, binM1

→ βinM4
, dinM1

→ γinM4
),

R1 = {r1 : α → (b, to3), r2 : α → (χ, to3)}, ρ1 = ∅,
R2 = {d → ab}, ρ2 = ∅,
R3 = {b → (cd, to2)d, d → (cd, to4)}, ρ3 = ∅,
R4 = {γ → (α, to1)αβ}, ρ4 = ∅.
(The target indications toj are interpreted as “go to membrane j”, irrespective
whether j is an adjacent membrane or not.)

In the first step we can apply the rule R1r1 or R1r2. With R1r2 the system
stops immediately, and the outcome is ∅. Therefore, we will apply R1r1. The
system evolves as shown in Fig. 10.

In this state, the process can start again or, by means of the application of
R1r2, M3 disappears and the system stops. In this easy example, by applying
the same rules, changing only depending on the domain, two different results
are obtained in M2 and M4, the output membranes. When the system stops we
have M2 = (cab)n and M4 = (αβ)n for n ≥ 0. Remember that elements as ci

n,
without rules of emigration, are eliminated when computation finishes.

Therefore, it can be said that, following the formalization given by Katz,
f(s, c) = p, in this context we have: f(cab,M2) = cab, f(cab,M4) = αβ.

4 Applications to Linguistic Evolution

P systems can be useful for modeling linguistic evolution of languages from a
historical point of view. Our intuition is that, by means of the activation/de-
activation of rules and the change in alphabets and domains, it is possible to
explain the mechanisms of linguistic changes, being phonetic or syntactic ones.

The most important features of linguistic P systems applied to languages
evolution are the following:

1. This type of P systems works with ordered sets of elements in each mem-
brane. These ordered sets of elements are strings.

2. In phonetic evolution vowels and consonants play very different roles. There-
fore, it seems advisable to establish at least two different alphabets which,
if necessary, can act differently. However, the domain of membranes will be
composed by vowels and consonants, since phonetic change is carried out
according to some laws that combine both types of phonemes.

3. Sometimes, for non-complex systems and quite wide domains, it is possible
to work without rules of emigration.

4. Systems of phonetic evolution need some context sensitive rules of emigra-
tion. Also the rules in each membrane can be context sensitive. Therefore,
in this respect, complexity increases.

5. New membranes with associated domains can appear any time during the
computation. The process is interpreted as the generation of new tongues.
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6. An important feature of rules in linguistic evolution is that they are quite
delimited in time and space, that is to say, they act during a “short” time in
a local place and later they vanish. Thus, the use of activation/deactivation
mechanisms is important.

7. Domains associated to each membrane usually evolve. The most important
causes for this change in domains are: a) influence among different contem-
porary tongues, called adstrat, and b) some internal evolutions which modify
the set of phonemes existing in the domain of a language.

4.1 An Example

In the present example we reproduce three phonetic changes, carried out in
different historical moments and languages.

1. Rotacisme: [−s−] > [−r−]. This change was brought about in IV Century
B.C. It causes some strange things like the existence of a nominative flos
(flower) with a genitive floris.

2. [ke,i−] > [t
∫ −] in vulgar Latin. That process dates from the first centuries

of our age. In the example [t
∫

] is denoted by c, for simplicity.
3. [−t−] > [−d−]. The alveolar plosive voiceless placed between vowels becomes

voiced. This change took place approximately in the VI century A.C. in
Western Romance languages.

These changes are simulated in the same membrane without taking into
account the chronological order.

The domain in the present P system does not evolve, because it is wide
enough to different languages and periods. There are two vocabularies, and the
rules of emigration are context sensitive. There is only one output membrane.
The P system which can simulate these processes is the following:

Π = (V1, V2,M1, ...,M4, DM1 , ..DM4 , h(μ → M2), (R1, ρ1), ..., (R4, ρ4), 3),
V1 = {a, i, u},
V2 = {s, k, t, c, d},
μ = [1[2 ]2 [3 ]3 [4 ]4]1,
M1 = (V1 ∪ V2, tussa),
M2 = (V1 ∪ V2, ∅),
M3 = (V1 ∪ V2, ∅),
M4 = (V1 ∪ V2, kk),
h(μ ↔ M3) = (ki{a, u}inμ ↔ c{a, u}inM3

, V1
+sV1

+
inμ

↔ V1
+rV2

+
inM3

,
V1

+tV1
+

inμ
↔ V1

+dV1
+

inM3)
,

R1 = {r1 : ss → (k, to3), r2 : tu → (a, to2), r3 : a → (a, to3),
ρ1 = {r1 > r2 > r3},
R2 = {r1 : s → (s, to4), r2 : at → (s, to4), r3 : t → (s, to3)},
ρ2 = {r2 > r3},
R3 = {r1 : ia → (t, to2)t},
R4 = {r1 : k → (ia, to3), r2 : s → (t, to2)a, r3 : a → (a, to3)},
ρ2 = {r2 > r3}.
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The system evolves from the initial state as in Fig. 11.

Fig. 11. A P system simulating phonetic evolution
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The outcome obtained with this system is the same as the one obtained
by applying point mutations, which allow the change of an element for another
one in a string, even depending on the context. The advantage of P systems
is that they allow the parallel modeling of different processes. For instance, we
can imagine a cellular system to obtain, as an output, two Romance languages,
Romanian and Catalan, starting from Latin. The only thing we must do is to
consider two output membranes.

Given classical Latin, in order to obtain Catalan, it is necessary to apply
some phonetic rules. However, in order to obtain Romanian, some of those rules
are not necessary and others must be used.

Let us consider the following phonetic rules:

1. [ke,i−] > [t
∫ e,i −]: a velar sound becomes palatal in vulgar Latin. In the

example, [t
∫

] is denoted by c, for simplicity.
2. [t

∫ −] > [s-] in Catalan.
3. [−u−] > ∅ in Romanian.
4. [−u−] > [b] in Catalan.
5. Pre tonic vowels disappear, in the whole domain of Romance Languages.

We will define the following linguistic P system without rules of emigration.
Membrane M1 does not work because it represents Latin. M5 is a new membrane
representing vulgar Latin. Finally, V3 denotes tonic sounds.
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Π = (V1, V2, V3,M1, ...,M5, D1, ..,D5, (R1, ρ1), ..., (R4, ρ4), (2, 3)),
V1 = {i, a, e, u},
V2 = {k, t, s, c, b},
V3 = {T,A},
μ = [1[2 ]2 [3 ]3 [4 ]4[5 ]5]1,
M1 = (V1 ∪ V2 ∪ V3, ∅),
M2 = (V1 ∪ V2 ∪ V3, ∅),
M3 = (V1 ∪ V2 ∪ V3, ∅),
M4 = (V1 ∪ V2 ∪ V3, s),
M5 = (V1 ∪ V2 ∪ V3, kiuiTAte),
R1 = ∅, ρ1 = ∅,
R2 = {r1 : viTA → TA}, ρ2 = ∅,
R3 = {r1 : bT → (i, to4)uT ρ3 = ∅,
R4 = {r1 : s → (si, to3), r2 : t → (b, to3), r3 : i → ATto3}, ρ4 = ∅,
R5 = {r1 : ki → ci, r2 : ci → (ci, to2), r3 : ui → (ui, to2)u, r4 : uT → (t, to4)T},
r4 : TA → (TA, to2)T , r6 : Tt → (T, to3), r7 : (e → te, to2), ρ5 = r1 > r2 > r3 >
r4 > r5 > r6 > r7.

This system evolves, starting from the initial configuration, as we can see in
Fig. 12.

5 Applications to Dialogue

Among many existent definitions of dialogue, we choose the one introduced by
[Moulin, Rousseau, and Lapalme, 1994, p. 35], who state “A conversation can
be thought of as the result of coordinated interactions among agents to reach a
common goal called a conversational goal”. In what concerns the interactions
carried out among speakers in a conversation, Levinson [Levinson, 1983, p. 284]
says “Interactions can be understood as the sustained production of chains of
mutually-dependent acts, constructed by two or more agents each monitoring
and building on the actions of the other.”

From that point of view, P systems can be constructed that may able to
simulate (or generate?) dialogue. Such systems have the following features:

– They do not act in parallel. Despite some rules can be applied at the same
time, this will never happen, since the system is blocked (the dialogue is
not possible in parallel). By default, the agents are acting in the order
M1,M2, ..,Mn, or in a way defined in the system.

– All the membranes (except the skin membrane) are output membranes. Even
the skin membrane can be an output membrane if it acts as a distributor.

– During the dialogue, some membranes can dissolve or vanish. If only one out-
put membrane remains, then the system stops, for it cannot exist a dialogue
with only one output membrane.
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Fig. 12. Phonetic evolution: a specific case
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Fig. 13. Dialogue: a simple case
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Formally, the system is:

Π = (V1, V2, V3, V4,M1, ...,M4, D1,D2,D3 h(D1 → D2), h(D2 → D3),
h(D1 → D3),(R1, ρ1), ..., (R4, ρ4), (2, 3, 4)),

V1 = {a, b, c},
V2 = {α, β, γ},
V3 = {1, 2, 3},
V4 = {A,B,C},
μ = [1[2 ]2 [3 ]3 [4 ]4]1,
M1 = (V1 ∪ V2 ∪ V3, 1αa),
M2 = (V1, ∅),
M3 = (V3, ∅),
M4 = (V2, ∅),
h(V1 ↔ V2) = (ainV1

↔ αinV2
, binV1

↔ βinV2
, cinV1

↔ γinV2
),

h(V1 ↔ V3) = (ainV1
↔ 1inV3

, binV1
↔ 3inV3

),
h(V2 ↔ V3) = (1inV1

→ βinV2
, 2inV1

→ γinV2
),

R1 = {r1 : a1 → (abc, to3), r2 : α2 → (bb, to2)α},
R2 = {r1 : b → (bc, to3), r2 : aa → (bc, to3)b, r3 : b → (bc, to4)a, r4 : aa → aA,
r5 : A → ψ M2 TO M3},
R3 = {r1 : 1 → (2, to1), r2 : 3 → (223, to4), r3 : IF |x| ∈ D2 ∪D1 ≥ 4 THEN δ},
R4 = {r1 : γγ → (α, in2)β, r2 : γβ → ADD V4 IN DM2}.

It evolves as shown in Fig. 13. At this point the system stops because there is
only one output membrane. In the present dialogue, it can be said that M2 wins.

6 Final Remarks

Several suggestions have been given in this paper about applications of mem-
brane computing to linguistics. The paper is only an intuitive and preliminary
approach to what seems to be a good way for a computational treatment of some
branches of linguistics that usually have strong difficulties for being formalized.
Many notions, examples, and applications remain to be considered in this field.
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Abstract. We present a method of generating context-free languages,
in a parallel way, using dynamic P systems, which evolve in time in a
coherent manner. The evolution is described by a contextual grammar
D(G), which can be canonically associated to any context-free grammar
G. The dynamic P system generated by D(G) will “compute” the lan-
guage L(G), i.e., one of the configurations of the system will contain all
words of L(G) of length n at depth 2n − 1. Our approach is an attempt
to prove the richness and power of the concept of dynamic P system,
both in the area of P systems, and in the area of contextual grammars.

1 Introduction

We present in this paper a method of generating the words of a context-free
language using P systems with string objects and rewriting rules.

The advantage of using P systems lies in the fact that several rewritings can
take place, in a parallel manner, each in an appropriate membrane.

The same problem was addressed and solved in [1], but the method proposed
here is completely different. Namely, we use a variant of the concept of dynamic
P systems, introduced in [2]. However, even if we avoid the use of dynamic
P systems, and simulate our method with membrane-generation rules, the two
approaches are still different.

We rewrite entire words contained in elementary membranes. After rewrit-
ing, the non-terminals still present in the string determine which rules of the
initial grammar G are applicable, and a dynamic step generates new elementary
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membranes with those associated rules, making possible a next step of maximal
parallel rewriting. The words of the context-free language L(G) are obtained in
elementary membranes.

In section 2 we present some basic notations for context-free grammars and
languages, and rewriting membrane systems.

In section 3 we present some notions of contextual grammars that we will
use in the sequel of the paper. We define a new type of contextual grammar, the
total contextual grammar with an infinite set of contexts, and parallel derivation.
It has features already used in the past, and studied in the literature, but not
in this combination: total selection function, infinite number of contexts and
parallel derivation.

In section 4 we present the notions of dynamic P system with one-step com-
putations, and its associated dynamic computation sequence. While retaining
the same general idea, the concepts introduced here are different from those
introduced and studied in [2]. The differences concern two essential points: the
type (length) of the internal computation step of the dynamic P system in ques-
tion, and the type of the contextual grammar mechanism used as a generative
device. While in [2] dynamic P systems with stable computations were studied,
here we deal with dynamic P systems with one-step computations. Also, the type
of contextual grammar used here is not of the same type as that from [2].

In the main section, 5, we make the canonical construction: starting from a
context-free grammar G, we construct a total contextual grammar D(G) with
an infinite number of contexts, and whose associated parallel derivation relation
will describe the evolution of the membrane structure. The dynamic P system
to which D(G) gives rise, Π(G), will “compute” the words of L(G). The main
result states that, if G is in Chomsky normal form, then one of the configurations
will produce all words of length n at depth 2n− 1. This is similar to the result
proved in [1], but the present result is stronger because we produce all words in
a configuration, while in [1] the “good” configurations produce only one word.
Also, if we consider the problem of collecting the produced words, it will be
easier in the present model, since the words are in elementary membranes, while
in the other model a word is represented by its sequence of letters in a nested
membrane structure, which makes extraction more difficult.

In section 6 we illustrate the model with an example: we take a context-free
grammar G and construct the first terms of the sequence Π(G), the dynamic P
system canonically associated to it.

Section 7 is devoted to concluding remarks and further research topics. A
more detailed comparison with the approach proposed in [1] can also be found
there.

2 Preliminaries

We recall from [4] the following notations. If V is a non-empty and finite set
called alphabet, we denote by V + the set of non-empty words over V , with λ the
empty word and with V ∗ = V + ∪ {λ} the set of words over V .
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A context-free grammar is a construct G = (N,T, S, P ) where N and T
are alphabets, denoting the sets of non-terminals and terminals, respectively,
S ∈ N denotes the start symbol, and P ⊆ N × (N ∪ T )∗ denotes the (finite) set
of production rules. A production (A,α) ∈ P will be denoted by A → α. The
derivation in G is defined by:

x =⇒ y iff x = uAv, y = uαv, and A → α ∈ P.

If ∗=⇒ is the reflexive and transitive closure of =⇒, then L(G) = {w ∈ T ∗ |
S

∗=⇒ w} denotes the language generated by G.
We say that a language L is context-free if there exists a context-free grammar

G such that L = L(G). A context-free grammar G = (N,T, S, P ) is in Chomsky
Normal Form (CNF) iff P ⊆ N×(NN∪T ). We recall that, for every context-free
language L, there exists a context-free grammar G′ in CNF such that L(G′) = L.

The grammar from the following example will be used later.

Example 1. Let us consider G = ({S,A,B}, {a, b}, S, P ) a context-free grammar
with the productions (X → u|v is a short writing for X → u,X → v):

S → bA|aB,
A → bAA|aS|a,
B → aBB|bS|b.
The generated language is L(G) = {w ∈ {a, b}∗ | |w|a = |w|b}, where |w|α

denotes the number of occurrences of the symbol α in the string w.
The context-free grammar G′ = ({S,A,B,Ca, Cb, D1, D2}, {a, b}, S, P ′) in

CNF is equivalent to the grammar G, where the productions of P ′ are:
S → CbA|CaB,
A → CaS|CbD1|a,
B → CbS|CaD2|b,
D1 → AA,
D2 → BB,
Ca → a,
Cb → b.

Remark 1. Using a grammar G in CNF, any word in L(G) of length n is derived
in exactly 2n− 1 derivation steps.

We recall from [11] the following notions.
A rewriting membrane system is a construct of the following form:

Π = (V, T, μ,M1, · · · ,Mm, (R1, ρ1), · · · , (Rm, ρm)),

where V is an alphabet, T ⊆ V (terminal alphabet), μ is a membrane structure
with m membranes, labelled with 1, 2, · · · ,m, M1, · · · ,Mm are finite languages
over V (initial string-objects placed in the regions of μ), R1, · · · , Rm are finite sets
of context-free evolution rules associated with the m regions of μ, and ρ1, · · · , ρm

are partial order relations over R1, · · · , Rm.
The rules from the sets R1, · · · , Rm are of the forms a → (v, tar) or a →

(v, tar)α, where a → v is a context-free rule over V , that is, a ∈ V and x ∈
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V ∗, tar ∈ {here, out, in}, and α ∈ {δ, τ}, with the usual meaning as described in
[11]: the string produced by using this rule will go to the membrane indicated by
tar (here means that the string remains in the same region, out means to send
the string out of the region where the rule is applied, and in means to go to any
directly lower membrane, non-deterministically chosen); sometimes one can also
use indications of the form inj , where j is the label of the membrane where the
string should be sent. To any rule we can append the symbols δ, τ , indicating
that after using the rule the respective membrane changes its permeability as
described in [11]. A system with T = V is said to be non-extended, hence a
system of the general form is said to be extended.

The language generated by Π is denoted by L(Π) and it is defined as follows:
we start from the initial configuration of the system and proceed iteratively, by
transition steps performed by applying the rules in parallel, to all strings which
can be rewritten, obeying the priority relations. We observe that each string is
rewritten by only one rule in a sequential manner and not by rewriting all its
symbols. All strings over the alphabet T sent out of the system during any step
of any computation form the language L(Π).

We denote by [E]LSPm(rw, in, pri, δ, τ) the family of languages generated
by [extended] string-object P systems of degree at most m ≥ 1, using rewriting
rules, the target indications here, out, in, priorities, and actions δ, τ . When we
use the target indications inj instead of in, we write LSPm(rw, tar, pri, δ, τ);
as usual m is replaced with ∗ if the degree of the system is not bounded, and
pri, δ, τ are removed if the corresponding feature is not used.

In this paper, we use a particular version of a rewriting membrane system:
its terminal alphabet T is the terminal alphabet of the grammar to simulate; the
rules are of the form a → (v, here) (hence without δ or τ , and with tar always
fixed as here); also, there is exactly one evolution context-free rule associated
with each membrane of the system (this means that no priority relation is used).
An important point where we depart from the standard notations is the follow-
ing: in the standard literature, brackets with indices 1, · · · ,m are used for the
description of a membrane structure μ as in the definition above, the indices
playing the role of correctly matching brackets which express one membrane; in
the present paper we have not used these kind of indices. The ones we use are
the labels of a fixed set of rules, and the expression [i ]i refers to a membrane
having the i rule associated to it.

3 Contextual Grammars: Old and New Types

The following notions of contextual grammars and languages are based on defi-
nitions from [7]. For the purposes of our model, we will need to extend standard
concepts of contextual grammars, more precisely, the concept of total contextual
grammar, along two lines, mentioned and used in [7], but only for other types
of contextual grammars.

A total contextual grammar is a construct G = (V,A,C, φ), where V is an
alphabet, A is a finite language over V (the set of axioms), C is a finite subset
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of V ∗×V ∗ (the set of contexts), and φ : V ∗×V ∗×V ∗ → P(C) is the choice (or
selection) map. The derivation in a total contextual grammar is defined by:

x =⇒ y iff x = x1x2x3, y = x1ux2vx3, and (u, v) ∈ φ(x1, x2, x3).

If ∗=⇒ is the reflexive and transitive closure of =⇒, then L(G) = {x ∈ V ∗ |
w

∗=⇒ x for some w ∈ A} denotes the language generated by G. We denote by
TC the family of languages generated by total contextual grammars.

Characteristic for total contextual grammars is the highly constrained deriva-
tion. As a consequence, total contextual grammars generate languages that can-
not be generated by other basic contextual grammars (as external or internal
contextual grammars1). We mention that the class of context-free languages is
entirely included in TC. Also, the following three non-context-free constructions
– triple agreement, cross dependencies and marked reduplication – which are
usually found in natural languages, prove to be of a total contextual type.

Example 2. Let us consider G = ({a, b, c}, {abc}, {(a, bc)}, φ) a total contextual
grammar, where φ is defined by:

φ(x1, x2, x3) =
{{(a, bc)} if x1 = an, x2 = bn, x3 = cn, n ≥ 1,

∅ otherwise.

We have
L(G) = {anbncn | n ≥ 1},

and thus, the language of triple agreement is in TC.

Example 3. Let us consider G = ({a, b, c, d}, {abcd}, {(a, c), (b, d)}, φ) a total
contextual grammar, where φ is defined by:

φ(x1, x2, x3) =

⎧
⎨

⎩

{(a, c)} if x1 ∈ a+, x2 ∈ b+c+, x3 ∈ d+,
{(b, d)} if x1 ∈ a+b+, x2 ∈ c+, x3 ∈ d+,
∅ otherwise.

We have
L(G) = {anbmcndm | n,m ≥ 1},

and thus, the language of cross dependencies is in TC.

Example 4. Let us consider G = ({a, b, c}, {c}, {(a, a), (b, b)}, φ) a total contex-
tual grammar, where φ is defined by:

φ(x1, x2, x3) =
{{(a, a), (b, b)} if x1 ∈ {a, b}∗, x2 ∈ {c}{a, b}∗, x3 = λ,

∅ otherwise.

We have
L(G) = {wcw | w ∈ {a, b}∗},

and thus, the language of marked reduplication is in TC.
1 We do not account here for other constraints on the derivation than the usual

selection map.
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In the following, we will extend the notion of a total contextual grammar,
along two lines. The first extension refers to the cardinality of the set of contexts.

In [7] some contextual grammars with infinite sets of contexts were introduced
and studied. More precisely, in section 10.9 of [7], contextual grammars were
considered, having an infinite set of contexts C, and such that their selection
function, φ, has finite image in every point, i.e., φ(x) is finite for every x ∈ V ∗.
However, only the classes of languages generated in the internal and the external
mode were considered and studied there. For the model which we propose in
this paper, a similar notion, allowing for an infinity of contexts, but for total
contextual grammars, is needed, so we introduce it in the sequel.

A total contextual grammar with an infinite set of contexts is a construct
G = (V,A,C, φ), where all the elements keep their meaning and definition as in
a (normal) total contextual grammar, except for the following two modifications:

– the set of contexts, C, is not anymore a finite subset of V ∗ × V ∗, but an
arbitrary one;

– the total selection function is such that φ(x1, x2, x3) is a finite subset of C,
for any (x1, x2, x3) ∈ V ∗ × V ∗ × V ∗.

Total contextual grammars with an infinite set of contexts generate languages
that cannot be generated by (normal) total contextual grammars.

In order to prove this assertion we will use the bounded growth property.
We say that a language L ⊆ V ∗ has the bounded growth property iff there is

a bound on the difference between the length of any word in the language and
the length of the word immediately longer and belonging to the language, i.e.:
there exist two natural numbers p and q, such that, for any word x ∈ L with
|x| > p, there exists a word y ∈ L with 0 < |x| − |y| ≤ q.

We know (see [7]) that languages generated by all basic contextual grammars
(including the total contextual ones) have the bounded growth property.

Let us denote by TC∞ the family of languages generated by total contextual
grammars with an arbitrary (it may be infinite) set of contexts.

We have the following result.

Proposition 1. The inclusion TC ⊂ TC∞ is strict.

Proof. The inclusion itself is trivial. For its strictness, consider the following
total contextual grammar with an infinite set of contexts

G = ({a, b, c}, {c}, {(a, b2n+1c2
n

) | n ≥ 0}, φ),

where φ is defined by:

φ(x1, x2, x3) =
{

{(a, b2n+1c2
n

)} if x1 = an, x2 = bn2
, x3 = c2

n

, n ≥ 0,
∅ otherwise.

We have
L(G) = {anbn2

c2
n | n ≥ 0}.
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L(G) does not have the bounded growth property. If we order the words of
this language according to their length, we have

L(G) = {w0, w1, . . . , wn, . . .},

with wi = aibi2c2
i

, for any i ≥ 0.
The differences between the lengths of any two consecutive words in this

enumeration of L(G) form an infinite sequence of natural numbers sn = |wn+1|−
|wn|, which converges to ∞. Therefore, regardless of the choice of the constant
p from the definition of the bounded growth property, there exists no constant
q which may bound the difference between a word x ∈ L(G) longer than p and
any other word in L(G), shorter than x. 
�

The second extension of the notion of a total contextual grammar concerns
the parallelism of derivations.

A notion of parallel derivation is defined in [7] (section 10.5), for (classical)
internal contextual grammars (with a finite set of contexts).

We generalize this notion of parallel derivation for total contextual gram-
mars. While in the case of internal contextual grammars the string to which the
derivation is applied is decomposed into selectors, in our case the string will be
decomposed into triple selectors.

The parallel derivation in a total contextual grammar (with or without an
infinite set of contexts) G = (V,A,C, φ) is defined by:

x =⇒p y iff x = x1x2 . . . xn and y = y1y2 . . . yn, where
xi = x1,ix2,ix3,i and yi = x1,iuix2,ivix3,i, with
(ui, vi) ∈ φ(x1,i, x2,i, x3,i), 1 ≤ i ≤ n, n ≥ 1.

The two newly added features – the infinity of the set of contexts, and the
parallelism of the derivation – can be combined, giving rise to total contextual
grammars with an infinite set of contexts and parallel derivation, and in section
5 we will construct precisely such a grammar.

4 Dynamic P Systems

The notion of dynamic P system was first introduced in [2].
In the most general sense, a dynamic P system is a P system which changes/

evolves in time, in a coherent manner (aside from the computations done inside
it), and the changes are made via a contextual grammar mechanism. We can also
see the contextual grammar mechanism as describing an evolutionary process
intrinsic to the system.

The idea to use a grammar to describe changes in a system, more specifically
in a P system, is not so unexpected; but it requires a “good” string-description
of a type of P systems. The derivation associated to the grammar takes us from
one system to another one, in a coherent way.
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More specifically, suppose we have a set of well-formed strings (well-formed
according to some formal definition), denoted Exp(V ), over an alphabet V , and
containing also separators. Among the separators we will use the brackets {[,]},
to describe the membrane structure of the system, but we can use also other
kinds of separators (like | and ; in [2]). The strings in Exp(V ) describe some
particular type of P systems.

Suppose that we also have a contextual grammar D of a certain type (in-
ternal contextual, total contextual, insertion grammar, etc.) with the following
properties:

(1) its set of axioms is contained in Exp(V );
(2) its derivation relation, =⇒D, keeps us inside the set of well-formed strings,

i.e., if x ∈ Exp(V ) and x =⇒D y, then y ∈ Exp(V ).
Then, starting from a P system described by an axiom of D, and applying

repeatedly derivations of D, we obtain a sequence of P systems which have
“evolved” in a coherent manner from the original one. We can also conceive of
this mechanism as being not a generative device, but a descriptive tool.

We can use contextual grammars and their associated derivation to describe
any kind of changes in a P system – changes in string or object contents, or rule
contents, but, of course, the most interesting ones are changes of the membrane
structure, maybe accompanied by other changes as well.

On the other hand, in a P system we have “internal computations”, which can
be one or several of the following operations: string rewriting, communication by
means of symport/antiport rules, moving symbol objects, etc. (see [11] and [12]
for a longer list of operations). The computations inside a P system take place
in general in a maximal parallel way. We will call one computation step what is
known in the standard literature of P systems as a transition: the passage from
one configuration of the P system to the next one.

If Π is a P system, let us denote by Π � CΠ one internal computation step,
the new P system CΠ being the result of the computation step.

Definition 1. A dynamic P system with one-step computations, associated to
the grammar D will be a sequence of P systems {Πn | n ≥ 1} such that:

(i) Π1 is an axiom of D;
(ii) for each i ≥ 1, CΠi denotes the P system obtained from Πi after one-step

computations;
(ii) for i ≥ 2, each Πi is obtained from Πi−1 by one derivation in the gram-

mar G, that is CΠi−1 =⇒D Πi.
The dynamic computation sequence associated to the above system is the

following alternating sequence of derivations in G and one-step computations:

Π1 � CΠ1 =⇒D Π2 � CΠ2 =⇒D . . . =⇒D Πi � CΠi =⇒D . . . .

The dynamic P systems considered in [2] were of a slightly different type,
namely, they were dynamic P systems with stable computation steps (see [3]),
in which the internal computations were allowed to take place till the system
reached a stable configuration.
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A dynamic computation sequence might begin either with an internal com-
putation, or, if this is not possible, i.e., Π1 = CΠ1, with a derivation in G.

We say that a dynamic P system is stationary if the sequence {Πn | n ≥ 1} is
stationary in the usual sense, i.e., there exists an index m such that for all k ≥ m
Πk = Πk+1. This means that neither internal computations, nor derivations in
D are possible in Πm or CΠm.

In [2] and [3] we have dealt with P systems with symport/antiport rules,
first without string-objects inside, then allowing string-objects in some of the
membranes, and finally, in the most general form, allowing string-objects inside
any of the membranes. In the present paper we will deal with completely dif-
ferent types of P systems: they contain string objects only in the elementary
membranes, and each membrane has one and only one rewriting rule associated
with it. Each membrane is typed according to the unique string rewriting rule it
contains. The indices of the brackets representing membranes will refer, in this
paper, to types, and not to some indexing method generally used to eliminate
ambiguity by matching appropriate pairs of open and closed brackets, like they
are used in general.

The contextual dynamic mechanism presented in [2] and [3] is based on the
notion of enriched bracketed contextual grammar, a generalization of the brack-
eted contextual grammars of [6]. Even if we still use brackets to delimitate mem-
branes, the total contextual grammar with an infinite set of contexts D(G) which
we will construct in the next section, in order to describe a different dynamic of
a different type of P system, is not essentially of a contextual bracketed type.

P systems which allow for changes in the membrane structure (generation of
new membranes, merging, dissolving, etc.) have been considered in the literature
on P systems (see [11], [12], [5]). The main difference between other approaches
and ours is that other approaches describe membrane behavior by rewriting rules,
for instance, placed at the same level as the object or string handling rules, while
in our approach the changes are generated/described by a contextual grammar
mechanism (that is way we call them “coherent”), and the mechanism works in
an alternating pattern with the rest of the internal operations.

5 The Contextual Dynamic Mechanism

In what follows we will consider a fixed context-free grammar, G = (N,T, S, P ),
with the rules in P labelled by integers from 1 to n. We can suppose that G is
in CNF, but for the time being this is not essential.

Let V = N ∪ T , and consider also the alphabet of separators Sep = Sep[ ∪
Sep], where Sep[ = {[i | 0 ≤ i ≤ n}, Sep] = {]i | 0 ≤ i ≤ n}, i.e., the set of pairs
of open and closed brackets indexed by the rules in P , together with an extra
pair of brackets indexed by 0. We will use the separators to denote membranes
with associated rules from P , for instance [i]i will denote an empty membrane
having associated the rule i of P .
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Definition 2. A string e ∈ (V ∪ Sep)∗ will be called a G-expression iff:

(i) either e = [iα]i, with α ∈ V +, or
(ii) e = [ie1 . . . em]i, with e1, . . . , em G-expressions.

Denote by E(G) the set of all G-expressions. Consider on E(G) the equivalence
relation defined by:

[ie1 . . . em]i ∼ [ieσ(1) . . . eσ(m)]i,

for any permutation σ of m elements.
The equivalence class of a string e in E(G), denoted still by e, will describe

a membrane structure with the properties:

– every membrane, with the exception of the skin membrane [0]0, has an as-
sociated rule in P (i.e., every membrane is typed according to this unique
rule, and [i]i is the notation for membrane with rule i),

– every elementary membrane contains a string from V +, and no other mem-
brane contains strings.

Let us consider now the total contextual grammar with an infinite set of
contexts, canonically associated to the fixed context-free grammar G:

D(G) = (V ∪ Sep, {[0S]0}, C, φ),

where C is defined by:

C = {([i1 , ]i1 [i2α]i2 . . . [ik
α]ik

) | α ∈ V + \ T+, 1 ≤ ij ≤ n, 1 ≤ j ≤ k, k ≥ 1,
where {i1 < . . . < ik} is the ordered set of all labels of all rules in P

which have as left-hand side the non-terminal symbols of α} ∪ {(λ, λ)}

and φ is defined by:

φ(x1, x2, x3) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{([i1 , ]i1 [i2α]i2 . . . [ik
α]ik

)} if x1 = β[i, x2 = α ∈ V + \ T+,
x3 =]iγ, 1 ≤ i ≤ n,
β ∈ Sep∗[ , γ ∈ Sep∗] ,

{(λ, λ)} if x1 = β[i, x2 = α ∈ T+, x3 =]iγ,
1 ≤ i ≤ n, β ∈ Sep∗[ , γ ∈ Sep∗] ,

∅ otherwise.

Note that [0S]0 ∈ E(G).
Note also that, if α ∈ V + \ T+, then {i1 < . . . < ik} is the ordered set of all

possible rules in P which can be used to rewrite α in G.
If α ∈ T ∗, then actually no insertion of contexts takes place in D(G), so we

can replace this with “no rule” (the power of the empty context).
For α ∈ V + \ T+, β ∈ Sep∗[ , γ ∈ Sep∗] , the (normal) derivation relation =⇒

in D(G) is:
β[iα]iγ =⇒ β[i[i1α]i1 . . . [ik

α]ik
]iγ.
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In terms of membrane structures, the application of the above derivation has
the effect of transforming the elementary membrane i which contains the string
α, in membrane i, no longer elementary, containing submembranes i1, i2, . . . , ik,
each of them in possession of a copy of α.

In terms of P systems, this derivation works like a rule of “membrane creation
with string replication”:

[iα]i → [i[i1α]i1 . . . [ik
α]ik

]i,

where the types of the new generated membranes depend essentially on the string
content α of the initial membrane i.

We have the following, easy to prove, result:

Lemma 1. If x ∈ E(G) and x =⇒ y, then y ∈ E(G).

The parallel derivation relation in D(G) will transform in the above manner
all elementary membranes whose strings contain nonterminals.

Lemma 2. If x ∈ E(G) and x =⇒p y, then y ∈ E(G).

From the above lemmas, it also follows:

Lemma 3. 1. If x ∈ E(G) and x
∗=⇒ y, then y ∈ E(G).

2. If x ∈ E(G) and x
∗=⇒p y, then y ∈ E(G).

Note that, from the way the derivation in D(G) was defined, the most re-
cently generated elementary membranes can perform internal computations, in
the form of rewriting, on the string they contain. Actually, the derivations in
D(G) generate only such membranes. Because of this reason, the grammar D(G)
generates a dynamic P system Π(G) = {Πn | n ≥ 1}, with the following associ-
ated dynamic computation sequence:

Π1 = [0S]0 = CΠ1 =⇒p Π2 � CΠ2 =⇒p . . . =⇒p Πn � CΠn =⇒p . . .

Each derivation step will change the membrane structure; actually, it will
enrich it by adding new elementary membranes, and increasing the depth of the
membrane structure by 1. Each internal computational step will change the string
content of the elementary membranes, by performing a rewriting operation.

The processes are strongly linked together: the derivation step creates the
conditions for an internal computational step to take place, and the result of
the internal rewriting determines the next derivation, the next change in the
membrane structure.

There are several possible configurations of the above dynamic P system,
which arise from the nondeterminism of the one-step internal computations, i.e.,
the rewriting process: if a non-terminal occurs more than once in a string α,
then there are several rewritings of α, using the same rule. This will influence
both the possible next derivation step, and also the next internal computation
step, that is, the next rewriting.

We have the following theorem, the main result of our paper:
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Theorem 1. Let G be a context-free grammar, and D(G) its canonically asso-
ciated grammar, i.e., the total contextual grammar with an infinite number of
contexts and having parallel derivations, as constructed above.

Let Π(G) = {Πn | n ≥ 1} denote the dynamic P system with one-step
computations associated to D(G).

The following assertions are true:

(i) For all the terms of the dynamic P system Π(G), all the strings inside their
membranes are sentential forms of the initial grammar G.

(ii) If the language L(G) is finite, then the dynamic P system Π(G) is station-
ary.

(iii) If the grammar G is in Chomsky normal form, then there exists one con-
figuration which, at depths 2n− 1, contains all words of length n, i.e., the
set {w ∈ L(G) | |w| = n}.

Proof. For assertion (i): it is true of the first term of the sequence. The terms
of type CΠn are the results of a one-step internal computation, which consists
precisely of one application of a derivation in G in the membranes where this is
possible. The terms of type Πn result from a derivation in the grammar D(G),
and the derivations do not alter the string contents of the membranes, they
just create “optimal” conditions (membranes) for other derivations in G to take
place.

For (ii) use the fact that, once a word in L(G) is produced in a membrane,
then, in the corresponding string description of the entire P system, we have no
more selectors for applying a derivation which adds contexts others than (λ, λ).

For (iii) use remark 1. 
�
The assertion (iii) of our theorem resembles very much, in spirit if not in

form, Theorem 1 of [1].

6 An Example

We illustrate our generative mechanism in this section, with the example of
a dynamic P system with one-step computations, and its associated dynamic
computation sequence, associated to a CF grammar.

We use the grammar in Example 1, G = ({S,A,B}, {a, b}, S, P ) with the
set of productions, P , which we list below, and label each production with an
integer:

(1) S → aB, (3) A → bAA, (6) B → aBB,
(2) S → bA, (4) A → aS, (7) B → bS,

(5) A → a, (8) B → b.
Each membrane will have an associated rule in P , and will be labelled with

the corresponding integer. The skin membrane does not have any rule associated
to it.

Let us consider the P system Π1 = [0 S ]0, and take it as the axiom of
our dynamic grammar D(G). Π1 consists of the skin membrane (with no rules),
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in which we have fed the start symbol S. There are no internal computations
possible inside this system, so Π1 = CΠ1.

Next follows a dynamic step, a derivation in D(G), with the following gen-
eral description: for every derivation which can be applied to a string inside a
membrane, we generate a sub-membrane associated to that derivation, and feed
a copy of the string inside. In our case, there are two rules which can be applied,
labelled (1) and (2). We have

φ([0 , S , ]0) = {([1, ]1[2S]2)},

and the derivation Π1 =⇒p Π2 will generate precisely Π2 = [0[1S]1[2S]2]0.
Now, an internal computation step is possible, since rules (1) and (2) can,

in their respective membranes, rewrite S. The one-step internal computation
Π2 � CΠ2 leads to the P system CΠ2 = [0[1aB]1[2bA]2]0. The transition is
depicted in Figure 1.

Since
φ([0[1, aB, ]1) = {([6, ]6[7aB]7[8aB]8)},
φ([2, bA, ]2]0) = {([3, ]3[4bA]4[5bA]5)},

the parallel derivation step CΠ2 =⇒p Π3 will give us:

Π3 = [0[1[6aB]6[7aB]7[8aB]8]1[2[3bA]3[4bA]4[5bA]5]2]0.
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Fig. 1. First internal computation step: Π2 � CΠ2
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The second internal computation, Π3 � CΠ3 will produce:

CΠ3 = [0[1[6aaBB]6[7abS]7[8ab]8]1[2[3bbAA]3[4baS]4[5ba]5]2]0,

and is depicted in Figure 3.

�

�

�

�

0 �

�

�

�

1

�
�

�
�

6
aaBB

�
�

�
�

7
abS

�
�

�
�

8
ab

�

�

�

�

2

�
�

�
�

3
bbAA

�
�

�
�

4
baS

�
�

�
�

5
ba

Fig. 3. Second internal computation step: Π3 � CΠ3

�0
�������

��������1 �2

�
�
�
�

�
�
�
�

�
�

�
�

�
�
�
�� !"aaBB

6 � !"abS
7 � !"ab

8 � !"bbAA
3 � !"baS

4 � !"ba
5

Fig. 4. The tree structure of CΠ3

�

�

�

�

0 �

�

�

�

1 �

�

�

�

2�

�

�

�

6� !"aaBB
6

� !"aaBB
7

� !"aaBB
8

�

�

�

�

7� !"abS

1

� !"abS

2

�

�

�

�

3� !"bbAA
3

� !"bbAA
4

� !"bbAA
5

�

�

�

�

4� !"baS

1

� !"baS

2

�
�

�
�8

ab

�
�

�
�5

ba

Fig. 5. Π4, the result of the third derivation step, CΠ3 =⇒p Π4



104 Gemma Bel Enguix et al.

#0
�������

�������#1 #2
�����

�����

�����

�����#6 #7 $% &'ab8 #3 #4 $% &'ba5
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�(6 (7 (8 (1 (2 (3 (4 (5 (1 (2

Fig. 6. The tree structure of Π4. The black nodes are the elementary membranes
where rewriting will take place during the next internal computation step. Note that
the nodes whose string content is in T ∗ are leaves in this tree, and will remain leaves
in subsequent trees

Since we have the following values for the selection function:
φ([0[1[6, aaBB, ]6) = {([6, ]6[7aaBB]7[8aaBB]8)},
φ([7, abS, ]7) = {([1, ]1[2abS]2},
φ([2[3, bbAA, ]3) = {([3, ]3[4bbAA]4[5bbAA]5)},
φ([4, baS, ]4) = {([1, ]1[2baS]2)},
φ([8, ab, ]8]1) = {(λ, λ)},
φ([5, ba, ]5]2]0) = {(λ, λ)},

the total derivations in D(G) which will be applied in parallel to CΠ3 are:
[0[1[6aaBB]6 =⇒ [0[1[6[6aaBB]6[7aaBB]7[8aaBB]8]6,
[7abS]7 =⇒ [7[1abS]1[2abS]2]7,
[2[3bbAA]3 =⇒ [2[3[3bbAA]3[4bbAA]4[5bbAA]5]3,
[4baS]4 =⇒ [4[1baS]1[2baS]2]4,
[8ab]8]1, [5ba]5]2]0 no actual derivations take place.

Finally, we will have CΠ3 =⇒p Π4, with

Π4 = [0[1[6[6aaBB]6[7aaBB]7[8aaBB]8]6[7[1abS]1[2abS]2]7[8ab]8]1
[2[3[3bbAA]3[4bbAA]4[5bbAA]5]3[4[1baS]1[2baS]2]4[5ba]5]2]0.

7 Concluding Remarks

We have proposed in this paper a generative mechanism for context-free lan-
guages, which uses parallelism, and the parallelism is implemented using the
notion of a P system. As such, it is in some ways similar to the approach in [1].

It is interesting to note the differences and the similarities of the two ap-
proaches. The central idea of [1] is to use evolution rules for symbol-objects,
and simulate the derivations of a context-free grammar using membrane oper-
ations (division of neutral polarized membranes, subordination of membranes
polarized positively and negatively, see [1]). In this way, all strings of L(G) are
generated, composing sequences of symbol-objects and storing the order of the
derived sentential forms in the tree-structure of the membrane system. In this
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way, every single derivation is made in a parallel manner, but the system can
execute only one derivation at a time – so the totality of strings is derived using
the non-deterministic behavior of the system.

In our case, we use string-objects to store the sentential forms, and we use
rewriting rules for the simulation of the productions in G. So, every single deriva-
tion is realized in a sequential way, but, on the other hand, we are able to gen-
erate many derivations in parallel, using the intrinsic parallelism of P systems.
Compared with the standard sequential derivation in the context-free grammar
G, our approach using P systems allows for the possibility of having different
derivations taking place simultaneously, in a parallel way.

We also avoid “garbage” generation (i.e., generation of membranes unable to
perform internal computations), by using the dynamic P systems. Therefore the
degree of non-determinism of our dynamic P system (a non-determinism which
arises only from the “P system behavior” of the dynamic computation sequence)
is less than that in [1].

Our approach can be easily generalized to attack the problem of generating
the language defined by a context-sensitive or a type-0 grammar. Our idea is to
give a “framework” based on dynamic P systems, where it should be possible to
generate, in a “coherent” way (and in a parallel way) the language defined by
such a grammar. We know that, usually, in the P system area, the simulation of
a grammar with a P system does not pay too much attention to aspects such as
avoiding “garbage” generation, and achieving low degrees of non-determinism.
We have seen that with dynamic P systems we can deal with these problems.

As special case of the more general question, an interesting (open) problem
can be proposed in this framework: find a P system which, using rewriting rules
and creation of membranes, can generate, in a totally deterministic way, all the
words of a context-free language. We can also observe that such a problem is
related with the study of a deterministic parallel parsing algorithm for context-
free languages.

We hope also to have proved that the new concept of dynamic P system, a
system whose coherent evolution in time is described by a contextual grammar
mechanism, is an elegant tool which can be used in different settings to solve
problems using P systems.

The rather inedited type of contextual grammar which we used in this paper
to control the evolution of the dynamic P system, the total contextual grammar
with an infinite set of contexts, working in the parallel derivation style, also
deserves further investigation.
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Abstract. We propose a new variant of P Systems, based on boundary
rules, shortly called PB Systems. Boundary rules means that rules are
not internal to regions but they are able to “see” even externally, that
is, they are sensible to what happens around the border of the mem-
branes. We prove the computational universality for PB systems with
three membranes which sense at most one symbol outside and one sym-
bol inside a membrane. Finally, we investigate the relationships with the
basic model of P systems by proving an equivalence between P systems
without priority, thickness or dissolution operator, and PB systems that
use communication rules of a restricted form.

1 Introduction

P Systems represent a class of distributed and parallel computing devices of a
biological type introduced in [8] (see also [9]). Their basic ingredient is a mem-
brane structure, consisting of several membranes embedded in a main membrane
called skin. Each membrane delimits a region: the space between a membrane
and all directly inner membranes, if any inner membrane exists. Each region
contains a multiset of objects; the objects evolve according to given evolution
rules, which are applied non-deterministically in a maximally parallel manner
(at each step, in each region, all objects that can evolve must do it). The objects
can also be communicated from a region to another one. Several variants of the
basic model have been considered, which introduce in P systems further features,
such as priority, membrane thickness, membrane dissolution and membrane di-
vision. Many of these variants have been proved to be computationally complete:
they are able to generate all Turing computable sets of natural numbers. For a
complete survey of Membrane Computing area we refer to [10].

Communication of objects through membranes is one of the most important
ingredients of P systems. In the basic model, such a communication is controlled
by the operators here, in, out that are associated with the objects produced by
local rules. More precisely, a rule assumes typically the form ca → binj

doutdhere
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and it “says” that a copy of an object c and a copy of an object a are replaced
by a copy of b and two copies of d, where the copy of b enters into membrane j,
a copy of d is sent out of the current membrane, and a copy of d remains in the
same region.

Recently, in [7] a new variant was proposed which introduces in membrane
systems a form of communication based on a biochemical transport mechanism
called symport/antiport. When two chemicals can pass through a membrane
only together, in the same direction, the process is called symport ; when the
two chemicals pass only with the help of each other, but in opposite directions,
we say that we have an antiport process (see [1]). More precisely, the symport
mechanism is encoded by rules of the form (ab, in), (ab, out), whereas the antiport
mechanism by rules of the form (a, in; b, out).

Here, we generalize that idea of membrane transport by introducing explic-
itly membranes in the rules as “boundary entities” which control inside and
outside of the delimited region. In these systems, we shortly call PB systems,
communication is allowed by rules of the form α [i β → α′ [i β′. The meaning
of such rules is the following: if the membrane i contains the multiset β and
outside the membrane i is present the multiset α, then a “communication” can
be established producing the multisets α′,β′ outside and inside the membrane i,
respectively. Moreover, with respect to [7], in PB systems, transformation rules,
that will be written in the form [i β → [i β′, are allowed. We remark that rules
are no longer “located” into regions but, in a sense, they are located on the
“boundaries” of membranes (the semi-bracket notation indicates a membrane,
hence the localization of the rule).

2 Preliminaries

We recall some basic notions concerning formal language theory and the notation
usually adopted in Membrane Computing area; for further details we refer to [11]
and [10].

An alphabet is a finite non empty set of abstract symbols. Given an alphabet
V we denote by V ∗ the set of all possible strings over V , including the empty
string λ. The length of a string x ∈ V ∗ is denoted by |x| and, for each a ∈ V ,
|x|a denotes the number of occurrences of the symbol a in x.

A multiset over V is a mapping M : V −→ N such that, M(a) defines the
multiplicity of a in the multiset M (N denotes the set of natural numbers); the
symbols in V are called objects. Such a multiset can be represented by a string
a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗ and by all its permutations, aj ∈ V , M(aj) �= 0,

1 ≤ j ≤ n. In other words, we can say that each string x ∈ V ∗ identifies a finite
multiset over V defined by Mx = { (a, |x|a) | a ∈ V }.

Consider the language C(V ) over the alphabet V ∪ {[, ]}, whose strings are
recurrently defined as follows:

1. [x ] ∈ C(V ), for each x ∈ V ∗,
2. if μ1, . . . , μn ∈ C(V ), then [xμ1 . . . μn ] ∈ C(V ), for each x ∈ V ∗,
3. nothing else is in C(V ).



P Systems with Boundary Rules 109

Now, let ≈ be the following relation over the elements of C(V ):

μ ≈ μ′ iff μ = αμ1 μ2 β, μ
′ = αμ2 μ1 β or μ = α [xβ, μ′ = α [ y β,

with α, β ∈ (V ∪ { [, ]})∗, μ1, μ2 ∈ C(V ), x, y ∈ V ∗, y a permutation of x. We
also denote by ≈ the reflexive and transitive closure of ≈. This is clearly an
equivalence relation. We denote by C(V ) the set of equivalence classes of C(V )
with respect to the relation ≈. The elements of C(V ) are called configurations.

Each matching pair of parentheses [, ] appearing in a configuration represents
a membrane, whereas each string x placed to the right of each open parenthesis
defines the contents of the membrane that is identified by that parenthesis.
The external membrane of a configuration is called skin. A membrane which
appears in a configuration without any membrane inside is called an elementary
membrane.

In the sequel, we will represent a configuration of a PB system by a string
μ ∈ C(V ) where both the order of neighboring membranes placed at the same
level and the order of symbols inside the membranes does not matter.

3 P Systems with Boundary Rules

We are ready to define formally PB systems.

Definition 1. A PB system is a construct

Π = (V, μ0, R, iO),

where:

1. V is an alphabet of symbols called objects,
2. μ0 is the initial configuration where m is the number of membranes,
3. R is a finite set of rules of the following forms:

xx′ [i y′y → xy′ [i x′y, for x, y, x′, y′ ∈ V ∗, 1 ≤ i ≤ m;
if i = 1, then xx′ = λ
(Communication rules),

[i y → [i y′, for y, y′ ∈ V ∗ and 1 ≤ i ≤ m
(Transformation rules),

4. iO ∈ {1, . . . ,m} is the label of the output membrane.

In this definition we can find the basic elements of every membrane systems:
a structure with m membranes containing m multisets of objects that are as-
sociated with the regions delimited by the membranes (the initial configuration
μ0), a finite set of rules R and an output membrane iO.

In the set R we identify two types of rules: communication rules and transfor-
mation rules. A transformation rule [i y → [i y′ allows the system to produce, in
membrane i, a new multiset y′ starting from the multiset y, which is consumed
by the rule. Instead, with communication rules of the form xx′ [i y′y → xy′ [i x′y
we can move objects through membranes: if membrane i contains the multiset
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y′y and outside membrane i is present the multiset xx′, then the multiset x′

moves into membrane i while the multiset y′ is sent out of the same membrane.
Clearly, some of these multisets may be empty. In particular, in communica-
tion rules that refer to membrane 1, the multiset xx′ must be empty. It means
that, in PB systems, we do not allow the skin membrane to interact with the
environment and we suppose the objects sent out from membrane 1 to be lost.

As usual, these rules are applied in a nondeterministic and maximally parallel
manner: the rules are chosen in a nondeterministic manner and this choice must
be “exhaustive”, that is, no other rule can be applied to the objects from the
current configuration not assigned yet to rules (note that we do not count the
use of membranes, any number of rules may involve the same membrane).

A computation in a PB system is a sequence of transitions among config-
urations of the form: μ0 ⇒ μ1 ⇒ μ2 ⇒ . . . where, for all j > 0, μj is the
configuration obtained by applying rules of R to the configuration μj−1. A com-
putation is successful if it halts with a configuration where no rules can be
applied. The result of a successful computation is the multiset that is associated
with the membrane iO in the halting configuration. A computation which never
halts yields no result. Now, given a PB system Π, we say that Π generates the
vector ΨV (x) (the Parikh image of x), for x ∈ V ∗, iff, x represents the result of
a successful computation in Π; the set of all vectors generated by Π is denoted
by Ps(Π).

At this point, we can identify new families of sets of vectors generated by PB
systems. We denote by PsPBm(e, j, c, f), for m > 0, e, j ≥ 0, c ∈ {S, nS} and
f ∈ {Coo, nCoo} the family of all sets of vectors generated by PB systems with
at most m membranes such that:

– for all communication rules xx′ [i y′y → xy′ [i x′y, we have: 0 ≤ |xx′| ≤ e,
0 ≤ |y′y| ≤ j, that is, in the left side of every communication rule we regard
at most e symbols outside a membrane and at most j symbols inside it; we
say also that communication rules are of type (e, j);

– if c = nS, all communication rules assume the form:

[i y′y → y′ [i y or xx′ [i→ x [i x′

that is, we have unidirectional communication that only depends either on
the internal or the external contents of the membranes; instead, if c = S,
communication rules of any type are allowed;

– if f = nCoo, transformation rules are non cooperative rules: on the left side
of every rule there is only one symbol; instead, if f = Coo, cooperative
transformation rules are allowed.

4 The Power of PB Systems

We prove that PB systems with bidirectional communication performed by rules
of type (1, 1) and only three membranes are able to characterize the family of
recursively enumerable sets of vectors of natural numbers PsRE. In the proof
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we need the notion of matrix grammar with appearance checking, for short “with
a.c.” (see [5]). A matrix grammar with a.c. is a construct G = (N,T, S,M,F ),
where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of
the form (A1 → x1, . . . , An → xn), n ≥ 1, with Ai → xi a context free rule
over N ∪ T , for all 1 ≤ i ≤ n, and F a set of occurrences of rules in M .
Given w, z ∈ (N ∪ T )∗, we write w =⇒ z if and only if there is a matrix
(A1 → x1, . . . , An → xn) ∈ M such that w = w1, z = wn+1, and, for all
1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T )∗, or

wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears in F (the
rules of a matrix are applied in sequence, possibly skipping the rules in F if they
cannot be applied; in this latter case we say that the rules in F are applied in
appearance checking mode).

The language generated by a matrix grammar with a.c. G is defined by
L(G) = {w ∈ T ∗ |S =⇒∗ w }. The family of languages of this form is denoted
by MATac; it is known that MATac = RE (see [5]).

A matrix grammar with a.c. G = (N,T, S,M,F ) is said to be in binary
normal form if N = N1 ∪ N2 ∪ {S,#}, with these three sets mutually disjoint,
and the matrices in M assume one of the following form:

1. (S → X A), for X ∈ N1, A ∈ N2,
2. (X → Y,A → x), for X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗,|x| ≤ 2,
3. (X → Y,A → #), for X,Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), for X ∈ N1, A ∈ N2, x ∈ T ∗.

There is only one matrix of type 1 and F consists exactly of all rules A → #
appearing in matrices of type 3; # is a trap-symbol, once introduced, it is never
removed. A matrix of type 4 is used only once, in the last step of the derivation.
Note that, given a matrix grammar G, in every step of a derivation, the strings
that are produced by applying the matrices in M assume the form αw, with
α ∈ N1 ∪ {λ}, w ∈ (N2 ∪ T )∗. That is, in every but the last step of a derivation,
we have only one symbol in N1 which is used to control the rewriting of symbols
in N2; the unique symbol in N1 is deleted in the last step of the derivation
by applying a matrix of type 4; no further matrix can be used after removing
the symbol from N1. It is known that for each matrix grammar there exists an
equivalent matrix grammar in the binary normal form (see Lemma 1.3.7 in [5]).

We have the following result:

Theorem 1. PsPB3(1, 1, S, nCoo) = PsRE.

Proof. Consider a matrix grammar with a.c. G = (N,T, S,M,F ) in binary nor-
mal form. Assume that matrices of type 2 and 4 are labeled, in a one-to-one
manner, by m1, . . . ,mk, and that matrices of type 3 are labeled, in a one-to-
one manner, by mk+1, . . . ,mn. We construct a PB system Π that simulates the
grammar G such that Ps(Π) = Ps(L(G)).

Before defining formally such a PB system and describing its behavior, we
briefly illustrate our idea of simulation. The PB system will have the following
membrane structure:

[1 [2 [3 ]3 ]2 ]1.
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Membrane 1 contains all symbols in N2 ∪ T that are produced by derivations
in G, and membrane 2 contains the unique symbols in N1 that is present in
the strings produced by such derivations. Membrane 3 is an auxiliary membrane
that is used to avoid interference among applications of different matrices. Now,
consider a configuration of the form

[1 w [2 X[3 ]3 ]2 ]1

with w ∈ (N2 ∪ T ∗), X ∈ N1; then, suppose that we want to apply a matrix of
type 2 or 4 of the form mi : (X → α,A → β), with α ∈ N1 ∪{λ}, β ∈ (N2 ∪T )∗,
|β| ≤ 2. In this case, in membrane 2, we assign the index i to the symbol
X and we produce the auxiliary symbols qi, ri. The symbol ri, by using a rule
A [2 ri → ri [2 A, takes the corresponding symbol A and brings it from membrane
1 into membrane 2, while the symbol qi is moved into membrane 1 where it is
replaced by q′i. In the next step, in membrane 2 we assign an index j to the
symbol A and we use q′i to check if j = i. In such a case, by using a rule
q′i [2 Ai → Ai [2 q′i, the symbol Ai comes back into membrane 1. At this point, we
complete the simulation of mi by replacing Ai with β and Xi with α. Instead, in
the case of a matrix of type 3 of the form mi : (X → Y,A → #), we assign the
index i to the symbol X and we produce the auxiliary symbols r′i, t. The symbol
r′i is used to check if the symbol A is contained in membrane 1 or not (the rule
A → # is applied in appearance checking mode). If membrane 1 contains the
symbol A, an infinite computation that yields no result is generated, otherwise
we just replace Xi with Y for completing the simulation of the matrix mi. In
the meanwhile the symbol t is moved into membrane 3 and it is used to remove
the symbol r′i from membrane 2.

This idea of simulating the matrices in G is formalized by the following
PB system:

Π = (V, μ0, R, iO),

with:

V = N1 ∪N2 ∪ T ∪ {X ′′′
i , X ′′

i , X
′
i, Xi |X ∈ N1, 1 ≤ i ≤ n}

∪ {Ai |A ∈ N2, 1 ≤ i ≤ k} ∪ {ri, q
′
i, qi | 1 ≤ i ≤ k}

∪ {r′i | k + 1 ≤ i ≤ n} ∪ {Z, f, t′, t},
μ0 = [1 A [2 X [3 ]3 ]2 ]1, for (S → XA) the unique matrix of type 1 in M,

R = {[1 ri → ri [1 ; [1 qi → [1 q′i ; [2 qi → qi [2 ; [2 ri → [2 Z | 1 ≤ i ≤ k}
∪ {[1 Ai → [1 x ; [2 A → [2 Ai ; [2 Ai → [2 Z ; [2 X → [2 X ′′′

i ri qi ;
[2 X ′′′

i → [2 → X ′′
i ; A [2 ri → ri [2 A ; q′i [2 Ai → Ai [2q′i | for

mi : (X → Y,A → x) ∈ M or mi : (X → λ,A → x) ∈ M, 1 ≤ i ≤ k}
∪ {[2 Xi → [2 Y |mi : (X → Y,A → x) ∈ M or mi : (X → Y,A → #) ∈ M,

1 ≤ i ≤ n}
∪ {[2 Xi → [2 f | for mi : (X → λ,A → x) ∈ M, 1 ≤ i ≤ k}
∪ {[1 r′i → [1 Z ; r′i [3 t′ → t′ [3 r′i | k + 1 ≤ i ≤ n}
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∪ {[2 X → [2 X ′′
i r′i t ; A [2 r′i → r′i [2 A | for mi : (X → Y,A → #) ∈ M,

k + 1 ≤ i ≤ n}
∪ {[2 X ′′

i → [2 X ′
i ; [2 X ′

i → [2 Xi |X ∈ N1, 1 ≤ i ≤ n}
∪ {A [2 f → f [2 A |A ∈ N2} ∪ {[j Z → [jZ | 1 ≤ j ≤ 2}
∪ {[1 f → [1 Z ; t [3→ [3 t ; [3 t → [3t′},

iO = 1.

The initial configuration of the system is represented by the string

[1 A [2 X [3 ]3 ]2 ]1,

with X ∈ N1, A ∈ N2, for (S → XA) the unique matrix of type 1 in M .
In general, suppose to have a configuration of the form

[1 w [2 X y [3 z ]3 ]2 ]1, (1)

for w ∈ (N2 ∪ T )∗ (the terminal symbols and nonterminal symbols in N2 pro-
duced by derivations in G), X ∈ N1 (the unique symbols in N1 that is present
in strings produced by derivations in G), y ∈ ({ q′i | 1 ≤ i ≤ k } ∪ {t′})∗,
z ∈ { r′i | k + 1 ≤ i ≤ n }∗ (some auxiliary symbols produced during the sim-
ulation of the matrices in G). Given a configuration like (1), we can apply either
a rule [2 X → [2 X ′′′

i ri qi, 1 ≤ i ≤ k, or a rule [2 X → [2 X ′′
i r′i t, k + 1 ≤ i ≤ n.

Therefore, we distinguish two cases.

Case 1: we apply a rule [2 X → [2 X ′′′
i ri qi, 1 ≤ i ≤ k; it means that we

want to simulate the application of a matrix of type 2 or 4, that is:

mi : (X → Y,A → x) or mi : (X → λ,A → x).

In this case, by applying the rule [2 X → [2 X ′′′
i ri qi to configuration (1), we

obtain the following configuration

[1 w [2 X ′′′
i ri qi y [3 z ]3 ]2 ]1. (2)

If membrane 1 does not contain the corresponding symbol A, besides the rules
[2 qi → qi [2, [2 X ′′′

i → [2 X ′′
i , we are obliged to apply the rule [2 ri → [2 Z and

we obtain the configuration

[1 w qi [2 X ′′
i Z y [3 z ]3 ]2 ]1.

At this point we have to continue to apply the rule [2 Z → [2 Z, hence we get an
infinite computation that yields no result. Instead, if membrane 1 contains the
symbol A, we can apply both the rules [2 qi → qi [2, [2 X ′′′

i → [2 X ′′
i and the rule

A [2 ri → ri [2 A. The system reaches the configuration

[1 w1 qi ri [2X ′′
i Ay [3 z ]3 ]2 ]1,
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with w = w1 A. In the next step, in membrane 1, we replace qi with q′i and
we sent out of the system the symbol ri; in membrane 2, we replace X ′′

i with
X ′

i and we assign an index j to the symbol A by applying a rule [2 A → [2 Aj

with 1 ≤ j ≤ k. Now, if j �= i, we are obliged to apply the rule [2 Aj → [2 Z
and we get again an infinite computation. Otherwise, if j = i, we can apply the
rule q′i [2 Ai → Ai [2 q′i so that the symbol Ai can arrive in membrane 1; in the
meanwhile, in membrane 2, the symbol X ′i is replaced by Xi. In this way, we
obtain the configuration

[1 w1 Ai [2Xi q
′
i y [3 z ]3 ]2 ]1. (3)

At this point, we have the symbol Ai in membrane 1, the symbol Xi in mem-
brane 2 and we can complete the simulation of the matrix mi.

If mi : (X → Y,A → x) ∈ M is a matrix of type 2, we just apply the rules
[2 Xi → [2 Y , [1 Ai → [1 x and we obtain the configuration

[1 w1 x [2Y q′i y [3 z ]3 ]2 ]1. (4)

In this manner, we have correctly simulated the application of the matrix mi.
Moreover, by setting w′ = w1 x, y′ = q′i y in (4), we obtain a configuration like
(1) and we can restart to simulate the application of another matrix in M .

If mi : (X → λ,A → x) ∈ M is a matrix of type 4, then to configuration (4)
we apply the rules [2 Xi → [2 f ,[1 Ai → [1 x and we obtain the configuration

[1 w1 x [2 f q′i y [3 z ]3 ]2 ]1.

Now, if membrane 1 contains only terminal symbols (the matrix mi has been
applied in the last step of a derivation in G), the computation halts and we have
correctly simulated a derivation in G. Otherwise, we apply, in sequence, the rules
A [2 f → f [2 A, [1 f → [1 Z, for some A ∈ N2, and an infinite computation is
generated.

Case 2: we apply a rule [2 X → [2 X ′′
i r′i t, 1 + k ≤ i ≤ n; it means that we

want to simulate the application of a matrix of type 3, that is:

mi : (X → Y,A → #).

In this case, by applying the rule [2 X → [2 X ′′
i r′i t to configuration (1), we obtain

the following configuration

[1 w [2 X ′′
i r′i t y [3 z ]3 ]2 ]1.

If membrane 1 contains the corresponding symbol A, then the rule A [2 r′i →
r′i [2 A is applied and the symbol r′i arrives in membrane 1. In membrane 1, we
apply the rule [1 r′i → [1 Z and we get an infinite computation that yields no
result. Otherwise, if membrane 1 does not contain the symbol A, the symbol r′i
remains in membrane 2, the symbol X ′′

i is replaced by X ′
i and the symbol t is

moved into membrane 3. In membrane 3 such a symbol is replaced by t′ while,
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in membrane 2, the symbol X ′
i is replaced by Xi. In this way, the system reaches

the configuration
[1 w [2 Xi r

′
i y [3 t′ z ]3 ]2 ]1.

At this point we can complete the simulation of the application of the matrix
mi by applying the rules [2 Xi → [2 Y , r′i [3 t′ → t′ [3 r′i. Once again, we have
correctly simulated the behavior of the matrix mi and we can restart to simulate
the application of another matrix in G.

Having in mind the previous discussion about the work of the system, we can
say that the only way to get halting computations in Π is to correctly simulate
derivations in G, that is, Ps(Π) = Ps(L(G)). 
�

We continue to investigate the power of PB systems by comparing this new
variant with the basic model of P systems in terms of generative capacity. We will
prove that, when we use communication rules of a restricted form, PB systems
are equal in power to P systems that do not use priority among rules and which
do not use any operator for modifying the membrane structure. Moreover, com-
munication rules of type (1, 1) suffice in the simulation of P systems by means
of PB systems. In other words, we can say that, passing from communication
controlled by operators in, here, out to boundary rules, the power of P systems
is not increased; what really increases the power of P systems is bidirectional
communication.

For a formal definition of the basic model of P systems, we refer to [10].
We denote by PsPm(f, nPri, t, nδ), for f ∈ {Coo, nCoo, Cat}, t ∈ {tar, i/o},
the families of sets of vectors of natural numbers generated by the class of P
systems that do not use a priority relation among rules and that do not use any
operator for modifying the membrane structure.

Lemma 1. For all m > 0, PsPm(Coo, nPri, tar, nδ) ⊆ PsPBm(1, 1, nS,Coo).

Proof. Consider a P system Π = (V, μ,w1, w2, ..., wm, R1, R2, ..., Rm, iO) such
that Ps(Π) ∈ PsPm(Coo, nPri, tar, nδ), where the symbols assume the usual
meaning. We construct a corresponding PB systems Π ′ = (V ′, μ0, R, iO) such
that Ps(Π ′) ∈ PsPBm(1, 1, nS,Coo), where:

– V ′ = {a′, a′′ | a ∈ V } ∪ {ainj , aoutj | a ∈ V, 1 ≤ j ≤ m} ∪ V ,
– μ0 is the configuration obtained by replacing each symbol [i in μ with [i wi,

for each 1 ≤ i ≤ m,
– R is a finite set of rules such that:

[i a′ → [i a; [i a′′ → [i a′ ∈ R, for each a ∈ V ,
[i aouti

→ aouti
[i; aini

[i→ [i aini
∈ R, for each a ∈ V , 1 ≤ i ≤ m,

[i aoutj
→ [i a; [i aini

→ [i a ∈ R, for each a ∈ V , 1 ≤ i �= j ≤ m,
for each rule u → v ∈ Ri, 1 ≤ i ≤ m, u ∈ V ∗, v ∈ (V × {inj , here, out})∗,

there exists a corresponding rule [i u → [i v′ ∈ R, where v′ is the string
which contains: a symbol a′′ if the pair (a, here) appears in v, a symbol
aouti

if (a, out) appears in v, a symbol ainj if (a, inj) appears in v and j
is a directly inner membrane. If a rule u → v ∈ Ri contains a pair (a, inj)
and j is not a directly inner membrane, there exists no corresponding
rule in R because the rule u → v never applies.
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Let wi be the multiset associated with membrane i, 1 ≤ i ≤ m, in a given
configuration. The application of a rule u → v in Ri to wi is simulated by the
following application of rules in R. We start by applying the corresponding rule
[i u → [i v′ which produces some objects a′′, some objects aouti and some objects
ainj1

, . . . , ainjh
, for some directly inner membranes j1, . . . , jh. In the next step,

in membrane i, we replace each object a′′ with a′, while each object ainjt
, 1 ≤

t ≤ h, is moved into membrane jt by using a rule of the form ainjt
[jt

→ [jt
ainjt

,
and each object aouti

is sent out of membrane i by using a rule of the form
[i aouti → aouti [i. Finally, we apply a rule [i a′ → [i a for each object a′ in
membrane i, a rule [jt ainjt

→ [jt a for each object ainj1
in each membrane jt

and a rule [k aouti
→ [k a for each object aouti

in the directly upper membrane k.
We can repeat the previous discussion for each rule in Ri and for each mem-

brane i, 1 ≤ i ≤ m. Thus, the only way to get halting computations in Π ′ is to
correctly simulate halting computations in Π, that is, Ps(Π ′) = Ps(Π). 
�

Lemma 2. For all m > 0, PsPBm(∗, ∗, nS,Coo)) ⊆ PsPm(Coo, nPri, tar, nδ).

Proof. Consider a P system with boundary rules Π = (V, μ0, R, iO) such that
Ps(Π) ∈ PsPBm(∗, ∗, nS,Coo). We construct a P system

Π ′ = (V, μ,w1, w2, ..., wm, R1, R2, ..., Rm, iO)

such that Ps(Π ′) ∈ PsPm(Coo, nPri, tar, nδ) where:

– μ is obtained from μ0 by removing each string from V ∗ from the right side of
each symbol [i, 1 ≤ i ≤ m,

– wi, 1 ≤ i ≤ m, is the multiset associated with the membrane i in the initial
configuration μ0,

– for each rule of the form [i y → [i y′ in R, 1 ≤ i ≤ m, there exists a rule y → v
in Ri with v a string which contains a pair (a, here) for each symbol a in y′,

– for each rule [i y′y → y′ [i y in R, 1 ≤ i ≤ m, there exists a rule y′y → v in Ri

with v a string which contains a pair (a, here) for each symbol a in y and a
pair (a, out) for each a in y′,

– for each rule yy′ [i→ y [i y′ in R, 1 ≤ i ≤ m, there exists a rule yy′ → v in Rk

where k is the membrane directly above membrane i, and v is a string which
contains a pair (a, here) for each symbol a in y and a pair (a, ini) for each
symbol a in y′.

With this construction, it is easy to prove that Ps(Π ′) = Ps(Π). 
�
As a consequence of Lemma 1 and Lemma 2, we can establish the following

equivalence between P systems and PB systems:

Corollary 1. For all m > 0 we have:
PsPBm(∗, ∗, nS,Coo) = PsPBm(1, 1, nS,Coo) = PsPm(Coo, nPri, tar, nδ).

Finally, we extend the previous results to the other families PsPm(f, nPri, t, nδ),
with f ∈ {Coo, nCoo, Cat}, t ∈ {tar, i/o}.
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Lemma 3. For all m > 0, f ∈ {Coo, nCoo} we have:

1. PsPm(nCoo, nPri, tar, nδ) = PsPBm(1, 1, nS, nCoo);
2. PsPm(Cat, nPri, tar, nδ) ⊆ PsPBm(1, 1, nS,Coo);
3. PsPm(Cat, nPri, i/o, nδ) ⊆ PsPBm(1, 1, nS,Coo);
4. PsPm(f, nPri, i/o, nδ) ⊆ PsPBm(1, 1, nS, f).

In what concerns points (i), we can prove separately the two inclusions. The
inclusion PsPm(nCoo, nPri, tar, nδ) ⊆ PsPBm(1, 1, nS, nCoo) can be obtained
by applying the construction of Lemma 1 to P systems with non cooperative
rules. The opposite inclusion can be obtained by applying the construction of
Lemma 2 to PB systems with communication rules of type (1, 1). Note that
the more general inclusion PsPBm(∗, ∗, nS, nCoo) ⊆ PsPm(nCoo, nPri, tar, nδ)
cannot be established. In fact, when we apply the construction of Lemma 2 to a
PB systems with communication rules of type (e, j) �= (1, 1), we always produce a
P system with cooperative rules. Finally, point (ii), (iii) and (iv) follow directly
from the inclusions PsPm(Cat, nPri, tar, nδ) ⊆ PsPm(Coo, nPri, tar, nδ) and
PsPm(f, nPri, i/o, nδ) ⊆ PsPm(f, nPri, tar, nδ).

5 Conclusions

With the formalism based on boundary rules, we point out the fundamental
role of membranes as separators and filters. In this way, we obtain a model of
membrane systems closer to biological reality which has the advantage to simplify
many notational aspects and to eliminate a certain level of asymmetry implicit
in P systems where membranes are passive entities. In other words, we can say
that PB systems strengthen the role of membranes providing a mechanism to
define complex interaction pattern among membranes. PB systems could provide
an adequate basis for a new kind of investigation essentially devoted to their
dynamical aspects in a sense that is close to some basic property of biological
systems. Life is a very complex phenomenon that is due to the cooperation of
many interacting processes. Actually, the developments in Natural and Molecular
Computing provide several discrete symbolic models which could be useful to
model biological phenomena in terms of discrete dynamical systems (for a survey
of discrete dynamical systems of biological relevance see [4]).

A preliminary step on investigating dynamical aspects of P systems was
developed in [2,3], where we essentially deal with the aspect of periodicity (life
is always related to temporal cycles where many parameters change periodically
and some basic rhythms are preserved). More precisely, our analysis is focused on
the individuation of “minimal” PB systems which exhibit interesting phenomena
of periodicity in a given environment. Formally, the environment for PB systems
is a sequence of multisets characterized by the property of almost periodicity [6].
Such a property seems to be very useful to model environments which in time
provide some substances indispensable to ensure the “life”. PB systems with
environment, shortly called PBE systems, need an active role of membranes in
the communication with the external world. In fact, interesting phenomena of
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periodicity can be modeled that are related to the basic periodicity of an external
“environment cycle”.
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Abstract. We consider rewriting P systems with parallel application of
evolution rules, where no conflicts on the communication of objects can
arise. Different parallelism methods are used and only rules which have
the same target indication can be simultaneously applied to a common
string. The computational power is analyzed, with respect to Linden-
mayer systems, and some relations among different parallel rewriting P
systems are studied. Some open problems are also formulated.

1 Introduction

The P systems were introduced in [7] as a class of distributed parallel computing
devices of a biochemical type. The basic model consists of a membrane struc-
ture composed by several cell-membranes, hierarchically embedded in a main
membrane called the skin membrane. The membranes delimit regions and can
contain objects, which evolve according to given evolution rules associated with
the regions. In one step all regions are processed simultaneously by using the
rules in a nondeterministic and maximally parallel manner, and at each step
all the objects which can evolve should evolve. All the evolved objects are then
communicated to the prescribed regions, which are always specified by a target
indication associated with each rule.
A computation device is obtained: we start from an initial configuration and
we let the system evolve. The objects expelled through the skin membrane (or
collected inside a specified output membrane) are the result of the computation.

A survey and an up-to-date bibliography can be found at the web address
http://psystems.disco.unimib.it.

In this paper we consider rewriting P systems ([7], [10], [3]) and our aim
is to extend the application of evolution rules from sequential rewriting to the
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parallel one (see also [1], [4], [5], [6]). This fact is also biologically motivated, as
a cellular substance could be processed by many chemical reactions (each on a
different site) at the same time.

Observe that using parallel rewriting means that at each step of a computa-
tion a string has to be processed, if possible, by more than one rule at the same
time, according to the prescribed parallel rewriting method. So in parallel rewrit-
ing P systems we have a three-level massive parallelism, involving membranes,
string-objects, and rules as well. On the other hand, if the rules we apply to the
same string have mixed target indications, then we have consistency problems
for the communication of the resulting string, as there might be contradictory
indications about the region where the string should be at the next step.

This problem has been previously faced and solved with different strate-
gies ([4]), for example, by counting the number of target indications of types
here, in, out appearing after the parallel application of rules, and then commu-
nicating the string to the region corresponding to the maximal number of indi-
cations. Another possibility consists in choosing as target region the one which
corresponds to the indication (if existing) that appears exactly once after the
parallel application of rules.

A different approach for facing the problem has been considered in [1], where
the definition of deadlock state has been introduced to the aim of describing
situations where rules with mixed target indications are applied at the same
time to a common string. When a situation of deadlock arises for a string, then
such a string is not sent to outer or inner regions but it remains inside the current
membrane, though it will not be processed anymore by any other rule. Hence the
deadlock state for that string causes its further processing and communication
to be stopped.

In this paper we deal with P systems which use different parallelism meth-
ods for rewriting the strings, but here we assume (actually, we ensure) that no
target conflicts can arise. When some rules could be applied to a common string
according to a chosen parallelism method, then these rules are simultaneously
applied on condition that they all have the same target indication. If this is not
the case, then only the proper subset of rules which have the same target will
be actually used. We also use order relations (see, e.g., [7], [10]) defined over the
set of rules, which describe the priority of application of some rules with respect
to other rules.

We analyze the computational power of this kind of P systems, comparing
them to Lindenmayer systems, and we study the relations among P systems
which use different parallelism methods.

2 Parallel Rewriting Methods

We denote by V ∗ the free monoid generated by the alphabet V , the empty string
is denoted by λ and V + = V ∗ \ {λ} is the set of non-empty strings over V . We
will refer to [2] and [8] for other formal language theory notions.
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In this section we present some different types of parallel rewriting meth-
ods for context-free rules. We always assume the condition that two or more
rules are not allowed to rewrite a symbol at the same time, as in interactionless
Lindenmayer systems ([8], [9]).

Specifically, in this paper we will use the following methods of parallel rewrit-
ing:

(U) A rewriting step with unique parallelism consists in the substitution of
all occurrences of exactly one symbol according to exactly one rule, which is
nondeterministically chosen from all rules that can be applied to that symbol.
That is, given a string w = x1ax2ax3 . . . xnaxn+1 with xi ∈ (V \ {a})∗, 1 ≤
i ≤ n + 1, and a context-free rule r : a → α, in one parallel rewriting step
we obtain the string w′ = x1αx2αx3 . . . xnαxn+1.

(S) A rewriting step with symbol parallelism is a step where for each sym-
bol that can be the subject of a rewriting rule, all of its occurrences are
substituted according to the same rule. That is, given some distinct sym-
bols a1, . . . , an ∈ V and a string w = x1a

′
1x2a

′
2x3a

′
3 . . . xma′mxm+1, with

a′i ∈ {a1, . . . , an}, 1 ≤ i ≤ m,m ≥ n, and xj ∈ (V \ {a1, . . . , an})∗, 1 ≤
j ≤ m + 1, and given only one context-free rule for each symbol r1 :
a1 → α1, . . . , rn : an → αn (nondeterministically chosen between all rules
which can be applied to each symbol), in one step we obtain the string
w′ = x1α

′
1x2α

′
2x3α

′
3 . . . xmα′mxm+1, where α′i ∈ {α1, . . . , αn}, 1 ≤ i ≤ m,

and α′i = αk in w′ if and only if a′i = ak in w for some k = 1, . . . , n.
(M) In a rewriting step with maximal parallelism, all occurrences of all sym-

bols (which can be the subject of a rewriting rule) are simultaneously rewrit-
ten by rules which are nondeterministically chosen in the set of all applica-
ble rewriting rules. That is, if the string w = x1a1x2a2x3a3 . . . xnanxn+1,
with w ∈ V +, a1, . . . , an ∈ V (not necessarily distinct) and xi ∈ (V \
{a1, . . . , an})∗, 1 ≤ i ≤ n + 1, is such that there are no rules defined over
symbols in the strings x1, . . . , xn+1, and there are some rules r1 : a1 →
α1, . . . , rm : am → αm, not necessarily distinct, then we obtain in one max-
imal parallel rewriting step the string w′ = x1α1x2α2x3α3 . . . xmαmxm+1.

(T) As in (E)T0L systems, we can consider the set of rewriting rules divided
into subsets of rules, that is tables of rules. In this case, if we have a string
w and some tables t1 : [r1

1 : a1,1 → α1,1, . . . , r
1
k1

: a1,k1 → α1,k1 ], . . . , tl : [rl
1 :

al,1 → αl,1, . . . , r
l
kl

: al,kl
→ αl,kl

], then in one step only the rules from a
table (which is nondeterministically chosen) can be applied, and these rules
must be applied in parallel to all occurrences of all symbols in w, but not
necessarily following the order the rules appear in the table. Moreover, if
some rules in the chosen table are defined over symbols not in w, or if the
number of rules in the table exceeds the length of the string, then we skip
those (not defined or exceeding) rules without forbidding the application of
the entire table.
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3 Parallel Rewriting P Systems without Target Conflicts

A parallel rewriting P system of degree n + 1 is defined by the construct

Π = (V, T, μ,M0, . . . ,Mn, (R0, ρ0), . . . , (Rn, ρn)),

where:

1. V is the alphabet of the system;
2. T ⊆ V is the terminal alphabet;
3. μ is a membrane structure with n + 1 membranes, which are injectively

labeled by numbers in the set {0, 1, . . . , n}. The skin membrane has always
label 0;

4. M0, . . . ,Mn are finite languages over V , representing the strings initially
present in the regions 0, 1, . . . , n of the system;

5. R0, . . . , Rn are finite sets of evolution rules of the form a → α(tar), with
a ∈ V, α ∈ V ∗, tar ∈ {here, out, in}, associated with the regions of μ;

6. ρ0, . . . , ρn are partial order relations defined over R0, . . . , Rn respectively.

The application of evolution rules is performed as follows: in one step all
regions are processed simultaneously by using the rules in a nondeterministic
and parallel manner, according to the order defined by the partial relations (if
existing). This means that in each region the objects to evolve and the rules to
be applied to them are nondeterministically chosen, but all objects which can
evolve should evolve. Moreover, at each step of a computation a string has to be
rewritten by means of as many rules at the same time as possible; these rules
are applied according to the chosen parallelism method.

The strings resulting after the parallel application of the rules must be com-
municated to the prescribed region, which is always specified by the target indi-
cation associated with each rule. For every region i = 0, . . . , n of the membrane
structure we divide the set Ri of evolution rules into mutually disjoint subsets
of rules which have the same target indications, that is Ri = Hi ∪ Oi ∪ Ii,
where Hi = {r ∈ Ri | tar(r) = here},Oi = {r ∈ Ri | tar(r) = out} and
Ii = {r ∈ Ri | tar(r) = in}. Observe that for every inner region the set Ii

will always be empty, and that for any other region any subset of rules could be
empty as well.

Consider now some rules r1, . . . , rm, for some m ≥ 2, all of which can be
applied to a common string w at the same time. We assume that these rules will
be applied to w only if no conflicts arise for the target indications, that is only
if it holds that (1) r1, . . . , rm ∈ Hi, or (2) r1, . . . , rm ∈ Ii, or (3) r1, . . . , rm ∈ Oi

(we apply in parallel only the rules which match on the target membrane). Ac-
cording to the chosen set of rules, the resulting string w′ (obtained after the
parallel application of r1, . . . , rm) (1) remains inside the current region i, (2) is
communicated to a (nondeterministically chosen) inner region, (3) is communi-
cated to the outer region. In particular, if the string exits the system, it can
never come back and it may contribute to the output of the system.
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At a given time the membrane structure together with all multisets of ob-
jects associated with the regions, represent the configuration of the system at
that time. The (n + 2)-tuple C0 = (μ,M0, . . . ,Mn) constitutes the initial con-
figuration of the system. For two configurations Ct = (μ,M t

0, . . . ,M
t
n), Ct+1 =

(μ,M t+1
0 , . . . ,M t+1

n ) of the system we say that there is a transition from Ct to
Ct+1 if we can apply the rules present in the regions according to the above
prescriptions.

A sequence of transitions forms a computation. We say that a computation
is halting when there is no rule which can be further applied in the current
configuration. A computation is said to be non-halting if there is at least one
rule which can be applied forever.

In this paper we consider extended P systems. The output of an extended
system is the set of strings over T (if any) sent out of the system during a
computation, being it halting or not. Anyway, a string which exits the system
but contains symbols not in T does not contribute to the generated language.

We denote by EπPRPn the family of languages generated by extended rewrit-
ing P systems of degree at most n, where π ∈ {U, S,M, T} denotes the used par-
allelism method. When also priority relations are used, then we use the notation
EπPRPn(Pri). In the case when the number of membranes is not limited, then
the subscript n is replaced by ∗.

4 The Computational Power

In this section we analyze the computational power of parallel rewriting P sys-
tems, which use the four parallelism methods described in Section 2. Some lower
bounds with respect to families of languages generated by Lindenmayer systems
are given.

Further on we give some relations among P systems which use different par-
allel rewriting methods.

4.1 Relations with Lindenmayer Systems

A 0L system is a construct G = (V,w, P ), where V is an alphabet, w ∈ V + is
the axiom, and P is a finite set of rules of the form a → v, with a ∈ V, v ∈ V ∗,
such that for each a ∈ V there is at least one rule a → v in P (we say that P is
complete). For w1, w2 ∈ V ∗ we write w1 =⇒ w2 if w1 = a1 . . . an, w2 = v1 . . . vn,
for ai → vi ∈ P, 1 ≤ i ≤ n. The language generated by G is L(G) = {x ∈
V ∗ | w =⇒∗ x}. If for each a ∈ V there is exactly one rule a → v in P , then
G is said to be deterministic. If we distinguish a subset T of V and we define
the generated language as L(G) = {x ∈ T ∗ | w =⇒∗ x}, then G is said to be
extended. The family of languages generated by 0L systems is denoted by 0L
(E0L if the systems are extended, ED0L if the systems are both extended and
deterministic).

A tabled 0L system (T0L) is a construct G = (V,w, P1, . . . , Pn) such that
each triple (V,w, Pi), 1 ≤ i ≤ n, is a 0L system; each Pi is called a table. The
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language generated by G is L(G) = {x ∈ V ∗ | w =⇒Pj1
w1 =⇒Pj2

. . . =⇒Pjm

wm = x,m ≥ 0, 1 ≤ ji ≤ n, 1 ≤ i ≤ m}. A T0L system is deterministic when
each table is deterministic, it is extended if there exists an alphabet of terminal
symbols. The family of languages generated by T0L systems is denoted by T0L
(ET0L if the systems are extended, EDT0L if the systems are both extended
and deterministic).

It is known that CF ⊂ E0L ⊂ ET0L ⊂ CS, where CF,CS are the families
of context-free and context-sensitive languages, respectively, and that ED0L ⊂
EDT0L ⊂ ET0L,ED0L ⊂ E0L. See [9] and [8] for other notions about Linden-
mayer systems.

From a result in [1] we can state that:

Theorem 1. ET0L ⊆ ETPRP1.

In [1] it has been (not directly) shown that, when considering P systems with-
out deadlock, the family ET0L is included in the family of languages generated
by parallel rewriting P systems which use the maximal parallelism method and
do not have an a priori bounded number of membranes. Here we improve that
result by showing that two membranes suffice.

Theorem 2. ET0L ⊆ EMPRP2.

Proof. According to Theorem 1.3 in [9], for each language L ∈ ET0L there
exists an ET0L system G which generates L and contains only two tables, that
is G = (V, T, w, P1, P2). At the first step of a derivation, we use table P1. After
using table P1, we either use again table P1 or we use table P2, and after each
use of table P2 we either use table P1 or we stop the derivation.

Making use of this observation, we construct the P system Π = (V, T, [0[1]1]0,
∅,M1, R0, R1) such that L(Π) ∈ EMPRP2, where the initial multiset is M1 =
{w} and the sets of rules are:

R0 = {A → x(in) | A → x ∈ P2} ∪ {A → x(out) | A → x ∈ P2};
R1 = {A → x(here) | A → x ∈ P1} ∪ {A → x(out) | A → x ∈ P1}.

The computation starts in membrane 1. Here we simulate the rules from table
P1 in G, by using in parallel all the rules with target here or all the rules with
target out. In the first case, the process can be repeated, and we simulate the
possibility of using table P1 as many times as we want. In the second case, the
resulting string is sent to the skin membrane, where we simulate table P2. Again,
we can apply in parallel only rules with target in or rules with target out. In the
first case, the string returns to membrane 1 where we simulate the application
of table P1 once more. In the second case, the string exits the system and the
computation halts. If the string consists of terminal symbols, then it contributes
to the output, otherwise it is ignored. Hence we can correctly simulate each and
every derivation in G and generate each and every string generated by G. 
�

We begin the analysis of parallel rewriting P systems which use unique or
symbol parallelism methods.
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Theorem 3. EDT0L ⊆ EUPRP∗(Pri).

Proof. Consider an EDT0L system G = (V, T, w, P1, . . . , Pn) and construct the
P system Π = (V ′, T, μ,M0, . . . ,Mn,Mc, (R0, ∅), (R1, ρ1), . . . , (Rn, ρn),
(Rc, ρc)) such that L(Π) ∈ EUPRP∗(Pri), where the alphabet is V ′ = V ∪ T ∪
{Ā | A ∈ V } ∪ {X}, with T ⊆ V and V, {Ā | A ∈ V }, {X} mutually disjoint.
The initial multiset is M0 = {Xw}, while all other multisets are empty; the
membrane structure consists of n+1 elementary membranes, all placed directly
inside the skin membrane.

Observe that each table in G is complete and deterministic hence, if V =
{A1, . . . , Ak}, then each table is of the form [A1 → x1, . . . , Ak → xk], for some
xj ∈ V ∗, 1 ≤ j ≤ k. We use one membrane to simulate each table P1, . . . , Pn in
G; each membrane is labeled with a number i ∈ {1, . . . , n}, in correspondence
with the simulated table. Any membrane mi contains the following set of rules
which undergo the given priority relation:

Ri = {Aj → x̄j(here) | (Aj → xj) ∈ Pi, j = 1, . . . , k} ∪ {X → X(out)};
ρi : {Aj → x̄j(here) | (Aj → xj) ∈ Pi, j = 1, . . . , k} > (X → X(out)).

The strings x̄j correspond to the strings xj in Pi, where all symbols A ∈ V
are substituted with the respective Ā ∈ V ′.

The skin membrane has rules given by:

R0 = {X → X(in), X → λ(out)}.
Moreover, we need one more membrane mc to substitute all overlined symbols

with the corresponding non overlined symbols in V :

Rc = {Ā → A(here) | Ā ∈ V ′} ∪ {X → X(out)};
ρc : {Ā → A(here) | Ā ∈ V ′} > (X → X(out)).

The system works in the following way. The computation starts in the skin
membrane, where we can nondeterministically choose a rule among X → X(in),
X → λ(out). If the first rule is applied, then the string enters a nondeterminis-
tically chosen inner membrane. If it enters any membrane mi, for i = 1, . . . , n,
then the simulation of the corresponding table Pi in G begins. According to the
partial relation defined over Ri, during (at most) k transitions we have to apply
in parallel every rule Aj → x̄j(here), 1 ≤ j ≤ k, over all occurrences of every
symbol Ak which appears in w. (It is necessary to use overlined symbols, in order
to avoid that some symbol in xj could be rewritten at the next transition, hence
yielding a wrong simulation of the table.) Only now we can apply the remaining
rule X → X(out) in mi, which sends the resulting string Xw̄′ back to the skin
membrane.

Once more, if we apply the rule X → X(in) then the string Xw̄′ enters an
inner membrane. If it enters any membrane mi, 1 ≤ i ≤ n, then the only appli-
cable rule is X → X(out), the string returns unchanged to the skin membrane.
Otherwise, if it enters membrane mc, then in (at most) k transitions all over-
lined symbols are substituted, in parallel for all occurrences of every symbol,
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with the corresponding non overlined symbols. Thanks to the partial relation in
mc, only when the substitution is complete the string Xw′ can return to the
skin membrane by means of the rule X → X(out).

The process can be iterated. In any moment, inside the skin membrane we
can apply the rule X → λ(out): the support symbol X is erased and the current
string exits the system. If it is a terminal string, then it contributes to the output,
otherwise it is ignored. It follows that L(G) = L(Π). 
�

Directly from Theorem 3 it follows that:

Corollary 1. ED0L ⊆ EUPRP3(Pri).

Proof. Observe that an ED0L system can be seen as an EDT0L system with
only one table. It follows that the language generated by an ED0L system G can
be also generated by a system of type EUPRP3(Pri), as defined in Theorem 3,
where there is only one membrane for the single table in G. 
�

The previous results about P systems with unique parallelism hold also for
systems which use symbol parallelism method but no priority relations.

Theorem 4. EDT0L ⊆ ESPRP∗.

Proof. Consider an EDT0L system G = (V, T, w, P1, . . . , Pm) and let Π be P
system (V ′, T, μ,M0, . . . ,Mm, R0, . . . , Rm) such that L(Π) ∈ ESPRP∗, where
the alphabet is V ′ = V ∪T∪{X}, with T ⊆ V and X /∈ V , and the initial multiset
is M0 = {Xw} (all other multisets are empty). The membrane structure consists
of m elementary membranes, labeled with numbers i ∈ {1, . . . ,m}, all placed
inside the skin membrane. Each inner membrane mi is used for the simulation
of the table Pi in G.

The system contains the following sets of rules:

R0 = {X → X(in), X → λ(out)};
Ri = {X → X(out)} ∪ {A → x(out) | (A → x) ∈ Pi}, for all i = 1, . . . ,m.

The system works in a way very similar to the system defined in Theorem 3,
but here there is no need of using overlined symbols nor priority relations over
rules. The computation starts in the skin membrane, where we can nondeter-
ministically choose a rule among X → X(in), X → λ(out). If the first rule is
used, the string Xw enters any membrane mi, for i = 1, . . . ,m, and the simu-
lation of the corresponding table Pi in G begins. In one parallel rewriting step,
we apply all the rules A → x(out) over all occurrences of every symbol A ∈ V
which appears in w (observe that, as G is deterministic, in Ri there will be only
one rule for every symbol in V ). In parallel, we also use the rule X → X(out).
The resulting string Xw′ goes back to the skin membrane and the process can
be iterated.

At any moment, inside the skin membrane we can apply the rule X → λ(out):
the support symbol X is erased and the current string exits the system. If it is
a terminal string, then it contributes to the output, otherwise it is ignored. It
follows that L(G) = L(Π). 
�



Parallel Rewriting P Systems without Target Conflicts 127

Corollary 2. ED0L ⊆ ESPRP1.

Proof. Given an ED0L system G = (V, T, w, P ) (an EDT0L system with only
one table P ), we can define an equivalent P system Π = (V ′, T, [0]0,M0, R0)
such that L(Π) ∈ ESPRP1, where the alphabet is V ′ = V ∪T ∪{X}, with with
T ⊆ V and X /∈ V , and the initial multiset is M0 = {Xw}.

The system contains the following set of rules:

R0 = {X → X(here), X → λ(out)} ∪ {A → x(here) | (A → x) ∈ P}.
The system works in the following way: as long as we apply all the rules with

target here, we simulate the derivations in G. At any moment, the remaining
rule X → λ(out) can be used alone (as target conflicts are forbidden) and the
current string exits the system. If it a terminal string, then it is accepted as
output, otherwise it is ignored. Hence the equality L(G) = L(Π) holds. 
�

Also the converse of Theorem 4 is true:

Theorem 5. ESPRP∗ ⊆ EDT0L.

Proof. Consider the system Π = (V, T, μ,M0, . . . ,Mn−1, R0, . . . , Rn−1), such
that L(Π) ∈ ESPRPn. We show how to construct an EDT0L system G =
(V ′, T,X, P1, . . . , Pm), which generates the same language as Π. The alphabet
of non terminal symbols is V ′ = V ∪ T ∪ {Xi | i = 0, . . . , n − 1} ∪ {X, X̄,#},
where T ⊆ V and V, {Xi | i = 0, . . . , n − 1}, {X, X̄,#} are mutually disjoint
sets.

In order to correctly define the tables which simulate the application of rules
in Π, we recall that only those rules which have equal targets can be simul-
taneously applied to a common string, and that in each table exactly one rule
appears for each symbol of the alphabet. Now let mi be a generic membrane in
μ, for some i ∈ {0, . . . , n−1}. This membrane can contain some strings w ∈ V +,
some other membranes and a set of rules Ri, which can be divided into three dis-
joint subsets of rules Hi ∪Oi ∪Ii (corresponding to rules with target indications
here, out, and in, respectively).

For each membrane mi in μ, for all i = 0, . . . , n− 1, we define a set of tables
of G of the following four types:
1. Starting tables: for each string w ∈ Mi we define a table [X → Xiw,

{Xj → # | j = 0, . . . , n− 1}, {A → A | A ∈ (V ∪ T )},# → #, X̄ → #].
2. Simulation tables: let labi(out), labi(in) be the sets of labels of the mem-

branes placed outside and inside (if any) the membrane mi. We first define
the tables that simulates the application of rules in Hi: [X → #, X̄ →
#,# → #, Xi → Xi, {Xj → Xj# | j = 0, . . . , n− 1, j �= i}, {A → x | (A →
x) ∈ Hi}, {A → A | for all A ∈ (V ∪ T ) such that there are no rules in Hi

defined over A}].
Similarly, to simulate rules in Oi (with i �= 0) we define a table for each
j ∈ labi(out): [X → #, X̄ → #,# → #, Xi → Xj , {Xk → Xk# | k =
0, . . . , n − 1, k �= i}, {A → x | (A → x) ∈ Oi}, {A → A | for all A ∈
(V ∪ T ) such that there are no rules in Oi defined over A}].
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Finally, to simulate rules in Ii we define a table for each j ∈ labi(in): [X →
#, X̄ → #,# → #, Xi → Xj , {Xk → Xk# | k = 0, . . . , n − 1, k �= i}, {A →
x | (A → x) ∈ Ii}, {A → A | for all A ∈ (V ∪ T ) such that there are no
rules in Ii defined over A}].

3. Ending tables: if mi is the skin membrane, then the rules in Oi must be
simulated with the tables [X → #, X̄ → #,# → #, Xi → X̄, {Xk → Xk# |
k = 0, . . . , n − 1, k �= i}, {A → x | (A → x) ∈ Oi}, {A → A | for all A ∈
(V ∪ T ) such that there are no rules in Oi defined over A}].

4. Control table: [{A → # | A ∈ V \ T}, {a → a | a ∈ T}, {Xj → # | j =
0, . . . , n− 1}, X̄ → λ,X → #,# → #].

Observe that there are as many simulation and ending tables as all possible
combinations of rules (with equal targets) from any Ri are. In this way we can
simulate the nondeterministic application of rules in Π without target conflicts.

Let us see how a computation in Π can be simulated by a derivation in G.
At the first step of a derivation in G, only one starting table should be chosen,
otherwise the trap symbol # will be introduced and never removed. The chosen
starting table determines both the string and the membrane of Π that will
be simulated; in fact the axiom X is rewritten as Xiw (no other rules can be
applied), for some i = 0, . . . , n− 1 and some w ∈ Mi.

At the second step of a derivation, only a simulation table (or also an ending
table if mi is the skin membrane) can be chosen. Assume we use a simulation
table. In this case, if the chosen table corresponds to the rules of a different
membrane mj , then the trap symbol is introduced. The only way to correctly
continue the derivation is to choose one of the tables which simulate rules in
mi. In such a case, according to the target of the rules present in the table, the
symbol Xi is transformed into Xj , for j being the label of the target membrane.
Each applicable rule in mi is used in the table, moreover if in Ri there is not
at least one rule for each symbol in V , then in the simulation table we add a
“mute” rule of the form A → A for all of the symbols for which there are no
rules in Ri (in this way the table is complete and still deterministic). After the
use of a simulation table, only another simulation (or ending) table can be used,
according to the support symbol that appears in the current string.

Let us assume now that an ending table has been chosen. This means that we
are to simulate the application of rules with target out in the skin membrane.
Hence, at the next derivation step in G, we have to check that the produced
string consists only of terminal symbols. In order to assure that the next table
to be used is the control table, in the ending tables we define the rule X → X̄:
the symbol X̄ introduces the trap symbol # in all tables except the control
one. Apart from this particular rule, the ending tables are analogous to all other
simulation tables.

Once we have produced a string of the form X̄w′, for some w′ ∈ (V ∪T ∪#)∗,
by means of the control table we can check that only symbols from T appear in
w′. If this is not the case, then the rules A → # will introduce the trap symbol
(that could already be present in the string). In any case, the string could be
used for other derivation steps but it will never be accepted as belonging to the
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generated language. Otherwise, if the string is terminal, then no trap symbols
will be introduced and at the same time X̄ will be erased.

It follows that with the EDT0L system G we can correctly simulate each and
every computation in Π, so L(G) = L(Π). 
�

Theorems 4 and 5 can be summarized as follows:

Corollary 3. ESPRP∗ = EDT0L.

4.2 Relations among Parallel P Systems

As already pointed out before, it is quite natural to compare the power of parallel
systems which make use of different kinds of parallel rewriting methods. We
show here that the family of languages generated using systems with maximal
parallelism coincides with the family of languages generated by systems which
make use of table parallelisms. We give some partial answers for the other type
of parallelisms considered in this paper.

Theorem 6. (i) EMPRPn ⊆ ETPRPn;
(ii) ETPRPn ⊆ EMPRP∗.

Proof. (i). Consider a P system Π such that L(Π) ∈ EMPRPn. In order to
prove the inclusion, construct an equivalent P system Π ′, such that L(Π ′) ∈
ETPRPn, which has the same alphabets and membrane structure as Π. The
set of rules of any membrane in Π can be divided into three subsets Hi,Oi, Ii. It
suffices to put all the rules of each subset inside a single table in the corresponding
membrane of Π ′.

(ii). Let Π = (V, T, μ,M0, . . . ,Mn−1, R0, . . . , Rn−1) be a system such that
L(Π) ∈ ETPRPn. We assume that m0 is the skin membrane in μ. We show
how to construct a P system Π ′ = (V ′, T, μ′,M ′

0, . . . ,M
′
m−1, R

′
0, . . . , R

′
m−1), such

that L(Π ′) ∈ EMPRPm, which generates the same language as Π. The alphabet
of Π

′
is V ′ = V ∪ {X,Xt, Xhere, Xin, Xout, †}, where V ∩ {X,Xt, Xhere, Xin,

Xout, †} = ∅.
Consider a generic membrane mi of Π, for any i = 0, . . . , n − 1, which

can contain a set Mi of strings, a set Ri of tables of rules and, possibly, a
set {mi,1, . . . ,mi,h} of other membranes. We show how to simulate this generic
membrane in the system Π ′, and we point out that the simulation of all other
membranes follows the same recursive description below.

The membrane m′i in Π ′, corresponding to mi in Π, is obtained by replacing
every string w in Mi with a string Xw, where X is a symbol not in V . The set
of rules of the membrane m′i will be:

R′i = {X → Xt(in), Xhere → Xt(in), Xin → X(in), Xout → X(out)}. (In the
skin membrane (i = 0), the last rule is replaced with Xout → λ(out)).

Inside m′i, we add some new membranes denoted by mt
i,1, . . . ,m

t
i,s, one for

each table tr ∈ Ri, for r = 1, . . . , s. Each new membrane mt
i,r will contain the

following rules:

Rt
i,r = {A → yXtar(out) | A → y(tar) ∈ tr} ∪ {Xt → λ(out), X → †(out)}.
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Finally, we add the rule Xt → †(out) in each membrane m′i,1, . . . ,m
′
i,h,

which are all placed inside membrane m′i and correspond to the membranes
mi,1, . . . ,mi,h originally placed in membrane mi. (Observe that, if i �= 0, then
the rule Xt → †(out) will also be placed inside m′i because of the recursive
construction of the system.)

From the construction of μ′, it follows that the number of membranes we
need in Π ′ to simulate each membrane in Π depends on the number of tables
in each Ri, hence m cannot be a priori bounded. Instead, we can say that the
depth is increased from the value k to the new value k + 1.

Let us now see how the system works. Consider a string Xw in membrane
m′i, at the first step of a computation we always have to apply the rule X →
Xt(in), which introduces the new symbol Xt and sends the string inside an
inner membrane. If Xtw enters a membrane m′i,j , 1 ≤ j ≤ h, then the symbol
† is introduced and that string will never contribute to the output. Instead, if
Xtw enters a membrane mt

i,r, 1 ≤ r ≤ s, then the computation can proceed. In
this way, we can nondeterministically perform the simulation of a table from the
corresponding membrane mi in Π.

Inside membrane mt
i,r, 1 ≤ r ≤ s, we simulate the rules of the table tr: we

apply all the rules A → yXtar(out) which can be applied and which correspond
to rules A → y(tar) belonging to tr, and in parallel we delete the symbol Xt. If
some rules can be applied, then the rewritten string w′ returns to membrane m′i
and the computation can proceed; if no rules can be applied, then no support
symbols will be present in the string w and the computation halts in membrane
m′i. Observe that more than one symbol Xtar can be introduced at this step
of the computation, in fact many rules of the form A → yXtar(out) could be
simultaneously applied to the current string.

If the introduced symbols are Xhere, then in membrane m′i the rule Xhere →
Xt(in) will introduce the symbol Xt again, and the string is ready for a new
simulation of a table from mi.
If the introduced symbols are Xin, then in membrane m′i the rule Xin → X(in)
will introduce the symbol X again. If the string enters a membrane m′i,j , then
the computation proceeds, otherwise it stops with the introduction of † in any
other membrane.
If the introduced symbols are Xout, then in membrane m′i the rule Xout →
X(out) will introduce the symbol X again, and the string will exit the current
membrane. In particular, if m′i is the skin membrane of Π ′, then no support
symbol will be introduced, the string will exit the system and, if it is a terminal
string, it will contribute to the output, otherwise it will be ignored.

Hence we can correctly simulate every computation in Π by a computation
in Π ′, it follows that L(Π ′) = L(Π). 
�

An immediate consequence of the previous theorem is:

Corollary 4. EMPRP∗ = ETPRP∗.

Theorem 7. EUPRPn(Pri) ⊆ ETPRP∗.
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Proof. Consider the system Π = (V, T, μ,M0, . . . ,Mn−1, (R0, ρ0), (R1, ρ1),
. . . , (Rn, ρn−1)), such that L(Π) ∈ EUPRPn(Pri). The system Π ′ (such that
L(Π ′) ∈ ETPRP∗), which generates the same language as Π, can be built as
follows.

Consider a generic membrane m in Π containing k rules (in what follows,
tar ∈ {in, out, here}). The corresponding membrane m′ in Π ′ is obtained by
adding k membranes immediately inside m, one for each rule to be simulated.
Each string w in m is replaced with Xw in m′, where X /∈ V .

Then, we replace each rule rj : A → x(tar) in m with a corresponding
table Tj : [X → 〈Xj , tar〉, {Bi → # | for all rules (Bi → xi) > (rj : A →
x)}, 〈X, tar〉 → #; in]. Moreover, we add the tables [〈X, tar〉 → X; tar], for all
tar ∈ {in, out, here}, and [〈Xh, tar〉 → #;here], for all h ∈ {1, . . . , k}.

The added j-th internal membrane, 1 ≤ j ≤ k, contains the table
[〈Xj , tar〉 → 〈X, tar〉, {Xi → # | i = 1, . . . , k, i �= j}, rj : A → x; out].

The computation proceeds as follows: consider a generic membrane m′. We
nondeterministically choose one table to be applied to the string; table Tj sim-
ulates the rule rj .

If the string contains some symbols which could be the subject of a rule in
Π with a higher priority, then the trap symbol is introduced. Otherwise, we
introduce the symbol 〈Xj , tar〉 and we send the string to an inner membrane.

If the string reaches the added membrane which correspond to the simulation
of the rule rj , then we simulate the production and we send back to membrane
m a string of the form 〈X, tar〉w′. Here, we replace the symbol 〈X, tar〉 with X
and we send the obtained string to (one of) the target membrane corresponding
to tar (if we are in the skin membrane and the target is out, then X is erased,
that is we use the table [〈X, out〉 → λ; out] instead of [〈X, out〉 → X; out]).

If the string is sent to “wrong” internal membranes (that is, to added mem-
branes which simulate different rules or membranes originally present in μ) then
the trap symbol is introduced. The same holds if a string of the form 〈X, tar〉w
is the subject of a table Tj : [X → 〈Xj , tar〉, Bi → #, 〈X, tar〉 → #; in].

It is easy to see that the language generated by Π ′ is the same as that
generated by Π. 
�

Theorem 8. ESPRP∗ ⊂ ETPRP1.

Proof. As EDT0L ⊂ ET0L, this inclusion directly follows from Theorem 1 and
Corollary 3. 
�

We conclude this section by summarizing the previous results in the following
hierarchy diagram: if two families are connected by a line, then the lower family
is included in the upper family; if two families are connected by an arrow, then
the lower family is properly included in the upper family. If two families are not
connected, then they are not necessarily incomparable.
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EUPRP3(Pri) EDT0L = ESPRP∗
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EUPRP∗(Pri) ET0L

EMPRP2 ETPRP1

EMPRP∗ = ETPRP∗

5 Final Remarks

We have considered P systems with string objects in which rules are applied in
parallel, not only in all membranes and to all strings as it happens in usual P
systems, but on symbols in the string, too.

We have introduced different kinds of parallelism and we have compared the
generative power of systems using different parallelism methods with respect to
various Lindenmayer systems (ET0L, ED0L, and EDT0L). As already pointed
out in [1], some kind of parallelism are powerful enough to generate all ET0L
languages using a small number of membranes. We improved one such result
here, showing that two membranes suffice when we use systems with a maximal
parallel application of the rules. Other kinds of parallelism are shown to be less
powerful.

Moreover, we have compared the power of different parallelism methods. For
instance, we have shown that the family of languages generated by P systems
with a maximal parallel application of the rules coincides with the family of
languages generated by P systems with table parallelism, while the family of
languages generated by P systems with parallel application of rules on a single
symbol is strictly included in the family of languages generated by P systems
with table parallelism and with exactly one membrane.

Many problems remain open, mainly concerning comparisons among systems
with different parallelism and their relations with respect to Lindenmayer sys-
tems.
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Abstract. We propose a new class of P systems that use simple evolu-
tion rules (classical evolution rules without communication targets) and
symport/antiport rules (for communication).
This type of P system is realistic for (at least) three different reasons: we
do not have target indications in the evolution rules, we use very simple
symport/antiport rules to realize communication, and we do not need
objects available in the environment at the beginning of a computation.
Somewhat expected, this new variant is still universal. We prove the uni-
versality in two cases: when using catalytic rules (but only one catalyst),
symport/antiport rules of weight one, and two membranes, and when we
use three membranes, symport/antiport rules of weight one, and no cata-
lyst. Especially the latter result is of interest, because the catalysts were
used in most universality proofs for P systems with symbol-objects. Also
new is the proof technique we use: we start from programmed grammars
with unconditional transfer.

1 Introduction

We introduce and investigate here a new class of P systems that joins two basic
variants of P systems: the one with evolution rules, the other one with sym-
port/antiport rules (in what follows, we assume the reader familiar with the
basic elements of membrane computing, for instance, as presented in [5]). More-
over, in this variant, the evolution rules lose their target indications (in this way,
the model becomes more realistic from a biological point of view) and the system
is embedded in an empty enviroment (and not infinite as in the case of systems
with symport/antiport rules). The idea of this new variant is to “split” the work
of a P system in two phases: the evolution of the symbol-objects (application
of evolution rules) and the communication between the regions of the system
(application of the symport/antiport rules). In such a new model, we can have
many different strategies to define a computation; in this paper we study the
evolution-communication P systems where the computation takes place with a
mixed “sequence” of evolution rules and symport/antiport rules. We show that
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such a variant, using non-cooperative rules, low passage of information (sym-
port/antiport rules of weight equal to one) and two membranes can generate
more than the Parikh image of context-free languages. Moreover, we show that,
if we use one catalyst, low symport/antiport rules (symport/antiport rules of
weight equal to one) and two membranes, then we can generate all the recur-
sively enumerable sets of integer numbers. This result is interesting in view of
the fact that in [6] it has been shown that a catalytic system, using six cat-
alyst objects and two membranes, is universal. Here, we decrease the number
of catalyst objects to one, at the price of using communication by mean of
simple symport/antiport rules (of weight one). Also, we show that, if we use
three membranes, then we can generate all the recursively enumerable sets of
integer numbers using simple symport/antiport rules of weight one and sim-
ple non-cooperative evolution rules – hence no catalyst. The proof is based on
simulating programmed grammars with unconditional transfer by means of P
systems. As far as we know, it is the first time when the programmed grammars
are used in membrane computing proofs. Up to now, the “standard” tools for
obtaining universality results were matrix grammars with appearance checking
and register machines.

We recall that another approach to avoid the use of target indications in
the evolution rules, and having communication mixed with evolution, has been
studied in [1]; However, while in [1] one changes the structure of the evolution
rules, here we put together two already well-studied variants of P systems.

2 EC P Systems

We define the new variant of P systems, as asystems that use evolution rules as
defined in [5], chapter 3 (but without communication targets, or, equivalently,
with all the communication targets fixed as “here”) and symport/antiport rules,
as defined in [5], chapter 4. For simplicity, we often call the evolution rules
without communication targets simple evolution rules (or simple catalytic rules).

Definition 1. An evolution-communication P system (in short, an EC P sys-
tem), of degree m ≥ 1, is defined as

Π = (O,μ,w1, w2, · · · , wm, R1, · · · , Rm, R′1, · · · , R′m, io),

where:

– O is the alphabet of objects;
– μ is a membrane structure with m membranes (and hence m regions) injec-

tively labelled with 1, 2, · · · ,m;
– wi are strings which represent multisets over O associated with the regions

1, 2, · · · ,m of μ;
– Ri, 1 ≤ i ≤ m, are finite sets of simple evolution rules over O; Ri is asso-

ciated with the region i of μ; a simple evolution rule is of the form u → v,
where u and v are strings over the alphabet O;
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– R′i, 1 ≤ i ≤ m, are finite sets of symport/antiport rules over O; R′i is
associated with the membrane i of μ;

– io ∈ {0, 1, 2, · · · ,m} is the output region; if io = 0, then it is the environment,
otherwise io is the label of an elementary membrane of μ.

The m-tuple of multisets of objects present at any moment in the regions
of Π represents the configuration of the system at that moment (the m-tuple
(w1, · · · , wm) is the initial configuration). A transition between configurations
is governed by the mixed application of the evolution rules and of the sym-
port/antiport rules. All objects which can be the “subject” of the rules from the
sets Ri, R

′
j , 1 ≤ i ≤ m, 1 ≤ j ≤ m, have to evolve by such rules. As usual, the

rules from Ri are applied to objects in region i and the rules from R′i govern
the communication of objects through membrane i. There is no difference be-
tween evolution rules and communication rules: they are chosen and applied in
the non-deterministic maximally parallel manner. The system continues parallel
steps until there remain no applicable rules (evolution rules or symport/antiport
rules) in any region of Π. Then the system halts, and we consider the number
of objects contained in the output region io, at the moment when the system
halts, as the result of the computation of Π. This way to have a computation in
an EC P system will be called the mixed approach.

We use the notation

NECPm(i, j, α), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0}
(PsECPm(i, j, α), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0})

to denote the family of sets of natural numbers (the family of sets of vectors of
natural numbers) generated by EC P systems with at most m membranes (as
usually, m = ∗ if such a number is unbounded), using symport rules of weight
i, antiport rules of weight j, and simple evolution rules that can be cooperative
(coo), non-cooperative (ncoo), or catalytic (catk), using at most k catalysts.

3 Computational Power: Preliminary Results

Before presenting the universality of EC P systems, we discuss some results
which either follow directly from the definitions, or shed some light about the
power of systems with a small number of membranes. We are interested in com-
putational results about EC P systems that use symport/antiport rules of a
low weight (systems with “long enough” symport/antiport rules are universal
[5]) and with not “too powerful” evolution rules (we know that with cooperative
rules or with catalyst rules, with “enough” catalyst objects, we have already uni-
versality [5], [6]). So, we will try to stay in the middle, using a combination of not
so powerful symport/antiport rules and simple evolution rules. We recall that
NOPm(α, tar), PsOPm(α, tar), α ∈ {coo, ncoo}∪{catk | k ≥ 0}, denote the fam-
ily of sets of natural numbers and the family of sets of vectors of natual numbers
generated by symbol-object P systems of degree at most m, using rules of the
type α, and target communications of the type {here, out} ∪ {inj | 1 ≤ j ≤ m}.
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As above, we use catk to indicate that the corresponding P system uses at most
k catalysts.

Because communication targets can, obviously, simulate the control of com-
munication as done by a symport rule of weight 1, we have:

NECPm(1, 0, α) ⊆ NOPm(α, tar),

for all α ∈ {coo, ncoo} ∪ {catk | k ≥ 0}.
From [6] we know that NOP2(cat6, tar) = NRE, and from [5] we have

NOPm(ncoo, tar) = NCF, for all m ≥ 1. (As usual, if FL is a family of lan-
guages, then we denote by PsFL the family of Parikh images of languages in
FL and by NFL the family of length sets of languages in FL.)

We know that, in the case of NOP1(ncoo, tar), the role of the target indi-
cations is only to send out (this means to “lose”) some symbol-objects, using
target indications of the form aout, where a is a symbol-object. We can simulate
the evolution rules which contain such a target indication by replacing each aout

with λ; in this way, we can avoid to use target indications. Thus, we have

NOP1(ncoo, tar) ⊆ NECP1(0, 0, ncoo) ⊆ NECP1(1, 0, ncoo).

Therefore NECP1(1, 0, ncoo) = NCF.
Such an equality is no longer valid if we consider the Parikh sets and we

use more powerful ingredients: symport/antiport rules of weight one and two
membranes.

In the next theorem we show that, using two membranes, non-cooperative
rules, and symport/antiport rules of weight one, we can generate more than the
Parikh images of the context-free languages.

The idea of the proof is to simulate a programmed grammar without ap-
pearance checking (we know [2] that such grammars generate non semilinear
languages, hence languages whose Parikh image is not in PsCF ). The family
of languages generated by programmed grammars with λ rules and without ap-
pearance checking is denoted by PR.

Theorem 1. PsPR ⊆ PsECP2(1, 1, ncoo).

Proof. Consider the programmed grammar G = (N,T, P, S) without appearance
checking. We denote by l(S) the set of labels of rules of the form (k : S →
x, σ(k)) ∈ P. We add to P the triple (0 : U → S, σ(0)) with σ(0) = l(S), where
U is a new non-terminal. We denote by G′ the obtained grammar (N ′, T, P ′, U),
where N ′ = N ∪ {U}. Clearly, L(G) = L(G′) and each derivation in G′ starts
with the rule with label 0.

For each x ∈ N ′ we consider a new symbol x̄; denote by N̄ the set of such
symbols, and define the morphism γ : (N ′ ∪ T )∗ −→ (N̄ ∪ T )∗ in the following
way: γ(x) = x̄, if x ∈ N ′, and γ(x) = x, if x ∈ T .

We construct the EC P system

Π = (O,μ,w1, w2, R1, R2, R
′
1, R

′
2, io),
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with:

O = N ′ ∪ T ∪ N̄ ∪ {di, d
′
i | i ∈ lab(P ′)} ∪ {#, f, c, c1},

μ = [1[2 ]2]1,
w1 = fU,

w2 = c,

io = 0,
R2 = {X → γ(x)dk | (k : X → x, σ(k)) ∈ P ′} ∪ {di → # | i ∈ lab(P ′)}

∪ {# → #, c1 → c} ∪ {Y → Ȳ | Y ∈ N ′},
R1 = {di → d′i | i ∈ lab(P ′)} ∪ {c → c1} ∪ {Ȳ → Y | Y ∈ N ′},
R′2 = {(di, out; d′j , in) | i ∈ σ(j)} ∪ {(d0, out; f, in), (c1, in)}

∪ {(a, out) | a ∈ T} ∪ {(c, out;Y, in), (Ȳ , out) | Y ∈ N ′},
R′1 = {(a, out) | a ∈ T}.

The EC P system Π simulates the programmed grammar G′ in the following
way. The evolution rules simulate the context-free rules of G′, while the sym-
port/antiport rules check if the evolution rules are applied according to the order
defined by the labels in the success fields of G′. The symbol-object c, together
with (one of) the antiport rules (c, out;Z, in), for some Z ∈ N ′, associated with
membrane 2 are used; this makes sure that in each step only one object Z ∈ N ′

is present in region 2, and, therefore, only one simple evolution rule of the form

Z → γ(z)dm, for (m : Z → z, σ(m)) ∈ P ′,

can be applied.
Assume that such a rule is applied in region 2 and the object dm is produced.

This object indicates that the rule of G′ with label m has been applied.
After the object dm has been produced, it must exit from region 2 (because

of the evolution rule dm → # that produces the trap-symbol #). But the object
dm can exit only if the “right” predecessor is present in region 1 (“right” in the
sense of the order defined by the success fields of G′). In fact, to exit from region
2, the object dm must use (one of) the antiport rules associated with membrane
2, that is, (dm, out; d′j , in), for j such that m ∈ σ(j). This antiport rule checks
if the simple evolution rule has been applied in the correct order, as defined by
the programmed grammar (the object f is used only to start the computation).

When the object dm goes to region 1, it is changed in d′m and this object
will be the new predecessor (this means that it “stores” the label of the last
applied rule) and the computation will be continued. The evolution rules Y →
Ȳ , for Y ∈ N ′, present in region 2, makes sure that when the computation halts,
there are no objects of N ′ present in regions 1 or 2.

In each step, each produced terminal is sent out by the symport rules as-
sociated with membrane 1 and 2, and we collect the output in the enviroment.
Thus, modulo the order of symbols, the system Π sends out exactly the strings
of L(G) = L(G′). 
�
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Corollary 1. PsCF ⊂ PsECP2(1, 1, ncoo).

Proof. Because [2] PsCF ⊂ PsPR, the theorem implies the corollary. 
�

4 Universality of EC P Systems: A First Result

In this section we give a first universality theorem for EC P systems. This result
is not a surprise, because the model joins two different models that are known
to be universal. The interesting fact is that we can prove that our systems are
universal even when they use very small symport/antiport rules, only one cata-
lyst, and two membranes. The proof is based on the simulation of programmed
grammars with appearance checking and with unconditional transfer. Such a
grammar is an usual programmed grammar G = (N,T, P, S), with the rules of
P of the form (i : A → x, σ(i), ϕ(i)) with σ(i) = ϕ(i) (the success and the failure
fields coincide). We recall from [3] that such grammars are able to generate the
recursively enumerable one-letter languages.

Theorem 2. NECP2(1, 1, cat1) = NRE.

Proof. Let us consider a programmed grammar G = (N, {a}, P, S) with appear-
ance checking and with unconditional transfer. We add to P the production
(0 : U → S, σ(0), ϕ(0)) with σ(0) = ϕ(0) = l(S), where U is a new non-terminal
and l(S) the set of labels of S-productions from P . In this way, we obtain a new
grammar, G′ = (N ′, {a}, P ′, U), with N ′ = N ∪{U}. Clearly, L(G) = L(G′) and
each derivation in G′ starts with the rule with label 0.

We construct the EC P system

Π = (O,μ,w1, w2, R1, R2, R
′
1, R

′
2, io),

with

O = N ′ ∪ {di, d
′
i, d

′′
i , ei | i ∈ lab(P ′)}

∪ {a, F, F ′, F ′′, c, f, g, g′,#, h, p1, p2, · · · , p5},
μ = [1[2 ]2]1,

w1 = f,

w2 = cUhF,

io = 0,
R1 = {di → d′i, d

′′
i → d′iei | i ∈ lab(P ′)}

∪ {Y → # | Y ∈ N ′} ∪ {F ′ → F ′′,# → #},
R2 = {F → F, cF → cF ′, g → #, cg → cg′,# → #}

∪ {cX → cxdkg | (k : X → x, σ(k), ϕ(k)) ∈ P ′}
∪ {di → #, d′′i → #, ch → chd′′i p1 | i ∈ lab(P ′)}
∪ {cp1 → cp2, cp2 → cp3, cp3 → cp4, cp4 → cp5},

R′1 = {(a, out)},
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R′2 = {(F ′, out), (a, out), (p5, out), (d0, out; f, in)}
∪ {(di, out; d′j , in), (d′′i , out; d

′
j , in) | i ∈ σ(j)}

∪ {(Y, out;F ′′, in) | Y ∈ N ′}
∪ {(p5, out; ei, in), (Q, out; ei, in) | (i : Q → x, σ(i), ϕ(i)) ∈ P ′}.

The system Π simulates the programmed grammar G′ in the following way.
The evolution rules, of the form cX → cxdkg, for (k : X → x, σ(k), ϕ(k)) ∈
P ′, present in region 2, simulate the context-free rules of G′, while the sym-
port/antiport rules are used to check if the simple evolution rules are applied
according to the order defined by the labels in the success fields of G′. Moreover,
the evolution rules of the form ch → chd′′i p1, for i ∈ lab(P ′), present in region
2, are applied to skip a rule that cannot be applied and, in this case, the sym-
port/antiport rules are used to be sure that the skipping of a rule has been done
in a correct way (this mechanism simulates the appearance checking mechanism
of the grammar G′). The evolution rules F → F, cF → cF ′, together with the
symport/antiport rules (F ′, out), (Y, out;F ′′, in), for Y ∈ N ′, are used to make
sure that, when the computation halts, there is no symbol from N ′ in region 2.
The catalyst c is used to ensure that in each step only one simple evolution rule
is executed.

We pass now to show in more detail how a computation of Π works. After a
simple evolution (catalytic) rule of the form

cZ → czdmg, for some (m : Z → z, σ(m), ϕ(m)) ∈ P ′,

has been applied in region 2, the objects dm and g have been produced. The
object dm indicates that the rule of G′ with label m has been applied, while
the object g is used only to “keep busy” the catalyst c. After the object dm

has been produced, it must leave region 2 (because of the simple evolution rule
that produces the trap symbol #). But the object dm can exit only if in region
1 the “right” predecessor (“right” in the sense of the order defined by the suc-
cess/failure fields of G′) is present. In fact, to exit from region 2, the object dm

must use (one of) the antiport rules from R′2 of the form

(dm, out; d′j , in), for j such that m ∈ ϕ(j).

When the object dm goes in region 1, it is changed in d′m and this object will
store the new predecessor (this means that it stores the label of the last applied
rule) and the computation will continue. If a rule cannot be applied, then we
must simulate the appearance checking mechanism of the grammar. It is possible
to skip the application of a rule by using the simple evolution rule

ch → chd′′qp1, for some q ∈ lab(P ′),

present in region 2. The application of this rule means that the context-free rule
of G′ with label q cannot be applied. We obtain the objects d′′q and p1. The
object d′′q must go to region 1, but, as in the previous case, it can pass to region
1 only if the “right” predecessor is stored in this region. In fact, in order to exit
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from region 2, the object d′′q must use (one of) the antiport rules associated with
membrane 2,

(d′′q , out; d
′
j , in), for j such that q ∈ ϕ(j).

When the object d′′q arrives in region 1, the evolution rule d′′q → d′qeq, is applied,
which creates the new predecessor d′q and the object eq that must check if the
rule (q : Q → z, σ(q), ϕ(q)) was skipped correctly.

After producing eq, the antiport rule (Q, out; eq, in), associated with mem-
brane 2 might be applied. If this happens, then the evolution rule Q → #,
is applied in region 1 and the computation never halts (this means that the
skipping of the rule with label q was not correct).

If this antiport rule is not applied, then the skipping of the rule was correct
and, now, the only thing to do is to “clean” region 1 of the object eq. To this
aim we use the object p5 (it will arrive in region 1 only after checking the
correctness of skipping a rule) and the antiport rule (p5, out; eq, in), associated
with membrane 2. After removing the object eq from region 1, the simulation
of rules from G′ can be repeated. The objects p1, · · · , p5, g, g

′ are used to “keep
busy” the catalyst c and to send, at the right time, the object p5 to region 1.

Each produced terminal is sent out by the symport rule associated to mem-
branes 1, 2 and the system Π sends out exactly the strings of L(G) = L(G′),
hence, in this case it generates the length set of L(G). 
�

5 Universality with Non-cooperative Rules

In this section we prove that EC P systems are universal even when using only
simple non-cooperative evolution rules – hence no catalyst –, and simple sym-
port/antiport rules. The “price” to pay, in comparison to the previous result,
is to use a membrane structure composed of three membranes. The idea of the
proof is to simulate a programmed grammar with appearance checking and un-
conditional transfer. As before, we use the fact that a programmed grammar
with appearance checking and unconditional transfer is able to generate the
recursively enumerable one-letter languages.

Theorem 3. NECP3(1, 1, ncoo) = NRE.

Proof. Consider a programmed grammar G = (N, {a}, P, S) with appearance
checking and with unconditional transfer. As in the previous theorems, we add
to P the triple (0 : U → S, σ(0), ϕ(0)) with σ(0) = ϕ(0) = l(S) where U is a new
non-terminal and l(S) = {k ∈ lab(P ) | (k : S → x, σ(k), ϕ(k)) ∈ P}. In this way,
we obtain a new grammar, G′ = (N ′, {a}, P ′, U), with N ′ = N ∪ {U}; clearly,
L(G) = L(G′) and each derivation in G′ starts with the rule with label 0.

For each x ∈ N ′ we consider a new symbol x̄, we denote by N̄ the set of such
symbols, and we define the morphism γ : (N ′ ∪ T )∗ −→ (N̄ ∪ T )∗ by γ(x) = x̄,
if x ∈ N ′, and γ(x) = x, if x ∈ T .

We construct the EC P system

Π = (O,μ,w1, w2, w3, R1, R2, R3, R
′
1, R

′
2, R

′
3, io),
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with:

O = N ′ ∪ N̄ ∪ {di, d
′′
i , d

′′′
i , ei, e

′
i | i ∈ lab(P ′)}

∪ {a, p1 · · · p5, c, h, h̄, c1, c2, · · · , c7, c′,#, F, F ′, f},
μ = [1[2[3 ]3]2]1,

w1 = ∅,
w2 = FfUh,

w3 = c,

R1 = {ei → e′i | i ∈ lab(P ′)} ∪ {Y → # | Y ∈ N ′},
R2 = {Ȳ → Y | Y ∈ N ′} ∪ {h̄ → h, F → F, c → c1, c1 → c2, · · · , c6 → c7}

∪ {di → d′i, d
′′
i → d′iei | i ∈ lab(P ′)},

R3 = {X → γ(x)dk | (k : X → x, σ(k), ϕ(k)) ∈ P ′}
∪ {h → h̄d′′i p1, di → #, d′′i → # | i ∈ lab(P ′)}
∪ {p1 → p2, p2 → p3, · · · , p4 → p5, c7 → c, c → c′, F → F ′},

R′1 = {(a, out)},
R′2 = {(Q, out; e′i, in), (ei, out), (p5, out; e′i, in) | (i : Q → z, σ(i), ϕ(i)) ∈ P ′}

∪ {(F ′, out), (a, out)} ∪ {(Y, out;F ′, in) | Y ∈ N ′},
R′3 = {(Ȳ , out), (c, out;Y, in) | Y ∈ N ′}

∪ {(h̄, out), (F ′, out), (c′, out;F, in), (c, out;h, in), (c7, in), (a, out)}
∪ {(di, out; d′j , in), (d′′i , out; d

′
j , in) | i ∈ σ(j)}.

The system Π simulates the programmed grammar G′ in the following way.
In region 3 (the inner one) we simulate the application of the context-free rules
of G′, using the simple evolution rules

X → γ(x)dk, for (k : X → x, σ(k), ϕ(k)) ∈ P ′,

while the symport/antiport rules

(di, out; d′j , in), (d′′i , out; d
′
j , in), for i and j such that i ∈ σ(j),

associated with membrane 3, take care of the application in the correct order of
the rules of G′.

During the simulation, using the symport/antiport rules

(c, out;Y, in), for Y ∈ N ′,

associated with membrane 3, we move from region 2 to region 3 the non-terminal
that must be rewritten, and after performing such a rewriting, we store in region
2 the objects obtained. Finally, we use region 1 to implement the appearance
checking mechanism of G′, using the antiport rules

(Q, out; e′i, in), for (i : Q → z, σ(i), ϕ(i)) ∈ P ′,

associated with membrane 2.
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The evolution rules F → F, F → F ′, present in region 2 and 3 respectively,
together with the antiport rule (c′, out;F, in) associated with membrane 3, and
with the symport rule (F ′, out) associated with membranes 3 and 2, are used to
make sure that, when the computation halts, there are no objects from N ′ in
region 2.

Now we pass to describe in more details the work of the system Π.
After applying an antiport rule

(c, out;Z, in), for some Z ∈ N ′,

associated with membrane 3, the object Z arrives in region 3 and the evolution
rule

Z → γ(z)dm, with (m : Z → z, σ(m), ϕ(m)) ∈ P ′,

is applied. The non-terminal objects of γ(z) are sent to region 2, using the
symport rules

(Ȳ , out), for Y ∈ N ′,

associated with membrane 3. The object dm indicates that the rule of G′ with
label m has been applied; as soon as such an object has been produced it must
leave region 3 (because of the evolution rule that produces the trap symbol #).
The object dm can exit only if in region 2 there exists the “right” predecessor
(“right” in the sense of the order defined by the success/failure fields of G′).
In fact, to leave region 3 the object dm must use (one of) the antiport rules
associated with membrane 3 of the form

(dm, out; d′j , in), for m ∈ σ(j).

Such an antiport rule can be applied only if in region 2 one of the predecessors
of dm is present. When the object dm goes in region 2, it is changed in d′m and
this object will store the new predecessor and the computation continues.

If a rule cannot be applied, then we must simulate the appearance checking
mechanism of the grammar: we introduce in region 3 the special object h using
the antiport rule (c, out;h, in), associated with membrane 3, and, after that, we
can apply the simple evolution rule

h → h̄d′′qp1, for some q ∈ lab(P ′),

present in region 3. The application of this rule means that the context-free
rule of G′ with label q cannot be applied. The application of this evolution rule
produces the objects d′′q , h̄, and p1. The object h̄ is immediately sent out to
region 2 and the object d′′q must go to region 2, but, as in the previous case,
it can pass to region 2 only if the “right” predecessor is there. In fact, to exit
from region 3, the object d′′q must use (one of) the antiport rules associated with
membrane 3

(d′′q , out; d
′
j , in), for q ∈ σ(j).

In this case, when the object d′′q arrives in region 2, the evolution rule d′′q → d′qeq,
is applied and it creates the new predecessor d′q and the object eq that will check
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if the rule with label q was skipped correctly. After producing eq, this object is
sent out to region 1, using the symport rule (eq, out), associated with membrane
2. As soon as the object eq arrives in region 1, it is changed to e′q and, at the
next step, the antiport rule

(Q, out; e′q, in), for (q : Q → z, σ(q), ϕ(q)) ∈ P ′,

associated with membrane 2, might be applied. If this happens, then the com-
putation never halts, because the evolution rule Q → #, present in region 1, is
applied (this means that the skipping of the rule with label q was not correct).
If this antiport rule is not applied, then the skipping of the rule was correct and,
now, the only thing to do is the cleaning of region 1 of the object e′q. To this aim
we use the object p5 (it will arrive in region 2 only after checking the correctness
of skipping a rule), together with the antiport rule

(p5, out; e′q, in),

associated with membrane 2. After removing the object e′q from region 1, the
simulation of the rules from G′ can be repeated. Finally, we observe that the
objects p1, p2, · · · , p5 are used to send at the “right” time the object p5 to region
1, and the objects c1, c2, · · · , c7 are used to “keep busy” the special object c.

In each step, each produced terminal is sent out by the symport rules asso-
ciated with membrane 1, 2, and 3, and we collect the output in the enviroment.
Thus, the system Π sends out exactly the strings of L(G) = L(G′), and, hence,
it generates the length set of L(G). 
�

6 Open Problems

We have studied here the evolution-communication P systems with what we
called the mixed approach, which is only one (probably the less restrictive) among
the possible ways to define a computation in an EC P system. We can have, at
least, two other approaches that we describe here, rather informally; these two
approaches might be seen as inspired, in some extent, from biology:

(i) the evolutive approach:
the simple evolution rules of the system have priority over the symport/anti-
port rules (in biological terms: an organism evolves by itself as much as
possible (evolution), until it needs something from others organisms (com-
munication));

(ii) the communicative approach:
the symport/antiport rules of the system have priority over the simple evo-
lution rules (in biological terms: an organism tries to communicate with the
others organisms, and only when it cannot comunicate anymore, then it
starts (or continue) its evolution).

We consider interesting the study of these (and possibly other) different ap-
proaches to have computation in an EC P system. For instance, a general ques-
tion of interest could be to check what is more important, in this framework,
evolution or communication.
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Moreover, we want point to out that we have given two universality results
for the EC P systems proving the equivalence with NRE. What can we say
about the equivalence with PsRE? Are similar results true?

Finally, we consider of interest to study the relations between the power of
simple evolution rules and the power of symport/antiport rules. In other words,
is there some kind of trade-off between these two types of rules?

7 Final Remarks

We have introduced a new variant of P systems called evolution-communication
P system, that simply joins classical evolution rules (without communication
targets) and communication rules (symport/antiport rules). This new model
seems to be closer to the biology, because it does not use target indications, but
simple symport/antiport rules to realize the communication. We have presented
a particular way of defining a computation in such a system, called the mixed
approach, and we have proven that the EC P systems are universal when using
catalytic rules (with only one catalyst), and symport/antiport rules of weight
one, with a membrane structure consisting of two membranes; moreover, we have
proven that, if we use three membranes, we can have universality also without
catalysts (hence with non-cooperative rules) and, again, using symport/antiport
rules of weight one. We can say that the results presented in this paper can
stay in the middle between the results presented in [5] and [6] on P systems
with evolution rules (or catalytic rules) and with target indications, and the
results presented in [4] on P systems with symport/antiport rules. Finally we
have suggested some different strategies (evolutive and communicative) to define
a computation in this new variant; also, several open problems are presented.
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Abstract. We propose in this paper a uniform manner of generating
families of P systems, using contextual grammars, specifically, variants
of bracketed contextual grammars. We introduce the concept of enriched
bracketed contextual grammar, which can be used to generate families
of P systems with symport/antiport rules.
More generally, we define the notion of dynamic P system associated to
grammars able to “generate” families of P systems, and introduce the
notion of dynamic computation sequence, which combines the previous
generative approach with computational aspects.
We illustrate these notions with an application to the problem of sort-
ing. The model of sorting we propose uses symport/antiport rules with
priority relations, and the notion of stable configuration of a P system.

1 Introduction

P systems are a very powerful computational tool, recently introduced by G.
Păun in [10]. Several variants were proposed and studied, and the literature
on the subject is growing rapidly. The main focus is the investigation of the
computational power of P systems.

In this paper we step for a moment aside from the main trend, and ask the
question if it is possible to generate families of P systems in a coherent, uniform
way. The observation which has started this research is that the membrane
structure of very simple P systems, with only one symport/antiport rule per
membrane, and no strings, is described by a certain type of bracketed strings.
Languages of bracketed strings are generated by a certain class of contextual
grammars, the bracketed and fully bracketed contextual grammars, introduced
in [7]. A derivation in such a grammar will thus transform a P system into
another, more complex one.

We can thus conceive of finding generative mechanisms for classes of P sys-
tems, in the form of (new types of) contextual grammars, whose derivations
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act on P systems, producing new P systems. This is the first main topic of the
present paper. Once we have such a generative mechanism – or, better – a recipe
for constructing such mechanisms, we will have a new, more precise meaning
attached to “family”, or “class” of P systems, and we will be able to address
new types of problems, such as measures of “resemblance/similarity” between P
systems, the descriptional complexity of such classes of P systems, and, last but
not least, the computational power of such classes.

The second main topic of the present paper is to combine the generative ap-
proach, with the computational one. The very general concept of dynamic P sys-
tem, and its associated dynamic computation sequence, captures (some of) the
spirit of an “evolving-while-computing” P system: the coherent changes, which
can be thought of as evolution steps, can now be modelled by the generative
devices in the form of grammars, proposed by the previous generative approach;
after each evolution step, the system is able to perform new computations, and
these, in turn, create the conditions for the next evolution step.

We illustrate how the concept of dynamic P system can be used to solve
dynamic problems, by applying it to the problem of sorting. The model for sorting
which we propose here, and which is based on P systems with communication
rules, can be considered as a third main topic, independent of the previous ones.
We believe it deserves further, and independent, investigation. We present here
only some dynamic versions, as illustrations for the concept of dynamic P system.

The paper is organized as follows.
Section 3 is devoted to “the generative approach”. It is based on research

started in [3]. We first recall the bracketed and fully bracketed contextual gram-
mars, and we establish their connection with P systems. Then, in subsections 3.3
and 3.4, we introduce new types of bracketed strings, and evaluate new types of
contextual productions from the point of view of what kind of P systems they are
able to generate. In subsection 3.5 we introduce the formal definitions of enriched
bracketed contextual grammars, which are generative devices for P systems with
symport/antiport rules, and symbol-objects. Even though they are initially in-
troduced for P systems as above with totally ordered sets of rules, we show in
subsection 3.6 that the same concept applies to P systems with communication
in the most general sense. We also point in this section to the generality of the
generative approach (other kinds of P systems, and other kinds of contextual
grammars could be considered), and to some questions which can be asked in
this new area.

In section 4 we introduce the notion of dynamic P system and its associated
dynamic computation sequence. We introduce it in a very general setting, in
order to make it independent of the specifics of the present paper. The fact that
it can be used in other settings, and is independent of the concept of enriched
bracketed contextual grammar for instance, has been proved by the application
developed in [2].

Section 5 is intended to illustrate how the concept of dynamic P system and
its associated dynamic computation sequence can be used to deal with a dynamic
problem; the problem considered here is that of sorting. In subsection 5.1 we
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present the main traits of our model for sorting (a model whose main idea is not
related to the other two main topics of this paper). In subsection 5.3 we present
the basic mechanism, the comparator, implemented using communication rules
with priority relations. In subsection 5.4 we present a first dynamic P system
which solves the sorting problem, by using an enriched bracketed n-contextual
grammar. A second dynamic P system which solves the same problem, based this
time on an enriched bracketed insertion grammar, is presented in subsection 5.5.
Subsection 5.6 is devoted to comparing our approach to sorting, to the approach
in [1], which also uses symport/antiport rules.

Finally, section 6 is devoted to concluding remarks, and open problems.
Section 2, with the inconspicuous title “Preliminaries”, contains what it ad-

vertises, i.e., some basic definitions of contextual grammars (2.2), and of P sys-
tems with communication (2.1), but also something more. In subsection 2.2,
some slight extensions of classical notions – deterministic contextual grammars,
contextual grammars with infinite sets of contexts, insertion grammars with in-
finite sets of insertion strings – are presented, in order to be used (but not in a
very essential way) in subsections 5.4 and 5.5. In subsection 2.1 we define the
notion of stable configuration of a P system, which is mentioned in section 4,
and used as a basic ingredient for our model of sorting in section 5.

2 Preliminaries

2.1 P Systems with Communication

In our paper we will focus only on P systems with communication, i.e., systems
which compute by moving symbol or string objects between adjacent membranes.
Let us note that communication makes the difference between a collection of
separate computing agents and a system of cooperating agents. Furthermore, in
[8] it is shown that communication alone is capable of universal computations,
which shows that focusing on systems which have only communication is not
devoid of interest.

The main notations and definitions in the rest of this section can be found
in [11], with the exception of some new concepts which we will introduce.

By communication we will mean communication/transmission of objects be-
tween membranes, obviously between adjacent membranes. We will associate to
membranes two types of communication rules:

– symport rules are of the type (x, in), with the meaning “objects described
by the string x can enter (the membrane to which the rule is associated)”,
and (x, out), with the meaning “objects described by the string x can exit (the
membrane to which the rule is associated)”;

– antiport rules are of the type (x, in; y, out), with the meaning “objects
described by the string x enter, while objects described by y exit the membrane”.

Note that antiport rules with one argument λ become symport rules, for
instance, (x, in;λ, out) = (x, in).



Dynamic P Systems 149

Definition 1. A P system with symport/antiport is a construct

Π = (O,μ,w1, · · · , wm, E,R1, · · · , Rm, i0),

where
(i) O is the alphabet of objects;
(ii) μ is a membrane structure with m membranes;
(iii) strings wi, 1 ≤ i ≤ m, represent the multisets over O associated with

the regions of μ;
(iv) E ⊆ O is the set of objects which are supposed to appear in the environ-

ment in arbitrarily many copies;
(v) Ri, 1 ≤ i ≤ m, are finite sets of symport and antiport rules over O

associated with the membranes of μ;
(vi) i0 is the label of an elementary membrane of μ (the output membrane).

In what follows, two components of such a construct will be ignored, the
environment, E, and the output membrane, i0. When referring to such a system
we will say that it is “not fully specified”.

The membrane structure μ of a P system will play an essential role in our
approach, and we recall that it is described by a word in the Dyck language over
the alphabet {[, ]} of pairs of brackets.

Also, we mention the fact that in general, in the P systems literature, we
have not (yet) encountered the idea of sets of symport/antiport rules endowed
with priority relations, that is, with a partial order relation, which plays a role
in the way rules are applied. Priority relations on rules have been used for P
systems with (multiset or string) rewriting rules. We use the notion of priority
not in its strong sense, but in the weak sense, of competition for objects.

Also of biochemical inspiration is the idea of “promoters/inhibitors” of rules:
some rules are active only in the presence of certain objects – the promoters, and
become de-activated in the presence of other objects – the inhibitors. References
can be found in [11] and [13].

For our purposes, in the second part of the paper, we will need a very simple
version, symport and antiport rules with one promoter, which can be a symbol-
object in O.

Let p ∈ O be a distiguished symbol-object, our promoter. We denote by
(x, in; y, out)|p the antiport rule (x, in; y, out) which will be active in a membrane
only if object p is present in that membrane, and not active if p is absent.
Similarly, for symport rules, we denote (x, in)|p the symport rule (x, in), active
if and only if p is present in the membrane.

Promoters themselves can be the object of comunication rules. In order to
avoid the cumbersome notation (p, out)|p which has the meaning “if p is present
then p gets out of the membrane”, we use (p, out), which has the same meaning,
and acts in the same way (if p is not present, the rule cannot be applied).

We will assume that, if a promoter is present in a membrane where it can
activate some rules, and it is also subject to rules which can take it out of that
membrane, then it will first activate the rules in question, and only afterwards
exit the membrane.
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By a configuration of a P system we will mean a state of the system de-
scribed by specifying the membrane structure, together with the objects and
rules associated to each membrane.

The notion of a halting computation is well known in the P systems litera-
ture: after all possible application of the rules, when the system has reached a
configuration in which no rule is any longer applicable, we say that the com-
putation halts. In standard P systems literature, a successful computation is a
halting one.

For the second part of our paper we will need a weaker notion than that of
a successful computation, which does not imply halting.

We say that a P system has reached a stable configuration if, even if some
rules are still applicable, their application does not change the string/object
content of the membrane structure, nor the membrane structure itself.

Two very easy examples of rules whose action does not change the content
of the membranes of a P system are the following:

1. An antiport rule of the type (x, in;x, out). If only this rule is active, in
the inner membrane of a system containing two nested membranes, then the P
system has reached a stable configuration, since the number of occurrences of x
in the two regions remains the same, and the rest is unchanged.

2. Pairs of rewriting rules of the type x −→ y and y −→ x. If in a membrane
we have the same number of occurrences of x and y, then the application of these
rules does not change the content of the membrane, the P system is stable.

Even if, at the first sight, these rules might seem absurd, or useless, in a given
context they might accomplish useful functions. We hope to prove that this is
the case with the first rule, which will be used in subsection 5.3 to accomplish
the construction of a comparator. We have not found yet something similar for
the second type of rules. Note that, for instance in [5], the first type of rule is
used to mark unsuccessful computations.

We think also of the fact that, in biological entities, keeping a balance for
some chemical substances, or electrical charges, is not an uncommon feature.
These rules seem to be, maybe in a very rough form, the formal expression for
such equilibrium mechanisms.

Note that this notion of stability is similar to the notions of adult word, and
adult languages, from the L systems area.

We will also consider the following weaker notions of stability.
If W ⊆ O is a sub-alphabet of the alphabet of objects, then we call a P

system stable w.r.t. W if the projection over W of the string/object content of the
system’s membranes remains unchanged, even if some rules are still applicable.

We have here in mind the fact that not all changes in a P system are of equal
importance, and that we might be interested in (or might be able to observe)
only some of its objects. Note that stable w.r.t. O is the same as stable.

If R′ = (R′1, · · · , R′m), with R′i ⊂ Ri for 1 ≤ i ≤ m, is a subset of the rules
of a P system, we call a P system stable w.r.t. the rules R′ if the P system with
rules R′ is stable (i.e., applications of rules in R′ do not change the string/object
content of the system’s membranes).
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We will use this second notion of stability to formulate more precisely the
above mentioned behavior of promoters.

Suppose a promoter p is present in a membrane i, where it can activate the
subset of rules Ri

p.
The promoter p cannot leave membrane i, unless the system has reached a

configuration which is stable w.r.t. the rules Ri
p activated by p.

Also, the priority relations between communication rules can now be endowed
with a more precise meaning. If r1 > · · · > rn > rn+1 > · · · is a totally ordered
subset of communication rules inside a membrane, then rule rn+1 is applicable iff
the system has reached a configuration which is stable w.r.t. rules r1 > · · · > rn.

As an example, consider a system with two nested membranes, [2[1]1]2, with
R2 = ∅, and membrane 1 having the set of rules

R1 = (a, in; a, out)|p > (p, out),

and symbol-objects w1 = anp, w2 = an.
We recall that our priority relation on rules acts in a “competing for objects”

manner. Then, the first rule will be active because of the presence of p, and it
will exchange the n occurrences of a from membrane 1 with the n occurrences
of a from membrane 2. Since the number of occurrences of a in each membrane
does not change, the system is stable w.r.t. the rule = (a, in; a, out)|p, and the
second rule is now applicable, and will get p out from membrane 1 into 2. The
content of the membranes will be now w1 = an and w2 = anp.

2.2 Contextual Grammars

We recall from [9] the following concepts.
A contextual grammar (with choice) is a construct G = (V,A,C, φ), where

V is an alphabet, A is a finite language over V , called the set of axioms, C is a
finite subset of V ∗ × V ∗, called the set of contexts, and φ : V ∗ → P(C) is the
choice (or selection) function of the grammar G.

With respect to a contextual grammar with choice, we can define two deriva-
tion relations:

x =⇒ex y iff y = uxv, for some (u, v) ∈ φ(x),
x =⇒in y iff x = x1x2x3 and y = x1ux2vx3, for some (u, v) ∈ φ(x2).

We say that =⇒ex is an external derivation, whereas =⇒in is an internal deriva-
tion in G. If =⇒∗

ex and =⇒∗
in are the reflexive and transitive closures of =⇒ex,

respectively =⇒in, then Lα(G) = {x ∈ V ∗ | w =⇒∗
α x for some w ∈ A} denotes

the language generated by G in each one of the two cases (α ∈ {ex, in}).
We say that such a grammar, used in the external mode is an external contex-

tual grammar (with choice), whereas used in the internal mode it is an internal
contextual grammar (with choice).

We say that such a grammar is an (external, respectively internal) contextual
grammar without choice iff φ(x) = C, for all x ∈ V ∗. In this case, the derivation
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styles can be rewritten as:

x =⇒ex y iff y = uxv, for some (u, v) ∈ C,

x =⇒in y iff x = x1x2x3 and y = x1ux2vx3, for some (u, v) ∈ C.

A contextual grammar G = (V,A,C, φ) is in the modular presentation when
it is given as a construct G = (V,A, (S1, C1), . . . , (Sn, Cn)), such that Ci ⊆ φ(x),
for all x ∈ Si, 1 ≤ i ≤ n. A pair (Si, Ci) is called a production, with Si the
selector of the production, and Ci its contexts.

An n-contextual grammar is a construct G = (V,A,C, φ), where V is an
alphabet, A is a finite language over V (the set of axioms), C is a finite subset
of (V ∗)n (the set of n-contexts), and φ : (V ∗)n+1 → P(C) is the choice (or
selection) map. The derivation in an n-contextual grammar is defined as:

x =⇒ y iff x = x1x2 . . . xn+1 and y = x1u1x2u2 . . . xnunxn+1

for x1, x2, . . . , xn+1 ∈ V ∗ and (u1, u2, . . . , un) ∈ φ(x1, x2, . . . , xn+1).

If =⇒∗ is the reflexive and transitive closure of =⇒, then L(G) = {x ∈ V ∗ |
w =⇒∗ x for some w ∈ A} denotes the language generated by G.

A 2-contextual grammar is also called total contextual grammar.
An insertion grammar is a construct G = (V,A, P ), where V is an alphabet,

A is a finite language over V (the set of axioms), and P is a finite subset of
V ∗ × V ∗ × V ∗ called the set of insertion rules. The derivation in an insertion
grammar is defined as:

x =⇒ y iff x = x1uvx2 and y = x1uzvx2, for some (u, z, v) ∈ P.

If =⇒∗ is the reflexive and transitive closure of =⇒, then L(G) = {x ∈ V ∗ |
w =⇒∗ x for some w ∈ A} denotes the language generated by G.

Recall also from [9], that the following extension was proposed and studied
for internal contextual grammars with choice, the contextul grammars with an
infinite set of contexts. The definition can be extended along the same lines to
several of the above types.

More precisely, let the construct G = (V,A,C, φ) denote an internal/external
contextual grammar with choice, or an n-contextual grammar. We say that G
is a contextual grammar (of the respective type) with an infinite set of contexts
iff:

– the total set of contexts, C, is allowed to be infinite;
– the image φ(x) of the selection function, in every point x of its domain, is

finite.
In other words, even if we allow for infinity of the total set o contexts, the

selection mechanism (and thus the derivations) should act in a finite manner.
Also, the concept of deterministic contextual grammars was considered in

[9], actually only for grammars with insertion and deletion of contexts.
We can extend this concept in a natural way to several of the above mentioned

types of contextual grammars.
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Let the construct G = (V,A,C, φ) denote a contextual grammar of any of
the above types. We say that G is a deterministic contextual grammar (of the
respective type) iff |φ(x)| ≤ 1 for every x in the domain of φ.

Note that, for the above mentioned types, we can now combine the two
features, and consider deterministic contextual grammars with an infinite set of
contexts.

We will use the concept of deterministic n-contextual grammar, with a pos-
sibly infinite set of contexts, in subsection 5.4.

For insertion grammars, we propose the following extensions, which, we be-
lieve, capture the same spirit in a different formal setting.

Let G = (V,A, P ), be an insertion grammar. Let C = {(u, v) | (u, x, v) ∈ P},
be its set of contexts, and X = {x | (u, x, v) ∈ P}, its set of insertion strings.
Denote by

P(u,v) = {(u, x, v) ∈ P | x ∈ X}
the set of insertion rules which use the context (u, v).

We call G = (V,A, P ) an insertion grammar with infinite set of insertion
strings if:

– V and A retain their meaning from the original definition;
– X can be infinite, and thus P can be infinite;
– for each context (u, v) ∈ C we have |P(u,v)| < ∞.

In other words, even if the set of all insertion strings is infinite, a given context
can select only a finite number of strings to be inserted.

We call an insertion grammar G = (V,A, P ) (with finite or infinite set
of insertion strings) deterministic, iff, for every context (u, v) ∈ C, we have
|P(u,v)| ≤ 1.

We will refer to the concept of deterministic insertion grammar, with a pos-
sibly infinite set of insertion strings, in subsection 5.5.

3 From Contextual Grammars to P Systems
– A Generative Approach

3.1 Bracketed Strings and Bracketed Contextual Grammars

Let V be an alphabet and B = {[, ]} the alphabet with one pair of parentheses.
By DB we will denote the Dyck language over B.

Remark 1. Throughout the rest of this paper, we will use indices for the brackets
only for the purpose of marking pairs of matching brackets. We will make explicit
use of sets of separators such as Bn = {[i, ]i | 1 ≤ i ≤ n}, but the indices will not
represent types, and the underlying Dyck language will be the Dyck language
with one type of brackets.

Recall from [7] and [9] the following concepts:

Definition 2. A string x ∈ (V ∪ B)∗ is called a Dyck covered string iff using
only reduction rules of type [w] → λ for any w ∈ V ∗, we have x=⇒∗λ.



154 Rodica Ceterchi and Carlos Mart́ın-Vide

We denote by DC(V ) the set of all Dyck covered strings over V as above.

Definition 3. A Dyck covered string x ∈ (V ∪ B)∗ is called a minimally Dyck
covered string iff:

1. if x = x1]x2[x3 with x1, x3 ∈ (V ∪B)∗, x2 ∈ V ∗, then x2 = λ.
2. the rule [ ] → λ is not used in the reduction x=⇒∗λ.

We denote by MDC(V ) the set of all minimally Dyck covered strings over V .

Definition 4. A string x ∈ (V ∪ B)∗ is called a Dyck covered string with skin
iff x = [y], with y ∈ DC(V ), and minimally Dyck covered with skin iff x = [y],
with y ∈ MDC(V ).

Fig. 1
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We denote by SDC(V ), respectively SMDC(V ), the set of Dyck covered,
respectively minimally Dyck covered strings with skin over V .

Recall from [7] and [9] that to each string in MDC(V ) we can associate in
a unique manner a tree, with nodes labeled with integers, and doubly labelled
edges with labels in V ∗. The construction of the tree τ(x) from the string x is
as follows:

– draw the root node, and label it with 1;
– scan x from left to right and grow τ(x) according to the rules:
(down) for each maximal [w, with w ∈ V ∗, draw a new edge starting in the

current node, place it to the right of it, and mark w on the left side of the edge;
(up) for each maximal w], w ∈ V ∗, not scanned yet, climb the current edge,

marking w on the right side of it.

Example 1. Consider the string [2 a [3 a [4 ab ]4 [5 ab [6 c ]6 b ]5 c ]3 c ]2 [7 a ]7.
We will associate to it the tree in Fig. 1. Note that the root node, with label 1,
does not correspond to a pair of parentheses in the expression.

In [7] and [9], the following types of contextual grammars were considered.
Let G = (V,A, P ) be a contextual grammar in modular presentation, with

P = {(Si, Ci) | 1 ≤ i ≤ n}
its set of productions.
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Definition 5. A contextual grammar G = (V,A, P ) (in modular presentation)
is called a bracketed contextual grammar iff A ⊆ MDC(V ), and Si ⊆ V ∗,
Ci ⊆ V ∗ × V ∗ \ (λ, λ) for all 1 ≤ i ≤ n.

Note that the axioms are strings in MDC(V ), while the selectors are strings
in V ∗, as for ordinary contextual grammars.

The derivation relation (in the internal mode) associated to a bracketed con-
textual grammar is defined as follows: for x, y ∈ (V ∪B)∗

x =⇒in y iff x = x1x2x3 , y = x1[ux2v]x3,
with x1, x3 ∈ (V ∪B)∗, x2 ∈ MDC(V ), and
prV (x2) ∈ Si, (u, v) ∈ Ci, for some i,

where prV denotes the projection on V , prV : (V ∪B)∗ −→ V ∗, defined as usual:
prV ([) = prV (]) = λ, and prV (a) = a for a ∈ V .

Definition 6. A contextual grammar G = (V,A, P ) is called a fully bracketed
contextual grammar, iff A ⊆ MDC(V ), and Si ⊆ MDC(V ), Ci ⊆ V ∗ × V ∗ \
(λ, λ) for all 1 ≤ i ≤ n.

For x, y ∈ MDC(V ) we define the derivation in a fully bracketed contextual
grammar:

x =⇒in y iff x = x1x2x3 , y = x1[ux2v]x3,
with x1, x3 ∈ (V ∪B)∗, x2 ∈ MDC(V ), and
x2 ∈ Si, (u, v) ∈ Ci, for some i.

Note that in the case of bracketed contextual grammars the selection is made
by strings over V , embedded in brackets to give x2 ∈ MDC(V ), while in the case
of fully bracketed contextual grammars the selectors themselves have brackets,
and are in MDC(V ).

The string language generated by a bracketed contextual grammar G =
(V,A, P ) is defined by

Lin(G) = {prV (w) | z=⇒∗
in w, for some z ∈ A}.

The bracketed language generated by a bracketed contextual grammar is defined
by

BLin(G) = {(prV (w), τ(w)) | z=⇒∗
in w, for some z ∈ A}.

Note that we can construct, from the given set of contexts, the alternative
set CCi = {([u, v]) | (u, v) ∈ Ci}, and then, the above derivations are the usual
internal derivations in a contextual grammar.

Note also that, if we choose to work with axioms in SMDC(V ), then the
above derivation relations produce strings still in SMDC(V ). The example bel-
low is of this type.

Example 2. Take the bracketed (not fully bracketed) contextual grammar

G = ({a, b, c}, {[ [ab] [c] [a] ]}, {p1 = (c, ([ab, b])), p2 = (abc, ([a, c]))} ).

The string in Example 1 is obtained in this grammar by applying to the axiom
twice the rule p2, followed by one application of rule p1. (Note that after applying
p1, rule p2 cannot be applied any more.) The derivation is the following:
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[ [ab] [c] [a] ] =⇒p2 [ [ a [ab] [c] c ] [a] ]
=⇒p2 [ [ a [ a [ab] [c] c ] c ] [a] ]
=⇒p1 [ [ a [ a [ab] [ ab [c] b ] c ] c ] [a] ].

3.2 The Crucial Observation

To every tree, τ(x), constructed as in Example 1, we can associate in a unique
manner a membrane structure with symport/antiport rules, in the following way:

– to every node, labelled with the integer i, we associate a membrane [i ]i,
and the root node, labelled with 1 will be associated to the skin membrane, [1 ]1;

– to every internal node, which has one (and only one) edge entering into it,
with labels (x, y), where x is the “left” label and y the “right” one, we associate
the antiport rule (x, in; y, out) with the membrane representing that node.

Note that all the leaves of such a tree will correspond to elementary mem-
branes, and, having only labels of type (w, λ), the rules for the elementary mem-
branes will be symport rules of type (w, in).

We have thus the following result:

Lemma 1. Every string x ∈ SMDC(V ) describes a P system

Px = (V, μ,w1, · · · , wm, E,R1, · · · , Rm, i0)

with the following properties:
(1) w1 = · · · = wm = λ;
(2) Every Ri, with the exception of the one associated to the skin membrane,

contains precisely one antiport rule (which can be in fact a symport rule); the
Ri’s corresponding to elementary membranes contain only one symport rule of
type (x, in).

Conversely, every P system as above is described by a string in SMDC(V ).

Proof. The direct implication follows from the definition of strings in MDC(V ),
and the way the associated tree is constructed. All internal nodes have edges with
double labels (none is (λ, λ)), and from here follows the existence of precisely
one antiport rule. The root node coresponds to the “skin” parentheses, and thus
has no rules.

For the converse, take a P system, not necessarilly fully specified

P = (V, μ,w1, · · · , wm, E,R1, · · · , Rm, i0),

which satisfies (1) and (2). Consider a tree structure which describes the mem-
brane structure μ and label its nodes with integers from 1 to m corresponding to
the depth-first traversal. The root will have label 1. For every edge which enters
a node i, with i ≥ 2, take the unique rule Ri = {(ai, in; bi, out)} and put the
label (ai, bi) on the edge, ai on its left side, and bi on its right side. Now, make
a depth-first traversal of the obtained tree, writing:

– [1 when we start from the root, and ]1 when we end the traversal in the
root;
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– [iai every time we descend from a node to its son i, and ai is the left label
of the edge on which we are descending;

– bi]i every time we go up from a son i to its parent, and bi is the right label
of the edge which we are climbing.

The obtained string is in SMDC(V ) because, with the exception of the
external brackets [1]1, which represent the skin membrane and for which R1 = ∅,
all the other nodes have precisely one rule associated to them. 
�

Note that there can be several trees, and thus several strings in SMDC(V ),
which describe the same P system.

Example 3. Apply the above construction of a string, to the tree in Fig. 1. We
obtain the string in Example 1, embedded in a supplementary pair of external
brackets [1 ]1, i.e., [1 [2 a [3 a [4 ab ]4 [5 ab [6 c ]6 b ]5 c ]3 c ]2 [7 a ]7 ]1.

Fig. 2
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Example 4. The membrane structure associated to the tree in Fig. 1, which was
constructed from the string in Example 1, is depicted in Fig. 2.

From the previous lemma and the definitions of bracketed contextual gram-
mars, we also have:

Lemma 2. Let G be a bracketed or a fully bracketed contextual grammar. Let
x ∈ A be an axiom of the form x = [x′] with x′ ∈ MDC(V ). Then, to every
y ∈ (V ∪B)∗ such that x=⇒G

∗y there will correspond a unique P system

Py = (V, μ,w1, · · · , wm, E,R1, · · · , Rm, i0)

with the following properties:
(1) w1 = · · · = wm = λ;
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(2) Every Ri, with the exception of the one corresponding to the skin mem-
brane, contains precisely one antiport rule (which can be in fact a symport rule);
the Ri’s corresponding to elementary membranes contain only one symport rule
of type (w, in).

Fig. 3
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The lemma follows easily from the fact that from a string in MDC(V ), by
applying one derivation step in G, we obtain a string still in MDC(V ), and the
fact that the axiom with which we start the derivation is in SMDC(V ) (and
thus has a skin, and corresponds to a P system).
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The lemma implies that, to a sequence of derivations in a bracketed or fully
bracketed contextual grammar G,

x =⇒G y1 =⇒G y2 =⇒G · · · =⇒G yn

we can attach a sequence of P systems, {Px, Py1 , · · · , Pyn
}, each one of the type

described in the lemma.
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Example 5. The trees and the corresponding P systems associated to every string
in the derivation in the bracketed contextual grammar from Example 2, are
depicted in Figs. 3, 4, 5, and 6 respectively.

Fig. 6
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Note that in the grammar of Example 2, after one application of the deriva-
tion rule p1, rule p2 is no longer applicable, so all the derivation sequences are
of the type “apply r times rule p2, and then s times rule p1” (r can be 0). This
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means that all the associated P systems have the same “general shape”, and
we describe it in Fig. 7, the P system obtained from the original one after r
applications of rule p2, followed by s applications of rule p1.

To summarize what we have obtained so far: bracketed and fully bracketed
contextual grammars (by the way, one of the most actively researched branches
of contextual grammars) generate special types of strings – strings which are
descriptions of a special class of tree structures, with doubly labelled edges –
trees which in turn are describing the membrane structure of special types of P
systems.

Fig. 7
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The only problem is that the P systems generated so far are too poor to
be able to perform internal computations, and thus are devoid of interest. We
will remedy this problem in the next sections, by trying to find “good” string-
descriptions for interesting types of P systems, and, by exploiting (and even
enriching) the typology of contextual grammars, to find “good” generative de-
vices for families of P systems.
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3.3 New Types of Bracketed Strings

In this section we consider other types of strings, richer in structure than the
(minimally) Dyck covered ones, strings which are able to describe P systems
with a richer structure.

Let Bs = {[, |, ]} be the alphabet containing, beside a pair of brackets, a
special symbol, |, called separator.

Definition 7. We call Dyck language with one separator the language Ds
B ⊆ B∗s

defined by the following recursive relations:
(i) [ | ] ∈ Ds

B;
(ii) if x1, x2, · · · , xn ∈ Ds

B, then [x1x2 · · ·xn] ∈ Ds
B for any n ≥ 1.

Example 6. The string
[ [ [ | ] [ | ] ] [ [ | ] ] ]

is in Ds
B . Actually, we can associate natural numbers starting from 1, to every

pair of parentheses [, ] and in the case of parentheses with separator, we associate
the same number to the separator. For the above string we obtain:

[1 [2 [3 |3 ]3 [4 |4 ]4 ]2 [5 [6 |6 ]6 ]5 ]1.

Let V be another alphabet, disjoint from Bs = {[, |, ]}.
Definition 8. A string x ∈ (V ∪ Bs)∗ is called a well-covered string over V ,
with respect to Ds

B iff the following hold:
(a) x = [y], with y ∈ (V ∪Bs)∗;
(b) prBs

(x) ∈ Ds
B.

Note that Dyck covered strings are in particular well-covered strings over V
w.r.t. the Dyck language DB .

Denote by DS(V ) the set of all well-covered strings over V w.r.t. Ds
B . Denote

by SDS(V ) the set of strings in DS(V ), with skin, i.e., x = [y] with y ∈ DS(V ).

Example 7. The string

[1 a[2 b[3 c|3 d]3 x[4 e|4 f ]4 g]2 y[5 h[6 k|6 l]6 m]5 n]1

is in DS(V ). Its projection over Ds
B is precisely the string in Example 6.

To every string w ∈ DS(V ) we associate a tree τ(x) with doubly labelled
edges, labels from V ∗, and with nodes containing, on one hand integer labels,
which identify each node unambiguously, and on the other hand, labels from V ∗.
We construct the tree τ(x) from x according to the following rules:

– draw the root, and label it with integer 0;
– scan x from left to right attaching an integer label (the next integer) to

every [ encountered, and grow τ(x) with the rules:
(down) for each maximal [w, with w ∈ V ∗ (which means that after w we have

a letter in Bs), draw a new edge, starting in the current node of the partially
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constructed τ(x), mark the edge with w on its left, and place it to the right of
the node where it started; the new node, at the end of the edge, will have the
integer label associated to the encountered [ ;

(up) for each maximal w], or |w], with w ∈ V ∗, climb the current edge and
write label w on its right;

(stay) for each maximal ]w[, with w ∈ V ∗, stay in the current node and put
label w in it (we are in a node, since we just climbed to one, and will descend
into another son of it).

For every such tree, we have a corresponding membrane system with one
symport/antiport rule per membrane, and objects from V , constructed with the
rules:

- the root node, labelled 0, can be considered as an outer skin and will play
the role of the environment E (we will not draw it);

- the root node 0 has only one son, with label 1, and the tree with root 1 is
the usual tree description of the membrane structure μ of a P system;

- there is a membrane corresponding to every internal node; since there is
an edge which enters every node, and it is doubly labelled (let the pair (x, y)
compactly describe the label), we will associate to the membrane a unique anti-
port rule of the form (x, in; y, out). (It can degenerate into a symport rule.)
The rule associated to membrane 1 (the skin) will be the rule that governs the
communication with the environment E.

The tree associated to the string in Example 7 and the corresponding P
system are depicted in Fig. 8.

Fig. 8

����
��������

����

����

����
����

�
��

�
��

#
#

"
"

0

1y

2x 5

643

a n

b

g h

m

c

d e

f
k l

�

�

�

�

�

�

�

�
�
�

�
�
�
�

�
�

�

�

�

�

�
�

�
�

1

2

3 4

5

6

y (a, in; n, out)

x

(b, in; g, out)

(c, in; d, out) (e, in; f, out)

(h, in; m, out)

(k, in; l, out)

Lemma 3. To every string x ∈ SDS(V ) there corresponds a P system

Px = (V, μ,w1, · · · , wm, E,R1, · · · , Rm, i0)

with the following properties:
(1) wi = λ for all i which correspond to membranes which are either elemen-

tary, or are non-elementary, but have only one sub-membrane;
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(2) Every Ri contains precisely one antiport rule (which can be in fact a
symport rule).

Conversely, every P system as above is described by a string in SDS(V ).

Proof. Similar to the proof of Lemma 1. 
�
Note that if an internal node i has ki sons, then it will have ki−1 strings in V ∗

as labels, but their interpretation as objects in the membrane i is independent
on the number of strings.

Note also that the tree associated to a string is unique, but it is not the unique
description of a P system. Several trees, and thus several strings in SDS(V ) will
describe the same P system.

We intend to use strings in SDS(V ) as axioms for (new types of) bracketed
contextual grammars. What we have accomplished with the price of one extra
separator | is the possibility on having antiport rules of the most general type
associated to elementary membranes, and, by relaxing the conditions which were
imposed on minimally Dyck covered strings, we have obtained also objects inside
some of the membranes. Still, as we will see, this is not powerful enough.

3.4 New Types of Contextual Productions

We consider in the sequel several types of contextual productions, i.e., pairs of
selectors and contexts, and the derivations associated with them, and we study
what we obtain in terms of P systems. (Obviously, the formalism will have to
be enriched.) To keep the picture clear, we will consider (as much as possible)
singleton selectors, and singleton contexts, and we do not bracket singletons.

1. Contexts which generate new membranes
This has been the case so far. Take the production p = (y1 · · · yn, ([u, v])),

with yj ∈ SDS(V ), for 1 ≤ j ≤ n and u, v ∈ V ∗. Then we have:
x =⇒p y iff x = x1x2x3 , y = x1[ux2v]x3,

x2 = y1 · · · yn and yj ∈ SDS(V ), for 1 ≤ j ≤ n.
One internal derivation step as above has the effect of embedding the mem-

branes corresponding to y1, · · · , yn in a new membrane, with one antiport rule,
(u, in; v, out).

2. Contexts which generate new elementary membranes
Take the production p = ( ], (λ, [u|v]). We have
x ] y =⇒p x ] [u|v] y.
If y is different from λ, then a new elementary membrane will be added

at the same level as its selector ]. The new membrane has one antiport rule
(u, in; v, out).

3. Contexts which add new rules to elementary membranes
We will have to consider ; a new separator, in order to distinguish between

rules.
Take as selector S = { | } and the set of contexts C1 = {(;u, v; )}, C2 =

{(;x, λ; )}, C3 = {(;λ, y; )}. Denote by pi = (S,Ci). Since the selector | is to
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be found only in elementary membranes, we can see how a derivation works by
applying it to [a|b]:

[a|b] =⇒p1 [a;u|v; b]
=⇒p2 [a;u;x|λ; v; b]
=⇒p3 [a;u;x;λ|y;λ; v; b].

The application of p1, p2, p3 has enriched the membrane with the antiport
rule (u, in; v, out), the symport rule (x, in), and the symport rule (y, out), re-
spectively.

Note that applying the same derivation rule to the same selector several
times does not enrich the corresponding membrane structure (since the rule
was already added). Strings obtained with this kind of productions are not in
SDS(V ).

4. Adding objects to elementary membranes
Use again the selector |, and as context some Cw = {(λ,w|)} with w ∈ V ∗.

Then we have the derivation [a|b] =⇒pw
[a|w|b], and we interpret the result as

the old elementary membrane, with antiport rule (a, in; b, out), enriched with
the objects w. Note that the produced string is no longer in SDS(V ), because it
contains more than one appearance of the separator | inside a pair of brackets.

For a finite set of contexts C = {(λ,w1|), · · · (λ,wn|)} we will have
[a|b] =⇒ [a|w1| · · · |wn|b],

with the meaning: the elementary membrane has been enriched with the strings
{w1, · · · , wn}. Again, the derived string is not in SDS(V ).

5. Strings as selectors
Consider now a string x ∈ V ∗ as selector for a context (u, v) with u, v ∈ V ∗.

Depending on the place in which x occurs, such a production can (1) either
modify a rule, or (2) change the contents of a membrane. For instance:

(1) [axb|y] =⇒ [auxvb|y], or
(1’) y1[axb[y2 =⇒ y1[auxvb[y2.
In (1) the rule (axb, in; y, out) has been changed into rule (auxvb, in; y, out).

Similarly, in (1’) the left-hand-side of an antiport rule has been changed.
Or, we can have:
(2) [a|rxs|b] =⇒ [a|ruxvs|b],
(2’) a ] rxs [ b =⇒ a ] ruxvs [ b.
The rule in (2) has enriched an elementary membrane with objects u and v,

while in (2’) a membrane which is not elementary has been enriched. (If we want
to add objects where we have none, we will have to use different productions,
and possibly different derivations.)

3.5 Enriched Bracketed Contextual Grammars

The discussion in the previous two subsections has shown that, if we want to rep-
resent P systems with a more complicated structure (several symport/antiport
rules per membrane, strings inside membranes, and the possibility of adding rules
and strings to given membranes), then we will need more complicated bracketed
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strings than the well-formed ones over the Dyck language with one separator.
We will need at least two separators, | as before, for the contents of a membrane,
and ; a separator between rules, and we have to allow for several appearances of
each one of them.

We will define now the notion of a membrane expression or m-expression for
short.

Let S = { [ , ] , | , ; } be the alphabet of separators and V (disjoint from S)
the alphabet of objects.

Definition 9. A string x ∈ (V ∪ S)∗ will be called an elementary m-expression
over V iff x is of the form

x = [a1; · · · ; an|w1| · · · |wm|bn; · · · ; b1],

with ai, bi ∈ V ∗, for 1 ≤ i ≤ n, wj ∈ V ∗, for 1 ≤ j ≤ m, and natural numbers
n,m ≥ 0.

Such a string describes an elementary membrane, with n symport/antiport
rules R = {(ai, in; bi, out) | 1 ≤ i ≤ n}, and containing symbol-objects in the
form of strings {wj | 1 ≤ j ≤ m}. If m = 0, then the membrane has no objects
in it, only rules, and we use only one separator |, i.e., x becomes

x = [a1; · · · ; an|bn; · · · ; b1].

If n = 0, then the membrane will have no rules, only strings, i.e., x becomes

x = [ |w1| · · · |wm| ].

An empty elementary membrane, with no strings and no rules, will be the m-
expression [ | ], or [ ].

Definition 10. A string x ∈ (V ∪ S)∗ will be called an m-expression over V iff
(1) either x is an elementary m-expression;
(2) or there exist the m-expressions {ek | 1 ≤ k ≤ t}, the strings {wj | 1 ≤

j ≤ m} ⊆ V ∗, and the pairs of strings {(ai, bi) | 1 ≤ i ≤ n} ⊆ V ∗×V ∗ such that
x is of the form

x = [a1; · · · ; an|w1| · · · |wm|e1| · · · |et|bn; · · · ; b1].

An m-expression describes a membrane structure with objects, symport/anti-
port rules for objects, and sub-membranes described by the m-expressions {ek |
1 ≤ k ≤ t}.

The set of all m-expressions over V will be denoted by ME(V ), and can be
inductively constructed from the definition above.

Remark 2. Since there are several m-expressions which describe the same P sys-
tem, we will actually work with equivalence classes of strings in ME(V ).
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Definition 11. On ME(V ) define the relation ∼ as the smallest equivalence
relation for which, if x is an m-expression

x = [a1; · · · ; an|w1| · · · |wm|e1| · · · |et|bn; · · · ; b1],
as in Definition 10, then the following hold:

(1) x ∼ y, if y=[a1; · · · ; an|wσ(1)| · · · |wσ(m)|eτ(1)| · · · |eτ(t)|bn; · · · ; b1], where σ∈
Perm(m) and τ ∈ Perm(t) are permutations of m, respectively t elements.

(2) x ∼ z, if z = [ρ1(a1); · · · ; ρn(an)|w1| · · · |wm|e1| · · · |et|ρn+1(bn); · · · ; ρ2n(b1)],
where by ρj(x) we have denoted a permutation of the letters of x, for 1 ≤
j ≤ 2n.

(3) x ∼ x′ if x′ = [a1; · · · ; an|w1 · · ·wm|e1| · · · |et|bn; · · · ; b1] (we have catenated
the strings w1, · · · , wm.)

(4) x ∼ x′′ if x′′ = [a1; · · · ; an|ρ(w1 · · ·wm)|e1| · · · |et|bn; · · · ; b1], where ρ(w) de-
notes a permutation of the letters of w.

(5) x ∼ x′′′, if x′′′ is obtained by a combination of (1), (2), (3) and/or (4) above,
or by permuting between them strings wj with m-expressions ek.

We will denote by x̂ the class of the string x ∈ ME(V ).
An m-expression as in Definition 10, where each wi is a word over a one-letter

alphabet, will be called an m-expression in canonical form.

Fig. 9
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Remark 3. To every element x̂ of ME(V )/ ∼ there corresponds an unordered
tree, τ(x), in the following recursive way:

(1) if x is an elementary m-expression, then τ(x) has one root node labelled
with integer 0, and only one descendant, a node labelled with integer 1, and one
edge entering into it; the edge has n pairs of labels {(ai, bi) | 1 ≤ i ≤ n}, and
node 1 has internal labels {wj | 1 ≤ j ≤ m} ∈ V ∗. Note that node 1 is a leaf.
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(2) if x is a non-elementary m-expression, then it has nodes 0 and 1 as above,
and node 1 has t descendants (trees) represented by the m-expressions e1, · · · , et.
The leaves of such a tree will correspond to elementary m-expressions.

Figure 9 represents a tree, corresponding to the m-expression in Definition 10.

Remark 4. The set of symport/antiport rules associated to a membrane can be
either an unordered set, or an ordered set; in this latter case, there is a natural
total order on rules. We make the convention that the most “external” ones are
stronger than the “internal” ones, i.e.,

(a1, in; b1, out) > (a2, in; b2, out) > · · · > (an, in; bn, out).

Our definition above of the equivalence relation ∼ does not allow commutation
of rules.

Lemma 4. To every x̂ ∈ ME(V )/ ∼ there corresponds a P system with symbol-
objects in V , and with a totally ordered set of symport/antiport rules associated
to every membrane.

Reciprocally, to every P system as above we can attach an element x̂ ∈
ME(V )/ ∼.

Contextual derivations in ME(V )/ ∼
A derivation in a contextual grammar produces from a string, x, another

string, y, using a certain production p (or alternatively, a context selected by
the selection function). Both strings are over V . Even in the case of bracketed
contextual grammars, there can be emphasis on the string language generated
by the grammar (which consists only of the string projections over V ), or on the
bracketed language, which consists of pairs of strings over V and the associated
tree.

We are interested here mainly in the tree part of words in the bracketed
language; moreover, we are interested in equivalence classes of such trees, an
equivalence class containing all possible string-descriptions of a P system.

Because of this, even if we will consider contextual grammars which describe
and preserve (under derivation) m-expressions, we will look for the results of
derivations on classes of m-expressions.

Definition 12. Let G be a contextual grammar of an arbitrary type (internal,
external, total, n-contextual, in the functional or modular presentation, insertion
grammar, etc.) over the alphabet V ∪ S, where V is an arbitrary alphabet, and
S is the alphabet of separators defined above. Denote by A the set of axioms
of G, and by =⇒ the derivation relation associated with G. We say that G is
an enriched bracketed contextual grammar of the corresponding type (internal,
external, total, n-contextual, insertion, etc) iff A ⊆ ME(V ), and for any x ∈
ME(V ) and for any derivation x =⇒ y, we have y ∈ ME(V ).

Definition 13. If G is an enriched bracketed contextual grammar and =⇒ is
the derivation relation associated with G, we call enriched contextual derivation
induced by G the following binary relation on ME(V )/ ∼:
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x̂ =⇒eb ŷ iff x̂ ∈ ME(V )/ ∼, ŷ ∈ ME(V )/ ∼ and
there exist representatives x′ ∈ x̂ and y′ ∈ ŷ
such that x′ =⇒ y′.

Enriched contextual productions and derivations
We present in the sequel several types of contextual productions and we

analyze what we obtain from them in terms of P systems. Our goal is to construct
contextual grammars, which have m-expressions as axioms, and such that the
derivation associated to production rules (or selection functions) leads to other
m-expressions. In the rest of this section, we will consider that G is a contextual
grammar of an appropriate type.

1. Productions which add non-elementary membranes
Let x be an m-expression in its canonical form

x = [a1; · · · ; an|w1| · · · |wm|e1| · · · |et|bn; · · · ; b1].
Consider the following contextual production in G:

p = (ei1 | · · · |eik
, ([u|, |v])),

with u, v ∈ V ∗ and eij
∈ ME(V ) for all 1 ≤ j ≤ k (we may represent the sets of

selectors and respectively contexts from a contextual production by one element
each, as long as they are both singletons).

If {ei1 , · · · , eik
} ⊆ {e1, · · · , et}, then there exist m-expressions

{f1, · · · , ft−ik
} = {e1, · · · , et}\{ei1 , · · · , eik

}
and x′ ∈ x̂ such that

x′ = [a1; · · · ; an|w1| · · · |wm|ei1 | · · · |eik
|f1| · · · |ft−ik

|bn; · · · ; b1].
To x′ we can apply the internal string derivation =⇒ of G, and obtain x′ =⇒ y,
with

y = [a1; · · · ; an|w1| · · · |wm|[u|ei1 | · · · |eik
|v]|f1| · · · |ft−ik

|bn; · · · ; b1].
We have thus the enriched internal derivation x̂ =⇒eb ŷ which has the effect of
embedding all membranes {ei1 , · · · , eik

} which are sub-membranes of x̂, into a
new membrane with one antiport rule (u, in; v, out).

Adding a new membrane with several rules is also possible, using productions
of the form:

p = (ei1 | · · · |eik
, ([u1; · · · ;us|, |vs; · · · ; v1])).

The new membrane will have a (totally ordered) set of antiport rules

{(u1, in; v1, out) ≥ · · · ≥ (us, in; vs, out)}.
Instead of the modular presentation we could have used the functional pre-

sentation and define the selection function φ by:

φ(ei1 | · · · |eik
) = ([u1; · · · ;us|, |vs; · · · ; v1]),
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where in the right hand-side we have a singleton, for which we omitted, as usual,
the brackets.

2. Productions which add elementary membranes
Consider the following contextual production in G:

p = ( | , (λ, [u1; · · · ;us|w|vs; · · · ; v1] | ) ).

If
x = [a1; · · · ; an|w1| · · · |wm|e1| · · · |et|bn; · · · ; b1],

then we obtain an enriched internal derivation x̂ =⇒eb ŷ where:

y = [a1; · · · ; an|w1| · · · |wm|e1| · · · |et|[u1; · · · ;us|w|vs; · · · ; v1] | bn; · · · ; b1].
Note that in the internal string-derivation the membrane can be put anywhere
between strings wj or sub-membranes ek (in other words, the production can use
any of the selectors | present in the expression), but we can find a representative
y as above in canonical form.

The selection can be enriched with further conditions. Adding a new elemen-
tary membrane can be conditioned on certain factors, and this can be modelled
by appropriately changing the selector of the production (or the domain of the
selection function φ). For instance, if we want to insert an elementary membrane
inside another membrane, only if the latter contains some specified string object
x ∈ V ∗, then we can use the production:

p = ( |x| , (λ, [u1; · · · ;us|w|vs; · · · ; v1] | ) ),

or the selection function

φ( |x| ) = (λ, [u1; · · · ;us|w|vs; · · · ; v1] | ).

All the above derivations are internal ones. More complicated conditions can be
formulated and modelled with total contextual selection functions and deriva-
tions, or with n-contextual ones, or even with insertion grammars.

3. Productions which add new rules to membranes
The new rules (of symport/antiport type only) will take the form of contexts

C = {(;u1, v1; ), · · · , (;us, vs; )}.
The domain of the selection function φ “decides” where the new rules are to
be added. But we should be careful with the selection function. For instance,
φ( | ) = C, which was considered in Section 3.4, can be used to associate rules
to elementary membranes with no string objects in them. But if we allow this
choice, the derivation could be applied in “wrong places”, getting us out of the
set ME(V ).

If the whole content (strings and sub-membranes) of a membrane plays a role
in the choice of new rules to be added, then we can use a selection function

φ(|w1| · · · |wm|e1| · · · |et|) = C.
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For
x = [a1; · · · ; an|w1| · · · |wm|e1| · · · |et|bn; · · · ; b1],

the sequence of internal string-derivations

x =⇒1 y1 =⇒2 y2 · · · =⇒s ys

(where =⇒j denotes the application of the context (;uj , vj ; )) will yield:

y1 = [a1; · · · ; an;u1|w1| · · · |wm|e1| · · · |et|v1; bn; · · · ; b1],
...

ys = [a1; · · · ; an;u1; · · · ;us|w1| · · · |wm|e1| · · · |et|vs; · · · ; v1; bn; · · · ; b1].
Recall that the set of rules is totally ordered, and thus the order in which

the contexts are applied does count.
If the presence of other rules in the membrane determines the choice or the

rules to be added, or if only part of the content of a membrane determines the
choice, the formulation of the selection function could be either more compli-
cated, or even impossible in the frame of internal derivations. But again, we
could use total or n-contextual grammars.

4. Productions which add new objects to membranes
Adding objects in the form of strings w ∈ V ∗ to a membrane, without further

constraints, can be accomplished with the selection function

φ( | ) = (λ,w|) , with w ∈ V ∗.

An internal derivation which uses it will enrich the string content of a membrane,
a fact which can be easily shown.

If we want to condition the addition of new objects on the previous existence
of other objects, like x ∈ V ∗, and/or sub-membrane structures, like e ∈ ME(V ),
then we will use the respective selection functions:

φ( | x | ) = (λ,w|) , with w ∈ V ∗,
φ( | e | ) = (λ,w|) , with w ∈ V ∗.

Again, conditioning the addition of objects on the existence of certain rules
will have to be formulated in a total contextual or n-contextual setting. For
instance, conditioning the addition of objects w on the whole set of rules of a
membrane could be modelled by the following total selection function:

φ([ a1; · · · ; an , | z | , bn; · · · ; b1]) = (λ,w|) , with w ∈ V ∗.

If
x = [ a1; · · · ; an | z | bn; · · · ; b1 ],

then the total string-derivation x =⇒ y will produce

y = [ a1; · · · ; an | z | w | bn; · · · ; b1 ].
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3.6 Remarks on the Generative Approach

In the previous section we have formally defined the set of strings ME(V ) and
the equivalence relation ∼, which help us express, using elements of ME(V )/ ∼,
all P systems with symbol objects and totally ordered sets of symport/antiport
rules associated to membranes. We have worked with totally ordered sets of rules
only because we will need such sets of rules in the second part of the paper, more
precisely in subsections 5.3, 5.4, and 5.5.

In order to work with P systems with symport/antiport rules without priority
relations, the formalism needs very little changes.

Let ME(V ) be as above, and S the same set of separators.
On ME(V ) define the relation ∼1 as the smallest equivalence relation which

contains ∼, and for which, if x is as an m-expression

x = [a1; · · · ; an|w1| · · · |wm|e1| · · · |et|bn; · · · ; b1],
as in Definition 10, then the following holds:

(6) x ∼1 y, for y = [aσ(1); · · · ; aσ(n)|w1| · · · |wm|e1| · · · |et|bσ(n); · · · ; bσ(1)], where
σ∈Perm(n) is a permutation of n elements.

Lemma 5. To every x̂ ∈ ME(V )/ ∼1 there corresponds a P system with sym-
bol objects in V , and with symport/antiport rules (without priority relations)
associated to every membrane.

Reciprocally, to every P system as above, we can attach an element x̂ ∈
ME(V )/ ∼1.

The definitions of enriched bracketed contextual grammars of the previous
section remain unchanged. If G is such a grammar, and =⇒ is its derivation
relation, then the following binary relation on ME(V )/ ∼1 can be considered:

x̂ =⇒eb ŷ iff x̂ ∈ ME(V )/ ∼1, ŷ ∈ ME(V )/ ∼1 and
there exist representatives x′ ∈ x̂ and y′ ∈ ŷ
such that x′ =⇒ y′.

This is nothing else but an enriched contextual derivation working on
ME(V )/ ∼1 (instead of ME(V )/ ∼), and thus able to generate families of P
systems with symport/antiport of the standard type considered in the literature.

A type of question which can now be meningfully asked is the following.
Suppose we have a given “family” of P systems with communication, {Πn | n ≥
1}, specified in a certain manner. Can we find:

(i) the “simplest” P system A?
(ii) the “simplest” enriched bracketed contextual grammar G, with {A} its

axiom set?
(iii) the shortest derivations in G, such that A =⇒∗ Πn for every n?

or maybe even such that:
(iv) A =⇒ Πσ(1) =⇒ Πσ(2) =⇒ · · · =⇒ Πσ(n), for a permutation σ ∈

Perm(n)?
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Let G be an enriched bracketed contextual grammar, with V the alphabet of
objects, S its alphabet of separators, denote by Ax(G) its set of axioms, and let
=⇒ denote its derivation relation. We can consider several types of “families” of
P systems generated by G:

(1) Sequences of P systems obtained by succesive derivations from an axiom:

Π1 =⇒ Π2 =⇒ · · · =⇒ Πn =⇒ · · ·
(2) The “language” generated by G:

L(G) = {Π | Π1 =⇒∗ Π, for some Π1 ∈ Ax(G)}.
(3) All P systems obtained by derivations in G, of a given length m, (i.e., all

“words” of length m of the above language):

Lm(G) = {Π | Π1 =⇒m Π, for some Π1 ∈ Ax(G)}.
Having such families of P systems, we can now meaningfully address questions

such as finding similarity/resemblance relations between P systems.
Also, having a “compact” description in the form of a grammar, we can

attack problems of descriptional complexity.
Investigating the computational power of such families is also a topic for

further research.
The approach we have proposed illustrates a very general idea: that, once we

have a “good” string-description of a certain type of P systems, and a contextual
grammar mechanism working on the appropriate types of strings (with deriva-
tions which keep us inside the same class of strings), the contextual grammar
can be used to generate families of P systems belonging to the same class.

As illustrated in [2], we need not restrict ourselves to P systems with com-
munication, and also not to enriched bracketed contextual grammars.

4 Dynamic P Systems

We move in this section, from the purely generative approach adopted so far,
towards considering also computational aspects of the families of P systems we
generate.

The contextual grammar mechanisms previously considered, can be thought
of (and used as) descriptive tools for evolutionary processes, intrinsic to the sys-
tem itself, and/or triggered by some environmental changes. A P system which
performs computations inside it, is also “changing” (by passing from one con-
figuration to the next one), but the changes are not so dramatic if they do
not involve creation of new membranes, massive addition of new rules and new
objects. These types of “dramatic” changes can be described by the types of
contextual grammars we have proposed. A pattern of alternating dramatic and
non-dramatic changes emerges as the most general description of an “evolu-
tionary” process. The concepts of dynamic P system and dynamic computation
sequence, strongly linked together, try to capture this spirit.



Dynamic P Systems 173

We have constructed the set ME(V )/ ∼ of equivalence classes of strings
describing P systems with (ordered) sets of symport/antiport rules, and with
objects inside. The enriched bracketed contextual grammars introduced have
the properties that:

(1) their axioms are contained in ME(V )/ ∼;
(2) their associated derivation relation keeps us inside ME(V )/ ∼.
Then, if G is such an enriched bracketed contextual grammar, repeated ap-

plications of derivations in G generates a sequence of P systems of the same
type, which have evolved one from the other in a coherent manner.

Note that this can be formulated in a much more general setting.
Suppose we have a set of well-formed strings (well-formed according to some

formal definition), denoted Exp(V ), over an alphabet V , and containing also
separators. Among the separators we will use the brackets {[,]}, to describe the
membrane structure of the system, but we can use also other kinds of separators
(like we used | and ; to construct ME(V )/ ∼). The strings in Exp(V ) describe
some particular type of P system.

Suppose that we also have a contextual grammar D of a certain type (in-
ternal contextual, total contextual, insertion grammar, etc.) with the following
properties:

(1) its set of axioms is contained in Exp(V );
(2) its derivation relation, =⇒D, keeps us inside the the set of well-formed

strings, i.e., if x ∈ Exp(V ) and x =⇒D y, then y ∈ Exp(V ).
Then, starting from a P system described by an axiom of D, and applying

repeteadly derivations of D, we obtain a sequence of P systems which have
“evolved” in a coherent manner from the original one.

We want to let the P systems generated by an enriched bracketed contextual
grammar, or by a more general grammar as D considered above, make also
internal computations.

We can consider several types of internal computations:
– we will call one-step computation what is called in the standard P systems

literature a transition;
– we call stable computation a sequence of transitions which reaches a stable

configuration;
– we call halting computation a sequence of transitions which reaches a halting

configuration, a configuration in which no rule is applicable. (Recall that in the
standard literature this is the same as succesful computation.)

Definition 14. A dynamic P system with halting (respectively stable, respec-
tively one-step) computations, associated to the grammar D will be a sequence
of P systems {Πn | n ≥ 1} such that:

(i) Π1 is an axiom of D;
(ii) for each i ≥ 1, let Πi � CΠi denote a sequence of internal computations

in Πi of the halting (respectively stable, respectively one-step) type, i.e., CΠi is
a halting (respectively stable, respectively the next) configuration of Πi;

(iii) for i ≥ 2, each Πi is obtained from Πi−1 by the derivation CΠi−1 =⇒D

Πi in the grammar D.
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The dynamic computation sequence associated to the above system is the fol-
lowing alternating sequence of derivations in D and halting (respectively stable,
respectively one-step) computations:

Π1 � CΠ1 =⇒D Π2 � CΠ2 =⇒D . . . =⇒D Πi � CΠi =⇒D . . . .

Note that, in order to be able to construct such a dynamic computation
sequence, not only the systems Πi, but also CΠi, must have string-descriptions in
Exp(V ); the internal computations considered must be able to let the derivation
mechanisms of the grammar D work.

If internal computations in Πi are not possible, then we denote this by Πi =
CΠi.

A dynamic P system is finite if the sequence of P systems is finite in the
usual sense, i.e., {Πn | 1 ≤ n ≤ m}. Its associated computation sequence will in
this case also be finite.

A dynamic P system is stationary if the sequence {Πn | n ≥ 1} is stationary in
the usual sense, i.e., there exists an index m such that, for all k ≥ m, Πk = Πk+1.
This means that neither internal computations, nor derivations in D are possible
in Πm, respectively CΠm.

Other versions of dynamic P systems can be obtained, by considering, instead
of stable computations, computations which are stable w.r.t. a sub-alphabet of
objects W ⊂ V , or w.r.t. a subset of rules.

Remark 5. The one-step computation and the halting computation remind of
the modes = k, and t respectively, from CD grammar systems area (see [4]).
This also suggests the research topic of investigating dynamic P systems with
other computation modes, inspired from the CD grammar systems area, such
as ∗, ≤ k, ≥ k. Also, more complicated patterns for combining derivations and
internal computations can be considered and studied.

We can use the concept of dynamic P system to solve, using P systems, dy-
namic problems. Suppose the set X of input data for a problem is not available
entirely at a certain moment, but is given step-wise. Then, we can imagine a
mechanism, described by a derivation in a contextual grammar, which is re-
sponsible, among other things, of feeding a new data, x ∈ X, into a computing
device based on P systems. The whole dynamic P system will compute: while
the derivation steps are responsible for feeding new data, and creating conditions
for their appropriate processing, the internal computation steps will “solve” the
problem for the partial input set available.

If X = {x1, · · · , xm, · · ·} is the set of incoming input data, and we have a
grammar whose derivations, denoted =⇒x, are responsible for “feeding data x”,
then the above mechanism can be described as the following (abstract) dynamic
computation sequence:

Π1(x1) � CΠ1(x1) =⇒x2 Π2(x1, x2) � CΠ2(x1, x2) =⇒x3 . . .

. . . =⇒xi
Πi(x1, · · · , xi) � CΠi(x1, · · · , xi) =⇒xi+1 . . . .

If X is finite, the sequence above will also be finite.
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We will illustate this idea in the next section, with the (dynamic) problem of
sorting. We will construct dynamic P systems associated to enriched bracketed
contextual grammars, working on the set of well-formed membrane expressions
ME(V ), systems whose associated computation sequence solves the problem of
sorting for a dynamically given set of input data X.

A few words on the deterministic/non-deterministic aspects present in this
new concept: in a dynamic P system, non-determinism can arise, on one hand,
from the intrinsic non-determinism of P systems, during the internal computa-
tion step �, and, on the other hand, from the non-deterministic behavior of
the derivations in the grammar G. In the applications which follow, we have
avoided this second kind of non-determinism, by using deterministic contextual
grammars, with singleton axiom sets.

5 Applications to Sorting

5.1 Sorting Using P Systems with Communication

We deal in this section with the problem of sorting a set of positive integers using
P systems. It is not the purpose of this paper to treat in extenso the topic of
sorting; it is presented here, mainly in order to be able to give in subsections 5.4
and 5.5 an illustration of how the concepts of dynamic P system and dynamic
computation sequence can be used to solve “dynamic problems”, problems for
which the input data are not all available from the beginning, but are fed in a
step-wise manner.

Still, a few words on the motivation for studying this kind of topic, and on
the constraints our model uses, are necessary.

First, we want to sort by using comparisons, and not, for instance, counting.
Second, we want to sort using P systems with communication only, that is, we
will have no rewriting rules, and no methods based on rewritings.

If our sorting methods are based on comparisons, then we will be able to
compare them with other methods, also based on comparisons. We mention
here two of them: the classical (sequential) sorting algorithms, and the sorting
networks, a model of computation able to perform (only) sorting, and which
incorporates features of parallelism.

In general, comparing the new approach to computation proposed by P sys-
tems, with older, or classical models of computation, is an area where there is
still much to be done. The problem of sorting seems appropriate for making a
direct comparison possible. Also, there might be useful applications in the area
concerned with constructing simulators for P systems: since the simulators use
programming languages, which can be used directly to implement a sorting al-
gorithm, then, the problem of finding one or several measures to account for the
cost of a particular simulator can be addressed, and also different approaches to
simulation could be compared.
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5.2 Conventions

We will want to sort n natural integers, say X = {x1, · · · , xn}. We will represent
an integer x as a string ax, i.e., the integer x is represented in a membrane as x
occurrences of the same symbol, a ∈ V .

From this representation it immediately follows that every membrane can
“hold” at most one integer, the multiplicity of a inside it. It also follows that, if
we want to sort n items, we will need (at least) n membranes, so the number of
membranes depends on the dimension of the input for the sorting problem.

Fig. 10
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We will use a structure of n nested membranes. This nested structure al-
lows for the codification of the result of sorting: if, for a given input sequence,
X = {x1, x2, · · · , xn}, the solution to the sorting problem is the permutation
of n elements, σ, i.e., we have σ(x1) ≤ σ(x2) ≤ · · · ≤ σ(xn), then the nested
membrane structure should, at the end of the sorting process, hold the integers
in ascending order, from the outermost to the innermost membrane.

We say that a P system has solved the sorting problem for the input data
X = {x1, x2, · · · , xn}, if it reaches such a configuration. (The configuration can
be halting, or only stable over {a}.) Such a P system, and its associated tree
structure are depicted in Fig. 10.

For the time being we do not deal with the problem of extracting the result
of sorting.

5.3 The Comparator

Consider the following P system with symport/antiport:

C = (V, [2 [1 ]1 ]2, λ, λ, E,R1, ∅, i0),
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with
R1 = {(a, in; a, out) > (a, in)}.

Its string description is the following expression in ME(V ):

C = [2 [1 a; a|λ; a ]1 ]2.

Now suppose that membrane 1 contains ax1 , and membrane 2 contains ax2 ,
with x1, x2 ∈ N, that is, consider the P system

C(x1, x2) = (V, [2 [1 ]1 ]2, ax1 , ax2 , E,R1, ∅, i0),

whose string description in ME(V ) is:

C(x1, x2) = [2|ax2 | [1 a; a|ax1 |λ; a ]1| ]2.

Let the rules act in their characteristic maximal parallel manner (feeding on
input strings, if they find it): the antiport rule will make copies of a to travel
between regions 1 and 2, but always in pairs (if one a gets out of region 1 into
region 2, another a will get from 2 into 1); the symport rule (a, in), working
in paralel with the antiport rule (a, in; a, out), will have the following effect: if
x2 > x1 then x2 − x1 copies of a will travel from region 2 to region 1, so after
one transition (computation step) we will have ax2 in membrane 1 and ax1 in
membrane 2; if x2 < x1 the symport rule will have nothing to feed on, so we
will have ax1 in membrane 1 and ax2 in membrane 2. In other words, we have
achieved ordering x1 and x2 by placing the smallest of them into membrane 2
and the biggest into membrane 1.

We can formulate this alternatively in the following manner. Because of the
maximallity of the parallelism of the rules, precisely min(x1, x2) copies of a
will be acted upon by the antiport rule (a, in; a, out), and recall that this is
the highest priority rule. The second rule, (a, in), can act on precisely x2 −
min(x1, x2) occurrences of a in membrane 2, and only if they are there. If x2 −
min(x1, x2) > 0 then x2 − min(x1, x2) occurrences of a travel from membrane
2 inside membrane 1.

The achieved configuration is stable, because the only active rule remains the
antiport rule (a, in; a, out), which does not change the content of the membranes.

This means that, starting from the following initial configuration of the P
system C, with objects inside the membranes

C(x1, x2) = [1 |ax1 | [2 a; a| ax2 | λ; a ]2| ]1,

after one internal computation step (maximal parallel use of rules) we obtain
the configuration

CC(x1, x2) = [1 |amin(x1,x2) | [2 a; a| amax(x1,x2) | λ; a ]2| ]1,

which is stable, i.e., no further application of rules can change it, and which has
solved the sorting problem for {x1, x2}.
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Note that if we endow membrane 1 with the symport rule (a, out) instead of
(a, in), we obtain the reverse order, the bigger number in the outer membrane.

In Figs. 11 and 12 we illustrate how our “comparator” works on input data
{5, 3}.
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5.4 Dynamic Sorting with P Systems with Communication

Let X be the set of positive integers which we intend to sort, i.e.,, the set of
“input data” for the dynamic sorting mechanism which we will construct.

When writing X = {x1, · · · , xn, · · ·} we suppose that the integers of X are
“fed” into our dynamic sorting mechanism in the order given by the indices.

The dynamic P system which we will construct in the sequel, to solve (dy-
namically) the sorting problem for X, will be based on the comparator presented
in subsection 5.3, only this time the rules will be active only in the presence of
a promoter, p ∈ V . In other words, the comparator used in this section will
be based on the following set of symport/antiport rules, with promoter p, and
priority relation

Cp = {(a, in; a, out)|p > (a, in)|p}.
We will keep the same string notation for this pair of rules, as for the pair without
promoter. Since the promoter itself will have to travel, the complete set of rules
we will use is

R = {(p, in) > (a, in; a, out)|p > (a, in)|p}.
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(The set R is totally ordered only for convenience of the string notations which
will follow. Except for the priority relation between the two rules which compose
the comparator, and which is essential, the rule (p, in) can be placed either
as having the lowest priority, or outside the order.) Recall that promoters are
allowed to leave a membrane only if the system has reached a stable configuration
w.r.t. the rules the promoter has activated.

We construct now the contextual grammar which will generate the dynamic
P system which solves the sorting problem for X. For the time being, we will
consider X finite.

Let Gsort = (V ∪ S,A,C, φ) be the following enriched bracketed 5-contextual
grammar:

– V is the alphabet of objects, with a, p ∈ V ;
– S = {[i, ]i | 0 ≤ i ≤ n− 1} ∪ {| , ; } is the set of separators;
– the set of axioms is a singleton, A = {Π1}, with

Π1 = [1|ax1 |[0p|λ]0|]1,

where x1 ∈ X (we will also use the notation Π1 = Π1(x1));
– the set of 5-contexts C ⊆ ((V ∪ S)∗)5 is

C = {c(x) | x ∈ X \ {x1}},

where, for i = 2, · · · , n, we have

c(xi) = ( [i|axi | , p; a; a , p| , λ; a;λ , |]i).

– the 5-selection function φ : ((V ∪ S)∗)6 → 2C is defined by:

φ(λ, [i−1, |z|, [β]|, ]i−1, λ) = {c(xi)}

for z ∈ a∗, β ∈ (V ∪ S)∗, i = 2, · · · , n, and is ∅ on the rest of its domain.
Note that we have a strong relationship between the set of input data, X,

and our grammar Gsort. One element of X, x1, is used to build the axiom. The
rest of them, X \ {x1}, are used to construct the set of contexts C. A derivation
in the grammar Gsort, which uses the context c(x), accomplishes, among other
things, the task of feeding one more input data – namely x ∈ X – into our
dynamic mechanism. In order not to use the same data again, we will have to
further constrain the way in which derivations in Gsort are applied.

Denote by =⇒x a derivation in Gsort which uses context c(x). If the first
derivation, which is applied to the axiom, uses context c(x), with x ∈ X \ {x1},
then we denote this x by x2. In general, for every i ≥ 2, if we have applied the
succesive derivations =⇒x2 , =⇒x3 ,· · · ,=⇒xi , then a next possible derivation is
=⇒x, with x ∈ X \ {x1, · · · , xi}, and we label this next x as xi+1.

Note that this mechanism can be described in terms of contexts: each context
c(x) ∈ C can be used only once, and after being used we can imagine that it is
erased from C; the selection function will pick up a new candidate for the next
derivation from C \ {c(x)}.
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If we work with this kind of constrained derivation, we can let X, and thus
C, be infinite. In this case, Gsort is a 5-contextual grammar with an infinite set
of contexts. Moreover, we have:

Lemma 6. The grammar Gsort is deterministic.

The notation we will use in the sequel for the strings which describe P sys-
tems obtained by derivations in this grammar, will keep track of the succesive
derivations which have been applied, which is the same thing as keeping track
of the input data from X which have been used so far.

Let us see how the first derivation in Gsort works, and also what we accom-
plish with it in terms of P systems.

Recall that our unique axiom is

Π1 = Π1(x1) = [1|ax1 |[0p|λ]0|]1.

Only membrane 0 has rules, namely the rule (p, in), but it cannot act since there
is no p in membrane 1. Therefore, there are no internal computations possible,
so Π1 = CΠ1. Applying the first derivation in Gsort, Π1(x1) =⇒x2 Π2(x1, x2),
we obtain

Π2(x1, x2) = [2|ax2 |[1p; a; a|ax1 |p|[0p|λ]0|λ; a;λ]1|]2.
In terms of P systems, the derivation has accomplished the following:

– a new external membrane, with label 2, was generated, containing ax2 ;
– membrane 1 has been enriched with the set of rules R, and we have also

fed a promoter p into it.
The presence of the promoter makes the comparator in membrane 1 active,

and internal computations are possible in Π2. A first internal computation step
(a transition) orders the integers x1, x2 by placing them in the apppropriate
membrane. The configuration is now stable w.r.t. {a}, and also stable w.r.t. the
set of rules R in membrane 1, so the promoter p can now travel, during the same
transition, from membrane 1 into membrane 0, attracted by the rule (p, in) of
this membrane, and the system reaches a halting configuration, described by

CΠ2(x1, x2) = [2 |amin(x1,x2) | [1 p; a; a| amax(x1,x2) |[0p|p|λ]0 | λ; a;λ ]1| ]2.

Consider now the dynamic P system with halting computations associated
to Gsort,

Π(Gsort) = {Πn(x1, · · · , xn) | n ≥ 1},
whose terms are given by the dynamic computation sequence

Π1(x1) =⇒x2 Π2(x1, x2) � CΠ2(x1, x2)
=⇒x3 Π3(x1, x2, x3) � CΠ3(x1, x2, x3)
· · ·
=⇒xn Πn(x1, · · · , xn) � CΠn(x1, · · · , xn) · · ·

where the internal computation step Πi � CΠi consists of all possible internal
computations (all transitions) till the configuration CΠi is a halting one.



Dynamic P Systems 181

We have the following result:

Theorem 1. The dynamic P system with halting computations Π(Gsort), gen-
erated by the enriched bracketed 5-contextual grammar Gsort, solves the sorting
problem for the dynamic input sequence X = {x1, x2, · · · , xn, · · ·}.

More precisely, for every i ≥ 1, the system CΠi(x1, · · · , xi) is a halting config-
uration of Πi(x1, · · · , xi), and has solved the sorting problem for {x1, x2, · · · , xi}
(in the sense that the integers are placed in the membranes in increasing order,
from the external membrane i to membrane 1).

The average time is O(n2) for input dimension |X| = n.

Proof. By induction on n. For n = 1, the axiom Π1(x1) = CΠ1(x1) is a halting
configuration, and it solves the sorting problem for the singleton {x1}.

We have seen how the system Π2(x1, x2) solves the sorting problem for
{x1, x2}, and reaches the halting configuration CΠ2(x1, x2), in which no rules
are applicable because the promoter has entered membrane 0.

Let the induction hypothesis be that CΠi(x1, · · · , xi) has solved the sorting
problem for {x1, x2, · · · , xi}, and is a halting configuration of Πi(x1, · · · , xi).
This means that the i nested membranes of the P system contain the naturals
in increasing order, from the skin membrane towards membrane 1, and all the
promoters used so far have travelled into membrane 0. We can suppose that
x1 ≤ · · · ≤ xi, and thus the string description of CΠi is:

CΠi = [i|ax1 |[i−1p; a; a| · · · [0p|pi−1|λ]0|λ; a;λ]i−1|]i.

We apply now the derivation =⇒xi+1 in Gsort, and obtain the P system

Πi+1 = [i+1|axi+1 |[ip; a; a|ax1 |p|[i−1p; a; a| · · · [0p|pi−1|λ]0|λ; a;λ]i−1|λ; a;λ]i|]i+1.

The effect of the derivation is, in terms of P systems:
– a new external membrane was generated, labelled i + 1, and containing

axi+1 ;
– the set of rules R was added to membrane i, together with a promoter p,

which activates them.
After activating the comparator rules Cp which do the sorting between mem-

branes i and i + 1, the promoter travels to the next inner membrane, i − 1,
activating its comparator Cp, and so on. At some point, the newly introduced
integer will find its appropriate place in one of the membranes. When this hap-
pens, the obtained system has attained a configuration which is stable w.r.t.
{a}, and has solved the sorting problem. Further on, p will continue traveling,
without altering the stability w.r.t. {a} of the succesive configurations, until it
drops to membrane 0, and the configuration reached is now halting.

The mechanism is very similar to the classical insertion sort, and the estimate
of its complexity comes from this similarity, where we have counted 1 for each
transition during the internal computations, and again as 1 the cost of each
derivation in Gsort. 
�
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5.5 A Second Dynamic P System for Sorting

We present here another dynamic P system with halting computations which
solves the sorting problem. This alternative model is based on an enriched brack-
eted insertion grammar, working also on ME(V )/ ∼, so we will have a concrete
example of such a type of grammar.

The sorting mechanism is similar to the one used by Gsort, and it is based on
the same comparator Cp; the complete set of rules used by an active membrane
will be

Q = {(a, in; a, out)|p > (a, in)|p > (p, out)}.
Let Gsort2 = (V ∪ S,A, P ) be the following enriched bracketed insertion

grammar:
– V is the alphabet of objects, with a, p ∈ V ;
– S = {[i, ]i | 0 ≤ i ≤ n− 1} ∪ {| , ; } is the set of separators;
– The set of axioms is a singleton, A = {Π1}, with

Π1 = Π1(x1) = [1λ|ax1 |p]1,
where x1 ∈ X. Its unique membrane, 1, contains ax1 , and the unique rule (p, out).
The configuration is a halting one, and Π1(x1) = CΠ1(x1).

– The set of insertion rules P = {pi | 1 ≤ i ≤ n} is in bijective correspondence
with the subset of input data X\{x1}. More precisely, for each i ≥ 1, the insertion
rule pi is a triple

pi = ( [iw|β| , [i+1a; a;λ|axi+1 |p|p;λ; a]i+1 , z]i )

with β ∈ a∗, and w, z ∈ (V ∪ S)∗ such that (w, z) = (a; a;λ, p;λ; a) or (w, z) =
(λ, p).

Let us see how the first derivation in Gsort2 works, Π1(x1) =⇒p1 Π2(x1, x2).
It can use only the production

p1 = ([1λ|ax1 |, [2a; a;λ|ax2 |p|p;λ; a]2, p]1),

and by applying it we obtain

Π2(x1, x2) = [1λ|ax1 |[2a; a;λ|ax2 |p|p;λ; a]2p]1.

In terms of P systems, the derivation has accomplished the following:
– it has generated an elementary membrane, labelled 2, inside membrane 1;
– the newly generated membrane contains ax2 , rules Q, and the promoter p.
In Π2(x1, x2) internal computations are possible: the presence of the pro-

moter p in membrane 2 makes the comparator rules active, and they will order
x1 and x2 in their respective membranes. After one transition, the system is
stable w.r.t. {a}, and also w.r.t. the rules Cp, so the promoter can travel. It will
be sent to membrane 1 by the rule (p, out) of membrane 2, and during the next
transition, it will be sent into the environment by the rule (p, out) of membrane
1. The halting configuration CΠ2(x1, x2) is reached, where

CΠ2(x1, x2) = [1λ|amin(x1,x2)|[2a; a;λ|amax(x1,x2)|p;λ; a]2|p]1.
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Note that the only insertion rule applicable to CΠ2(x1, x2), and thus the one
used by the next derivation, is

p2 = ([2a; a;λ|amax(x1,x2)| , [3a; a;λ|ax3|p|p;λ; a]3 , p;λ; a]2),

and the next derivation produces the P system

Π3(x1, x2, x3) =
= [1λ|amin(x1,x2)|[2a; a;λ|amax(x1,x2)|[3a; a;λ|ax3|p|p;λ; a]3p;λ; a]2|p]1.

We have the same type of correspondence between the set of input data, X,
and the set of insertion rules of Gsort2, as we had for Gsort.

In particular, if X is infinite, grammar Gsort2 is an insertion grammar with
an infinite set of insertion strings. We also have:

Lemma 7. The grammar Gsort2 is deterministic.

Consider now the dynamic P system with halting computations associated
to Gsort2,

Π(Gsort2) = {Πn(x1, · · · , xn) | n ≥ 1},
whose terms are given by the dynamic computation sequence

Π1(x1) =⇒p1 Π2(x1, x2) � CΠ2(x1, x2)
=⇒p2 Π3(x1, x2, x3) � CΠ3(x1, x2, x3)
· · ·
=⇒pn−1 Πn(x1, · · · , xn) � CΠn(x1, · · · , xn), · · ·

where the internal computation step Πi � CΠi is of the halting type.
We have the following result:

Theorem 2. The dynamic P system with halting computations Π(Gsort2), gen-
erated by the enriched bracketed insertion grammar Gsort2, solves the sorting
problem for the dynamic input sequence X = {x1, x2, · · · , xn, · · ·}.

More precisely, for every i ≥ 1, the system CΠi(x1, · · · , xi) is a halting config-
uration of Πi(x1, · · · , xi), and has solved the sorting problem for {x1, x2, · · · , xi}
(in the sense that the integers are placed in the membranes in increasing order,
from membrane 1 to membrane i).

The average performance is O(n2) for |X| = n.

The proof is again based on an induction argument, and is similar to that of
Theorem 1.

Note that the mechanisms used by the two grammars are symmetrical. While
Gsort adds the new data in new external membranes, and makes the promoter
travel “from outside”, activating one-by-one the comparators of each membrane,
and is finally collected into membrane 0, grammar Gsort2 adds the new data in
new internal membranes, and makes the promoter travel “from inside”, activat-
ing the rules, and is finally ejected into the environment.
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5.6 Performance

Note that the sorting mechanisms described above are both similar to that of
insertion sort, and thus the low performance.

We can make better use of the parallelism of the internal computations of a
P systems. Recall that we have used only one letter a of our alphabet of objects
V , to sort only one sequence. With a dynamic P system similar to the ones
described, we could sort simultaneously card(V ) − 1 sequences, of course, by
using 2 × (card(V ) − 1) rules.

We know of only one approach to the sorting problem by means of P sys-
tems, namely, the Bead-Sort algorithm presented in [1]. It also uses only sym-
port/antiport rules, and the mechanism of “beads sliding to their appropriate
places” (on rods) is similar to our travel of occurrences of a through membranes.

In order to achieve a certain configuration (in which the actual sorting process
is finished, and which is similar to our configuration of nested membranes), the
Bead-Sort algorithm [1], implemented with P systems, uses n ×m membranes,
with communication rules, where n is the dimension of the input data set, and
m = |max{x1, · · · , xn}| (the number of “rods”), is the length of the maximal
input data. So, it is constrained both by the fixed size, n, of the cardinality of
the set of input data, and by the length m of its maximal element.

We use only n membranes, to achieve an easily “readable” configuration, and
the dynamic nature of the P system allows for growing the cardinality of the set
of input data.

More precisely, in our model, compared with the model in [1]:
– we have eliminated the constraint related to the maximal size of input data

(the m), by using the comparator Cp; the “price” we have paid comes in the form
of concepts (features) which have not been used so far, such as using priority
relations on communication rules, and notions of stability for P systems;

– we have added more flexibility to the constraint based on the dimension n
of the input data set, by using dynamic P systems.

In both approaches, the input has to be afterwards extracted, and we do
not take into account here the cost of the extraction process, since we have not
implemented (yet) this feature into our model. But we feel confident that this
can be readily done, and at a lower cost.

6 Concluding Remarks and Open Problems

In the first part of the paper we have proposed a generative approach to P
systems. We have introduced a new class of contextual grammars, the enriched
bracketed contextual grammars, which are generative devices for families of P
systems with symport/antiport rules. In general, the enriched bracketed contex-
tual grammars give rise to new hierarchies of P systems with communication,
whose computational powers need to be investigated, and also compared. The
definitions in subsections 3.3, 3.4, and 3.5 are only the beginning of what should
be a systematic enquiry about the families of P systems one can obtain, and
whose computational powers need to be investigated.
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Starting, for instance, from the discussions in subsections 3.3 and 3.4, one can
easily construct a set of expressions, and a particular type of enriched bracketed
contextual grammars acting on them, to obtain a generative device for P systems
with at most one symport/antiport rule per membrane. What can be computed
by means of such systems? (Or, in other words, what can be computed by these
particular enriched bracketed contextual grammars?) Since for rewriting P sys-
tems (hence with string-objects) it is known (see [12]) that universality can be
achieved by systems with three rules in each region, it is meaningful to ask if
a similar normal form result is valid for systems with symport/antiport. And
also, can the number of rules of each region be decreased to one? This last ques-
tion is equivalent to: what can be computed by the above-mentioned particular
enriched bracketed contextual grammars?

As pointed out in subsection 3.6, and also in Section 4, the generative ap-
proach we have proposed, based on (possibly new types of) contextual garmmars,
is very flexible, in the sense that it can be easily used as a model to construct
grammars generating other kinds of P systems. In [2] for instance, it has been
used to generate P systems with one rewriting rule per membrane. All the open
problems, and further research topics, we have proposed in subsection 3.6 for
P systems with communication, can now be formulated for other kinds of P
systems as well.

We hope that our generative approach has also proved the power of the con-
textual generative mechanism, and the fact that the area of contextual grammars
is a rather fruitful and active field of investigation.

We have also introduced the concept of dynamic P system and of dynamic
computation sequence, in a very general form.

In section 4 we have formulated some further research topics related to the
investigation of other types of dynamic computation sequences, based on the
similarity with CD grammar systems. Investigating more complicated “commu-
nication protocols” between the grammar derivations, and the internal compu-
tation steps, is also an area for further research.

We also want to point out that, what we have proposed as a “generative”
device, can be also used as a “descriptive” tool. Take, for instance, the P systems
with enhanced membrane handling introduced in [6]: they are enriched with rules
describing the behaviour of the membranes (appart from computations done by
rewriting and by communication), rules acting as part of the computation pro-
cess. If the behaviour of the membranes can be modelled with a contextual
grammar mechanisms, as in the present approach, then the whole “computa-
tional” behavior of such a system can be described by a dynamic computation
sequence, maybe of a more general type than that introduced in this paper.

We have also introduced a model of sorting with symport/antiport rules.
We have presented here only two dynamic versions of sorting, for exemplifying
purposes. But the whole topic of sorting, especially the static versions which can
be constructed based on the same comparator, is worth of further investigation
(and is presently under such investigation).
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Moreover, we have introduced new concepts for the behaviour of P sys-
tems, like stable configuration, and the weaker notions of stability w.r.t. a sub-
alphabet, or w.r.t. a subset of rules. Also, we have considered a priority relation
for sets of communication rules. We believe that these notions can prove their
usefulness in other settings as well.
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Moldova, 2001 (M. Margenstern, Y. Rogozhin, eds.), Lecture Notes in Computer
Science, 2055, Springer, 2001, 153–164

13. http://psystems.disco.unimib.it/



Membrane Systems and Distributed Computing

Gabriel Ciobanu�, Rahul Desai, and Akash Kumar

National University of Singapore, School of Computing
Department of Computer Science

gabriel@{comp.nus.edu.sg,info.uaic.ro}

Abstract. This paper presents membrane systems as an appropriate
model for distributed computing, an efficient and natural environment
to present the fundamental distributed algorithms. We support the idea
that P systems can become a primary model for distributed computing,
particularly for message-passing algorithms. We present the core theory,
the fundamental algorithms and problems in distributed computing. We
focus on an example describing an immune response system against virus
attacks. The example is implemented using a P system library created
by the authors to simulate the main functions of a P system, and an
MPI program that takes advantage of the highly parallel features pro-
vided by the model. The program uses distributed leader election and
synchronization algorithms.

1 Membrane and Molecular Computing

Formal language theory has been used as a basis for developing theoretical com-
putational models related to DNA sequences and molecular processes. These de-
velopments reveal some theoretical facets of molecular computing related mainly
to the computational power of the new systems, generative capability, complex-
ity, and universality.

Membrane computing is based on membrane systems or P systems, a new
class of distributed and parallel computing devices introduced in [7]. The ap-
proach is based on hierarchical systems: finite cell-structures consisting of cell-
membranes embedded in a main membrane called the skin. The membranes
determine regions where objects, elements of a finite set, and evolution rules can
be placed. The objects evolve according to given rules associated with a region.
Objects may also move between regions. A computation starts from an initial
configuration of the system, and terminates when no further rule can be applied.
A software simulator of membrane systems is presented in [3].

A membrane structure is usually represented by a Venn diagram, and it can
be mathematically represented by a tree or by a string of matching parentheses.
Hierarchical systems are well-known structures in computer science, and the no-
tion of computation based on evolution rules is common. The interpretation of
the computation is rather new: the result of a computation is a multiset of ob-
jects collected in the output cell or sent out of the system. The behaviour of the
� Corresponding author
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whole system is obtained by combining the resulting multisets, or considering
the multiplicity of objects present in a specific output membrane of a final con-
figuration. Păun has introduced initially three alternatives to look at membrane
systems. Starting from these approaches, several variants were considered. Each
of these variants has been shown to generate recursively enumerable sets. All
these results emphasize a new computing paradigm inspired by a basic function
of biomembranes.

2 The Distributed Nature of the Membrane Systems

An interesting aspect of the membrane systems is that they are distributed
and parallel computing devices. To complement the overwhelming majority of
researches in this area dealing with computability results, this paper aims to
show that the membrane systems represent an appropriate model for distributed
computing. We emphasize on the algorithmic aspects related to the distributed
systems computational power provided by membrane systems. The algorithms
are mainly presented in [2]. In this paper we focus on an example describing
an immune response system against virus attacks. The example uses various
distributed algorithms, and it is implemented using a P system library and an
MPI program emphasizing the highly parallel features provided by the model.

Another approach presenting the membrane systems as distributed and par-
allel computing devices is described in [4], where a new version of P systems
called Client–Server P systems is introduced. The new version is devoted to
the interaction between components and is similar to the network client-server
model. The Client–Server P systems are based mainly on the power of communi-
cation between membranes, and they have the same expressive power as Turing
machines.

The link between membrane systems and distributed and parallel computing
is not difficult to comprehend. If we associate each membrane with a host on a
network, then the membrane containing a few such membranes is congruent to
a subnet, and subsequently their parent membranes represent larger networks.
Finally, the skin membrane could represent the World Wide Web. You can imag-
ine that routing in Internet is similarly to message passing within a P system.
Specifically, membranes within the same membrane can directly communicate
with each other (by sending objects within the membrane), while if two mem-
branes in different parent membranes need to pass objects to each other, then
this scenario is congruent to sending the packet to a router which connects the
two networks. Having established the basic premise of the paper, we will con-
clusively show how P systems provide a natural and efficient representation of
distributed systems.

In the context of parallel and distributed systems, the algorithmic issues stud-
ied in the sequential model require a fundamental rethinking. In parallel systems,
a problem is solved by a tightly-coupled set of processors, while in distributed
systems it is solved by a set of communicating (asynchronous) processes. From
the viewpoint of the theory of distributed computing, which is restricted to the
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Message Passing and Shared Memory model, the P systems model provides a
different perspective, which is natural and easy to relate to. In P systems the
process of passing objects is similar to message passing; moreover, membranes
in the same biological system could have access to the same DNA, or could
have access to the same blood stream, making it possible to relate the model
to a Shared Memory system as well. Both these extensions are simplistic and
natural, and hence it is not difficult to adapt the already existing theory of dis-
tributed computing to the P systems model, something that this paper aims to
achieve.

We emphasize on the algorithmic aspects related to the distributed systems
computational power provided by membrane systems. In membrane systems the
process of passing objects through membranes in both directions is similar to
message passing. We consider a system of communicating membranes with an-
tiport carriers, and the main meaning regarding this choice is that the mem-
branes send and receive information. We present some basic algorithms of dis-
tributed computing, starting with algorithms for broadcast, convergecast, flood-
ing, leader election, mutual exclusion in distributed systems, the fault tolerant
systems and the consensus problem.

We present the fundamentals of distributed computing, starting with algo-
rithms for broadcast, convergecast, the leader election problem, the mutual ex-
clusion problem in a distributed environment, and finally the consensus problem
and fault tolerance. Some of the presented algorithms are used in an example
describing an immune response system against virus attacks.

3 Basic Algorithms in P Systems

The field of distributed computing is notoriously difficult, mainly due to un-
certainties introduced by limited local knowledge, asynchrony, and failures. The
fundamental issues underlying the design of distributed systems are related to
communication, coordination, synchronization and fault tolerance. Mastering
fundamental algorithmic ideas and techniques, someone is able to design correct
distributed systems and applications. We present here some basic algorithms over
communicating membrane systems, algorithms representing the core theory of
distributed computing. For more information and notation about fundamental
distributed algorithms, see [1].

Collecting and dispersing information is central to any system. Even though
P systems share the same DNA, local information often has to be passed around
in the system. This is where the message passing model becomes relevant. Two
basic algorithms in any message passing model are broadcast and convergecast.
Another common algorithm discussed in a message passing model is flooding.
This algorithm constructs a spanning tree when a graph is given. P systems
themselves essentially have a spanning tree structure. Each membrane of the
tree has exactly one parent, except the skin membrane which represents the
root.
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Broadcast: Consider a system in which a membrane mi has to send some object
to all the membranes of the system. Clearly, we have two cases of broadcast here
- one in which mi is the skin membrane or the root node, and secondly when mi

is any node. It is not difficult to see that the second case is a generalization of
the first one. We shall start with the algorithm for the simple case (when mi is
the skin membrane), for easy understanding.

Very often in a distributed computing model, the root node has to broadcast
a certain message, say M . Here is the prose description of the algorithm. The
skin membrane, ms first sends the message to all its children. Upon receiving a
message from its parent, the membrane sends the message to all its children, if
any. Here is the formal pseudocode for this algorithm.
Algorithm: Skin Membrane Broadcast

Initially M is in transit from ms to all its children.

Code for ms:

1. Upon receiving no message:
2. terminate

Code for mi, 0 ≤ i ≤ n− 1, i �= s:

3. Upon receiving M from its parent:
4. send M to all its children
5. terminate

A skin broadcast algorithm for P systems has a message complexity of n−1 and
time complexity l, when l levels of membranes are present.
Message Complexity: As evident from the above algorithm, the message is com-
municated from a parent membrane to a child membrane exactly once. The
algorithm terminates after sending M once to all its children. Thus, the total
number of messages passed is equal to the number of edges in the spanning
tree structure. Since, the number of edges in a spanning tree with n nodes is
n− 1, we obtain the result that n− 1 messages are passed in a P system with n
membranes. Therefore, the message complexity of this algorithm is O(n).
Time Complexity: In every admissible execution of the skin broadcast algorithm,
every membrane at level l, i.e. at a distance of l edges from the root node in the
spanning tree, receives the message M in l time. Thus a P system with l levels
of membranes will have a time complexity of l. This corresponds to a depth of
l in a spanning tree configuration. In the worst case, when the spanning tree is
a chain, there can be at most n− 1 levels for a system with n membranes. This
shows that the time complexity of any P system for skin broadcast is O(n).

3.1 Generalised Broadcast

Having seen broadcast for the skin membrane, we shall now move on to a more
general broadcast in which any membrane can broadcast a message. Each mem-
brane mi which needs to broadcast sends the object M to its parent and all
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children (if any). A membrane mj , upon receiving a message from its parent,
sends it to its children. If it receives the message from its child, then it sends the
message to all its other children, and parent. The algorithm is given as follows.
Algorithm: Generalised Broadcast

Say, membrane ma, 0 ≤ a ≤ n− 1 needs to send the message
to all the membranes in the system.

Code for ma:

1. if (a �= s)
2. send M to its parent
3. send M to all children

Code for mi, 0 ≤ i ≤ n− 1, i �= a:

4. Upon receiving M from its parent:
5. send M to all children
6. Upon receiving M from its child:
7. if(i �= s)
8. send M to its parent
9. send M to all children

A generalized broadcast algorithm for P systems has a message complexity of
n−1 and a time complexity of l+k, when l levels of membranes are present and
the membrane at kth level broadcast. Message complexity is similar to the skin
broadcast algorithm, and it is O(n). A P system with l levels of membranes will
have a worst case time complexity of 2× l. This means that the time complexity
for generalized broadcast is O(n). More details are presented in [2].

3.2 Convergecast

The broadcast problem mentioned above aims at dispersing information held by
a membrane to other membranes of the system. Convergecast, on the contrary,
aims at collecting information from all the membranes of the system to the skin
membrane. Many variants of the problem are available, for example, forwarding
the sum of all the values held by membranes, or forwarding the maximum value,
etc. In a general convergecast algorithm, instead of the result of a particular
operation, all the values are forwarded. In a generalized convergecast variant,
the size of message can increase as the message progresses to the skin membrane.
For simplicity we shall consider the algorithm of forwarding the sum of all the
values held by membranes.

As it can be seen, unlike broadcast which is initiated by the membrane that
wishes to disseminate information, convergecast is initiated by the leaves, i.e.
membranes which contain no inner membranes. This algorithm is recursive, and
requires each membrane mi to forward the sum of values held by its membrane.
In other words, the sum of the subtree rooted at it. A membrane collects all
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the values held by its inner membranes, and computes the sum including its
own values. This sum si is then forwarded to its parent membrane. Clearly, each
membrane has to receive a sum from each of its children before it can forward
the sum to its parent. The pseudocode for the algorithm is given below.
Algorithm: Convergecast

Code for leaf membranes:

1. Starts the algorithm by sending its value xi to its parent.

Code for non-leaf membranes mi with k children:

2. Waits to receive messages containing sums si1 , si2 , . . . , sik
from its children

mi1 ,mi2 , . . . ,mik
.

3. Computes si = xi + si1 + . . . + sik

4. if (i �= s)
5. Sends si to its parent.

The analysis of this algorithm is analogous to the skin broadcast algorithm, since
the only difference in the two is the direction of message flow. As for the skin
broadcast algorithm, the message complexity of the algorithm is n−1. The time
complexity of the algorithm is O(n), since at most n−1 levels may be present in
a P system with n membranes. Therefore there is a convergecast algorithm for
P systems with message complexity n − 1 and time complexity l, when l levels
of membranes are present.

4 Leader Election in P Systems

The existence of a leader in a P system can often simplify the task of co-
ordination among the membranes. It might often be useful to have a leader
(other than the skin-membrane as the default). It might also be the case that
the criterion for leadership may not always be met by the skin-membrane. The
leadership election problem, generally refers to the general class of symmetry
breaking problems. The most general variant of it requires exactly one node
from a system of many initially similar nodes to declare itself the leader, while
the others recognize the leader and declare themselves not-elected.

Theorem 1. It is impossible to solve the leadership election problem in a system
where the membranes are anonymous.

The idea behind this impossibility result is that the symmetry between the mem-
branes can be maintained forever if the membranes are anonymous (they are very
similar). Without some initial asymmetry provided by unique identifiers, sym-
metry cannot be broken and it is impossible to elect a single leader: if one mem-
brane is elected, then so are all the membranes. Therefore, we assume that every
membrane in the system has one unique identifier id. An algorithm is said to
be uniform, if it does not depend on the number of membranes. And conversely,
non-uniform algorithms rely on the knowledge of the number of membranes.
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4.1 A Simple Leader Election Algorithm

The most straightforward way to solve the problem is that every membrane
sends a message with the maximum id among all its children (and itself) to its
parent, and waits for a response from its parent. The skin membrane in turn,
would reply to all its children with a message containing the maximum id that
it received. Ultimately, one membrane (which receives its own id back) will be
elected leader.
Algorithm: Leader Election

Initially: elected = false, children = set of children membrane,
and parent = the parent membrane.

For every membrane mi

1. If children = empty, send id to parent
2. Upon receiving idj from all children,

winner = max(id1, id2, . . . , idn, id)
3. If parent �= null

then send winner to parent
else (it is the skin membrane)

send winner as leader to all children
4. Upon receiving message leader from parent

if leader = id then elected = true
5. If children = empty, terminate

else send leader to all children and terminate.

The message complexity of the above algorithm is O(n), since every link be-
tween the parent and the child is used to exchange 2 messages. In a system with
n membranes, there are n− 1 such links. Thus, the message complexity is O(n).
The leadership algorithms in asynchronous rings have a lower bound of O(n logn).
Whereas, in the synchronous case, a message complexity of O(n) can be achieved
at the cost of the time-complexity [1]. Generally, the P systems are structured
like a tree, already providing a sufficient edge to break-symmetry as compared
to a ring, where every substructure of the ring is symmetrical.

5 Mutual Exclusion in Shared Memory

Shared memory is another major communication model and we shall see how
P systems can be used effectively to model this as well. In a shared memory,
processors communicate via a common memory area that contains a set of shared
variables, which are also referred to as registers. In natural computing using P
systems, as said above, membranes have access to the same blood stream and
mutual exclusion can thus be easily modelled.
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5.1 Formal Model of Shared Memory Systems

Before we proceed to understand mutual exclusion algorithms, we need to de-
fine the formal model for a shared memory system. We assume we have a sys-
tem with n membranes m0,m1, . . . ,mn−1 and m registers or shared variables
R0, . . . , Rm−1. Each register (shared variable) has a type which can specify the
values which a register can take, the operations that can be performed on it,
the value returned by each operation, and the updated value of the register as
a result of the operation. Beside this, an initial value for the register has to
be specified. Another important distinction in shared memory systems comes
when analyzing algorithms. Unlike in object passing models, object complex-
ity is meaningless. On the other hand, space complexity becomes relevant in this
model. Space complexity can be measured in two ways: number of registers used,
and number of distinct values the register can take. Measuring time complexity
of shared memory algorithms is still a current research area and we only focus
on whether the number of steps in the worst case running of the algorithm is
infinite, finite, or bounded.

5.2 The Mutual Exclusion Problem

The mutual exclusion problem is one where different membranes need access to
a shared resource that cannot be used simultaneously. Some relevant terms in
the section are given below:

– Critical Section: Code segment that has to be executed by at most one
membrane at any time.

– Deadlock: A situation in which when one or more membranes are trying to
gain access to a critical section, and none of them succeeds.

– Lockout: When lockout occurs, a membrane trying to enter its critical section
never succeeds.

A membrane might need to execute some additional code segments before and
after the critical section. This is to ensure mutual exclusion. The relevant sections
of the code are:

– Entry: Code section where the membrane prepares to enter critical section.
– Critical Section: Code section which has to be executed exclusively.
– Exit: Code section executed when a membrane leaves the critical section.
– Remainder: Remainder of the code.

The desired properties are mutual exclusion, no deadlock and no lockout. Mutual
Exclusion is achieved when in every configuration of every execution at most
one membrane gets access to critical section. No Deadlock is achieved in every
admissible execution, when membranes are in the entry section, at a later stage,
a membrane is definitely in the critical section. No Lockout is achieved when
in every admissible execution, a membrane trying to enter the critical section,
eventually gets an entry.
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5.3 Achieving Mutual Exclusion

The test-and-set and read-modify-write are powerful primitives used to achieve
mutual exclusion. Another commonly known algorithm is the Bakery algorithm
which uses read/write registers [1]. An appropriate algorithm for P systems would
be the tournament algorithm. The conventional tournament algorithm can be
modified to suit P systems. The tournament algorithm is a bounded mutual
algorithm for n processors. It is based on selecting one among two processors at
every stage, and thus selecting one among n processors in  log2n! stages. The
algorithm is recursive and every processor that succeeds at a stage climbs up the
binary tree. The processor reaching the root gains entry to the critical section.
An example with 8 processors is presented below:

Membranes within a parent membrane can select one among themselves using
the tournament algorithm, and the parent can then forward the request to its
parent in turn. The one membrane that succeeds to reach the skin level gains
entry to the critical section. The number of rounds k in this algorithm will be
equal to the number of levels l of the system. The pseudocode for the algorithm
is mentioned below. The conventional algorithm is used by the term tournament
and the list of membranes list is passed to it. The algorithm returns the id of
the membrane that succeeds in the tournament algorithm.
Algorithm: Tournament

l represents the maximum depth of the system,
mj is the parent membrane of mi.

1. for k = l downto 1
2. 1) all parent membranes mi at depth k:
3. if (list �= φ)
4. w = tournament (list)
5. else
6. w = −1
7. end if
8. send w to its parent, if any.
9. 2) all leaves mi at depth k:

10. if (need access to critical section)
11. w = i
12. else
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13. w = −1
14. end if
15. send w to its parent mj , if any.
16. 3) all parent membranes mi at depth k − 1
17. for p = 0 to c− 1 (c is the number of children membranes)
18. receive wip

from mip

19. if (wip �= −1)
20. add wip

to list
21. end for
22. end for

The first step is not executed in the algorithm when k = l. This is because there
are no parent membranes at depth l since that is the maximum depth of the tree.
The above algorithm is good appropriate for P systems and it provides mutual
exclusion with no deadlock and no lockout.

6 Fault Tolerant Consensus

For a system to coordinate effectively, often it is essential that every membrane
within the system agree on a common course of action. With the help of leader-
ship election, and a subsequent broadcast/flooding, it is possible for a consensus
to be reached. This section discusses the consensus problem and fault tolerance
(viz. reaching a consensus despite having failures within parts of the system).

6.1 The Consensus Problem

Consider a system in which each membrane mi needs to coordinate with the rest
of the processors and choose a common course of action, i.e. agree upon a value
for the variable decision. A solution to the consensus problem must guarantee
the following:

– Termination: In every admissible execution, all the non-faulty nodes must
eventually assign some value to decision.

– Agreement: In every admissible execution, all the non-faulty nodes must not
decide on conflicting values.

– Validity: In every admissible execution, all non-faulty nodes must make the
correct decision, i.e. must choose the correct value for decision. In other
words, that if the consensus problem in question is choosing the maximum
value from a certain set of numbers, then the decision must actually be the
maximum value from the given set of input values.

Clearly the consensus problem is an important one, and the process would be
disturbed in the presence of nodes which behave in an undesirable manner.
However, within certain restrictions, it is possible to achieve a fault-tolerant
consensus.
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6.2 Failures

A failure is said to occur when a membrane behaves abnormally. There are
two basic types of failures. Simple failures are when some membranes within
the membrane system just stop functioning and do not ever recover, but wrong
operations are never performed. The Byzantine failures are when some faulty
membranes may behave in an unpredictable manner, contrary to a process which
would help to reach a consensus.

The Simple Failure Case
The most important parameter which needs to be determined is f , the maximum
number of membranes that can fail so that the consensus may still be achieved.
Such a system is called an f -resilient system. We have the following results:

Lemma 1. In every execution at the end of f + 1 rounds, all non-faulty mem-
branes have the same set of values to base their decision upon.

Theorem 2. It takes an upper bound of f + 1 rounds to solve the consensus
problem with simple failures in an f-resilient system.

Algorithm: Consensus
Initially, every membrane mj has some value xj which it needs to send to all
other membranes and ultimately reach a consensus based on these values.

In every round k, (1 ≤ k ≤ f + 1), mi behaves as follows:

1. Send xi to all membranes within parent’s membrane
2. Receive xj from mj .
3. Add xj to an array (vector) V .
4. If k = f + 1 make decision based on the values stored in V .

The Byzantine Failure Case
This type of failure is more severe. The case is called the Byzantine failure be-
cause of a metaphorical description of a plan of action taken by several divisions
of the Byzantine army (i.e. with traitors) to attack an enemy city [5]. In the
Byzantine case, the faulty membranes behave arbitrarily and even maliciously.
In a f -resilient Byzantine system there exists a subset of at most f “Byzan-
tine faulty” membranes. It becomes difficult to distinguish between a functional
and a Byzantine faulty membrane, because unlike a membrane that crashes and
simply stops sending objects, a Byzantine faulty membrane continues to send
objects which may hamper the consensus process that requires membranes to
agree on a common action based on their possible conflicting inputs. It is known
that a consensus can be reached only if less than a third of the processors are
Byzantine faulty processors [5]. The result is also true for membranes.

Theorem 3. In a system with n membranes, having f Byzantine membrane,
there is no algorithm to solve the consensus problem if n < 3f .

Theorem 4. In order to reach consensus in an f-resilient system, every non-
faulty membrane must send at least f + 1 objects to all other non-faulty mem-
branes to meet the requirements of the consensus problem.
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7 Example and Implementation

In this section we present an example describing an immune response system
against virus attacks. This example is implemented using a membrane system
library to emulate the main functions of a membrane system, and Message Pass-
ing Interface library that takes advantage of the highly parallel features provided
by the model. Message Passing Interface (MPI) is still the most popular envi-
ronment in the field of parallel computing, though many new parallel languages
and tools were introduced.

When a virus enters a cell, it tries to destroy the host cell and all the sur-
rounding cells by periodical replication and propagation. The human immune
system is in charge of producing suitable antibodies which can counter-attack
the virus. In the event that the antibody is not present, it needs to be trans-
ported (through intercellular communication) from the cell producing it to the
place where it is required. The survival of the cell depends on the availability of
these antibodies.

7.1 Terms

– Immune Response: The immune response is the way the body recognizes and
defends itself against microorganisms, viruses, and substances recognized as
foreign and potentially harmful to the body.

– Antibody: Antibodies are special proteins that are part of the body immune
system. White blood cells produce antibodies to neutralize harmful germs
called antigens.

– Virus: An infectious particle composed of a protein capsule and a nucleic
acid core, which is dependent on a host organism for replication.

– Virus Propagation: The process by which the virus multiplies and sends
copies of itself to the inner cells.

– Virus Neutralization: The process by which the virus is deactivated (de-
stroyed) by the corresponding antibody.

– Clean cell: A cell which is free from any antigen.
– Infected cell: A cell which has at least one virus present in it.
– Virus Maturity Period: This is the time duration in which the virus is inac-

tive, after which it regularly replicates.
– Virus Propagation Period: A mature virus regularly replicates after a certain

number of time units, and this period is defined as the virus propagation
period.

7.2 Problem Definition

Given an initial membrane structure with the viruses and antibodies, it is useful
to know that when an equilibrium is reached, whether all the cells are clean
or some cells remain infected. From a pharmaceutical perspective, this tells us
whether or not the membrane requires any external medicinal supply (or whether
it is strong enough to resist the virus). Certain configurations worsen at every
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subsequent phases i.e. more viruses survive and antibodies slowly get depleted.
The detection of such patterns in early stages would increase the chances of
cleaning the cells.

7.3 P System Perspective

The organism which the virus infects is represented as a skin membrane in the P
system. The cellular hierarchy of the organism is modelled as the tree structure
of the membranes. The virus and antibodies are the objects in the system. The
virus and antibody properties (e.g. the type and life) are the symbols of the
objects. We use the following rules:

1. The skin membrane has unlimited supply of antibodies of all types.
2. An antibody of type ai is required to neutralize the virus vi.
3. For virus propagation:

– each virus has a maturity period, after which it can reproduce,
– thereafter, it reproduces regularly after a fixed propagation period,
– the virus child thus created may be sent to any one of the children

membranes in a random manner.
4. A membrane requiring an antibody sends a request to its parent for that

particular antibody.

For this problem, a distributed computing approach is given by the following
algorithms:

– Leadership Election: Identifying whether a cell is clean or infected is analo-
gous to whether the virus wins or not in an leader election algorithm;

– Synchronization: Communication between membranes to maintain the re-
quired balance of antibodies in order to reach a clean state.

7.4 Equilibrium State Determination

Determining whether the virus will survive or not is not a trivial problem. The
sufficient condition for the equilibrium state can be written as M > 2D, where
M is the maturity period of the virus, and D is the maximum distance between
a virus and the skin. This is easy to see as it will take exactly 2 × D time
for a membrane to receive the antibody after it has requested for it. If the
above condition is satisfied, the virus will be destroyed before it reproduces.
This condition has to be true for all the membranes. However, the necessary
condition is more complicated. Since, some antibodies may be present in earlier
stages as well (e.g. one of the membranes other than the skin membrane) the
membrane can receive the antibody earlier. Thus, in practice a precise analysis
is required. Moreover, each child virus will have its own life-cycle of maturing
and reproducing simultaneously, making the mathematical formulation rather
complicated.

The following table shows the number n of viruses at different times t. In
this example M = 3 and the virus propagation period P = 1.
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Time Total New Mature
0 1 1 0
1 1 0 0
2 1 0 0
3 2 1 1
4 3 1 1
5 4 1 1
6 6 2 2
7 9 3 3
8 13 4 4
9 19 6 6
10 28 9 9

From the table we can observe that n(t) = n(t− 1) + n(t− 3); generalizing, we
get n(t) = n(t − P ) + n(t − M). It is possible to express n(t) as a polynomial
function of t. The coefficients of the polynomial expression are provided by the
the roots of the equation tM − tM−P −1 = 0. It is difficult to solve this equation
manually; a recursive algorithm can easily be implemented at the start of the
simulation to decide the state.

7.5 Algorithm: Immune Response

In each round we have

1. An exchange of antibodies:
(a) every parent sends its antibodies to its children as requested in the pre-

vious round;
(b) every child receives antibodies as sent by parent;

2. a virus propagation:
(a) increment virus life and check for reproduction;
(b) send virus to children if required;
(c) receive virus from parent (if not skin).

3. Compute leader: for each round, check if virus dominates or is destroyed.
4. Synchronization: send antibody requests to all parents.

7.6 Implementation

For implementing this example, we have used the Message Passing Interface
(MPI). MPI is a standard developed to enable portable message passing ap-
plications, and though many new parallel languages and environments are in-
troduced, it is still very popular in the field of parallel computing. MPI is a
library of functions and macros that can be used in the Fortran, C, C++ and
Java programs. MPI programming means that you write your program in C,
C++ or Java, and when the time comes for parallel processes to communication
or synchronize, you should explicitly call the MPI send or receive function to
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help. MPI send function sends a message to the named target process, while in
the target process, a correspondent receive function must be set to make the
corresponding work. MPI is quite easy to use. You need to master around six
commands to write simple programs; they are MPI Init(), MPI Comm rank(),
MPI Comm size(), MPI Send(), MPI Recv() and MPI Finalize(). To use the
MPI system and functions, the header file mpi.h should be included. Different
processes are identified with their task ID’s; the MPI system assigns each pro-
cess a unique integer called as its rank (beginning with 0). The rank is used
to identify a process and communicate with it. Each process is a member of a
communicator; a communicator can be thought of as a group of processes that
may exchange messages with each other. By default, every process is a member
of a generic communicator environment (it could be interpreted as the skin in a
membrane system). Although we can create new communicators, this leads to an
unnecessary increase in complexity. The processes can be essentially identical,
i.e. there is no inherent master-slave relationship between them. So it is up to us
to decide who will be the master and who will be the slaves. A master process
can distribute data among the slaves. Once the data is distributed among the
slaves, the master must wait for the slaves to send the results and then collect
their messages. Packing and decoding is handled by MPI internally. The code
for the master as well as the slaves could be in the same executable file. More
details can be found in [6,8]. Our implementation is written in C and uses the
parallel environment provided by the MPI library.

Fig. 1. Example of an output diagram
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The implementation steps were:

1. A P system library was written to emulate the functions of a P system. We
assume that each membrane is a processor.

2. An MPI program was written for the simulation of the various rounds of the
system, implementing the algorithm presented above.

3. An interface was written to create an additional level of abstraction between
the library and the MPI program, in order to hide the implementation details
of the P system library.

4. An automated graphical output is generated at the end of the simulation
making use of XFig and LATEX. The output at the end of each round is used
to encode an XFig diagram, and these are included in a LATEXpresentation.
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tems in modeling molecular interaction. In Gh. Păun, G. Rozenberg, A. Salomaa,
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Abstract. We present a new version of P systems called Client–Server
P Systems (CSPS). The client membranes are characterized by their
states; the server membrane stores the states of the clients and trig-
gers the corresponding interaction rules. We show that CSPS have the
same expressive power as Turing machines. CSPS is used to model var-
ious molecular processes in which interaction and state transitions are
causally linked. Signaling pathways and T cell activation are described by
using a CSPS software environment called MOlNET (MOlecular NET-
works). MOlNET can describe the dynamics of molecular interactions,
including both qualitative and quantitative aspects and simulating the
signaling pathways that tune the activation thresholds for T cells.

1 Introduction

Membrane computing is based on membrane systems or P systems, a new class
of distributed and parallel computing devices introduced in [12]. The approach is
based on hierarchical systems: finite cell-structures consisting of cell-membranes
embedded in a main membrane called the skin. The membranes determine re-
gions where objects, elements of a finite set, and evolution rules can be placed.
The objects evolve according to given rules associated with a region. Objects
may also move between regions. A computation starts from an initial configu-
ration of the system, and terminates when no further rule can be applied. A
software simulator of membrane systems is presented in [3].

Hierarchical systems are well-known structures in computer science, and the
notion of computation based on evolution rules is common. The interpretation
of the computation is rather new: the result of a computation is a multiset of
objects collected in the output cell or sent out of the system. The behaviour of
the whole system is obtained by combining the resulting multisets, or consider-
ing the multiplicity of objects present in a specific output membrane of a final
configuration.
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According to many authors, P systems are not created to model biological
systems, although similarities can be observed. Since their introduction, many
results of universality were proved and several theory problems could be ex-
plained in an easier and elegant manner, with the help of formal languages. Yet,
the subject is far from being exhausted; new properties are discovered, as well
as connections with already known concepts. There is still a need to find more
connections with the applied computer science and approaches that could prove
themselves useful in practice as well as in theory. We present a new version of
P systems, one related to the applied computer science and molecular biology.
Trying to strengthen the connection between P systems and biological systems,
we introduce P systems of interaction, considering the client–server model used
for process communication in computer networks.

We use a new version of P systems called Client-Server P Systems (CSPS)
to model molecular processes as signaling pathways and T cell activation. A
living cell is a complex system where the interactions among its components
provide structure, mediate reactions, and perform functions. Different cell pro-
cesses (such as T cell activation) are triggered mainly by protein-protein interac-
tions. Specific and productive interactions change consequently the states of the
interacting proteins (such as in signal transduction). Such molecular processes
are modeled in MOlNET, a CSPS software environment more meaningful for
biologists and for their goals.

The paper is organized as follows. Section 2 presents the client-server P sys-
tems, showing that they have the same computational power as Turing machines.
Section 3 briefly describes the important notion of a signaling pathway and T
cell activation. Section 4 presents MOlNET as a CSPS software environment.
MOlNET is based on the client–server model of the computer networks. After
a brief presentation of MOlNET, emphasizing on its components and their be-
haviour similar to CSPS, we simulate the signaling pathways that finely tune
the T cell activation thresholds taking into consideration both qualitative and
quantitative aspects.

2 Client–Server P Systems

A formal description of a P system can be found in [12]. It is basically composed
of a membrane structure, consisting of several membranes that do not intersect,
and a skin membrane, surrounding them all; outside the skin membrane lies
the environment. The membranes delimit regions, numbered accordingly, and
contain originally multisets of objects, as well as evolution rules involving objects
(and possibly priorities for rules).

This is the initial state of the P system. In each step, rules are applied non-
deterministically and in a maximal and parallel manner, in all membranes –
in other words, rules and objects are randomly chosen, all objects that can be
involved really are, and all chosen rules are applied in parallel.

The objects can pass membranes, even to or from the outside of the system; in
this way we obtain transitions between configurations of the system. A sequence
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of transitions constitutes a computation; this halts if at one moment, no rule
can be applied anymore in the system. When getting a halting computation, we
collect its result by counting the objects that ended in the output membrane.

These are the general P systems, and many other variants and classes were
introduced starting from this simple description. For our paper, a particular kind
of P systems is of special interest, P systems with symport/antiport rules; they
take benefit from the communication that is intensively used during computa-
tions. The specificity of this type of P systems lies in the form of their rules,
which can be one of:

– (a, in), (a, out): object a can pass through a membrane by itself (uniport
rules),

– (ab, in), (ab, out): objects a and b can pass through a membrane only to-
gether, in the same direction (symport rules), and

– (a, out; b, in): objects a and b can pass through a membrane only together,
but in different directions (antiport rules).

There is a number of results on this type of P systems [11]; generally, they
take into consideration the number of membranes and the weight of the port (i.e.
the number of objects involved in an antiport or symport rule). A relation of
inverse proportionality between these two parameters could be observed – that
is, in order to obtain computational universality, one has to increase the weight
of the ports when decreasing the number of membranes, and reversely. In the
proofs from this paper, we use some results and techniques rooting in the formal
language theory that can be found in [14], for example.

A matrix grammar with appearance checking is defined as a construct G =
(N,T, S,M,F ), where N,T are disjoint alphabets, S ∈ N , M is a finite set of
sequences of the form (A1 → x1, . . . , An → xn), n ≥ 1, (called matrices) of
context-free rules over N ∪ T (with Ai ∈ N,xi ∈ (N ∪ T )∗), and F is a set of
occurrences of rules in M .

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there exists a matrix (A1 →
x1, . . . , An → xn) in M and the strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that
w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i ,

for some w′i, w
′′
i ∈ (N ∪ T )∗, or wi = wi+1, Ai doesn’t appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied, hence the grammar’s name.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗

w}. The family of languages of this form is denoted by MATac. It is known
that matrix grammars with appearance checking generate the family RE of
recursively enumerable languages. A matrix grammar G with the notations made
above is in the binary normal form if N = N1 ∪ N2 ∪ {S,#}, all sets disjoint,
and the matrices in M are in one of the following forms:
1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, x ∈ T ∗, |x| ≤ 2.
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Moreover, there is only one matrix of type 1 and F consists exactly of all
rules A → # appearing in matrices of type 2; # is a trap-symbol (it is never
removed once introduced). A matrix of type 4 is used only once, in the last step
of a derivation. According to Lemma 1.3.7 of [6], for each matrix grammar, there
exists an equivalent matrix in the binary normal form.

2.1 Description

We formalize a client–server model complying with the following description. The
clients are characterized by their states, whereas the server stores the current
states of clients and also interaction rules defined over these states. When two
clients can interact, the server notifies them, supplying at the same time the
corresponding rule. The clients interact and send their new states to the server,
thus making the model consistent.

A Client–Server P System (CSPS) is a P system composed of elementary
membranes (except for the skin), state-objects for all of them minus one (the
server) and objects modelling the real communication channels between the
clients. All rules are of symport type. A CSPS resembles the original client–server
model by working with information and not using rules with creation/destruction
of objects, but merely the power of communication. In a formal notation, the
CSPS contains the skin membrane (numbered 1), m membranes each represent-
ing a client (numbered from 2 to m+1) and one for the server, numbered (m+2),
all arranged inside the skin membrane. We have state-objects for possible states
of clients and rule-objects.

A rule-object ηα1α2α3α4α5 has the following meaning: two clients defined by
states α1 and α3 can interact and pass to states α2 and α4, respectively; at the
same time, it is possible to obtain a supplementary information, α5.
Let Π be our CSPS:

Π = (V, μ,w1, . . . , wm+2, we,Me, R1, . . . , Rm+2,m + 2)
where:

1. V = A ∪B, with A,B disjoint sets constructed as follows:
– A =

⋃m+1
i=2 Si, where Si is the set of states for client i;

– B = {ηα1α2α3α4α5 | α5 ∈ Me ∪ {λ}, αi ∈ A ∪ Me, 1 ≤ i ≤ 4, where
α1 + α2 ⇒ α3 + α4 + α5 is an interaction rule},

2. μ = [1 [2 ]2 . . . [m+2 ]m+2 ]1,
3. w1 = ∅,

wm+2 = B ∪ Sinitial, where Sinitial = {s2, s3, . . . , sm+1}, si ∈ Si, 2 ≤ i ≤
m + 1 (the initial state of each client),
wi = Si \ {si}, si ∈ Sinitial, 2 ≤ i ≤ m + 1,
Me = A (multiset),

4. R1 = {(αj αk ηα1α2α3α4α5 , out) | j ∈ {3, 4}, k ∈ {1, 2}, j − k �= 2, αj , αj+2 ∈
A,αk, αk+2, α5 ∈ Mei},∪{(α3 α4 ηα1α2α3α4α5 , out) | αi ∈ A, 1 ≤ i ≤ 4, α5 ∈
Me} ∪ {(α3α4α5ηα1α2α3α4α5 , in) | αi ∈ A ∪Me, 1 ≤ i ≤ 5}
Rm+2 = {(α1 α2 ηα1α2α3α4α5 , out), (α3 α4 α5 ηα1α2α3α4α5 , in) | αi ∈ A ∪
Me, 1 ≤ i ≤ 4, α5 ∈ Me ∪ {λ}},
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Ri = {(αj ηα1α2α3α4α5 , in), (αj+2 ηα1α2α3α4α5 , out) | j ∈ {1, 2}, αj , αj+2 ∈
Si}, 2 ≤ i ≤ m + 1.

Inside the server membrane there are state-objects (representing the current
states of the clients) and rule-objects. When two state-objects can be combined
according to a rule given by a rule-object, the server membrane gives a “signal”
to the respective client-membranes.

The meaning of the rule (α1 α2 ηα1α2α3α4α5 , out) ∈ Rm+2 is the following:
the clients represented by membranes i and p (where α1 ∈ Si and α2 ∈ Sp)
can interact according to the rule described by the rule-object η; as a result,
these three objects (the current states and the rule-object) exit the server re-
gion. At this moment the involved client-membranes absorb their own state-
objects and the rule-object η (by means of rules (α1 ηα1α2α3α4α5 , in) ∈ Ri or
(α2 ηα1α2α3α4α5 , in) ∈ Ri, and similarly for membrane p). Then they release
for further use their new states and the rule-object into the skin membrane, by
(α3 ηα1α2α3α4α5 , out) ∈ Ri or (α4 ηα1α2α3α4α5 , out) ∈ Ri (and similarly for p). If
α5 �= λ, the supplementary information is brought in from the environment with
rules of R1.
We emphasize the fact that the notifications of clients and the interactions be-
tween them take place in a parallel manner.

2.2 The Computational Power

We show that the Client–Server P Systems are computationally universal, i.e.
they have the same computational power as Turing machines. Because of the
characteristics of the model, it is more convenient to use in the proof a slightly
modified grammar. Given a general matrix grammar G = (N,T, S,M,F ) in
the binary normal form, let us denote by G′ = (N ′, T, S,M ′, F ′) the grammar
constructed as follows:

– N ′ = N1 ∪N2 ∪N3 ∪ {S,#}, all sets disjoint, with N3 = {u′ | u ∈ N2}; we
define the bijection corresponding : N2 → N3, corresponding(u) = u′;

– the rule (S → XA) ∈ M is replaced in M ′ by (S → XA′), with X ∈ N1, A
′ ∈

N3, A
′ = corresponding(A) .

– we keep the matrices of G of types 2, 3, 4 and:
• for each matrix of type 2, (X → Y,A → x) ∈ G, we add (X → Y,A′ →
x1) with corresponding(A) = A′ ∈ N3, x1 ∈ (N3∪N2∪T )∗; if 1 : x ∈ N2
then 1 : x1 = corresponding(1 : x) and 2 : x1 = 2 : x, else x1 = x;

• for each matrix of type 3 and 4, we add the corresponding rule: (X →
Y,A′ → #) or (X → λ,A′ → x), with X,Y ∈ N1, corresponding(A) =
A′ ∈ N3, x ∈ T ∗, |x| ≤ 2.

– F ′ consists of rules in F plus added rules of type A′ → #, where A′ ∈ N3,
A′ = corresponding(A).

In this definition we use the notation α : x representing the αth element of the
sequence x (for instance, 2 : x means the second element of x).

We prove that the two grammars are equivalent, so we can further use any
of them, depending on which of them fits better the goal.
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Lemma 1. G ≡ G′.

Proof. We show that every derivation of G can be simulated in G′ and vice versa.
This is proved by induction on the length of derivation. 
�
Notations:
Given a system Π as defined in the previous section, the set of all numbers
computed by Π is denoted by N(Π). We denote by NCSPm,p the family of all
sets N(Π) computed by CSPS of degree at most m ≥ 1, using symport rules of
weight at most p ≥ 1. The weight of a symport rule (a1 . . . an, in/out) represents
the number n of the objects appearing in the rule. For instance the weight of
(a b c , in) is 3. We denote by N ′RE the family of all recursively enumerable sets
of non-null numbers. We prove that for m = p = 4, CSPS are computationally
universal (except that they cannot yield the number 0).

Theorem 1. NCSP4,4 = N ′RE.

Proof. The direct inclusion can be proved in a straightforward manner.
For the reverse one, we use a method often employed when proving results

about universality of different types of P systems, namely exploiting the proper-
ties of the matrix grammars with appearance checking. Yet, because of model’s
characteristics, it is more convenient to use in the proof a matrix grammar mod-
ified as above, that is having the set of non-terminals differently partitioned and
the rules modified accordingly.

It is known that matrix grammars with appearance checking generate the
family RE of recursively enumerable languages. Taking this into consideration,
as well as the results regarding the equivalence of the general matrix grammars
and the ones in the binary normal form, and the latter with our modified type
(see Lemma 1), we construct a client–server P system of degree 4 and symport
weight 4 which simulates the derivations of the “modified” grammar. Let this be
G′ = (N ′, T, S,M ′, F ′), with N = N1 ∪N2 ∪N3. For every matrix (X → Y,A →
α1α2) in G′, with X,Y ∈ N1, A ∈ N2∪N3 and α1, α2 ∈ N2∪N3∪{a, λ}, we have
an associated object of type η: ηXAY α1α2 . For the rules (X → λ,A → α1α2) and
(X → Y,A → #) we introduce the objects ηXAtα1α2 and ηXAY b, respectively. In
order to be able to eliminate these objects η from the output membrane (region)
at the end of the derivation, we introduce some special objects s and s′ for every
object η.

A sketch for the simulation of a general derivation for the case A ∈ N3 can be
seen in Figure 1. At the beginning, in membrane 2 there are the elements of N1,
in membrane 3 there are the elements of N3 and the terminal a, while in 4 we
have the right hand side of the starting rule of grammar and the rule-objects. In
the environment there are the elements of N2 and the terminal a, in an infinite
number of copies. In the case when A ∈ N2, the system functions in a similar
manner, except for the fact that steps 4 and 5 are skipped, and in step 6 the
rule applied is (Y A ηXAY α1α2 , out) ∈ R1.

We use a matrix (X → λ,A → x) of type 4 in G only when an object
t appears in membrane 4, triggering the mechanism for removing the objects
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3: (Y ηXAY α1α2, out)
4: (AηXAY α1α2, in)

6: (Y α1ηXAY α1α2, out)
7: (Y α1α2ηXAY α1α2, in)
8: (Y α1α2ηXAY α1α2, in)

2: (XηXAY α1α2, in)
1: (XAηXAY α1α2, out)

5: (α1ηXAY α1α2, out)

Fig. 1. A client-server P system of degree 4 and symport weight 4

η from the output membrane. When a matrix (X → Y,A → #) is used in
G′, the trap-object b is introduced in membrane 4 preventing the end of the
computation. 
�
Having introduced the CSPS as above, one question arises: are there problems
that could be more naturally described (and solved) by CSPS than by other P
systems? A positive answer comes from biology. We have detected that CSPS
approach has a very interesting biological feedback when it is used to describe
the T cell activation.

3 Signaling Pathways and T Cell Activation

Signaling pathways
Many biological activities depend on the ability of proteins to communicate
specifically with each other and with other molecules. This is particularly ob-
vious for the signaling pathways that operate in living cells. These signaling
pathways allow the cell to receive, process and respond to various signals from
its environment. The signals are molecules (hormones, neurotransmitters, cy-
tokines) that indicate the beginning and the termination of one or more in-
tracellular processes. The signal transduction refers to the process by which the
signals are transmitted via receptors to the interior of the cell through the signal-
ing pathways. Classically, a linear signal transduction pathway can be described
as follows. A first messenger molecule (the signal) outside the cell is sensed at
the cell membrane by a receptor. Receptor binding is transduced into an in-
tracellular event by activation of enzymes (PLC, for instance) that synthesizes
second messenger molecules (e.g. DAG, IP3). These ones promote the covalent
modifications (by protein kinase or protein phosphatase activities) and allosteric
regulation of other intracellular proteins that ultimately cause specific changes
in gene expression. In living cells, these linear signaling pathways cross-talk each
other and form a network of interactions. This signaling network has several
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emergent properties that the individual pathways do not have [1]. We consider
the signaling network that grounds T cell activation as a case study of our model.
When a T cell recognizes a foreign antigen, it initiates several signaling pathways
and the cell activates. The recognition of foreign antigen is an extremely sensi-
tive, specific and reliable process and models for T cell signaling are necessary
to understand how these properties arise. So far, the study of T cell activation
has benefited from the use of mathematical models [2] or are based on Boolean
formalisms [8].

Fig. 2. TCR signaling pathways

T Cell Activation
T cells play an important role in orchestrating the immune responses to foreign
aggressors. The key event for T cell activation is an appropriate interaction be-
tween the T cells armed with T cell antigen receptors (TCR) and the professional
antigen presenting cells (APC). TCR only recognizes the foreign antigen in the
form of short peptides presented in the groove of a molecule on the surface of
the APC known as the major histocompatibility complex (MHC). The physical
interaction of TCR with MHC-peptide complexes is unique among signaling sys-
tems in that it takes place over a continuum of binding values. The recognition of
antigen initiates signal transduction. This can be broken down into series of dis-
crete steps that are related to molecular events (interactions, state transitions)
within the signaling pathways. These are shown in Figure 2, reprinted from [10].
The integration of distinct branches of the TCR-induced signaling pathways
(Ras/MAP kinase pathway, Ca+2/calcineurin pathways) results in activation
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of distinct transcriptional factors that coordinate and regulate gene expression
and cell activation. Other signals (costimulatory signals) also function in T cell
activation by amplifying TCR signaling. The signaling pathways are modeled
in MOlNET and the network behaviour is traced out both qualitatively and
quantitatively.

4 MOlNET: A CSPS Software Environment

In this section we present MOlNET, a software environment for CSPS, first
introduced in [4]. The link between CSPS and MOlNET is given by the fact that
each component of MOlNET has a clear correspondent in CSPS, with the same
role and behaviour. We use MOlNET to simulate the signaling pathways that
tune the activation thresholds for T cells, providing insights on both quantitative
and qualitative aspects.

4.1 Description

In every biological interaction, one or both interacting molecules undergo a tran-
sition to a new state. Consequently, a MOlNET structure contains information
about each of the interacting molecules (name, type, location inside cell and
number of relevant domains with respect to a given interaction, if the molecule
is a protein). For each protein it is possible to mention the names of its domains
and domain states (active/inactive).

Our system allows a user to define molecules (proteins, ions, lipids, DNA) that
take part in a simulation, and also the interaction rules between them: protein-
protein interactions, protein-DNA interactions and other features of molecular
systems as a set of reaction rules. The user can observe, through various windows,
dynamic changes in concentration of proteins and other chemical compounds of
the cells. Using this software, we can tune up a specific behaviour and we can
emphasize the problems related to interaction anomalies.

Our implementation choices were to use the C-standard programming lan-
guage and the BSD-socket interface approach. The graphic server is written in
Gtk 2.0 environment. The main components of our software system as well as
the relationships established between them are shown in Figure 3.

The MOlNET architecture follows the definition of CSPS. Hereinafter we
describe the components of our software environment, as well as the links with
CSPS. The data server manages information about the interactions among the
clients. It corresponds to the server membrane in CSPS, having the same role and
behaviour. This component uses a non-directed graph defined by the molecules
existing in the cell and their productive interactions. By productive interaction
we understand that their interaction brings either qualitative or quantitative
changes to the cell (the modification of a molecule state or concentration, forming
or unbinding of a molecular complex).

The server carries out the decision function with regard to the possible
molecule interactions. When it receives a request from a client, it checks the
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Client−to−client

Data server

Client Graphic server

protocol
Data server−to−client Data server−to−graphic server

protocol

protocol

Fig. 3. Simplified MOlNET architecture

request type (new client or client modification), updates the graph and sends
back the appropriate responses (a list of possible partners). It also keeps the
amounts of each molecule existing in the cell.

A client represents a type of molecule; it corresponds to a client mem-
brane in CSPS, having the same functionality. Each client saves information
about its state: chemical structure, position, identification within computer net-
works (host+port). According to the model described above, a client (molecule)
changes its position inside the cell and checks whether its interaction partners
are available and close enough for an interaction. As soon as it participated to an
interaction, a client notifies the server. The communication mechanism closely
follows the CSPS formalism presented in Section 2. Specifically, the rule-objects
of CSPS are interaction rules in MOlNET, initially stored in the data server. As
a result of the message exchange, the data server and clients update their states,
in the same way as transitions take place in CSPS.

The graphic server is an important part of the system, as it provides a friendly
visual interface to the user. The users just introduce the input data, and then
observe the behaviour of the system. A snapshot of the MOlNET user interface
is given in Figure 4. In order to follow the real interactions between molecules,
the graphic server offers the possibility for both defining the molecules that are
in the system, and interaction rules between these molecules. If experiments
prove that some rules were incorrect or if on the contrary they discover new
interactions, it is easy to alter old rules or to add new ones, by the simple act of
introducing new molecules and/or rules. We considered the signaling pathways
that tune the T cell activation thresholds. The work is presented in the next
section. The results obtained by running the system are represented as charts
by the graphic server. The feature that allows direct interventions from outside
is also carried out by this component.

As each particular client/server model should rely on its own protocol, we
developed a set of protocols allowing the communication between data server
and clients, data server and graphic server, clients themselves.
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Fig. 4. A MOlNET screen for tuning the activation thresholds

4.2 Tuning the T Cell Activation Thresholds

MOlNET is able to catch both qualitative and quantitative aspects. The qual-
itative approach includes connectivity data (molecular interaction map) and
semantic data (the effect of an interaction, mainly activation or inhibition). It
allows a dynamic description of the signaling network. The quantitative ap-
proach includes kinetic data (amounts of molecules, reaction rates) and allows
predictions on the network behaviour. A common difficulty when dealing with
the simulation of molecular interactions is the lack of quantitative data.

T cell activation is a threshold phenomenon that is dynamically modulated
(or tuned) during cell maturation [7]. It reflects the signal intensity that is nec-
essary to increase the expression of specific genes (e.g. IL-2 gene). Both the
emergence of threshold and its tuning depend on dynamic interplay between
positive and negative factors. As T cells receive many signals from self antigens,
they have to adapt their activation thresholds in such a way that self-stimuli
fall under the threshold and consequently no response is elicited against self.
Furthermore, non-self antigens provide stronger signals that overcome the acti-
vation threshold, the cell activates and an immune response is yielded. In our
work, the activation threshold concept is considered on a molecular basis.

Although many receptor interactions may contribute positively or negatively
to the setting of activation threshold, TCR signaling plays the dominant role
and has its own signature. Zap70 activation and phosphorylation of LAT are
hallmarks of TCR engagement and are essential for connecting to the major in-
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tracellular signaling pathways (Ca+2/calcineurin and Ras/MAPK kinases) that
lead to T cell activation.

In the following, we investigate the role of Cbl-b in tuning the activation
thresholds. Basically, we look for the influences that Cbl-b exerts on the level of
activated Zap70. First, the model proposed in [2] is considered. Then, Cbl-b is
added and the levels of Zap70* are measured. High levels of Zap70* may trigger
cell activation, while levels below the threshold have not this effect. The expres-
sion levels of various signaling proteins vary during immune cell maturation (e.g
the level of Lck declines during development whereas the level of SHP phos-
phatase increases); our work considers the heterogeneity of activation thresholds
at the level of population of T cells (or T cell clones) rather than during the
development of a single clone.

According to [2], the state of TCR signaling (hence the activation threshold)
appears to be governed by a dynamic balance of kinases (Lck, Zap70) versus
phosphatases (SHP1, SHP2). Moreover, there are some feedback interactions
among Lck, Zap70 and phosphatases (the later are represented by a single vari-
able called PTP). As shown in Figure 5, Lck* phosphorylates and activates both
the ZAP70 (step 3) and the PTP (step 5). Zap70* activates Lck in step 1 (pos-
itive feedback), but phosphatase inactivates both Lck* (step 2) and ZAP70* in
step 4 (negative feedback). The active state of an enzyme is denoted by “*”.

Lck

Lck*

PTP* PTP Zap70 Zap70*

4

2 1

35

Fig. 5. Feedback interactions as TCR signals

These feedback combinations may have a nonlinear effect that alters the ap-
propriate threshold for cell activation. Moreover, these interactions due to feed-
backs provide robust mechanisms for antigen discrimination (self vs non-self).
Taking into account the above particularities of the reaction rules, one can ob-
serve in Figure 6 the changes of Lck*/Lck-total and Zap70*/Zap70-total ratios
after TCR engagement. For various amounts of Lck and Lck*, Zap70*/Zap70-
total ratio has slight variations. If the cell activation threshold (namely its re-
quirement for Zap70*) is below the Zap70* signal intensity, the cell is activated;
otherwise (that is, if its threshold is above the actual signal), the cell is not
activated. The cell response seems to be also sensitive to the variations of Lck
and Lck*.
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Fig. 6. Lck*/Lck-total and Zap70*/Zap70-total levels after TCR triggering

During experiments (represented by numbers 1 to 4 along the horizontal
coordinate in Figure 6), the input values of Lck and Lck* varied between 10,000;
100,000; 500,000 and 1,000,000 molecules, while the input values of Zap70 and
Zap70* were kept constant: 100,000. The kinetic constants were k1=0,001, while
k2=k3=k4=k5=1, where ki stands for the reaction i of Figure 5.
Lck-total=Lck+Lck* and Zap70-total=Zap70+Zap70*.

Recent reports highlight that Cbl-b is a key regulator of activation thresh-
olds in T cells. Many proteins associate with Cbl-b, including Lck* and Zap70*.
Cbl-b mediates chemical modification (ubiquitination) of these activated kinases
that targets them for degradation [13] (reactions 8 and 9 in Figure 7). Degra-

8

PTP

Lck*

PTP* Zap70 Zap70*

12

5 3

4

Lck

CD45

Lck*

Lck**

Cbl−b Cbl−b*

7

9

6

Zap70**

Fig. 7. Cbl-b alters the signaling pathways The specific chemical modifications (due to
ubiquitination) that target the active enzymes to degradation are denoted by “**”.
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dation of active kinases results in the reduction of the activation of downstream
signaling proteins. Furthermore, degradation of Lck can reduce the activation of
Zap70, as shown in Figure 7. These events raise the threshold requirements for
cell activation and prevents the development of autoimmunity [15]. Moreover,
following TCR ligation, Zap70* activates Cbl [10] (reaction 7). Additionally,
CD45 activates Lck (reaction 6).

All these molecular events finely tune the signal intensity in such a way that
it draws nearer to or deviate from the activation threshold. The changes in the
Lck*/Lck-total and Zap70*/Zap70-total ratios are shown in Figure 8. When the
amounts of Cbl-b (and Cbl-b*) vary and amounts of Lck (and Lck*) vary as well,
Zap70*/Zap70-total ratio still has slight variations (as in Figure 6). But when
the amounts of Cbl-b and Cbl-b* equal 500.000 molecules, for an activation
threshold set around 0.45 (that is Zap70*/Zap70-total=0.45, a thin red line
in our picture), the cell could either activate or not (during experiment 2, the
signal intensity is below the threshold, while in the experiment 3 the threshold is
overcome). These outcomes are produced by differentially regulating the amount
of Lck* within the cell. In other words, Cbl-b fine tunes T cell reactivity, and
this also depends on the amount of Lck*.

Fig. 8. Lck*/Lck-total and Zap70*/Zap70-total levels after TCR triggering and Cbl-b
activation

During our software experiments (represented by numbers 1 to 4 along the
horizontal coordinate in Figure 8), the input values of Lck and Lck* varied
between 10,000; 100,000; 500,000 and 1,000,000 molecules, while the input values
of Zap70 and Zap70* were kept constant: 100.000. Cbl-b and Cbl-b* were set to
10,000 (dark lines), and then they were set to 500,000 (green lines). The kinetic
constants associated to the corresponding reactions of Figure 7 were k1=0,001,
k2=k3=k4=k5= k6=1, k7=0,1, and k8=k9=0,01.
Lck-total=Lck+Lck* and Zap70-total=Zap70+Zap70*.

As T cells exert an important control over the immune system, the fine tuning
of T cell activity can have great consequences on the responses that immune
system triggers against viruses or bacteria, as well as on the development of
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autoimmune diseases. We show how a specific molecule type, namely Cbl-b,
could tune the threshold required for cell activation. More complex molecular
networks that trigger qualitatively different cell responses (full cell activation
or anergy) may be considered [5]. These results, together with other wet lab
data, may open new perspectives in pharmacological manipulation of immune
responses. Drugs may trigger, enhance, diminish or stop the ways in which T cells
respond, adjusting the expression level or activity level of the signaling proteins.
We consider that simulations of T cell signaling mechanisms could reveal useful
informations on immunodeficiencies, autoimmune disorders, vaccine design, as
well as the function of healthy immune system.

5 Conclusions

P systems were not initially created to model biological systems, although simi-
larities can be observed. Despite many results of universality and several formal
language problems which could be explained in an easier and elegant manner, it
is useful and desirable to have more connections with the applied computer sci-
ence and molecular biology. Trying to strengthen these connections, we present
a new version of P systems related to the client–server model used for process
interaction in computer networks. We use the new version of P systems called
Client-Server P Systems to model molecular processes as signaling pathways and
T cell activation by using a CSPS software environment called MOlNET. The
proposed models for tuning the activation thresholds take into consideration
both qualitative and quantitative aspects. We intend to investigate further the
proposed CSPS. One goal is to refine CSPS in order to capture more details of
the molecular processes.

Many proteins mediate their biological functions through protein interac-
tions. Large networks of such interactions are likely to regulate biological pro-
cesses rather than single proteins acting by themselves. The benefits of modeling
with CSPS in MOlNET are two-fold. First, it has an important role in under-
standing how an individual protein contribute to global cell behaviour. In this
respect, experimental biology is necessary in order to characterize the proteins
(if their structure and/or functions are unknown). Second, the number of ex-
periments required to explore all the interactions between many molecules is
enormous and would exceed any research budget. Simulations would provide in
this case a way to test and search for new partners of interactions for a given
protein such as the whole network behaviour would not be affected. The results
of the model we described might become even clearer in the context of more
global molecular mechanisms of diseases and drug action.

In addition to these, modeling may provide some insights into the complexity
of T cell signaling mechanisms. T cell sensitivity and specificity are properties of
the signaling network that could be traced out computationally. Models of how
different series of signals are coupled to gene expression may explain how one
pattern of signaling leads to T cell activation and proliferation, while another
leads to T cell unresponsiveness [5]. According to [16], these software cell systems



218 Gabriel Ciobanu et al.

might have unexpected results and could become the platform on which much
biological and medical exploration will be carried out.
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12. Păun, Gh., Computing with membranes, Journal of Computer and System Sciences
61, 108–143, 2000.

13. Rao, N., Dodge, I., Band, H., The Cbl family of ubiquitin ligases: critical negative
regulators of tyrosine kinase signaling in the immune system, Journal of Leukocyte
Biology 71, 753-763, 2002.

14. Rozenberg, G., Salomaa, A., Handbook of Formal Languages, Springer, 1997.
15. Rudd, C., Schneider, H., Cbl sets the threshold for autoimmunity, Current Biology

10, 344-347, 2000.
16. Tomita, M., Whole-cell simulation: a grand challenge of the 21st century, Trends

in Biotechnology 19, 205-210, 2001.



P Automata or Purely Communicating
Accepting P Systems �
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Abstract. In this paper we introduce the notion of a P automaton with
one-way communication, a concept related both to P systems and the
traditional concept of automata. A P automaton with one-way commu-
nication is a purely communicating accepting P system. The result of the
computation in these systems is the set of multiset sequences consumed
by the skin membrane, supposing that the P automaton started func-
tioning in an initial state and entered a so-called final state. As a result,
we show that for any recursively enumerable language, a P automaton
and a certain type of projection can be constructed such that the given
language is obtained as the image of the set of accepted input multiset
sequences of the P automaton.

1 Introduction

P systems were introduced in [4] as computing models inspired by the function-
ing of the living cell. Their main components are membrane structures consisting
of membranes hierarchically embedded in the outermost skin membrane. Each
membrane encloses a region containing a multiset of objects and possibly other
membranes. Each region has an associated set of operators operating on the
objects contained by the region. These operators can be of different types, they
can work on the multisets of objects in the regions but also can provide the
possibility of transferring the objects from one region to another one. Since 1998
the theory of P systems or membrane computing has proved to be a successful
area of unconventional models of computation: several variants of the basic no-
tion have been introduced and studied proving the power of the framework; the
interested reader is referred to [5,6,9] for basic information, and to the book [8]
for a summary of the achievements and open problems in the area. The reader
also can consult the P systems web page with a lot of downloadable papers and
information [11].

By introducing the notion of a P automaton, our paper attempts to build a
bridge between the theory of P systems and automata theory, and at the same
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time, initiate the study of accepting P systems, systems where the described
language is given by the objects entering the structure during the functioning.

According to the original model of a P system, at the beginning of the com-
putation the membranes and the regions of the P system are initialized, that is,
they contain multisets of objects and operators. Then, under the given opera-
tions, the contents of the regions (the multisets of objects contained in them)
change and these changes define the computation. The result of the computation
can be, for example, a multiset or set of objects filtered at some previously fixed
stage of the computation.

Our model applies another approach. In this case, the membranes of the sys-
tem are allowed only to communicate with each other, that is, the only allowed
activity is to transfer a multiset of objects from one region to another one, sup-
posing that the regions satisfy some prescribed conditions. The skin membrane
is allowed to consume multisets of objects from outside, and this is the only way
how new objects can enter the membrane system. The computation starts at
some initial state of the P system, that is, the initial contents of the different
regions are given, and it ends when the P system is in a final state, that is, the
regions contain some previously prescribed multisets of objects. The result of
the computation is the sequence of multisets of objects which served as input
multisets consumed by the skin membrane during an accepting computation,
that is, during a computation starting in the initial state and ending in a final
state.

It is easy to see that the notion is a related concept to the customary notion
of automaton: the input multiset sequence of the P automaton corresponds to
the word read from the input tape and the membranes and the regions with
the objects represent both storage tapes and states of an automaton. The no-
tion is a natural concept arising from membrane computing: Starting from the
initial state, the work of the system is influenced by the effects of the external
world. Then it enters a final configuration which can be, for example, a balanced
situation or, as in our case, a previously prescribed configuration.

The idea of P automaton was inspired by two problems raised by Gheo-
rghe Păun. The first, from [7] is the following. “What about the possibility of
considering a class of P systems, meant to compute, where no rule for objects
evolution appears, but only rules governing object communication from a re-
gion to another one”. The second, from [8], Problem Q32: “What about using
P systems as accepting devices?”

In this paper we discuss P automata with one-way communication, that
is, where each membrane is allowed to ask only its parent membrane (its direct
predecessor node in the tree representing the membrane structure of the system)
for a multiset of objects (symbols) if a certain condition is satisfied: if the child
contains a given multiset of objects. Thus, the communication is of type one-way,
top-down. Obviously, a P automaton with two-way communication can also be
defined; we shall return to these models in future papers.

The concept of P automata raises several interesting problems. A natural
question is the following: What can we say about the accepted input multiset
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sequences of a P automaton. We give an answer, and at the same time, demon-
strate how these tools can be used for computation: we show that any recursively
enumerable language can be represented by a one-way P automaton and a certain
type of projection as the image of the set of accepted input multiset sequences.
Moreover, the P automaton has only seven membranes. The optimality of this
number remains an open problem.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of
language theory; for further details confer [10]. Let Σ be an alphabet. Let Σ∗ be
the set of all words over Σ (including the empty word ε). We denote the length
of a word w ∈ Σ∗ by |w|, and the number of occurrences of a symbol a ∈ Σ in
w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N which assigns
to each object in V its multiplicity in M . The support of multiset M = (V, f)
is the set supp(M) = {a ∈ V | f(a) ≥ 1}. The set of all multisets over the
set V is denoted by V ◦. If V is a finite set, then M is called a finite multiset.
The number of objects in a finite multiset M = (V, f), the cardinality of M, is
defined by card(M) =

∑
a∈V f(a). We say that a ∈ M = (V, f) if a ∈ supp(M),

and M1 = (V1, f1) ⊆ M2 = (V2, f2) if supp(M1) ⊆ supp(M2) and for all a ∈ V1,
f1(a) ≤ f2(a). The union of two multisets is defined as (M1∪M2) = (V1∪V2, f

′)
where for all a ∈ V1 ∪ V2, f ′(a) = f1(a) + f2(a), and the difference is defined
for M2 ⊆ M1 as (M1 −M2) = (V1 − V2, f

′′) where f ′′(a) = f1(a) − f2(a) for all
a ∈ V1 − V2. We say that a multiset M is empty, if supp(M) = ∅.

The reader can easily observe that multiset M over the finite set of objects
V = {a1, . . . , an} can be represented as a string w over the alphabet V with
|w|ai = f(ai), 1 ≤ i ≤ n. Clearly, all words obtained from w by permuting the
letters can also represent M . In the following we will use this type of represen-
tation; we will identify the finite multiset of objects M = (V, f) with the word
w over the alphabet V representing M , thus we will write w ∈ V ◦, and we will
denote the empty multiset as ε.

Let Σ and V be two alphabets with Σ ⊆ V. A mapping h : V ◦ → 2Σ

defined by h(M) = supp(M) ∩ Σ for a finite multiset M = (V, f) is said to
be an l-projection of V ◦ to 2Σ . Mapping h is extended to sequences of finite
multisets M1 . . .Mn, Mi ∈ V ◦, 1 ≤ i ≤ n, in the following way: h(M1 . . .Mn) =
{x1 . . . xn ∈ Σ∗ | xi ∈ h(Mi) for h(Mi) �= ∅, and xi = ε otherwise, 1 ≤ i ≤ n}.

Now we recall some basic notions from membrane computing. For further
details the reader is referred to [5,6].

A membrane structure μ is represented by a Venn diagram and it is identified
by a string of matching parentheses with a unique external pair of parentheses.
This external pair corresponds to the external membrane called the skin mem-
brane. A membrane structure μ can also be represented as a tree. The root of
the tree corresponds to the skin membrane, and if a node labelled by k is a
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direct predecessor of a node labelled by i in the tree, then membrane i is con-
tained in membrane k in the system and there is no other membrane j, j �= i, k,
such that membrane i is contained in membrane j and membrane j is contained
in membrane k. In this case we say that membrane k is the parent membrane
of membrane i and we use notation par(i) = k. Membrane i is called a child
membrane of membrane k. The skin membrane is always labelled by 1.

As we have already mentioned, each membrane encloses a region, possibly
containing other membranes, and also specific objects (used in the multiset
sense). Analogously to the membranes, we speak about parent and child regions.
The parent region of the skin membrane is the outer region.

In the following we shall define the contents of a region as the multiset of all
objects that are contained by the region but not contained by any of its child
regions. If we consider a multiset of objects which are contained by the region,
but not by any of its child regions, then we shall use the term that the region
contains this multiset of objects.

Now we define the notion of a one-way P automaton.

Definition 1. A one-way P automaton with n membranes is a construct Γ =
(V, μ, (w1, P1, F1), . . . , (wn, Pn, Fn)), n ≥ 1, where

– V is an alphabet of objects,
– μ is a membrane structure of n membranes,
– wi ∈ V ◦, 1 ≤ i ≤ n, is the initial contents (state) of region i, that is, it is the

multiset of all objects contained by region i,
– Pi, 1 ≤ i ≤ n, is a finite set of communication rules associated to region i,

they have the form (y, in)|x where x, y ∈ V ◦.
The rule (y, in)|x means the following: For x, y �= ε, if x is contained in region
i and y is contained in its parent region, then the objects of y must leave the
parent region and enter region i. If x = ε, then the region i must be empty,
if y = ε, then no object is requested form the parent region.

– Fi ⊆ V ◦, 1 ≤ i ≤ n, is either a finite set of multisets over V or Fi = ∅, with
Fj �= ∅ for at least one j, 1 ≤ j ≤ n. Fi is called the set of final states of
region i.

Note that the communication rules we use were introduced as symport rules
with promoters in [3]. Note also that for the same condition x more than one
requests are allowed, that is, the rule set of region i can have rules (y, in)|x and
(z, in)|x for y �= z. The productions require two conditions to be satisfied: the
multisets represented by x and y (or z) must be contained by region i and by
the parent region, par(i), respectively.

Definition 2. The n-tuple of multisets of objects present in the n regions of Γ
describes the configuration of the system; (w1, . . . , wn) is the initial configuration.

Now we define the way of functioning of the one-way P automaton. In each
step of the computation, every region asks its parent (the skin membrane asks
the outer region) for a multiset of objects by applying one of its rules chosen
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non-deterministically. If all requests are satisfied, the system enters a new con-
figuration given by the state (contents) of the n regions. If any of the requests
cannot be satisfied, or there is no production to be applied at a region, then the
system aborts. Note that the rules are used sequentially, one rule per region in
each computational step.

Definition 3. The transition mapping of a one-way P automaton is a par-
tial mapping δ : V ◦ × (V ◦)n → (V ◦)n. For two configurations (u1, . . . , un),
(u′1, . . . , u

′
n) and a multiset u ∈ V ◦,

δ(u, (u1, . . . , un)) = (u′1, . . . , u
′
n)

holds if for all i, 1 ≤ i ≤ n, there exists a rule (yi, in)|xi
∈ Pi with xi ⊆ ui for

xi �= ε, and ui = ε for xi = ε, and yj ⊆ upar(j), 2 ≤ j ≤ n, y1 = u, and

u′i = ui ∪ yi −
⋃

i=par(j)

yj . (1)

If (1) cannot be satisfied, then δ(u, (u1, . . . , un)) is undefined. If such a condition
is encountered during its funtioning, the system aborts.

The sequence of configurations obtained in the above manner is a computation.
The computation ends if the system is in a final state, that is, in a configuration
(α1, . . . , αn) having all regions, 1 ≤ i ≤ n, with Fi �= ∅ in a final state αi ∈ Fi. If
for some j, Fj = ∅, then a configuration can be final regardless of the contents
of region j.

The reader can observe that the sequence of multisets of objects requested
by the skin membrane of the P automaton from the outer region can be con-
sidered as an input sequence, and the regions are related to tapes which change
their contents in parallel depending on the input. Thus, we define a sequence of
multisets of objects accepted by the P automaton as an input sequence which,
after being consumed by the skin membrane, causes the system to enter a final
state.

Definition 4. Let us extend δ to δ̄, a function mapping the sequences of multi-
sets over V and the configurations (u1, . . . , un) of Γ to new configurations. We
define δ̄ as

1. δ̄(v, (u1, . . . , un)) = δ(v, (u1, . . . , un)) v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄((v1) . . . (vs), (u1, . . . , un)) = δ(vs, δ̄((v1) . . . (vs−1), (u1, . . . , un)),

vj , ui ∈ V ◦, 1 ≤ i ≤ n, 1 ≤ j ≤ s.

Note that we use brackets in the multiset sequence (v1) . . . (vs) in order to dis-
tinguish it from the multiset v1 . . . vs.

Definition 5. Let Γ be a one-way P automaton as above. The language accepted
by Γ is the set of multiset sequences

Lacc(Γ ) = {(v1) . . . (vs) | δ̄((v1) . . . (vs), (w1, . . . , wn)) = (u1, . . . , un) with
uj ∈ Fj for all j with Fj �= ∅, 1 ≤ j ≤ n, s ≥ 1}.
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According to this definition, the P automaton is in a final configuration if all of
its regions having a set of final states different from the empty set are in one of
these final states.

There might be other ways of defining the accepting configuration. To require
that only one region is in a final state, is an example of the numerous possibilities.

Example 1. Consider the following one-way P automaton.

Γ = ({S1, S2, S3, a, b, c}, [1 [2 [3 ]3 ]2 ]1,
(S1, P1, {ε}), (S2, P2, {S1S2}), (S3, P3, ∅)),

with

P1 = {(a, in)|S1 , (a, in)|a, (b, in)|a, (b, in)|b, (c, in)|b, (c, in)|c, (ε, in)|c, (ε, in)|ε},
P2 = {(S1, in)|S2 , (a, in)|S1 , (b, in)|S1 , (c, in)|S1 , (ε, in)|c},
P3 = {(ε, in)|S3 , (abc, in)|S3},
This P automaton accepts multiset sequences of the form (a)n(b)n(c)n, n ≥ 1.
The work of the system starts with the initial configuration (S1, S2, S3), and after
the first transition it is found in (a, S2S1, S3). Now by applying the second rules
of P1, P2, and the first rule of P3, the automaton reads a sequence of a-s until
it reaches the configuration (a, S2S1a

n−1, S3) and then (b, S2S1a
n, S3). Now by

applying the fourth rule of P1 and the third rule of P2 it reads a sequence of b-s,
reaching (b, S2S1a

nbm−1, S3), and then (c, S2S1a
nbm, S3). Now a sequence of c-s

is read in a similar manner and the automaton reaches (c, S2S1a
nbmcl−1, S3) and

then (ε, S2S1a
nbmcl, S3). Now by using the rule (abc, in)|S3 of P3, the automaton

compares the number of letters read before, while also the last rule of P1 and
the last rule of P2 is applied. If n = m = l then the automaton reaches a final
state (ε, S1S2, S3a

nbmcl).

3 Representation of RE
in Terms of One-Way P Automata

In this section we show that any language that can be recognized by a two-
counter machine can also be obtained as an l-projection of the language accepted
by a one-way P automaton with seven membranes. Since every recursively enu-
merable language is the accepted language of a two-counter machine, the state-
ment gives a representation of the recursively enumerable language class in terms
of P automata.

First we recall the notion of a two-counter machine; for further details the
reader is referred to [1,2]. A two-counter machine is a 3-tape Turing machine,
M = (Σ∪{Z,B}, Q,R) where Σ is an alphabet (the alphabet of input symbols),
Q is a set of states with two distinguished elements, q0, qf ∈ Q, and R is a set
of transition rules. The state q0 is called the initial state and qf is called the
final (accepting) state of M. The machine has a read only input tape and two
semi-infinite storage tapes (the counters). The alphabet of the storage tapes
consists of two symbols, Z and B (blank), while the alphabet of the input tape
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is Σ∪{B}. The transition rules of R are of the form x = 〈b, q, c1, c2, q′, e1, e2, g〉,
where b ∈ Σ ∪ {B} is the symbol scanned on the input tape in state q ∈ Q
and c1, c2 ∈ {Z,B} are the symbols scanned on the storage tapes. M enters into
state q′ ∈ Q, the counters should be modified according to e1, e2 ∈ {−1, 0,+1},
that is, the counter is incremented by one (+1), the contents of the counter
remains unchanged (0), or the counter is decremented by one (−1). The input
head moves according to g ∈ {0,+1}. If g = +1, then the head moves one cell
to the right, if g = 0, then the head remains in the same position.

Symbol Z appears on the cells initially scanned by the storage tape heads
and it never appears on any other cell. An integer i can be stored by moving
a storage tape head i cells to the right of Z (the tape contains ZBi). A stored
number can be incremented or decremented by moving the tape head right or
left. The machine is capable of checking whether a stored value is zero or not, by
looking at the symbol scanned by the storage tape heads. If the scanned symbol
is Z, then the value stored in the corresponding counter is zero.

A word w ∈ Σ∗ is accepted by the two counter machine if starting from
the initial configuration (having an input word on the input tape, being in the
initial state, and reading Zs on both of the counter tapes), the two-counter
machine enters an accepting configuration, that is, the input head scanned the
last non-blank symbol and the machine is in the accepting state.

Two counter machines are computationally complete; they are just as pow-
erful as the Turing machines [1,2].

Now we present our theorem.

Theorem 1. Any recursively enumerable language L ⊆ Σ∗ can be obtained as
an l-projection of the language Lacc(Γ ) of some one-way P automaton Γ with
seven membranes.

Proof. Let L ⊆ Σ∗ be a recursively enumerable language accepted by a two-
counter machine M = (Σ∪{Z,B}, Q,R). We construct a one-way P automaton
Γ = (V, μ, (w1, P1, F1), . . . , (w7, P7, F7)) such that the accepted input sequences
of Γ describe transition sequences of M which starting from an initial configu-
ration, lead to an accepting configuration. The idea of the construction of Γ is
based on the following considerations.

To simulate the activities required by a transition x = 〈b, q, c1, c2, q′, e1, e2, g〉
of M , dedicated membranes and regions of Γ are constructed. The region of
the first membrane (the skin membrane) of Γ is responsible for simulating the
scanning of the actual input symbol, in this case symbol b, the second and
fourth, respectively the third and fifth regions simulate the checking procedure
to establish whether or not the symbol scanned on the counter tape corresponds
to c1, respectively c2, and they also simulate the change in the contents of the
first and second counters according to e1 and e2, respectively, all determined
by the simulated transition. When the automaton starts the simulation of a
transition x of M , then the second, respectively the third region of Γ contains
as many A symbols as the value stored in the corresponding counter of M at that
moment of the computation. The sixth and the seventh regions are for collecting
symbols that are unnecessary for the further computation steps in Γ. The change
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of state q to q′ is simulated with the help of special symbols that maintain the
synchronized actions of the membranes under the simulation of the execution of
transition x in Γ . These symbols are also for simulating parameter g describing
the position of the input tape head. The membrane structure, μ, composed by
the seven membranes can be seen on Figure 1.

Fig. 1. The membrane structure of Γ .

To help the reader in understanding how the automaton is designed, we explain
the simulation of the execution of x = 〈b, q, c1, c2, q′, e1, e2, g〉, a transition of M ,
with components defined above.

At the beginning of the simulation, the contents of the region of the skin
membrane are occurrences of symbols x and x̄, which indicate that the simulation
of transition x will follow. The second, respectively the third region contains
symbols referring to the simulated transition (Fx or x′, depending on whether
the counter’s contents is empty or not) and as many occurrences of A symbols as
the number stored in the corresponding counter of M . The fourth, respectively
the fifth region contains symbols identifying the simulated transition (x′′) and
several As. Finally, the sixth and the seventh region both contain one occurrence
of symbol D and possibly several occurrences of symbols which play no further
role in the work of the system.

Then Γ performs a computation step, where the symbols referring to tran-
sition x move from the corresponding region to its child region and an input
multiset of Γ is consumed from outside by the skin membrane. The successful
transition of Γ is possible only if the input multiset consists of occurrences of
the input symbol b of the simulated transition, x.

At the next step, the symbols referring to transition x and the input symbol b
of x move one region down and the skin membrane consumes symbols from out-
side which identify the next transition of M to be applied (if the next transition
is y, then the the symbols are y′′-s) and as many occurrences of As as it is neces-
sary to perform the modification of the contents of the counters of M according
to parameters e1 and e2 of the simulated transition x. This is the step where
the check whether or not the contents of the counters correspond to c1 and c2 is
performed. If c1, c2 prescribes a nonempty counter, then a symbol A has to move
from the second, respectively from the third region to the fourth, respectively
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to the fifth region. If c1, c2 prescribes an empty counter, then the move of the
input symbol b and that of symbol x from the region of the skin membrane to
the second, respectively to the third region is possible only if the region is empty.
These communication steps can only be performed if the conditions necessary
to execute transition x hold.

After the successful transition in Γ , the skin membrane consumes further
symbols (these are y′s) from outside which identify the next transition of M
(which is y) to be performed and the second and the third regions receive as many
occurrences of As as it is necessary to perform the modification of the contents
of the counters according to e1 and e2. Furthermore, symbols b and x from the
second, respectively from the third region move to the fourth, respectively to
the fifth region. The symbols referring to transition x move from the fourth,
respectively from the fifth region move to the sixth, respectively to the seventh
region. This step can be performed if the previous steps had been successfully
executed.

Finally, at the last step, symbols y and ȳ are consumed from outside by
the skin membrane to indicate that a new transition, y, will be simulated, and
symbols y′ and y′′ move to the second, respectively, to the third region and to
the fourth, respectively to the fifth region; symbols b and x move to the sixth
and the seventh region.

The obtained configuration of Γ is of the same form as it was at the beginning
of the simulation of transition x. The move of the reading head of the input tape
(g) is taken into account at the initialization of the simulation of the following
transition. Obviously, in addition to the rules associated to the transitions of M ,
the regions of Γ contain other rules to guarantee the correct simulation.

Now we define the P automaton Γ in details. We first note that instead
of simulating the functioning of M , we construct Γ simulating the functioning
of the two-counter machine M ′ which accepts $1L$2, where $1, $2 are two new
symbols not in Σ.

M ′ has the states of M and it has some further new states. It is with initial
state qs, with final state qfin, both different from the initial state and the final
state of M. Moreover, in addition to qf M ′ has a new state q′f . The transition
set of M ′ consists of the transitions of M and some further transitions given as
follows: 〈$1, qs, Z, Z, q0, 0, 0, 1〉, 〈$2, q

′
f , c1, c2, qfin, 0, 0, 0〉, where c1, c2 ∈ {B,Z},

and for each transition 〈b, q, c1, c2, qf , e1, e2, g〉 in M there is a transition in M ′

of the form 〈b, q, c1, c2, q′f , e1, e2, 1〉. Thus, M ′ first reads symbol $1 and then
continues reading word w ∈ Σ∗ in the same way as M , then it reads the symbol
$2 and enters the accepting state qfin if M enters the accepting state qf .

For technical reasons, when simulating the transitions of M ′ with Γ , we
have to indicate whether or not the reading input head of M ′ was at the same
position at the previous transition. For this purpose we define a new alphabet
Σe = {be | b ∈ Σ}.

Let us denote ΣT = {x | x = 〈b, q, c1, c2, q′, e1, e2, g〉 is a transition of M}.
Let x = 〈b, q, c1,x, c2,x, q

′, e1,x, e2,x, gx〉 be a transition in M such that gx = 0,
that is, the reading head at the input tape does not move after performing the
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transition, and suppose that y = 〈b, q′, c1,y, c2,y, q
′′, e1,y, e2,y, gy〉 is a transition

of M . Then, for each transition y with this property we add a new transition
ye = 〈be, q

′, c1,y, c2,y, q
′′, e1,y, e2,y, gy〉 to the set of transitions of M ′. Let us

denote by Σe
T the set of these new transitions.

We say that a transition y = 〈b, qy, c1,y, c2,y, q
′
y, e1,y, e2,y, gy〉 of M ′ is appli-

cable after transition x = 〈a, qx, c1,x, c2,x, q
′
x, e1,x, e2,x, gx〉 in M ′ if q′x = qy holds,

and if gx = 0, then b = ae, or if a ∈ Σe, then b = a. Note, that applicability in
this sense does not necessarily mean that y can always be executed after x during
a computation. It only refers to the fact that x leaves M ′ in a state, q′, which is
a necessary, but not sufficient condition for the possibility of executing y.

Now we define the alphabet of Γ as V = Σ ∪ ΣT ∪ Σ′T ∪ Σ′′T ∪ ΣT ∪ Σe ∪
Σe

T ∪ Σe
T
′ ∪ Σe

T
′′ ∪ Σe

T ∪ {Fx | x ∈ {ΣT ∪ Σe
T }} ∪ {A,D, $1, $2}, where ΣT ,

Σ′T , ΣT
′′ Σe

T , Σ
e
T
′, Σe

T
′′ are the over-lined, primed and double-primed versions of

the corresponding alphabets.
The membrane structure of Γ , μ = [1 [2 [4 [6 ]6 ]4 ]2 [3 [5 [7 ]7 ]5 ]3 ]1, can be

seen in Figure 1.
The initial states of the regions are as follows: w1 = xsxs, w2 = w3 = xs

′Fxs
,

w4 = w5 = xs
′′, where xs = 〈$1, qs, Z, Z, q0, 0, 0, 1〉, the initial transition of M ′,

and w6 = w7 = D.
We define the final states of the regions as follows. F1 consists of the following

multisets: $2$2yy for y = 〈$2, q
′
f , c1, c2, qfin, 0, 0, 0〉, the final transition of M ′

with c1, c2 ∈ {B,Z}, and Fi = ∅ for 2 ≤ i ≤ 7.
Thus, Γ starts its work by consuming an input multiset with symbols $1 from

outside and stops after consuming an input multiset with symbols $2. Now we
define the rule sets of the different membranes.

For each transition x = 〈b, q, c1,xc2,x, q
′, e1,x, e2,x, gx〉 ∈ ΣT ∪Σe

T , all produc-
tions of the forms

(bb, in)|α ∈ P1, where α =

⎧
⎨

⎩

xxxx if Z �∈ {c1,x, c2,x},
xxx if Z ∈ {c1,x, c2,x}, c1,x �= c2,x,
xx if c1,x = c2,x = Z.

These rules are for checking whether the input symbols from Σ consumed from
outside by the skin membrane of Γ correspond to the input symbol of M ′ pre-
scribed by the corresponding transitions.

Now, if y = 〈a, q′, c1,y, c2,y, q
′′, e1,y, e2,y, gy〉 ∈ ΣT ∪ Σe

T is an applicable (in
the sense defined above) transition after x, then

(y′′y′′wz, in)|bbxx ∈ P1

where if c1,x �= Z, then w = AA for e1,x = 1, w = A for e1,x = 0, w = ε for
e1,x = −1; if c1,x = Z, then w = A for e1,x = 1 and w = ε for e1,x = 0; and
similarly if c2,x �= Z, then z = AA for e2,x = 1, z = A for e2,x = 0, z = ε for
e2,x = −1; if c2,x = Z, then z = A for e2,x = 1 and z = ε for e2,x = 0.

Furthermore, if y is as above, then

(y′y′, in)|y′′y′′ and (yyyy, in)|y′y′ if Z �∈ {c1,y, c2,y},
(y′y′Fy, in)|y′′y′′ and (yyy, in)|y′y′ if Z ∈ {c1,y, c2,y}, c1,y �= c2,y,
(y′y′FyFy, in)y′′y′′ and (yy, in)|y′y′ if c1,y = c2,y = Z,

⎫
⎬

⎭
∈ P1.
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These rules are for initializing the simulation of each transition, y, which is
applicable after the transition x of M ′.

Rule sets P2 and P3 are defined in the same way. For each transition x =
〈b, q, c1,x, c2,x, q

′, e1,x, e2,x, gx〉 ∈ ΣT ∪Σe
T , let

(x, in)|x′ if ci−1,x �= Z,
(ε, in)|x′Fx if ci−1,x = Z,

}

∈ Pi, 2 ≤ i ≤ 3.

These rules assist to synchronizing the activity of the regions while simulating a
transition in M ′. Let also

(bx, in)|x if ci−1,x �= Z,
(bx, in)|ε if ci−1,x = Z,

}

∈ Pi, 2 ≤ i ≤ 3.

These rules assist in checking whether or not the actual contents of the coun-
ters of M ′ are represented in the second, respectively in the third region in an
appropriate manner.

For each y applicable after a transition x as above, let

(y′′w, in)|b ∈ Pi, 2 ≤ i ≤ 3,

where w = AA if ei−1,x = 1, w = A if ei−1,x = 0, and w = ε if ei−1,x = −1 for
ci−1,x �= Z; w = A if ei−1,x = 1, and w = ε if ei−1,x = 0 for ci−1,x = Z. Let also

(x′, in)|x′′ if ci−1,x �= Z,
(x′Fx, in)|x′′ if ci−1,x = Z,

}

∈ Pi, 2 ≤ i ≤ 3.

for each transition x = 〈b, q, c1,x, c2,x, q
′, e1,x, e2,x, gx〉 ∈ ΣT ∪ Σe

T . These rules
assist in initializing the simulation of the next transition to be performed after
a transition in M ′.

Rule sets P4 and P5 are defined in the same way. For each transition x =
〈b, q, c1,x, c2,x, q

′, e1,x, e2,x, gx〉 ∈ ΣT ∪Σe
T , let

(x′, in)|x′′ if ci−3,x �= Z,
(x′Fx, in)|x′′ if ci−3,x = Z,

}

∈ Pi, 4 ≤ i ≤ 5.

These rules contribute to maintaining the synchronized activity of the regions
when simulating a certain transition, x, in M ′.

Let also
(Ax, in)|x′ if ci−3,x �= Z,
(ε, in)|x′Fx if ci−3,x = Z,

}

∈ Pi, 4 ≤ i ≤ 5.

These rules take part in checking whether or not the actual contents of the
counters of M ′ are represented in the second, respectively in the third region in
an appropriate manner. Furthermore, let

(bx, in)|x if ci−3,x �= Z,
(bx, in)|Fx if ci−3,x = Z,

}

∈ Pi, 4 ≤ i ≤ 5,

and also
(x′′, in)|b ∈ Pi, 4 ≤ i ≤ 5.
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These rules help in maintaining the synchronized activity of the regions and also
take part in initializing the simulation of the next transition to be performed.

Rule sets P6 and P7 are defined in the same way. For each transition x =
〈b, q, c1,x, c2,x, q

′, e1,x, e2,x, gx〉 ∈ ΣT ∪Σe
T , let

(x′′, in)|D, (x′, in)|D, (bx, in)|D ∈ Pi, 6 ≤ i ≤ 7,

and also
(x, in)|D if ci−5,x �= Z,
(Fx, in)|D if ci−5,x = Z,

}

∈ Pi, 6 ≤ i ≤ 7.

These rules assist in maintaining the synchronized activity of the regions un-
der simulating a certain transition of M ′ by collecting symbols unnecessary for
further computation steps.

Now we prove that transition sequences of Γ correspond to transition se-
quences of M ′. In order to help the reader understand our reasoning, in the
following we denote the configurations of Γ by giving the bracket notation for
the membrane structure with the regions containing the appropriate multisets.
We also use a similar bracket notation when giving the 7-tuples of rules to be
applied at certain steps of the computation, replacing the contents of the regions
by the appropriate rules.

Suppose that at some stage of the computation, Γ is in configuration

[1 t [2 t′1α [4 x′′γ [6 Du ]6]4]2 [3 t′2β [5 x′′δ [7 Dv ]7]5]3]1 (2)

where t = xxxx if Z �∈ {c1,x, c2,x}, t = xxx if Z ∈ {c1,x, c2,x}, c1,x �= c2,x, and
t = xx if c1,x = c2,x = Z, for some x = 〈b, q, c1,x, c2,x, q

′, e1,x, e2,x, gx〉 ∈ ΣT ∪Σe
T .

Furthermore, t′i = x′ if ci,x �= Z, t′i = x′Fx if ci,x = Z, 1 ≤ i ≤ 2, and α, β, γ, δ ∈
A∗, u, v ∈ (V − {A,D})∗, where α and β, contain as many occurrences of A as
the value stored in the first, respectively in the second counter of M ′ before the
execution of transition, x.

Thus, the contents of the first region refers to the transition x of M ′ which
will be simulated, and this plan is also indicated by the second, the third, the
fourth and the fifth region. As we have said before, the sixth and the seventh
regions collect the symbols which are unnecessary for the further steps of the
computation.

In this configuration the only 7-tuple of rules that can be applied is the
following.

[1 (bb, in)t [2 (s1, in)t′
1

[4 (t′1, in)x′′ [6 (x′′, in)D ]6]4]2
[3 (s2, in)t′

2
[5 (t′2, in)x′′ [7(x′′, in)D ]7]5]3]1

where t, t′1, t
′
2, and b are as above, and si = x if ci,x �= Z, si = ε if ci,x = Z,

1 ≤ i ≤ 2.
By the application of these rules, the skin membrane checks whether the input

multiset identifies the input symbol b of transition x, and makes preparations
for checking whether or not the contents of the second and the third region
correspond to the required contents of the corresponding counters of M ′ to
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successfully perform transition x. If rule (bb, in)t cannot be applied, then the
computation aborts.

After successfully applying the above 7-tuple of rules, Γ enters the configu-
ration

[1 bbxx [2 α′′ [4 γ′ [6 x′′Du ]6]4]2 [3 β′′ [5 δ′ [7 x′′Dv ]7]5]3]1

where α′′ = xα for c1,x �= Z, and α′′ = α for c1,x = Z; β′′ = xβ for c2,x �= Z,
β′′ = β for c2,x = Z; γ′ = x′γ for c1,x �= Z, and γ′ = x′Fxγ for c1,x = Z; δ′ = x′δ
for c2,x �= Z, and δ′ = x′Fxδ for c2,x = Z.

Thus, the second, respectively the third region contains as many occurrences
of A as the number stored in the first, respectively in the second counter of M ′

at this step of the computation. Moreover, if a counter is not empty, and only
in this case, the corresponding region contains an occurrence of x.

Now the only 7 tuple of rules which can be applied is as follows.

[1 (y′′y′′wz, in)|bbxx [2 (bx, in)|r′′
1

[4 (s3, in)|r′′
3

[6 (x′, in)D ]6]4]2
[3 (bx, in)|r′′

2
[5 (s4, in)|r′′

4
[7 (x′, in)|D ]7]5]3]1

where y is the next transition to be simulated, r′′i = x for ci,x �= Z and r′′i = ε
for ci,x = Z, 1 ≤ i ≤ 2; r′′j = x′ for cj−2,x �= Z, and r′′j = x′Fx for cj−2,x = Z;
sj = Ax for cj−2,x �= Z, and sj = ε for cj−2,x = Z, 3 ≤ j ≤ 4. Moreover, we
know that for y = 〈a, q′, c1,y, c2,y, q

′′, e1,y, e2,y, gy〉, a = be holds if gx = 0, or if
a ∈ Σe, then a = b.

These rules simulate the checking of the applicability of transition x, and
initialize the simulation of the next transition, y. The initialization is done by
applying rule (y′′y′′wz, in)|bbxx in the first region, where w, z ∈ A∗ with an ap-
propriate number of A-s, depending on transition x as described in the definition
of the rule set P1.

The checking of the contents of the counters is simulated by applying rules
of the second, third, fourth and fifth regions as follows. If the first, respectively
the second counter of M ′ must be empty according to the transition, then the
second region, respectively the third region must be empty. This is the only case
when rule (bx, in)|ε can be successfully applied. If the region is not empty, then
it contains several A-s without any other symbol, so no rule in P2 (in P3) can
be applied, thus, the computation aborts.

If the first, respectively the second counter must not be empty, then the
second, respectively the third region must contain the transition symbol x and at
least one occurrence of A, and this is the only case when the rule (Ax, in)|x′ can
be successfully applied in the fourth, respectively in the fifth region. Otherwise,
the computation of Γ ends with abnormal termination.

After applying this 7-tuple of rules, the obtained configuration of Γ is as
follows:

[1 y′′y′′wz [2 bxα′′′ [4 γ′′ [6 x′x′′Du ]6]4]2 [3 bxβ′′′ [5 δ′′ [7 x′x′′Dv ]7]5]3]1

where α′′′ ∈ A∗, |α′′′| = |α| − 1 for c1,x �= Z, and α′′′ = ε for c1,x = Z; β′′′ ∈
A∗, |β′′′| = |β|−1 for c2,x �= Z, and β′′′ = ε for c2,x = Z; γ′′ = xAγ for c1,x �= Z,
and γ′′ = Fxγ for c1,x = Z; δ′′ = xAδ for c2,x �= Z, and δ′′ = Fxδ for c2,x = Z.
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Thus, the first region contains two occurrences of the symbol y′′ which iden-
tify the next transition of M ′ to be simulated. The region of the skin membrane
contains occurrences of A calculated as follows. If the respective counter had
to be nonempty before performing the transition, then this region contains one
occurrence of A more than it is necessary to add to obtain the new counter
contents; if the counter had to be empty, then the number of occurrences of A
is the same as the difference of the desired new and the actual counter contents
prescribed by the transition. This is calculated for both counters of M ′.

Then, the next 7 tuple of rules which can be applied is the following.

[1 (t′1t
′
2, in)|y′′y′′ [2 (y′′w, in)|b [4 (bx, in)|r′′′

3
[6 (r′′′3 , in)|D ]6]4]2

[3 (y′′z, in)|b [5 (bx, in)|r′′′
4

[7 (r′′′4 , in)|D ]7]5]3]1

where t′i = y′ for ci,y �= Z, and t′i = y′Fy for ci,y = Z, 1 ≤ i ≤ 2; r′′′3 = x for
c1,x �= Z, and r′′′3 = Fx for c1,x = Z; r′′′4 = x for c2,x �= Z, and r′′′4 = Fx for
c2,x = Z.

Then the contents of the second region and that of the third region are
modified to correspond to the contents of the respective counters of M ′ after the
successful application of transition x and the initialization of the simulation of
the next transition, y, continues.

The new configuration of Γ is as follows.

[1 t′1t
′
2 [2 y′′αiv [4 bxγiv [6 r6x

′x′′Du ]6]4]2 [3 y′′βiv [5 bxδiv [7 r7x
′x′′Dv ]7]5]3]1

where αiv ∈ A∗ with as many occurrences of A as the value stored in the first
counter of M ′ after performing transition x; βiv ∈ A∗, with as many occurrences
of A as the value stored in the second counter of M ′ after performing transition
x; γiv and δiv consist of several occurrences of As; r6 = x for c1,x �= Z, and
r6 = Fx for c1,x = Z; r7 = x for c2,x �= Z, and r7 = Fx for c2,x = Z.

The simulation of transition x and the initialization of the simulation of
transition y is finished by applying the 7-tuple of rules

[1 (t, in)|t′
1t′

2
[2 (t′1, in)|y′′ [4 (y′′, in)|b [6 (bx, in)|D ]6]4]2

[3 (t2, in)|y′′ [5 (y′′, in)|b [7 (bx, in)|D ]7]5]3]1

where t′1 and t′2 are defined the same way for transition y as in (2) for transition
x, and also similarly to (2), t = yyyy for Z �∈ {c1,y, c2,y}; t = yyy for Z ∈
{c1,y, c2,y}, c1,y �= c2,y; and t = yy for c1,y = c2,y = Z. Moreover, this is the only
7-tuple of rules that can be applied at this step of the computation.

As a result, Γ enters configuration

[1 t [2 t′1α
iv [4 y′′γiv [6 bxr6x

′x′′Du ]6]4]2 [3 t′2β
iv [5 y′′δiv [7 bxr7x

′x′′Dv ]7]5]3]1

which is of the same form as (2), the configuration we have started from, the
simulation of the functioning of M ′ can continue in the same way.

If at some point the final transition, xs, is simulated, then Γ enters a final
state, thus, for any accepting computation in M ′ there is an accepting compu-
tation in Γ and reversely.
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If we consider the l-projection h : V ◦ → 2Σ , then we can see that for any
accepted input multiset sequence (a1) . . . (an) ∈ L(Γ ), h((a1) . . . (an)) = w ∈ Σ∗

where w ∈ L. This proves our theorem. 
�

4 Final Remarks

The aim of our paper was to introduce the notion of a P automaton, a P system
defined as an accepting device using communication rules only, according to two
of the problems raised in [7] and in [8]. Obviously, similarly to the large number
of different types of automata, a wide variety of P automata can be defined and
studied, with different types of communication or different types of conditions for
ending the computation. Apart from the possible variants, an other interesting
problem area would be to define complexity measures for these devices. We shall
return to these topics in future papers.
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Abstract. Until now, the solving of NP complete problems in polyno-
mial time in the framework of P systems was accomplished by the use of
three different techniques: the duplication of membranes, the creation of
membranes, and the replication of strings. In this paper we introduce a
new type of P systems which comes with a new technique of approaching
this class of problems. In the initial configuration of these P systems we
have an arbitrarily large number of unactivated base-membranes, which,
in a polynomial time, are activated in an exponential number. Using
these type of systems we solve the SAT problem in a linear time, with
respect to the number of variables and clauses.

1 Introduction

The P systems are a class of distributed parallel computing models inspired from
the way nature organizes the cellular level in living organisms. These systems
can be seen as a general computing architecture where various types of objects
can be processed by various operations.

A P system, as this was first introduced in [6] by Gh. Paun, consists of a mem-
brane structure (usually, represented graphically by an Euler-Venn diagram and
mathematically by a string of labelled parentheses, indicating the membranes
and their relative position), consisting of several cell-like membranes which are
hierarchically embedded in a main membrane, called the skin membrane. The
membranes delimit regions, where we place objects; the objects can be seen as
symbols from a given alphabet, or, in some types of P-systems (such as splicing P
systems and P systems based on rewriting) they can be strings over an alphabet.

The objects evolve according to given evolution rules, which are associated
with the regions delimited by the membrane structure. Each rule can be applied
only to the objects placed in those regions associated with the rules, being able
to modify the objects, send them either outside the current membrane or to
an inner membrane (operation which is called communication), and also being
able to dissolve the membrane. When such an action takes place, all the objects
of the dissolved membrane remain free in the membrane placed immediately
outside, but the evolution rules of the dissolved membrane are removed. The
skin membrane is never dissolved.

The evolution rules are used in the maximally parallel manner (at each step,
all objects which can evolve according to a specific rule should evolve), choosing

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 234–246, 2003.
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non-deterministically the rules and the objects to which they are applied. In
this way, we obtain a transition from a configuration of the system to the next
configuration; a sequence of transitions forms a computation. A computation is
considered completed when it halts, i.e., no further rules can be applied to any
of the objects present in the last configuration. There are two possible ways of
assigning a result to a computation: by considering the multiplicity of all objects
present in a designated membrane in a halting configuration, or by concatenating
the symbols which leave the system, in the order they are sent out of the skin
membrane. Thus, in the first case we compute vectors of natural numbers, while
in the second case we generate a language.

It is well-known that a lot of practical problems reduce to NP-complete pro-
blems, which are intractable for the usual computers. The parallelism is a possi-
ble way to deal with this situation. On the other hand, one of the main features of
the membrane systems is their inherent parallelism. In the case of three different
classes of P systems (with an enhanced parallelism), NP-complete problems can
be solved in polynomial (and even linear) time. These three types (together with
some of the papers describing the specific methods of approaching NP-complete
problems) are the following: duplication of membranes (in [7], [2], [5]), replication
of string-objects (in [1], [3]), and membrane creation (in [4]).

In this paper we introduce a new variant of P systems, together with a new
method of approaching NP-complete problems in the framework of membrane
computing. The basic idea is that instead of producing in linear (or polynomial)
time an exponential work space, we start from the beginning with an exponential,
but unused, potential work space in the form of an arbitrarily large number of
inactivated basic membranes (we call them base membranes), and in a linear
time we activate those membranes and use them in our computation. Thus, the
computing will start in the initial configuration within a small amount of active
base membranes, and, in a linear time, the objects present in those membranes
will activate according to given rules an exponential number of inactivated base
membranes. Using this type of systems we solve the SAT problem in a linear
time, with respect to the number of variables and clauses. It must be stressed
out that the time needed for creating (or putting together) the arbitrarily large
number of base membranes is not considered.

2 Self-activating P Systems

In the following we define the type of P systems mentioned above, and start by
describing its particularities.

We define a base cell as being a basic P system, with its own membrane
structure, sets of evolution rules, and objects associated with the regions deli-
mited by it. We call the skin membrane of such a base cell the base membrane.
In general, it is recommended that the membrane structure of such a base cell
to be simple, that is with just a few inner membranes.



236 Eugen Czeizler

We consider a base cell to be inactive, if, since the beginning of the evolution
of the system, no rule could have been applied inside the cell, due to the absence
of needed objects. Otherwise, we say that the base cell is active.

In a self-activating P system we have a skin membrane, inside of which one
can find an arbitrarily large number of identically base cells, having the same
membrane structure and sets of rules, but not the same objects placed in their
regions. From these cells, some are active, and some are inactive; the latter ones
can be activated during the following transitions. Such a P system is described
in Figure 1.

Fig. 1. A self-activating P system

This construction is natural, having in consideration the structure of some
living organs such as the kidneys, which are composed of thousands of identically
cells, the nephrons, which are functioning together as a whole, but not necessarily
always all of them simultaneously.

For the rest of the paper we consider that the structure of the base cell
is as basic as it could be, that is, it consists of a single membrane, the base
membrane. Therefore, in the base cell we have now only one region, and a single
set of rules, while the membrane structure of the entire P system consists of a
skin membrane, and an arbitrarily large number of base membranes (active or
inactive). In order to simplify the notation, we omit the word ’base’, and, when
referring to the system we use just the word membrane.

The membranes can have electrical charges (positive or negative), in which
case they are marked with + or −, or, they can be electrically neutral, in which
case they are marked with 0. Also, in order to simplify the notation, when a
membrane is neutrally charged and by applying a rule its charge is not changed,
we omit the 0 mark.



Self–activating P Systems 237

In the initial configuration, all the inactive membranes “look” the same (we
call this form the initial state). The initial state is characterized by the electrical
charge of the membrane (positive, negative, or neutral), and by the objects
present within. Therefore, in the initial configuration, as well as in all next
configurations, inside the skin membrane there is an arbitrarily large number
of membranes in the initial state (that is, inactive), and a number of active
membranes. The latter ones are also called essential membranes, because these
are the membranes in which the computation really takes place. For example, a
configuration of a self-activating P system at a given time could be as shown in
Figure 2.

Fig. 2. A configuration of a self-activated P system

The evolution rules that can be applied to the multisets of objects present in
the regions delimited by membranes can be of two types: developmental rules,
in which the objects of a multiset placed inside a membrane evolve into a new
multiset of objects, and developmental/communicational rules, in which the ob-
jects of a multiset placed inside a membrane can interact with the objects of
another multiset placed in another membrane, so that both a modification and
a displacement of the involved objects (between the two membranes) could be
possible. It must be noticed that these systems are cooperative, i.e., the rules
which are used can have a radius (which is the number of the objects involved
in that rule) bigger than 1.

Due to the fact that inside the skin membrane we have a large number of
membranes, essential or in the initial state (that is, active or inactive), in the
representation of the membrane structure of those systems we use the following
convention: if a pair of square brackets is placed inside a pair of braces, then it
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means that the membrane which has been described in this way can be found in
the system in an arbitrarily large number of copies. Such a notation will be used
when describing the membranes in the initial state placed inside the system. For
example, the membrane structure of the P system described in Figure 2 can be
represented by the following expression of parentheses:

[
e
[1 ]1 [2 ]2 { [

f
]
f
}]

e
.

We now give the definition of our systems:
A self-activating P system is a construct

Π = (V, T, η, μ,W,Re, Rb),

where:

(i) V is an alphabet (the total alphabet of the system);
(ii) T ⊆ V (the terminal alphabet);
(iii) η represents a description of the initial state of an inactive membrane (struc-

ture, objects and polarization);
(iv) μ is a membrane structure, consisting of a skin membrane (labelled here with

e), m essential membranes labelled (in a one-to-one manner) with elements
of a set Λ (here we will use the labels 1, 2, . . . ,m) and, between braces, a
membrane labelled with f which is in the initial state (the one described
by η), and which will appear in the system in an arbitrarily large number of
copies.

(v) W is a set with m elements, which consists of strings over V ,representing
the multisets of objects placed in the m regions of μ (in this set we do not
describe the multisets of objects placed inside the inactive membranes, that
is, the membranes in the initial form, because this is done in η).

(vi) Re is the set of rules applicable to objects placed in the region delimited by
the skin membrane; all these rules are of the form

re : [0a]
α1
0

→ a[0 ]α2
0
,

for α1, α2 ∈ {+,−, 0} and a ∈ T
(these rules are meant to sent terminal objects out of the system);

(vii)Rb is a finite set of rules which are applicable to the objects placed inside all
regions of the system, except the one delimited by the skin membrane. The
rules from Rb can be of the following forms:
(a) [a]α1 → [b]α2 ,

for α1, α2 ∈ {+,−, 0}, a, b ∈ V ∗

(object evolution rule, depending on the charge of the membrane, which
can modify both the objects and the charge of the membrane involved).

(b) [a]α + [b]β → [c]γ [d]γ ,
for a, b, c, d ∈ V ∗, α, β, γ ∈ {+,−, 0}
(membrane interconnecting rule, under the influence of the objects and
of the charges of the two membranes; after connecting, the membranes
have the same charge, and the object under which the connection was
realized may change).
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(c) [a]γ [b]γ → [c]δ[d]δ,
for a, b, c, d ∈ V ∗, γ, δ ∈ {+,−, 0}
(communication/evolution rule, applicable to objects placed in the two
interconnected membranes, which can alter both the objects involved
and the common charge of the two membranes; this rule, also makes it
possible to transfer objects between the two interconnected membranes).

(d) [a]γ [b]γ → [c]α + [d]β ,
for a, b, c, d ∈ V ∗, α, β, γ ∈ {+,−, 0}
(membrane disconnecting rule, under the influence of the objects and of
the common charge of the two membranes; after disconnecting, both the
objects involved and the two charges can be altered).

(e) [a]α + [b]β → [c]γ + [d]δ,
for a, b, c, d ∈ V ∗, α, β, γ, δ ∈ {+,−, 0}
(communication/evolution rule, applicable to objects placed in two non-
connected membranes, which can alter both the objects involved and the
charge of the two membranes).

(f) [a] → a[ ],
for a ∈ T (communication rules).

The rules from R are applied according to the following principles:

1. The rules are used as usual in the framework of membrane computing, that
is, in the maximal parallel manner: in a step, any object which can evolve
by a rule of any form, should evolve.

2. Each copy of an object, as well as each copy of a membrane, can be used
only by one rule at a time, with the exception of the rules of type (a), (f)
and of those of type (c), where only the objects involved in the rule are
considered, and not the containing membranes. However, rules of type (c)
cannot be applied at the same time with rules of type (b) or (d), due to the
fact that these two types of rules imply an interconnection, respectively a
disconnection between two membranes, while a rule of type (c) is a commu-
nication/evolution rule.

3. If more than one rule can be applied to the same objects in one membrane,
then the rule which is applied is non-deterministically chosen (there is no
priority relation among rules).

4. All objects and membranes not specified in a rule and which do not evolve
are moved unchanged to the next step. For example, if applying the following
rule of type (c):

[a1, b1][c1, d1] → [b2][a2, c2], a1, b1, c1, d1, a2, b2, c2 ∈ V,

to the two interconnected membranes

[x, y, a1, b1][z, c1, d1], x, y, z ∈ V,

we obtain the following configuration:

[x, y, b2][z, c2, a2].
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The electrical charge of a membrane at one step is given by all the rules which
have been applied inside that membrane at the previous step, in a cumulative
manner.

The concepts of configuration at a given time, initial configuration, transition
among configurations, computation with respect to Π, complete computation and
L(Π) as the language generated by Π, are defined as usual in the framework of
the P systems theory, as shown in [6].

A distinction must be made between the rules of type (c) and those of type
(e), though it seems that both rules have the same consequence: the transfer (and
maybe the modification) of objects between two membranes. While the rules of
type (c) can be applied only between interconnected membranes, rules of type
(e) do not require interconnection. Also, while rules of type (e) can be applied
only once to a pair of membranes (during a step), those of type (c) can be applied
several times to the same two membranes (in the same step). The purpose of the
type (c) of rules is to transfer as many objects as possible (in a bound manner),
between two interconnected membranes, at the same time (a bound manner
means the following: although we cannot be sure in which membrane we have
transferred the objects, because the membrane is non-deterministically chosen,
we can be sure that all the objects involved will be transferred in that particular
membrane).

We define the diameter of a rule r ∈ Rb, denoted by diam(r), as the maxi-
mal cardinality od a multiset of objects which appears in the rule r. Then, the
diameter of a system Π is diam(Π) = max{diam(r) | r ∈ Rb}.

2.1 Example

We illustrate the above definitions with the following example: we consider a
self-activating P system of diameter 2, which given a number, will return whether
or not this number is prime. The P system is of the following form:

Π = (V, T, η, μ,W,Re, Rb),

where:

1. V = {a, b, c, u, v, x, y, y′, cp, dp, ap, no, e, q},
2. T = {e, no},
3. η =

[
f
ap

]

f
,

4. μ =
[

e
[1 ]

1

{ [
f

]

f

} ]

e
,

5. W = {anbncnv},
6. Re = {re : [ea]e → a[e ]e | a ∈ T },
7. Rb contains the following rules:

(a) [a2] → [e];
(b) [e] → e[ ];
(c) [b2] → [d];
(d) [d v] → [cp];
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(e) [cp] + [ap] → [u][y y q];
(f) [c][ ] → [c′][x];
(g) [d][ ] → [d′][y];
(h) [c′] → [c];
(i) [d′] → [d];
(j) [u] → [dp];
(k) [dp][ ] → [v] + [ ];
(l) [x y] → [y′];

(m) [x y′] → [y];
(n) [q y y′] → [no];
(o) [no]0 → no[ ]−1.

The system evolves as follows:

Step 1: a number of
⌊

n
2

⌋
copies of the objects e and d appear in the system

(due to the application of rules 1 and 3).

Step 2: all (terminal) objects e are sent outside the original membrane, to
the skin membrane (by the use of rule 2);
the object cp appears (by the use of rule 4). (This means that the membrane
is prepared for an interconnection with another membrane, which is in the
initial state. The object cp is a special object, being designated only for inter-
connecting membranes.) It must be stressed out that due to the rule number
4, at each interconnection, one copy of the object d will be lost; though, by
the end of the computation, we will have a total of

⌊
n
2

⌋
interconnections.

Step 3: all the e objects get out of the system (by the use of rule re), and
are counted;
the membranes are interconnecting (one membrane in the initial state is
activated) (by the use of rule 5) and one copy of the object u, two copies of
the object y, and one copy of the object q are sent to the first respectively
to the second membrane.

Step 4: all copies of the object c (n copies) are doubling: half of them (n
copies) are transformed into x, and sent to the next membrane, and half (n
copies) are marked with ′ and maintain their position inside the membrane
(by the use of rule 6);
the same happens with the copies of the object d (by the use of rule 7);
the object u is transforming into dp (by the use of rule 10)(This means that
the membrane is prepared for disconnecting).

Step 5: all the objects c′ and d′ turn back to c and respectively d (by the
use of rules 8 and 9);
the membranes disconnect, and from this moment on they have the following
evolution:

The first membrane evolves as it did on steps 2 to 5 until no copies of the
object d will exist (that means

⌊
n
2

⌋−1 times); during these steps, the membrane
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interconnects with a membrane in the initial state, and n copies of the object
x as well as a decreasing number of copies of the objects y are sent inside this
membrane.

In parallel, in the second membrane is checked whether or not n (which is
the number of copies of the object x) divides by k, where k is a smaller number
(the number of copies of the object y). It has to be mentioned that at each
interconnection, the number of copies of the object y decreases (by one), from⌊

n
2

⌋
+ 1 to 2. If k does not divide n, the (terminal) object no appears (by the

use of rule 14), and at the next step it is sent out of this membrane (by the use
of rule 15), and then out of the system (by rule re), and counted.

Therefore, if by the time we reach a complete configuration outside the system
we have counted an equal number of copies of the objects e and no (this means
that n does not divide any number from

⌊
n
2

⌋
+ 1 to 2), then the number n is

prime.

Remark 1. The interconnection of membranes, as well as the transfer of objects
from one membrane to the other, was made by the help of rules of type (b), (c)
and (d) (this means that the process has been implemented in more steps), and
not by rules of type (e) (that is, in a single step), because, if we have used rules
of type (e) we could not have been sure that all copies of the object x (which
have appeared from the objects c due to rule 6) as well as all copies of the object
y (which have appeared from the objects d due to rule 7) would have been sent
to the same membrane.

3 Solving SAT in Linear Time

The main reason for considering the self-activation of membranes is to provide
an enhanced parallelism, in order to solve complex problems in a feasible time. In
order to prove the use of our systems we consider the case of the SAT problem.

Theorem 1. The SAT problem can be solved by a self-activating P system of
diameter 2, in a time which is linear in the number of variables and the number
of clauses.

Proof. Let us consider n variables x1, ..., xn, n ≥ 1, and a propositional formula

γ = C1 ∧ C2 ∧ ... ∧ Cm,

with
Ci = yi,1 ∨ ... ∨ yi,pi

,

for some m ≥ 1, pi ≥ 1, and yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m
and 1 ≤ j ≤ pi.

We construct the P system:

Π = (V, T, η, μ,W,Re, Rb)

with the components
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V = {X1, X2, . . . , Xn} ∪ {X ′
1, X

′
2, . . . , X

′
n}

∪ {T1, F1, . . . , Tn, Fn} ∪ {T ′1, F ′1, . . . , T ′n, F ′n} ∪ {T ′′1 , F ′′1 , . . . , T ′′n , F ′′n }
∪ {CP,AP,DP,CP} ∪ {Q,Q0, Q1, . . . , Qn} ∪ {O, V0, �}
∪ {CP1, CP ′1, CP2, CP ′2, . . . , CPm, CP ′m} ∪ {S1, S2, S3, S4},

T = {CPm+1},
η = [

f
AP ]−

f
,

μ =
[

e [1 ]
1
[2 ]

2
. . . [m ]

m

[
m+1

]

m+1

{ [
f

]

f

}]

e

,

W = {wi | 1 ≤ i ≤ m + 1},
where wi = {a | a ∈ Ci} ∪ {Rn, O,CP ′i}, for all i = 1, . . . ,m, and
wm+1 = {Xj | j = 1, . . . , n} ∪ {V0},

Re = {re : [ea]0e → a[e ]+e , a ∈ T },
while the set Rb contains the following rules (i = 1, . . . , n, and l = 1, . . . ,m):

(1) [V0, Xi] → [Xi, CP ];
(2) [CP ]0 → [CP ]+;
(3) [CP,Xi]+ + [AP ]− → [S1, T

′′
i ][S2, F

′′
i ];

(4) [S1][S2] → [V0, S3, DP ][V0, S3];
(5) [Xi][ ] → [X ′

i][X
′
i];

(6) [Ti][ ] → [T ′i ][T
′
i ];

(7) [Fi][ ] → [F ′i ][F
′
i ];

(8) [T ′′i ] → [T ′i ];
(9) [F ′′i ] → [F ′i ];

(10) [S3] → [Q];
(11) [DP ][ ] → [ ][ ];
(12) [T ′i ] → [Ti];
(13) [F ′i ] → [Fi];
(14) [X ′i] → [Xi];
(15) [Q] → [S4];
(16) [S4, V0] → [CP1];
(17) [S4]+ → [�]0;
(18) [O] → [�]+;
(19) [CP ′l , R]+ + [AP ]− → [Ql][Ql];
(20) [Ql][Ql] → [CP ′l , O,DP ][CP ′l , O];
(21) [R][ ] → [R′][R′];
(22) [R′] → [R];
(23) [CPl, Ti] + [CP ′l , Ti]+ → [CPl+1, Ti] + [CP ′l , Ti]+;
(24) [CPl, Fi] + [CP ′l , Fi]+ → [CPl+1, Fi] + [CP ′l , Fi]+;
(25) [CPm+1] → CPm+1[ ].
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The systems evolves as follows:
By using rules (1) to (15) and rule (17), in 5 steps, all the objects from one

membrane which would contain at least one unexpanded variable together with
all the truth assignments of the rest of the variables (which have been expanded
until that step) are copied into a membrane in the initial state in the following
manner:

– in the first step the object V0 is transformed into CP (using rule (1)), if
and only if at least one copy of an unexpanded variable still exists inside the
membrane;

– in the second step, the membrane is prepared for an interconnection with an
initial state membrane (applying rule (2) the object CP appears inside the
membrane, and its polarization becomes positive);

– in the third step the interconnection takes place (rule (3)) and one of the
variables is expanded into its truth assignments, truth (T ′′) into the first
membrane, and false (F ′′) into the second;

– in the fourth step (using rules (5), (6), (7), (8), and (9)) all the objects
representing unexpanded variables or truth assignments of some variables
are duplicated into the second membrane and at the same time are marked
with ′ (this is done in such a way that the objects will not be duplicated
more that once); also (by applying rule (4)), the object V0 appears in both
membranes, while the object DP appears only in one membrane (the first
one), this implies that the membranes will be disconnected at the next step;

– in the fifth step the membranes are disconnected (using rule (11)), and all
the objects which have been marked with ′ are turned back to the initial
form (by applying rules (12), (13), and (14)).

In the next step, if an unexpanded variable still exists inside the membrane,
the process is repeated. Otherwise, the object V0 does not disappear from the
membrane, and at the next step, together with the object S4 it will be trans-
formed into CP1 (rule (16)). It must be observed that the object S4 appears
during each cycle in the sixth step, and if object V0 does not disappear in the
same step (that is, if there are no unexpanded variables inside the membrane),
rule (16) is applied. But, if the V0 object disappears in the sixth step, (there
still exists at least one unexpanded variable in the membrane), object S4 is
transformed in the third step of the next cycle into �, object which will never
evolve.

Therefore, after 5n + 2 steps, from one membrane containing all the n vari-
ables we will obtain 2n membranes containing all the possible combinations of
all the truth assignments of the variables.

In the same way, one of the membranes containing the truth assignments
which would validate one of the m-th clauses (in the initial configuration we have
m such membranes, one for each clause) will be copied in 2n identical membranes,
using the rules (6), (7), (12), (13), and rules (18) to (22). Here, we control the
number of duplications in the following way: at each time such a membrane is
copied in an initial state membrane, one copy of the object R disappears. Due
to the fact that in the initial configuration in each such membrane we have n
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copies of the object R, one may conclude that the number of identical copies
obtained from one such membrane will be 2n. It must be also mentioned that the
cycle of membrane duplication takes three steps: first the membrane is polarized
(positively), second the membrane interconnects with an initial state membrane,
and third all the objects are copied, and the membrane is duplicated. After that,
if at list one copy of the object R still exists, the cycle will be repeated.

In conclusion, in 5n + 2 steps, inside the region delimited by the skin mem-
brane we will have (m + 1) ∗ 2n membranes. From here, in a number of steps
linear with the number of clauses (m steps), we will check if one of the combi-
nation of all the truth assignments of the variables satisfies all the clauses (this
is done using rules (23) and (24)). If so, the object CPm+1 appears inside this
membrane, and at the next step, applying rule (25), it is sent to the region deli-
mited by the skin membrane. From here, due to the fact that the object CPm+1
is in the terminal alphabet, it is eliminated from the system by applying the rule
re.

In conclusion, in 5n + m + 4 steps at least one copy of the object CPm+1 is
sent out of the system, if and only if the propositional formula γ can be satisfied.
If the formula γ cannot be satisfied, then the system will stop before reaching
this step. 
�

4 Final Remarks

Until now, the strategies of creating an exponential space (in a linear or polyno-
mial time) in the framework of membrane computing have considered only the
case when new “material” appears inside the system, such as new membranes
(by duplication or creation) or new string-objects. Here, we consider another
strategy: the exponential space already exists, in the form of an unused arbi-
trarily large number of identical membranes, and our problem is only how to
activate this space. Using such a system, we have proved (by solving the SAT
problem) that computationally hard problems can be approached in this new
framework.

Although very likely to be obtained (due to the cooperative rules) the com-
putational universality of these systems was not discussed, and it remains as an
open problem.

A problem of (mathematical) interest about self-activating P systems is also
to consider the case when the base cell has a more complex membrane structure
(so new rules applicable only in those regions will appear), and the case when
more types of base cell (that is, different membrane structures, and different
rules associated with regions) can be found inside the skin membrane. In this
latter case, we are going into a new field, that of the interaction between P
systems and of the networks of P systems.
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Abstract. As already considered in [13], we investigate P systems where
each evolution rule “produces” or “consumes” some quantity of energy, in
amounts which are expressed as integer numbers. Yet in contrast to P sys-
tems with energy accounting as considered in [13], for energy-controlled
P systems we demand that in each evolution step and in each membrane
the total energy consumed by the application of a multiset of evolution
rules has to be the maximum possible within a specific non-negative
range. Only equipped with this control feature, energy-controlled P sys-
tems are very powerful. In the case of multisets of symbol objects we
find that energy-controlled P systems with even only one membrane and
an energy range of {0, 1} for the total energy involved in an evolution
step characterize the recursively enumerable sets of vectors of natural
numbers (without using catalysts or priorities or membrane dissolving
features). In the case of string objects similar results can be obtained.
Energy-controlled P systems with even only one membrane and the min-
imal energy range of {0} for the total energy involved in an evolution
step at least generate any set of vectors of natural numbers that can be
generated by matrix grammars without appearance checking.

1 Introduction

Membrane systems were introduced by Gheorghe Păun (and therefore then called
P systems) in [8]; they are a class of distributed parallel computing models, in-
spired from the way how alive cells process chemical compounds, energy, and
information. The basic part of a P system is a membrane structure consisting
of several membranes placed within one unique surrounding membrane, the so-
called skin membrane. All the membranes can be labelled in a one-to-one manner
by natural numbers where we always label the outermost membrane (skin mem-
brane) with 1. In that way, a membrane structure can uniquely be described
by a string of correctly matching parentheses, where each pair corresponds to
a membrane. For example, the membrane structure depicted in Figure 1, which
within the skin membrane contains two inner membranes labelled by 2 and 3,
etc., is described by [1[2]2[3[4]4[5[7]7]5[6]6]3]1.

In a region k , which is the volume delimited by membrane k and its inner
membranes, multisets of objects evolve according to evolution rules associated
with the region; a computation consists of transitions among system configura-
tions; the result of a halting computation is the vector of the multiplicities of

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 247–260, 2003.
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Fig. 1. Membrane structure [1[2]2[3[4]4[5[7]7]5[6]6]3]1.

objects present in the final configuration in a specified output membrane or of
objects which leave the external membrane of the system (the skin membrane)
during a computation. In that way, a P system computes a set of vectors of nat-
ural numbers. Many variants characterize the family of recursively enumerable
sets of vectors of natural numbers (which are exactly the Parikh sets associated
with recursively enumerable languages). Strings over a given alphabet can be
considered as the objects in a P system themselves. Using adequate string pro-
cessing operations (rewriting, splicing, etc.), for various classes of P systems also
characterizations of recursively enumerable languages are obtained; details can
be found in [1], [3], [4], [8], [9], [10], etc. (see the P Systems Web Page [7]).

Considering the energy balancing of processes in a cell was formulated as an
explicit research topic in [11] and first investigated in [13]. There the energies of
all rules to be used in a given step in a membrane are summed up; if the total
amount of energies is positive, then this multiset of rules can be applied if it
is maximal with this property (no further rule can be applied to the remaining
objects in the membrane such that the total energy is still positive), otherwise
it cannot be applied. Moreover, the energy passes from one step to the next
one (initially, we assume that there is no energy in the system). If the energy
accumulated at a given step in a membrane is larger than a given threshold
associated with that membrane, then the membrane is dissolved and the energy
accumulated in this membrane is consumed (as usual in P systems, the objects
from this region pass to the surrounding region, whereas the evolution rules get
lost).

The energy-controlled P systems proposed in this paper handle the energy
amounts in a different way: The energies of all rules to be used in a given step
in a membrane are summed up; if the total energy is within a given range, then
this multiset of rules can be applied if it is maximal with this property (no
other multiset of rules can be applied to the present objects in the membrane
such that the total energy is larger but still within the desired range, and no
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extension of the multiset is possible such that these properties are preserved);
otherwise it cannot be applied. These features for controlling the total amount
of energy consumed by applying a multiset of rules within a membrane are
very powerful, i.e., universality of energy-controlled P systems can already be
obtained with the simplest membrane structure [1]1 and an energy range of
{0, 1} (when considering only symbols as objects as well as when considering
strings as objects), even without using catalysts or priorities on the rules (as
we only need the skin membrane, membrane dissolving features can be omitted,
too). Moreover, energy-controlled P systems with only one membrane and the
minimal energy range of {0} for the total energy involved in an evolution step
at least generate any set of vectors of natural numbers that can be generated by
matrix grammars without appearance checking.

2 Prerequisites

The reader is assumed to be familiar with the basic notions of formal language
theory, e.g., see [2] and [14]. We only give the following definitions:

For an alphabet V , by V ∗ we denote the free monoid generated by V under
the operation of concatenation; the empty word is denoted by λ, and V + :=
V ∗ \ {λ}. For any word w ∈ V ∗ and any X ∈ V, |w|X represents the number of
occurrences of the symbol X in w. For w ∈ V ∗, V = {a1, . . . , an}, by ΨV (w) we
denote the Parikh vector of w, i.e., ΨV (w) = (|w|a1 , . . . , |w|an

); this is extended to
languages in the natural way. By RE and CF we denote the family of recursively
enumerable languages and the family of context-free languages, respectively. For
a family F of languages, by PsF we denote the family of Parikh sets of vectors
associated with languages in F . As in [2], we consider two string languages L,
L′ to be equal if L \ {λ} = L′ \ {λ} .

A multiset over an alphabet V is represented by a string over V and by all its
permutations, and conversely, each string precisely identifies one multiset; the
Parikh vector associated with a string indicates the multiplicities of each element
of V in the corresponding multiset. Thus, when speaking of a “multiset” w ∈ V ∗

we understand the multiset identified by w.

A matrix grammar is a construct G = (N,T, (M,F ) , S) where N and T
are sets of non-terminal and terminal symbols, respectively, with N ∩ T = ∅,
S ∈ N is the start symbol, M is a finite set of matrices, M = {mi | 1 ≤ i ≤ n},
where the matrices mi are sequences of the form mi = (mi,1, . . . ,mi,ni), ni ≥ 1,
1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n, are context-free productions
over (N,T ), and F is a subset of

⋃
1≤i≤n, 1≤j≤ni

{mi,j}.
For mi = (mi,1, . . . ,mi,ni) and v, w ∈ (N ∪ T )∗ we define v =⇒mi w if and

only if there are w0, w1, . . . , wni
∈ (N ∪ T )∗ such that w0 = v, wni

= w, and for
each j, 1 ≤ j ≤ ni,

– either wj is the result of the application of mi,j to wj−1,
– or mi,j is not applicable to wj−1, wj = wj−1, and mi,j ∈ F .
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The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T )∗ , mij
∈ M for 1 ≤ j ≤ k, k ≥ 1

}
.

A non-terminal symbol A ∈ N is said to be used in the appearance checking
mode, if there exists at least one production of the form A → α, α ∈ (N ∪ T )∗,
that appears in F.

In [2] the following normal form for matrix grammars was established:
A matrix grammar G = (N,T, (M,F ) , S) is said to be in the binary normal

form if N = N1 ∪N2 ∪{S,#}, with these three sets being mutually disjoint, and
the matrices in M are of one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A → α), with X,Y ∈ N1, A ∈ N2, α ∈ (N2 ∪ T )∗,
3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A → α), with X ∈ N1, A ∈ N2, and α ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap symbol; once introduced,
it is never removed. A matrix of type 4 is used only once, in the last step of a
derivation.

According to Lemma 1.3.7 in [2], for each matrix grammar G an equivalent
matrix grammar G′ in the binary normal form can be constructed.

For an arbitrary matrix grammar G = (N,T, (M,F ) , S), let us denote by
ac(G) the cardinality of the set {A ∈ N | A → α ∈ F}. From the construction
in the proof of Lemma 1.3.7 in [2] one can see that if we start from a matrix
grammar G and we get the grammar G′ in the binary normal form, then ac(G′) =
ac(G).

A matrix grammar is called a matrix grammar without appearance checking,
if ac(G) = 0 (i.e., F = ∅).

In [5], an even stronger normal form was proved:
A matrix grammar G = (N,T, (M,F ) , S) is said to be in the strong binary

normal form, if N = N1 ∪ N2 ∪ {S,#}, with these three sets being mutually
disjoint, and the matrices in M are of one of the following forms:

1. (S → XA) , with X ∈ N1, A ∈ N2,
2. (X → Y,A → α) , with X,Y ∈ N1, A ∈ N2, α ∈ (N2 ∪ T )∗,
3. (X → Y,A → #) , with X,Y ∈ N1, A ∈ N2,
4. (X → λ), with X ∈ N1.

Moreover, there is only one matrix of type 1 and only one of type 4, and F
consists exactly of all rules A → # appearing in matrices of type 3, where #
is the trap symbol. The matrix of type 4 is used only once, in the last step
of a derivation (and the non-terminal in this terminal matrix never occurs on
the left-hand side of a production in the other matrices). Finally, as the most
important feature, we have ac(G) ≤ 2.
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The family of languages generated by matrix grammars is denoted by MATac;
the family of languages generated by matrix grammars without appearance
checking is denoted by MAT . It is known that CF ⊂ MAT ⊂ MATac = RE.
Further details about matrix grammars can be found in [2] and in [14]. Due to
the results shown in [6], we have

{
a2n | n ≥ 1

} ∈ MATac \MAT.

3 Energy-Controlled P Systems with Symbols

An energy-controlled P system (ECP system for short) (of degree m, m ≥ 1) is
a construct

Π = (V, μ,w1, . . . , wm, R1, . . . , Rm, d1, . . . , dm),

where:

1. V is an alphabet; its elements are called objects or symbols;
2. μ is a membrane structure consisting of m membranes, with the membranes

and the regions labelled in a one-to-one manner with 1, 2, . . . ,m; the skin
membrane is labelled with 1;

3. w1, . . . , wm are multisets over V associated with the regions 1, 2, . . . ,m of μ;
4. Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V . These rules are of

the forms a → v 〈e〉, where a ∈ V , v is a string over V ×{here, out, in}, and
e is an integer number which specifies the energy associated with the rule;

5. d1, . . . , dm are non-negative numbers indicating the maximal total energy
allowed for an evolution step in each membrane.

When presenting the evolution rules, in general the indication “here” is omit-
ted. The membrane structure and the multisets in w1, . . . , wm constitute the ini-
tial configuration of the system. The application of a rule a → v 〈e〉 in a region
containing a multiset w means to remove a copy of the object a from w and
to add the objects specified by v, following the prescriptions given by v: If an
object in v appears in the form (b, here), then it remains in the same region; if it
appears in the form (b, out), then a copy of the object b will be introduced in the
region which surrounds the region of the rule a → v 〈e〉; if it appears in the form
(b, in), then a copy of b is introduced in one of the regions of the membranes
placed directly inside the region of the rule a → v 〈e〉, non-deterministically
chosen, if such a region exists, otherwise the rule cannot be applied.

In each step and in each membrane, the rules are used according to the follow-
ing condition controlling the energy balance of the rules used in each membrane:
The energies of all rules to be used in a given step in membrane i are summed
up; if the total is in the closed interval [0, di], then this multiset of rules can be
applied if it is maximal with this property (no other multiset of rules can be
applied to the objects in membrane i such that the total energy is larger but
still within the desired range 0 to di, and no extension of the multiset is possible
such that these properties are preserved); otherwise it cannot be applied.

By using the rules of Π in the way described above, we can pass from a con-
figuration of the system to another configuration. A sequence of such transitions
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between configurations is called a computation of Π. A computation is successful
if and only if it halts, i.e., in the last configuration there is no membrane where a
multiset of rules is applicable to the objects present in the membrane such that
the energy-controlling condition is fulfilled. The result of a successful computa-
tion is ΨV (w), where w describes the multiset of objects from V being in the skin
membrane at the end of a halting computation; we say that this vector is gen-
erated by Π. By N1(Π) we denote the set of all vectors generated by Π in that
way. Another variant to get the result of a successful computation is to consider
the multiset w of objects from V which have left the skin membrane during the
computation. By N0(Π) we denote the set of all vectors ΨV (w) generated by Π
in that way.

Finally, energy-controlled P systems as defined above can also be considered
as generating devices for string languages: The symbols sent out during a suc-
cessful computation in the sequence they are sent out can be interpreted as a
string result of the computation. If several symbols are sent out at the same
time, any permutation of these symbols can be taken (e.g., see [12]). The string
language generated by Π is denoted by N2(Π).

The family of all sets Ni(Π), i ∈ {0, 1, 2} , generated by systems of degree
at most m, m ≥ 1, and with the maximal energy bound associated with a
membrane at most d is denoted by ECPi,m(d); if no bound on the number of
membranes or on the maximal energy associated with each region is imposed,
then we replace the corresponding parameters by ∗.

We first prove that energy-controlled P systems can simulate matrix gram-
mars even with the simplest membrane structure and only two energy values 0
and 1.

Theorem 1. PsRE = ECP1,m(1), for all m ≥ 1.

Proof. Due to the equality RE = MATac, more exactly, to the equality PsRE =
PsMATac, we only have to prove the inclusion PsMATac ⊆ ECP1,1(1).

Let G = (N,T, (M,F ), S) be a matrix grammar in the strong binary normal
form, with N = N1 ∪ N2 ∪ {S,#} and matrices of the four forms mentioned
above. Assume that we have s matrices of the form (X → Y,A → x), with
X,Y ∈ N1, x ∈ (N2 ∪ T )∗, and t matrices of the form (X → Y,A → #),
X,Y ∈ N1, A ∈ N2. Moreover, let (f → λ) be the unique terminal matrix. We
label the matrices (X → Y,A → x) by mi, 1 ≤ i ≤ s, and the matrices of the
form (X → Y,A → #) by ms+j , 1 ≤ j ≤ t.

We construct the P system (of degree 1)

Π = (V, [1]1, w1, R1, 1),

with
V = N ∪ T ∪ {Z} ∪ {Zj | 1 ≤ j ≤ t} ∪ {Xj | 1 ≤ j ≤ t},

w1 = X0A0ZZ1 . . . Zt, for (S → X0A0) being the initial matrix of G,

and the sets of rules R1 containing the following rules:
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1. For each matrix mi : (X → Y,A → x) ∈ M, 1 ≤ i ≤ s, with X,Y ∈ N1,
x ∈ (N2 ∪ T )∗, we introduce the rules
X → Y 〈−(3i + 1 + k)〉,
A → x 〈+(3i + 1 + k)〉.

2. For each matrix ms+j : (X → Y,A → #) ∈ M, 1 ≤ j ≤ t, X, Y ∈ N1,
A ∈ N2, we introduce the rules
X → Y 〈−(3(s + j) + 1 + k)〉,
A → # 〈+(3(s + j) + 2 + k)〉,
Zj → Zj 〈+(3(s + j) + 1 + k)〉.

3. We also introduce the following rules which are always applicable due to
their zero energy balance:
Z → Z 〈0〉,
α → α 〈0〉, for all α ∈ N2.

4. The rule
# → # 〈0〉
guarantees that a computation having introduced the trap symbol # will
never stop.

5. For “cleaning up” the additional symbols Z and Zj , 1 ≤ j ≤ t, we finally
use the following rules:
f → X1 〈−(3(s + t + 1) + 1 + k)〉,
Z → λ 〈+(3(s + t + 1) + 1 + k)〉;
Xj → Xj+1 〈−(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t,
Zj → λ 〈+(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t;
Xt → λ 〈−(3(s + 2t + 1) + 1 + k)〉,
Zt → λ 〈+(3(s + 2t + 1) + 1 + k)〉.
The constant k has to be defined in such a way that the sum of two energy

values appearing in the rules above is greater than any of these values, hence,
we take k := 6(s + 2t + 3); this guarantees that when choosing a rule with a
negative energy value only one of the rules with the corresponding positive value,
eventually +1, can be chosen.

Assume that at some moment we have a multiset XwZZ1 . . . Zt; initially,
X = X0 and w = A0, for (S → X0A0) being the initial matrix of G.

As long as the additional symbol Z will exist, the rule Z → Z 〈0〉 can be used,
hence the computation cannot stop; yet Z can only be removed in combination
with f ; remember that f - on the left-hand side of a production in G - only
appears in the terminal matrix (f → λ). As long as non-terminal symbols from
G are present, the computation cannot stop because of the rules α → α 〈0〉, for
all α ∈ N2. Therefore, a successful computation has to lead to a configuration
with fwZZ1 . . . Zt and w ∈ T ∗; by using the rules

f → X1 〈−(3(s + t + 1) + 1 + k)〉,
Z → λ 〈+(3(s + t + 1) + 1 + k)〉;
Xj → Xj+1 〈−(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t,
Zj → λ 〈+(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t;
Xt → λ 〈−(3(s + 2t + 1) + 1 + k)〉,
Zt → λ 〈+(3(s + 2t + 1) + 1 + k)〉
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in this sequence (here the energy balance is always 0) we finally get only w in
the skin membrane and the computation halts.

If we use a rule X → Y 〈−(3i+ 1 + k)〉 associated with a matrix mi : (X →
Y,A → x), for some 1 ≤ i ≤ s, then at the same step we also have to use the
rule A → x 〈+(3i + 1 + k)〉. Indeed, all the other rules, even those different
from Z → Z 〈0〉, α → α 〈0〉, for all α ∈ N2, or # → # 〈0〉, cannot be used to
neutralize the negative energy −(3i+1+k) associated with the rule X → Y due
to the choice of k as explained above. Hence, the only possibility is to correctly
simulate the matrix mi, by using simultaneously with X → Y 〈−(3i + 1 + k)〉
the rule A → x 〈+(3i + 1 + k)〉 with an energy balance of 0.

In the same way, in order to use a rule X → Y 〈−(3(s+j)+1+k)〉 associated
with a matrix ms+j : (X → Y,A → #), 1 ≤ j ≤ t, we have to use at the same
step the corresponding rule Zj → Zj 〈+(3(s+j)+1+k)〉, which means that A is
not present in the current multiset, or if A is present, because of the maximality
condition for the energy balance, the rule A → # 〈+(3(s + j) + 2 + k)〉 must
be used, thus introducing the trap symbol #, which can evolve forever by the
rule # → # 〈0〉. Therefore, the only continuation which does not lead to a
computation which continues forever is that one which correctly simulates the
use of the matrix ms+j .

In conclusion, we have shown that N1(Π) = ΨT (L(G)). 
�

Theorem 2. PsRE = ECP0,m(1), for all m ≥ 1.

Proof. Adding the rules a → (a, out) 〈0〉, for all a ∈ T, in the energy-controlled
P system constructed in the preceding proof, already yields the desired result.


�
In the previous proofs, the energy balance value 1 is only needed for simulat-

ing the matrices with appearance checking; hence, having no rules for simulating
such matrices we immediately obtain:

Corollary 1. PsMAT ⊆ ECP1,m(0) = ECP0,m(0), for all m ≥ 1.

Proof. Having no rules for simulating matrices with appearance checking (and
also omitting the rule # → # 〈0〉) in the ECP system constructed in Theorem 1
(and in Theorem 2, respectively) yields an ECP system of the desired restricted
form. Therefore, we need no additional symbols Zj , hence, only

f → λ 〈−(3(s + t + 1) + 1 + k)〉 and
Z → λ 〈+(3(s + t + 1) + 1 + k)〉

are the rules we need at the end (in the last step) of a halting computation in
Π. 
�

Whether this inclusion is strict or not remains as an unsolved problem. A
candidate for showing the strictness would be the set {(2n) | n ≥ 1}, which is
not the Parikh image of a matrix language (all one-letter matrix languages are
regular, [6]).
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Note that PsCF ⊂ PsMAT : while PsCF is equal to the family of semilinear
sets of vectors of natural numbers, MAT contains non-semilinear languages. An
example is {anbm | n ≥ 1, 1 ≤ m ≤ 2n} (see [2]).

ECP systems with 0 being the only allowed energy balance value in some
sense correspond with stable systems, where any actions within the system have
to conserve the total energy. Yet this is not only true for the ECP systems
considered in Corollary 1, but also for the ECP systems constructed in the
proofs of the preceding theorems: only those computations are successful which
conserve the total energy in every step; having to apply a rule which would
increase the total energy leads to a “crash” of the system, i.e., it will never halt.

Moreover, it is worth mentioning that the condition of maximal parallelism
(there should not be another multiset B of rules which is applicable to the objects
in the underlying region with B ⊃ A and yields the same energy balance) can be
omitted for energy-controlled P systems without changing the results obtained
so far in this paper.

We now show that ECP systems also allow us to generate any recursively
enumerable language of strings as they appear as the sequences of terminal
symbols sent out of the skin membrane of the system:

Theorem 3. RE = ECP2,m(1), for all m ≥ 1.

Proof. We only give a sketch of the proof, because otherwise we had to go into
deep details of proofs elaborated in [5]. In fact, there (graph-controlled as well as)
matrix grammars for a string language L ∈ RE work in that way to first generate
a terminal word w symbol by symbol from left to right while simultaneously
generating a unary encoding of this word w, which finally is taken as input for
(the simulation of) a register machine that halts if and only if w ∈ L. Therefore,
when simulating such a matrix grammar by an ECP system Π as described in
the proof of Theorem 2, the rules a → (a, out) 〈0〉, for all a ∈ T, send out the
terminal symbols of the word w in the correct ordered sequence, and the ECP
system Π halts if and only if w ∈ L. In conclusion, we have N2(Π) = L. 
�

In this case, the condition of maximal parallelism is necessary to guarantee
that the terminal symbols are sent out immediately as soon as possible so that
they appear outside the skin membrane in the correct ordering.

The idea used in the proof of Theorem 3 also generalizes to arbitrary types
X of P systems that allow for the simulation of matrix grammars and guarantee
that terminal symbols a only are generated in the skin membrane in the correct
sequence as they should form the string, and moreover, these terminal symbols
are immediately sent out by rules of the form a → (a, out). Therefore, in many
cases a result like that of Theorem 3 is obtained “for free” when already having
proved a result like that of Theorem 2.

4 Energy-Controlled P Systems with Strings

Let us now consider the case when the objects of our systems are represented by
strings and the evolution rules are rewriting rules. Formally, an energy-controlled
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P system of this type is a construct

Π = (V, μ, L1, . . . , Lm, R1, . . . , Rm, d1, . . . , dm),

where:

1. V is an alphabet;
2. μ is a membrane structure consisting of m membranes, with the membranes

and the regions labelled in a one-to-one manner with 1, 2, . . . ,m; the skin
membrane is labelled with 1;

3. L1, . . . , Lm are multisets of strings over the alphabet V associated with the
regions 1, 2, . . . ,m of μ;

4. Ri, 1 ≤ i ≤ m, are finite sets of evolution rules of the form a → v(tar) 〈e〉,
where a ∈ V, v ∈ V ∗, tar is one of the target indications here, out, in, and e
is an integer number specifying the energy associated with the rule;

5. d1, . . . , dm are non-negative integers indicating the energy range of the cor-
responding membranes.

In each time unit and in each membrane of the system, each copy of a string
can be rewritten by at most one rule. After rewriting a copy of the string x by
using a rule a → v(tar) 〈e〉, that copy of x is no longer present in the system,
while the string resulting from rewriting is sent to the membrane indicated by
tar, in the usual manner. Moreover, we have to take into account the energy
restriction, in the same way as in the previous section: the total energy of rules
used in membrane i, for rewriting the strings present in that membrane, has to
be within the given range [0, di], no extension of this multiset is possible such
that more strings are affected without changing the energy balance, and the
multiset is chosen in an optimal way such that no other multiset of rules can
be applied to the present strings in membrane i yielding a larger total energy
within the energy range [0, di] assigned to the membrane.

A computation is correctly finished only if it halts, i.e., if a configuration
is obtained where no further evolution step is possible any more. The result of
a halting computation either consists of all terminal strings found within the
skin membrane in the final configuration or else of all terminal strings which are
sent out of the system during the computation. In this way, an ECP system Π
generates a string language L(Π) or L′(Π), respectively, consisting of all strings
which are produced as described above by all possible halting computations.

We denote by ECPm(d) and ECP ′m(d) the family of string languages L(Π)
or L′(Π), respectively, generated by ECP systems with at most m membranes,
m ≥ 1, and with the maximal energy bound associated with a membrane at most
d; if no bound on the number of membranes or on the maximal energy associated
with each region is imposed, then we replace the corresponding parameters by
∗.

A result similar to Theorem 3 holds true for the case of string objects, too.

Theorem 4. RE = ECPm(1) = ECP ′m(1), for all m ≥ 1.
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Proof. The main idea is to take an ECP system Π like that already constructed
in the proof of Theorem 1 for a given matrix grammar G and to replace the
initial multiset XAZZ1 . . . Zt by the three initial words X, AZ, and Z1 . . . Zt.
For the case that the result of a halting computation are all the strings to be
found in the skin membrane at the end of the computation, in that way we get
an ECP system with L(Π) = L(G). Hence, we conclude RE = ECP1(1).

For guaranteeing that a computation only halts if the word to be sent out
does not contain any non-terminal symbol, some additional modifications are
necessary.

Let G = (N,T, (M,F ), S) be a matrix grammar in the strong binary normal
form, with N = N1 ∪N2 ∪ {S,#}. Assume that we have s matrices of the form
(X → Y,A → x), with X,Y ∈ N1, x ∈ (N2 ∪ T )∗, and t matrices of the form
(X → Y,A → #), X,Y ∈ N1, A ∈ N2. Moreover, let (f → λ) be the unique
terminal matrix. We label the matrices (X → Y,A → x) by mi, 1 ≤ i ≤ s, and
the matrices of the form (X → Y,A → #) by ms+j , 1 ≤ j ≤ t.

We now construct the P system (of degree 1)

Π = (V, [1]1, L1, R1, 1),

with

V = N ∪ T ∪ {Z} ∪ {Zj | 1 ≤ j ≤ t} ∪ {Xj | 1 ≤ j ≤ t},

L1 = {X0, A0Z,Z1 . . . Zt, } for (S → X0A0) being the initial matrix of G,

and the sets of rules R1 containing the following rules:

1. For each matrix mi : (X → Y,A → x) ∈ M, 1 ≤ i ≤ s, with X,Y ∈ N1,
x ∈ (N2 ∪ T )∗, we introduce the rules
X → Y 〈−(3i + 1 + k)〉,
A → x 〈+(3i + 1 + k)〉.

2. For each matrix ms+j : (X → Y,A → #) ∈ M, 1 ≤ j ≤ t, X, Y ∈ N1,
A ∈ N2, we introduce the rules
X → Y 〈−(3(s + j) + 1 + k)〉,
A → # 〈+(3(s + j) + 2 + k)〉,
Zj → Zj 〈+(3(s + j) + 1 + k)〉.

3. We also need the following rules to eventually keep the system from halting:
Z → Z 〈0〉,
# → # 〈1〉.

4. For “cleaning up” the additional symbols Z and Zj , 1 ≤ j ≤ t, as well as to
send out a terminal string, we finally use the following rules:
f → X1 〈−(3(s + t + 1) + 1 + k)〉,
Z → (λ, out) 〈+(3(s + t + 1) + 1 + k)〉
α → # 〈+(3(s + t + 1) + 2 + k)〉, for all α ∈ N2;
Xj → Xj+1 〈−(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t,
Zj → λ 〈+(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t;
Xt → λ 〈−(3(s + 2t + 1) + 1 + k)〉,
Zt → λ 〈+(3(s + 2t + 1) + 1 + k)〉.
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For the constant k we take k := 6(s + 2t + 3); this again guarantees that
when choosing a rule with a negative energy value only one of the rules with the
corresponding positive value, eventually +1, can be chosen.

Assume that at some moment we have the strings X, wZ, Z1 . . . Zt; initially,
X = X0 and w = A0, for (S → X0A0) being the initial matrix of G.

If we use a rule X → Y 〈−(3i+ 1 + k)〉 associated with a matrix mi : (X →
Y,A → x), for some 1 ≤ i ≤ s, then at the same step we also have to use the rule
A → x 〈+(3i + 1 + k)〉. Indeed, none of the other rules associated with positive
energy values > 1 nor any of the rules Z → Z 〈0〉 or # → # 〈1〉 can be used to
neutralize the negative energy −(3i+1+k) associated with the rule X → Y due
to the choice of k as explained above. Hence, the only possibility is to correctly
simulate the matrix mi, by using simultaneously with X → Y 〈−(3i+1+k)〉 the
rule A → x 〈+(3i + 1 + k)〉 with an energy balance of 0. To the string Z1 . . . Zt

no rule can be applied in this case.
In a similar way, in order to use a rule X → Y 〈−(3(s+j)+1+k)〉 associated

with a matrix ms+j : (X → Y,A → #), 1 ≤ j ≤ t, we have to use at the
same step the corresponding rule Zj → Zj 〈+(3(s + j) + 1 + k)〉 affecting the
string Z1 . . . Zt, which means that A is not present in the word w (in that case,
Z → Z 〈0〉 is applied to the string wZ) or if A is present in w, because of the
maximality condition for the energy balance, the rule A → # 〈+(3(s+j)+2+k)〉
must be used, thus introducing the trap symbol #, which can evolve forever by
the rule # → # 〈1〉, whereas in this case no rule is applied to the string Z1 . . . Zt.
Therefore, the only continuation which does not lead to a computation which
continues forever is that one which correctly simulates the use of the matrix
ms+j .

As long as the additional symbol Z will exist, at least the rule Z → Z 〈0〉
can be used, hence the computation cannot stop; yet Z can only be removed in
combination with f ; remember that f - on the left-hand side of a production
in G - only appears in the terminal matrix (f → λ). Before sending out a
word it has to be checked that no non-terminal symbols occur in this word,
otherwise the computation should not stop, which is guaranteed by the rules α →
# 〈+(3(s+ t+1)+2+k)〉, for all α ∈ N2; an application of such a rule will block
the elimination of the symbol Z and then cause the system not to halt because
of the introduction of the trap symbol #. Therefore, a successful computation
has to lead to a configuration with f, wZ, Z1 . . . Zt being the contents of the
skin membrane for some w ∈ T ∗. By using the rules

f → X1 〈−(3(s + t + 1) + 1 + k)〉,
Z → (λ, out) 〈+(3(s + t + 1) + 1 + k)〉;
Xj → Xj+1 〈−(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t,
Zj → λ 〈+(3(s + t + j + 1) + 1 + k)〉, 1 ≤ j < t;
Xt → λ 〈−(3(s + 2t + 1) + 1 + k)〉,
Zt → λ 〈+(3(s + 2t + 1) + 1 + k)〉

in this sequence (here the energy balance is always 0) we finally have no non-
empty string in the skin membrane any more after having sent out the terminal
word w, and the computation halts.
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In conclusion, we have shown that L′(Π) = L(G), and therefore RE =
ECP ′1(1), too. 
�

As the construction of the ECP system above shows, we could only consider
sets of rules and sets of strings instead of multisets and the proof would still
work, because we have the condition that at most one rule can be applied to
each word in one computation step.

The following corollary follows from Theorem 4 as Corollary 1 followed from
Theorem 1:

Corollary 2. MAT ⊆ ECPm(0), for all m ≥ 1.

In contrast to Corollary 1, it remains an open question whether MAT ⊆
ECP ′m(0), for all m ≥ 1, too, because in the proof of the preceding theorem we
had to check whether the word sent out still contains a non-terminal symbol or
not by using rules like those for simulating appearance checking.

5 Conclusion

The interested reader may compare the proofs given in [13] for P systems with
energy accounting with the proofs given in this paper for energy-controlled P
systems. In some sense, not violating the balanced energy level 0 for the involved
energies in energy-controlled P systems corresponds with the fact that there
successful computations have to avoid the premature dissolvation of the second
membrane and, moreover, even allows to avoid the use of catalysts, whereas the
priorities needed in P systems with energy accounting (needed for simulating the
appearance checking) have their counterpart in the maximality condition for the
sum of energies in energy-controlled P systems (i.e., more total energy means a
higher priority).

Hence, the (quite natural and biochemically well motivated) feature used
for controlling the energy in energy-controlled P systems turns out to be very
powerful from a computational point of view: characterizations of recursively
enumerable languages in the case of string objects and characterizations of re-
cursively enumerable sets of vectors of natural numbers in the case of symbol
objects are obtained with only one membrane and only two energy values 0
and 1.
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5. Freund, R., Păun, Gh.: On the Number of Non-terminals in Graph-controlled,
Programmed, and Matrix Grammars. In: Margenstern, M., Rogozhin, Y. (eds.):
Proc. Conf. Universal Machines and Computations, Chişinău (2001). Springer-
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Abstract. We investigate a variant of purely communicating P systems,
where multisets of activators can open channels for certain objects to
pass through membranes in one direction; however, the permeability of
a channel can be controlled by multisets of prohibitors, too.
We will show that for such systems with only one membrane and using
only singleton activator and prohibitor sets, we already obtain universal
computational power. When using systems with activating multisets for
membrane channels only, we obtain a similar result. By showing a close
correspondence to P systems with symport/antiport as introduced in [13]
we can optimize some results given there.

1 Introduction

P systems were introduced in [10] by Gh. Păun as distributed parallel com-
puting devices that are abstracted from cell functioning. The most important
features considered in the various models of P systems investigated so far (e.g.,
see [3], [4], [10], [11], for a comprehensive overview see [12]) are the membrane
structure and specific features of the membranes, especially for the transfer of
objects through the membranes. A membrane structure consists of membranes
hierarchically embedded in the outermost skin membrane; every membrane en-
closes a region possibly containing other membranes; the part delimited by the
membrane labelled by k and its inner membranes is called compartment k. All
membranes can be labelled by natural numbers (starting with 1 for the skin
membrane) so that a membrane structure can uniquely be described by a string
of correctly matching parentheses with each pair corresponding to a membrane.
In the membranes, multisets of objects can be placed, which evolve according to
given evolution rules. Applying the latter ones in a non-deterministic, maximally
parallel way, the system passes from one configuration to another one, thereby
performing a computation. Only halting computations produce a result, which
consists of the objects present in a specified output membrane.

In contrast to various other models of P systems, where the objects them-
selves can be transformed during a computation, we consider purely communi-
cating systems, as already done, e.g., in [13].

In the model presented here, objects can cross the membranes by passing
through corresponding channels that have been opened by means of activators,
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unless the channel is blocked by a prohibitor. Thus we have activating and pro-
hibiting rules that are used in a non-deterministic maximally parallel manner.
Applying an activating rule means that an activator multiset (or a single activa-
tor symbol) opens input and output channels for specific objects. In the following
substep, each object can pass through the surrounding membrane provided there
is no prohibitor active, which prevents the object from passing through the cor-
responding channel. In some variants of P systems with activated/prohibited
membrane channels, not for all the channels opened, an object for passing needs
to be present; but anyway, whether they have been used or not, the channels
will be closed again in the subsequent step.

In contrast to [13], we assume the environment to contain all objects in
arbitrarily many copies.

In the following section we first give some preliminary definitions and de-
fine n-register machines, the universal model of computation we use for prov-
ing our new results elaborated in this paper; in the third section we introduce
P systems with activated/prohibited membrane channels, followed by an ex-
ample elaborated in the succeeding section. In the fifth section we show that
different restricted variants of these systems with only one membrane can simu-
late n-register machines quite easily, which proves their universal computational
power. Finally we can optimize some results established in [13] for P systems
with symport/antiport by interpreting these P systems as a special variant of
the P systems with activated/prohibited membrane channels as introduced in
this paper. Independently, the same improvements were achieved in [8].

2 Preliminary Definitions

The set of non-negative integers is denoted by N0, the set of positive integers
by N. An alphabet V is a finite non-empty set of abstract symbols. Given V , the
free monoid generated by V under the operation of concatenation is denoted by
V ∗; the empty string is denoted by λ, and V ∗ \{λ} is denoted by V +. A multiset
over V is represented as string over V (and any of its permutations). By | x |
we denote the length of the word x over V as well as the number of elements
in the multiset represented by x. For more notions from the theory of formal
languages, the reader is referred to [2].

As we mostly will restrict ourselves to consider multisets of symbols, our main
purpose will be to consider computational models for Parikh sets of recursively
enumerable languages, especially for representations of recursively enumerable
sets of non-negative integers. A well-known example for such a - very simple -
mechanism are register machines (see [9] for some original definitions and [5],
[15] for definitions like that we use in this paper).

An n-register machine is a construct

RM = (n,R, i, h)

where
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– n is the number of registers,
– R is a set of labelled instructions of the form j : (op (r) , k, l), where op (r)

is an operation on register r of RM , j, k, l are labels from the set Lab (RM)
(which numbers the instructions in a one-to-one manner),

– i is the initial label, and
– h is the final label.

The machine is capable of the following instructions:

(A(r),k,l) Add one to the contents of register r and proceed to instruction k
or to instruction l; in the deterministic variants usually considered in the
literature we demand k = l.

(S(r),k,l) If register r is not empty then subtract one from its contents and go
to instruction k, otherwise proceed to instruction l.

HALT Stop the machine. This instruction can only be assigned to the final
label h.

In their deterministic variant, such n-register machines can be used to com-
pute any partial recursive function f : N0 → N0; starting with n ∈ N0 in
register 1, RM has computed f (n) = r if it halts in the final label h with regis-
ter 1 containing r. If the final label cannot be reached, f (n) remains undefined.

A deterministic n-register machine can also analyze an input n ∈ N0 in
register 1, which is accepted if the register machine finally stops by the halt
instruction with all its registers being empty. If the machine does not halt, the
analysis was not successful.

In their non-deterministic variant, n-register machines can compute any re-
cursively enumerable set of non-negative integers. Starting with all registers be-
ing empty, we consider a computation of the n-register machine to be successful,
if it halts (with the result being contained in the first register and with all other
register being empty).

The results proved in [5] and [7] immediately lead us to the following result
which the proofs elaborated in this paper are based on:

Proposition 1. For any recursively enumerable set of non-negative integers L
there exists a non-deterministic 3-register machine M generating L.

3 P Systems with Activated/Prohibited Membrane
Channels

A P system with activated/prohibited membrane channels is a construct Π of
the following form:

Π = (V, μ,w1, ..., wn, R1, ..., Rn, i0)

where

– V is an alphabet of objects;
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– μ is a membrane structure (with the membranes labelled by natural numbers
1, ..., n in a one-to-one manner);

– w1, ..., wn are multisets over V associated with the compartments 1, ..., n of
μ;

– R1, ..., Rn are finite sets of rules associated with the compartments 1, ..., n,
which can be of the following forms:
1. activating rules: 〈P ;x, out; y, in〉 , where x, y ∈ V ∗ and P is a finite

multiset over V,
2. prohibiting rules: 〈b, out;Q〉 or 〈b, in;Q〉 , where b ∈ V and Q is a finite

multiset over V.

– i0 ∈ {1, ..., n} is the label of the output membrane.

A system that uses only activating rules is called a P system with activated
membrane channels.

Starting from the initial configuration, which consists of μ and w1, ..., wn, the
system passes from one configuration to another one by non-deterministically
in a maximally parallel way choosing rules from Ri and applying them in the
following sense:

Let x = x1...xm and y = y1...yn. An activating rule 〈P ;x, out; y, in〉 means
that by the activator multiset P an output channel for each symbol xi, 1 ≤ i ≤ m,
is activated, and for each yj , 1 ≤ j ≤ n, an input channel is activated. In the
following substep of a derivation (computation), each activated channel allows
for the transport of one object xi and yj , respectively, provided there is no
prohibitor multiset Q active by a prohibiting rule 〈xi, out;Q〉 or 〈yj , in;Q〉 ,
respectively (which means that the multiset Q can be found in the underlying
compartment). The activating multisets P in the activating rules have to be
chosen in a maximally parallel way.

A sequence of transitions is called a computation; it is successful, if and only
if it halts. The result of a successful computation then is considered to be the
multiset of objects present in the designated output membrane i0. A non-halting
computation does not produce a result.

4 Example

We consider the following example. Let Π = (V, [1]1, 1a,R, 1) , where:
V = {1, 1′, 1′′, 2, 2′, 2′′, a, b, f1, f

′
1, f2, f

′
2} and

R1 = {〈1; 1a, out; 1bbf1, in〉 , 〈f1, in; a〉 , 〈f1; f1, out; f1, in〉 ,
〈1; 1, out; 1′1′′, in〉 , 〈1′′, in; a〉 ,
〈1′; 1′1′′, out; 2f ′1, in〉 , 〈f ′1, in; 1′′〉 , 〈f ′1; f ′1, out; f ′1, in〉 ,
〈1′; 1′1′′, out; f ′1, in〉 ,
〈2; 2b, out; 2af2, in〉 , 〈f2, in; b〉 , 〈f2; f2, out; f2, in〉 ,
〈2; 2, out; 2′2′′, in〉 , 〈2′′, in; b〉 ,
〈2′; 2′2′′, out; 1f ′2, in〉 , 〈f ′2, in; 2′′〉 , 〈f ′2; f ′2, out; f ′2, in〉}
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Starting with the multiset 1a in the skin membrane, the activator 1 can
get active. By using 〈1; 1a, out; 1bbf1, in〉 , it can open output channels for 1
and a, as well as input channels for 1 and bb. (As the prohibitor a is present,
the input channel for f1 will not be opened because of the prohibiting rule
〈f1, in; a〉 .) In the following substep, a and 1 leave the system, whereas the
multiset 1bb can enter the skin membrane. Going on with 〈1; 1, out; 1′1′′, in〉 and
〈1′; 1′1′′, out; 2f ′1, in〉 we obtain the configuration 2bb.

Now 2 can open channels for 2 and b to pass out and for 2 and a to pass
in. Hence, for every b leaving the system, one a can enter. Having sent out all
copies of b, we can proceed with 〈2; 2, out; 2′2′′, in〉 and 〈2′; 2′2′′, out; 1f ′2, in〉 . In
a similar way as before, the input channel for f ′2 is prevented from being opened,
so that the system now contains 1aa. We can proceed successfully by sending
out all copies of a while letting twice as many copies of b in; every b can move
out again, allowing for an a to enter, and so on.

If in any moment, after just having sent out all occurrences of a, the ac-
tivating rule 〈1′; 1′1′′, out; f ′1, in〉 instead of 〈1′; 1′1′′, out; 2f ′1, in〉 is used, the
system reaches a halting configuration. The result can then be found as b2

n

in the skin membrane. In any other case, the system would, sooner or later,
get stuck in an endless loop with either 〈fi; fi, out; fi, in〉 or 〈f ′i ; f ′i , out; f ′i , in〉 ,
i ∈ {1, 2}, and consequently not produce a useful result. In conclusion, we obtain
L (Π) =

{
b2

n | n ≥ 1
}
.

As can be seen from the construction of the rules in Π, the activating rules
are of the forms 〈l; l, out; y, in〉 or 〈l; lx, out; yf, in〉 with x, l, f ∈ V and y ∈
V ∗, where for f we have the rule 〈f ; f, out; f, in〉 , which leads to a non-halting
computation if f is allowed to enter through the skin membrane, as well as the
prohibiting rule 〈f, in;x〉 . This guarantees that the channel for x opened by
the rule 〈l; lx, out; yf, in〉 has to be used for sending out an object x, i.e., an
object x must be present in the skin membrane, otherwise the failure symbol
(trap symbol) f can enter (leading to a non-halting computation). Observe that
due to our definition non-prohibited activated input channels are always used,
because in the environment, all symbols are available in an unlimited number.

5 Results

Based on the proof techniques used, e.g., in [5], [6], we can immediately show
the following results using Proposition 1.

Theorem 1. Let L ⊆ N0 be a recursively enumerable set of non-negative inte-
gers. Then L can be generated by a P system with activated/prohibited membrane
channels in only one membrane using only singleton activators and prohibitors;
moreover, a non-prohibited activated output channel has to be used only if the
corresponding symbol is present in the skin membrane.

Proof. (Sketch.) According to Proposition 1, we only have to elaborate how we
can simulate the instructions of a 3-register machine:
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– An Add-instruction j : (A(i), k, l) is simulated by the two activating rules
〈j; j, out; kai, in〉 and 〈j; j, out; lai, in〉 .

– A conditional Subtract-instruction j : (S(i), k, l) is simulated by the follow-
ing rules:

〈j; jai, out; kfj , in〉 〈fj , in; ai〉
〈j; j, out; j′j′′, in〉 〈j′′, in; ai〉
〈j′; j′j′′, out; lfj , in〉 〈fj , in; j′′〉
〈fj ; fj , out; fj , in〉

– The halting instruction h : HALT is simulated by the rule 〈h;h, out;λ, in〉 .

As already argued at the end of the preceding section in the example given
there, the construction of the rules in the P system with activated/prohibited
membrane channels guarantees that rules sending out another object together
with the activating symbol can only be used without introducing a failure symbol
(trap symbol) if also this other object is present in the skin membrane. This
means that all activated output channels will be used in halting computations.
This observation completes the proof. 
�

Looking carefully into the functioning of how the P system with activated /
prohibited membrane channels constructed in the preceding proof simulates the
instructions of the underlying n-register machine, we reveal the surprising and
unexpected fact that we need not demand the activating rules to be chosen in a
maximally parallel manner; it is sufficient to apply the rules in a sequential way.

In conclusion, the observations considered above show that P systems with
activated/prohibited membrane channels could also be interpreted as generalized
P systems [4] using the rules in a sequential way only. In that case, the labels
j from the simulated register machine, which are used as activating symbols,
correspond to the ground symbols used in generalized P systems (ground symbols
are “consumed” when being used in an evolution rule, the activating labels are
“consumed” by being sent out into the environment).

On the other hand, we can even avoid the use of prohibitor rules, if we make
use of activator multisets instead of single activator symbols, which, in rules of
the form 〈x;x, out; y, in〉 , is equivalent to demand that every activated output
channel has to be used in the subsequent substep. For sake of conciseness, such
activating rules of the form 〈x;x, out; y, in〉 in the following will be written in a
shorter way as (x, out; y, in) .

Theorem 2. Let L ⊆ N0 be a recursively enumerable set of non-negative inte-
gers. Then L can be generated by a P system with activated membrane channels
that consists of the simplest membrane structure.

Proof. (Sketch.) Again, we only have to show how the instructions of an n-
register machine (due to Proposition 1, n = 3 is sufficient) can be simulated:
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– An Add-instruction j : (A(i), k, l) is simulated by the two activating rules
(j, out; kai, in) and (j, out; lai, in) .

– A conditional Subtract-instruction j : (S(i), k, l) is simulated by the follow-
ing rules:

(jai, out; k, in)
(j, out; j′j′′, in)
(j′ai, out; f, in) (f, out; f, in)
(j′′, out; j′′′, in)
(j′j′′′, out; l, in)

– The halting instruction h : HALT is simulated by the rule (h, out;λ, in) .

In this case, the condition of maximal parallelism guarantees that the rule
(j′ai, out; f, in) is applied in parallel with (j′′, out; j′′′, in) , which leads to a non-
halting computation by the introduction of the failure symbol (trap symbol) f.
Only if in the current configuration no symbol ai is present in the skin membrane,
the object j′ can wait one step for being used in the rule (j′j′′′, out; l, in) together
with the symbol j′′′ introduced by the rule (j′′, out; j′′′, in) . 
�

If we compare the notions introduced for P systems with activated mem-
brane channels as defined above with the definitions of P systems with sym-
port/antiport as introduced in [13], we realize that P systems with activated
membrane channels and rules of the form (x, out; y, in), x, y ∈ V ∗, can be inter-
preted as P systems with symport/antiport (rules). The radius of an antiport
rule (x, out; y, in), where x, y ∈ V +, is the pair of numbers (|x| , |y|); the radius
of a symport rule of the form (z, out;λ, in) or (λ, out; z, in) with z ∈ V + is |z|.

Hence, small modifications of the construction given in the preceding proof
allow us to considerably improve Theorem 4.1 in [13] by reducing the number
of membranes to 1 and the radius of the antiport rules to (2, 1) , or (1, 2) ,
respectively.

In contrast to P systems with antiport rules as defined in [13], we need
not specify the environment, because we assume every symbol to appear in an
unlimited number there.

Theorem 3. Let L ⊆ N be a recursively enumerable set of positive integers.
Then L can be generated by a P system with activated membrane channels that
consists of the simplest membrane structure and only uses rules of the form
(x, out; y, in) with the radius of the rules being (2, 1) or (1, 2) , respectively.

Proof. (Sketch.) In the proof constructed in the preceding theorem, we only
have to replace the rule (f, out; f, in) by the two rules (f, out; f ′f ′′, in) and
(f ′f ′′, out; f, in) as well as the rule (h, out;λ, in) by the rules (h, out;h′h′′, in)
and (h′h′′, out; a1, in) . Now every rule obeys to the conditions for the radius to
be (2, 1) or (1, 2) , respectively. The rule (h′h′′, out; a1, in) is the reason why we
can only generate sets of positive integers. 
�
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The following result for P systems with antiport rules immediately follows
from the preceding theorem:

Corollary 1. Let L ⊆ N be a recursively enumerable set of positive integers.
Then L can be generated by a P system with antiport rules that consists of the
simplest membrane structure and only uses rules of the form (x, out; y, in) with
the radius of the rules being (2, 1) or (1, 2) , respectively.

The result stated above optimizes Theorem 4.1 in [13]; the P systems with
antiport rules considered in Corollary 1 are not only optimal with respect to
the number of membranes but also with respect to the radius of the rules used
in the system: Using only rules with radius (1, 1) and (2, 1) in the simplest
membrane structure we only get finite sets of non-negative integers. If we only
allow rules with radius (1, 1) and (1, 2) we at most get sets of non-negative
integers representing monotonic one-letter languages.

One additional symport rule of radius 1 is needed for generating any recur-
sively enumerable set of non-negative integers:

Corollary 2. Let L ⊆ N0 be a recursively enumerable set of non-negative inte-
gers. Then L can be generated by a P system with symport/antiport that consists
of the simplest membrane structure and only uses antiport rules of the form
(x, out; y, in) with the radius of the rules being (2, 1) or (1, 2) , respectively, and
only one single symport rule of radius 1.

Proof. In the proof we constructed in the preceding theorem and corollary,
respectively, we only have to replace the antiport rules (h, out;h′h′′, in) and
(h′h′′, out; a1, in) again by the symport rule (h, out;λ, in). 
�

We want to point out that, independently, the same improvements for P sys-
tems with symport/antiport as established in Corollaries 1 and 2 were achieved
in [8].

6 Conclusion

We have investigated P systems with activated/prohibited membrane channels
which surprisingly already obtain universal computational power with the sim-
plest membrane structure and only singleton activators and inhibitors. Even
more unexpected, the rules need not be applied in the maximally parallel man-
ner, but only in a sequential way.

If we use multisets for activating channels, we need no prohibiting multisets,
but now the maximal parallelism for choosing the rules to be applied is essential.

Moreover, we should like to mention that rather similar ideas like that used
with respect to activating/prohibiting membrane channels can be found in [1].

Finally, establishing the correspondence between a special variant of P sys-
tems with activated membrane channels and P systems with antiport rules, we
have achieved an optimal result for P systems with antiport rules, which already
obtain universal computational power with only one membrane and with rules
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of radius (2, 1) or (1, 2) , respectively, for recursively enumerable sets of positive
integers. For generating recursively enumerable sets of non-negative integers, we
also need a symport rule of radius 1. Independently, exactly the same results
were also obtained by Frisco and Hoogeboom, see [8].
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Abstract. Symport and antiport are biological ways for transporting
molecules through membranes in a “collaborating” manner; in the case
of symport several molecules pass in the same direction, in the case of
antiport two or more molecules pass in opposite directions. In this paper
we first survey the results on the computing power of membrane systems
(P systems) using only symport/antiport rules and then improve some
of the results known so far. A recent variant of P systems with purely
communicating rules introduced in [24] with the name of communicat-
ing P systems is revisited and optimal (with respect to the number of
membranes) universality results for that particular variant are obtained,
too.

1 Introduction

Recently in the area of membrane systems (usually called P systems) purely
communicating P systems where the objects only pass through membranes, but
are not affected by rules during a computation of the system, have become of
great interest. A comprehensive overview on membrane systems (P systems)
is given in the monograph [19]. An actual catalogue of publications and open
questions is available on the web [13].

P systems with symport/antiport first were introduced in [14]; new results on
this kind of membrane systems can be found in [9], [10], [15], [16], and [20]. In-
dependently, several new results comparable with those eloborated in this paper
for P systems with symport/antiport were obtained in [8], where the proofs are
based on results for the model of counter automata (just another name for the
register machines we use in this paper); instead, the proof for the correspond-
ing result on P systems with symport rules given in this paper is based on the
Z-binary normal form for matrix grammars.

In [23] and [24] another variant of purely communicating P systems was intro-
duced; whereas in the universality proof given in [23], no bound on the number
of membranes was given, we now show that the simplest membrane structure
is sufficient. Moreover, we show how communicating P systems with only one
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membrane can be interpreted as P systems with symport/antiport, which allows
us to establish optimal universality results for P systems with symport/antiport
as a consequence of the corresponding optimal (with respect to the number
of membranes) universality result for communicating P systems; independently,
these optimal universality results for P systems with symport/antiport have been
shown in [5] and [8].

2 Preliminaries

Before proceeding to a formal description of register machines and matrix gram-
mars, we fix some basic notations first. For an alphabet V , by V ∗ we denote the
free monoid generated by V under the operation of concatenation; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. Any subset of V + is
called a λ-free (string) language. Moreover, by N0 we denote the set of non-
negative integers and by Nβ

0 RE (Nβ
1 RE) we denote the family of recursively

enumerable sets of β-vectors (y1, ..., yβ) of non-negative (positive) integers. The
family of recursively enumerable languages is denoted by RE.

In the following we will not distinguish between a vector (y1, ..., yβ) , its
representation by a multiset or its representation by a string with Parikh vector
(y1, ..., yβ) .

For more notions as well as basic results from the theory of formal languages,
the reader is referred to [3], [11], and [22].

2.1 Register Machines

In this subsection we briefly recall the concept of Minsky’s register machine.
Minsky showed (e.g., see [12]) that the universal computational power can be
reached by such an abstract machine using a finite number of registers for storing
arbitrarily large non-negative integers. The machine runs a program consisting
of numbered instructions of several simple types. Several variants of the machine
with different number of registers and different instruction sets were shown to
be computationally universal (e.g., see [12] for some original definitions and [4]
for the definitions we use in this paper).

An n-register machine is a construct M = (n, P, i, h) , where:

– n is the number of registers,
– P is a set of labelled instructions of the form j : (op (r) , k, l), where op (r)

is an operation on register r of M , j, k, l are labels from the set Lab (M)
(which numbers the instructions in a one-to-one manner),

– i is the initial label, and
– h is the final label.

The machine is capable of the following instructions:

(A(r),k,l) Add one to the contents of register r and proceed to instruction k
or to instruction l; in the deterministic variants usually considered in the
literature we demand k = l.
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(S(r),k,l) If register r is not empty, then subtract one from its contents and go
to instruction k, otherwise proceed to instruction l.

HALT Stop the machine. This additional instruction can only be assigned to
the final label h.

In their deterministic variant, such n-register machines can be used to com-
pute any partial recursive function f : Nα

0 → Nβ
0 ; starting with (n1, ..., nα) ∈ Nα

0
in registers 1 to α, M has computed f (n1, ..., nα) = (r1, ..., rβ) if it halts in the
final label h with registers 1 to β containing r1 to rβ . If the final label cannot
be reached, then f (n1, ..., nα) remains undefined.

A deterministic n-register machine can also analyse an input (n1, ..., nα) ∈
Nα

0 in registers 1 to α, which is recognized if the register machine finally stops
by the halt instruction with all its registers being empty. If the machine does
not halt, then the analysis was not successful.

In their non-deterministic variant, n-register machines can compute any re-
cursively enumerable set of non-negative integers (or of vectors of non-negative
integers). Starting with all registers being empty, we consider a computation of
the n-register machine to be successful, if it halts with the result being contained
in the first (β) register(s) and with all other registers being empty.

The results proved in [4] (based on the results established in [12]) as well as
in [6] and [7] immediately lead us to the following results:

Proposition 1. For any partial recursive function f : Nα
0 → Nβ

0 there exists a
deterministic (max {α, β} + 2)-register machine M computing f in such a way
that, when starting with (n1, ..., nα) ∈ Nα

0 in registers 1 to α, M has computed
f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label h with registers 1 to β
containing r1 to rβ (and with all other registers being empty); if the final label
cannot be reached, then f (n1, ..., nα) remains undefined.

Proposition 2. For any recursively enumerable set L ⊆ Nβ
0 of vectors of non-

negative integers there exists a non-deterministic (β + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to β+2 being
empty, M non-deterministically halts with ni in registers i, 1 ≤ i ≤ β, and
registers β + 1 and β + 2 being empty if and only if (n1, ..., nβ) ∈ L.

2.2 Matrix Grammars

In this subsection we recall the Z-binary normal form for matrix grammars,
which will be used in some of the following universality proofs.

Consider a matrix grammar with appearance checking G = (N,T, S,M,F ) ,
where N and T are the sets of terminal and non-terminal symbols, respectively,
S is the start symbol, M is the set of matrices, and F is the set of productions
that can be used in the appearance checking mode. We say that G is in the
Z-binary normal form if N = N1 ∪ N2 ∪ {S,Z,#}, with these three sets being
mutually disjoint, and the matrices in M are in one of the following forms:
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1. (S → XA) , with X ∈ N1, A ∈ N2,

2. (X → Y,A → x) , with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗ , |x| ≤ 2,
3. (X → Y,A → #) , with X ∈ N1, Y ∈ N1 ∪ {Z} , A ∈ N2,
4. (Z → λ).

Moreover, there is only one matrix of type 1, F consists exactly of all rules
A → # appearing in matrices of type 3, and, if a sentential form generated by
G contains the symbol Z, then it is of the form Zw, for some w ∈ (T ∪ {#})∗
(that is, the appearance of Z makes sure that, except for Z, all symbols are
either terminal or the trap symbol #). The (unique) matrix of type 4 is used
only once, in the last step of a derivation. Finally, at most three non-terminal
symbols are used in the appearance checking mode.

The following propositions are consequences of the results elaborated in [4],
[6], and [7]:

Proposition 3. For each language L ∈ RE there is a matrix grammar with
appearance checking G in the Z-binary normal form such that L = L (G).

Proposition 4. For each set L ∈ Nβ
0 RE there is a matrix grammar with ap-

pearance checking G in the Z-binary normal form such that L(G) is a represen-
tation of L.

In several of the following proofs we will start from matrix grammars in the
Z-binary normal form. In order not to repeat the same notations, we consider
the following representation (notations and labelling) for such grammars:

A matrix grammar with appearance checking in the Z-binary normal form
is always given as G = (N,T, S,M,F ), with N = N1 ∪ N2 ∪ {S,Z,#}, and
with n + 2 matrices in M , injectively labelled with m0,m1, . . . ,mn,mn+1; the
matrix (of type 1) m0 : (S → XinitAinit) is the initial one, with Xinit a given
symbol from N1 and Ainit a given symbol from N2; the next k matrices (of
type 2) contain only rules without appearance checking, mi : (X → Y,A → x),
1 ≤ i ≤ k, where X,Y ∈ N1, and A ∈ N2, x ∈ (N2 ∪ T )∗ , |x| ≤ 2; the next n−k
matrices (of type 3) have rules to be applied in the appearance checking mode,
mi : (X → Y,A → #) , k + 1 ≤ i ≤ n, with X ∈ N1, Y ∈ N1 ∪ {Z} , A ∈ N2.
Finally, mn+1 : (Z → λ) is the unique terminal matrix (of type 4).

Thus, when we will say “a matrix grammar in the Z-binary normal form,
with the standard notations/representation” we will mean the notations and the
conventions given here.

3 Membrane Systems with Symport/Antiport Rules

In this section we recall the definition of P systems with symport/antiport as
introduced in [14]. After having recalled several results known so far for this
model of P systems we show how some of these results can be improved.
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3.1 P Systems with Symport/Antiport

We assume the reader to have some familiarity with membrane computing, so
we do not recall the few basic notions from this area used here. For details we
refer the interested reader to the monographs [2], [19] and to the P Systems Web
Page [13].

We start from the biological observation that there are many cases where
two chemicals pass at the same time through a membrane, with the help of each
other, either in the same direction, or in opposite directions; in the first case we
say that we have symport, in the second case we have antiport (we refer to [1]
for details).

Mathematically, we can capture the idea of symport by considering rules of
the form (ab, in) and (ab, out) associated with a membrane, and stating that the
objects a, b can enter, respectively, exit the membrane together. For antiport we
consider rules of the form (a, out; b, in), stating that a exits and at the same time
b enters the membrane. Generalizing such kinds of rules, we can consider rules of
the unrestricted forms (x, in) , (x, out) (generalized symport) and (x, out; y, in)
(generalized antiport), where x, y are non-empty strings representing multisets
of objects, without any restriction on the length of these strings.

Based on rules of this types, in [14] we find P systems with symport/antiport
as constructs

Π = (V, μ,w1, . . . , wm, E,R1, . . . , Rm, io) ,

where:

1. V is an alphabet (its elements are called objects);
2. μ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) injectively labelled with 1, 2, . . . ,m; m is called the
degree of Π;

3. wi, 1 ≤ i ≤ m, are strings over V representing multisets of objects associated
with the regions 1, 2, . . . ,m of μ, present in the system at the beginning of
a computation;

4. E ⊆ V is the set of objects which are supposed to continuously appear in
the environment in arbitrarily many copies;

5. R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet
V associated with the membranes 1, 2, . . . ,m of μ;

6. io is the label of an elementary membrane of μ (the output membrane).

For a symport rule (x, in) or (x, out), we say that |x| is the weight (or radius)
of the rule. The weight of an antiport rule (x, out; y, in) is max {|x| , |y|}, its
radius is (|x| , |y|) .

The rules from a set Ri are used with respect to membrane i as explained
above. In the case of (x, in), the multiset of objects x enters the region defined
by the membrane, from the surrounding region, which is the environment when
the rule is associated with the skin membrane. In the case of (x, out), the objects
specified by x are sent out of membrane i, into the surrounding region; in the case
of the skin membrane, this is the environment. The use of a rule (x, out; y, in)
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means expelling the objects specified by x from membrane i at the same time
with bringing the objects specified by y into membrane i. The objects from E
(in the environment) are supposed to appear in arbitrarily many copies; since
we only move objects from a membrane to another membrane and do not create
new objects in the system, we need a supply of objects in order to compute with
arbitrarily large multisets. The rules are used in the non-deterministic maximally
parallel manner specific to P systems with symbol objects.

In this way, we obtain transitions between the configurations of the system.
A configuration is described by the m-tuple of the multisets of objects present in
the m regions of the system, as well as the multiset of objects from V \E which
were sent out of the system during the computation; it is important to keep
track of such objects because they appear only in a finite number of copies in
the initial configuration and can enter the system again. On the other hand, it is
not necessary to take care of the objects from E which leave the system because
they appear in arbitrarily many copies in the environment as defined before (the
environment is supposed to be inexhaustible, irrespective how many copies of
an object from E are introduced into the system, still arbitrarily many remain
in the environment). The initial configuration is (w1, . . . , wm, λ) . A sequence of
transitions is called a computation.

With any halting computation, we may associate an output of the system
Π represented by the numbers of objects from V present in membrane io in the
halting configuration; these numbers of objects give rise to several variants of
interpretation: In the original definition presented in [14], the total number of ob-
jects was considered the output computed by the system Π and was denoted by
N (Π). Now, for V = {a1, . . . , an} and every γ with γ ≤ n, let Vγ = {a1, . . . , aγ} ;
then we may distinguish between these first γ objects from V and consider the
set of vectors of numbers of objects from Vγ (or equivalently, the set of multi-
sets over Vγ) in a halting computation of the system Π as its result, provided
that any halting computation of Π ends up with only objects from Vγ in the
output membrane; these sets of vectors (multisets) then are denoted by Nγ (Π).
The families of all sets N (Π) and Nγ (Π) computed by systems Π of degree
at most m ≥ 1, using symport rules of weight at most p and antiport rules of
weight at most q, are denoted by NPm (symp, antiq) and NγPm (symp, antiq),
respectively; when any of the parameters m, p, q is not bounded, we replace it
with ∗.

3.2 Previous Universality Results for P Systems
with Symport/Antiport

P systems with symport/antiport rules were already considered in several papers,
e.g., see [9], [10], [14], [15], [16], [20]. We now recall some of the universality
results from these papers, without proofs. Observe that usually only sets of non-
negative (positive) integers instead of the more general case of sets of vectors of
non-negative (positive) integers are considered there.

First, we mention a universality result for P systems using both symport
rules as well as antiport rules:
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Theorem 1. NP2 (sym2, anti2) = N1
0RE.

At the price of using more membranes, one can eliminate the antiport rules:

Theorem 2. NP5 (sym2, anti0) = N1
0RE.

The number of membranes can be reduced at the expense of using symport
rules of a larger weight (and no antiport rule). In fact, a trade-off relation seems
to exist between the number of membranes and the weight of symport rules
necessary for obtaining computational universality.

Theorem 3. NP3 (sym4, anti0) = NP2 (sym5, anti0) = N1
0RE.

At first sight, antiport rules are a generalization of symport rules, because a
rule (u, out) can be transformed into (u, out; d, in), where d is a dummy object,
and the same for rules (u, in). Actually, this is not true, as it is clear that no
system Π using only antiport rules can compute both the number zero and any
non-zero number. However, all recursively enumerable sets of positive numbers,
i.e., N1

1RE, can be computed by P systems using only antiport rules. Throughout
the rest of the paper, we will not take into account this singleton set representing
the number zero any more when dealing with families of sets computed by P
systems using only antiport rules.

Theorem 4. NP3 (sym0, anti2) = N1
1RE.

The number of membranes used in Theorem 2 for characterizing N1
0RE can

be reduced if the symport rules have permitting or forbidding context conditions
(promoting or inhibiting objects). A symport rule with a permitting condition is
given in the form (x, in)a , (x, out)a, where a is an object; this object should be
present in membrane i when a rule (x, in)a , (x, out)a is applied (in the second
case, a should not be an element of x). A symport rule with a forbidding condition
is given in the form (x, in)¬a , (x, out)¬a and such a rule can be used only if object
a is not present in the membrane where the rule is applied.

The use of permitting (forbidding) conditions is indicated by replacing sym
by psym (fsym, respectively) in the notation NPm (symp, antiq).

Theorem 5. NP3 (psym2, anti0) = NP3 (fsym2, anti0) = N1
0RE.

3.3 Improvements of Previous Results for P Systems
with Symport/Antiport

We will now present the new results obtained in this paper. We first improve
Theorem 3; we actually improve both relations in the theorem; en passant, we
also extend the result from sets of non-negative integers to sets of vectors of
non-negative integers:

Theorem 6. For every β ≥ 1, NβP2 (sym3, anti0) = Nβ
0 RE.
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Proof. We only have to prove NβP2 (sym3, anti0) ⊇ Nβ
0 RE. For that purpose,

let us consider a matrix grammar with appearance checking G = (N,T, S,M,F )
in the Z-binary normal form with the standard notations/representation such
that T = {ai | 1 ≤ i ≤ β}; we now construct the following P system of degree 2
with symport rules of weight ≤ 3:

Π = (V, [1[2 ]2]1, w1, λ, E,R1, R2, 2) ,
V = T ∪N1 ∪N2 ∪ {di, d

′
i, d

′′
i | 1 ≤ i ≤ n} ∪ {A′ | A ∈ N2} ∪ {b, c, Z,#} ,

w1 = XinitAinitbcd1d2 . . . dnd
′′
1d
′′
2 . . . d

′′
n,

E = N1 ∪N2 ∪ T ∪ {d′i | 1 ≤ i ≤ n} ∪ {A′ | A ∈ N2} ∪ {Z,#} ,
R1 = {(diXA, out) , (did

′
iα1, in) , (d′id

′′
i , out) , (d′′i Y α2, in) | for

mi : (X → Y,A → α1α2) , 1 ≤ i ≤ k, with
X,Y ∈ N1, A ∈ N2, α1, α2 ∈ N2 ∪ T ∪ {λ}}

∪ {(diX, out) , (did
′
iA
′, in) , (d′id

′′
i , out) , (d′′i Y A′, in) | for

mi : (X → Y,A → #) , k + 1 ≤ i ≤ n, with
X,Y ∈ N1 ∪ {Z} , A ∈ N2}

∪ {(A′Ab, out) , (A′A′, out) | A ∈ N2} ∪ {(b#, in) , (cZ, out)} ,
R2 = {(a, in) | a ∈ T} ∪ {(#, in) , (#, out) , (c, in) , (c, out)} .

We now show that every derivation in G can be simulated by a halting
computation in Π, the result showing up in membrane 2, and that the result of
any halting computation in Π corresponds to the result of a terminal derivation
in G.

“L (G) ⊆ Nβ (Π)”

Let us consider a successful derivation in G generating some w ∈ T ∗:

S =⇒ XinitAinit =⇒ . . . =⇒ Zw =⇒ w.

We can simulate this derivation in Π in the following way: Initially we already
have XinitAinit (i.e., we have already simulated the unique start matrix from G)
in membrane 1; there we will simulate all the (other) matrices from G. Let us
consider a matrix mi : (X → Y,A → α1α2) of type 2 from G, for which we have
the following symport rules in Π:

1. (diXA, out) checks that both X and A appear in membrane 1; using
2. (did

′
iα1, in) then di will come back together with α1 (i.e., the first half of

the right side of production A → α1α2) as well as d′i, which by
3. (d′id

′′
i , out) is sent out together with d′′i , which by

4. (d′′i Y α2, in) comes back into the skin membrane together with Y and the
second half of the right side of production A → α1α2.

So after these four steps we have replaced X by Y and A by α1α2, whereas
all the other symbols have remained in the same regions as before; hence, the
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matrix of type 2 was simulated correctly. Observe that α1 or α2 or even both
may be the empty word λ.

For the simulation of a matrix mi : (X → Y,A → #) of type 3 (i.e., those
working in the appearance checking manner) we have the following symport rules
in Π:

1. (diX, out) starts the simulation by expelling di together with X; by using
2. (did

′
iA
′, in) then di returns together with d′i and A′.

A′ performs the appearance checking for A, i.e., if A is present, then by using
the rule (A′Ab, out) both A′ and A will be expelled together with b, which
will return into the skin membrane together with the trap symbol # in the
next step by the rule (b#, in). If, in the desired case, A is not present in the
system, then after the application of the rule

3. (d′id
′′
i , out), the next rule

4. (d′′i Y A′, in) allows d′′i to return into the skin membrane together with Y and
A′; the rule

5. (A′A′, out) then finishes the correct simulation of the application of the ma-
trix mi : (X → Y,A → #) of type 3 from G.

If A originally has not been present, we have correctly simulated the appli-
cation of the matrix mi : (X → Y,A → #) - X has been replaced by Y , and
the system has checked for the appearance of A. On the other hand, if A had
been present, the computation would have been “killed” by bringing in the trap
symbol #, thus the computation would never end.

It is clear now that we can iterate these steps simulating any matrix of type
2 and type 3 from G in Π. At the end of the simulation of a derivation in G,
Z leaves the system together with c, and no other rules can be applied any
more (unless # is present). Hence, we have reached a halting computation with
the result of the simulated derivation in the matrix grammar G being stored in
membrane 2, which proves L (G) ⊆ Nβ (Π) .

“L (G) ⊇ Nβ (Π)”
It is easy to see that we cannot simulate more than one matrix at one time

because in membrane 1 we always have at most one non-terminal symbol from
N1 (initially we have Xinit, and the matrices from the matrix grammar do not
increase the number of the non-terminal symbols from N1); while simulating a
matrix we make sure that we bring in the non-terminal from N1 at the end of
the simulation step, so that we cannot start the simulation of another matrix
before the previous steps have been completed.

Hence, at one specific moment of computation, only one matrix rule involving
a non-terminal symbol from N1 can be applied, meaning that at most one di

can be outside of the system at this moment, which implies that we will have at
most one d′i inside the system and at most one d′′i outside the system.

It is clear now that the simulation of matrices of type 2 from G does not
introduce “bad” symbols. Matrices of type 3 differ by the fact that if A is present
in the membrane when the first A′ is brought in (by d′i), then they exit together
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using (AA′b, out) so that the trap symbol # enters the system by (b#, in). Even
though later d′′i brings in a second copy of A′ which will remain there and
might create problems with further simulations, the computation will never stop
because # will not exit the system, continuously moving between membranes 1
and 2.

The last observation we make is that, to reach a halting configuration, c and
# have to be absent from the system; c is initially present and leaves the system
only together with Z; but if Z is present this means that the derivation in G
was terminal (except for possible occurrences of the trap symbol #), no other
symbols from N1 ∪N2 are present. If # is present, then the system will not halt;
yet if # is not present, then the derivation in G is terminal and the computation
in Π halts. Hence, we have proved Nβ (Π) ⊆ L (G) , too. 
�

Corollary 1. NP2 (sym3, anti0) = N1
0RE.

4 Communicating P Systems

We now consider another variant of P Systems, the so-called communicating P
systems as defined in [24]. The difference between the previous model and this
one is that now we do not use symport/antiport rules, but purely communicating
rules of quite similar types.

4.1 Definition of Communicating P Systems

A communicating P system is a P system

Π = (V, μ,w1, . . . , wm, E,R1, . . . , Rm, io) ,

where every Ri contains only the following types of rules: a → aτ , ab → aτ1bτ2 ,
ab → aτ1bτ2ccome, where a, b, c ∈ V, τ, τ1, τ2 ∈ {here, in, out}. The rest of the
“ingredients” of a communicating P system are the same as in the variant dis-
cussed in section 3.

Let us explain now the use of these new types of rules. The objects follow their
target indication (one can easily see that we do not create or destroy objects,
we just move them around). If the target says “here”, then that object will
remain in the same region (we will omit this target indication from now on; so
the objects that remain in the same region will not have any target indication).
If the target indication is “in”, then the object goes in a “directly enclosed”
region; to be able to apply this rule there must be at least one membrane inside.
If the target says “out”, then that object is expelled from the current region into
the surrounding one, or into the environment if the rule is applied in the skin
membrane. Finally the target indication “come” can only be used if a rule of the
form ab → aτ1bτ2ccome appears in the skin membrane, and by applying this rule,
the object with that target “come” is “imported” through the skin membrane
from the environment (and thus will become an element of the skin membrane).
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As before, such a system works in a non-deterministic maximally parallel
manner until no rules can be applied any more. When the system halts, the
result of the computation is found in the output membrane io defined in Π.

4.2 The Universality of Communicating P Systems

Our first construction improves a result from [24] where the number of mem-
branes was not fixed; as in [24], the proof is based on results for register machines
(see Minsky [12]) using Proposition 1.

Theorem 7. Any partial recursive function f : Nα
0 → Nβ

0 can be computed by
a communicating P system with only one membrane.

Proof. Let m = max {α, β} + 2. According to Proposition 1 there exists a de-
terministic m-register machine M = (m,P, 1, n) computing f in such a way
that, when starting with (n1, ..., nα) ∈ Nα

0 in registers 1 to α, M has com-
puted f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label n with registers 1
to β containing r1 to rβ (and with all other registers being empty); if the final
label cannot be reached, f (n1, ..., nα) remains undefined. We now construct a
communicating P system simulating this particular m-register machine with n
instructions (for the sake of better readability, we attach the target indications
“out” and “come” as second index to indexed variables, e.g., we write ar,come

instead of arcome):

Π = (V, [1 ]1, w1, E,R1 ∪R2 ∪R3 ∪R4, 1) ,
V = {ai | 1 ≤ i ≤ m} ∪ {c, d,#, n, n′} ,

∪ {j, j′, j′′ | j : (A (r) , k, k) ∈ P, 1 ≤ j < n, 1 ≤ r ≤ m, 1 ≤ k ≤ n}
∪ {j, j′, j′′, j′′′, jiv | j : (S (r) , k, l) ∈ P, 1 ≤ j < n, 1 ≤ r ≤ m, 1 ≤ k, l ≤ n

}
,

w1 = 1cd,
E = V,

R1 = {jc → jcj′come, j′d → j′outdout#come, jj′ → joutj
′j′′come,

j′j′′ → j′outj
′′ar,come, j′′c → j′′outckcome |

1 ≤ j < n, j : (A (r) , k, k) ∈ P, 1 ≤ r ≤ m, 1 ≤ k ≤ n} ,
R2 = {jar → joutar,outkcome, jc → jcj′come, j′d → j′outdout#come,

jj′ → joutj
′j′′come, j′j′′ → j′outj

′′j′′′come, j′′c → j′′outcj
iv
come,

j′′′ar → j′′′outar,out#come, j′′′jiv → j′′′outj
iv
outlcome |

1 ≤ j < n, j : (S (r) , k, l) ∈ P, 1 ≤ r ≤ m, 1 ≤ k, l ≤ n} ,
R3 = {nc → noutcoutn

′
come, n′d → n′outdout} ,

R4 = {# → #} .
Let us now see how the communicating P system Π simulates the determin-

istic register machine M .

With the rules from R1 we simulate all the ADD instructions from the given
register machine M : For such a rule j : (A (r) , k, k) we first bring in j′ into
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the system using jc → jcj′come; this rule could be used again at the next step
bringing another copy of j′ into the system, but then, the previous copy of j′

would have to use the rule j′d → j′outdout#come and the computation would
never finish because of the presence of the trap symbol #. So, it is clear that
the rule jc → jcj′come should be applied only once if we want to obtain a halting
computation. In the next step j and j′ together use jj′ → joutj

′j′′come, which
brings in a copy of j′′ at the same time when j is expelled. If at this moment j′

uses the rule j′d → j′outdout#come, we again “loose” the computation, so j′ and
j′′ have to continue together using the rule j′j′′ → j′outj

′′ar,come, which sends
out j′ and at the same time brings in ar; in this way we increase register r.
We have to finish the simulation of j : (A (r) , k, k) by replacing j′′ with k using
j′′c → j′′outckcome.

A SUBTRACT instruction j : (S (r) , k, l) is simulated by using rules from
R2: If we can use the rule jar → joutar,outkcome, then this means that the
contents of register r was not zero, so the rule was simulated correctly in this case.
Suppose that instead we use the rule jc → jcj′come (which starts the simulation
of the case when register r is empty); as before, if the newly introduced symbol
j′ is used by the rule j′d → j′outdout#come, then the computation is lost, so to
get a result in a halting computation j′ has to be used together with j by the
rule jj′ → joutj

′j′′come, and again – to avoid a “disaster” – j′ has to be used
together with j′′ by the rule j′j′′ → j′outj

′′j′′′come. At this moment we have j′′,
j′′′, c, d in our system together with the symbols ai representing the contents
of the registers. Now j′′′ will just check whether register r is really empty; if
this is not true, then the rule j′′′ar → j′′′outar,out#come can (and will) be applied
thus “killing” the computation. At the same time j′′ brings in jiv with the rule
j′′c → j′′outcj

iv
come; the simulation of the SUBTRACT instruction j : (S (r) , k, l)

correctly can be finished by the application of the rule j′′′jiv → j′′′outj
iv
outlcome.

One can easily see that we can iterate these steps since we always return to a
configuration in which we have one instruction label, c, d as well as the symbols
ai representing the contents of the registers in the skin membrane.

At the end we simulate the HALT instruction n : HALT using the “clean-up”
rules nc → noutcoutn

′
come and n′d → n′outdout from R3; thus, only the symbols

ai representing the contents of the output registers finally remain in the skin
membrane. 
�

Remark 1. The following theorem directly follows from Proposition 2 as The-
orem 7 followed from Proposition 1; for the simulation of a non-deterministic
ADD instruction j : (A (r) , k, l), we only have to add an additional rule j′′c →
j′′outclcome for the second label l in the set R1.

We will give another proof of this universality result based on the simulation
of matrix grammars with appearance checking (in the Z-binary normal form),
because the constructions given in the proof seem to be quite interesting for
themselves when compared with other proofs in the area of membrane systems:

Theorem 8. Any set L ∈ Nβ
0 RE can be computed by a communicating P system

with only one membrane.
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Proof. Let us consider the terminal alphabet T = {ai | 1 ≤ i ≤ β} and a matrix
grammar with appearance checking G = (N,T, S,M,F ) in the Z-binary normal
form with the standard notations/representation which generates L; we now
construct the following communicating P system of degree 1 which computes
(generates) L:

Π = {V, [1 ]1, w1, E,R1 ∪R2 ∪R3 ∪R4, 1} ,
V = T ∪N1 ∪N2 ∪ {c, d,#, Z} ∪ {X ′, X ′′, X | X ∈ N1 ∪ {Z}}

∪ {A′Y , A′′Y , A′′′Y | A ∈ N2, Y ∈ N1 ∪ {Z}} ∪ {A | A ∈ N2
}
,

w1 = XinitAinitcd,

E = V,

R1 = {Xc → XcX ′
come, X ′d → X ′

outdout#come, XX ′ → XoutX
′X ′′

come,

X ′X ′′ → X ′
outX

′′α1,come, X ′′c → X ′′
outcA

′
Y,come, A′Y c → A′Y cA′′Y,come,

A′′Y d → A′′Y,outdout#come, A′Y A′′Y → A′Y,outA
′′
Y A′′′Y,come,

A′′Y A′′′Y → A′′Y,outA
′′′
Y α2,come, A′′′Y A → A′′′Y,outAoutYcome |

mi : (X → Y,A → α1α2) , 1 ≤ i ≤ k,

X, Y ∈ N1, A ∈ N2, α1, α2 ∈ N2 ∪ T ∪ {λ}}
∪ {A′′′Y c → A′′′Y,outcout#come | A ∈ N2, Y ∈ N1

}
,

R2 = {Xc → XcX ′
come, X ′d → X ′

outdout#come,

XX ′ → XoutX
′X ′′

come, X ′X ′′ → X ′
outX

′′Acome,

AA → AoutAout#come, X ′′c → X ′′
outcY come,

Y A → Y outAoutYcome | mi : (X → Y,A → #),
k + 1 ≤ i ≤ n, X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2} ,

R3 = {Zc → ZoutcoutZ
′
come, Z ′d → Z ′outdout} ,

R4 = {# → #} .
The communicating P system Π works in the following way.
Initially we have XinitAinit in the skin membrane, and thus we have already

simulated the unique rule of type 1 from the matrix grammar G.
For a matrix (X → Y,A → α1α2) of type 2 from G we perform the corre-

sponding rules from R1, and for a matrix (X → Y,A → #) of type 3 from G we
perform the corresponding rules from R2.

We will not go into the details of the construction since we used similar ideas
as in the previous proof, so we leave these verifications to the reader. On the
other hand, some small observations seem to be necessary. We always have rules
that check the correctness of the simulation, and in case the simulation does not
follow a correct path, the trap symbol # is brought into the system and never
leaves it again, hence, the system will never halt, because the rule # → # from
R4 is always applicable to the trap symbol #.

The simulation of a matrix (X → Y,A → α1α2) has the following main steps:
We replace X by α1 and A′Y , then A′Y is replaced by A′′′Y and α2; A′′′Y exits
together with A and brings in Y . Observe that α1 or α2 or even both may
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be the empty word λ; in these cases, we have to replace the rule X ′X ′′ →
X ′

outX
′′α1,come by X ′X ′′ → X ′

outX
′′ or/and the rule A′′Y A′′′Y → A′′Y,outA

′′′
Y α2,come

by A′′Y A′′′Y → A′′Y,outA
′′′
Y in R1.

The simulation of a matrix (X → Y,A → #) is performed by the following
steps: We replace X by A and Y ; since A comes before Y , it can check whether
A is present in the system by the rule AA → AoutAout#come; if this is not the
case, then A can exit together with Y bringing in Y .

We finish the computation by using the rules from R3 because in that moment
(since Z appeared in the system) we have only terminal symbols from T in the
skin membrane, the special symbols c, d and, maybe, some trap symbols #. If
# is present, then the computation will never finish (because of the rule # → #
in R4); on the other hand, if # is not present, then the system halts after the
application of the two rules from R3.

A computation in the communicating P system Π halts (yielding the same
result as the corresponding derivation in G) if and only if the applications of
the matrices from G in a terminal derivation in G have been simulated correctly
(this is ensured by the final appearance of Z and from the definition of the Z-
binary normal form). 
�

4.3 Interpreting Communicating P Systems
with Only One Membrane as P Systems with Symport/Antiport

Returning to the proof of Theorem 7, we realize the surprising fact that commu-
nicating P systems with the simplest membrane structure allow for an immediate
interpretation as P systems with symport/antiport, because the skin membrane
includes no inner membrane, so that the target indication “in” cannot occur in
the rules of such a simple communicating P system.

The following table shows how the remaining variants of rules in a commu-
nicating P system with only one membrane can be written as symport/antiport
rules:

communicating P system P system with symport/antiport
a → a (a, out; a, in)
a → aout (a, out)
ab → ab (ab, out; ab, in)
ab → aoutb (ab, out; b, in)
ab → aoutbout (ab, out)
ab → abccome (ab, out; abc, in)
ab → aoutbccome (ab, out; bc, in)
ab → aoutboutccome (ab, out; c, in)

In order to obtain an optimal improvement of Theorem 1 and Theorem 4
we need some more technical details as they are elaborated in the proof of the
following theorem:

Theorem 9. Any partial recursive function f : Nα
0 → Nβ

0 can be computed by
a P system with symport/antiport rules that consists of the simplest membrane
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structure and only uses antiport rules of the form (x, out; y, in) with the radius
of the rules being (2, 1) or (1, 2) , respectively, and only one single symport rule
of radius 1.

Proof. Translating the construction of the communicating P system in the proof
of Theorem 7 according to the table given above and taking into account some
further technical details explained below, we immediately get the following P
system with symport/antiport:

Π = (V, [1 ]1, w1, E,R1 ∪R2 ∪R3 ∪R4, 1) ,
V = {ai | 1 ≤ i ≤ m} ∪ {c, d,#,#′,#′′, n, n′, n′′} ,

∪ {j, j′, j′′ | j : (A (r) , k, k) ∈ P, 1 ≤ j < n, 1 ≤ r ≤ m, 1 ≤ k ≤ n}
∪ {j, j′, j′′, j′′′, jiv | j : (S (r) , k, l) ∈ P, 1 ≤ j < n, 1 ≤ r ≤ m, 1 ≤ k, l ≤ n

}
,

w1 = 1cd,
E = V,

R1 = {(j, out; jj′, in) , (j′d, out; #, in) , (jj′, out; j′j′′, in) ,
(j′j′′, out; j′′ar) , (j′′c, out; ck, in) |
1 ≤ j < n, j : (A (r) , k, k) ∈ P, 1 ≤ r ≤ m, 1 ≤ k ≤ n} ,

R2 = {(jar, out; k, in) , (j, out; jj′, in) , (j′d, out; #, in) ,
(jj′, out; j′j′′, in) , (j′j′′, out; j′′j′′′) ,

(
j′′c, out; cjiv, in

)
,

(j′′′ar, out; #, in) ,
(
j′′′jiv, out; l, in

) |
1 ≤ j < n, j : (S (r) , k, l) ∈ P, 1 ≤ r ≤ m, 1 ≤ k, l ≤ n} ,

R3 = {(nc, out;n′, in) , (n′d, out;n′′, in) , (n′′, out)} ,
R4 = {(#, out; #′#′′, in) , (#′#′′, out; #, in)} .

So far, we have taken into account the following changes in order to obtain
the desired constraints for the P system with symport/antiport:

– The rules jc → jcj′come, 1 ≤ j < n, were not replaced by the antiport
rules (jc, out; jcj′, in) with weight 3, but instead could simply be replaced
by the antiport rules (j, out; jj′, in) with radius (1, 2), because the symbol c
was only acting as a sort of “dummy catalyst” just in order to obey to the
special form of rules in communicating P systems.

– The rule n′d → n′outdout was not replaced by the symport rule (n′d, out)
with weight 2, but instead by the antiport rule (n′d, out;n′′, in) with radius
(2, 1) and the (single) symport rule (n′′, out) with weight 1.

– The rule # → # was not replaced by the antiport rule (#, out; #, in) with
radius (1, 1) , but instead by the two antiport rules (#, out; #′#′′, in) and
(#′#′′, out; #, in) with radius (1, 2) and (2, 1) , respectively.

The only rules not yet obeying to the desired constraints are of the form
(ab, out; bc, in) with radius (2, 2) . If we considered only the weight of the rules,
we would already be finished. Yet each of these rules can be replaced by the two
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antiport rules (ab, out;xbc, in) and (xbc, out; bc, in) using a new symbol xbc; these
antiport rules now have the desired radius (2, 1) and (1, 2) , respectively. In that
way, from the P system with symport/antiport Π we obtain a P system with
symport/antiport Π ′ obeying to all the constraints required in the theorem. The
remaining details of the proof are obvious and therefore left to the reader. 
�

We should like to mention that due to the special constraints for the rules
in communicating P systems, the P system with symport/antiport constructed
in the preceding theorem is not as simple as it could be, e.g., for simulating the
ADD instruction j : (A (r) , k, k) we would only need the single antiport rule
(j, out; ark, in) in R1. The task to reduce the number of rules in R2 is left to the
reader.

Theorem 10. Any set L ∈ Nβ
0 RE can be computed by a P system with sym-

port/antiport rules that consists of the simplest membrane structure and only
uses antiport rules of the form (x, out; y, in) with the radius of the rules being
(2, 1) or (1, 2) , respectively, and only one single symport rule of radius 1.

Proof. The result directly follows from Theorem 9 and Remark 1. 
�
The following result is a direct consequence of the preceding theorem and

considerably improves Theorem 1:

Corollary 2. NP1 (sym1, anti2) = N1P1 (sym1, anti2) = N1
0RE.

If we want to avoid the symport rule used in the last step of a computation
of the P system with symport/antiport constructed in the proof of Theorem 9,
we have to pay the price that at least one terminal symbol appears as the result
of the computation, e.g., we may replace the rules (n′d, out;n′′, in) and (n′′, out)
by the antiport rule (n′d, out; a1, in) thus avoiding the symport rule (n′′, out) ,
which proves the following result:

Theorem 11. Any partial recursive function f : Nα
0 → N1×Nβ−1

0 can be com-
puted by a P system with antiport rules that consists of the simplest membrane
structure and only uses antiport rules of the form (x, out; y, in) with the radius
of the rules being (2, 1) or (1, 2) , respectively.

As an immediate consequence of the preceding theorem we obtain the fol-
lowing optimal improvement of Theorem 4:

Corollary 3. NP1 (sym0, anti2) = N1P1 (sym0, anti2) = N1
1RE.

The P systems with antiport rules considered in Corollary 3 are not only
optimal with respect to the number of membranes but also with respect to the
radius of the rules used in the system: Using only rules with radius (1, 1) and
(2, 1) in the simplest membrane structure we only get finite sets of non-negative
integers. If we only allow rules with radius (1, 1) and (1, 2) we at most get sets
of non-negative integers representing monotonic one-letter languages.

We finally want to point out that, independently, similar improvements for
P systems with symport/antiport as established in Corollaries 2 and 3 were
achieved in [5] and [8], too.
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5 Conclusions

We succeeded in improving some previous results for P systems with sym-
port/antiport: For obtaining universal computational power for P systems with
symport rules only, we could decrease the number of membranes to two and the
upper bound for the number of symbols needed in the symport rules to three. It
remains as an interesting open question whether the results for P systems with
symport obtained so far still can be improved (observe that there seems to be a
trade-off between the number of membranes needed and the number of symbols
used together in one symport rule).

For the quite similar model of communicating P systems we even obtained an
optimal universality result with respect to the number of membranes – only the
simplest membrane structure consisting of the skin membrane only is already
sufficient to obtain universal computational power. Moreover, by showing how to
interpret communicating P systems with only one membrane as P systems with
symport/antiport, we easily obtained optimal universality results for P systems
with symport/antiport.
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Abstract. The complexity, expressed in number of membranes and
weight of rules, of P systems with symport/antiport generating recur-
sively enumerable sets is reduced if counter automata instead of matrix
grammars are simulated. We consider both subsets of N obtained by
counting objects in a designated membrane, and string languages ob-
tained by following the traces of a designated object.

1 Introduction

Lately several computability models inspired by direct observation of living sys-
tems have been proposed. Cells with their biochemical processes are studied
as computational devices. The complex structure of the cell may be modelled
as a set of (nested) compartments delimited by membranes, each compartment
containing objects that may interact between themselves or pass to another
compartment.

These reflections brought forth the definition of a model called membrane
systems (and also P systems) introduced in [Pă00a] and later object of several
investigations (see the bibliography [BibP]). A good tutorial overview into the
field can be found in either one of two papers [MP01,PR02]. A book [Pă02b]
covering the field of membrane computing has recently been published.

One of the variants of the original model was introduced in [PP02] under
the name of membrane systems with symport/antiport. In this variant the only
available operation is the synchronized movement of objects. Specific groups of
objects may pass together through a membrane either in the same or in opposite
direction. In the former case we refer to symport, in the latter to antiport.

These quite simple systems compute all recursively enumerable sets; the re-
sult has been obtained in [PP02], and then improved in complexity (reducing
the number of membranes and the number of objects that are transported at
the same time) in [M+02a,M+02b]. In these papers matrix grammars with ap-
pearance checking were considered as reference model for generating recursively
enumerable sets, and their computations were simulated by P systems to obtain
the completeness results.
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In this paper we show that the simulation of counter automata (or register
machines) instead of matrix grammars reduces the complexity of these systems
further more. It was demonstrated in [FP01] that the simulation of counter au-
tomata brings down the number of nonterminals used in matrix grammars. The
authors of [FP01] argue that this is “of crucial importance in obtaining universal
P-sytems with a small number of membranes”. We share their enthusiasm for
counter automata in this context, but avoid the detour via matrix grammars.
Regarding our own results, the counter automata approach is already present in
[Ho02], where it is applied to P systems with carriers another model based on
pure communication, i.e., where the objects in the system can only be moved
around.

In Section 2 we provide an informal description of P systems with sym-
port/antiport. We also fix the notion of counter automaton that we use in this
paper. Section 3 deals with the basic complexity of P systems, the number of
membranes. Indeed, we show that a single membrane suffices to obtain com-
putational completeness. Then, in Section 4 we focus on systems where only
symports are allowed. It turns out that moving four objects at a time suffices
to obtain completeness, and only two membranes. Systems where symports are
further reduced to move pairs of objects are considered in Section 5. Our result
shows that four membranes are enough here. This bound could only be achieved
previously for rules with additional control. Finally, we apply our constructions
in Section 6 to P systems where strings are generated by following the move-
ments of a designated object called the traveller. It seems we are the first to
characterize recursively enumerable languages for these P systems without the
help of additional control.

This paper was presented at the Workshop on Membrane Computing, Curtea
de Argeş Romania, 2002 [PZ02]. There we have learned that some of our re-
sults have been obtained independently by others, and we have noted that using
counter automata (or register machines) has become a standard practice in con-
nection with P systems with unstructured objects. We have reacted to these
developments by placing appropriate footnotes and by updating our final sec-
tion.

2 Preliminaries

We assume the reader to have familiarity with basic concepts of formal language
theory [HU79], and in particular with the topic of membrane systems with sym-
port/antiport [PP02,M+02a,M+02b]. In this section we recall particular aspects
relevant to our presentation.

We use N·RE to denote the family of recursively enumerable sets of natural
numbers. For k ∈ N, Nk ·RE equals the family of recursively enumerable sets
with elements greater or equal to k, {L ∈ N·RE | {0, . . . , k − 1} ∩ L = ∅}, or
equivalently, {k+L | L ∈ N·RE}, where k+L = {k+n | n ∈ L}. From the point
of computational completeness, the families N·RE and Nk ·RE are equivalent, as
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a Turing machine can make the translation, but here we inherit the language
definition of P systems and make this distinction.

P Systems with Symport/Antiport. A membrane system, or P system
[Pă00a], is a computational device consiting of a set of hierarchically nested
membranes. Within each membrane there may be objects evolving and moving
to neighbouring membranes following rules specified for the particular mem-
brane. Outside the outer membrane, the environment is subject to its own set of
rules. Recent overviews [MP01,PR02], and –above all– the monograph [Pă02b],
are a good source for motivation and for a tutorial on the various categories of
P systems.

In P systems with symport/antiport as introduced in [PP02] computation
is restricted to the synchronous movement of objects from one membrane into
another, see [Pă02b, Chapter 4.1]. This means that the system contains unstruc-
tured objects that are not rewritten or changed in any other way.

A configuration of the system is given by a finite multiset for each of the
compartments; each membrane contains a finite number of objects, whereas the
objects initially present in the environment are assumed to have infinite (un-
bounded) supply. Rules (associated to the membranes) are of one of the follow-
ing forms, where x and y are strings of objects (representing multisets in the
obvious way):

– (x, in), multiset x moves into the membrane from the compartment (mem-
brane or environment) surrounding it;

– (x, out), multiset x moves out from the membrane to the compartment sur-
rounding it;

– (x, in; y, out), multiset x moves into the membrane from the compartment
surrounding it, while at the same time multiset y moves into the other di-
rection.

The first two forms (x, in) and (x, out) are called symport rules, the latter
form (x, in; y, out) is called antiport. The weight of a rule is given by |x| for
symport, and max{|x|, |y|} for antiport.

Computational steps consist of the application of a multiset of these rules,
under the usual requirement of maximal parallelism: such a multiset cannot be
carried out if there is the possibility of performing a step that involves a strictly
larger multiset of rules. A computation is successful if it starts in the initial con-
figuration (specified as a multiset of objects for each membrane, and an infinite
supply of objects in the environment) and if it ends in a halting configuration,
i.e., a configuration where no rule is applicable. The result of a successful com-
putation is the number of objects present in a designated membrane, the output
membrane. By convention this membrane is elementary, i.e., it does not con-
tain any membranes. As always, the subset of N specified by the system (its
‘language’) is the set of numbers resulting from successful computations.

We use N·PPm(symj , antik) to denote the family defined by P systems with
symport/antiport having at most m membranes, symport of weight at most j,
and antiport of weight at most k.
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Counter Automata. A counter automaton is a finite state device equipped
with additional external storage in the form of one or more counters. Each of
these counters holds a natural number which may be incremented, decremented
(when positive), and tested for zero. It is shown by Minsky [Mi61] that the
counter automaton can simulate the Turing machine when it is equipped with
(at least) two counters, see also [HU79, Theorem 7.9].

Here we use counter automata in the context of P systems generating (sets
of) numbers, and we replace the input tape by an additional output counter, i.e.,
we syntactically replace reading input symbols by adding to the distinguished
output counter; the output counter is never decremented nor tested for zero.

Formally, the transitions of the counter automaton are of the form (p → q, ι),
where p and q are states, and the instruction ι is either ε or one of the three
instructions +A,−A,A = 0 for any counter A used by the automaton. In state
p the automaton may use this instruction changing state to q and performing ι
to the counters – where for ι = ε no counter is changed; for +A counter A is
incremented by one; for −A counter A is decremented by one, defined only if
the counter has a positive value; and for A = 0 counter A is tested for zero, an
instruction defined only if the counter has value zero.

A computation of the counter automaton is successful if starting from the
initial state with empty counters it reaches the final state. The result of this
computation is the number represented by the value of the output counter.

Without loss of generality we make some technical assumptions. We require
that the final state can only be reached when all counters are zero (with the ex-
ception of the output counter, of course). This means that the counter automaton
explicitly empties its counters before accepting. Additionally, we assume that the
final state has no outgoing transitions.

Conflicting Counters. We use here a paradigm to implement the zero tests of
the counter automaton, in the simulation by a P system. For each counter A we
introduce a corresponding counter, say Ā, and we require that the automaton
cannot proceed when both A and Ā are non-empty. Assuming that this require-
ment is part of the semantics of the automaton (i.e., part of its transition rule)
we can implement a zero test A = 0 by consecutively adding and subtracting
from the counter Ā, where we require that counter Ā is not used otherwise. Ob-
viously, under the proposed semantics, the automaton would block on a non-zero
A counter while Ā is operated.

Motivated by this, we say that zero tests are implemented by conflicting
counters if in the counter automaton we replace every transition (p → q, A = 0)
by the transitions (p → q′,+Ā), (q′ → q′′, ε) and (q′′ → q,−Ā) using two new in-
termediate states q′, q′′. The middle transition is introduced for synchronization
reasons motivated by the simulation by P systems described in the proofs that
follow. Using this assumption, of course, we only use three types of instructions
(ε, +A and −A) in the counter automaton, and we only need to simulate those
by the P system. On the other hand, we have to make sure that our P system
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obeys the new semantics, thus it should block in the presence of both A and Ā
positive counter contents. This, however, turns out to be quite simple to achieve.

This approach is not new. We can find it in the proof of Theorem 3.3 in
[Pă02b], where the rule HAA → # introduces a trap symbol when both A and
conflicting HA are present.

3 Single Membrane

If one allows antiport, then a single membrane suffices1 to reach RE, improving
on the previous bound of two obtained in [PP02].

Theorem 1.

1. N·PP1(sym1, anti2) = N·RE
2. N·PP1(sym0, anti2) = N1 ·RE

Proof. We consider the inclusion N·RE ⊆ N ·PP1(sym1, anti2), proving it by
simulating a counter automaton. During computation the (single) membrane
contains a state symbol, and for each counter a number of counter symbols
equal to the counter value.

For the increase and decrease operations the simulation of the counter au-
tomaton can be done in a straightforward manner. Using antiport, the membrane
exchanges its state for the successor state, at the same time moving in or moving
out the proper counter symbol.

As for the zero test, we assume that the counter automaton is implemented
using conflicting counters. Testing counter A for zero, the P system brings in the
symbol Ā representing the counter conflicting with A, and removes the symbol Ā
two steps later. Together the symbols A and Ā cause an infinite computation by
bringing in the trap symbol #, which is forced by the rule of maximal parallelism.
Here it becomes clear why we have insisted on implementing the conflicting
counters using three transitions: the delay is necessary to perform the zero test.

The system is constructed as follows:

counter transitions: P system rules:
(p → q, ε) (q, in; p, out)
(p → q,+A) (qA, in; p, out)
(p → q,−A) (q, in; pA, out)

(#, in; ĀA, out) conflict
(#, in; #, out) trap

At the beginning of the computation the membrane contains the single initial
state symbol pin. Note that the P system as given above reaches a halting state
if the counter automaton halts in a state where it cannot decrease its counter.
1 At the workshop in Curtea de Argeş we learned that this result was obtained inde-

pendently by Freund and Oswald [FO02], using similar techniques.



Simulating Counter Automata by P Systems with Symport/Antiport 293

This is unwanted, as the blocking (unsuccessful) computation of the counter au-
tomaton is transformed into a halting (successful) computation of the P system.
To avoid this situation, we add the rule (p, in; p, out) for every non-final state p.

If we allow symport, the final state pf can be removed using the rule (pf , out).
According to our assumptions on the counter automaton, all its counters are
empty, except for the output counter. Hence, in our simulation, the membrane
only contains the symbols from the output counter.

Otherwise, for N ·PP1(sym0, anti2), the system halts in the final state with
its state symbol present in the membrane as additional symbol. 
�

4 Symport Only

P systems with symport only are studied in [M+02a], where the equalities
N·RE = N ·PP2(sym5, anti0) = N ·PP3(sym4, anti0) = N ·PP5(sym3, anti0) are
obtained. This final family is improved to N ·PP5(sym2, anti0) in [M+02b]. We
obtain N·RE = N·PP2(sym3, anti0) as a new bound for computational complete-
ness for P systems with symport. Actually, we focus here on a minimal number
of membranes (under the assumption that antiport is not allowed). In the next
section we try to minimize the number of symbols invlved in the symport rules.

The result N·RE = N·CP1(∗, 2) in [Ho02, Corollary 2] states that P sys-
tems with carriers with two passengers are computationally complete. Intuitively,
moving a carrier and its two passengers can be described by a symport of weight
three, suggesting N·RE ?= N ·PP1(sym3, anti0). Unfortunately there are some
technical differences between the two types of systems that are in the way of a
direct application of this result.

All in all, we obtain the following improvement2 of previous results, slightly
less satisfactory than the intuition above.

Theorem 2.

1. N·PP2(sym3, anti0) = N·RE
2. N·PP1(sym3, anti0) = N2 ·RE

Proof. First we consider the single membrane result. The technique used to simu-
late a counter automaton follows the one presented for Theorem 1. Additionally,
for each transition there is a transition symbol ρ present in the outer membrane,
and a divergence symbol ∂ that is used to bring the trap symbol # into the
membrane.

In each simulation step the state and a matching transition move out, after
which the transition takes the new state in. At the same time the appropriate
counter symbol may be moved in or out as required by the transition. As before

2 This result was obtained independently by A. Păun [Pă02a], in the ‘classical way’
simulating matrix grammars.
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we avoid a blocking situation, by adding rules for transitions (p → p, ε) for each
non-final state p.

counter transitions: P system rules:
ρ = (p → q, ε) (ρp, out), (ρq, in)
ρ = (p → q,+A) (ρp, out), (ρqA, in)
ρ = (p → q,−A) (ρpA, out), (ρq, in)

(∂ĀA, out) conflict
(∂#, in), (∂#, out) trap

At the end of a successful simulation all transition symbols ρ, final state pf ,
and ∂ remain inside the membrane. Then it is possible to move all ρ’s out using
the rules (pfρ, out), (pf , in) so that finally pf and ∂ remain inside, adding 2 to
the number generated.

If we want to obtain N·RE rather than N2 ·RE we add another membrane,
moving all generated output symbols inside it. 
�

5 Minimal Symports

We study systems where only symports of weight two are allowed, a minimal
nontrivial case of coupled transport. In [M+02a,M+02b,Pă02b] the following
results are obtained: N·PP5(sym2, anti0) = N·RE, N·PP4(psym2, anti0) = N·RE
(with permitting context), and N ·PP3(fsym2, anti0) = N·RE (with forbidding
context).

We generalize these results, using a construction similar to the proof of The-
orem 4.1 in [M+02b], again simulating counter automata rather than matrix
grammars. In this construction in a central membrane the next transition to be
applied is nondeterministically chosen by sending out a transition symbol. As
this single symbol cannot control a synchronization of all actions needed for the
simulation, it needs to be ‘duplicated’ in a number of intermediate membranes.

Theorem 3. N·PP4(sym2, anti0) = N·RE

Proof. As before to prove the inclusion from right to left a counter automaton is
simulated by a P system. The P system consists of four membranes: three nested
inside each other, numbered 1 to 3 from outside in, and an additional output
membrane nested inside the outer membrane 1. The outer membrane holds the
symbols representing the values of the counters, but the output counter symbols
are moved into the output membrane. Rules of the P system are summarized in
Table 1; here we give some explanations on their function in the system.

Initial configuration. The environment gives an infinite supply of all counter
symbols A, A− for each counter A (including conflicting Ā and Ā−), as well as
all state symbols p. Initially outer membrane 1 contains the initial state pin.
Membranes 2 and 3 contain symbols ρ′ and ρ respectively, representing the each
transition ρ. Additionally membrane 2 contains a trap symbol #, and membrane
3 contains a catalyst c and a halting symbol †.
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Table 1. The rules in the membranes according to their functions.

simulation of transitions:
in 3 (cρ, out), (cρ, in) choosing ρ
in 2 (ρρ′, out), (ρρ′, in) duplication
in 1 (ρp, out), (ρ′, out), (ρq, in), (ρ′, in) ρ = (p → q, ε)

(ρp, out), (ρ′, out), (ρq, in), (ρ′A, in) ρ = (p → q, +A)
(ρp, out), (ρ′, out), (ρq, in), (ρ′A−, in) ρ = (p → q, −A)

counter behaviour:
in 1 (AA−, out) decrement
in 2 (A−, in), (A−#, out) decrement zero
output (a, in) output symbol a
failure:
in 2 (ρ, in), (ρ#, out) consistency ρ-ρ′

(ĀA, in), (A#, out) conflict
in 1 (#, in), (#, out) trap
halting:
in 3 (c†, out)
in 2 (†, out)
in 1 (pf†, out) halt
in 2 (p†, in), (p#, out) nonfinal state p

Simulation of transitions. Membrane 3 contains a transition symbol ρ for
each transition. Additionally, it contains the symbol c, that is used to carry out
transition symbols, one at a time (such a symbol is elsewhere called a catalyst).
This mechanism nondeterministically choses a transition to be simulated.

Membrane 2 contains a supplementary transition symbol ρ′ for each transi-
tion, designed to travel synchronously with ρ into membrane 1. In this way two
symbols duplicating the same transition in the outer membrane are obtained;
one of them (ρ) replaces the state symbol by moving in and out, the other (ρ′)
implements the counter instruction.

Counter behaviour. The values of the counters are stored in the outer mem-
brane 1 as a number of symbols. Increasing the counter (+A) is implemented by
bringing in a symbol from the environment. Decreasing a counter (−A) is not
implemented by moving a symbol directly outside as such a rule will be ignored
when the counter is zero (without blocking the corresponding change of state).
Instead a ‘negative’ symbol A− is introduced which has the task of removing a
counter symbol A one step later. If A is not present in the membrane, the compu-
tation blocks on empty counter, and A− moves inside membrane 2. Any counter
symbol entering membrane 2 will cause an infinite (unsuccessful) computation
by bringing out the trap symbol #. Zero tests are assumed to be implemented
in the counter automaton by conflicting counters. Hence, we add rules to force
infinite computations whenever a symbol A and its conflicting counter Ā are
both present. (Do not confuse the functions of Ā and A−.)

Consistency. Once ρ and ρ′ have arrived into membrane 1 it is expected they
act together and move out to execute the transition (or to return together to
membrane 2 backtracking the simulation). However, if ρ does not match the
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present state, it cannot go out while ρ′ can. If ρ′ moves out, maximal parallelism
forces ρ into membrane 2 where it releases #, causing an infinite computation.

Halting. The halting symbol † present in membrane 3 is used to end the com-
putation. This symbol moves out c from the membrane 3, effectively stopping
the possibility of simulating other transitions. Note that c can only be in mem-
brane 3 if no transition symbol ρ is outside of membrane 3 (and if no transition
symbol ρ′ is outside of membrane 2). Finally, † moves into membrane 1 and
removes the final state symbol pf . The computation has ended, and membrane
1 contains only counter symbols (assuming the trap symbol was not released).
By assumption, upon entering the final state the only nonempty counter is the
output counter. 
�

In the above proof the fourth membrane was introduced for the sole purpose
of having an elementary output membrane; otherwise the outer membrane could
very well take the role of output membrane as it is empty at the end of the com-
putation. Keeping the three membranes 1 to 3 as above, the only elementary
membrane is 3, but that membrane contains the transition symbols ρ – it needs
some clever reprogramming to move these symbols out at the end of the compu-
tation. We conjecture Theorem 3 can be improved to N·PP3(sym2, anti0)

?= N·RE.

6 Following the Traces

In the previous sections we have considered P systems that generate sets of
numbers by counting the objects in a designated membrane at the end of a
halting (successful) computation. Here we take the approach of [I+02] to have
P systems with objects that generate strings (over an alphabet Δ) by introducing
a distinguished object t, the traveller, and a labelling h which assigns an element
of Δ∪λ to each membrane. The result of a halting computation is here the trace
of the object t, which is the sequence of labels of the membranes where t resides
during the consecutive steps of the computation. Again, we are not very formal
here, and refer to [I+02], or [Pă02b, Section 4.4].

We obtain new characterizations of RE in terms of these trace languages of
P systems as a direct application of the constructions in the previous sections.
In fact, a characterization of RE using these systems was previously unknown,
except in the case of 1-letter alphabets.

For this section we need a slight extension of our previous notions. By �·RE
we mean the family of recursively enumerable languages over alphabets of size �
(where for all practical matters N·RE equals 1·RE). Here we must again allow the
counter automaton to read letters from an input tape (and we forget about the
output counter). Without loss of generality we assume that a transition either
reads input, or performs a counter instruction. Hence, transitions are of the form
(p a→ q, ε) when reading a ∈ Δ∪λ, or of the form (p → q, ι), where ι is either +A
or −A . As before, we omit ι equal to A = 0 assuming the counter automaton is
implemented using conflicting counters.

The family of languages over alphabets of size �, defined by traces of P sys-
tems with symport/antiport having at most m membranes, symport of weight
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at most j, and antiport of weight at most k is denoted by �·LPm(symj , antik).
We carry the size � of the alphabet around in the notation as the complexity of
the system necessarily depends on the size of the alphabet.

We quote here some relevant results from [I+02], i.e., not involving forbidding
or permitting contexts for the rules.

Proposition 1.

1. 3·LP4(sym2, anti0) − CF �= ∅

2. 1·LP2(sym2, anti2) = 1·LP5(sym2, anti0) =
1·LP3(sym4, anti0) = 1·LP2(sym5, anti0) = 1·RE

Adapting our one-letter constructions from the previous sections, we obtain
the following results.

Theorem 4.

1. �·LP
+1(sym0, anti2) = �·RE
2. �·LP
+1(sym3, anti0) = �·RE
3. �·LP
+2(sym2, anti0) = �·RE

Proof. Our construction is an elementary extension of the proofs of the results
of previous sections. A similar observation (restricted to the one-letter case) led
to the characterizations of Proposition 1(2) in [I+02, Corollary 1].

Let Δ be an alphabet with � symbols. Consider an outer membrane containing
a membrane Ma for each symbol a ∈ Δ. The label associated to Ma is a; all other
membranes get label λ. Initially the traveller t resides in the outer membrane.
It is taken into membrane Ma by every symbol a that is brought into the outer
membrane as a result of the simulation of a transition reading a. This can be done
by rules of weight two assigned to membrane Ma: either by symport (at, in) and
(t, out), or by antiport (at, in;ω, out) and (ω, in; t, out) – assuming an additional
symbol ω in each of the membranes Ma.

The rules (p → q, ι) are simulated by the system as before. The rules (p a→
q, ε) reading input are simulated as the rule (p → q,+a) in the previous con-
structions. This means that a symbol for a is brought into the outer membrane.
This symbol then causes the traveller t to visit the membrane Ma the next step
of the computation. The symbol a stays in the membrane Ma afterwards.

Note that this extension to our previous construction needs symport or an-
tiport rules of weight two, and needs an internal membrane for each element of
Δ. As the system is not counting objects at the end of the computation, we may
start with the optimized results for N1 ·RE or N2 ·RE rather than those for N·RE.

Thus the result N·PP1(sym0, anti2) = N1 ·RE from Theorem 1(2) generalizes
to � ·LP
+1(sym0, anti2) = �·RE; the result N ·PP1(sym3, anti0) = N2 ·RE from
Theorem 2(2) generalizes to �·LP
+1(sym3, anti0) = �·RE.

Finally, the result N ·PP4(sym2, anti0) = N·RE from Theorem 3 generalizes
to �·LP
+2(sym2, anti0) = �·RE, where we have �+2 membranes rather than the
straightforward �+4 membranes by observing that the specific output membrane
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is here replaced by the Ma membranes, and that membrane 2 present inside the
outer membrane in the previous proof may very well include the role of one of the
Ma membranes. In particular, for � = 1, we need only three membranes, nested
inside each other to perform a simulation of the computation as in Theorem 3.
No additional output membrane is needed, the middle membrane receives the
terminal symbol taking in the traveller. 
�

Note that the string traced by the traveller can also be ‘read’ by looking at
the consecutive symbols that are taken into the outer membrane from the envi-
ronment. This is the approach taken in the P automata of [CV02]. In that paper
however, there is the additional restriction that the communication of objects is
one-way only, moving them deeper into the system. Quite involved constructions
are needed to obtain computational completeness under that restriction.

For one letter alphabets (� = 1) we have obtained the following results that
should be compared to those presented in Proposition 1.

Corollary 1.
1·LP2(sym0, anti2) = 1·LP2(sym3, anti0) = 1·LP3(sym2, anti0) = 1·RE

In fact, the original proofs of Theorem 1 and Theorem 2 even suggest the
results 1·LP1(sym0, anti2)

?= 1·RE and 1·LP1(sym3, anti0)
?= 1·RE, as it is possible

to use the outer membrane as the one labelled by a, rather than introducing a
new one. The only reason these “results” cannot be obtained lie in the formal
definitions of the P systems that we use: initially the traveller cannot be outside
the membrane as the environment carries only symbols available in unbounded
quantities; putting the traveller in the membrane however, makes it visible in
the first step of the trace, making it impossible to generate the empty string.

7 Résumé and Outlook

We have illustrated how the simulation of counter automata can be profitable in
obtaining universal P systems of low complexity. Their advantage over matrix
grammars can be explained by the following intuition: there are less symbols
involved in the counter rule (p → q,±A) than in the generic matrix – even in
the relatively restricted grammars in binary normal form, where a typical matrix
has the form (X → Y,A → α), |α| ≤ 2. It was Gheorghe Păun who realized the
importance of counter automata in the context of non-rewriting P systems in
[Pă00b]: “Maybe register machines can be used in order to prove results about
such purely-communicative P systems”. They now appear in several papers, for
instance [CV02,FO02,So02] as presented at the WMC’02 workshop. However,
for P systems that rewrite string objects it still needs to be investigated whether
counter automata simulations can lead to smaller P systems.

We relate the optimal results obtained in the literature to the new bounds
from the present paper.
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previous result reference this paper
N·PP2(sym2, anti2) = N·RE [PP02, Thm 4.1] N·PP1(sym1, anti2), Thm 1
N·PP5(sym2, anti0) = N·RE [M+02b, Thm 4.1] N·PP4(sym2, anti0), Thm 3
N·PP2(sym5, anti0) = N·RE [M+02a, Thm 1] N·PP2(sym3, anti0), Thm 2
N·PP3(sym4, anti0) = N·RE [M+02a, Thm 2] N·PP2(sym3, anti0), Thm 2
N·PP3(sym0, anti2) = N1 ·RE [M+02a, Thm 4] N·PP1(sym0, anti2), Thm 1
1·LP2(sym2, anti2) = 1·RE [I+02, Cor 1] 1·LP2(sym0, anti2), Cor 1
1·LP5(sym2, anti0) = 1·RE [I+02, Cor 1] 1·LP3(sym2, anti0), Cor 1
1·LP3(sym4, anti0) = 1·RE [I+02, Cor 1] 1·LP2(sym3, anti0), Cor 1
1·LP2(sym5, anti0) = 1·RE [I+02, Cor 1] 1·LP2(sym3, anti0), Cor 1

We conjecture that Theorem 3 can be improved to N ·PP3(sym2, anti0)
?=

N·RE. Of course, it would be interesting to further investigate the optimality
of the results, and to discover strict (but nontrivial) subfamilies of RE. Most
interesting are the families N ·PP2(sym2, anti0) and N ·PP2(sym2, anti1), not
covered by these investigations.

Hence we only partially answer to the open problem Q8 present in [Pă02b],
having improved the old results, but not considering optimality of the present
characterizations. Problem Q9 concerning the power of systems with only one
membrane has been given a unexpected answer. The related question, on infi-
nite sets in N·PP1(sym2, anti1), remains open. Problem Q12 has been answered
by our Theorem 4, giving a characterization of RE languages using trace lan-
guages, even without permitting or forbidding context. Finally, the P systems
with symport/antiport can be interpreted as networks of membranes, the subject
of Chapter 6 in [Pă02b]. There, our Theorem 3 leads to (minor) improvements
to Corollaries 6.2.1 and 6.2.2 in [Pă02b]. More importantly, our Theorem 1 im-
plies that N·OtP1,1(sym1, anti2) equals N·RE contradicting the conjecture that
N·OtP∗,1(sym∗, anti∗) contains only semi-linear sets.

Note that our methods are not suited to improve on results that determine
the P system complexity of other Chomsky families, like Proposition 1(1), as the
counter data structure simulated here is particular to RE. Of course, one-counter
languages form a proper subclass of the context-free languages, but the number
of counters has not been an issue for the complexity parameters considered
(number of membranes and weight of rules).

Our research did not deal with further control of the application of rules,
like permitting or forbidding context. Observe that in our constructions the
transition symbols ρ are used in a permitting role. Having them as explicit side
condition may further reduce the complexity of the rules.

Definitional Remarks. It has become clear in these investigations that small
details in the definition of P systems with symport have their effect on the
parameters in our results. We summarize them here to facilitate a discussion on
these matters.

1. Symport is not considered a degenerated case of antiport: the rule (x, in) is
not equated with (x, in;λ, out), cf. Theorem 1, where a final symbol has to be



300 Pierluigi Frisco and Hendrik Jan Hoogeboom

removed from the membrane. It is impossible to do so with an antiport rule
(if output 0 is being generated) and the single rule introduced for this action
shows up in the result. See also Theorem 4(1) where we had to introduce a
new symbol ω to artificially turn symport into antiport.

2. It would be a natural alternative to define the complexity of an antiport rule
(x, in; y, out) as |x| + |y|, the total number of objects moved, rather than
max{|x|, |y|} as is now customary. This alternative is closer to the original
definitions in [PP02].

3. In determining the output, all symbols matter, not only a designated out-
put symbol, cf. Theorem 2, where two additional symbols remain inside the
membrane. We now have two variants of the result. Either we are content
with the fact that only numbers at least two can be generated, or we insist
on the full set N at the cost of an extra membrane. Alternatively we could
only count occurrences of a specified output symbol. This would yield N with
a single membrane.

4. The membrane where output is collected, is assumed to be elementary, cf.
Theorem 3, where this assumption leads to the introduction of the fourth
membrane for this reason only.

5. As noted after Theorem 4 and its Corollary, the traveller is always visible
in the first step of a one-membrane P system. Allowing the traveller to be
present in a single copy in the environment would optimize this result.
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Abstract. The combination of a theoretical model of the living cell and
membrane computing suggested a new variant of a computational model
called conformons-P system based on membrane-enclosed compartments
where conformon-like objects evolve. Some variants of such model are
presented and their computational power is sketched.

1 Introduction

One of the direction of research of formal language theory in the last years saw
the creation of new computability models directly inspired by biochemical pro-
cesses. One of the first papers in this direction [6] introduced and investigated the
computational power of splicing (a recombinational behavior of DNA and RNA
molecules allowed by specified classes of enzymatic activities) from a mathemat-
ical point of view. Since this result other similar models have been introduced
having variants in the structure of the systems itself, in the kind of performed
operations, and so on.

These investigations expound the theoretical facet of biomolecular computing.
Our research resides in this sphere. Inspired by some basic principles of bio-

cybernetics [10] (a general molecular theory of living processes), we introduced
[4] a new model of membrane systems that we study here in more detail.

In [10] biocybernetics is formulated on the basis of principles, concepts and
analogies imported from physics, chemistry and cybernetics. The most novel
physical concept to emerge in that theory is that of gnergy, a hybrid physical
entity composed of free energy and genetic information that is postulated to be
ultimately responsible for driving all molecular machines. Discrete physical enti-
ties carrying gnergy are called gnergons and there are two examples of gnergons
that have been identified in biology so far: conformons, sequence-specific me-
chanical strains of biopolymers, and IDSs (intracellular dissipative structures)
intracellular chemical and mechanical stress gradients and waves. Conformons
and IDSs are utilized to formulate what appears to be the first coherent theo-
retical model of the living cell known as the Bhopalator [9,13].
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Conformons (explained in Section 2) are visualized as a collection of a small
number of catalytic residues of enzymes or segments of nucleic acids that are
arranged in space and time with appropriate force vectors so as to cause chemical
transformations or physical changes on a substrate (during catalysis) or a bound
ligand (during the control of gene expression).

Membrane systems (also called P systems) are a new class of distributed
and parallel computing devices introduced in [21]. In the seminal paper the
author considers systems based on a hierarchically arranged, finite cell-structure
consisting of several cell-membranes embedded in a main membrane called the
skin. The membranes delimit regions where objects, elements of a finite set, and
evolution rules can be placed.

The objects evolve according to given evolution rules associated with a region,
and they may also move between regions. A computation starts from an initial
configuration of the system, defined by a cell-structure with objects and evolution
rules in each cell, and terminates (halts) when no further rule can be applied.

It is possible to assign a result to a computation in two ways: (1) a multiset,
considering the multiplicity of objects present in a specific (output) membrane
in a halting configuration, or (2) a set of strings, composed of the strings over a
specific alphabet sent out of the system. Combining the outputs of each possible
computation the behaviour of the system is obtained, a multiset-language (a set
of numbers) or a string-language (a set of strings).

In [21] the author examines three ways to view P systems: transition, rewrit-
ing and splicing P systems. Starting from these, several variants were consid-
ered (see for instance [2,16,17,22,24]). Each of these variants has been shown to
generate recursively enumerable sets or vectors of natural numbers. The latest
information about P systems can be found at the url http://psystems.disco.
unimib.it/.

Conformons-P systems, the variant of P systems presented in Section 3,
consider as objects conformons - an ordered pair of name and value. This way
to consider objects differs in a substantial way from the others described in the
literature of membrane systems. Until now an object has been considered either
as simple entity without internal structure or a string, that is an entity with
a well defined structure. Objects considered in our research may be placed in
between these two categories as the only structure related to the name is its
value.

The generative power of the basic model of conformons-P systems is inves-
tigated in Section 4, while Sections 5 and 6 describe the generative power of
variants of it.

In Section 7 we outline some other possible variants of conformons-P systems.
Moreover in that section we delineate how this model may be used to describe
and study the massive parallelism so fundamental in biomolecular computing
and to which fields the computation based on conformons might be extended.

We omit here the proofs of our results. The interested reader may refer to
[3].
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2 Conformons in Molecular Biology

Just as biology is continuing to serve as a rich source of ideas and inspirations
for computer scientist interested in developping novel computational models,
computer science may play an essencial role in solving fundamental problems
in molecular cell biology in 21st century [14], and as inspirations for computer
scientists aspiring to discover and design novel computational frameworks but
may also absolutely require computer science to formalize and test its theo-
ries in order to solve the mysteries of life on the molecular and cellular levels.
The present contribution is primarily concerned with the former aspect of the
computer science-biology interactions, and the latter aspect has been dealt with
elsewhere by one of us [9,10,11,13].

One of the basic concepts to develop in molecular biology during the past
three decades is the notion of conformons, defined as sequence-specific mechan-
ical strains embedded in biopolymers, such as DNA supercoils and protein con-
formational deformations, that provide both the free energy and information
needed for biopolymers to drive molecular processes essential for life [8,12]. The
free energy content of conformons has been estimated to be in the range of 5
∼10 Kcal/mole in proteins and 500 ∼ 2,000 Kcal/mole in DNA, while the infor-
mation content per conformon has been calculated to be in the range of 20 ∼ 40
bits (note that 20 ∼ 200 bits as reported in [11] is an error) in proteins and 200
∼ 600 bits in DNA [10,12].

Conformons and conformon-like entities invoked in the biological literature
during the past three decades have been classified into 10 families based on
their biological functions, including the origination of life, thermal fluctuations,
substrate and product bindings, formation of the transition-state complex, free
energy transfer, DNA replication, timing in proteins, and timing in DNA [12].
Given such a multiplicity of conformon families, each with a large number (from
103 to 106 ?) of members, it is possible, at least in principle, to account for all
living processes in the cell in molecular terms.

This has led to the postulates (1) that the number of conformons active in
and utilized by living cells are finite in number and (2) that conformons are
quanta of biological actions, akin to quanta of action in quantum mechanics
[12].

Another fundamental feature of the living cell, postulated to be the smallest
molecular computing system in nature [11], is the biological membranes con-
sisting of a phospholipid bilayer of about 50 angstroms (i.e., 50 × 10−8 cm) in
thickness with many different kinds of proteins, either attached to its surface or
deeply embedded in it.

The basic function of biomembranes is to divide the Euclidean space into
multiple compartments, to be referred to as membrane-enclosed compartments
or simply as membranes when there is no danger of ambiguity. The principle
of biological membranes began to be capitalized in developing new computing
paradigms during the past several years, leading to the development of membrane
computing [21,22,23,24].
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3 Basic Definitions

As indicated in the Introduction, the basic ideas underlying conformons and the
interactions between them have inspired us to define a new computability model.
What in biocybernetics is a pair of information and free energy in this section
is defined from a mathematical point of view as an ordered pair name-value, the
interaction between two conformons is modeled as passage of the whole or a part
of the value from one pair to another one.

Let V be a finite alphabet and N the set of natural numbers. A conformon is
an element of the relation name-value: V × N0 (where N0 = N ∪ {0}), denoted
by [X,x]. We will refer to x as the value of [X,x] and to X as the name of
the conformon [X,x]. The symbol X will also refer to the conformon itself; the
context will help the reader to understand when we refer only to the name aspect
of the conformon or to the whole conformon. Moreover let r = 〈A, e,B〉, A,B ∈
V, e ∈ N, be a rule (also indicated as A

e→ B) defining the passage of (part of
the) value from one conformon to another so that:

[A, a] [A, a− e]
⇒r

[B, b] [B, b + e]
(1)

with a, b ∈ N0, a ≥ e indicating that [A, a] and [B, b] interact according to r.
Informally this means that e is subtracted from the value of the conformon (with
name) A and e is added to the value of the conformon (with name) B only if
the value of A is at least e.

A multiset (over V ) is a function M : V → N0; for d ∈ V , M(d) defines the
multiplicity of d in the multiset M. We will indicate this also with (d,M(d)). In
case the multiplicity of an element of a multiset is 1 we will indicate just the
element. The support of a multiset M is the set supp(M) = {d ∈ V | M(d) > 0}.
Informally we will say that an element belongs to a multiset M if it belongs to
the support of M .

Let M1,M2 : V → N0 be two multisets. The union of M1 and M2 is the
multiset M1 ∪ M2 : V → N0 defined by (M1 ∪ M2)(d) = M1(d) + M2(d), for
all d ∈ V . The difference M1\M2 is here defined only when M2 is included in
M1 (which means that M1(d) ≥ M2(d) for all d ∈ V ) and it is the multiset
M1\M2 : V → N0 given by (M1\M2)(d) = M1(d) −M2(d) for all d ∈ V .

A basic conformons-P system of degree m,m ≥ 1, is a construct Π =
(V, μ, fin, ack, L1, . . . , Lm, R1, . . . , Rm), where V is an alphabet; μ = (N,E)
is a direct labeled graph underlying Π. The set N ⊂ N contains vertices, for
simplicity we define N = {1, . . . ,m}. Each vertex in N defines a membrane of
the system Π. The set E ⊆ N × N × pred(N0) defines directed labeled edges
between vertices, indicated by (i, j, pred(n)) where for each n ∈ N we consider
pred(n) = {≥ n,≤ n,= n} set of predicates. For x ∈ N0, p ∈ pred(n), p(x) may
be (≥ n)(x) or (≤ n)(x) or (= n)(x) (only one of them), indicating x ≥ n, x ≤ n
and x = n respectively. The membrane fin ∈ N defines the final membrane
while ack ∈ N the acknowledgment membrane that is initially empty.
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The multisets Li over V × N0, i ∈ N , contain conformons; Ri, i ∈ N , are
finite sets of rules.

Two conformons present in a membrane i may interact according to a rule r
present in the same membrane such that the multiset of conformons Mi changes
into M ′

i . So, for i ∈ N , [A, a], [B, b] ∈ Mi and r = 〈A, e,B〉 ∈ Ri, A,B ∈
V, a, b, e ∈ N0, we have what indicated in (1) so that M ′

i = (Mi\{[A, a], [B, b]})∪
{[A, a− e], [B, b + e]}.

A conformon [X,x] present in a membrane i may pass to a membrane j if
(i, j, p) ∈ E and p(x) holds, changing the multisets of conformons Mi and Mj to
M ′

i and M ′
j respectively. In this case M ′

i = Mi\{[X,x]} and M ′
j = Mj ∪{[X,x]}.

The fact that the passage of an object to a membrane is regulated by some
features present in the compartments themselves is already discussed by others
in literature when P systems with electrical charge and variable thickness have
been considered [23] or only communication was used to compute [20].

The application of a rule and the passage of a conformon from one membrane
to another are the only operations that may be performed by a conformons-P
system. A conformon present in a membrane may be involved in one of these
two operations or none of them.

It is important to notice that at this stage of our investigation there is no
priority between the passage of a conformon to another membrane and the ap-
plication of a rule.

If a conformon may pass to another membrane or interact with another
conformon according to a rule, then one of the two operations or none of them
is nondeterministically chosen. So the feature “all the objects which can evolve
should evolve”, present in most of the other variants of P system introduced
until now, is not applied here. The presence of such a universal clock, common
in digital computers but not in biological processes, is very powerful from a
computational point of view as it forces the system to a maximal parallelism.
The parallelism of conformons-P systems is not limited by this choice of us as it
is always possible that an operation is performed when it can be performed.

The possibility to carry out one of the two allowed operations in a same
membrane or none of them let conformons-P systems to be nondeterministic.
Nondeterminism may also arise from the configurations of a conformons-P sys-
tem if in a membrane a conformon may interact with more than one conformon.

A configuration of Π is an m-tuple (M1, . . . ,Mm) of multisets over V ×
N0. The m-tuple (L1, . . . , Lm), supp(Lack) = ∅, is called initial configuration
while any configuration having supp(Mack) �= ∅ is called final configuration. For
two configurations (M1, . . . ,Mm), (M ′

1, . . . ,M
′
m) of Π we write (M1, . . . ,Mm) ⇒

(M ′
1, . . . ,M

′
m) indicating a transition from (M1, . . . ,Mm) to (M ′

1, . . . ,M
′
m) that

is the parallel application of operations or of none of the operation in each
membrane of μ. If no operation is applied to a multiset Mi, then Mi = M ′

i . The
reflexive and transitive closure of ⇒ is indicated by ⇒∗.

A computation is a finite sequence of transitions between configurations of
a system Π starting from (L1, . . . , Lm). The result of a computation is given
by the multisets of conformons present in membrane fin when any conformon
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is present in membrane ack. When this happens the computation is halted,
that is no other operation is performed even if it could. This feature is new
in the area of membrane computing: it provides an alternative to the way of
defining successful computations as halting computations. When a conformon is
present in the acknowledge membrane the multisets of all conformons present in
membrane fin define the number generated by Π. The set of all such numbers
is denoted by L(Π).

More formally,

L(Π) = {supp(Mfin) | (L1, · · · , Lm) ⇒∗ (M ′
1, · · · ,M ′

m) ⇒∗ (M1, · · · ,Mm),
supp(M ′

ack) = ∅, supp(Mack) �= ∅}.
In this writing it is understood that (M1, · · · ,Mm) is the first configuration in
the computation where the acknowledging membrane is not empty.

In the rest of this paper we analyze the computational power of basic confor-
mons-P systems and some variants of them.

4 The Power of Basic Conformons-P Systems

A module is a group of membranes in a conformons-P system able to perform
a specific task. In the figures representing conformons-P systems in this paper,
modules are depicted as unique vertices with a thicker line. Such modules will
have a label indicating the kind of module. A subscript is added to differentiate
labels referring to the same kind of module present in one system. Membranes
with a dashed line present in the figures representing modules indicates mem-
branes placed outside the module.

The following result, already present in [4], is here recalled for completeness.

Lemma 1. (Splitter) There exists a module that, when a conformon [X,x] with
x ∈ {x1, . . . , xh}, xi < xi+1, 1 ≤ i ≤ h − 1, is present in a specific membrane
of it, may pass such a conformon to other specific membranes according to its
value x.

Figure 1.(a) illustrates a detailed splitter (notice that its underlying structure
is a binary tree), Figure 1.(b) depicts the module representation of a Splitter
having spl as label.

In the figures present in this paper rules are written inside the membrane they
belong to. The initial configuration is represented by conformons written in bold.
The rest of the conformons present in each membrane are the ones which may be
present during the computation. A slash (/) separates the different value contents
that a conformon may have during a computation, or the different predicates
of edges connecting two membranes (in this case just one edge is depicted).
When [A, a] or [B, b] is present in a membrane it indicates that one of the two
conformons may be present in the membrane, but not together.

Lemma 2. (Separator) There exists a module that when conformons of the type
[Xi, x], i ∈ {1, . . . , h}, x ≥ 1, are present in a specific membrane of it, may pass
them to specific different membranes according to their name content.
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≤ x2

x1

≤ x1 ≤ xh−1

xh−1 xh

≤ xh
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(a)

[X, x]

[X, x]

p

= xh

spl

= x1

u1 uh

(b)

u2

uh+1
p ≥ xh−1

uh+1

x2
≥ x2 ≥ x3 ≥ xh[X, x]

[X, x]

Fig. 1. A Splitter

Sketch of the proof. The number of membranes and the conformons present
in this module depend on h. In order to differentiate the conformons [Xi, x], i
is added to the value of them. Then the separation process is performed via a
Splitter and after it their value content is reduced back to x. 
�

In Figure 2.(a) a detailed Separator is depicted, while 2.(b) illustrates its
module representation having [x, s]sep as label. The operations performed by a
Separator may be indicated in a much convenient way with a label on an edge.
Figure 2.(c) represents a conformons-P system having edges with labels [Xi, x]
indicating that a conformon [Xj , x] may pass from membrane u to ui only if
j = i.

Lemma 3. (Decreaser/Increaser) There exists a module that when a conformon
[X,x] with x ≥ 1 is present in a specific membrane of it may decrease or increase
the value of such conformon to q, so that [X, q] may pass to another specific
membrane.

Sketch of the proof. The value content of [X,x] is nondeterministically de-
creased or increased one unit per time. When it reaches the value q the conformon
[X, q] may pass via a Separator to a specific membrane. 
�

In Figure 3.(a) a detailed Decreaser/Increaser is depicted, while Figure 3.(b)
illustrates its module representation having [q]dec as label if x > q and [q]inc
if x < q.

Theorem 1. A basic conformons-P system may generate any set {0, . . . , k} ⊂
N0.

Sketch of the proof. Figure 4 represents the basic conformons-P system related
to this description of the proof. Let us imagine that k occurrences of a conformon
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C are present in membrane 1. A conformon [X, 3], also present in membrane
1, may repeatedly interact with one occurrence per time of C, so to permit its
passage to membrane 2. At any moment the conformon X may pass to membrane
3, the acknowledge membrane. The result of a computation is given by the
conformons [C, 0] present in membrane 2, the final membrane of the system. 
�

≥ 1

≥ 3 ≥ 3

1

[X, 3]

3

X
2→ C

[C, 2]

[X, 1] or [X, 3]
[X, 3] ([C, 0], k)

2

C
2→ X

Fig. 4. The basic conformons-P system related to Theorem 1

It is interesting to note that the underlying graph of the basic conformons-
P system present in Figure 4 is a tree and that only one kind of predicate
(≥ n, n ∈ {1, 3}) is used.

5 Unbounded Number of Conformons

It is also possible to consider a multiset as a function M : V → N0 ∪ {+∞}
changing consequently the definition of union and difference of two multisets. At
this stage of our research we limit to 0 the value of conformons present in infinite
copies. This different definition has important consequences on the generative
capability of conformons-P systems (the prefix basic is removed when unbounded
occurrences of conformons are considered).

As direct consequence of Theorem 1, we obtain:

Corollary 1. A conformons-P system may generate any set {0, . . . ,+∞} ⊆ N0.

This corollary does not describe the maximal generative power of conformons-
P systems. We can achieve this if we consider partially blind program machines.

Non-rewriting Turing machines were introduced by M. L. Minsky in [18] and
then reconsidered in [19] under the name of program machines. After their in-
troduction such machines and some variants of them have been studied under
different names: in [5] they were called (multi)counter machines, in [1] mul-
tipushdown machines, in [15] register machines and in [7] counter automata.
Such devices have counters (also called registers) each of unbounded capacity
recording a natural number or zero. Simple operations can be performed on the
counters: addition of one unit and conditional subtraction of one unit. After each
or these operations the machine may change state. The main difference between
the original models and some of the subsequent variants indicated above is that
the latter may have a read only tape where the input is recorded. In the model
introduced by M. L. Minsky, and considered by us, such tape is not present and
the input is recorded as a number in one of the counters of the machine.
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Formally a program machine with n counters (n ∈ N) is defined as M =
(S,R, s0, f), where S is a finite set of states, s0, f ∈ S are respectively called
the initial and final states, R ⊆ (s, op(l), v, w), s, v, w ∈ S, s �= f, op(l) ∈
{l+, l−}, 1 ≤ l ≤ n, is set of instructions of the following form:

– (s, l−, v, w): in state s if the content of counter l is greater than 0, then
subtract 1 from that counter and change state into v, otherwise change state
into w;

– (s, l+, v, v): in state s add 1 to counter l and change state into v.

A configuration of a program machine M with n counters is given by an
n + 1-tuple from S × Nn

0 . Given two configurations (s, l1, . . . , ln),
(r′, l′1, . . . , l

′
n) we define a computational step as (s, l1, . . . , ln) % (s′, l′1, . . . , l

′
n) if

(s, op(l), v, w) ∈ R and:

– if op(l) = l− and li �= 0, then s′ = v, l′i = li − 1, l′j = lj , j �= i, 1 ≤ j ≤ n,
if op(l) = l− and li = 0, then s′ = w, l′j = lj , 1 ≤ j ≤ n.

– if op(l) = l+, then s′ = v, l′i = li + 1, l′j = lj , j �= i, 1 ≤ j ≤ n.

The reflexive and transitive closure of % is indicated by %∗.
A computation is a finite sequence of transitions between configurations of a

program machine M starting from the initial configuration (s0, l1, . . . , ln) with
l1 �= 0, lj = 0, 2 ≤ j ≤ n. If the last of such configurations has f as state, then we
say that M accepted the number l1. The set of numbers accepted by M is defined
as L(M) = {li | (s0, l1, · · · , ln) %∗ (s′, l′1, · · · , l′n) %∗ (f, l′′1 , · · · , l′′n), s′ �= f}. For
every program machine it is possible to create another one accepting the same
set of numbers and having all counters empty in the final state.

Partially blind program machines were introduced in [5] and defined as pro-
gram machines without test on zero. The only allowed operations are increase
and decrease the counters by 1 at a time. In case the machine tries to subtract
from a counter having value zero it stops in a non final state. In [5] it is also
proved that such machines are strictly less powerful than non blind ones.

Theorem 2. The class of numbers generated by conformons-P systems coin-
cides with the one generated by partially blind program machines.

Sketch of the proof. A conformons-P system may simulate any partially blind
program machine. Figure 6 represents a conformons-P system simulating a par-
tially blind program machine, during this description of the proof we will refer
to such figure.

In the initial configuration of the conformons-P system for each counter l
of the program machine there are unbounded occurrences of a conformon [l, 0]
present in membrane 3 while the final membrane (4 in the figure) contains as
many copies of such conformons as the value kl of the counters at the initial
configuration of the simulated machine.

Considering that the passage of conformons between membranes is deter-
mined only by the value present in a conformon, the value of specific confor-
mons may be increased so that they may move to different membranes through
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Splitters in order to perform different tasks. Only one of such conformons per
time, related to the simulated instruction of the simulated machine, may move
through the system so to perform the operation associated with it. The state
si of the partially blind program machine that is simulated is represented by
a conformons [si, 7] present in membrane 1. According to the instruction that
is simulated the value of such a conformon may be decreased by 4, 5 of 6. In
the first case a conformomn [s′j , 4] (related to the final state of the simulated
machine) is created. It may pass to the acknowledgement membrane (membrane
2 in the figure) ending in this way the computation.

The simulation of adding a unit to a counter l is simulated passing an occur-
rence of a conformon l from membrane 3 to membrane 4, the opposite direction
if a unit is subtracted. These two simulations are performed by [s′j,l, 6] or [s′j,l, 5]
respectively. The simulation of subtraction of one unit from a counter l leads
to a deadlock in case the counter is empty (no occurrence of [l, 0] is present in
membrane 4).

A partially blind program machine may simulate any conformons-P system.
We know that the number of membranes, the different conformons and the total
amount of values are finite quantities in any conformons-P system. Each counter
of the program machine will be labeled OXx

where O indicates a membrane,
x the value content and X the name content of the conformons present in the
simulated system. There will be no counters representing conformons present in
unbounded copis (with 0 as value) present in a membrane. The number recorded
in a counter OXx

indicates how many copies of the conformon [X,x] are present
in membrane O.

In the initial configuration of the partialy blind program machine the counter
l1 contains a random number y. We will say that the program machine performed
a correct simultion if when in a final state all counters will be empty.

The simulation is composed by three phases.
In the first phase the initial configuration of the simulated system is cre-

ated. This is performed by instruction adding to each counter OXx
the value

corresponding to the number of occurrences of the conformon [X,x] present in
membrane O in the initial configuration.

In the second phase the simulation of possible operations of the simulated
conformons-P system is performed. The passage of a conformon [X,x] from
membrane U to membrane Q is represented removing one unit from the counter
UXx

and adding one unit to the counter QXx
. The interaction between two

conformons is represented in a similar way. The several operations possible in the
simulated system are simulated in a nondeterministic way. In case the partially
blind program machine tries to simulate an operation that is not allowed in the
simulated system it stops in a non final state. When the partially blind program
machine adds one unit to one of the counters OXx

, where O is the label of the
acknowledge membrane of the simulated system, the third phase starts.

In the third phase all registers related to conformons of the simulates confor-
mons-P system present in membranes different than the final one are randomly
decreased. The ones related to conformons present in the final membrane are
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decreased together with the content of register l1: for one unit removed to one of
these registers one unit is subtracted from l1. If in this process the machine tries
to subtract one unit from a register whose content is 0 then it stops in a non final
state. At any stage of this process the machine may go into the final state f . If
then all counters are empty we will say that the partially blind program machine
correctly simulated the conformons-P system accepting the number y. 
�

In case we assume that the passage of conformons to another membrane can
be performed only if no interaction is possible in a membrane, then conformons-
P systems (enriched with the suffix with priorities) may simulate any program
machine. This result, already presented in [4], is here recalled for completeness.

Theorem 3. The class of numbers generated by conformons-P systems with
priorities coincides with the one generated by program machines.

It is interesting to note that the just described conformons-P system and
conformons-P system with priorities increase or decreases the value of confor-
mons but the sum of all values of the confomormons present in them is always
constant.

6 Unbounded Large Value

Starting from the definition of conformons-P system we consider now that con-
formons present in unbounded copies may have an integer as value. As conse-
quence of this the sum of the values of all the conformons present in the system
is unbounded.

We will call conformons-P system with unbounded value such variant. The
set of numbers generated by these systems considers the conformons present in
the final membrane together with their value.

Formally:

L(Π) = {[X,x] | X ∈ supp(Mfin), (L1, · · · , Lm) ⇒∗ (M ′
1, · · · ,M ′

m) ⇒∗

⇒∗ (M1, · · · ,Mm), supp(M ′
ack) = ∅, supp(Mack) �= ∅}.

As stated by the next theorem such a variant of conformons-P system may
simulate any program machine.

Theorem 4. The class of numbers generated by conformons-P systems with
unbounded value coincides with the one generated by program machines.

Sketch of the proof. Figure 7 represents a conformons-P system with un-
bounded value simulating a program machine. Each counter present in the sim-
ulated machine is represented by a conformon whose value indicates the number
stored in the related counter.

The simulation of the test on 0 on a counter is performed choosing nondeter-
ministically to simulate one of the two actions related with it. If the conformons-P
system tries to subtract one unit from the value of a counter whose value content
is 0, then the simulation process will never reach a final configuration. This will
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also happen if the simulation of the state change related to the test on 0 does
not see the conformon related to the counter present in a specific membrane.

When the passage of the program machine to a final state is simulated a
conformon passes to the acknowledge membrane halting the computation. 
�

7 Final Remarks

It would be interesting to continue to modify the definition of conformons-P
systems given in Section 3, removing or adding features, in order to see how this
is reflected on the computational power of the systems.

For instance, we can limit to one the kind of labels related to the edges or
restrict to a tree the graph underlying a conformons-P system. We may also con-
sider that the interaction between two conformons or the passage of a conformon
from one membrane to another may subtract a finite amount from the value of
the conformon involved in the operation or that the value of conformons may
increase upon entering membranes.

It would be certainly appreciated by the community if one of such variants
had an infinite hierarchy on the number of nodes.

r

[A, a] [B, b]

[B, b + e][A, a− e]

Fig. 5. A Petri net representing the interaction of two conformons

Also interesting to investigate is the possibility to model the parallelism
present in any variant of conformons-P systems with Petri nets. This kind of
nets were introduced by C.A. Petri in his seminal PhD thesis in 1964 to model
concurrent and distributed systems. The parallelism, basic in the theoretical
facet of biomolecular computing, has not yet been studied and formalized.

The interaction between two conformons defined in (1), may be represented
by the Petri net present in Figure 5 where we used the notation indicated in the
first chapter of [25].

We think that the possibility to model the parallelism present in conformons-
P systems may bring to a better understanding of the behaviour of such systems.

The concept of conformon and the filtering process performed by membranes
may be interpreted in a different way than the one described in this paper. The
value associated with a conformon may be seen also as the electrical charge,
the mass, the size, the momentum, the spin, the speed or frequency of it. The
interaction between conformons would allow the passage of one or more of such
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features from one conformon to another and membranes might allow the passage
of conformons depending on one or more such parameters. Moreover a conformon
may be seen not only as associated with a biopolymer but as a generic molecule
or a particle akin to a photon or an electron.
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Fig. 6. The conformons-P system related to Theorem 2
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Fig. 7. The conformons-P system with infinite value related to Theorem 4
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Abstract. During a discussion taking place at WMC’01, G. Paun put
the question of what could be computed only by moving symbols between
membranes. In this paper we provide some elements of the answer, in
a setting similar to tissue P systems, where the set of membranes is
organized into a finite graph or into a Cayley graph, and using a very
simple propagation process characterizing accretive growth. Our main
result is to characterize the final configuration as a least fixed point
and to establish two series of approximations that converge to it. All
the notions introduced (Cayley graph of membranes, accretive rule and
iteration) have been implemented in the MGS programming language and
the two approximation series can be effectively computed in Pressburger
arithmetics using the omega calculator in the case of Abelian Cayley
graphs.

1 Introduction

P systems are new distributed parallel computing models based on the notion of
membrane structures [Pau99,Pau00,Pau01]. A membrane structure is a nesting
of cells represented, e.g., by a Venn diagram without intersection and with a
unique superset: the skin. Objects are placed in the areas defined by the mem-
branes and evolve following various transformation rules subject to some condi-
tions: an object can evolve into another object, can pass trough a membrane or
dissolve its enclosing membrane, etc. The computation is over for instance when
no object can further evolve.

During a discussion taking place at WMC’01, Gheorghe Paun put the ques-
tion of what could be computed only by moving objects between membranes.
In its initial presentation, the P systems formalism describes the topology of
the membranes as a set of nested regions. Thus, the objects can be viewed as
moving between the nodes of the membrane’s inclusion tree. Our question can
then be rephrased into: “Starting from a set S of symbols located in a tree, what
are the nodes F of the tree that are occupied by symbols after moving them fol-
lowing some rules R? ”. With the aim of making this question more precise and
amenable to some answers, we made some simplifying assumptions and some
generalizations.

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 319–338, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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1. In a first approach, we are only interested by the presence or the absence of
symbols in a membrane. Thus, we consider in this paper only one kind of
symbols and we can simplify the representation of the content of a membrane
as a boolean: false means that there are no symbols in the membrane and
true that there are some.

2. Considering only the presence/absence of symbols on a finite tree is too re-
strictive: there is only a finite set of observable states for the system. Several
natural extensions of the initial formalism consider P systems working on
graphs which are not trees [PSY01,MVPPRP01]. In this work, we follow the
same way and we consider first finite graphs and then Cayley graphs. With
Cayley graphs we can have a finite presentation for unbound graphs of vari-
ous shapes. They include rings, grids and more general regular tilings of the
plane, etc. They include also (infinite) n-ary trees (as the Cayley graph of
free groups with n generators), which cover the case of our initial question.

3. Let D0 be the initial configuration of the P systems. The set D0 specifies
the membranes holding an object at the beginning of the computation. In
the case of a finite graph, we obviously consider an arbitrary (finite sub-)
set of the membranes. In the case of an infinite Cayley graph G, it is also
reasonable to handle an infinite starting set, providing that this set is defined
in a reasonable (e.g., recursive) way. The idea is that starting from a member
D0 of a canonical family of starting sets, we try to characterize in the same
way the resulting set D of nodes occupied after the moves allowed by a set
of rules R. In this study, we consider the family of finite unions of cosets
in G.

4. A rule r ∈ R specifies if a symbol in a membrane must move to another
membrane. According to the assumption 1, we further simplify our problem
by considering that the condition of the activation of r must take into account
only the presence or the absence of symbols in the neighbor membranes. We
name such a rule an accretive rule.

Some justifications for this framework are given in the next section. We will
show that it constitutes a tractable simplification of a more general process
easily programmable in the MGS language [GM02]. Moreover, the problem in this
form is closely linked with the problem of computing the domain of definition of
a systolic function [KMW67,SQ93] or the problem of computing the extension
of a data-field [LC94,Gia00].

The rest of this paper is organized as follows. The next section introduces
the idea of accretive rules in a P system on a graph. Section 3 formalizes the
case of an arbitrary finite graph. The expression of the set of membranes that
finally hold an object is given by a polynomial of matrices of bound degree.
Section 4 introduces the concepts of Cayley graphs and Cayley P systems and
gives a well known example of Cayley P system. Section 5 develops the notion
of accretive rule in the framework of the Cayley P systems and the following
section introduces the specification of an initial configuration by means of cosets.
Section 7 exposes the technical core of our work: we give a formal account of the
problem and present some results: we characterize the final set D as a least fixed
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point and we construct two series of approximating sets (Dn)n∈N and (En)n∈N

such that Dn ⊆ D ⊆ En and limn→∞Dn = limn→∞ En = D. Finally, we
show how the sets Dn and En can be effectively computed using Pressburger
arithmetics and the omega calculator in the case of free Abelian Cayley graphs.
Comparisons with previous works and links with similar problems are given in
the conclusion.

2 Accretive Rules for P Systems on a Graph

The neigborhood relationships of the membranes [GM02] in the case of a “P sys-
tem on a graph” [PSY01] or a “tissue P system” [MVPPRP01], are defined by
the edges of a graph. We consider here an arbitrary graph (e.g., defined by a
connection matrix M , see figure 1, or by a group presentation, see section 4).
We consider only rules fulfilling the following assumptions:

1. an empty membrane may gain an object if some of its neighbors own an
object;

2. if a membrane holds an object at time t, then the object remains in the
membrane at any time t′ > t.

Condition 1 accounts for a growth process: starting from a defined pattern of
already existing objects, a new object is created in an empty place. The growing
process does not modify the membranes (e.g., it does not add new membranes)
but takes place on empty membranes. The empty membranes which are close
to occupied membranes, can be interpreted as the “boundaries” of the organism
and such a growing process is termed accretive growth [GGMP02] in botanic
(where accretive growth is opposed to “intercalary growth” where the growing
process is from the inside). Condition 2 ensures a monotonic process: when a
membrane has an object, it remains forever. This kind of behavior corresponds
to diffusion processes where there is no decay in the substance diffused. Because
we consider only the presence or the absence of objects, there is no quantitative
account for the diffusion. However such a simplified logical model has proved
to be useful, for instance in the modeling of regulatory networks [TTK95] or in
tumor growth [YPQ58]. This specific kind of transport rule is very important in
morphogenesis and has been studied for a long time under various formalisms
(Lindenmayer systems for instance or Eden’s model in cellular automata, etc.).
They can also be used to model the diffusion of a substance in a tissue.

Several kinds of rules meet assumption 1: for instance, an object can be
created in an empty membrane if:

– all the neighbors hold a symbol: Rall;
– one of the neighbors holds a symbol: Rone;
– some of the neighbors hold a symbol: Rsome.

The case Rsome subsumes the two other kinds but raises some difficulties in the
specification of “some”: do we need a precise number of occupied membranes, or
only to reach a given number, or a precise set of neighbors... For Cayley graphs,
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there is a natural way to define what means “some of the neighbors”, and for
an arbitrary finite graph, “some” means here “at least one of the predecessor
vertices”.

3 Accretive Rules on a Finite Graph

Let F be a finite graph, specified by its n×n connection matrix M = (mij) (see
Figure 1): mij = 1 if there is an edge from vertex j to vertex i. The vertices of
this graph are the n membranes of a tissue P systems. The state at time t of the
membranes is recorded as a vector Dt = (dt

i) where dt
i takes the value 1 (true) if

there is an object in membrane i at time t and else 0 (false).

4

5

2

3

1

M =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
1 0 0 1 1
0 0 0 0 0
0 0 1 0 1
1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

D0 =

⎛

⎜
⎜
⎜
⎜
⎝

1
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎠

Fig. 1. Accretive rule in a P system on a finite graph. The connection matrix M is a
boolean square matrix (mij) where mij is true if there is an edge between node j and
i. The membranes (i.e., nodes of this graph) holding an object at the beginning of the
computation are in bold and are defined by the initial vector D0.

Notations. Let ∧ denote the logical conjunction and ∨ the logical disjunction.
Expression x̄ denotes the negation of x. Let A = (ai) and B = (bi) be two
boolean vectors of size n. The binary operator ⊕ extends the disjunction to
boolean vectors: (A⊕B)i = ai ∨ bi. Let P = (pij) be a p×n boolean matrix and
Q = (qij) be a n × q boolean matrix. The

⊗
f,g operator is a generalization of

matrix multiplication where binary operation f replaces the multiplication and
the binary associative operation g replaces the addition:

(P
⊗

f,g

Q)ij =
(k=n
g

k=1
f(pik, qkj)

)
ij

for 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Changing the functions f and g that parameterize
⊗

f,g allows to take into
account several variations of the rules R.
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Specifying Rsome Evolution on a Finite Graph. The effect of a rule Rsome on
the state Dt can be specified by:

Dt+1 = ϕ(Dt) = Dt ⊕M
⊗

∧,∨
Dt =

⎛

⎝
dt
1 ∨ ∨n

k=1 m1k ∧ dt
k

...
dt

n ∨ ∨n
k=1 mnk ∧ dt

k

⎞

⎠ (1)

For the example in figure 1, we have:

D1 = D0 ⊕M
⊗

∧,∨
D0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1∨
(
(0∧1)∨(0∧0)∨(0∧0)∨(0∧1)∨(0∧0)

)

0∨
(
(1∧1)∨(0∧0)∨(0∧0)∨(1∧1)∨(1∧0)

)

0∨
(
(0∧1)∨(0∧0)∨(0∧0)∨(0∧1)∨(0∧0)

)

1∨
(
(0∧1)∨(0∧0)∨(1∧0)∨(0∧1)∨(1∧0)

)

0∨
(
(1∧1)∨(0∧0)∨(0∧0)∨(0∧1)∨(0∧0)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1
1
0
1
1

⎞

⎟
⎟
⎟
⎟
⎠

In words: membranes 2 and 5 gain an object at time step 1 because they have a
neighbor that holds an object at time step 0.

At each time step, some membranes change their state from 0 to 1. If there
are no changes at all, then Dt+1 = Dt and we have reached the final configuration
D = limn→∞Dn. The transition function ϕ is monotonic: the change from 0 to
1 is allowed but the reverse cannot happen. So, after at most n transitions, the
final configuration must be reached: D = Dn. This gives us a closed formula
for D:

D = ϕn(D0) = D0 ⊕
n⊕

t=1

(M t ⊗
∧,∨

D0) (2)

where

M1 = M

M t+1 = M
⊗

∧,∨
M t for t ≥ 1

Equation 2 holds because
⊗
∧,∨ is associative and distributive over ⊕. This

formula is a polynomial of matrices and vectors (although the multiplication is
not the standard one) and a lot of properties can be infered by looking at the
exponents of the matrix M . For instance, one can answer the question “is there
an initial configuration D0 leading to a given final configuration D” by solving
the polynomial equation ϕn(D0) = D.

4 Cayley Shaped Membranes

In this section, we present the notions needed to understand the concept of
Cayley P systems. A Cayley P systems is a P system on a Cayley graph. Cayley
graphs can be infinite, thus allowing P systems on a family of infinite graphs.
They also give us an effective tool to give a richer meaning to some in the
evolution rules of kind Rsome (see section 4.3). We first review some basic facts
about Cayley graphs, then we define the Cayley P systems as a special class
of P systems on a graph. We conclude this section by an example of Cayley
P system.
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4.1 Finite Group Presentations and Cayley Graphs

A finite presentation G of a group G gives a finite set G of group generators and a
finite set E of equations constraining the equality of two words. An equation takes
the form v = w where v and w are products of generators and of their inverses.
We will write G = 〈G, E〉. If E is empty, it is omitted in the presentation and we
say that the group G is free. A given group G admits several presentations and
for a given presentation several words can represent the same element in G.

We can associate to a presentation G = 〈G, E〉 a labeled graph also denoted
by G where:

1. each vertex represents a group element,
2. an edge labeled s is between the nodes P and Q if P.s = Q, and
3. the labels of the edges are in G.

This graph is called a Cayley graph of G. A dictionary between group related
notions and graph related notions is illustrated in figure 2.

An Abelian group G is a group where the generators commute. Then every
group element g can be written as gx1

1 .gx2
2 . . . gxn

n where gi ∈ G and xi ∈ Z.
Because we are mainly interested in Abelian groups, we will use an additive
notation for the group operation and we will write g = x1.g1+x2.g2+ · · ·+xn.gn

instead. In addition, a group presentation between 〈 and 〉 will refer implicitly
to an Abelian presentation.

b+b+a−a−b−b

w=a+b+a

a−b−a+b

P

Q
w+a+a

b
a

bb0

a

a

0

Fig. 2. Graphical representation of the relationships between Cayley graphs and group
theory. A vertex is a group element. An edge labeled a is a generator a of the presenta-
tion. A word (a sum of generators and of inverses of generators in the additive notation)
is a path. Path composition corresponds to the group operation. A closed path (a cy-
cle) is a word equal to e = 0 (the identity of the addition). An equation v = w can be
rewritten v − w = e and then corresponds to a cycle in the graph. There are two kinds
of cycles in the graph: the cycles that are present in all Cayley graphs and correspond-
ing to group laws (intuitively: a backtracking path like b + a − a − b) and closed paths
specific to the own group equations (e.g.: a − b − a + b). The graph connectivity (there
is always a path going from P to Q) is equivalent to say that there is always a solution
to the equation P + x = Q.
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4.2 Some Examples of Cayley Graphs

The presentation
G2 = 〈 north, east 〉

is implicitly completed with the equation specifying the commutation of the
generators north + east = east + north to define an Abelian group G2. The
two names north and east refer to the directions that can be followed to reach
the neighbors of an element. So, the corresponding Cayley graph G2 corresponds
to an infinite NEWS mesh with the standard Von Neuman neighborhood (a cell
above, below, left or right – not diagonal). The figure 2 represents a part of this
graph provided that the generator a is renamed in north and that b is renamed
into east.

The list of the generators in a presentation can be completed by giving some
equations that constraint the displacements in the Cayley graph. For instance,

H = 〈 east, north, northeast ; east + north = northeast 〉
defines an hexagonal lattice that tiles the plane, see figure 4. Each cell has
six neighbors (following the three generators and their inverses). The equation
east + north = northeast specifies that a move following northeast is the
same as a move following the east direction followed by a move following the
north direction.

Figure 3 gives several other examples of the Cayley graphs of some Abelian
and non-Abelian presentations.

a

a

b b

a
b

a2

e a

a3

b

b2

b3

b4

b5

b6

b7

b8

a

〈a, b; a2 = b2〉

  〈a, b; a4 = e, a3 = b2〉

a

b
c

〈a, b, c〉

c

b

a

c

〈a, b, c; c3 = e〉

〈| a, b, c;
   a.a = b.b = c.c = e, 
   (b.c)3 = e,
   (c.a)3 = e, 
   (a.b)3 = e |〉

a b c

b a
c

c ab

b a

ab c

〈|a, b, c;
  a.a = b.b = c.c = e, 
  a.b.c.a.b.c = e |〉

c b

a

a

c b

c b

a

〈| a, b, c;
 a.a = b.b = c.c = e, 

b.a.b = c.a.c |〉

aa a
c

b
aa a

c
bb

c
b

c
b

c
b

c
b b

Fig. 3. Left. Four Abelian group presentations (in multiplicative notation) and their
associated graphs. Right. Three examples of a 3-neighborhoods shape (multiplicative
notation). These triangular neighborhoods are described by non Abelian groups.
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4.3 Cayley P Systems and Their Rules

A Cayley P system P is a P system on a Cayley graph G. We says that G is
the shape of P and the elements g of the group G, which are also the vertices
of G, are called the membranes of P. Cayley P systems can be used to specify
membranes with a uniform neighborhood.

In full generality, the rules of a Cayley P system specify some changes in a
membrane content c following some condition C. This can be done with rewriting
rules of the form:

c/C ⇒ c′

specifying that the content of some membrane c is replaced by c′ when the
condition C is satisfied.

The condition C may refer to the content of some neighbors. The underlying
group structure of a Cayley graph G gives us a convenient tool to speak of the
neighbors of a membrane p: the neighbors of a membrane p are the membranes
p + g where g is a generator of G. Then, we say that p + g is a g-neighbor of p.

A membrane is identified with a group element, but is also associated to a
content. To make a clear distinction between this two associations, we use two
distinct notations. If p is a membrane, then [p] represents the content of this
membrane and pos(p) refers to the group element that identifies uniquely the
membrane. For example, suppose that the membranes hold an integer. Then, a
rule like:

x/[ pos(x) + east] > 7 ⇒ [x] + 1

means that the content of a membrane x must be incremented by one if x has an
east-neighbor with a content greater than 7 (condition: [ pos(x) + east] > 7).

A transformation T is a set of rules that are applied following a strategy to
the membranes of the system to make an evolution step. Usually, a maximal
synchronous application strategy is used in P systems. Here we suppose that

– there is no priority between the rules;
– if two rules can apply, one of them is chosen non-deterministically;
– when a rule applies, all the membranes involved in the left hand side of

the rule (included in the guard) cannot be used anymore for another rule
application in the same time step.

The last constraint expresses that in a time step, the applications of the rules
must be independent (i.e., do not share a membrane). If no rules apply it means
that there are no membranes matching the left hand side of any rule of T . Then
the transformation corresponds to the identity function.

4.4 An Example of Cayley P System: The Eden Model

Before formalizing the properties of accretive rules in Cayley P systems, let us
examine an example in order to clarify the notions and to illustrate the way our
systems work.
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We consider a simple model of growth sometimes called the Eden model
(specifically, a type B Eden model [YPQ58]). The model has been used since the
1960’s as a model for such things as tumor growth and growth of cities. In this
model, a 2D space is partitioned in empty or occupied cells (we use the value
true for an occupied cell and false for the unoccupied cells). We start with
only one occupied cell. At each step, occupied cells with an empty neighbor are
selected, and the corresponding empty cell gets occupied.

The Eden’s aggregation process on the lattice G2 is simply described by the
following transformation:

transformation Eden = {
x/not[x] ∧ [ pos(x) + east] ⇒ true

x/not[x] ∧ [ pos(x) + north] ⇒ true

x/not[x] ∧ [ pos(x) − east] ⇒ true

x/not[x] ∧ [ pos(x) − north] ⇒ true

}
This transformation is composed of four rules specifying that an empty mem-
brane x (condition: not[x]) with a non-empty neighbor following the direction
g (condition: [ pos(x) − g ] where g ∈ {east,−east, north,−north}) becomes
true (that is, becomes occupied). The rules of an Eden’s process on an hexagonal
mesh follow the same pattern: there are six rules, one for each generator and one
for the inverse of each generator of H.

5 Accretive Rules in a Cayley P System

Following the remarks of the introduction, we simplify the state of a membrane
into a boolean in the context of this work: true means that there is an object in
the membrane and false means that the membrane is empty. Thus an accretive
rule f in a Cayley P system takes the following form:

f = x/not[x] ∧ [pos(x) + g1] ∧ . . . ∧ [pos(x) + gk] ⇒ true (3)

The meaning of such a rule must be obvious: the left hand side matches a mem-
brane x which is empty (predicate not[x] in the condition) and has non-empty
neighbors following the directions g1, . . . , gk.

The Set of Dependencies of a Rule. The guard in the left hand side of the rule
of eq. 3 accesses to a set of membranes with a well-defined value. We write Rf

for the set of dependencies of a rule f :

Rf =
{
g1 . . . , gk

}

The elements of Rf are the displacements from an unocuppied membrane to
the occupied ones involved by the rule f . The diameter of f is the number of
elements in Rf .
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Fig. 4. Eden’s model on a grid and on an hexagonal mesh (initial state, and states
after 2 and 6 time steps). These shapes correspond to a Cayley graph of G2 and H
with the following conventions: a vertex is represented as a face and two neighbors
in the Cayley graphs share an edge in this representation. Only a part of the infinite
domain is figured.

6 Configuration of a Cayley P System

As a matter of fact, the state (or configuration) of a Cayley P system P with
the shape G can be represented by a function π from the group G to a set of
values. This function associates to each membrane the multiset of its content in
general, and in our special case, a boolean value.

However, for technical reasons, it is more convenient to adopt the following
representation: if a membrane m holds the value false, meaning that it does not
contain any objects, then π is undefined on m. Note that π is a partial function:
π : G → {true}. Thus, specifying π is equivalent to the specification of its
domain of definition D.

We want to apply iteratively the transformation made of one rule f to some
initial configuration π0. The first problem is to specify a subset of G correspond-
ing to the domain of definition D0 of π0. Obviously, we want to take into account
the underlying group structure and then it is natural to use subgroups of G to
specify D0. We consider then a slight generalization and we will use a finite union
of cosets of G to define D0.

A coset u⊕H = {u+h, h ∈ H} in G is the “translation” by u of the subgroup
H of G. In a non-Abelian group, we have to distinguish the right coset u ⊕ H
from the left coset H ⊕ u. To specify a coset we give the element u and the
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subgroup H. The notation 〈a1, a2, . . . , ap〉 : G defines a subgroup of G generated
by {a1, a2, . . . , ap} where the ai are arbitrary elements of G. There is no specific
equation linking the generators of the subgroup but they are subject to the
equations of the enclosing group, if applicable.

An initial configuration is a finite union D0 of cosets C1, . . . , Cp. The Ci are
called the base cosets of the Cayley P system. It is easy to have specifically one
element at membrane v in an initial configuration: it is enough to have one of the
base cosets equal to v⊕ 〈0〉 : G where 0 denotes the neutral element. Therefore,
it is possible to describe with D0 any finite set of membranes.

7 Formalization and Results

We restrict ourselves to the transformations with only one rule and we identify
the transformation with its only rule. Then, a transformation corresponds to a
function ϕ that changes the configuration of the P system.

The Cayley P systems we are interested in are then specified by a triple
(G,D0, ϕ) where:

– G is a presentation and its Cayley graph corresponds to the membrane’s
connectivity graph.

– D0 is the initial configuration and is a finite union of p cosets of the group
G specified by the presentation G.

– ϕ is the evolution function specified by one evolution rule f . The set Rf of
dependencies of the rule f is also denoted by Rϕ.

If the rule f is specified by equation 3 then the corresponding evolution function
ϕ is specified as:

ϕ(π) = π′ s.t. π′(p) = true ⇔ π(p) ∨ ∀g ∈ Rϕ, π(p + g) (4)

Note that π(p) denotes the fact that π is well defined on p and takes the true
value. We have seen in the previous section that π can be identified with its do-
main of definition D and therefore, the evolution function ϕ can be alternatively
defined by its action on the definition domain:

ϕ(D) = D′ s. t. (p ∈ D′) ⇔ (p ∈ D) ∨ ∀g ∈ Rϕ, (p + g) ∈ D (5)

In the rest of this paper, we use this last definition of ϕ.
Consider an accretive Cayley P system P = (G,D0, ϕ). We call depen-

dency path �p of a membrane p with respect to P a sequence of membranes
p0, . . . , pi, pi+1, . . . , pn such that: (1) p0 = p; (2) pn ∈ D0, (3) pi+1 is a g-neighbor
of pi, where g ∈ Rϕ, (4) pi �∈ D0 for i �= n.

The trajectory of P = (G,D0, ϕ) is the sequence (Dn), n ∈ N, where Dn+1 =
ϕ(Dn). We are looking for a description of the state of the Cayley P system after
t evolution steps, that is, we are looking for a closed form of Dt. We are also
interested in a closed form of the limit domain

D = lim
n→∞Dn
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7.1 An Example

Our problem can be sketched on an example. Figure 5 illustrates the first three
iterations of the following rule

h = x/ not[x]
∧ [pos(x) − east− north]
∧ [pos(x) − 2.east]
∧ [pos(x) − north]

⇒ true

(6)

starting from the initial configuration

D0 = C1 ∪ C2 with C1 = 〈east〉 : G2 and C2 = 〈north〉 : G2

on the shape G2.
The integer that appears in a membrane in the right hand side of figure 5

corresponds to the maximal length of a dependency path starting from the mem-
brane and reaching a base coset. This integer can be thought of as the time step
when the membrane value is produced (assuming a maximal rule application
strategy). In this example, only one value can be produced at each time step.
The membranes that have a well-defined value after 3 time steps are drawn as
plain square cells.

The infinite path starting from the white dotted membrane p shows the
beginning of an infinite sequence of neighbors that must have a value if p holds
a value: this path “jumps” over the base cosets and goes to infinity, then, the
membrane p cannot have a defined value.
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Fig. 5. This schema figures a Cayley P system based on a free Abelian shape G2 =
〈 east, north 〉. The diagram in the left hand side illustrates the set of dependencies
of the rule h of eq. 6. The right hand side illustrates the initial configuration of the
Cayley P system and the first three iterations of the rule. The initial configuration is
defined by the union of two cosets 〈east〉 : G2 and 〈north〉 : G2. The dependency set
is Rh = {-2.east, -north, -east - north}. See the text for more explanations.
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It should be obvious that

Dn = Dn−1 ∪ (2n.east + north) ⊕ 〈0〉 : G2
D = D0 ∪ north⊕ {2n.east, n ∈ N}

In the previous expressions, the multiplication n.x of a group element x by a
positive integer n denotes the n fold sum x+ · · ·+ x; if n is negative then n.x is
the inverse of (−n).x.

7.2 Characterization of D as a Least Fixed Point

Let u be an element of Dn such that u �∈ D0, then u + ri ∈ Dn−1 for all the
dependencies ri. Taking the limit in n, we have: if u ∈ D,u �∈ D0, then u+ri ∈ D.
In other words, the set D satisfies the equation

D = D0 ∪
⋂

i

D ' ri (7)

where D ' r = {v − r, v ∈ D}. Equation 7 can be rephrased into a fixed point
equation D = ψ(D) with the function ψ defined by:

ψ = λA.D0 ∪
⋂

i

A' ri

The fixpoint equation admits a least solution for the inclusion order (see any
standard textbook on domain theory) that can be reached as the limit of ψn(∅).
We write this solution fix(ψ). It is immediate to check that Dn+1 ⊆ ψ(Dn), and
then we have

D = fix(λA.D0 ∪
⋂

i

A' ri)

7.3 Definition of the Lower Approximation Dn

Starting from the definition of Dn we have immediately:

D0 ⊆ D1 ⊆ ... ⊆ Dn ⊆ ... ⊆ D∞ = D (8)

Therefore, the sequence Dn gives a lower approximation of D. Furthermore, it
may be remarked that an element u of Dn+1 which is not an element of Dk, k ≤ n,
is such that (u + ri) ∈ Dn for all the dependencies ri. In other word, u belongs
to
⋂

i(Dn ' ri). We can summarize this result:

D0 =
⋃

j

Cj (9)

Dn+1 = Dn ∪
⋂

i

Dn ' ri (10)
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7.4 The Upper Approximation En

A Geometric Interpretation. To obtain an upper approximation of D, we first
interpret geometrically the property of belonging to the domain of definition of
πn. To each membrane u ∈ G we associate the set Pu of directed paths corre-
sponding to the membranes reachable from u using a sequence of dependencies.
An element p of Pu is a word of the monoid Rϕ generated by Rϕ:

Rϕ = { α1.r1 + ... + αk.rk, with rl ∈ Rϕ and αl ∈ N }

Note that:

– The dependency paths of u are included in Pu.
– The membrane u cannot be in D if there is a p ∈ Pu with an infinite length

that does not intersect a base coset.

Computing an Upper Approximation E0. If u ∈ D is defined, then all the depen-
dency paths starting from u end on a coset Cj . Among these paths, some are
made only of ri displacements (for a fixed i). Let:

Ri = { −n.ri, n ∈ N } (11)

E0 = D0 ∪
⋂

i

D0 ⊕ Ri

The set Ri is the monoid generated by −ri (warning: we take the inverse of
the dependency). The expression A ⊕ B denotes the set {a + b, a ∈ A, b ∈ B}.
The set E0 is made of the points u ∈ G that either belong to D0 or are such
that there is a path made only of ri starting from u and reaching D0. This last
property is simply expressed as: ∀i,∃n, u − n.ri ∈ D0. This property holds for
all u ∈ D and then:

D ⊆ E0

Refining the Approximation E0. The upper approximation E0 is a little crude.
We can refine it on the basis of the following remark. If u ∈ D, then we have
either u ∈ D0 or u + ri ∈ D. We can deduce that:

D ⊆ E1 = D0 ∪ (E0 ∩
⋂

i

E0 ' ri)

Obviously E1 ⊆ E0. Moreover, this construction starting from E0 can be iterated,
which introduces the sequence

E0 = D0 ∪
⋂

i

D0 ⊕ Ri (12)

En+1 = D0 ∪ (En ∩
⋂

i

En ' ri) (13)

We always have D ⊆ En+1 ⊆ En.
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Let E∞ be the limit of En. For each u ∈ E∞, we have either u ∈ D0 or
u+ ri ∈ E∞. Therefore, E∞ is a solution of the equation 7. It should be checked
that it is the least solution which we admit (intuitively, the element of G are
equivalence classes of the finite linear combinations of generators and then, if
x ∈ E∞ it can be checked by induction on the number of occurrences of ri in x
that x ∈ D).

7.5 Summary and a Conjecture

We can summarize the previous results by the formula:

D0 ⊆ ... ⊆ Dn ⊆ ... ⊆ D∞ = D = E∞ ⊆ ... ⊆ En ⊆ ... ⊆ E0 (14)

These results can be generalized without difficulty by considering more general
base case domains. That is, we may replace the coset Ci by an arbitrary set Si

in equation 9 and relation 14 still holds.

A monoid M generated by some elements u1, ..., up of a group G is the set of
elements that can be written as a positive linear combination of the ui’s. We call
comonoid the translation of a monoid, that is, a set x⊕M = {x + m,m ∈ M}
where M is a monoid. For the examples we have worked out on free Abelian
groups (that is, for membranes organized into a d-dimensional grid and indexed
by Z-modules), we have checked that the limit domain D is a finite union of
comonoids. We conjecture that this is always true.

8 Computing the Dn and En Sets in the Abelian Case

Equations 9, 10, 11, 12 and 13 enable the explicit construction of Dn and En if
we can compute the intersection and the union of comonoids.

Indeed, a coset is a special kind of comonoid and the intersection of a
comonoid is either empty or a comonoid. If the sum D ⊕ M of a comonoid
D by a monoid M is also a monoid (which is the case for Abelian shapes or
if the ri commute with all the group elements), then all the arguments of the
intersections and unions in the previous equations are comonoids. We may then
express Dn and En for a given n as a finite union of comonoids. It is then
clear that the domain of definition Dn of πn is a finite union of comonoids. The
conjecture only says that this union is finite for the limit.

We have used the omega calculator, a software package [KMP+96] that
enables the computation of various operations on convex polyhedra to do linear
algebra in Z

n and represent comonoids. Linear algebra is not enough to com-
pute Dn and En because we have to compute the Ri. Fortunately, the omega
calculator is able to determine in some cases1 the transitive closure of a re-
lation [KPRS94] which enables the computation of Ri as the transitive closure
1 We plan to develop a dedicated library under Mathematica to compute these ap-

proximations systematically.



334 Jean-Louis Giavitto, Olivier Michel, and Julien Cohen

of the relation [x, x+ri]. We use here the syntax of the omega calculator
and an expression such as [f(x)], where x is a free variable, denotes the set
{f(x), x ∈ Z} and an expression [x, f(x)], defines a relation linking x to f(x).
Please refer to [KMP+96] for the omega calculator concepts and syntax.

Here is in example, based on the Cayley P system illustrated in figure 5. We
first define the base cosets in Z

2:

C1 := { [n, 0] };
C2 := { [0, n] };

then three relations that correspond to the dependencies:

r1 := { [x, y] -> [x, y-1] };
r2 := { [x, y] -> [x-2, y] };
r3 := { [x, y] -> [x-1, y-1] };

and we need also the inverse of the dependencies:

ar1 := { [x, y] -> [x, y+1] };
ar2 := { [x, y] -> [x+2, y] };
ar3 := { [x, y] -> [x+1, y+1] };

We may now define the Di:

D0 := C1 union C2;

H1 := ar1(D0) intersection ar2(D0) intersection ar3(D0);
D1 := D0 union H1;

H2 := ar1(D1) intersection ar2(D1) intersection ar3(D1);
D2 := D1 union H2;

H3 := ar1(D2) intersection ar2(D2) intersection ar3(D2);
D3 := D2 union H3;

We can ask omega to compute a representation of D3. The query D3 returns:

{[x,0]} union {[0,y]} union {[4,1]} union {[6,1]} union {[2,1]}
which is what is expected. For the approximation Ei we need to represent the
monoids Ri which is done through a transitive closure:

AR1 := ar1*;
AR2 := ar2*;
AR3 := ar3*;

The definition of E0 raises the computation of

E0 := AR1(D0) intersection AR2(D0) intersection AR3(D0);

(we have omitted the union with D0 to avoid too complicated terms in the
result). The evaluation of this definition returns
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{[x,y]: Exists (alpha : 0 = x+2alpha && 1 <= y && 2 <= x)}
union {[x,0]} union {[0,y]}

This approximation is too large, we may refine it by computing E1:

E1 := E0 intersection ar1(E0)
intersection ar2(E0)
intersection ar3(E0);

The evaluation of E1 gives:

{[x,1]: Exists ( alpha : 0 = x+2alpha
&& 4 <= x)} union {[2,1]}

which is also D minus D0.

9 Conclusions

In this work, we have considered a specific transport process, called accretive
growth, on a set of membranes organized into a Cayley graph. We have formally
defined the trajectory of the resulting Cayley P system and characterized the
final configuration. We conjecture that this configuration can be described as a
finite union of so-called comonoids but this assertion is not proved yet.

The idea to use a group structure to specify the graph underlying a tissue
P system has many links with the concepts of GBF developed in the framework
of the MGS language and the reader may refer to the references cited in the paper.
To complete this conclusion, we review two related domains: cellular automata
on Cayley graphs and systolic programming.

Cellular Automata on Cayley Graphs. Moving symbols between a set of
cells is reminiscent of some process described in the cellular automata (CA) lit-
erature. Usually, two-dimensionnal CA use a NEWS grid. It is worth mentioning
the work of Z. Róka on the extension of the cellular automata formalism to handle
more general cell spaces. She considers Cayley graphs in [Rók94,Rók95b,Rók95a]
to model both the cell space and the communication links between the cells (the
use of Cayley graphs as intersection networks has been extensively studied, see
e.g. [Hey97]). This piece of research focuses on the conditions of the simulation
of a CA on a given Cayley graph by another CA on another Cayley graph and
on the algorithmic problem of the global synchronization of a set of cells.

There are strong links between Cayley P systems and such extensions of
cellular automata: in the two cases we have to study the propagation of compu-
tations in a space described by a Cayley graph. However, the mentioned work
focuses on some synchronization problems and establishes some complexity re-
sults for various simulations. For instance, the characterization of the domain is
out of the CA scope.
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Systolic Programming. We recall here the terminology concerning recurrence
equations. Uniform recurrence equations (URE) have been introduced by Karp,
Miller and Winograd [KMW67]. Their model has been broadened to affine re-
currence equations (ARE). An ARE takes the following form:

∀z ∈ D, U(z) = f(U(I(z)), V (I ′(z)), ...) (15)

where D is a convex polyhedron of Z
n called the domain of the equation; z is

a point of Z
n; U and V are variable names indexed by z (the dimension of the

index of a given variable is constant). The functions I, I ′, . . . are affine mappings
from Z

n to Z
n. The variable U(I(z)) is an argument and U(z) is a result of the

equation. The function f is strict. If all the mappings I are translations then
the system is said to be an URE. This formalism has been largely used. Indeed,
there is a large corpus of mathematical results in linear algebra that can help to
solve the problems encountered. One of the main problem is to characterize the
domain of definition of the function specified by equation 15.

This problem is very similar to the characterization of the limit domain D.
Indeed, because the function f is strict, the equations defining the domain of
definition of U have the same formal expression that the equations defining D
(assuming Z as the underlying group), see [Gia99].

Domain of Definition of an ARE. We can review some results in this area. Karp,
Miller and Winograd [KMW67] have shown the decidability for URE on a bound
domain, without explicitly constructing the dependency graph.

However, B. Joinnault [Joi87] has shown the undecidability when the domain
of the equations is not bound. The proof relies on the coding of a Turing machine
by an URE. The functions used in the specification of an URE are strict, that
is, we do not have a conditional; the conditional is simulated by an adequate
specification of the domain of the equations.

This result cannot be adapted in the case of Cayley P systems because the
specification of the domain of definition of an URE (which plays for the URE
the same role as the base cosets) relies on the specification of convex polyhedra
in Z

n and a convex polyhedron is not generally a coset in Z
n neither a finite

union of cosets or the complementary of a finite union of cosets. In [SQ93], the
undecidability result is extended to the case of parametric bound domains (i.e.,
the domain is described by an union of finite convex polyhedron parameterized
by a parameter p ∈ Z

m) (for a given value of p, the domain is finite).
Dependencies beyond the affine dependences can be found in exact or ap-

proximate data flow analysis [Fea91,?]. More specifically for recursive structures,
J.-F. Collard and A. Cohen [Coh96] have used the group structure to specify and
analyze recursive computations on trees.
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Abstract. The study of tissue P systems was initiated in [6], inspired
from the way neurons cooperate, processing impulses in the complex
net established by synapses. These systems use multisets of objects for
processing, and it was shown that computational completeness can be
achieved using a small number of cells and states. In this paper, we
use string objects as the underlying data structure. The control struc-
ture used is a restricted form of contextual rules and rewriting rules.
We obtain two characterizations of recursively enumerable languages us-
ing these systems: tP systems having 2 states and 2 cells as well as tP
systems having 4 states and a single cell generate all recursively enumer-
able languages. We also discuss the relationships with ET0L and E0L
languages.

1 Introduction

The P systems are computing models inspired from the structure and the func-
tioning of the living cells [1,8]. A P system consists of a membrane structure
which is a three dimensional structure of vesicles, all of them placed in a main
vesicle, delimited by a skin membrane. In the compartments defined by these
membranes (vesicles), there are placed multisets of objects. The multisets of
objects can be interpreted as chemical compounds swimming in the regions de-
limited by the membranes. There are evolution rules governing the modification
of these objects in each membrane; the objects can also pass through the mem-
branes or leave the system, through the external membrane. In each time unit,
all objects in a compartment which can evolve by the rules associated with that
compartment have to evolve. In this way, we get transitions from a configuration
to the next one. A sequence of transitions constitutes a computation; with each
halting computation, we associate a result, the number of objects sent out of the
system during the computation.

Thus, a P system is a computing device which abstracts from a single cell
structure and functioning. But in most cases, since cells live together and are
associated with tissues and organs, inter-cellular communication becomes an
� This work was supported partially by a DST Project Sanction No. DST/MS/124/99.
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essential feature. This communication is done through the protein channels es-
tablished among the membranes of the neighboring cells [3]. This has been the
main motivation for the introduction of tP systems [6].

tP systems are also motivated from the way neurons cooperate. A neuron has
a body containing a nucleus; its membrane is prolonged by two classes of fibres:
the dendrites which form a filamentary bush around the body of the neuron, and
the axon, a unique, long filament which ends in a filamentous bush. Each of the
filaments from the end of the axon is terminated with a small bulb.

Neurons process impulses in the complex net established by synapses. A
synapse is a contact between an endbulb of a neuron and the dendrites of another
neuron. The transmission of impulses from one neuron to another one is done
in the following way: A neuron will be fired only if it gets sufficient excitation
through its dendrites. After firing a neuron and having it excited, there is a
small interval of time necessary to synthesize the impulse to be transmitted to
the neighboring neurons through the axon; also, there is a small interval of time
necessary for the impulse to reach the endbulbs of the axon. The inputs to a
neuron can also be from various sensory areas, like the eyes, the skin and the
muscles, in addition to the impulses they get from other neurons. The neuron
synthesizes an impulse which is transmitted to the neurons to which it is related
by synapses; the synthesis of an impulse and its transmission to adjacent neurons
are done according to certain states of the neuron.

These observations have been made use of while defining a tP system [6]. A tP
system consists of several cells, related by protein channels. The term synapses is
used for referring to these channels. Each cell has a state from a given finite set of
states and can process multisets of objects represented by symbols from a given
alphabet. The standard rules are of the form sM → s′M ′, where s, s′ are states
and M,M ′ are multisets of symbols. Some of the elements are marked with an
indication “go” and this means they have to leave the cell immediately and pass
to the cells to which we have direct links through synapses. This communication
can be done in a replicative manner or a non-replicative manner.

In this paper, we consider tissue P systems where the objects are described by
strings. The idea of using contextual rules along with rewriting rules was intro-
duced in [5] and a variant of P systems using these kind of rules was investigated
in [2]. The control structure used in this paper consists of a restricted form of
rewriting rules as well as contextual rules. To a string z in the tP system, we
apply contextual rules in the depth-first manner [7]. Similarly, a rewriting rule
is applied to a symbol a in z iff it was introduced in the previous step through
a contextual rule of the form (sw, (a, b)) or (sw, (b, a)), or through a rewriting
rule sc → sa, where w is a substring of z and c is a symbol in z.

As in usual tP systems, we start from an initial configuration, and allow the
system to proceed until reaching a halting configuration, where no further rule
can be applied. A particular cell is designated as the output cell, and in its rules
sa → s′x or (sw, s′(u, v)), where a ∈ V, u, v, w, x ∈ V ∗, the indication “out” is
allowed, and such a string is sent out of the system. The terminal strings sent
out of the system contribute to the result of the computation.
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2 Language Theory Prerequisites

In this section, we introduce some formal language theory notions which will be
used in this paper; for further details, we refer to [10]. For an alphabet V , we
denote by V ∗ the set of all strings over V , including the empty one, denoted
by λ. The length of a string x ∈ V ∗ (the number of symbol occurrences in x)
is denoted by |x|. The number of occurrences of a given symbol a ∈ V in a
string x is denoted by |x|a. By CF ,CS ,RE we denote the families of context-
free, context-sensitive and recursively enumerable languages, respectively, while
MAT denotes the family of languages generated by matrix grammars without
appearance checking.

A context-free grammar G = (N,T, S, P ) is said to be in the Chomsky normal
form if the rules in P are of the form X → Y Z,X → a, where X,Y, Z ∈ N, a ∈ T .
It is known that for every context-free grammar G, there exists an equivalent
grammar G′ in the Chomsky normal form.

A type-0 grammar G = (N,T, S, P ) is said to be in Kuroda normal form
if the rules in P are of the forms A → BC,A → a,A → λ,AB → CD, for
A,B,C,D ∈ N and a ∈ T .

A type-0 grammar G = (N,T, S, P ) is said to be in Penttonen normal form
if the rules in P are of the following three forms:

1. X → α1α2, for α1, α2 ∈ N ∪ T such that X �= α1, X �= α2, α1 �= α2,
2. X → λ,
3. XY → XZ, for X,Y, Z ∈ N such that X �= Y,X �= Z, Y �= Z.

Now we pass on to defining some basic types of L systems. Basically, a
E0L system is a context-free pure grammar with parallel derivations: G =
(V, T, w,R), where V is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗

(axiom), and R is a finite set of rules of the form a → v with a ∈ V, v ∈ V ∗, such
that for each a ∈ V there is at least one rule a → v in R (we say that R is com-
plete). For w1, w2 ∈ V ∗ we write w1 =⇒ w2 if w1 = a1 . . . an, w2 = v1 . . . vn for
ai → vi ∈ R, 1 ≤ i ≤ n. The generated language is L(G) = {x ∈ T ∗ | w =⇒∗ x}.
The family of languages generated by E0L systems is denoted by E0L. A tabled
E0L system, abbreviated ET0L system, is a system G = (V, T, w,R1, . . . , Rn),
such that each triple (V, T, w,Ri) is an E0L system; each Ri is called a table,
1 ≤ i ≤ n. The generated language is defined by

L(G) = {x ∈ T ∗ | w =⇒Rj1
w1 =⇒Rj2

. . . =⇒Rjm
wm = x,

m ≥ 0, 1 ≤ ji ≤ n, 1 ≤ i ≤ m}.
Each derivation step is performed by rules of the same table. The family of

languages generated by ET0L systems is denoted by ET0L.
It is known that CF ⊂ E0L ⊂ ET0L ⊂ CS . Moreover, E0L is incomparable

with MAT .
In the sequel we will make use of the following normal form for ET0L sys-

tems. Each language L ∈ ET0L can be generated by an ET0L system G =
(V, T, w,R1, R2) having only two tables. Moreover, from the proof of Theorem
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V.1.3 in [9], we see that any derivation with respect to G starts by several steps
of R1, then R2 is used exactly once, and the process is iterated; the derivation
ends by using R2.

We recall now some basic definitions of contextual grammars. An internal
contextual grammar is a construct

G = (V,A, (S1, C1), ...(Sn, Cn)),

n ≥ 1, where

– V is an alphabet,
– A ⊆ V ∗ is a finite set, called the set of axioms,
– Si ⊆ V ∗, 1 ≤ i ≤ n, are the sets of selectors,
– Ci ⊆ V ∗ × V ∗, Ci finite, 1 ≤ i ≤ n, are the sets of contexts.

The usual derivation in the internal mode is defined as follows:

x =⇒in y iff x = x1x2x3, y = x1ux2vx3, for x1, x2, x3 ∈ V ∗,
x2 ∈ Si, (u, v) ∈ Ci, for some 1 ≤ i ≤ n.

The language generated by the above grammar G is defined as

Lin(G) = {x ∈ V ∗ | w =⇒∗
in x, for some w ∈ A}

where =⇒∗
in is the reflexive transitive closure of the relation =⇒in.

Given a contextual grammar G = (V,A, (S1, C1), . . . , (Sn, Cn)), the leftmost
derivation with respect to G is given by

x =⇒left y iff x = x1x2x3, y = x1ux2vx3

for x1, x2, x3 ∈ V ∗, x2 ∈ Si, (u, v) ∈ Ci, 1 ≤ i ≤ n,

such that there is no decomposition x = x′1x
′
2x
′
3 with

|x′1| < |x1| and x′2 ∈ Sj , for 1 ≤ j ≤ n.

3 Tissue P Systems with String Objects

In this section, we introduce tissue P systems (tP systems) with string objects.
A tissue P system with string objects of degree m ≥ 1 (the degree of a system is
the number of cells in the system) is a construct

Π = (O, T, σ1, . . . , σm, syn, iout),

where:

1. O is a finite non-empty alphabet;
2. T ⊆ O is the terminal or output alphabet;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses among cells) if (i, j) ∈ syn,

then j is a successor of i and i is an ancestor of j;
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4. iout ∈ {1, 2, . . . ,m} indicates the output cell;
5. σ1, . . . , σm are cells, of the form

σi = (Qi, si,0, Li,0, Pi), 1 ≤ i ≤ m,

where:
(a) Qi is a finite set of states;
(b) si,0 ∈ Qi is the initial state;
(c) Li,0 ∈ O∗ is the set of initial strings;
(d) Pi is a finite set of rules which can be of one of the following forms:

• A rewriting rule of the form sa → s′y or sa → s′(y, tar) where
s, s′ ∈ Qi, a ∈ O, y ∈ O∗, tar ∈ {go, out}, with the restriction that
only Piout

can contain rules sa → s′(y, out).
• A contextual rule of the form (sw, s′(u, v)) or ((sw, s′(u, v)), go)

or ((sw, s′(u, v)), out) where s, s′ ∈ Qi, w ∈ O∗, u, v ∈ O ∪ {λ},
with the restriction that only Piout can contain rules of the form
((sw, s′(u, v)), out).

Both the above kinds of rules have to be applied in a depth-first manner [4]: (1)
when applying rewriting rules, the substring that is rewritten should contain a
word that was inserted in the previous derivation either by a rewriting rule or
by a contextual rule; (2) when applying contextual rules, the used selector must
contain a word that was introduced in the previous derivation by a rewriting
rule or a contextual rule.

A tP system as above is said to be cooperative if it contains at least one
rewriting rule sx → s′y such that |x| > 1, and non-cooperative in the opposite
case. In this paper, we consider only non-cooperative systems.

When applying a rewriting rule sa → s′y to a string z, we replace exactly
one occurrence of a in z by y. In case the rule sa → s′(y, go) is applied in a cell
σi, then the symbol a is replaced by y and the resultant string w is sent to the
cells related by synapses to the cell σi according to the following modes:

– repl: the string w is sent to each of the cells σj such that (i, j) ∈ syn;
– one: the string w is sent to one of the cells (nondeterministically chosen) σj

such that (i, j) ∈ syn.

Similarly, when sa → s′(y, out) is applied, the string obtained by replacing a by
y is sent out of the system.

If a contextual rule (sx, s′(u, v)) is applied to a string z, then u, v are in-
serted on both sides of the substring x of z. If we apply ((sx, s′(u, v)), go) or
((sx, s′(u, v)), out), then the resultant string is sent to the successor cells, in one
of the modes considered above, or is sent out.

It is not necessary that a tP system should have both the above kinds of
rules. Thus, we have three classes of tP systems: (1) those having only rewriting
rules, (2) those having only contextual rules, and (3) those having both kinds
of rules. In this paper, we shall consider tP systems having both rewriting rules
and contextual rules where the rules are applied according to the following re-
strictions:
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1. We start by applying a contextual rule or a rewriting rule to a string z ∈ V ∗

in some cell σi in a leftmost manner. All the steps following the first step do
not have the leftmost restriction.

2. In the next step, the rules are used in the depth-first way, as follows. In short,
if a contextual rule is followed by a rewriting rule, then one of the contexts
(�= λ) inserted in the last step should be rewritten. In case of λ contexts,
a neighbor (left or right) of λ can be rewritten. Similarly, if a contextual
rule follows a rewriting rule sa → sy, then the selector must contain y.
In case a contextual rule follows another contextual rule, then the selector
must contain one of the contexts inserted in the previous step. Similarly, if
a rewriting rule follows another rewriting rule, then a symbol introduced by
the previous rewriting rule has to be replaced. If a rule a → λ has been used,
then a neighbor (left or right) of λ is chosen for rewriting.

Any m−tuple of the form (s1L1, . . . , smLm) with si ∈ Qi and Li ∈ O∗ is
called a configuration of Π; thus, (s1,0L1,0, . . . , sm,0Lm,0) is the initial configura-
tion of Π. Using the rules from the sets Pi, we can define transitions among the
configurations of the system. During any transition, some cells can do nothing:
if no rule is applicable to the available strings in the current state, then the cell
waits until new strings are sent to it from other cells. Each transition lasts one
time unit, and the work of the net is synchronized, the same clock marks the
time for all cells. A sequence of transitions among the configurations of a tP
system is called a computation of Π. A computation which ends in a configura-
tion where no rule in no cell can be used, is called a halting computation. The
language generated by Π, denoted by Lβ(Π), is the set of all strings z ∈ T ∗ sent
out of the system from cell σiout during a halting computation, β ∈ {repl, one}.
The family of all sets Lβ(Π), generated by all non-cooperative tP systems with
at most m ≥ 1 cells, each of them using at most r ≥ 1 states, is denoted by
LtPm,r (β), β ∈ {repl, one}.
Note 1: We do not use rules of the form s → s′ or s → s′w, or (s, s′(u, v)) which
are unrealistic from the biological point of view.

Note 2: Consider a tP system Π having n states s1, . . . , sn. Then we say
that a state si ‘switches over’ to a state sj , j �= i, if there exists a rule sia → sjw
or (sia, sj(u, v)). A state si is said to have a ‘unique switch over‘ if there exists
one and only one j �= i such that si switches over to sj . This means that the
rules involving si are of one of the following forms:

1. sia → siw,
2. sia → sjw, j �= i,
3. (six, si(u, v)) or ((six, si(u, v)), go) or ((six, si(u, v)), out),
4. (six, sj(u, v)) or ((six, sj(u, v)), go) or ((six, sj(u, v)), out),

where a ∈ O, u, v, x ∈ O∗, w ∈ O∗ ∪ O∗ × {go, out}. If every state of Π has a
unique switch over, then we say that Π has a unique switch over.
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4 Preliminary Results

Directly from the definitions we obtain:

Lemma 1. For all tP systems Π where each cell has at most one successor, we
have Lrepl(Π) = Lone(Π).

The following auxiliary result will be very useful below.
A system with m cells, each of them using r states, is said to be of type

(m, r).

Lemma 2. (Double Normal Form Lemma) For each system Π of type (n, 1)
with only one string in its configurations and at most one successor for each
cell, a system Π ′ of type (1, n) can be constructed, with only one string in each
configuration and with a unique switch over, such that Lβ(Π) = Lβ(Π ′), β ∈
{one, repl}. Also the converse assertion is true (passing from a system of the
form of Π ′ above to a β-equivalent system of the form of Π above).

Proof. Let Π = (O, σ1, . . . , σn, syn, iout) be a tP system where each σi has ex-
actly one state. We construct the tP system Π′ = (O, σ′1, ∅, 1) where σ′1 has the
states s1, s2, . . . , sn. Each state si of σ′1 in Π′ corresponds to the cell σi of Π.
Both Π as well as Π′ have the same initial string in their initial configurations.
Assume that the initial string is present in cell σi in Π. Then the initial state of
Π′ is si.

The rules of σ′1 are constructed as follows: Corresponding to each rule sa →
sw or (sa, s(u, v)) of σi in Π, we have the rule sia → siw or (sia, si(u, v)) in σ′1
of Π′. If we have (i, j) ∈ syn in Π and a rule sa → s(w, go) or ((sa, s(u, v), go))
in σi, then in Π′, we have the rules sia → sjw or (sia, sj(u, v)).

In this way, we simulate the work of each cell σi by using the corresponding
state si. If a string is sent out of Π by a rule sa → s(w, out) or ((sa, s(u, v), out)
in σi, the in Π′, we have the rules sia → si(w, out) or ((sia, si(u, v)), out).

Clearly, Lβ(Π) ⊆ Lβ(Π ′), β ∈ {one, repl}.
To prove the reverse inclusion, construct a tP system Π having n cells from

a system Π′ having one cell and n states. If there is a rule that switches the
state from si to sj in Π′, then the synapse (i, j) is included in Π. The rules of
Π are constructed by reversing the procedure that we adopted above. Clearly,
Lβ(Π′) ⊆ Lβ(Π), β ∈ {one, repl}, and hence, we have the equality. 
�

In view of this lemma, all assertions which involve a family LtP1,m(β) are
also true for the family LtPm,1(β) and conversely. In all the proofs below, our
systems have only one string inside them at any point of time.

5 The Computing Power

Theorem 1. LtP2 ,2 (β) = RE , β ∈ {one, repl}.
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Proof. We prove only the inclusion ⊆, the opposite one can be obtained as
a consequence of the Turing-Church thesis. Consider a type-0 grammar G =
(N,T, S, P ) in the Pentonnen normal form. Construct the tP system

Π = (O, T, σ1, σ2, (1, 2), (2, 1), 1)

with the alphabet

O = N ∪ T ∪ {C ′, F, F ′, F ′′ | C,F ∈ N},

and the following cells:

σ1 = ({s, s′}, {s}, {S},
{sS → sx | S → x ∈ P} ∪ {(sx, s(λ, λ)) | x ∈ (N ∪ T )∗, |x| = 2, 0}

∪ {sA → sy | A → y ∈ P} ∪ {((sAB, s′(λ,C ′)), go) | AB → AC ∈ P}
∪ {s′F ′ → s(F, go) | F ∈ N} ∪ {((sa, s(λ, λ)), out) | a ∈ T}),

σ2 = ({s, s′}, {s}, {λ},
{(sF ′, s′(λ, F ′′)) | F ∈ N} ∪ {s′B → s(λ, go) | B ∈ N}

∪ {sF ′′ → s(λ, go)} ∪ {(sF, s(λ, λ)) | F ∈ N}).

In the initial configuration, we have the start symbol S in cell 1. A rule of the
form S → x is simulated by the rule sS → sx. Similarly, rules of the form A → y
are simulated by sA → sy. A rule can be applied to a symbol A anywhere
in the string by suitably using the rule (sx, s(λ, λ)). For simulating the rule
AB → AC ∈ P , we first apply ((sAB, s(λ,C ′), go)). This results in a string
xλABC ′y, where x, y ∈ (N ∪T )∗ which is sent to cell 2 (the underlined symbols
indicate that they are inserted in this derivation step). In cell 2, the applicable
rules are (sF ′, s′(λ, F ′′)) and (sF, s(λ, λ)). The application of the second rule
changes nothing. When the first rule is applied, the state s switches to s′ and
the string becomes xABλC ′C ′′y. The only applicable rule is now s′B → s(λ, go)
which deletes the B and takes the resultant string xAλC ′C ′′y to cell 1. The
current state in cell 1 is s′, and the rule s′F ′ → s(F, go) is applied. This brings
the string xACC ′′y in cell 2. In cell 2, the rule (sF, s(λ, λ)) is applied, followed
by sF ′′ → s(λ, go). This brings the string xACy in cell 1. The string can leave
the system at any point of time by applying the rule ((sa, s(λ, λ)), out) in cell 1.
The terminal strings which leave the system are listed in the language. 
�

Theorem 2. LtP1 ,4 (β) = LtP4 ,1 (β) = RE , β ∈ {one, repl}.

Proof. We prove the result for tP systems of type (1, 4). The result for the other
case follows from Lemma 2.1.

Consider a type-0 grammar G = (N,T, S, P ) in Kuroda normal form. We
construct the tP system

Π = (O, T, σ1, ∅, 1)
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where:

O = N ∪ T ∪ {CD | C,D ∈ N} ∪ {D′ | D ∈ N},
σ1 = ({s, s′, s′′, s′′′}, {s}, {S},

{sS → sx | S → x ∈ P, |x| = 0, 1, 2} ∪ {sA → sy | A → y ∈ P}
∪ {(sx, s(λ, λ)) | |x| = 0, 1, 2} ∪ {(sAB, s′(λ,CD)) | AB → CD ∈ P}
∪ {(s′CD, s′′(λ,D′))}, {s′′B → s′′′} ∪ {s′′′A → s | A,B ∈ N}
∪ {sCD → sCD, sD′ → s} ∪ {((sa, s(λ, λ)), out) | a ∈ T}).

As in Theorem 1, we have the start symbol S in cell 1. Rules of the form A →
y, |y| ≤ 2, can be simulated as in the above theorem. For simulating a rule
AB → CD, we apply the rule (sAB, s′(λ,CD)) to a string xABy, x, y ∈ (N∪T )∗.
This results in a string xλABCDy. Then, the rule (s′CD, s′′(λ,D′)) is applied
resulting in a string xABλCDD′y. Next, the rules s′′B → s′′′, s′′′A → s are
applied resulting in the string xλCDD′y. This is followed by applying the rules
sCD → sCD and sD′ → s, and we obtain the string xCDy.

In this way, it is possible to simulate any rules of P in Π. The string can
leave the system by applying the rule (sa, s(λ, λ)), a ∈ T . Consequently, Lβ(Π)
consists of all terminal strings of L(G) sent out of Π. 
�

Theorem 3. LtP3 ,1 (one) − ET0L �= ∅.
Proof. Construct the tP system

Π = ({#1, a, b, c, Z, k,#2}, {a, c}, σ1, σ2, σ3, {(1, 2), (2, 3), (3, 2), (3, 1)}, 3)

with the following cells:

σ1 = ({s}, {s}, {#1a#2}
∪ {(s#1, s(λ, λ)), sk → sZ, sZ → sZ}
∪ {sa → sbb, (sbb, s(λ, λ)), (sc, s(λ, λ)), ((s#2, s(λ, λ)), go)}),

σ2 = ({{s}, {s}, {λ},
{(sb, s(λ, λ)), (sc, s(λ, λ)), (sa, s(λ, λ))}

∪ {sb → s(ac, go), sb → s(ca, go), sk → s(λ, go)}),
σ3 = ({{s}, {s}, {λ},

∪ {(sac, s(k, λ)), (sca, s(k, λ)), sb → sa}
∪ {(sc, s(λ, λ)), (sa, s(λ, λ))}
∪ {((sc#2, s(λ, λ)), go), ((sa#2, s(λ, λ)), go)}
∪ {(sc#2, s(λ, λ)), (sa#2, s(λ, λ))}
∪ {((s#1a, s(λ, λ)), go), ((s#1c, s(λ, λ)), go)}
∪ {(s#1a, s(λ, λ)), (s#1c, s(λ, λ))}
∪ {s#2 → s(λ, go), s#1 → s(λ, out)}).
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To begin with, we have the string #1a#2 in cell 1. The rule sa → sbb as well as
the contextual rules in cell 1 double the number of a′s by b′s. When the right
end marker is reached, the string is sent to cell 2. In cell 2, we replace exactly
one occurrence of b by ac or ca and send the resultant string to cell 3. In cell 3,
the rule (sac, s(k, λ)) or (sca, s(k, λ)) is applied first. Then, the rules sb → sa
are applied to the right of ac or ca. When the right end marker is reached, the
string is sent to cell 2. If the string is sent to cell 1, two things can happen: (1)
the computation loops due to the introduction of the trap symbol Z by the rule
sk → sZ, or (2) the rule ((s#2, s(λ, λ)), go) is applied, which takes the string to
cell 2.

In cell 2, the rules (sa, s(λ, λ)), (sc, s(λ, λ)) are applied from the right end
marker till k is reached. Then the rule sk → s(λ, go) is applied. The string comes
back to cell 3 after deleting k. Now the rule sb → sa is applied to all the b’s to
the left of k, till the left end marker is reached. After this, the computation can
be continued or the string can be sent out of the system by applying the rules
((s#1a, s(λ, λ)), go), ((s#1c, s(λ, λ)), go), or s#1 → s(λ, out).

Note that the string sent out by applying the rule s#1 → s(λ, out) will be
accepted only if the rule s#2 → s(λ, go) has been applied previously in cell 3.
Consequently, the language generated by Π is {x | |x|a = 2|x|c , |x|c ≥ 1}, which
is not in ET0L. 
�

Theorem 4. ET0L ⊂ LtP3 ,1 (one).

Proof. We prove the inclusion ⊆ here, its strictness follows from the above the-
orem.

Let G = (V, T, w,R1, R2) be an ET0L system in the normal form. Each rule
in the tables R1, R2 is of the form a → x1x2 . . . xn where a, xi ∈ V and n ≥ 1.
Consider all rules a → x1x2 . . . xn in R1 where n > 2. We replace each such rule
by a sequence of rules sa → sx1D1, sD1 → sD2, . . . , sDn−2 → sxn−1xn, where
Di, 1 ≤ i ≤ n−2 are new symbols. Let V1 represent the set of these new symbols.
Similarly, let V2 denote the set of new symbols used in a similar procedure for
the rules of R2.

Now, all rules in each Ri are of the form a → x, where a ∈ V ∪ Vi, x ∈
(V ∪ Vi)∗, |x| ≤ 2.

Let h be the morphism defined by h(a) = a′, for all a ∈ V . Construct a tP
system

Π = (O, T, σ1, σ2, σ3, {(1, 2), (1, 3), (2, 1), (3, 1)}, 3),

where:

O = V ∪ V1 ∪ V2 ∪ {Z, k, l} ∪ {h(a) | a ∈ V },
σ1 = ({s}, {s}, {#1h(w)#2},

{(s#1, s(λ, λ))} ∪ {sa′ → slx′lD | a → xD ∈ R1, D ∈ V1}
∪ {(slx′lD, s(λ, λ)) | D ∈ V1} ∪ {sa′ → s | a → λ ∈ R1}
∪ {sa′ → slx′l | a → x ∈ R1, x ∈ V ∗} ∪ {(slx′l, s(λ, λ)) | x ∈ V ∗}
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∪ {((s#2, s(λ, λ)), go), s#2 → s(λ, go)} ∪ {sa → sZ | a ∈ V }
∪ {sD → sZ | D ∈ V2} ∪ {sZ → sZ, sk → s}),

σ2 = ({s}, {s}, {λ},
{(s#2, s(λ, λ)), sl → s} ∪ {sD → sZ | D ∈ V1} ∪ {sZ → sZ}

∪ {(sa′, s(λ, λ)) | a ∈ V } ∪ {((s#1, s(λ, λ)), go)}),
σ3 = ({s}, {s}, {λ},

{sl → s} ∪ {sa′ → skx′k | a → x ∈ R2, x ∈ V ∗}
∪ {(skx′k, s(λ, λ)) | x ∈ V ∗} ∪ {sa′ → sx | a → x ∈ R2, x ∈ (V ∪ V2)∗}
∪ {(sx, s(λ, λ)) | x ∈ (V ∪ V2)∗, |x| ≤ 2}
∪ {sa′ → skx′kD | a → xD ∈ R2, D ∈ V2}
∪ {(skx′kD, s(λ, λ)) | D ∈ V2} ∪ {((s#1kx

′k, s(λ, λ)), go) | x ∈ V ∗}
∪ {(s#1a, s(λ, λ)) | a ∈ V } ∪ {s#1 → s(λ, out)}
∪ {sD → sZ | D ∈ V1} ∪ {sZ → sZ}).

In the initial configuration, we have the string #1h(w)#2 in cell 1, where w is
the axiom of G. Table 1 is simulated in cell 1 using the rules sa′ → slx′l, sa′ →
sly′lD corresponding to rules a → x, a → yD, where a, y ∈ V , x ∈ V ∗, and
D ∈ V1. Once the right end marker is reached after rewriting all symbols, the
string is sent either to cell 2 or to cell 3. Note that if any symbol D ∈ V1 remains
in the string while being sent to cells 2 or 3, then the computation will loop due
to the application of the rule sD → sZ in these cells.

In cell 2, the symbols l are eliminated using the rule sl → s and the resulting
string is sent back to cell 1 for simulating table 1 again. In cell 3, the simulation
of table 2 is done starting from the right end marker, eliminating all the l’s. From
cell 3, we have two choices: either to continue the computation by simulating
table 1, or to stop the computation and send the string out of the system. To
achieve the former, rules of the kind sa′ → skx′k, sa′ → sky′kD are applied
corresponding to rules a → x, a → yD in R2, where a, y ∈ V , x ∈ V ∗, and
D ∈ V2. The string is then sent to cell 1 by applying ((s#1kx

′k, s(λ, λ)), go). In
cell 1, table 1 is simulated and the k’s are eliminated. Note that the presence of
symbols D ∈ V2 in the string that is being sent to cell 1 will loop the computation,
since the rule sD → sZ will be applied in cell 1.

To stop the computation, the rules sa′ → sx, x ∈ (V ∪ V2)∗, are applied.
When the left end marker is reached, the rule s#1 → s(λ, out) is applied sending
a string over V ∗ out of the system. Note that the rule s#2 → s(λ, go) must
be applied in cell 1 while sending the string to cell 3 in case of halting the
computations; otherwise, the string that is sent out will not be listed in Lone(Π).
Consequently, Lone(Π) = L(G). 
�

Theorem 5. LtP1 ,2 (β) − E0L �= ∅, β ∈ {one, repl}.
Proof. Construct the tP system

Π = ({a, b}, {a, b}, σ1, ∅, 1)
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with the following rules:

σ1 = ({s, s′}, {s}, {aba},
{(saa, s(λ, λ)), (sba, s(λ, λ)), (sab, s(λ, λ))}

∪ {(sbb, s(λ, b)), (sbb, s(λ, λ)), (sab, s′(a, b))}
∪ {(s′bb, s′(λ, λ)), (s′bb, s′(λ, b)), (s′ba, s(λ, a))}
∪ {((s′ba, s(λ, a)), out), ((sbb, s(λ, b)), out), ((sbb, s(λ, λ)), out)}
∪ {sb → sbb, s′b → s′bb}).

Clearly, the language generated by Π is {ambnam | n ≥ m ≥ 1}, and this
language is not in E0L. 
�

Theorem 6. E0L ⊂ LtP1,2(β), β ∈ {one, repl}.
Proof. We prove only the inclusion here, the strictness follows from the above
theorem.

Let G = (V, T, w, P ) be an E0L system, the rules of P being of the form
a → x, a ∈ V, x ∈ V ∗. As in Theorem 4, we shall replace each rule a →
x1x2 . . . xn, n > 2, by rules of the form a → x1D1, . . . Dn−2 → xn−1xn. Let V ′

denote the set of the newly introduced symbols. Now, the rules in P are of the
form a → x, where a ∈ V ∪ V ′, x ∈ (V ∪ V ′)∗, |x| ≤ 2.

Construct the tP system

Π = (V ∪ V ′ ∪ {l}, T, σ1, ∅, 1)

with the following rules:

σ1 = ({s, s′}, {s}, {#1w#2},
{(s#1, s(λ, λ))} ∪ {sa → slxl | a → x ∈ P, x ∈ V ∗}

∪ {(slxl, s(λ, λ)) | x ∈ V ∗} ∪ {sa → slxlD | a → xD ∈ P,D ∈ V ′}
∪ {(slxlD, s(λ, λ)) | D ∈ V ′} ∪ {(s#2, s

′(λ, λ))}
∪ {s#2 → s′} ∪ {(s′a, s′(λ, λ)) | a ∈ V } ∪ {s′l → s′}
∪ {(s′#1, s(λ, λ))} ∪ {(s′#1 → s(λ, out))}).

The simulation of the rules of P are done in state s as in Theorem 4. Once the
right end marker is reached, the state s becomes s′. The string is traversed back
in this state eliminating the l’s till the left end marker is reached. If the rules
s#2 → s′ and s′#1 → s(λ, out) are applied at the right and left ends of a string
#1z#2 while traversing from right to left, in |z + 2| steps, and if the string sent
out contains only terminals, then it will be listed in Lβ(Π), β ∈ {one, repl}.
Consequently, Lβ(Π) = L(G). 
�

Corollary 1. LtP2 ,1 (β) − MAT �= ∅, β ∈ {one, repl}.
Proof. The proof follows from the fact that E0L−MAT �= ∅. 
�
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6 Conclusion

We have investigated the power of tissue P systems working with string objects
using a small number of cells (at most four). The systems we have considered
here have used a restricted form of contextual and rewriting rules. It should be
noted that we have used only finite selectors in all the contextual rules. The
problem of whether the family MAT is contained in LtP2,1(β), β ∈ {one, repl},
is left open. It is also worthwhile to investigate the possibility of solving hard
problems using these systems in the repl mode.
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8. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,

61, 1 (2000), 108–143.
9. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic

Press, New York, 1980.
10. G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,

Springer-Verlag, Berlin, 1997.



Considerations on a Multiset Model
for Membrane Computing

Manfred Kudlek1 and Victor Mitrana2

1 Fachbereich Informatik, Universität Hamburg
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Abstract. We define, in an inductive way, structured multisets, as well
as Chomsky–like productions for such higher order multisets. The use-
fulness of the approach for Petri nets and membrane computing is briefly
discussed.

1 Introduction

In [4,5,6] P systems were introduced as a new paradigm for computing, namely
computing with membranes. The main idea is that productions together with
a (simple) multiset are inside a cell bordered by a membrane. The entire cell
structure is hierarchical. The productions are context-independent and have to
be applied in a (not necessarily total) parallel way inside a cell (some 0L way) on
members of the multiset. The membrane can also be dissolved by some special
productions with all productions dissapearing and leaving the multiset inside
the outer region. Applications in different cells are in parallel. It is also possible
to move multisets to another cell in the cell structure. Also sequential ways have
been considered [1].

Membrane systems (cells with productions, P systems) can also be seen as
multisets of a more complex structure, especially in a hierarchical way. Thus P
systems of P systems, etc. may be considered. Also the problem of existence and
construction of a universal structure of such kind arises, in particular not of the
power of Turing machines.

In [3], Chomsky-like grammars have been considered for multiset rewriting,
and a hierarchy of generative power has been presented. The multisets are sim-
ple, i.e., multisets over an alphabet Σ. Such multiset grammars describe the
behaviour of Petri nets, especially the reachability sets of simple tokens in sim-
ple place/transition nets. To enhance the descriptive power of Petri nets, coloured
Petri nets have been introduced where the tokens are structured objects, even
Petri nets of some kind. A still controversally discussed problem is the relation
between the firing of transitions in the higher level net and the lower level nets
(the objects). Among others, reference and value semantics have been introduced.

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 352–359, 2003.
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Another problem is to find a universal Petri net of higher order, simulating
all other Petri nets of some kind, like a universal Turing machine, but not of the
power of Turing machines. The main problem is to encode the Petri nets to be
simulated such that the universal net can also be encoded in that way.

In this paper we present some basic considerations of a general and uniform
representation of such problems in terms of more general multisets. For that
purpose we introduce an inductive definition of structured multisets (multisets
of multisets, etc.) representing data as cell contents or molecules. Chomsky-like
productions (rewriting rules) are also formulated as such higher order multisets.
The productions are applied sequentially. Also regulated application as in matrix
grammars is possible. Another possibility are parallel productions of a 0L type.
The entire rewriting system, data and productions, can also be represented by a
multiset (of still higher order). At that level it is possibe in principle to modify
those productions by external ones (from a higher level). A main problem is to
develop a simple and uniform definition how productions (of higher order) should
deal with data (of lower order). Several possibilities for the order of application
of productions are conceivable, from the inside to the outside, or from the outside
to the inside, in particular moving through one membrane only.

Another goal is to construct a universal multiset rewriting system for simu-
lating some (not necessarily recursively enumerable) class of multiset rewriting
systems. The problem is to encode in some way multiset grammars. This can
possibly results in considering other operations on multisets (different from +
but still commutative and associative), and in a hierarchical structure similar to
Scott’s domains.

Thus, there are a number of open problems, the most important of them being
the structure of multisets together with their operations to construct a universal
multiset rewriting system below the power of Turing machines. This should be
as simple as possible. The solution would allow us to construct corresponding
universal Petri nets or P systems.

2 Definitions

Let Σ = {s1, · · · , sk} be a finite set of atoms (an alphabet). Let Σ be ordered
by s1 ( s2 ( · · · ( sk. A multiset on Σ will be denoted by 〈i1a1, · · · , irar〉 with
1 ≤ r ≤ k, ij > 0, aj ∈ Σ, and i �= j ⇒ ai �= aj .

Define inductively:

M0 = Σ,

M1 = {〈i1a1, · · · , irar〉 | 0 ≤ r ≤ k, ij ∈ IN \ {0}, aj ∈ M0},
Ms+1 = {〈i1m1, · · · , irmr〉 | r ∈ IN, ij ∈ IN \ {0},mj ∈ Ms}.

Note that for r = 0 this defines the neutral element 0s+1 for Ms+1.
The elements of Ms+1 can also be written as (formal) infinite sequences

〈ij | ij ∈ IN〉 where only finitely many ij �= 0, and the elements mj ∈ Ms are
ordered in some canonical way, e.g., lexicographically.
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Examples: Σ = {a, b, c},
s = 0 : a, b, c,
s = 1 : 〈a, 2b〉, 〈c〉, 01,
s = 2 : 〈〈a〉, 3〈2b, c〉〉, 〈〈b〉〉, 〈01〉.
An order (s on Ms (s > 0) is defined by

m (s m′ ⇔ 〈ij〉 (s 〈i′j〉 ⇔ ∀j : ij ≤ i′j .

M1 is identical to the classical set of multisets: M1 = INk. It can describe
molecules composed of atoms from Σ. M2 can describe sets of molecules.

Elements from Ms can also be interpreted as cells with a membrane denoted
by 〈 and 〉, containing cells of lower complexity. Note that Ms contains only
multisets of the same kind.

With the operation ⊕s (s > 0) defined by

m⊕s m
′ = 〈ij〉 ⊕s 〈i′j〉 = 〈ij + i′j〉 for m,m′ ∈ Ms,

Ms becomes a commutative monoid with neutral element 0s.

Therefore, the structure (2Ms , ∅, {0s},∪,⊕s) is an ω-complete semiring. This
allows us to define rational, linear, and algebraic languages of multisets by least
fixed points of corresponding systems of equations. Since the operation ⊕s is
commutative, the families of rational, linear, and algebraic multiset languages
coincide.

Another operation 's is defined for m (s m′ ⇔〈ij〉 (s 〈i′j〉 by

m′ 's m = 〈i′j − ij〉.
Examples: Σ = {a, b, c},

s = 1 : 〈a, 2b〉 ⊕1 〈b, 2c〉 = 〈a, 3b, 2c〉,
s = 2 : 〈〈a〉, 〈a, 2b〉〉 ⊕2 〈〈a〉, 〈b〉〉 = 〈2〈a〉, 〈b〉, 〈a, 2b〉〉.

Another class of sets is defined inductively by:

N0 = M0 = Σ ∪ {0},
N1 = N0 ∪ {〈i1a1, · · · , irar〉 | 0 < r ≤ k, ij ∈ IN \ {0}, aj ∈ N0 \ {0}},
Ns+1 = Ns ∪ {〈i1m1, · · · , irmr〉 | r ∈ IN, ij ∈ IN \ {0},mj ∈ Ns \ {0}}.

Ns contains multisets of different levels up to level s.

Examples: Σ = {a, b, c},
s = 0 : a, c,
s = 1 : b, 〈a〉, 〈2a, b〉, 0,
s = 2 : a, 〈a, 3b〉, 〈a, 〈b〉, 〈2a, 3b〉〉, 〈〈2a, 5c〉〉.
Again, the elements of Ns can be ordered in some canonical way. Therefore,

they can also be expressed as (formally) infinite sequences of multiplicities of
elements from Ns : 〈ij | ij ∈ IN〉 with only finitely many ij �= 0.
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Elements from Ns can also be interpreted as cells with a membrane denoted
by 〈 and 〉, containing cells of possibly different lower complexities.

Again, an order (s on Ms (s > 0) can be defined by 0 ( m and

m (s m′ ⇔ 〈ij〉 ( 〈i′j〉 ⇔ ∀j : ij ≤ i′j .

Any element from Ns can be represented by a (formally) infinite sequence
〈ij〉.

An associative operation ⊗s on Ns (s > 0) can be defined by:

0 ⊗s m = m for m ∈ Ns,

a⊗s b = 〈a, b〉 for a, b ∈ Σ,

a⊗s 〈m1, · · · ,mr〉 = 〈a,m1, · · · ,mr〉, for a ∈ Σ, 〈m1, · · · ,mr〉 ∈ Ns \Σ,

m⊗s m
′ = 〈ij〉 ⊗s 〈i′j〉 = 〈ij + i′j〉, for m,m′ ∈ Ns \Σ.

Ns thus becomes a commutative monoid with neutral element 0.

Another operation )s can be defined by

m′ )s m = 〈i′j〉 )s 〈ij〉 = 〈i′j − ij〉 for m ( m′.

) is defined in an analogous way.

Let N∗ =
⋃

s≥0 Ns.

It is possible to represent Σ∗ in N∗ inductively by 0 for λ, and 〈a, 〈β〉〉 for
a ∈ Σ, β ∈ Σ∗.

Also on N∗ a commutative operation ⊗ can be defined by

m⊗m′ = m⊗s m
′ if m ∈ Nt,m

′ ∈ Nt′ and s = max(t, t′).

The structures(2Ns , ∅, {′},∪,⊗s), (2N∗ , ∅, {′},∪,⊗) are all ω-complete semir-
ings.

Therefore, rational, linear, and algebraic multiset languages of such structures
can be defined as least fixed points of corresponding systems of equations. Again,
since the operations are commutative, the rational, linear, and algebraic families
of multiset languages coincide.

Since all systems of equations are finite, all multiset languages defined in this
way contain only finitely many different ‘symbols’, in the case of s = 2, e.g., only
finitely many of the form 〈a, nb〉 with n > 0. Therefore, to obtain more general
classes of multiset languages, other methods to generate such multiset languages
have to be investigated.

Another possibility to characterize multiset languages is to define grammars
or rewriting systems on such structures.

For Ms the productions have the form [α, β] with α, β ∈ Ms. A simple
rewriting step is given by the application of a production on m ∈ Ms yielding
m′ ∈ Ms, and is defined by:
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if α (s m, then m′ = (m's α) ⊕s β,
or, for Ns, by m′ = (m)s α) ⊗s β.

Again, such productions are too simple to generate multiset languages of
higher complexity.

Consider multisets of level s = 1 as data, such as 〈3a, 2b〉. Productions
rewriting such multisets can be represented as multisets of higher level such
as π = 〈〈A,α〉, 〈C, β〉〉 where α, β are multisets of level s = 1, and A,C denote
the antecedent and the consequence of a production, with A,C �∈ Σ. A,C are
necessary to fix the order in π. Thus, a production π is a multiset of level s = 3.
A finite set of such productions then is a multiset Π of level s = 4. Note that
multiplicities at that level are 1. Finally, an entire rewriting system can be seen
as a multiset of level s = 5. Productions have to be applied in the way as shown
above.

This can be generalized for data of arbitrary level s. A rewriting system then
can be interpreted as a multiset of level s+4. Note that the level of data can be
changed in this case.
Examples:

1. Σ = {a, b, c},
π = 〈〈A, 〈a, 2〈b, 3c〉〉〉, 〈C, 〈2b, c〉〉〉,
rewriting, e.g., 〈2a, 2〈b, 3c〉〉 to 〈a, 2b, c〉,

2. π = 〈〈A, 〈a〉〉, 〈C, 〈2b, 〈a, c〉〉〉〉,
rewriting, e.g., 〈a, c〉 to 〈2b, c, 〈a, c〉〉,

3. Σ = {h, o},
π = 〈〈A, 〈〈2〈2h〉, 〈2o〉〉〉〉, 〈C, 〈2〈2h, o〉〉〉〉,
describing the chemical reaction 2H2 + O2 → 2H2O, or

4. π = 〈〈A, 〈〈α, β〉, 〈γ, δ〉〉〉, 〈C, 〈〈α, γ〉, 〈β, δ〉〉〉〉,
describing the reaction αβ + γδ → αγ + βδ.

For s = 1 we just get the families of multiset languages mARB considered
in [3].

In the case of (object) Petri nets as tokens of a (system) Petri net we have,
e.g., a transition (production) of the system net like

〈〈〈Π〉, α〉, 2〈〈Π〉, β〉〉⇒〈3〈〈Π〉, γ〉, 〈〈Π〉, δ〉〉,
where Π describes the transitions (productions) of the object Petri net, and
α, β, γ, δ describe its configurations. Relations between the configurations are
not given, but they should somehow reflect the behaviour of the object Petri
net. This requires that information from productions have to be moved between
different levels in some way.

In a more general situation also different object Petri nets (i.e. different Π)
might be allowed.

As a simple example we give two representations of info-energy systems con-
sidered in [2]. The purpose is that information handling comsumes and creates
(or transmits) energy.
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Let I be a (finite) set of informations. To each A ∈ I an energy k ∈ IN is
attached. This is represented as a multiset 〈kA〉 for k > 0, and as a multiset
〈A0〉 for k = 0 with I0 = {A0 | A ∈ I}.

A rule of such an information-energy system, denoting an energy flow of 3,
is e.g.:

Σ = {A,B,A0, B0},
〈〈kA〉, 〈mB〉〉 → 〈〈(k − 3)A〉, 〈(m + 3)B〉〉 (k > 3),
〈〈3A〉, 〈mB〉〉 → 〈〈A0〉, 〈(m + 3)B〉〉,
〈〈kA〉, 〈B0〉〉 → 〈〈(k − 3)A〉, 〈3B〉〉 (k > 3),
〈〈3A〉, 〈B0〉〉 → 〈〈A0〉, 〈3B〉〉.

Note that in these rules there is a relation (via k ∈ IN) between higher and lower
level.

By these rules, a configuration

〈〈A0〉, 〈3A〉, 2〈5A〉, 〈B0〉, 〈4B〉〉
is transformed into

〈2〈A0〉, 2〈5A〉, 〈B0〉, 〈7B〉〉 or 〈〈A0〉, 〈2A〉, 〈5A〉, 〈3B〉, 〈4B〉〉.
An alternative representation of information-energy is 〈ke,A〉 with k ∈ IN ,

and 〈0e,A〉 meaning 〈A〉. The rule from above then may be written as

〈〈ke,A〉, 〈me,B〉〉 → 〈〈(k − 3)e,A〉, 〈(m + 3)e,B〉〉 (k ≥ 3).

Since the order (s on Ms is too restrictive, we define another order +s on
Ms for s > 1.

For α = 〈α1, · · · , αk〉, β = 〈β1, · · · , βl〉 ∈ Ms+1 (all multiplicities written
explicitely, i.e., some of the αi, βj ∈ Ms may be identical) let

α +s+1 β⇔k ≤ l ∧ ∃ i1, · · · , ik ∀j ∈ {1, · · · , k} : αj ( βij
.

+s+1 is a reflexive, transitive, and antisymmetric relation. With this it is pos-
sible to define more general rewriting rules μ̂→μ̂′ in the following way. If μ̂ =
(μ1, · · · , μk), μ̂′ = (μ′1, · · · , μ′k) with μi, μ

′
i ∈ Ms, let

μ = 〈μ1, · · · , μk〉, μ′ = 〈μ′1, · · · , μ′k〉 ∈ Ms+1.

If μ +s+1 α, then μj (s αij for j ∈ {1, · · · , k}. Note that the ij are not unique.
A result of rewriting then is (among others) obtained by replacing the αij

in α
by (αij

− μj) + μ′j .
In the example from above, with (〈3e,A〉, 〈B〉)→(〈A〉, 〈3e,B〉) the multiset

〈〈A〉, 〈3e,A〉, 〈5e,A〉, 〈5e,A〉, 〈B〉, 〈4e,B〉〉 would be rewritten into the multiset
〈〈A〉, 〈2e,A〉, 〈3e,A〉, 〈5e,A〉, 〈3e,B〉, 〈4e,B〉〉 (among other possibilities).

However, if the resulting structure is meant not to have the power of Tur-
ing machines (there exist, e.g., universal DLBA’s), the transmission of such in-
formation has to be chosen carefully. To see this, consider 2-counter machines
which have of the power of Turing machines. They consist of finitely many
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states, Q = {q1, · · · , qm} and two counters c1, c2 with transitions of the form
(q, x1, x2)→(q′, x′1, x

′
2) with x′j = xj ± 1 and testing for xj = 0 (in the case

xj = 0 only x′j = xj + 1 allowed). Note that a transition not changing a counter
may be simulated by two transitions, the first one adding 1 to, and the second
one subtracting 1 from that counter.

A configuration (q, x1, x2) of a 2-counter machine can easily be represented
by a multiset 〈q, 〈c1, x1a1〉, 〈c2, x2b2〉〉 or by 〈q, x1a, x2b〉.

If productions are ordered (have a priority, corresponding to appearance
checking in matrix grammars) and erasing productions are allowed, then zero
testing is possible already on the lowest level by

〈q, a〉→〈q′〉, 〈q〉→〈q′, a〉 if (q, x)→(q, x− 1), for x > 0 and (q, 0)→(q′, 1),
and

〈q, a〉→〈q′, aa〉, 〈q〉→〈q′, a〉 if (q, x)→(q, x+ 1), for x > 0 and (q, 0)→(q′, 1).
This can easily be generalized to two counters giving a simple proof of the

fact that multiset matrix grammars with erasing productions and appearance
checking generate the recursively enumerable sets. Since only one membrane and
one cell is necessary, this also shows that membrane computing is as powerful
as Turing machines.

In this case we get 4 cases of transitions (q, x1, x2)→(q′, x1 ± 1, x2 ± 1),
denoted by (+ + ++), (+ + −+), (− + ++), (− + −+) (note that xi = 0 only
allows x′i = 1):

(+ + ++) : 〈q〉→〈q′, a, b〉,
(+ + −+) : 〈q, b〉→〈q′, a〉, 〈q〉→〈q′, b〉,
(− + ++) : 〈q, a〉→〈q′, b〉, 〈q〉→〈q′, a〉,
(− + −+) : 〈q, a, b〉→〈q′〉, 〈q, a〉→〈q′, b〉, 〈q, b〉→〈q′, a〉, 〈q〉→〈q′, a, b〉.

3 Conclusion

The considerations outlined above are only a first step for the development of a
simple uniform multiset model for describing multiset rewriting, some classes of
Petri nets, and P systems, and to construct universal instances for them. A lot
a further research has to be done in that direction.
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4. Gh. Păun: Computing with Membranes. TUCS Research Report 208, 1998
(http//www.tucs.fi).
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Abstract. In this paper we give a brief survey of some variants of P
systems and their computational capacity. An improvement of a known
result about rewriting P systems with leftmost derivation is given. We
also give the generalized definition for normal forms of rewriting P sys-
tems.

1 Introduction

P systems are a class of distributed parallel computing devices of biochemical
type, introduced in [14], which can be seen as a general computing architec-
ture wherein various types of objects can be processed by various operations. In
the basic model of the P systems one considers a membrane structure consist-
ing of several cell-like membranes which are hierarchically embedded in a main
membrane, called the skin membrane. Membranes with no other membranes em-
bedded in them are called elementary. The membranes delimit regions, where
we place objects. The objects evolve according to given evolution rules which
are associated with the regions. An object can evolve independently of the other
objects in the same region of the membrane structure, or in cooperation with
other objects. In particular, we consider catalysts, objects which evolve only to-
gether with other objects, but are not modified by the evolution (they just help
other objects to evolve). The evolution rules are given in the form of multiset
transition rules, with an optional associated priority relation. The right hand
side of the rules contains symbols of the form (a, here), (a, out), (a, inj), where
a is an object. The meaning is that one occurrence of the object a is produced
and remains in the same region, is sent out of the respective membrane, or is
sent to membrane j (which should be reachable from the region where the rule
is applied), respectively. One can consider (a, in) instead of (a, inj) with the
meaning that one occurrence of the object a is sent to any of the directly inner
membranes.

A feature considered in [15] is the possibility to control the membrane thick-
ness (by using the actions τ and δ). This is done as follows: Initially, all mem-
branes are considered to be of thickness 1. If a rule in a membrane of thickness
1 introduces the symbol τ , then the thickness of the membrane increases to 2. A

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 360–370, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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membrane of thickness 2 does not become thicker by using further rules which
introduce the symbol τ . If a rule which introduces the symbol δ is used in a
membrane of thickness 1, then the membrane is dissolved; if the membrane had
thickness 2, then it returns to thickness 1. Whenever the skin membrane is dis-
solved, the whole membrane system will be destroyed. If at the same step one
uses rules which introduce both δ and τ in the same membrane, then the mem-
brane does not change its thickness. No object can be communicated through
a membrane of thickness 2, hence rules which introduce commands in or out
requesting such communications, cannot be used. However, the communication
has priority over changing the thickness: if at the same step an object should be
communicated and a rule introduces the action τ , then the object is communi-
cated and after that the membrane changes the thickness.

The application of evolution rules is done in parallel. Starting from an initial
configuration (identified by the membrane structure, the objects – with multi-
plicities – and rules placed in its regions) and using the evolution rules, we get
a computation. We consider a computation complete when it halts, no further
rule can be applied. Two ways of assigning a result to a computation are con-
sidered: (a) by designating an internal membrane as the output membrane, (b)
by reading the result outside the system, where the output is obtained in the
natural way: we arrange the symbols leaving the system, in the order they are
expelled from the skin membrane; when several objects exit at the same time,
any permutation of them is accepted.

2 P Systems with Active Membranes

P systems with active membranes were introduced in [17] and then investigated
in [12], [16], and [2]. In this section, we consider the restricted version of P
systems with active membranes as given in [12].

A P system with active membranes, in the restricted form, is a construct

Π = (V, T,H, μ,M1, · · · ,Mn, R),

where:

– V is the alphabet of the system;
– T ⊆ V is the terminal alphabet;
– H is a finite set of labels for membranes;
– μ is a membrane structure, consisting of n membranes labeled with elements

of H and initially having a neutral charge;
– Mi, 1 ≤ i ≤ n, are strings over V , describing the multisets of objects placed

in the n regions of μ;
– R is a finite set of rules, of the following forms:

(a) [ha → v]αh , for h ∈ H, a ∈ V, v ∈ V ∗, α ∈ {+,−, 0} (object evolution
rules),

(b) a[h]αh → [hb]
β
h, where a, b ∈ V, h ∈ H,α, β ∈ {+,−, 0} (an object is

introduced in membrane h),
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(c) [ha]
α
h → [h]βhb, where a, b ∈ V, h ∈ H,α, β ∈ {+,−, 0} (an object is sent

out of membrane h).

The rules are applied as usual in a P system, in a maximally parallel manner:
in each time unit, all objects which can evolve, have to evolve. Each copy of an
object and each copy of a membrane can be used by only one rule, with the
exception of rules of types (a), where we count only the involved object, not
the membrane. That is, if we have several objects a in a membrane i and a rule
[ia → v]αi , then we use this rule for all copies of a; we do not count the membrane
that was used – note that its electrical charge is not changed. However, if we
have a rule [ia]

α
i → [i]

β
i b, then this counts as using the membrane, no other rule

of types (b) and (c) which uses the same membrane can be used at the same
time.

As any other membrane, the skin membrane can be electrically charged. Dur-
ing a computation, objects can leave the skin membrane (using rules of type (c)).

The result of a successful computation is ΨT (w), where w describes the multi-
set of objects over T which have left the skin membrane during the computation.
The set of such vectors ΨT (w) is denoted by Ps(Π) and we say that it is generated
by Π. The family of all such sets of vectors, computed by systems with at most
n, n ≥ 1, membranes, is denoted by PsAPn; when the number of membranes is
not restricted, we replace the subscript n by ∗.

In [17], the universality of P systems with active membranes (for the general
case) is proven. However, in [12] without considering membrane division, it is
proved that PsRE = PsAP∗. For this restricted case (i.e., without membrane
division) in [2] it is proved that four membranes suffice, i.e., PsRE = PsAP4.
The following result, for the restricted case, can be found in [10]:

Theorem 1. PsRE = PsAP3.

3 P Systems with Membrane Creation

In [6], we considered a variant of P systems where each membrane has both pro-
ductive and non-productive objects. A productive object can create a new mem-
brane and transforms into other objects. A non-productive object only transforms
into other objects without creating a new membrane.

Formally, a P system with membrane creation is a construct

Π = (V, T, C, μ,M1, · · · ,Mm, R1, · · · , Rn),

where V, T, μ,Mi, 1 ≤ i ≤ m, are defined in the usual way and C,C ∩ V = ∅, is
a finite set of catalysts. Each Ri, 1 ≤ i ≤ n, is a finite set of evolution rules over
V ∪ C. An evolution rule can be of two types:

– a → v or ca → cv, where c ∈ C, a ∈ V, v = v′ or v = v′δ or v = v′τ , where v′

is a multiset of objects over (V ×{here, out, in}) and δ, τ are special symbols
not in V; the object a is said to be non-productive;
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– a → [i v]i, where v is a multiset of objects over V ; this rule indicates that
the object identified by a is transformed into the objects identified by v,
surrounded by a new membrane having the label i. No rule of the form
a → [1 v]1 can appear in any set Ri, because a membrane with index 1
indicates the skin membrane, which cannot be duplicated. The object a is
said to be productive.

The rules are applied in the standard manner in P systems, that is, in the
non-deterministic maximally parallel way, with the mentioning that using a rule
a → [iv]i in a membrane j means creating a new membrane, with the label
i, inside membrane j, and containing the objects specified by v. Note that by
knowing the label i of the new membrane we know the rules which are to be
applied to its objects, namely those from the set Ri.

The number of initial membranes (n1), the maximal number of membranes
simultaneously present in the system (n2), and the number of all possible types
of membranes (n3) form the profile (n1, n2, n3) of the system.

The result of a successful computation is defined in the usual way. The family
of all sets of vectors of natural numbers generated by P systems with membrane
creation with a profile component-wise smaller than (n1, n2, n3), with catalysts
and the actions of both δ, τ , using the target indications of the form here, out, in,
is denoted by PsPMC(n1,n2,n3)(Cat, i/o, δ, τ); when one of the features α ∈
{Cat, δ, τ} is not present, we replace it with nα. When we use the communication
commands of the form here, out, inj , we replace i/o with tar.

In [6], we proved that PsRE is equal to PsPMC(1,2,4)(Cat, tar, τ, δ). By
considering catalyst creation rules [18] of the form X → [yc], where an object X
creates a membrane along with a catalyst c and transform into y, it is proved that
PsRE is equal to PsPMC(1,2,4)(Cat, i/o, nτ, δ). Therefore, in [18] it is allowed
the catalyst to be generated. Using this feature, in [10] one proves the following
result:

Theorem 2. PsRE = PsPMC(1,2,3)(Cat, i/o, nτ, δ).

4 P Systems with Leftmost Derivation

In a cell, many objects can be considered as being atomic, but many other
objects, such as, e.g., DNA molecules, have a structure, which can be described
by a string. This suggests to consider P systems with string-objects [11]. One
natural way to process string-objects is to use rules of the form X → (v, tar),
where X → v is a usual context-free rule and tar is a target indication, one
of here, out, in, specifying in the standard way the region where the result of
rewriting should go. All strings are processed in parallel, but each single string
is rewritten by only one rule (the parallelism is maximal at the level of strings
and rules, but the rewriting is sequential at the level of the symbols from each
string).

A restriction in the use of rules of P systems with string-objects is considered
in P systems with leftmost derivation [1], where any string is rewritten in the
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leftmost position which can be rewritten by a rule from its region. In order to
apply a rule, we examine the symbols of the string, step by step, from left to
right and the first symbol which can be rewritten by a rule from the region of
the string is rewritten. If there are several rules with the same left-hand side
symbol, then we can select one of them nondeterministically.

Formally, a P system with leftmost derivation is a construct

Π = (V, T, μ, L1, · · · , Ln, R1, · · · , Rn),

where V, T, μ,Ri, 1 ≤ i ≤ n, are defined in the usual way and each Li, 1 ≤ i ≤ n,
is a language over V , representing the strings initially present in the regions
1, 2, · · · , n of μ.

A computation is defined in the usual way. The result of a successful com-
putation consists of the strings over T ejected from the skin membrane. (Note
that the strings which remain in the system, as well as the strings which exit
the system but contain symbols which do not belong to T are ignored.)

We denote by RPn(left), n ≥ 1, the family of languages generated by P
systems with leftmost derivation with at most n membranes.

From [1], we know that:

Theorem 3. RE = RP6(left).

We improve this result and show that universality can be achieved with five
membranes.

Theorem 4. RE = RP5(left).

Proof. We prove only the inclusion RE ⊆ RP5(left). The inclusion in the other
direction can be proved in a straightforward manner. Let us consider a matrix
grammar with appearance checking, G = (N,T, S,M,F ), in the strong binary
normal form [3] with N = N1∪N2∪{S, †} and ac(G) ≤ 2. Assume that ac(G) =
2, and let B(1) and B(2) be the two symbols in N2 for which we have rules
B(j) → †, j ∈ {1, 2}, in matrices of M . Let us assume that we have h matrices
of the form m′i : (X → Y,B(j) → †), X, Y ∈ N1, j ∈ {1, 2}, 1 ≤ i ≤ h, and k
matrices of the form mi : (X → α,A → x), X ∈ N1, A ∈ N2, α ∈ N1 ∪ {λ},
and x ∈ (N2 ∪ T )∗, 1 ≤ i ≤ k. Each matrix of the form (X → λ,A → x), X ∈
N1, A ∈ N2, x ∈ T ∗, is replaced by (X → f,A → x), where f is a new symbol.
We continue to label the obtained matrix in the same way as the original one.
The matrices of the form (X → Y,B(j) → †), X, Y ∈ N1, are labeled by m′i, with
i ∈ labj , for j ∈ {1, 2}, such that lab1, lab2 and lab0 = {1, 2, · · · , k} are mutually
disjoint sets.

We construct a P system

Π = (V, T, μ, L1, · · · , L5, R1, · · · , R5),

with the following components:

– V = N1 ∪N2 ∪ T ∪ {Xi | X ∈ N1, i ∈ lab0 ∪ lab1 ∪ lab2}
∪ {A′, Ai | A ∈ N2, i ∈ lab0} ∪ {f, †};
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– μ = [1[2[3 ]3]2[4 ]4[5 ]5]1;
– L1 = {AX};
– Li = ∅, 2 ≤ i ≤ 5;
– R1 contains the following rules:

1. X → (Yi, in), X ∈ N1, i ∈ lab0 ∪ lab1 ∪ lab2;
2. A′ → (A, here), A ∈ N2 − {B(1), B(2)};
3. Yi → (†, here), i ∈ lab0 ∪ lab1 ∪ lab2;
4. † → (†, here);
5. f → (λ, out);

– R2 contains the following rules:
1. A → (A′, here), A ∈ N2 − {B(1), B(2)};
2. A → (A1, in), A ∈ N2 − {B(1), B(2)};
3. Ai → (Ai+1, in), A ∈ N2 − {B(1), B(2)}, 1 ≤ i ≤ k − 1;
4. Ai → (x, out), for mi : (X → Y,A → x), i ∈ lab0;

– R3 contains the following rules:
1. Yi → (Yi−1, out), i �= 1;
2. Y1 → (Y, out);
3. Y → (†, here);
4. † → (†, here);

– R4 contains the following rules:
1. B(1) → (†, here);
2. † → (†, here);
3. Yi → (Y, out), i ∈ lab1;
4. Yi → (†, here), i /∈ lab1;

– R5 contains the following rules:
1. B(2) → (†, here);
2. † → (†, here);
3. Yi → (Y, out), i ∈ lab2;
4. Yi → (†, here), i /∈ lab2;

The system works as follows:
We start with the string AX in membrane 1; assume that we have here a

string wX, for some w ∈ (N ∪T )∗. Since only one rule (i.e., X → (Yi, in)) can be
applied to this string in membrane 1, we rewrite X with Yi, i ∈ lab0∪lab1∪lab2, so
that the string is sent to one of the inner membranes. If i ∈ lab0 and the string
is sent to either membrane 4 or 5, then a trap symbol (†) will be introduced
and the computation never halts. Otherwise, if i ∈ lab0 and the string is sent
to membrane 2, then we can apply any of the two rules A → (A′, here) and
A → (A1, in), A ∈ N2−{B(1), B(2)}. If we apply only the first rule to all possible
symbols from set N2 − {B(1), B(2)}, then we cannot proceed further and never
get the output. In order to proceed further we need to apply the second rule
to at least one symbol from the set N2 − {B(1), B(2)}, so that the string is
sent to membrane 3. In membrane 3, we apply the rule Yi → (Yi−1, out), i �=
1, so that the string is sent to membrane 2. Now in membrane 2, since we
cannot rewrite symbols of the form A′, A ∈ N2 − {B(1), B(2)}, we apply the
rule Ai → (Ai+1, in), A ∈ N2 − {B(1), B(2)}, 1 ≤ i ≤ k − 1, which makes the
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string to move into membrane 3. In this way we decrease the subscript value
of Y in one step of rewriting and in the next step we increase the subscript
value of A. After rewriting Y1 into Y we can apply either Ai → (Ai+1, in), A ∈
N2 − {B(1), B(2)}, 1 ≤ i ≤ k − 1, or Ai → (x, out), for mi : (X → Y,A → x) (in
membrane 2). If we apply the first rule, then a trap symbol will be introduced
in membrane 3 (due to the rule Y → (†, here)). So, with the application of the
second rule we can finish the simulation of a matrix mi, i ∈ lab0. If we simulated
a matrix mi : (X → f,A → x), i ∈ lab0, then the symbol f will be erased in the
skin membrane and the string is sent out of the system.

For simulating a matrix of the form (X → Y,B(1) → †), we rewrite X into
Yi, i ∈ lab1, so that the string is sent to one of the inner membranes. If this string
is moved into either membrane 2 or 5, then a trap symbol will be introduced.
Otherwise, in membrane 4, we can apply the rule B(1) → (†, here) (if such
a symbol exists) so that the computation never halts. If no such symbol (i.e.,
B(1)) exists, then we can apply the rule Yi → (Y, out) and finish the simulation
of a matrix m′i : (X → Y,B(1) → †). Similarly, we can explain the simulation of
a matrix m′i : (X → Y,B(2) → †).

Therefore our system generates exactly the strings generated by the grammar
G, that is, we have L(Π) = L(G). 
�

5 Contextual P Systems

Contextual grammars for processing string-objects in P systems were considered
in [7,5], where the derivations are taking place depending upon the contexts.

Formally, a contextual P system is a construct

Π = (V, T, μ, L1, · · · , Ln, R1, · · · , Rn),

where V, T, μ, Li, 1 ≤ i ≤ n, are defined in the usual way and each Ri, 1 ≤ i ≤ n,
is a finite set of rules of the form (x, (u, v), tar), where x, u, v ∈ V ∗, and tar ∈
{here, in, out}. The pair (u, v) is called the context and the string x is called
the selector of the rule. If we do not have any selection of contexts (the contexts
are freely adjoined, irrespective of the bracketed substring), then the rules are
represented as (−, (u, v), tar).

We allow empty contexts, i.e., of the form (λ, λ). A computation is defined
in the usual way. During a computation, depending upon the selector, a context
is attached to a string and then we follow the prescriptions given by tar. The
result of a successful computation consists of the strings over T ejected from the
skin membrane.

We denote by ICC and ECC the family of languages generated by internal
and external contextual grammars, respectively. If we do not consider a selec-
tion, then the corresponding families of languages are denoted by IC and EC,
respectively. The family of languages generated by total contextual grammars is
denoted by TC. (Definitions of all these families can be found in [13].)

The family of languages generated by contextual P systems of degree n, n ≥
1, in the mode X ∈ {IC, ICC,EC,ECC} with the selectors of type F ∈
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{FIN,REG,LIN, CF,CS,RE}, is denoted by CPn(X,F, i/o). Note that for
X ∈ {IC,EC}, F is ∅.

From [7], we know the following results:

Theorem 5. 1. CP1(EC, ∅, i/o) − ECC �= ∅.
2. CP2(ECC,LIN, i/o) − TC �= ∅.
3. CP2(ECC,LIN, i/o) − CF �= ∅.
4. X(F ) ⊆ CP1(X,F, i/o),

X ∈ {IC, ICC,EC,ECC}, F ∈ {FIN,REG,LIN,CF,CS,RE}.
When considering rules of the form (x, (u, λ), tar) or (x, (λ, v), tar), where

x, u, v ∈ V ∗ and tar ∈ {here, in, out}, we obtain one-sided contextual P systems.
The family of languages generated by one-sided contextual P systems of

degree n, n ≥ 1, in the mode X ∈ {IC, ICC,EC,ECC} with the choice of
type F ∈ {FIN,REG,LIN,CF,CS,RE}, is denoted by OCPn(1X,F, i/o) or
OCPn(11X, F, i/o), depending upon the use of right-sided contexts or both
right-sided and left-sided contexts, respectively.

From [7], we know that:

Theorem 6. 1. OCP2(11EC, ∅, i/o) − 11TC �= ∅.
2. OCP2(1IC, ∅, i/o) − 11TC �= ∅.
3. OCP2(11EC, ∅, i/o) −REG �= ∅.

In an insertion contextual P system, we consider a finite set of rules of the
form ((u, x, v), tar), where x, u, v ∈ V ∗ and tar ∈ {here, in, out}. The meaning
of a triple (u, x, v) is: a string x can be inserted in the context pair (u, v). The
weight of the system is defined as the maximum length of contexts used in all
rules.

The family of languages generated by insertion contextual P systems of degree
n, n ≥ 1, with weight m,m ≥ 1, is denoted by ICPn(m, i/o).

Let the family of languages generated by insertion grammars [13] of weight
at most n, n ≥ 0, is denoted by Sn; the union of all these families is denoted by
S∞. Then, from [7], we have the following results:

Theorem 7. 1. ICP2(1, i/o) − S∞ �= ∅.
2. ICP2(1, i/o) − CF �= ∅.

So far in all variants of contextual P systems, we consider only contexts to
be attached. By considering erased contexts, along with attached contexts, we
obtain a contextual P system with erased contexts.

The family of languages generated by contextual P systems with erased con-
texts of degree n, n ≥ 1, in the mode X ∈ {IC, ICC,EC,ECC} with the choice
of type F ∈ {FIN,REG,LIN,CF,CS,RE}, is denoted by CPEn(Xd, F, i/o).

From [7], we know that:

Theorem 8. 1. Xd(F ) ⊆ CPE1(Xd, F, i/o), X ∈ {ICC,ECC}, F ∈ {FIN,
REG,LIN,CF,CS,RE}.

2. RE = CPE1(ICCd, F IN, i/o).
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As a restricted case to erased contexts we define one-sided erased contexts,
where we can erase a context either from right-side or from left-side but not
from both sides at a time. We denote by 1Xd the family of languages generated
by type X grammars with right-sided contexts (λ, v), and by 11X the family of
languages generated when both right-sided contexts (λ, v) and left-sided contexts
(u, λ) are allowed (but not contexts (u, v) with both u and v non-empty), X ∈
{EC,ECC, IC, ICC}.

A one-sided contextual P system with one-sided erased contexts is a system
where attached and erased contexts are one-sided.

Let OCPOEn(1Z,F1, 1Xd, F2, i/o) denote the family of languages generated
by right-sided contextual P systems of degree n in Z mode with F1 choice
and with right-sided erased contexts in X mode with F2 choice. Here X,Z ∈
{IC, ICC,EC,ECC} and F1, F2 ∈ {FIN,REG,LIN,CF,CS,RE}. If we use
both right-sided and left-sided contexts, then the corresponding family of lan-
guages is denoted by OCPOEn(11Z,F1, 11Xd, F2, i/o).

The following theorem can be found in [7]:

Theorem 9. RE = OCPOE2(1ICC, FIN, 1ICd, ∅, i/o).
By combining insertion rules with one-sided erased context rules, we obtain

insertion contextual P systems with one-sided erased contexts.
Let ICPOEn(k, 1Xd, F, i/o) denote the family of languages generated by

insertion contextual P systems of degree at most n with weight at most k
and with right-sided erased contexts of mode X with F choice. Here X ∈
{IC, ICC,EC,ECC} and F ∈ {FIN,REG,LIN,CF,CS,RE}. If we use both
right-sided and left-sided erased contexts, then the corresponding family of lan-
guages is denoted by ICPOEn(k, 11Xd, F, i/o).

The proof of the following theorem can be found in [7].

Theorem 10. RE = ICPOE2(1, 1ICd, ∅, i/o).

6 Hybrid P Systems

A hybrid P system is a construct

Π = (V, T, μ, L1, · · · , Ln, R1, · · · , Rn, k),

where V, T, μ, Li, 1 ≤ i ≤ n, are defined in the usual way and each Ri, 1 ≤ i ≤
n, contains both rewriting and contextual rules; k, 1 ≤ k ≤ n, is an output
membrane.

The family of languages generated by hybrid P systems of degree n, n ≥ 1,
with the choice X ∈ {FIN,REG,CF,CS,RE} and tar ∈ {here, out, inj}, is
denoted as HyPn(X, tar). If tar ∈ {here, out, in}, then the family of languages
generated is denoted by HyPn(X, i/o).

In [4], it is shown that seven membranes are needed for the universality of
hybrid P systems with regular choice. In [9], we improved this result and showed
that two membranes suffice for achieving the universality of hybrid P systems
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with regular choice. Similarly, with finite choice, we achieved the universality of
hybrid P systems with five membranes.

Theorem 11. 1. RE = HyP2(REG, i/o).
2. RE = HyP5(FIN, tar).

7 Generalized Normal Form for Rewriting P Systems

A rewriting P system is in the m n normal form [8] if it is of depth m and
in each membrane we have exactly n rewriting rules. If we put no restriction
either on the depth or on the number of rewriting rules, then we replace the
corresponding term (i.e., either m or n respectively) with ∗.

The following results can be found in [8]:

Theorem 12. 1. Every recursively enumerable language can be generated by a
rewriting system with priorities in 2 2 normal form.

2. Every language generated by a rewriting P system of degree m in k ∗ normal
form with/without priorities can be generated by a rewriting P system of
degree m in 2 ∗ normal form with priorities.
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14. Gh. Păun, Computing with membranes, J. Computer System Sciences, 61 (2000),

108–143.
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17. Gh. Păun, P systems with active membranes: Attacking NP-complete problems,
J. Automata, Languages and Combinatorics, 11 (2001), 75–90.

18. R. Rodriguez-Paton, On the universality of P systems with membrane creation,
Bulletin of the EATCS, 74 (2001), 229–233.



Bridging P Systems and Genomics:
A Preliminary Approach

Solomon Marcus

Romanian Academy, Mathematics
Calea Victoriei 125, Bucureşti, Romania
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Abstract. Bringing genomics within the framework of P systems could
give to the former the possibility to take profit of the computational ca-
pacities of the latter. Moreover, suggestions coming from genomics could
enrich the study of P systems with new biological and computational
ideas. In what follows, a first attempt is made in this respect.

1 “Life Is a Surface Activity”

“Life is a surface activity[. . . ]. Life is fundamentally about insides and outsides”
[5: 260]. Relevant parts of the environment are internalised as an “inside exte-
rior” or “inner outside” (the so-called Uexküll‘s Umwelt [8]; “the representation
of certain environmental features inside an organism by various means” [8: 28]),
while the interior becomes externalised as an “outside interior” or “outer inside”,
in the form of the “semiotic niche” ([4: 40]), as informed and changed by the
inside needs of the organism pertaining to that niche [3: 29]. This inside-outside
interplay is made possible by the membrane strictly governing the traffic be-
tween them. P systems [7] find their starting point in this biological reality, to
which a computational dimension is added. In agreement with the ideas of DNA
computing and membrane computing, Wolfram [9] proposed recently to see life
as a universal Turing machine, to which Chaitin [2] adds the condition of a high
program-size complexity. The project of bridging genomics and P systems could
have the slogan: Life is DNA software + membrane software.

2 P Systems and the Human Genome Project (HGP)

The HGP, as presented, in its computational aspect, by Karp [6], is a good
starting point for the problem raised in the title of this article.

Let us recall the notion of a P system in one of its standard representations
[1: 18]. A P system with replicated rewriting is a construct

Π = (V, T, μ,M1,M2, . . . ,Mm, R1, R2, . . . , Rm),

where V is an alphabet (its elements are called objects); T is contained in V
and it is called the output alphabet; μ is a membrane structure consisting of m
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membranes (or regions of a membrane) labeled by 1, 2, . . . ,m, such that each
membrane except the first is completely contained within another; M1, . . . ,Mm

are finite languages over V ; R1, . . . , Rm are finite sets of developmental rules
of the form a → (v1, tar1)|| . . . ||(vn, tarn), with n ≥ 1, where tari belongs to
{here, out, in}, a ∈ V , and vi ∈ V ∗,≤ i ≤ n. The languages Mi and the rule sets
Ri are associated with the regions of μ, for all 1 ≤ i ≤ m. When a rule of the form
above is used to rewrite a string of the form xay, n strings xviy are obtained and
sent to the regions indicated by tari. When tari = here, the string is kept in the
same region. When tari = out, the string leaves the current region and goes into
the outer one, which for region 1 means out of the system. When tari = in, the
string is sent to one of the directly included regions, if any exists, otherwise the
rule cannot be applied. A computation is defined as follows: the process starts
with the strings present in the initial configuration and proceeds iteratively by
applying in parallel the rules in each region to all strings that can be rewritten.
If more than one rule can be applied to the same string in the same region, then
only one, randomly chosen, rule will be applied. If the chosen rule can be applied
in several places of the string, then it is applied in only one, randomly chosen,
place. The result, the set of all terminal strings, is collected outside the system,
at the end of the halting computation. The language generated by a system Π
is denoted by L(Π) and consists of all strings over T that are sent out of the
system during a halting computation.

Our option for the variant investigated in [1] is motivated mainly by the fact
that it distinguishes between the input and the output alphabet.

3 From Genomics to P Systems and Back

Let us recall that the genome of an organism is its total content of DNA molecules
within the cromosomes. Each species has its genome characteristics and each
individual within a species has its specific features. The human genome includes
about three billion base pairs and about 35,000 genes. Our aim in the following
is to identify the ways genomics, i.e., the study of genome, may lead naturally to
some P systems. To the extent to which this task is fulfilled, the computational
aspects of genomics may take profit from the computational capacities of P
systems.

The usual, starting interpretation of the objects forming the alphabet of a
P system is to consider them as molecules. The general theory of P systems
does not depend on the way we interpret these objects; however, the intuitive
representation of them decides to a large extent the type of problems which are
investigated.

According to Karp [6], the main problems of genomics are: (a) to sequence
and compare the genomes of different species (to sequence a DNA means to
decompose it in its successive nucleotide bases); the sequencing of the human
genome began in 1990 and was essentially completed in February 2001; (b) to
identify the genes and determine the functions of the proteins they encode. Task
(a) is mainly of a syntactic nature, while task (b) refers to the semantic dimension
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of cellular processes. Some other tasks of the HGP were considered, but we leave
them aside now.

A natural question arises: Which are (if they exist) the P systems accounting
for the above tasks (a) and (b)? Referring to P systems with replicated rewriting,
a first idea is to work with an alphabet V including both the types of nucleotide
bases and the types of amino acids, while the output alphabet T contained in
V will be the set of various types of amino acids. The P system we are look-
ing for should describe the process leading from DNA to its segmentation in
nucleotide bases, from this segmentation to the identification of genes, which
are privileged substrings of DNA, carrying the genetic information, and finally
from genes to protein functions (the latter being hypothetically related to the
protein sequencing, i.e., to their decomposition in amino acids). So, the mem-
brane structure should consists of several regions, such as: a region of nucleotide
bases, a region of genes, a region of amino acids, a region of DNAs, a region
of proteins, all of them contained in the initial region represented by the cell.
We are already faced with a necessary extension of the relation “contained in”,
used in the definition of a P system. Besides its usual meaning, when we refer,
for instance, to the fact that DNA is included in the cell, we consider also the
substring–string relation, as a variant of “contained in”, accepting so that the
region of nucleotide bases is contained in the region of DNA (meaning that any
element of the former region is a substring of an element of the latter); similarly,
the region of genes is contained, in this acception, in the region of DNAs; the
region of amino acids is contained in the region of proteins, while the region
of codons is contained in the region of RNAs and all are contained in the cell.
While the DNA and RNA regions and their sub-regions, as they were shown
above, are composed by strings over the input alphabet of the four types of
nucleotide bases, proteins and various types of sub-proteins, such as cistrons,
lead to regions and sub-regions whose elements are strings or substrings over the
output alphabet of the 20 types of amino acids.

Another aspect deserving a reconsideration is the interior-exterior distinction,
involved in the structure of a P system. In the light of the ideas exposed in the
first section, it should be replaced by a four-steps organization: interior, exterior
interior, interior exterior, and exterior, according to Hoffmeyer’s approach. This
means that some formal rules should be identified in order to distinguish a living
system from its Umwelt, its Umwelt from its semiotic niche – sometimes called
the ecological niche – and the ecological niche from its environment.

4 A Difficult Task: The Developmental Rules

The most difficult task is to identify the developmental rules associated with
the considered regions. Just in this respect, the work done within the framework
of HGP is essential [6]. The rules leading to the decomposition of DNA in nu-
cleotide bases are of a chemical nature and recall the phonemic segmentation
problem in descriptive linguistics. The rules identifying the genes are a mixture
of chemistry, biology, and combinatorial and comparative operations; they lead
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to approximations and to probabilistic statements, rather than to deterministic
exact statements. In this respect, a measure of similarity between strings over
the input alphabet or over the output alphabet is needed. This task is fulfilled
by the introduction of the notion of an alignment of a pair of strings 〈x, y〉 as a
new pair 〈x′, y′〉, where x′ and y′ have the same length and x′ is obtained from x
and y′ is obtained from y by inserting occurrences of the special space symbol –.
For instance, if x = acbcdb and y = abbdcdc, then a possible alignment of x and
y is given by

x′ = a–cbc–db,
y′ = ab–bdcdc.

A symmetric scoring function f is defined, that maps pairs of symbols from
the alphabet {a, b, c, d,−} to the real numbers. In respect of f , each individual
column from the eight columns appearing in the representation of x′ and y′ has
a score. The total score of the considered alignment is, by definition, the sum
of scores for all columns; it expresses the similarity between x and y in respect
to f . In order to make the total score, as an adequate measure of similarity
between x and y, it is necessary to make a right choice of the mapping f . For
instance, it is natural to select for f(〈u, u〉) a value strictly higher than zero, for
any object u different from – in the alphabet, because matched symbols must
increase the score of the alignment. However, one takes f(〈−,−〉) = 0. It is also
natural to oblige f(〈u,−〉) to be strictly negative, for any symbol u different
from –, in order to penalize misalignments. When a, b are amino acids, f(〈a, b〉)
indicates the frequency with which a replaces b in evolutionarily related strings.
The global alignment problem asks for the optimal alignment of two strings x
and y in respect to a given scoring function. As a measure of similarity, optimal
means here the highest value possible, in contrast with other measures, which
are looking for the size of dissimilarity, such as the Hamming distance.

For strings which are not globally similar, a kind of local alignment is investi-
gated, which is weaker than the global one. The idea is to look for the alignment
between consecutive substrings, chosen as desired, of x and y. From two strings
one can move to n strings and define their multiple alignment, the score being
the sum of the scores of the induced pairwise aligments. The problem to find a
maximum-score multiple alignment of a set of strings is NP-hard (it is not the
case for n = 2). See Karp [6: 547] for more details.

5 Exons, Introns, and Codons

Since gene finding and determining the functions of the proteins they encode
were a basic task of HGP, discovering the rules in the P system accounting for
them appears to be important. In this respect, we should perhaps distinguish
between prokaryotes (whose cells do not have a distinct nucleus) and eukaryotes,
whose cells include nuclei and organelles. In the former case, each gene consists
of a single contiguous string of nucleotide bases. Things are more interesting
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in higher eukaryotes, where a gene consists of two or more substrings called
exons, that code for parts of a protein; exons are separated by introns, which
are noncoding substrings. Some rules in the hypothetical associated P system
should register the process of alternative splicing: the different possibilities of
parsing a gene into exons and introns and the way the same gene can code for
different proteins. In the transcription process from DNA to RNA, the string of
exons and introns is transcribed into a pre-mRNA transcript, after which the
introns are removed and the exons are spliced together to form the mRNA that
leads to a ribosome, which in its turn is translated into protein.

Should exons and introns be included in the input alphabet of the P system
and amino acids and protein functions into the output alphabet? Should these
types of entities lead to different regions of the P system? Obviously, the input-
output distinction corresponds here to the syntactic–semantic distinction, where
syntactic is related to processes anterior to RNA–protein translation, while se-
mantic is related to proteins and their functions. The input alphabet should
also include all the signals indicating the exon–intron boundaries, as well as the
beginning of the first exon and the end of the last exon of a gene. The entities
involved in this operation are 64 types of codons (substrings of length equal
to three), which correspond by the genetic code (dictionary) to twenty types
of amino acids. Like morphemes in natural languages, which can be lexical or
grammatical, some codons (whose number is 61) code for different types of amino
acids, while three of them (TAA, TAG, TGA) are stop codons; they indicate the
end of the translation process. The codon ATG is both lexical and grammatical,
depending on its position; it may code an amino acid, but also the start of an
exon. The complete picture of distribution of codons within exons and introns
and of the distribution of nucleotide bases in respect to exon–intron boundaries
is a mixture of deterministic and statistic aspects. The dynamic-programming
Viterby algorithm gives the most likely evolution [6].

6 Phylogenetic Trees

Besides the problem of the structure of genomic sequences there is the problem
of the evolution in time of a genetically related group of organisms. A P sys-
tem depending on the parameter time should account for this process, where we
are dealing with a phylogenetic tree whose leaves represent the existant species,
while the internal nodes represent some postulated speciation events in which
a species divides into populations that follow separate evolutionary paths and
become distinct species. Karp [6: 540] makes clear the difference in aproach-
ing the evolutionary tree before and after the era of genomics. Before this era,
each species was described by means of some morphological characteristics, such
as presence or absence of hair, fur, number and type of teeth, etc. Within the
framework of genomics, the trees are mainly constructed by comparison of re-
lated DNA or protein sequences in the considered species, where for each species
and each character a character state is given. Under this second aspect should
phylogenetic trees be considered in the P systems perspective. Species with sim-



376 Solomon Marcus

ilar character states should be close together in the tree. We reach in this way
a problem of optimisation of a distance in the tree. Irrespective the way in
which this optimisation problem is formulated, it proves to be NP-hard [6].
For instance, one can define the distance between two species as the sum of
the lengths of the edges on the path between the two species in the tree. This
fact gives rise to an opposite problem: Given a distance function d defined on
pairs of species, construct a corresponding tree and a set of edge distances, such
that the resulting distance approximates d as closely as possible. Phylogenetic
trees should form a distinct region in the associated P system, while distances
and their optimisation in these trees should code significant facts in the output
alphabet.

We are only at the first steps of a problem that could involve a lot of technical
difficulties.

7 Reads and Clones

A special attention deserve those fragments of DNA called reads and by means
of which researchers in genomics try to approximate the structure of the whole
genome, seen as a concatenation of reads. Their P system status is an open
question. It is also interesting to pay attention to the fact that, according to a
specific strategy, the sequencing of the entire genome is reduced to the sequencing
of some fragments called clones (of length about 130,000 nucleotide bases); so,
clones lead to another sub-region, whose elements are strings over the input
alphabet. Let us point out also the holographic structure of the genome, as it is
shown by the fact that each cell in our organism contains a copy of our whole
genome. This huge apparent redundancy of the mechanism of our heredity may
have nice implications for the associated P system.
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8. J. Uexküll, The theory of meaning, Semiotica, 42, 1 (1982) [1940], 25–82.
9. S. Wolfram, A New Kind of Science, Wolfram Media Inc., 2001.



Probabilistic P Systems

Adam Obtu�lowicz

Institute of Mathematics
Polish Academy of Sciences
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Abstract. There are introduced and discussed stochastic and random-
ized P systems. Stochastic P systems are aimed to describe distortions
which may appear in evolution processes of membrane systems consid-
ered in the area of membrane computing. Randomized P systems serve
for implementation of randomized algorithms. There is presented a fam-
ily of randomized P systems which serve for implementation of Miller–
Rabin randomized algorithm for primality of integers. P systems of this
family verify primality of integers in a polynomial time, with a low error
probability, and with a subexponential number of processors modelled
as membranes with evolving contents.

1 Introduction

Our purpose is to answer a question about a possible probabilistic approach
to P systems, see question 26 formulated by G. Pǎun in P systems Web Page
at http://psystems.disco.unimib.it/problems.html, and the question con-
cerning the implementation of randomized algorithms in P systems, see [8].

We introduce the following two new classes of P systems:

– stochastic P systems, aimed to describe in a statistical manner certain distor-
tions (delays) which may appear at random in possible physical (biochemical)
realizations of P systems,

– randomized P systems, used to implement randomized algorithms.

Stochastic P systems are defined in the manner of stochastic Petri nets de-
scribed in [6]. We notice here that stochastic Petri nets besides being used in
modeling various systems in computer science, see [2], are also applied in molec-
ular biology, see, for instance, [3]. Briefly, stochastic P systems are P systems
equipped with average delays of applications of evolution rules in a similar way
as stochastic Petri nets are Petri nets equipped with average delays of firing of
transitions.

Randomized P systems are aimed to decrease the exponential expansion of
the number of membranes which appear in processes generated by P systems
used to solve NP-problems in a polynomial time and described in [7], [8], [10].
A decreasing of the exponential expansion of the number of membranes to some
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subexponential one is achieved with a loss of certainty of a final result which is
reached with some error probability in a similar way as in the case of random-
ized algorithms, where a subexponential time of computations is achieved with
a loss of certainty of a final result, see [5], [9]. Randomized P systems are similar
to those discussed in [7], [8], [10] except that the initial configurations (begin-
ning processes of evolution) of randomized P systems contain certain multisets
of objects chosen at random. These randomly chosen configurations of objects
steer the processes of evolution in such a way that a subexponential number of
membranes appear in the process.

Randomized P systems serve for implementation of randomized algorithms.
We present in the paper a family of randomized P systems which serve for
implementation of Miller–Rabin randomized algorithms for primality of integers.
P systems of this family verify primality of integers in a polynomial time, with a
low error probability, and with a subexponential number of membranes contained
in membrane systems appearing in processes generated by these P systems.

One finds that randomness requiring some portion of probability Tteory to
describe it appears in stochastic and randomized P systems. Therefore we pro-
pose to call probabilistic P systems those P systems which are stochastic or
randomized.

For all unexplained terms and notation concerning P systems and multisets
we refer the reader to [8].

2 Stochastic P Systems

Before introducing stochastic P systems we show that to every Petri net N
one can assign a one membrane P system Π(N ), where the applications of
evolution rules of Π(N ) coincide with the firing of transitions of N such that
the processes generated by Π(N ) can be identified with the processes generated
by N with respect to the length of processes and processed objects. Then we
define stochastic P systems in such a way that the assignment of P systems
Π(N ) to Petri nets N can be simply extended to an assignment from the class
of stochastic Petri nets as considered in [6] into the class of stochastic P systems,
where firing of transitions still coincide with applications of evolution rules.

We recall that a Petri net is an ordered quintuple N = (PN , TN ,PreN ,
PostN ,M0), where PN and TN are the sets of places and transitions of N ,
respectively, the sets PreN ⊂ PN × TN , PostN ⊂ TN × PN are the sets of input
arcs and output arcs of N , respectively, and M0 is a function (multiset), called
initial marking of N , which is defined on PN and valued in the set IN of natural
numbers. For two functions (multisets) M : PN → IN, M′ : PN → N , called
markings, and a transition t ∈ TN we say that M′ is a result of firing t for M,
briefly writing M[t〉M′, if ϕPre(t) ≤ M and M′ = (M .− ϕPre(t)) + ϕPost(t),
where ϕPre(t) and ϕPost(t) are characteristics functions of sets {p ∈ PN | (p, t) ∈
PreN } and {p ∈ PN | (t, p) ∈ PostN }, respectively.
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To a Petri net N = (PN , TN ,PreN ,PostN ,M0) with PN ∩ TN = ∅ we
assign a one membrane P system Π(N ) =

(S(N ),R(N )
)

such that S(N ) is a
membrane system containing one membrane [ ] and:

– the labelling function l : {[ ]} → {1} is given by l([ ]) = 1 and the electric
charge function e : {[ ]} → {−, 0,+} is given by e([ ]) = 0,

– the set O(N ) of objects is defined by

O(N ) = PN ∪ TN ∪ {@}, for @ �∈ PN ∪ TN ,

– the labelling function M : {[ ]} → INO(N ) is given by

M
(
[ ]
)
(x) =

{M0(x) if x ∈ PN ,
1 otherwise.

The set R(N ) of evolution rules is the set of rules of the following form

[1 @tut → @twt ]01,

for t ∈ TN and for some strings ut and wt of objects of S(N ) which are chosen
in a unique way for t provided ut and wt present characteristic functions ϕPre(t)
and ϕPost(t), respectively. Thus @ should be present in the system.

A rule of the above form is called a rule induced by a transition t.

Theorem 1. For a Petri net Nwith PN ∩ TN = ∅, if the P system Π(N )
assigned to N generates a process

S0
P1=⇒ S1

P2=⇒ S2 . . . Sn−1
Pn=⇒ Sn,

then the membrane systems S0, S2, . . . , Sn contain exactly one membrane [ ],
the sets P1,P2, . . . ,Pn of places of application of evolution rules are one ele-
ment sets, and the labelling functions M0,M1, . . . ,Mn−1,Mn valued in INO(N )

of membrane systems S0, S2, . . . , Sn−1, Sn, respectively, are such that for every i
with 0 ≤ i ≤ n− 1 we have that

Mi

(
[ ]
)

� PN [ti+1〉Mi+1
(
[ ]
)

� PN ,

where ti+1 is a transition of N such that for a unique place of application p ∈
Pi+1 the rule rp is a rule induced by ti+1 and Mi

(
[ ]
)

� PN , Mi+1
(
[ ]
)

� PN are
the restrictions of Mi

(
[ ]
)

and Mi+1
(
[ ]
)

to the set PN , respectively. Analogous
conditions hold also for infinite processes generated by Π(N ).

Proof. Since by definition of application of evolution rules two different rules
cannot be applied simultaneously to the same object, the definition of R(N )
provides that Pi (1 ≤ i ≤ n) are one element sets (see the occurrence of object @
in the rules), where a unique place of application p ∈ Pi is such that the rule rp

is induced by a transition fired in the i-th step of a process generated by N . 
�
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Thus, one can treat the notion of a P system as a generalization of the
notion of a Petri net, where applications of evolution rules coincide with firing
of transitions.

In [6] a stochastic Petri net is defined as a Petri net N equipped with a
mapping dN : TN → IR valued in the set IR of real numbers, where for every
transition t ∈ TN the value dN (t) is a firing rate associated with t, i.e.,

(
dN (t)

)−1

is the average firing delay of transition t (resulting from experiments).
Since the notion of a P system can be treated as a generalization of the notion

of a Petri net, we propose the following definition of a stochastic P system.
A stochastic P system is a P system Π = (S,R) equipped with a mapping

dΠ : R → IR, where for every rule r ∈ R the value
(
dΠ(r)

)−1 is interpreted as
the average delay of an application of r.

Thus the assignment of P systems Π(N ) to Petri nets N can be extended to
an assignment from the class of stochastic Petri nets to the class of stochastic
P systems.

3 Randomized P Systems

Randomized P systems are aimed to implement randomized algorithms. Before
introducing a proposal of a randomized P system, we explain the concept of a
randomized algorithm by discussing the well-known Miller–Rabin randomized
algorithm for primality of integers described among others in [1] and [4].

Miller–Rabin randomized algorithm for primality of integers is aimed to verify
whether an odd natural number n is prime. This algorithm contains the strong
Fermat test for n to the base a performed for a randomly chosen integer a in the
range 1 < a < n − 1, see [4]. The above strong Fermat test is a deterministic
algorithm given in the form of program in [1], see Miller–Rabin(n) algorithm on
page 282 in that book, where deleted instruction (1), of a random choice of the
parameter a, is deleted. The following theorem describes properties of the test.

Theorem 2. If n > 2 is a prime number, then it passes the strong Fermat test
to the base a for all natural numbers a in the range 1 < a < n − 1. If n is an
odd composite number, then it does not pass the strong Fermat test to the base a
for at least 3/4 of all natural numbers a in the range 1 < a < n − 1. Strong
Fermat test for n to the base a is performed in polynomial time with respect to
the length of binary presentation of n for every natural number a in the range
1 < a < n− 1.

Proof. The proof is analogous to the proof of Theorem 9.4.5 in [1]. 
�

Corollary 1. If the strong Fermat test for n to the base a is performed for k
different randomly chosen values of the base a in the range 1 < a < n − 1 with
1 ≤ k < n−1

4 and n passes the test for all these k randomly chosen values of a,
then the error probability of the test, i.e., the probability that n is not prime when
n passes the test, is bounded above by (1/4)k.
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Proof. The assertion is an immediate consequence of Theorem 2. 
�
Therefore, the final result of the application of Miller–Rabin randomized

algorithm for primality of integers to an odd natural number n is uncertain and
reached with some error probability as described in Corollary 1 when n passes
the strong Fermat test for k different randomly chosen values of the base a in
the range 1 < a < n− 1 with 1 ≤ k < n−1

4 . We should notice that if n does not
pass the test for some value of a, then n is definitely a composite number, see
Theorem 2.

Thus one can describe informally a randomized algorithm as an algorithm
which contains a possibly deterministic algorithm (test) performed for some
randomly chosen input data in a possibly polynomial time, where some estima-
tion of error probability of the final result of the test is known; for a more formal
approach, see [9]. Randomized algorithms are used when for their tasks there
are not known efficient deterministic algorithms.

Starting from the Miller–Rabin randomized algorithm for primality of inte-
gers, we explain an idea of randomized P systems used to implement a random-
ized algorithm.

One can use P systems Π(n) introduced in [8] for checking primality of inte-
gers in a polynomial time but these P systems generate processes where there
appear membrane systems containing an exponential number of membranes with
respect to the length of binary presentation of a natural number n to be checked
for primality. In order to decrease this exponential number of membranes to
some subexponential one we propose another approach related to the methods
of randomized algorithms, where we use randomized P systems. The subexpo-
nentiality is understood in the following way. For the length k of input data, the
time or space complexity measures with respect to k of a given algorithm are
called subexponential if they are bounded by ef(k) for some function f(k) with
lim

k→∞
f(k)

k = 0, see [4].

We use the following auxiliary notions.
We say that an ordered quadruple (k, s, s′, s′′) consisting of a natural num-

ber k and three binary strings s = σ1 . . . σm, s′ = σ′1 . . . σ
′
m′ , s′′ = σ′′1 . . . σ′′m′′ of

length m, m′, m′′, respectively, is a trap if the following conditions hold:

1. m = m′ and 2 < m−m′′ = k < m,
2. both the first and the last element of s is 1 and 1 occurs k times in s′,
3. for a binary string s′′′ = σ′′′1 . . . σ′′′m satisfying conditions (α) and (β) if n and

n′′′ are natural numbers presented binary by s and s′′′, respectively (up to
meaningless occurrences of zeroes), then n′′′ < n − 1, where the conditions
(α) and (β) are given in the following way:
(α) for all i with 1 ≤ i ≤ m if σ′i = 0, then σ′′′i = σ′′j for j = i − ki, where

ki is the number of elements of {p | σ′p = 1 and p < i},
(β) for all i with 1 ≤ i ≤ m if σ′i = 1, then σ′′′i = 1.

By the scope of a trap (k, s, s′, s′′) with s′ = σ′1 . . . σ
′
m and s′′ = σ′′1 . . . σ′′m′′

we mean the set of binary strings s′′′ = σ′′′1 . . . σ′′′m of length m such that the
above condition (α) holds and 1 < n′′′ for n′′′ binary presented by s′′′.
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Lemma 1. The scope of a trap (k, s, s′, s′′) has at least 2k − 2 elements and
at most 2k elements. Every binary string s′′′ belonging to the scope of a trap
(k, s, s′, s′′) presents (up to meaningless occurrences of zeroes) a natural num-
ber n′′′ such that 1 < n′′′ < n − 1, where n is the number presented binary by
the string s.

Proof. This lemma is an immediate consequence of the definitions of a trap and
its scope. 
�

We introduce now P systems which can be treated as P systems serving for
implementation of Miller–Rabin randomized algorithm for primality of integers.
We use the strong Fermat test for n to the base a written in the form of a liberal
loop program P ′sFt given in the Appendix of the present paper.

For a trap (k, s, s′, s′′) with s = σ1 . . . σm, s′ = σ′1 . . . σ
′
m, s′′ = σ′′1 . . . σ′′m′′ we

define a P system Π[k, s, s′, s′′] = (S[k, s, s′, s′′],R[k, s, s′, s′′]) as follows. The
initial membrane system S[k, s, s′, s′′] is defined for the l-program P ′sFt in the
following way:
— the membrane system S[k, s, s′, s′′] is such that its underlying set B of balls

contains exactly three balls b2 � b1 � b0, the set L of labels of S[k, s, s′, s′′]
is the set {0, 1, 2}, and l(bi) = i, e(bi) = 0 for all i ∈ {0, 1, 2},

— the set O of objects of S[k, s, s′, s′′] is the set of ordered triples (x, y, z),
written (x)y

z , such that
• x ∈ U = {0,1,  }∪{0, 1, . . . , |P ′sFt|+1}, where |P ′sFt| denotes the length

of program P ′sFt treated as a sequence of instructions,
• y ∈ W = RGR(P ′sFt) ∪ {!, ?,−@,@,+@,⊥}, where RGR(P ′sFt) denotes

the set of register names which occur in P ′sFt and the digits 0,1 together
with auxiliary symbols !, ?,−@,@,+@,  ,⊥ are different from natural
numbers and names of registers in RGR(P ′sFt),

• z ∈ {0, 1, . . . ,m + 1} ∪ {⊥,@} for x ∈ U and y ∈ W − {!, ?},
z ∈ {1, . . . ,m− 1} for x ∈ {0,1} and y ∈ {!, ?},
z = 0 for x =  and y ∈ {!, ?},

— the labelling function M : B → INO valued in the set INO of multisets is
given by

M(b0) = M(b1) = O,

where O(a) = 0 for every object a ∈ O,

M(b2) =

(
m∑

i=1

〈
(σi)N

i

〉
)

+
〈
(�)N

m+1

〉
+

(
m−1∑

i=1

〈
(σ!

i)
!
i

〉
)

+
〈
(�)!0

〉
+
〈
(σ′m)−@

m

〉
+

⎛

⎝
m−k−1∑

j=1

〈
(σ′′j )?j

〉
⎞

⎠+
〈
(�)?0

〉
+
〈
(σ′′m−k)+@

m−k

〉
+

∑

z∈I−

〈
(�)Z

1

〉
,
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where A and N are input registers of P ′sFt and I− = RGR(P ′sFt) − {A,N}.
The set R[k, s, s′, s′′] of evolution rules contains the rules given by the fol-

lowing schemes:

(S′1) [2(1)−@
i → (�)@i ]02 for 1 ≤ i ≤ m,

(S′2) [2(�)@i ]02 → [2(�)−@
i ]−2 [2(�)+@

i ]+2 for 1 ≤ i ≤ m,
(S′3) [2(δ)

!
i−1(�)−@

i → (δ)−@
i−1(0)A

i ]−2 for 1 ≤ i ≤ m and δ ∈ {0,1,�},
(S′4) [2(δ)

!
i−1(�)+@

i → (δ)+@
i−1(1)A

i ]+2 for 1 ≤ i ≤ m and δ ∈ {0,1,�},
(S′5)

[
1 [2 ]−2 [2 ]+2

]0
1 → [

1 [2 ]02
]0
1

[
1 [2 ]02

]0
1,

(S′6) [2(δ)
!
i−1(δ

′)j−1(0)−@
i (δ′′)+@

j → (δ)−@
i−1(δ

′)+@
j−1(δ

′′)A
i ]02 for 1 ≤ i ≤ m, 1 ≤

j ≤ m− k, δ, δ′ ∈ {0,1,�}, δ′′ ∈ {0,1},
(S′7) [2(�)−@

0 (�)+@
0 → (�)A

m+1(1)⊥@ ]02 which initializes the simulation of execu-
tion of program P ′sFt,

(P ′) the set of evolution rules determined by the l-program P ′sFt which is de-
fined in an analogous way as the set of evolution rules determined by the
l-program Pfct in [8],

(F ′1) [2(|P ′sFt| + 1)⊥@(�)C
2 → (1)⊥⊥ ]02, where C is the output register of P ′sFt,

(F ′2) [i(1)⊥⊥ ]0i → [i ]+i (1)⊥⊥ for i ∈ {0, 1, 2},
where the rules (F ′1) and in (F ′2) enable to read the final result.

There is no any other rule in R[k, s, s′, s′′] than those described by the above
schemes.

Theorem 3. For every trap (k, s, s′, s′′), the P system Π[k, s, s′, s′′] generates
a single evolution process of a polynomial length with respect to the length of s
such that the outermost membrane of the last membrane system of the process
has electric charge 0 iff the number n presented binary by s passes the strong
Fermat test to the base a for every value of a whose binary presentation (up to
the meaningless occurrences of zeroes) is in the scope of the trap (k, s, s′, s′′). If
this outermost membrane has electric charge +, then the number n does not pass
the strong Fermat test to the base a for some value of a with 1 < a < n − 1.
Moreover, the membrane systems appearing in the process contain at most 2k

membranes.

Proof. The proof is similar to the proof of the main theorem of Section 3 in [8].
Here in 2k membranes obtained by the application of rules (S′1)–(S′6) one simul-
taneously simulates the realizations of the l-program P ′sFt for 2k different input
data, respectively during the evolution process. These 2k different input data are
strings belonging to the scope of the trap (k, s, s′, s′′) except at most two strings
(presenting 0 and 1, respectively) which are rejected by the first instruction of
P ′sFt. Numerical data are represented by strings (δ1)X

1 , . . . , (δn)X
n of objects con-

tained in membranes for δ1, . . . , δn ∈ {0,1} and a register X ∈ RGR(P ′sFt). 
�
We say that a P system Π[k, s, s′, s′′] accepts the number presented binary

by s if the outermost membrane of the last membrane system in the process
generated by Π[k, s, s′, s′′] has electric charge 0.
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A P system Π[k, s, s′, s′′] is called a randomized P system if s′ and s′′ are
randomly chosen binary strings.

Until there is not known a statistical dependence between:

– randomness of elements of the scope of a trap (k, s, s′, s′′) for randomly
chosen binary strings s′ and s′′,

– randomness of an error of a test for primality of the number n presented by s,
where we mean that n passes the test iff P system Π[k, s, s′, s′′] accepts n,

one may accept the following hypothesis by virtue of Theorems 2, 3, and of
Lemma 1.

Hypothesis. If a randomized P system Π[k, s, s′, s′′] accepts the number n pre-
sented binary by s, then n is prime with an error probability bounded above by
16 · (4)−2k

Thus by Theorem 3 and by assuming the above Hypothesis, a family of
randomized P systems Π[f(|s|), s, s′, s′′] with lim

n→∞
f(n)

n = 0 provides verification

of primality of integers with a low error probability (bounded above by 16 ·
(4)−2f(|s|)

) in a polynomial time and with a subexponential number (bounded
above by 2f(|s|)) of membranes contained in membrane systems appearing in
the process generated by the P systems Π[f(|s|), s, s′, s′′], where |s| denotes the
length of s.

We treat a family of randomized P systems Π[f(|s|), s, s′, s′′] with lim
n→∞

f(n)
n

equal to 0 as an implementation of Miller–Rabin randomized algorithm for pri-
mality of integers in randomized P systems. Thus we propose the following gen-
eral definition.

A family of randomized P systems serves for implementation of a given ran-
domized algorithm containing a test for some randomly chosen input data if some
configuration of objects in the initial membrane systems of P systems are such
that:

– they represent some randomly chosen data, see for instance the formula
defining M(b2) for S[k, s, s′, s′′],

– they steer the evolution process to reach some possibly subexponential num-
ber x of membranes in which there are simultaneously simulated perfor-
mances of the test (contained in a given randomized algorithm) for x different
randomly chosen input data for the test, respectively.

We do not exclude other approaches to modeling randomized P systems which
can serve for implementation of randomized algorithms.

Open Problem (tossing 0, 1 by P systems). One sees that in the case of ran-
domized P systems Π[k, s, s′, s′′] the applications of evolution rules (S′1)–(S′6) do
not give 2k different statistically independent randomly chosen integers a (with
1 < a < n−1) represented by strings (δ1)A

1 , . . . , (δm)A
m (with δ1 . . . , δm ∈ {0,1})

of objects contained in 2k membranes, respectively, of evolving membrane sys-
tem in the process generated by Π[k, s, s′, s′′]. In this case randomness of these
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2k different integers a with 1 < a < n − 1 is determined by random choices
of strings s′, s′′. Thus one can ask whether there exists a system of evolution
rules providing unbiased tossing of 0, 1 or there exists another configuration of
objects in the initial membrane system than that given by the formula defining
M(b2) such that one could get 2k different statistically independent randomly
chosen integers a with 1 < a < n− 1 represented by strings of objects contained
in 2k membranes, respectively, of evolving membrane system.

Appendix

A program PsFt for the strong Fermat test for n to the base a is written as a
liberal loop program meant as in [8] and it is outlined in Fig. 1.

For unexplained terms and notation concerning liberal loop programs we
refer the reader to [8]. We describe now the meaning of some expressions which
appear in Fig. 1.

The program PsFt has two input registers A and N , where before its execution
A is aimed to contain a binary presented value of the base a with 1 < a < n− 1
and N is aimed to contain a binary presented odd natural number n being the
subject of the strong Fermat test for n.

For the expression 1/ stands an l-program with input register N and two
output registers S,D. This program computes a string s of length |s| and a
binary presented odd natural number d such that n − 1 = 2|s| · d for a binary
presented odd natural number n contained in the input register N . The string s
and the natural number d are contained in the registers S and D, respectively,
after execution of the program 1/.

For the instruction 2/ stands an l-program with input registers A,D,N ,
and an output register U . This program computes the binary presented value
of ad (mod n) for binary presented values a, d, n contained in the input regis-
ters A,D,N , respectively. The value of ad (mod n) is contained in the output
register U .

For the instruction 5/ stands an l-program described in a similar way as in
the case of instruction 2/.

For the instruction 6/ stands an l-program with input registers K,N, S, U ,
and an output register T . This program verifies whether both (∗) |k| = |s| and
(∗∗) u �≡ 1 (mod n) hold for the string k, s, and binary presented natural numbers
u, n contained in the registers K,S,U,N , respectively, where |k|, |s| denote the
length of k and s, respectively. When (∗) and (∗∗) hold, the output register T
contains one element string “0” after execution of the program 6/, otherwise
T is cleaned, i.e., T contains empty string Λ after execution of 6/.

For the instructions 3/ and 7/ stand l-programs described in a similar way
as in the case of instruction 6/.

The instruction 4/ means to write the digit 1 on the right end of the current
content of the register K.

The remaining instructions of PsFt are described as in [8].
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1/ P[S and D are s.t. N − 1 = 2|S| · D & D is odd];

2/ U := P[A power D (mod N)];

K := Λ;

LOOP|S|;
3/ T := P[U 	≡ 1 (mod N)];

LOOP|T |;
4/ K := K & 1;

W := U ;

5/ U := P[U power 2 (mod N)];

END;

END;

6/ T := P[|K| = |S| & U 	≡ 1 (mod N)];

LOOP|T |;
C := 0;

END;

T := Λ =© T ;

LOOP|T |;
R := Λ =© K;

LOOP|R|;
C := Λ;

END;

R := Λ =© R;

LOOP|R|;
7/ Q := P[W 	≡ −1 (mod N)];

LOOP|Q|;
C := 0;

END;

Q := Λ =© Q;

LOOP|Q|;
C := Λ;

END;

END;

END;

Fig. 1.

Since the execution of instruction LOOP|S| means the execution |s| times of
the program between the occurrence of LOOP|S| and the occurrence of instruc-
tion END matching with the occurrence of LOOP|S| for |s| equal to the length of
the current content of the register S, after execution of LOOP|S| the registers U
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and W contain binary presented values of the numbers ak and ak−1, respectively,
which result from the performance of instruction (3) of Miller–Rabin algorithm
in [1] p. 282.

The execution of the remaining part of PsFt following the occurrence of END
matching with the occurrence of LOOP|S| yields an analogous result to the result
of performance of instructions (4)–(7) of Miller–Rabin algorithm in [1] p. 282.
The output register C of PsFt contains one element string “0” when n does not
pass the strong Fermat test to the base a, otherwise the register C is cleaned.

For some practical reasons we use program P ′sFt given by

C := [A > 1];
LOOP|C|;

PsFt

END;

where instruction C := [A > 1] is executed in the following way. Register C
is cleaned when register A contains a string of zeroes or a string with the last
element 1 preceded by a string, maybe empty, of zeroes, otherwise one puts one
element string “0” in C.
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Abstract. We introduce decision P systems, which are a class of P
systems with symbol-objects and external output. The main result of
the paper is the following: if there exists an NP–complete problem that
cannot be solved in polynomial time, with respect to the input length, by
a deterministic decision P system constructed in polynomial time, then
P 	= NP . From Zandron-Ferreti-Mauri’s theorem it follows that if P 	=
NP , then no NP–complete problem can be solved in polynomial time,
with respect to the input length, by a deterministic P system with active
membranes but without membrane division, constructed in polynomial
time from the input. Together, these results give a characterization of
P 	= NP in terms of deterministic P systems.

1 Introduction

In [2] a new model of computation, called P Systems, is introduced within the
framework of Natural Computing (bio-inspired computing). It is based upon
the notion of membrane structure that is used to enclose computing cells in
order to make them independent computing units. Also, a membrane serves as a
communication channel between a given cell and other cells adjacent to it. This
model starts from the observation that the processes which take place in the
complex structure of a living cell can be considered as computations.

Since these computing devices were introduced several variants have been
considered. A fairly complete compendium about P systems can be found at [8].
In particular, P systems with external output are studied in [4].

The different variants of P systems found in the literature are in general gen-
erating devices. Many of them have been proved to be computationally complete:
they compute all Turing computable sets of natural numbers or all recursively
enumerable languages, depending on the variant considered.

The model we consider here works with symbol–objects and it has two charac-
teristics that have seldom been considered before: we work with decision devices
whose work is triggered by certain input data. The aim is to use this kind of P
systems to deal with decision problems.

The main goal of this paper is to show a sufficient condition for the relation
P �= NP to be verified: if there exists an NP–complete problem that cannot be

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 388–399, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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solved in polynomial time, with respect to the input length, by any family of
deterministic decision P systems, constructed in polynomial time, then P �= NP .

To achieve this, we prove that every decision problem which can be solved
by a deterministic Turing machine in polynomial time can also be solved by a
family of deterministic decision P systems in polynomial time.

The paper is organized as follows: Section 2 briefly presents some basic con-
cepts about P systems with external output; Section 3 introduces the new model
(with symbol–objects) of decision P systems; Section 4 shows how to simulate de-
terministic Turing machines by families of such P systems; Section 5 establishes
our main results about decision P systems and the P �= NP conjecture.

2 Multisets, Membrane Structures, Evolution Rules

A multiset over a set, A, is a mapping m : A → IN; m(a) is the number of copies
of a ∈ A in the multiset m. The set {a ∈ A : m(a) > 0} is called the support of m
and it is denoted by supp(m). A multiset, m, is said to be empty (resp. finite) if
its support is empty (resp. finite). If m is a finite multiset over A, we will denote
it m = {{a1, . . . , am}}, where the elements ai ∈ supp(m) are possibly repeated.
We write M(A) for the set of all the multisets over A. For two multisets m1, m2
over A we define their union by (m1 ∪m2)(a) = m1(a) +m2(a), for each a ∈ A.

The set of membrane structures, MS, is defined by recursion as follows:
1. [ ] ∈ MS; 2. If μ1, . . . , μn ∈ MS, then [μ1 . . . μn] ∈ MS.

A membrane structure, μ, can also be seen as a rooted tree,
(
V (μ), E(μ)

)
.

Then, the nodes of this tree are called membranes, the root node the skin mem-
brane, and the leaves elementary membranes. The degree of a membrane struc-
ture is the number of membranes in it.

The membrane structure with environment associated with the membrane
structure, μ, is μE = [

E
μ]

E
. If we consider μE as a rooted tree, then the root

node is called the environment of μ.
Given an alphabet, Γ , we associate with every membrane of a membrane

structure a finite multiset of elements of Γ , which are called the objects of the
membrane.

We also associate with every one of these membranes a finite set of evolution
rules. An evolution rule over Γ is a pair (u, v), usually written u → v, where u
is a string over Γ and v = v′ or v = v′δ, where v′ is a string over

Γ × ({here, out} ∪ {inl : l ∈ V (μ)})

and δ is a special symbol not in Γ . The idea behind a rule is that the objects
in u “evolve” into the objects in v′, moving or not to another membranes and
possibly dissolving the original membrane.

The length of a rule is the number of symbols involved in the rule (for instance,
the length of u → v is |u| + |v| + 1).
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3 Decision P Systems

Definition 1. A decision P system is a construct

Π = (Γ,Σ, μ
Π
, i

Π
,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp)),

where:

– Σ is an alphabet, called the input alphabet.
– Γ is an alphabet such that Σ ⊆ Γ ; its elements are called objects; there are

two distinguished objects, Y ES,NO ∈ Γ −Σ.
– μ

Π
is a membrane structure of degree p, the membranes of which we suppose

labeled from 1 to p.
– i

Π
∈ {1, . . . , p} is the input membrane of Π.

– Mi is a multiset over Γ −Σ associated with the membrane labeled by i, for
every i = 1, . . . , p.

– Ri is a finite set of evolution rules over Γ associated with the membrane
labeled by i, and ρi is a strict partial order over Ri, for every i = 1, . . . , p.

To formalize the semantics of this model we define first what a configuration
of such a P system is, and then the notion of computation.

Definition 2. Let Π be a decision P system with external output.

1. A configuration of Π is a pair (μE ,M), where μ is a membrane structure
such that V (μ) ⊆ V (μ

Π
) and it has the same root than μ

Π
, and M is an

application from V (μE) into M(Γ ). For every node nd ∈ V (μE) we denote
Mnd = M(nd).

2. The initial configuration of Π for the multiset m ∈ M(Σ) is the pair (μE ,M),
where μ = μ

Π
, ME = ∅, Mi

Π
= m ∪Mi

Π
and Mj = Mj, for every j �= i

Π
.

The idea is that for every input multiset m ∈ M(Σ), we add that multiset
to the input membrane, i

Π
, of the P system and then start the work of Π.

We can pass, in a non-deterministic manner, from one configuration of Π
to another by applying to its multisets the evolution rules associated with their
corresponding membranes. This is done as follows: given a rule u → v of a
membrane i, the objects in u are removed from Mi; then, for every (ob, out) ∈ v
an object ob is put into the multiset associated with the parent membrane (or
the external environment if i is the skin membrane); for every (ob, here) ∈ v an
object ob is added to Mi; finally, for every (ob, inj) ∈ v an object ob is added to
Mj (if j is not a child membrane of i, then the rule cannot be applied). Finally,
if δ ∈ v, then the membrane i is dissolved (if i is the skin membrane, the rule
cannot be applied), that is, it is removed from the membrane structure. The
objects of a dissolved membrane remain in the region surrounding it, while the
rules are removed. Moreover, the priority relation among the rules forbids the
application of a rule if another one of higher priority is applied.

Given two configurations, C and C ′, of Π, we say that C ′ is obtained from C
in one transition step, and we write C ⇒ C ′, if we can pass from the first to the
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second one by using the evolution rules appearing in the membrane structure of
C in a parallel and maximal way in each membrane, and for all the membranes
at the same time.

Definition 3. Let Π be a decision P system. A computation, C, of Π with input
m ∈ M(Σ) is a sequence, possibly infinite, of configurations of Π, C0 ⇒ C1 ⇒
. . . ⇒ Cq, q ≥ 0, such that

– C0 is the initial configuration of Π, with the multiset m placed in membra-
ne iπ.

– Each Ci (1 ≤ i ≤ q) is obtained from the previous configuration by one
transition step.

We say that C is a halting computation of Π if there is no rule applicable to
the objects present in its last configuration. In this case, we say that Cq is the
halting configuration of C.

We say that Π is deterministic if for each m ∈ M(Σ) there exists an unique
computation with input m.

The philosophy of the P systems with external output is that we cannot know
what is happening inside the membrane structure, but we can only collect the
information sent out from it to the environment. Thus, it is natural that the
halting computations of these P systems report to the environment when they
have reached their final configurations (accepting or rejecting). Furthermore, the
idea behind the decision P systems is to use them as languages decision devices.
These considerations lead us to the following notions.

Definition 4. A deterministic decision P system, Π, is said to be valid when
the following is verified:

– All computations of Π halt.
– For each computation of Π only one rule of the form u → v(ob, out), where

ob = Y ES or ob = NO, may be applied in the skin membrane of μ
Π
, and

only in the last step of the computation.

Definition 5. Let Π be a deterministic valid decision P system. We say that
a configuration (μE ,M) of Π is an accepting (resp., rejecting) configuration if
Y ES ∈ ME (resp., NO ∈ ME).

We say that C is an accepting (resp., rejecting) computation of Π if its as-
sociated halting configuration is an accepting (resp., rejecting) configuration.

Definition 6. A deterministic valid decision P system, Π, accepts (respectively,
rejects) a multiset m ∈ M(Σ) if the computation of Π with input m is an
accepting (resp. rejecting) computation.

We denote by D the class of all deterministic valid decision P systems.
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4 Simulating Turing Machines by Decision P Systems

In what follows we are going to define what we mean by simulating a Turing
machine (as a languages generating device) through a family of deterministic
decision P systems. This has to be done in such a way that every solution for
a decision problem given by a Turing machine provides a solution for the same
problem by a decision P system. Moreover, the additional costs of the reduction
from one solution to another must be polynomial in terms of the input size.

We take as a model the concept of complexity classes in membrane systems
introduced by G. Păun in [1].

Definition 7. We say that a deterministic Turing machine, TM , is simulated
in polynomial time by a family of deterministic valid decision P systems ΠTM =
(ΠTM (1), ΠTM (2), . . . , ΠTM (k), . . . ) if:

1. The family ΠTM is D–consistent; that is, for each k ∈ N+, ΠTM (k) is a
deterministic valid decision P system.

2. The family ΠTM is TM–uniform; that is, there exists a deterministic Turing
machine, TM ′, which constructs ΠTM (k) in polynomial time starting from
k ≥ 1 (there exists a polynomial p′(k) depending on TM such that for each
k, TM ′(k) halts in less than p′(k) steps and its output is ΠTM (k)).

3. The family ΠTM is polynomially bounded; that is, there exists a polynomial
p(k), depending on TM , such that every computation of ΠTM (k) always
halts in less than p(k) steps.

4. The family ΠTM is TM–sound; that is, the Turing machine TM accepts
(resp. rejects) the input string ai1 . . . aik

if and only if ΠTM (k) accepts (resp.
rejects) g(ai1 . . . aik

) (g is a suitable polynomial encoding of strings by mul-
tisets).

Note 1. The fact that the family ΠTM is D–consistent has the consequence
that for each k ≥ 1, the P system ΠTM (k) has a polynomial size in the following
sense: the size of the working alphabet, the number of membranes, the size of
the initial multisets, and the sum of the lengths of all the rules, is bounded by
kr, for some constant r depending on TM .

Note 2. A suitable polynomial encoding, g, of strings by input multisets of
ΠTM (k) means the following: there exists a Turing machine, TM ′′, and a poly-
nomial q(k) depending on TM such that for each input data w of TM we have
that TM ′′(w) halts in less than q(|w|) steps and its output is g(w) (an input
multiset of the P system ΠTM (|w|)).

Theorem 1. Each deterministic Turing machine can be simulated in polynomial
time by a family of deterministic valid decision P systems.
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Proof. We consider deterministic Turing machines following [6].
Suppose we have QTM = {qN , qY , q0, . . . , qn}, ΓTM = {B,  , a1, . . . , am},

ΣTM = {a1, . . . , ap}, with p ≤ m, and δTM (qi, aj) = (qQ(i,j), aA(i,j), D(i, j)) as
set of states, working alphabet, input alphabet and transition function for TM ,
respectively. We denote aB = B and a0 =  .
We construct a family of deterministic decision P systems ΠTM = (ΠTM (1),
ΠTM (2), . . . , ΠTM (k), . . . ) which simulates TM as follows: for each k ∈ N, the
decision P system ΠTM (k) is:
• Input alphabet: Σk = {〈a, i〉 : a ∈ ΣTM , 1 ≤ i ≤ k}
• Working alphabet: Γk = {〈a, i〉 : a ∈ ΣTM , 0 ≤ i ≤ k} ∪ {ti : 1 ≤ i ≤ k} ∪

{s−i , s+
i , si : i ∈ {T1, T2, F, S, 1, . . . , 9}} ∪

{qN , qY , h, h′, Y ES,NO} ∪
{qi : 0 ≤ i ≤ n} ∪ {bi, b

′
i, b
′′
i , ci : 0 ≤ i ≤ m}

• Membranes structure: μ
Π

= [1 ]1 .
• Input membrane: i

Π
= 1.

• Initial multisets: M1 = {{q0, b0, s−T1
, s−T2

, s−F , s
−
S , s

−
1 , . . . , s

−
9 , sT1}}.

• Evolution rules: R = R0 ∪R1 ∪R2 ∪R3 ∪R4, where:

• R0 = R0,1 ∪R0,2 ∪R0,3 ∪R0,4, with

R0,1 ≡ sT1s
−
T1

→ s+
T1

> s−T1
→ s−T1

>

{
〈ai, j〉 → 〈ai, j〉tj (1≤i≤p,1≤j≤k)

s+
T1

→ s−T1
sT2

R0,2 ≡
{
sT2s

−
T2

→ s+
T2

> s−T2
→ s−T2

> t21s
+
T2

→ s−T2
sF > · · · >

> t2ks
+
T2

→ s−T2
sF > t1 . . . tks

+
T2

→ s−T2
sS > s+

T2
→ s−T2

sF

R0,3 ≡ sF s
−
F → s+

F > s−F → s−F >

⎧
⎪⎨

⎪⎩

s−T1
s−T2

s−S s
−
1 . . . s−9 s

+
F q0b0 → (NO, out)

〈ai, j〉 → λ (1≤i≤p,1≤j≤k)

tj → λ (1≤j≤k)

R0,4 ≡

⎧
⎪⎨

⎪⎩

sSs
−
S → s+

S > s−S → s−S >

{
〈ai, j〉 → 〈ai, j − 1〉2 (1≤i≤p,1≤j≤k)

〈ai, 0〉 → bi (1≤i≤p)

}

> s+
S → s−S s1

• R1 = R1,1 ∪R1,2 ∪R1,3, with

R1,1 ≡ s1s
−
1 → s+

1 > s−1 → s−1 >

⎧
⎪⎨

⎪⎩

h → hh′

bi → bib
′
i (0≤i≤m)

s+
1 → s−1 s2

R1,2 ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h′s2s
−
2 → s+

2 > s2 → s3 > s−2 → s−2 >

> b′2i → b′′i (0≤i≤m) >

⎧
⎪⎨

⎪⎩

b′i → λ (0≤i≤m)

b′′i → b′i (0≤i≤m)

s+
2 → s−2 s2



394 Mario Pérez Jiménez, Álvaro Romero Jiménez, Fernando Sancho Caparrini

R1,3 ≡ s3s
−
3 → s+

3 > s−3 → s−3 >

{
b′2i → λ (0≤i≤m)

s+
3 → s−3 s4

• R2 = R2,1 ∪R2,2, with

R2,1 ≡ s4s
−
4 → s+

4 > s−4 → s−4 >

{
h → hh′

s+
4 → s−4 s5

R2,2 ≡ s5s
−
5 → s+

5 > s−5 → s−5 >

⎧
⎨

⎩

Rules for the transition
function
s+
5 → s−5 s6

The rules for the transition function, δTM , are the following:
Case 1: state qr, element as �= B

Movement Rules

left
qrb

′
sh → qQ(r,s)b

′
scA(r,s), if A(r, s) �= B

qrb
′
sh → qQ(r,s)b

′
s, if A(r, s) = B

stand
qrb

′
s → qQ(r,s)b

′
scA(r,s), if A(r, s) �= B

qrb
′
s → qQ(r,s)b

′
s, if A(r, s) = B

right
qrb

′
s → qQ(r,s)b

′
scA(r,s)h, if A(r, s) �= B

qrb
′
s → qQ(r,s)b

′
sh, if A(r, s) = B

Case 2: state qr, no element

Movement Rules

left
qrh → qQ(r,s)cA(r,s), if A(r, s) �= B
qrh → qQ(r,s), if A(r, s) = B

stand
qr → qQ(r,s)cA(r,s), if A(r, s) �= B
qr → qQ(r,s), if A(r, s) = B

right
qr → qQ(r,s)cA(r,s)h, if A(r, s) �= B
qr → qQ(r,s)h, if A(r, s) = B

To avoid conflicts, every rule in case 1 has higher priority than
any rule in case 2.

• R3 = R3,1 ∪R3,2, with

R3,1 ≡ h′s6s
−
6 → s+

6 > s6 → s7 > s−6 → s−6 >

⎧
⎪⎨

⎪⎩

b′i → b′2i (0≤i≤m)

ci → c2i (0≤i≤m)

s+
6 → s−6 s6

R3,2 ≡ s7s
−
7 → s+

7 > s−7 → s−7 >

⎧
⎪⎨

⎪⎩

bib
′
i → λ (0≤i≤m)

ci → bi (0≤i≤m)

s+
7 → s−7 s8

• R4 = R4,1 ∪R4,2, with

R4,1 ≡ s8s
−
8 → s+

8 > s−8 → s−8 >

⎧
⎪⎨

⎪⎩

qY → qY s9, qN → qNs9

qi → qis1 (0≤i≤n)

s+
8 → s−8
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R4,2 ≡ s9s
−
9 → λ > s−9 → s−9 >

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s−1 . . . s−8 → λ

qY → (Y ES, out)
qN → (NO, out)
h → λ

bi → λ (0≤i≤m)

Let us see that ΠTM = (ΠTM (1), ΠTM (2), . . . , ΠTM (k), . . . ) is a family of de-
terministic valid decision P systems which simulates TM .

Obviously it is a family of deterministic valid decision P systems. Moreover,
ΠTM is an uniform family. Indeed, let TM be a deterministic Turing machine
such that the set of states has size n + 2, the working alphabet has size m + 2
and the input alphabet has size p (with p ≤ m). The necessary resources to
construct ΠTM (k) are the following:

1. The size of the working alphabet Γk is p · k + 4m + n + 45; that is, in the
order θ(k ·m + n).

2. The degree of the P system is 1.
3. The size of the initial configuration for each x ∈ Σk

TM is k + 16 ∈ θ(k).
4. The total number of rules is in the order of

O(p · k + n ·m) = O(k ·m + n ·m)
5. The greatest length of a rule is 16 ∈ O(1).

Let us see now that, for each k ∈ N, ΠTM (k) is sound: let L be the language
decided by TM . In order to decide if a string ai1 . . . aik

∈ ΣTM , of length k,
belongs to L, we encode it by the multiset {{〈ai1 , 1〉, . . . , 〈aik

, k〉}} which is the
input given to ΠTM (k). The rules of this P system have been carefully chosen
in such a way that its work goes through the following main stages:

1. Check that the multiset received as input codes a string of length k. For this,
we have to verify that for each j = 1, . . . , k there exists one and only one
pair whose second component is equal to j. Otherwise, the P system halts
and rejects the multiset.

2. Transform the input multiset into another multiset which encodes the string
in base 2 (in order to specify the symbol written in each cell of the tape).

3. Read the element in the cell scanned by the head.
4. Compute the new element to be writen in the cell, move the head and change

state (according to the transition function).
5. Erase the old element and write the new element.
6. Check if a final state is reached: if not, repeat from stage 2; if qY is the final

state reached, then accept the string; if qN is the final state reached, then
reject the string.

These stages will be carried out in several small steps, each of them managed by
a group of rules. To avoid rules from distinct steps being applied together, we
will use s−j as forbidding objects and s+

j as permitting objects; if s−j is present
in the P system, then rules for step j cannot be executed; if, instead, s+

j is the
object present, then rules for step j must be executed (if possible). Of course, at
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any time, for each step only the corresponding forbidding or permitting object
will be present. Also, there will always exist only one permitting object in the
system.

To indicate that we want to perform a step, we will use sj as promoter
objects. When sj appears in the P system, it will transform its corresponding
forbidding object s−j into the permitting one s+

j , thus allowing the rules for step
j to be applied. Then the permitting object will transform itself again into the
forbidding one, and into a suitable promoter object.

The first two stages take care of filtering the input multisets: those which do
not encode a string of size k are rejected; those which do encode such strings are
transformed in such a way that we have a code in base 2 of the symbols in the
cells of the tape of the Turing machine. These operations are perfomed by the
rules in R0.

For a multiset to correctly encode a string of size k, it has to verify two
conditions: for each j = 1, . . . , k, it has to contain no more than one pair with
second component equal to j; for each j = 1, . . . , k, it has to contain at least
one pair with second component equal to j. These two conditions are checked
by rules in R0,1 and R0,2, using objects tj as signals for the second components
of the pairs.

If the check fails, all objects in the P system are eliminated and it sends out
the object NO, to reject the multiset. If the check passes, then we double j times
each pair of the form 〈a, j〉, changing them at the end by a bj .

For a detailed description of the simulation of the running of the Turing
machine over a correct multiset see [6]. We only recall here how we represent the
Turing machine inside the P system.

To represent the states we will use objects qN , qY , q0, . . . , qn.
During the simulation, objects b0, . . . , bm will represent, in base 2, the cells

which contain symbols a0, . . . , am, respectively (note that, at any time, the num-
ber of non-empty cells in the tapes of the Turing machine is finite); objects
b′0, . . . , b

′
m, b′′0 , . . . , b

′′
m will be used as working copies of the previous objects; the

single prime objects will also be useful to indicate the symbols read from the
cells, and objects c0, . . . , cm will be useful to indicate the new symbols to write
into them.

The cell scanned by the head, numbered from zero, will be represented by
the object h, in base one; object h′ will be used, when needed, as a working copy
of object h; it will be used as a counter.

Finally, let us see that the family ΠTM is polynomially bounded. Indeed, if
x ∈ Σk

TM is an input string of size k of the Turing machine, then we have:

1. The check for a multiset to correctly encode a string of size k needs four
steps in the affirmative case and six steps in the negative one (in this last
case, the P system halts).

2. The generation of the multiset encoding, in base 2, the non-empty cells in
the initial configuration of TM for x requires k + 3 steps of the P system.

3. The simulation of each transition step of the Turing machine requires a cost
in the order of O(5j+12), where j is the cell being read by the head of TM .
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4. Checking if a final state has been reached requires 2 steps.
5. The output after the detection of a final state requires 2 steps.

Therefore, if TM accepts or rejects x in O(t(k)) steps, then the P system ΠTM (k)
needs O(k + t2(k)) steps to do the same. 
�

5 The Main Result

In [7], C. Zandron, C. Ferretti, and G. Mauri prove the following result.

Theorem 2. If P �= NP , then no NP–complete problem can be solved in poly-
nomial time, with regard to the input length, by a deterministic P system (with
active membranes but without membrane division).

In this section we prove a kind of reciprocal result of the previous theorem
through the solvability of a decision problem by a family of deterministic valid
decision P systems.

Recall that a decision problem, X, is a pair (EX , fX) such that EX is a
language over a certain alphabet and fX is a boolean mapping over EX . The
elements of EX are called instances of the problem X. For each k ∈ N we note
Ek

X the language of all the instances of X with size k.

Definition 8. We say that a decision problem, X, is solvable in polynomial time
by a family of deterministic valid decision P systems ΠX = (ΠX(k))k∈N+ if:

1. The family ΠX is D–consistent; that is, for each k ∈ N, ΠX(k) is a deter-
ministic valid decision P system.

2. The family ΠX is X–uniform; that is, there exists a Turing machine, TM ′,
and a polynomial p′(k) depending on X such that for each k ∈ N+, TM ′(k)
halts in less than p′(k) steps and its output is the P system ΠX(k).

3. The family ΠX is polynomially bounded; that is, there exists a polynomial
p(k) depending on X such that every computation of ΠX(k) always halts in
less than p(k) steps.

4. The family ΠX is X–sound; that is, for every a ∈ Ek
X , fX(a) = 1 if and

only if ΠX(k) accepts the multiset g(a) (g is a suitable polynomial encoding
of elements of EX by input multisets of ΠX(k)).

Note 3. As in Note 1, from the fact that the family ΠX is D–consistent we infer
that for each k ≥ 1, the P system ΠX(k) has a polynomial size, in the following
sense: the size of the working alphabet, the number of membranes, the size of
the initial multisets, and the sum of the lengths of all the rules, is bounded by
kr, for some constant r depending on X.

Note 4. A suitable polynomial encoding, g, of elements of EX by input multi-
sets of ΠX(k) means the following: there exists a Turing machine, TM ′′, and a
polynomial q(k) depending on X such that for each input data w ∈ EX we have
that TM ′′(w) halts in less than q(|w|) steps and its output is g(w) (an input
multiset of the P system ΠX(|w|).
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Note 5. Given a Turing machine, TM , as a languages generating device, we
consider the decision problem, XTM , associated with TM , as follows: XTM =
(Σ∗TM , fTM ), where fTM (w) = 1 if and only if TM accepts w. According with
this definition we infer that a Turing machine is simulated in polynomial time
by a family of deterministic valid decision P systems, ΠTM, if and only if the
associated decision problem, XTM is solvable in polynomial time by the family
ΠTM.

Theorem 3. If there exists an NP-complete problem that cannot be solved in
polynomial time, with regard to the input length, by a family of deterministic
decision P systems, then P �= NP .

Proof. Let us suppose that P = NP . Then, there exists an NP–complete pro-
blem, X, and a deterministic Turing machine, TMX , solving X in polynomial
time with regard to the input length (actually, all NP–complete problem verifies
this property). From Theorem 1, TMX is simulated in polynomial time by a
family of deterministic valid decision P systems, ΠTMX . Then, according with
Definition 8, ΠTMX solves the problem X in polynomial time with regard to
the input length. This leads to a contradiction. 
�

6 Final Remarks

In this paper we made clear an apparent theoretical interest of P systems without
membrane division as a tool which allows us to attack the P �= NP conjecture.
The search of an adequate NP–complete problem and the study of its solvability
through such P systems will give us a direct answer to the conjecture. If the
considered problem is solvable in polynomial time, then the conjecture will have
an affirmative answer; otherwise, it will have a negative answer.

We think that this result provides an additional attractiveness to the research
of P systems because it allows us to attack the P �= NP conjecture within this
model.
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Abstract. The “classical” model of P systems was introduced by Ghe-
orghe Păun in 1998; this model with symbol objects was shown to be
computationally universal in [8], provided that catalysts and priorities of
rules are used. We now show by reduction via register machines that the
priorities may be omitted from the model without loss of computational
power. As a consequence, several universality results for P systems in
[10] are improved.

1 Introduction

P systems, a symbol and string manipulating model of living cell systems, turned
out to be capable to describe formally both inter-cellular and intra-cellular in-
teractions of molecules or more complex objects, at the description level suitable
from computer science point of view. Up to now, many types of P systems were
presented, differing mainly in various kinds of operations inspired by aspects of
behavior of living cells and their membranes.

In many cases, these models have also been shown to be computationally
universal. Various proof techniques have been used for proving computational
universality, the most popular one being probably the reduction of a matrix
grammar with appearance checking to the given model of P systems.

There are, however, some other models of universal computers with prop-
erties similar to those of P systems. Among them, we here focus on register
machines presented by Minsky in [7]. The machine is equipped with a fixed
number of registers for storing an arbitrarily large non-negative integer. There
is a program with labelled instructions, which the machine runs. The program
consists of several simple instruction types like incrementation and conditional
decrementation. Comparing these register machines with P systems with symbol
objects, we stress that:

– both models compute in a unary system, being capable to represent numbers
only by a collection of objects which are mutually undistinguishable;

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 400–409, 2003.
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– both models are capable to add or remove a single object and to recognize
whether a collection is empty;

– in both cases there is a fixed number of these collections that can be manip-
ulated.

In the further parts of the paper we show that the reduction of a register
machine to a P system is a powerful and elegant proof technique allowing to
improve some important up-to-date universality results of P systems.

2 Definitions

Before proceeding to a formal description of register machines and P systems,
we fix some basic notations first. For an alphabet V , by V ∗ we denote the free
monoid generated by V under the operation of concatenation; the empty string
is denoted by λ, and V ∗ \ {λ} is denoted by V +. Any subset of V + is called
a λ-free (string) language. Moreover, by N0 we denote the set of non-negative
integers and by N β

0 RE we denote the family of recursively enumerable sets of
β-vectors (y1, ..., yβ) of non-negative integers.

For more notions as well as basic results from the theory of formal languages,
the reader is referred to [2] and [12].

2.1 Register Machines

In this subsection we briefly recall the concept of Minsky’s register machine.
Minsky showed (e.g., see [7]) that the universal computational power can be
reached by such an abstract machine using a finite number of registers for storing
arbitrarily large non-negative integers. The machine runs a program consisting
of numbered instructions of several simple types. Several variants of the machine
with different number of registers and different instruction sets were shown to
be computationally universal (e.g., see [7] for some original definitions and [4]
for the definitions we use in this paper).

An n-register machine is a construct M = (n, P, i, h) where

– n is the number of registers,
– P is a set of labelled instructions of the form j : (op (r) , k, l), where op (r)

is an operation on register r of M , j, k, l are labels from the set Lab (M)
(which numbers the instructions in a one-to-one manner),

– i is the initial label, and
– h is the final label.

The machine is capable of the following instructions:

(A(r),k,l) Add one to the contents of register r and proceed to instruction k
or to instruction l; in the deterministic variants usually considered in the
literature we demand k = l.
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(S(r),k,l) If register r is not empty then subtract one from its contents and go
to the instruction k, otherwise proceed to instruction l.

HALT Stop the machine. This additional instruction can only be assigned to
the final label h.

In their deterministic variant, such n-register machines can be used to com-
pute any partial recursive function f : Nα

0 → Nβ
0 ; starting with (n1, ..., nα) ∈ Nα

0
in registers 1 to α, M has computed f (n) = (r1, ..., rβ) if it halts in the final
label h with registers 1 to β containing r1 to rβ . If the final label cannot be
reached, f (n) remains undefined.

A deterministic n-register machine can also analyse an input (n1, ..., nα) ∈
Nα

0 in registers 1 to α, which is recognized if the register machine finally stops
by the halt instruction with all its registers being empty. If the machine does
not halt, the analysis was not successful.

In their non-deterministic variant, n-register machines can compute any re-
cursively enumerable set of non-negative integers (or of vectors of non-negative
integers). Starting with all registers being empty, we consider a computation of
the n-register machine to be successful, if it halts with the result being contained
in the first (β) register(s) and with all other registers being empty.

The results proved in [4] (based on the results established in [7]) as well as
in [5] and [6] immediately lead us to the following results which differ from the
original results mainly by the fact that the result of a computation is stored in
registers that must not be decremented:

Proposition 1. For any partial recursive function f : Nα
0 → Nβ

0 there ex-
ists a deterministic (α + 2 + β)-register machine M computing f in such a way
that, when starting with (n1, ..., nα) ∈ Nα

0 in registers 1 to α, M has computed
f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label h with registers α + 3 to
α + 2 + β containing r1 to rβ; if the final label cannot be reached, f (n1, ..., nα)
remains undefined.

Proposition 2. For any recursively enumerable set L ⊆ Nβ
0 of vectors of non-

negative integers there exists a non-deterministic (β + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to β+2 being
empty, M non-deterministically halts with ni in registers i, 3 ≤ i ≤ β + 2, and
registers 1 and 2 being empty if and only if (n1, ..., nβ) ∈ L.

2.2 The Standard Model of P Systems

We here do not give a broad informal description of the standard type of P sys-
tems since this model has been studied in many papers and several monographs.
We refer to [1], [3], [8], [9], and [10] for motivation and examples. We only note
that the topology of a P system is described by a system of membranes forming
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a tree structure. Each membrane region contains objects and rules applicable to
these objects due to further specifications. The definition of the P system below
omits some ingredients not needed in the following.

A P system (of degree m,m ≥ 1) is a construct

Π = (V,C, μ, w1, . . . , wm, (R1, ρ1) , . . . , (Rm, ρm) , io) ,

where:

(i) V is an alphabet; its elements are called objects;
(ii) C ⊆ V is a set of catalysts;
(iii) μ is a membrane structure consisting of m membranes (usually labelled with

1, 2, . . . ,m);
(iv) wi, 1 ≤ i ≤ m, are strings over V associated with the regions 1, 2, . . . ,m

of μ; they represent multisets of objects present in the regions of μ (the
multiplicity of a symbol in a region is given by the number of occurrences of
this symbol in the string corresponding to that region);

(v) Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with the
regions 1, 2, . . . ,m of μ, and ρi is a partial order relation over Ri (a priority
relation); these evolution rules are of the forms a → v or ca → cv, where c
is a catalyst, a is an object from V \ C, and v is a string over

(V \ C) × {here, out, in} ;

(vi) io is a number between 1 and m and it specifies the output membrane of Π.

The membrane structure and the multisets represented by wi in Π constitute
the initial configuration of the system. A transition between configurations is
governed by the application of the evolution rules which is done in parallel: All
objects, from all membranes, which can be the subject of local evolution rules,
as prescribed by the priority relation, have to evolve simultaneously.

The application of a rule u → v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes
due to targets in and out. We refer to [1] and [10] for further details and examples.

The system continues parallel steps until there remain no applicable rules in
any region of Π; then the system halts. We consider the number of objects from
V \ C contained in the output membrane io at the moment when the system
halts as the result of the underlying computation of Π. The set of results of
all computations possible in Π is denoted by N (Π) . The class of all sets of
β-vectors (y1, ..., yβ) of non-negative integers computable by P systems of the
above type is denoted by N β

0 OP (cat , pri). The notation cat or pri , respectively,
is omitted when the corresponding ingredient is not used.

3 Universality Results

We are now ready to prove that any partial recursive function f : Nα
0 → Nβ

0
can be computed by a P system with only one membrane and with catalysts
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only, but without priorities, and, in turn, any partial recursive set of vectors of
non-negative integers can be generated by a P system with one membrane and
with catalysts, but without priorities.

For a register machine M with the registers r1, . . . , rm, m ≥ 1, let P be the
program for M with n instructions i1, i2, . . . , in computing f. Informally, each
register ri is represented by objects oi, o

′
i, playing the roles of counter elements.

The value of register ri at each moment corresponds to the number of symbols
oi and o′i in the system.

There are also special objects pj , 1 ≤ j ≤ n, within the P system, playing
the role of program counters (labels). The presence of the object pj starts the
sequence of operations corresponding to the instruction ij .

Theorem 1. For each partial recursive function f : Nα
0 → Nβ

0 there is a P
system

Πcat = (V,C, [1]1, w, (R, ∅) , 1)

with catalysts and with the objects oi ∈ V satisfying the following conditions:
For any arbitrary (x1, ..., xα) ∈ Nα

0 , denote

Πcat,(x1,...,xα) = (V,C, [1]1, wox1
1 ...oxα

α , (R, ∅) , 1) .

The system Πcat,(x1,...,xα) halts if and only if f (x1, ..., xα) is defined, and if it
halts, then

N
(
Πcat,(x1,...,xα)

)
= {f (x1, ..., xα)} .

Proof. Consider a (deterministic) register machine M as described above with
m′ registers, the last β registers being special output registers which are never
decremented. (From the result stated in Proposition 1 we know that m′ = α +
2 + β is sufficient). Now let P be a program which computes the function f and
let m = m′ − β.

The input values x1, ..., xα are expected to be in r1 to rα and the output
values from f (x1, ..., xα) are expected to be in rm+1 to rm′ . Moreover, without
loss of generality, we may assume that at the beginning of a computation all the
registers except eventually r1 to rα contain zero.

We construct the P system

Πcat = (V,C, [1]1, w, (R, ∅), 1),

where
V = {r, r′,#} ∪ {oi, o

′
i, ci, c

′
i | 0 ≤ i ≤ m}

∪ {ok |m < k ≤ m′} ∪ {pj , p
′
j , p

′′
j | 1 ≤ j ≤ n},

C = {ci, c
′
i | 0 ≤ i ≤ m},

w = r′mp′′1o0o
′
0c0c

′
0c1c

′
1 . . . cmc′m.

Then for an arbitrary (x1, ..., xα) ∈ Nα
0 the axiom of the corresponding sys-

tem Πcat,(x1,...,xα) is

r′mp′′1o0o
′
0c0c

′
0c1c

′
1 . . . cmc′mox1

1 . . . oxα
α .
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The contents of the register ri, 1 ≤ i ≤ m, is represented by the sum of the
number of symbols oi and o′i, and actions on this register are guarded by the
pair of catalysts ci, c

′
i. Moreover, we use something like an additional register

r0; it contains the number two represented by one symbol o0 and one symbol o′0
until the halting instruction in is simulated (and only in this case o0 and o′0 may
disappear) and it is controlled by the pair of catalysts c0, c

′
0.

The set of rules R depends on the instructions of P and is constructed as
follows:

(i) Each instruction of the program P is simulated by two steps of Πcat. We
have to guarantee that some catalysts (c′i) can be applied with the “com-
puting” rules in (ii) and (iii) only in the even steps and some others (ci)
only in the odd steps. Hence, we use the auxiliary objects r, r′ ∈ V and the
trap object # as well as the rules

r → #, r′ → #, # → #, cir → cir
′, c′ir

′ → c′ir

with 1 ≤ i ≤ m in R. This ensures that the rules cir → cir
′ and c′ir

′ → c′ir
must be used at each even and odd step, respectively. Otherwise the trap
object appears and the system never halts. Hence, the catalysts ci and c′i,
respectively, can be used with other rules only in the remaining steps.
Moreover for each i, 0 ≤ i ≤ m, the set R contains the rules

cioi → cio
′
i, c′io

′
i → c′ioi, o′i → #, c′ioi → c′i.

If the contents of register ri is non-zero, then after each odd step the object
o′i appears. This object is used in (iii) for decrementation by using the rule
c′ioi → c′i for 1 ≤ i ≤ m.
Finally, there is the rule

p′′1 → p1

in R, producing the symbol p1 corresponding to the first instruction of the
program P. Each instruction except Halt then is performed in two or four
subsequent steps of the system Πcat,(x1,...,xk), starting in an even step.

(ii) For each j, 1 ≤ j < n, such that ij = (A (a) , k, k) (remember that M
is a deterministic register machine) for some a, k with 1 ≤ a ≤ m′ and
1 ≤ k ≤ n, there are the rules

pj → p′koa, p′k → pk

in R. Their meaning is obvious – the number of symbols oa is incremented.
(iii) For each j, 1 ≤ j < n, such that ij = (S (a) , k, l) for some a, k, l with

1 ≤ a ≤ m and 1 ≤ k, l ≤ n, we add to R the rules

capj → cap
′′
k , p′′k → p′k, p′k → pk, c′apj → c′ap

′
l, p′l → pl,

which are used in the following way: Assume that the object pj appears in
the system at the beginning of an even step.
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(a) If the contents of the register ra is zero, then there is no object o′a within
the system. Then the rules c′apj → c′ap

′
l and p′l → pl are subsequently

applied. Hence, the instruction il is simulated next.
(b) If ra is non-zero, then there is one object o′a within the system. The rule

c′apj → c′ap
′
l cannot be applied since the trap object # would appear

by the enforced application of the rule o′a → #; the rule c′ao
′
a → c′aoa

must be used instead.
Therefore, in the following odd step the rule capj → cap

′′
k can be applied.

(If the rule caoa → cao
′
a were used instead, the object pj would remain

unchanged and the situation would be repeated until the rule capj →
cap

′′
k is chosen).

In the following even step, there is neither o′a nor pj (we now have p′′k
instead) present in the system and therefore the rule c′aoa → c′a must be
used, decrementing the number of symbols oa by 1; moreover, from p′′k
we obtain p′k by applying p′′k → p′k. In the next step, we finally obtain
pk using p′k → pk; hence, the instruction ik is simulated next.

Any other behavior of the system leads to the appearance of the trap object
# within the system.

(iv) To stop the computation after finishing the simulation of the program P ,
the last instruction in = Halt is represented by the rule

c0pn → c0.

When the halting instruction in is reached, this rule c0pn → c0 can be
applied, which allows to set the “register” r0 to zero, e.g., by the following
sequence of (partial) reactions in the P system:

c0c
′
0o0o

′
0pn =⇒ c0c

′
0o0o0 =⇒ c0c

′
0o
′
0 =⇒ c0c

′
0o0 =⇒ c0c

′
0.

Now the catalyst c′0 is “free for use” and can be applied within the following
rules:

c′0r → c′0, c′0r
′ → c′0.

In this way all the objects r and r′ can be removed from the system. Then
also all the objects oi, o

′
i, 1 ≤ i ≤ m are removed thanks to the rules

c′io
′
i → c′ioi, c

′
ioi → c′i (listed already in (i)), and the system can halt. Then,

except for the catalysts ci, c
′
i, 0 ≤ i ≤ m, only the multiset of symbols om+1

to om′ that represents the result of the computation is still present in the
system.

Any other behavior of the system than that described above leads to pro-
ducing the trap object #, hence, the system never halts.

In such a way, the system Π simulates a sequence of instructions of the pro-
gram P beginning with the first instruction i1 and halting after having reached
the instruction in = Halt. It follows from the description given above that after
each performing of an instruction the number of objects oi, o

′
i equals the con-

tents of register ri, 1 ≤ i ≤ m′. Hence, after performing the instruction Halt
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and halting the system, the number of symbols om+1 to om+β equals the out-
put of the program P. The only other objects remaining within the system are
the 2 (m + 1) catalysts; according to the result about register machines stated
in Proposition 1, m = α + 2 and therefore 2 (α + 3) catalysts (α + 3 pairs of
corresponding catalysts) are enough. 
�

Corollary 1. N β
0 OPd(cat) = N β

0 RE for every d ≥ 1.

Proof. We only have to prove the relation N β
0 RE ⊆ N β

0 OP1(cat). In the same
way as in the proof of Theorem 1 the P system Πcat was constructed in order to
simulate the (deterministic) register machine from Proposition 1, we now con-
struct a P system Π ′

cat which simulates the non-deterministic register machine
M with program P from Proposition 2 and in that way non-deterministically
generates a representation of any vector from the given language L in N β

0 RE by
the corresponding numbers of symbols o3 to o2+β . Hence, let us define

Π ′
cat = (V,C, [1]1, w′, (R′, ∅), 1),

where w′ = r′2p′′1o0o
′
0c0c

′
0c1c

′
1c2c

′
2 and R′ is constructed in a similar way as in

the preceding proof, except that now in the non-deterministic case we have Add-
instructions of the form ij = (A (a) , k, l) for some a, k, l with 1 ≤ a ≤ β + 2 and
1 ≤ k, l ≤ n which are simulated by the rules

pj → p′koa, pj → p′loa, p′k → pk, p
′
l → pl

in R′. Obviously, N(Π ′
cat) = L. By the given construction, we only need (2 + β)

pairs of catalysts. 
�

Obviously, the results obtained so far are optimal with respect to the number
of membranes in the P systems constructed in the proofs of Theorem 1 and
Corollary 1. On the other hand, it remains an open question which is the minimal
number of catalysts we really need for these P systems; observe that without
priorities as well as without catalysts, too, we can only generate regular sets.
Hence, the following results are also optimal with respect to the number of
membranes where we consider the standard definition of P systems which says
that in the output membrane no other symbols than the terminal symbols should
appear (e.g., see [10]):

Corollary 2. For each partial recursive function f : Nα
0 → Nβ

0 there is a P
system

Πcat = (V,C, [1[2]2]1, w, λ, (R, ∅) , (∅, ∅) , 2)

with catalysts and with the objects oi ∈ V satisfying the following conditions:
For any arbitrary (x1, ..., xα) ∈ Nα

0 , denote

Πcat,(x1,...,xα) = (V,C, [1[2]2]1, wox1
1 ...oxα

α , λ, (R, ∅) , (∅, ∅) , 2) .
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The system Πcat,(x1,...,xα) halts if and only if f (x1, ..., xα) is defined, and if it
halts, then in the skin membrane only the catalysts remain and in the output
membrane 2 only terminal symbols oα+3 to oα+2+β appear in such a way that

N
(
Πcat,(x1,...,xα)

)
= {f (x1, ..., xα)} .

Proof. We only have to change some of the rules simulating Add-instructions
of the form ij = (A (a) , k, k) for some a, k with α + 3 ≤ a ≤ α + 2 + β and
1 ≤ k ≤ n, i.e., we now take

pj → p′k (oa, in) , p′k → pk

in R, i.e., symbols representing the contents of output registers are immediately
sent into the output membrane 2. 
�

Corollary 3. For each set L in N β
0 RE there is a P system

Π ′
cat =

(
V,C, [1[2]2]1, r′2p′′1o0o

′
0c0c

′
0c1c

′
1c2c

′
2, λ, (R

′, ∅) , (∅, ∅) , 2)

with catalysts such that N(Π ′
cat) = L and in a halting computation of Π ′

cat the
skin membrane contains only the catalysts whereas the output membrane only
contains symbols o3 to o2+β .

Proof. As in the preceding proof we only have to change some of the rules
simulating Add-instructions of the form ij = (A (a) , k, l) for some a, k, l with
3 ≤ a ≤ β + 2 and 1 ≤ k, l ≤ n, i.e., we now take

pj → p′k (oa, in) , pj → p′l (oa, in) , p′k → pk, p
′
l → pl

in R′. 
�

4 Conclusion

The technique used in Theorem 1 can also be interpreted as follows: It is known
that a rather similar result was presented in [11] using so-called bi-stable cata-
lysts. These catalysts oscillate between two states; the catalyst is switched to the
opposite state when used. Notice that in the proof of Theorem 1 we use pairs
of catalysts such that those of the first type can be used in odd steps only, and
those of the second type can be used in even steps only, and the use of the cat-
alysts of the second type is conditionally determined by the use of the catalysts
of the first type (otherwise a trap object is produced). Hence, their behavior is
quite similar to those of bi-stable catalysts.

The number of catalysts used in the P systems constructed in the proofs of
this paper can be seen as a complexity measure for these systems. It remains an
interesting open question whether the bounds for the number of catalysts needed
in the proofs above (which at least are optimal with respect to the number of
membranes) can be improved.

Finally we should like to point out that there are some more theorems in [10]
(as well as in some older articles and monographs) which are improved by the
results obtained in this paper; we refer to [13] for more details.
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Petr Sośık’s research was supported by the Grant Agency of Czech Republic,
grant No. 201/02/P079.

References
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5. Freund, R., Păun, Gh.: On the Number of Non-terminals in Graph-controlled,
Programmed, and Matrix Grammars. In: Margenstern, M., Rogozhin, Y. (eds.):
Proc. Conf. Universal Machines and Computations, Chişinău (2001). Springer-
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6. Freund, R., Păun, Gh.: From Regulated Rewriting to Computing with Membranes:
Collapsing Hierarchies; to appear in TCS

7. Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967)
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Abstract. The paper recalls basic biological facts about living struc-
tures, as useful supports for molecular computing. Particular emphasis is
made on membranes and proteins, whose structural and conformational
dynamics might be considered as generating a computational environ-
ment in living systems.

The fundamental challenge of biology is to explain the behavior, function,
organization, and evolution of living structures. This generic question is followed
by more specific problems to be solved, such as:

– The way(s) by which organic molecules, mainly nucleic acids, proteins, and
carbohydrates, coordinate and integrate in order to guarantee cell function-
ing and reproduction.

– The way(s) cells preserve their individuality and specificity, despite genotypic
and environmental stresses.

– The way(s) organisms adapt to environmental changes by evolution and
transformation at the molecular level.

– The way(s) to match diversity, adaptability, and evolution of cells.

The very recent achievements of molecular biology may represent a good rea-
son to hope to solve a number of problems and to offer a practical approach to
fundamentals of life itself. The most striking (and convenient) feature of the pro-
tein molecules, as basic elements, is the self-assembling dynamics they possess,
with very simple governing rules to be easily transferred into any computational
system. The prime and ultimate expression of “molecular computational effi-
ciency” is life itself. Any organism, whether simple or complex, functions as a
result of a tremendous series of interactions between huge numbers of different
components made of protein molecules. Every molecular component displays fast
and ultra fast dynamic behaviors, including phase transitions and adaptative re-
structurations.

The solutions to the questions mentioned in the first paragraph rely on the
deep and clear knowledge of relationship existing between the different levels on
which life is based:

– the relationship between proteins sequence, structure and function,

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 410–421, 2003.
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– the relationship between proteins assembled into networks,
– the relationship between networks existing and acting inside cells as a whole,
– the relationship between cells in a population or an organism,
– the relationship between organisms in populations.

The sequential basis of life is thus requiring the use of computational tools
in order to get complex and general information on living structures. Obviously,
such an approach is meant to gather biologists, but also chemists, physicists,
mathematicians, computer scientists, and engineers, to extract, analyze and in-
terpret data leading to an overall understanding of life. The main limitation im-
posed by the biological condition itself, which involves too many non-quantifying
interrelations and chronic lack of specific measuring systems and tools, may thus
be outridden and a valuable modelling/computing tool gained.

That nature applies common assembly rules is implied by the recurrence –
at scales from the nanoscopic to the macroscopic – of certain patterns, such
as spirals, pentagons, and triangulated forms. These patterns appear in very
different structures, from highly regular crystals (as it is the case with diamonds)
to relatively irregular proteins (such as the enzymes) and, in living entities, from
viruses to humans. Basically, both organic and inorganic matter are made of
the same building blocks: atoms of carbon, hydrogen, oxygen, nitrogen, and
phosphorus. The difference is made by how atoms are arranged in the 3D space.
This phenomenon, in which components join together to form larger, stable
structures with new properties that could not have been predicted from the
characteristics of their individual parts, is known as self-assembly and is observed
at every scale in nature.

Self-assembly is the coordinated action of independent entities under dis-
tributed (i.e., non-central) control to produce a larger structure or to achieve a
desired group effect. Instances of self-assembly occur in biology (e.g., embryology
and morphogenesis) and in chemistry (e.g., the formation of more loosely bound
supramolecular structures from groups of molecules).

In the living systems, molecules self-assemble into functional macromolecules,
macromolecules self-assemble into cellular components – the organelles, which
self-assemble into cells, which self-assemble into tissues, which self-assemble into
organs, and the final result is a body organized hierarchically as tiers of systems
within systems. This drastically expressed hierarchical control cells display have
its correspondent into the hierarchically organized regions of P systems, where
evolution rules (sometimes with permitting or forbidding conditions) act on the
objects placed in regions. The boundary between subsystems is represented by
membranes for both biological objects (cells) and P systems.

Membranes represent sheet-like molecular assemblies, 6-10 nm thick, sepa-
rating different compartments of a given living entity, as well as the living entity
from its environment:

– Plasma membrane separates the cell from its extracellular environment.
– Intracellular membranes isolate different parts of the cell, providing func-

tional compartments (endoplasmic reticulum and Golgi complex, involved
in cell secretion, nucleus, cell).
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Fig. 1. Membrane of animal cell (left) and of plant cell (right)

Fig. 2. Cellular and intracellular membranes

The membranes, both plasmatic and intracellular, fairly correspond to the
membranes of the P systems and have the same role: to define a space, the region
equivalent for the P systems.

Both in biological and P systems, membranes undergo a division process
following very similar division rules, in order to generate new cells/P systems
and/or inner membranes describing new spaces/regions.

The role biological membranes play is complex. They act as:

– Selective and responsive barriers between discrete masses of cytoplasm and
their environments. This function depends on selective channels and pumps
(selectivity) and on specific receptors and transducing proteins (response to
signals).

– Maintaining the homeostatic conditions inside the cell, conducive to the
biochemical reactions sustaining life.

The chemical composition is similar in all living forms:

– Molecular species: lipids and proteins non-covalently associated.
– Lipids form a double layer of amphipathic (amphiphylic) species.
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Fig. 3. The interaction of integral and peripheral membrane proteins with the lipid
bilayer

Fig. 4. Amphipathic lipid molecules

Fig. 5. Denaturation and solubilization of proteins (left) and Electronomicrograph of
placental membranes (right)

– Proteins function as transport proteins (carrying substances in/out), recep-
tor proteins (transmitting signals), anchor proteins (attaching the structural
proteins inside/outside the cell). Peripheral proteins are superficially bound
by weak ionic interactions (easily removed with aqueous solutions); integral
proteins are tightly bound, being removed by detergents.

– Carbohydrates covalently bound either to lipid (glycolipids) or to proteins
(glycoproteins); they are especially abundant in the eukaryotic plasma mem-
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Fig. 6. Liposomes formed by sonication

Fig. 7. Polar lipids and single lipid bilayer vesicles

brane, absent from intracellular membranes, and also missing from prokary-
otic membranes.

By dispersion in water of phospholipidic mixtures, because of hydrophobic
interactions between fatty chains, one obtains multilayered phospholipidic vesi-
cles, called liposomes.

Moreover, by liposome sonication, because of electrostatic and H-bonding
interactions, one obtains one-bilayer vesicles.

The organization of cell membranes follows a pattern called fluid mo-
saic, formed by the lipidic bilayer, with absorbed or wholly/partially embedded
proteins in the membrane core. One can observe several chemical interactions
between the hydrophobic regions of lipids and proteins:

– at the membrane surface – the hydrophilic region of amphiphylic molecules
is solvated in the aqueous environment;
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Fig. 8. Fluid mosaic model of membrane (left) and Protein-lipid bilayer association
(right)

Fig. 9. Membrane asymmetry and boundary layers

– moving from one side of the bilayer to the other (“flip-flop”) generating
gel-like and fluid-like states, maintaining membranes fluidity appropriate to
their environment; as a result, biological membranes maintain an asymmetric
distribution of, mainly, lipidic components;

– between the sides of the bilayer.
Membrane proteins also show an asymmetric distribution. Integral mem-
brane proteins are surrounded with a “boundary layer” (“microdomain”)
showing a different physical state to that of the bulk, influencing the bi-
ological activity of the membrane (transport, specific recognition, etc). In
general, asymmetry induces thermodynamically unfavorable states.

Every chemical species that membranes contain is equivalent to the objects
one is operating in the P systems; there are also considered as operable objects
the structures (organelles) that intracellular membranes are forming inside cells.

Cell junctions represent specialized regions of the plasma membrane joining
cells into tissues with structural and functional integrity.

– Plant cells junctions, also called plasmadesmata, have a similar role to gap
junctions, but a different structure, being cytoplasm limited by plasma mem-
brane.

– Animal cells junctions:
• desmosomes (zonulae adherens) hold cells together;
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Fig. 10. Electronomicrograph of glycocalyx

Fig. 11. Plasmadesmata in the plant cell wall

Fig. 12. Electronomicrograph of a desmosome

• spot desmosomes act mechanically like rivets, through filamentous struc-
tures (30nm);

• hemi desmosomes link the cell membrane to extracellular connective ma-
terial (basal lamina), anchoring the cells to the matrix;
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Fig. 13. Spot desmosomes

Fig. 14. Different types of cell junction in the small intestine epithelial cells

• belt desmosomes are loosely continuos bands between interconnecting
cells;

• tight junctions (zonulae occludens) – hold cells together and seal the
space between them for the molecules circulation;

• gap junctions form channels of communications for ions/small molecules
passage (up to Mr 1200, representing mainly metabolic substrates as
building blocks, and secondary messengers – cAMP, Ca2+). They permit
electrical coupling for specialized cells (heart, smooth muscle), allowing
the free flow of Ca2+ necessary to maintain contractions.

Membrane dynamics is vital for the membrane functions. It is based on de-
fined movements of proteins and lipids forming transient and asymmetric struc-
tures.

– Endocytosis is the active process of taking materials from the cell environ-
ment. It is a rapid process (seconds to minutes), involving the recycling of
the membrane. Here are several particular forms of endocytosis:
• Pinocytosis – the formation of membranal vesicles which trap extracel-

lular fluid containing dissolved nutrients and transport it into the cyto-
plasm (e.g., macrophages).
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Fig. 15. Electronomicrograph of a tight junction (left) and Gap junction and belt
desmosome

Fig. 16. Pynocytosis and phagocytosis (left) and Electronomicrograph of fibrin hago-
cytosis (right)

• Phagocytosis – the formation of phagocytic vacuoles to ingest large insol-
uble particles; digestion is performed by fused lysosomes, which deliver
into the cytosol the nutrients (e.g., protozoa, polymorphonuclear leuko-
cytes and phagocytes).

• Receptor-mediated endocytosis – the endocytosis process entailing bind-
ing of molecules to specific cell surface receptors (endocytic pits) before
internalization.

– Exocytosis is the fusion of vesicles from the interior of the cell with the plasma
membrane, to expel their content (hormones, neurotransmitters, etc.).

– Cell signalling and cell recognition is the dynamic function of the cell mem-
brane allowing the message (e.g., hormones) transmission from cell to cell
across the membrane by the association/dissociation of the membranal pro-
teins or intercellular recognition (self/foreign), by means of specific molecules
(glicoproteins, glycolipids).

– Membrane transport is a dynamic function meant to preserve cell homeostasis
(conducing environment with regard to biochemical reactions sustaining life,
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Fig. 17. Receptor-mediated endocytosis

Fig. 18. Exocytosis

pH and ionic environment, acquirement of fuel molecules and excretion of
toxic and secretory materials), realized due to selective permeability. It is of
two main types, passive and active.
• The passive diffusion is the free movement of molecules across the mem-

brane down a concentration gradient.
The passive diffusion also proceeds according to lattice theory: diffusion
may occur by molecular movement into a vacancy in the lattice structure
of the lipid bilayer.

• Facilitated (passive) and active transport, for polar and ionic compounds,
is the transport done with the aid of specific carrier molecules (proteins)
embedded in the lipid bilayer; this is a highly specific process, faster than
diffusion, maximal at the saturation point.
This type of transport can be of two main types:
∗ facilitated diffusion – for ions/molecules crossing the membrane down

the electrochemical/concentration gradient, until reaching the equi-
librium; it does not use metabolic energy to be performed;
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Fig. 19. Simple diffusion through the cell membrane

Fig. 20. Passive diffusion of molecules through biological membranes

Fig. 21. Facilitated diffusion of molecules through biological membranes

∗ active transport – performed against the electrochemical concentra-
tion gradient, using metabolic energy.
Molecules transport across membranes may be coupled:
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Fig. 22. Active transport of molecules through biological membranes

∗ synergistically, when both ions/molecules are transported in the same
direction; the process is also called symport, and it has been already
considered in P systems in the form of symport rules;

∗ antagonistically, when one ion/molecule is transported inside the cell
and the other outside the cell; the process is also called antiport, and
captured in P systems by antiport rules.

The facts we presented above suggest a strong similarity between biological
and computational models, and we believe that this similarity is able to sug-
gest/ground new computational tools, beneficial for developing both P systems
theoretical apparatus and for investigating real structures and process patterns
of living systems.
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Pérez Jiménez, Mario J. 58, 388
Popescu, Alina 410

Rama, Raghavan 339
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