LNCS 2597

Gheorghe Paun
Grzegorz Rozenberg
Arto Salomaa

Claudio Zandron (Eds.)

Membrane
Computing

International Workshop, WMC-CdeA 2002
Curtea de Arges, Romania, August 2002
Revised Papers

Springer

Lecture Notes in Computer Science 2597
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan

Paris

Tokyo

Gheorghe Pdun Grzegorz Rozenberg
Arto Salomaa Claudio Zandron (Eds.)

Membrane
Computing

International Workshop, WMC-CdeA 2002
Curtea de Arges, Romania, August 19-23, 2002
Revised Papers

Springer

Volume Editors

Gheorghe Paun

Institute of Mathematics of the Romanian Academy

P.O. Box 1-764, 70700 Bucharest, Romania

Rovira 1 Virgili University, Research Group on Mathematical Linguistics
PI. Imperial Tarraco, 1, 43005 Tarragona, Spain

E-mail: george.paun@imar.ro, gp@astor.urv.es

Grzegorz Rozenberg

Leiden University, Leiden Institute of Advanced Computer Science
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

E-mail: rozenberg @liacs.nl

Arto Salomaa

Turku Centre for Computer Science
Lemminkaisenkatu 14A, 20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi, asalomaa@utu.fi

Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Universita degli Studi di Milano-Bicocca

Via Bicocca degli Arcimboldi, 8, 20126 Milano, Italy
E-mail: zandron @disco.unimib.it

Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): F.1, F.4, 1.6, J.3

ISSN 0302-9743
ISBN 3-540-00611-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingriber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN: 10872548 06/3142 543210

Preface

This volume originated in the Workshop on Membrane Computing, WMC-
CdeA 2002, which took place in Curtea de Arges, Romania, during August 19—
23, 2002. This was the third annual workshop held in Curtea de Arges. The first
one, Workshop on Multiset Processing, WMP-CdeA 2000, took place in
August 2000, and the proceedings were published in Lecture Notes in Computer
Science, volume 2235. The second one, Workshop on Membrane Comput-
ing, WMC-CdeA 2001, took place in August 2001, and selected papers were
published as a special issue of Fundamenta Informaticae, volume 49, numbers
1-3, 2002.

The aim of these workshops is to provide a stimulating environment for re-
searchers working in the area covered by a given workshop, so that existing scien-
tific collaborations can be strengthened, and new collaborations (and friendships)
can be initiated. Indeed, all three workshops held up to now were of such char-
acter, with very international attendance and collaboration taking place across
national and scientific boundaries.

The 2002 Workshop, WMC-CdeA 2002, was the first workshop of the Molec-
ular Computing Network (MolCoNet) funded by the EU Commission in the
Fifth Framework program Information Society Technologies (project number
IST-2001-32008). The preproceedings of WMC-CdeA 2002, Publication No. 1
of MolCoNet, were available at the meeting. The current volume differs consider-
ably from the preproceedings: some of the papers from the preproceedings were
not selected for this volume, while some papers were invited for this volume al-
though they did not appear in the preproceedings. Moreover, all the papers from
the preproceedings that were selected for this volume are significantly improved
— the new versions reflect discussions that took place in Curtea de Argeg and
the scientific collaborations that were initiated there (also, these papers went
through an additional refereeing round).

Most of the papers are of a mathematical (theoretical computer science)
nature, dealing with: the computational power (D. Besozzi et al.; F. Bernar-
dini and V. Manca; M. Cavaliere; R. Freund and A. Paun; P. Frisco and H.J.
Hoogeboom; M. Madhu and K. Krithivasan) and efficiency (E. Czeizler; M.J.
Perez-Jimenez et al.) of membrane systems, applications (A. Atanasiu; G. Bel
Enguix; G. Ciobanu et al.) and computer implementations/simulations (F. Ar-
royo et al.; D. Balbontin-Noval et al.), and links with other research areas (T.
Balidnescu et al.). Some papers solve open problems from the literature (P. Sosik
and R. Freund), or formulate new research topics (S. Marcus) or new approaches
(R. Ceterchi and C. Martin-Vide; R. Freund and M. Oswald; P. Frisco and S.
Ji; A. Obtulowicz). A number of papers provide mathematical (J.-L. Giavitto et
al.; M. Kudlek and V. Mitrana) and biological backgrounds (I.I. Ardelean; R.
Vasilco et al.). The original motivation for membrane systems came from the
functioning of biological membranes, and although most of the current research

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

VI Preface

is oriented towards natural computing (more specifically, human-designed com-
puting inspired by nature), it is hoped that in the long run the research on
membrane computing will provide concepts and results useful for the under-
standing of the biology of membranes, and the role that membranes play in the
functioning of living cells, and in communication between cells. Therefore, it is
a nice alphabetical coincidence that the first and the last papers of the volume
are authored by biologists, providing in this way the “biological bracketing” of
the contents of this volume.

The fact that the WORKshop was really a place of interaction is witnessed by
many papers with several co-authors. A convincing testimony to the creative at-
mosphere of the workshop is the number of papers co-authored by Rudi Freund.
All these papers are the result of the intensive work that took place in Curtea de
Arges, in spite of the temptations for Rudi to spend more time with his daugh-
ter, Magdalena Franziska Patricia, 15 months in August 2002. In the “official
diploma” that she received during the workshop dinner, she was qualified as “the
most sensible result of the Workshops of Membrane Computing.”

This MolCoNet workshop was organized by the Institute of Mathematics
of the Romanian Academy, Bucharest, the University of Milano-Bicocca, Italy,
and the “Vlaicu Voda” National College of Curtea de Arges, under the aus-
pices of the European Molecular Computing Consortium. The workshop was
also supported by the Institute of Microtechnology, Bucharest (grant PNCDI-
MATNANTECH No. 68/2001 BIONANONET). The program committee con-
sisted of Carlos Martin-Vide (Tarragona, Spain), Giancarlo Mauri (Milano, Italy),
Gheorghe Pdun (Bucharest, Romania, and Tarragona, Spain), Grzegorz Rozen-
berg (Leiden, The Netherlands), and Arto Salomaa (Turku, Finland).

The editing of this volume was supported by MolCoNet, and by the Rovira
i Virgili University, Tarragona, Spain, where GP works as a researcher on the
Ramon y Cajal program of the Spanish Ministry of Research.

November 2002 Gheorghe Piaun
Grzegorz Rozenberg

Arto Salomaa

Claudio Zandron

Table of Contents

Molecular Biology of Bacteria and Its Relevance for P Systems
Toan I. Ardelean

A Software Simulation of Transition P Systems in Haskell
Fernando Arroyo, Carmen Luengo, Angel V. Baranda, Luis de Mingo

Authentication of Messages Using P Systems
Adrian Atanasiu

Eilenberg P Systems i
Tudor Balanescu, Marian Gheorghe, Mike Holcombe, Florentin Ipate

A MzScheme Implementation of Transition P Systems
Delia Balbontin Noval, Mario J. Pérez Jiménez,
Fernando Sancho Caparrini

Preliminaries about Some Possible Applications of P Systems
in Linguisticsot
Gemma Bel Enguiz

An Application of Dynamic P Systems:

Generating Context-Free Languages,
Gemma Bel Enguiz, Matteo Cavaliere, Rodica Ceterchi,
Radu Gramatovici, Carlos Martin-Vide

P Systems with Boundary Rules
Francesco Bernardini, Vincenzo Manca

Parallel Rewriting P Systems without Target Conflicts..................
Daniela Besozzi, Giancarlo Mauri, Claudio Zandron

Evolution—Communication P Systems
Matteo Cavaliere

Dynamic P Systems
Rodica Ceterchi, Carlos Martin-Vide

Membrane Systems and Distributed Computing........................
Gabriel Ciobanu, Rahul Desai, Akash Kumar

Client—Server P Systems in Modeling Molecular Interaction
Gabriel Ciobanu, Daniel Dumitriu, Dorin Huzum, Gabriel Moruz,
Bogdan Tanasa

VIII Table of Contents

P Automata or Purely Communicating Accepting P Systems
Erzsébet Csuhaj-Varji, Gyorgy Vaszil

Self-Activating P Systems i
FEugen Czeizler

Energy—Controlled P Systems
Rudolf Freund

P Systems with Activated/Prohibited Membrane Channels
Rudolf Freund, Marion Oswald

Membrane Systems with Symport/Antiport Rules: Universality Results . ..
Rudolf Freund, Andrei Pdun

Simulating Counter Automata by P Systems with Symport/Antiport
Pierluigi Frisco, Hendrik Jan Hoogeboom

Towards a Hierarchy of Conformons—P Systems
Pierluigi Frisco, Sungchul Ji

Accretive Rules in Cayley P Systems
Jean-Louis Giavitto, Olivier Michel, Julien Cohen

Tissue P Systems with Contextual and Rewriting Rules.................
Shankara N. Krishna, Kuppuswamy Lakshmanan, Raghavan Rama

Considerations on a Multiset Model for Membrane Computing...........
Manfred Kudlek, Victor Mitrana

A Survey of Some Variants of P Systems...........
Mutyam Madhu, Kamala Krithivasan

Bridging P Systems and Genomics: A Preliminary Approach
Solomon Marcus

Probabilistic P Systems
Adam Obtutowicz

Decision P Systems and the P#ANP Conjecture
Mario J. Pérez Jiménez, Alvaro Romero Jiménez,
Fernando Sancho Caparrini

P Systems without Priorities Are Computationally Universal
Petr Sosik, Rudolf Freund

The Architecture of Living Structures
— A Possible Basis for Molecular Computing.............
Roxana Vasilco, Alina Popescu, Ruzandra Chiurtu, Dan Dascalu

Author Imdex

Mbolecular Biology of Bacteria
and Its Relevance for P Systems

TIoan I. Ardelean

Institute of Biology of the Romanian Academy
Centre of Microbiology
Splaiul Independentei 296
PO Box 56-53, Bucharest 79651, Romania
ioan.ardelean@ibiol.ro

Abstract. We recall several elements of molecular biology of bacteria,
also discussing their (possible) relevance for the membrane computing
area.

1 Introduction

Initiated by G. Paun in 1998, P systems are a branch of natural comput-
ing, rooted in the belief of its creator that “a formal computing device can
be abstracted from the cell functioning” (Paun, 2001). Since then, the con-
tributions to the development of P systems (see, for example, the web page
http://psystems.disco.unimib.it or Paun, 2002) fully argue that the an-
swer is positive. As the introduction of microbiology in P systems is still in its
infancy (Ardelean, 2002) it would be interesting to elaborate on the relevance
of molecular biology of bacteria on P systems. This is really needed because
with the rapid progress in molecular biology (see the reviews by James, 1997;
Boersema et al., 2001; Thieffry and Thomas, 1998; Walsburn and Yates, 2000;
Raamsdonk et al., 2001; Devaux et al., 2001; Gunnevijk et al., 2001; Hess et
al., 2001; Stormo and Tan, 2002; Phelps et al., 2002; Jong, 2002; Bruckner and
Titgemeyer, 2002) and its marriage with computer science (reviews by Spen-
gler, 2000; Meng et al., 2001; Kampfner, 2002; Marijuan, 2002; Ouzounis, 2002;
Gaasterland and Oprea, 2002; Goodman, 2002; see also Conrad, 1972), new ideas
come into the field of (micro)biology, some of them being directly related to P
systems:

— Bray stresses that “many proteins in living cells appear to have as their
primary function the transfer and processing of information, rather that the
chemical transformation of metabolic intermediates or the building of cellular
structures” (Bray, 1995).

— Hartwell et al. argue “for the recognition of functional modules as critical
level of biological organization. Modules are composed of many types of
molecules. They have discrete functions that arise from interactions among
their components (proteins, DNA, RNA and small molecules) but these func-
tions can not easily be predicted by studying the properties of the isolated
components” (Hartwell et al., 1999).

G. Pdun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 1-18, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

2 Toan I. Ardelean

— Bruggeman et al., working on glutathione synthetase cascade in F. coli,
showed “that this cascade is much more complex than necessary for simple
regulation of ammonia assimilation. Simulations suggest that the function of
this complexity may lie in quasi-intelligent behaviour, including conditioning
and learning” (Bruggeman et al., 2000).

The aim of this paper is to discuss the relevance of molecular biology of bac-
teria to P systems, with special emphasis on the structure, hierarchy, and some
functions of biological membranes, on the hierarchical control of functions in
bacteria and on new questions that the microbiologists and P systems scientists
will decide as to whether or not they deserve further attention.

The hope is that more P systems scientists will become more interested in
biological realities and more microbiologists will start to learn about P systems.
The work of both microbiologists who are acquainted with P systems and P
systems scientists who have knowledge in microbiology will establish a real sci-
entific bi-directional communication between the two scientific domains for the
benefits of both of them. The reader interested in microbiological details is ad-
vised to consult classical books in microbiology as well as the references cited in
this paper.

2 Cell Membrane Structure and Hierarchy in Bacteria

Bacteria are very small organisms the biological individual being composed of
only one cell, so one say that they are unicellular (there are few interesting
exceptions without relevance for the topic of this paper, however), as compared
with more developed organisms (plants, animals and humans, for example) where
the biological individual is composed of billions of cells.

In bacteria the cell is enclosed by a cell wall and a cell membrane, and contains
cytoplasm and nucleoid. The cell membrane (CM) is basically composed of a lipid
bilayer forming a semifluid matrix in which the membrane proteins are floating.
This model of CM is called “fluid mosaic model” (Singer and Nicolson, 1972;
Singer, 1974) and it is universally accepted. This is the basic structure of CM
found in all biological cells. The huge diversity in CM belonging to different cells
is related to the chemical composition of CM, namely the identity of proteins,
carbohydrates, and lipids.

The general functions of CM, some of them having a strong relevance for P
sytems, are the following:

1. CM serves as a selectively permeable barrier,

2. CM contains transport systems used for such tasks as nutrient uptake, waste
secretion, and protein secretion,

3. CM holds the enzymatic machinery for crucial metabolic processes: respira-
tion and photosynthesis,

4. CM synthesizes lipids and cell wall constituents,

5. CM contains special receptor molecules that help bacteria detect and respond
to signal in their sourroundings thus affecting their behaviour.

Molecular Biology of Bacteria and Its Relevance for P Systems 3

I put forward that all the functions occurring at CM can have relevance
for P systems; however, the P system scientists were so far more interested in
transport, with special emphasis on symport/antiport (Paun et al, 2001; Paun
and Paun, 2002; Martin-Vide et al., 2002; Frisco and Hoogeboom, 2002).

There are two main groups of bacteria according to the hierarchy of CM:
Gram-positive and Gram-negative bacteria.

In Gram-positive bacteria the CM is found only at the exterior of the cyto-
plasm, separating the cell itself from the external medium.

In Gram-negative bacteria, apart from this CM found only at the exterior of
the cytoplasm, there is a second CM, called external membrane (EM), because
it is located at the exterior of first CM, a space being thus delimited in between
CM and external membrane. This space is called periplasmic space and contains
proteins involved in the transport of molecules from the external medium to the
interior of the cell (see below) as well as other organic and inorganic components.
The periplasmic space as well as intrathylakoidal space and cytoplasmatic space
are examples of what in P systems are called regions. In the regions there are
objects (P systems), actually, chemicals (microbiology), either organic (proteins,
nucleic acids, lipids, carbohydrates) or inorganic (water, ions etc). The (spatial)
arrangement of given chemicals/objects in the given space/region is one of the
tasks to be done in the near future. It has to be stressed that, according to
biological realities, as already noticed by Nishida (2002), within the membrane
there are also objects, some of these objects (antiporters, symporters) being
already in use in P systems, but the vast majority of them not yet considered in
the P systems area.

The two membranes, EM and CM, with a structure described by the fluid
mosaic model, have different chemical composition and different functions. For
instance, there are some important differences in what concerns the transport of
ions and molecules across them. Inogranic ions, for exemple, can pass through
the EM while there are special proteins and mechanisms controlling their pas-
sage across CM (see below). Some molecules larger than inorganic ions, such
us some antibiotics (an example is valynomicin), cannot cross the EM, thus of-
fering to Gram-negative bacteria resistence to that antibiotic. Apart from the
biological significance of the presence of EM in Gram-negative bacteria, for P
systems the differences between CM and EM are an example for managing the
communication through two membranes with the same structure but different
chemical composition and functions.

Apart from CM and EM, in some bacteria there are some intracellular mem-
branes (IM), organized in very tiny vesicles and associated with specific metabolic
functions.

For exemple, in the cyanobacterium Synechocystic PCC 6803 (as well as in all
other cyanobacteria with the exception of Gloeobacter violaceus), these vesicles
are called thylakoides and are the site of the photosynthesis (see below). In
Rhodospirillum rubrum, growing in light in the absence of molecular oxygen, the
IM are also the site of photosynthesis. However, during the growth in the presence
of molecular oxygen and in the absence of light, theses IM are no longer found,

4 Toan I. Ardelean

thus the hierarchy of cell organization, is changed. In the presence of molecular
oxygen, the cell gain energy by respiration at the CM, while in light in the
absence of oxygen the main source of energy for the cell is photosynthesis. The
ability of the same cell to grow either in light or in dark, is very important from
a biological point of view; furthermore it could be relevant also for P systems
as an example of changing the hierarchy of CM, a change possibly useful for
considering some selfcontrolling P systems.

It has to be said that IM are not always connected to photosynthesis; in
Nitrosomonas, for exemple, the IM are related to the oxydation of nitrite, a
metabolic function by which this bacterium gains energy.

3 Processes Occurring at Biological Membranes

The processes occurring at biological membranes in bacteria (cell membrane,
external membrane, or intracellular vesicles) are essential for cell life and they
are also important not only to illustrate the impressive achievements in the
molecular biology of bacteria during the last few decades, but also as natural
examples for P system scientists of (types of) developmental rules which were
not (fully) exploited yet in P systems. In this section, we will briefly point out
some aspects related to the transport of chemicals across membranes as well as
to respiration and photosynthesis.

3.1 The Transport of Ions and Molecules Across Cell Membrane

The transport is one fundamental function of CM; when the transport is dras-
tically affected the composition of the cytoplasm changes dramatically and cell
death shortly afterwards occurs.

The study of transport processes across CM in bacteria (as well as in other
living cells) is under strong development, and the systems of classification as
well. For the sake of simplicity, in accord with the aim of this paper, the main
criteria for transport classification are presented (after Nicholls and Ferguson,
1992, simplified; for more information the reader is advised to consult Booth,
1988; Nicholls and Ferguson, 1992; Saier, 1999).

The transport can be passive or active (i.e., directly coupled to metabolism).

The transport is passive when either an ion or a molecule passes across the
membrane from the compartment of a higher concentration to that with a lower
concentration, the driving force of this movement being the concentration gra-
dient of that ion or molecule, and there is no metabolical energy used for this
transport. As an exemple of passive transport we mention the entry of sodium
ions into a cell when, e.g., the cyanobacterium Synechocystis PCC 6803 culti-
vated in a normal medium containing around 50mM sodium ions is passed to
a medium having 500mM sodium ions. Other substrates transported passively
across CM are water, molecular oxygen, and carbon dioxide.

The transport is active when either an ion or a molecule passes across the
membrane from the compartment of a lower concentration to that with a higher

Molecular Biology of Bacteria and Its Relevance for P Systems 5

concentration. There is the need for metabolical energy to accomplish this trans-
port. Following the above exemple, in order to maintain a (relatively) constant
composition of the cytoplasm with respect to sodium ion, the cell starts to trans-
port sodium ions ouside it, from the compartment with a lower concentration
(the cytoplasm) to the compartment with a higher concentration (the external
medium) by consuming metabolic energy. Active transport is widely used by
the cells because by this mechanisms the bacterial cells can maintain a rela-
tively constant chemical composition of the cytoplasm, very different from that
of the growing medium. It seems reasonable to consider that the active trans-
port is more interesting for the development of P systems because the evolution
rules are better illustrated by this type of transport than by passive transport.
However, the significance of passive transport for P systems still waits to be
confirmed.

When one deals with implementation of these modalities of transport in an
abiotic structure (in silico?), passive and active mechanisms seem to be needed,
as well. There is no living cell using only one type of transport, either active
or passive, but in terms of P systems it could be of interest to check if a P
system based totally either on passive transport or on active transport has any
theoretical significance.

The transport can involve a charge transfer across the membrane (electrical
transport) or not (electroneutral transport). Electrical transport is termed elec-
trogenic (“creating a potential”) when an electrically charged molecule or ion
crosses the membrane; the simplest exemple of electrical transport is that of an
ion (sodium, for example) across CM.

Electroneutral transport involves no net charge transfer across the mem-
brane The simplest exemple of electroneutral transport is that of an uncharged
molecule (glucose, for example) crossing the CM.

For electrical transport, it is calculated (Nicholls and Ferguson, 1992) that a
single turnover of all electron-transport components in an individual bacterium
will transport sufficient charge to establish a membrane potential approaching
200mV.

We believe that this aspect of transport is important for P systems, for
instance, because if it is electrical energy to drive the future implemented P
systems, as it seems reasonable to assume, then electrogenic versus electroneutral
transport processes must be carefully handled.

A further interesting situation is the following: the transport of one ion or
molecule across CM can be coupled. This means that it occurs only when another
ion is transported across CM together with the first ion. There are two possibil-
ities: i) both ions are transported in the same direction — this is called symport;
ii) one ion is transported inside the cell and the other ion is simultaneously
transported in the opposite direction, outside the cell — this is called antiport.
Both these systems of transport are used by bacteria; the symport of protons
with different substances nedeed for bacterial growth are very well documented
(Jung, 2001). For example, Escherichia coli uses the symport of protons with
either lactose, arabinose, or galactose. However, the proton is not the only type

6 Toan I. Ardelean

of ions used with symport systems; sodium ions are also used for the symport of
substances such as melobiose and proline.

In what concerns the antiport, a classical example is the proton/sodium
antiporter found in many bacteria. Its major function is to maintain a rather
constant concentration of either protons and sodium ions inside the cell (see
Padan et al., 2001).

For P systems, symport and antiport are nice examples of how bacterial
cells manage the developmental rules (Pdun, 2000, 2001) and are already useful
examples for the development of the theory (Paun et al., 2002; Paun and Paun,
2002; Martin-Vide et al., 2002; Frisco and Hoogeboom, 2002).

The P system s with symport/antiport received a special attention from P
system scientists. In the about 12 months since such systems were first considred,
several papers were published: Paun et al., 2001; Paun and Paun, 2002; Martin-
Vide et al., 2002, Paun, 2002, Frisco and Hoogeboom, 2002; Freund, 2002, etc.

This topic is still attractive, at least for the following reasons:

— Symport and uniport, as well as other ways of transport found in different
bacteria (Kelly and Thomas, 2001) could contribute to the further develop-
ment of P systems theory.

— In the case of P systems based on symport/antiport only it is of interest to
take more into account the biological realities of forbidding and permitting
contexts. Learning from cells how they manage the function of each antiport
system by using hierarchical control of cell functions, including the exam-
ples of forbidding and permitting contexts could help P system scientists
to further refine their theories, for instance, with respect to the speed of
calculations.

— The implementation of a P system can maybe make use of symport/antiport.

Strongly related to transport in bacteria there are the concepts of delta and
tau actions used in P systems. Delta corresponds to the increase of passage of
ions or molecules across the membrane, whereas tau corresponds to a decrease.
To illustrate these concepts with microbial realities we will shortly discuss the
mechanosensitive channels, a system (named kdp) for the transport of potassium
ions and of sodium-proton antiporter.

Bacteria are able to maintain a relatively constant turgor pressure (the pres-
sure exerted against the CM and cell wall) of about 15-20 atm in Gram-positive
and 0.9-5 atm in Gram-negative bacteria. In FEscherichia coli, for example,
there are channels, named mechanosensitive channels, because they are sensitive
against mechanical factors; they open during an osmotic downshock (the grow-
ing medium become suddently very diluted) (Levina et al., 1999) thus avoiding
the excessive increase in the turgor pressure. This opening is reversible, and once
the downshock gone, the channels close again.

One of the transport systems for potassium ions inside FEscherichia coli
(named the kdp system) is rapidly and irreversibly inhibited by moderate exter-
nal potassium concentrations (Roe et al., 2000), thus preventing the overloading
of cytoplasm with potassium ion.

Molecular Biology of Bacteria and Its Relevance for P Systems 7

Na®™ /HT antiporter is also involved in maintaining in E. coli the pH of the
cytoplasme around a value of about 7.5. When the external pH shifts from 7.2 to
8.3, the intracellular pH shortly increases to 8.3 and then the antiporter opens
and increases the passage of both ions (delta): the protons come inside the cell
and the sodium ions are extruded. The movement of both type of ions contributes
to the acidification of the cytoplasm that, indeed, reach its normal pH of about
7.5 (for more details about the hierarchical control, see below).

These examples — and (micro) biology is very rich in other examples — not only
prove the biological meaningfulness of delta and tau concepts from P systems,
but also open the opportunity to use the theory of P systems as an alternative
tool to study these biological events.

3.2 Respiration

Respiration is the biological process that allows the cells (from bacteria to hu-
mans) to obtain energy. In short, respiration promotes a flux of electrons from
electron donors to a final electron acceptor, which in most cases is molecular
oxygen. The ability of many bacteria to use molecular oxygen as final elec-
tron acceptor in their respiration is provided by the work of an enzyme named
citocrom ¢ oxidase, which catalyzes the following equation:

Oaip, + 4H +4H +4de, ;. = 2H,0 + 4HY,,.

The subscript “in” means “on the inner face of the membrane”, “out” indi-
cates the outer face of the membrane, while “within” simply means “within
membrane”.

Thus, during the last step of respiration shortly presented above water is
formed from molecular oxygen, protons (4H") and electrons(4 e~), and 4 protons
are simultaneously transferred across membrane from inside to outside the cell
contributing to energy conservation. Apart from its biological significance, the
function of citocrom ¢ ozidase could offer to P system scientists an example of
a new type of developmental rule, more complex that those already considered
in P systems. In a general formulation, this rule is:

Ain + an + Cwithin = Dzn + Bout~

Moreover, the coefficients before the symbols could be of help in establishing
of whether or not the function of citocrom c oxidase is an example of a biological
computation.

Furthermore, the process of respiration involves a few other steps before that
catalysed by citocrom c¢ ozidase, each of them being an example of a new type
of developmental rule not yet considered in P systems (Ardelean, manuscript in
preparation).

3.3 Photosynthesis

The overall process of photosynthesis as it occurs in cyanobacteria (as well as
in algae and plants) consists in using electrons from water to ultimately reduce

8 Toan I. Ardelean

carbon dioxide thus forming substances such as carbohydrates. This process
is essential for the life on Earth, being the main energy source for almost all
living cells, including humans, the only source of molecular oxygen needed for
respiration (and many oxygen-consuming related activities) as well as a huge
carbon dioxide-consuming process.

The first major event in photosynthesis is splitting of water (at the expense
of light energy, not presented for the sake of simplicity) to molecular oxygen,
protons and electrons, according to the following equation:

2H50;,, = QHZ:L + Og;,, + 46;“]_”-”.

Apart from its biological significance, the splitting of water could offer to P
system scientists an example of a new type of developmental rule more complex
that those already taken into account. In a general formulation, this rule is:

Ain = an + C’LTL + Dwithin'

Moreover, the process of photosynthesis includes a few other steps after the
spitting of water, some of them being examples of a new type of P systems
developmental rules (Ardelean, manuscript in preparation).

It is our belief that a more detailed presentation of respiration and photo-
synthsis, as well as of other biological processes not yet considered in P systems,
could help to further develop the membrane computing by paying more attention
to coefficients and energies related to processes such as those presented above;
the same seems to be true with the examples from (micro)biology of what in P
systems are called forbidding and permitting contexts (see below).

Considering the energetics of biological processes is very common in (mi-
cro)biology and it already started to receive some attention in the P systems
area (Paun et al., 2001; Freund, 2002; Frisco and Ji, 2002; Alford, 2002). For P
systems it would be interesting to pay more attention to the energetics of biolog-
ical processes as this could be both of theoretical interest and can also provide
hints on possible implementations of P systems. Related to energey there are the
coefficients usually found with biochemical ecuations; perhaps such coefficients
could be helpful in demonstrating that living cells really compute. Thus, we can
move the answer to this question from personal opinions/intuitions, to an ob-
jective demonstration, changing our language from metaphoric to scientific, and
moving from analogy — whatever important it is in stimulating creativity — to
objectiv proofs.

Furthermore, related to energy, there is the reality of forbiding and permitting
contexts, fluorishing in P systems. A wealth of examples of promoters/inhibitors
can be found in (micro)biology, thus giving more support to the biological back-
ground and soundness of P systems.

Considering only the splitting of water, the presence of forbidding and per-
mitting contexts are very illustrative. First, the splitting of water does not occur
in darkness — there is an absolute need of light; even in light there is the need
of other permitting conditions, such as:

Molecular Biology of Bacteria and Its Relevance for P Systems 9

— The presence of very complex biological machinery of photosynthesis, be-
cause the overall process of photosynthesis depends on the appropriate func-
tions of different molecules organised in macromolecular structures within
thylakoids.

— The availability of water in appropriate quantitites and concentrations (wa-
ter solutions with high osmotic pressure allways inhibit photosynthesis).

— The availability of carbon dioxide to be reduced by the electrons and protons
liberated during the splitting of water.

These permitting contexts allow both coarse and fine modulations of the
overall process of photosynthesis, and learing from nature how to modulate func-
tions, equations, and developmental rules would probably enhance the impact
of P systems not only in the field of natural computing, but also in biology and
in science in general.

There are also forbidding contexts such as the absence of specific or non
specific inhibitors of water splitting or photosynthesis as a whole.

The interplay between permitting and forbidding contexts in tunning the
activity of photosynthesis is a major trend in modern studies in photosynthesis
and could add new insights to P systems theory. These studies could help P
systems scientists to further refine the pioneering work on using P systems for
simulation of photosynthesis (Nishida, 2002).

4 Hierarchical Control in Bacteria

The control of biochemical reactions taking place in a bacterial cell is performed
at the following hierarchical levels: transcription, translation, and posttransla-
tional modification. Transcription is the synthesis of messenger ribonucleic acid
(mRNA) from a template of DNA, whereas translation is the synthesis of pro-
tein from an mRNA template. Posttranslational modification refers to covalent
alterations of proteins after their translation from mRNA.

4.1 Transcriptional Control

In bacteria the majority of the genes are found grouped together in operons. The
operon is a cluster of genes that encode proteins involved in the same metabolic
process. One of the best known operon — and the first whose structure has been
elucidated forty years ago by Jaques Monod, Francois Jacob and Andre Lwoff —
is the lac operon. The lac operon contains three structural genes, each gene cod-
ing for one type of enzyme involved in the capability of the bacterium E. coli to
use lactose as food: the lacZ, lacY, and lacA code for beta-galactosidase, galac-
tosidase permease, and a transacetylase, respectively. Apart from the structural
genes, the operon contains a control region that contains the promoter region
and the operator region. When the operator region is blocked by a protein named
repressor (coded by the repressor gene I situated outside the operon and NOT
belonging to the operon itself), the structural genes are inactive and their corre-
sponding proteins are not synthesised by the bacterium. This is the case where

10

Toan I. Ardelean

in the growing medium there is glucose (alone or together with lactose, for exam-
ple). After glucose depletion, the growth and multiplication of the cells ceased if
no other carbon source is present; when lactose is present (in the absence of glu-
cose), the repressor is no more acting as a repressor thus the information within
structural genes is used for the synthesis of the corresponding proteins. Thus, in
the presence of lactose, the cells become able to utilise this carbon source (for
more details, see Stulke and Hillen, 1999; Bruckner and Titgemeyer, 2002).

The operon model, a fundamental development in the evolution of micro-

biology and molecular biology, could have major relevance for P systems. The
arguments are as follows:

1.

2.

This model offers an example of forbidding and permitting contexts that are
widely discussed in P systems.

This model offers an example of hierarchical control in bacteria together
with the suggestion for the professionals of P systems to decide whether or
not such hierarchical control would be of any use in P systems, for example,
in improving the power of a P system, the efficiency, or the elegance of the
calculus.

. This model could argue that our knowledge on DNA, and in general on

molecular biology, could be useful not only for DNA computing but also for
P systems. More directly, we suggest that the very rich and rapidly advancing
field of molecular biology can “feed” not only H systems but P systems, as
well. Again, the P systems scientists must decide if this statement deserves
their attention.

Nowadays it is known that the control of transcription occurs by very diverse

mechanisms, acting at the level of either single operon or networks of operons.

Here are some details about the transcriptional regulation of individual oper-

ons:

1.

Control of transcriptional initiation can be done by one of the following

mechanisms:

(a) The promoter strength, indicating its ability to capture RNA polymerase
molecules and initiate transcription. This ability is significantly enhanced
by activators whose activity changes when small molecular weight ligands
bind to them. One of the best known activators is the cyclic AMP binding
protein that plays a role in positive regulation of the lac operon.

(b) The intervention of alternate sigma factors whose intracellular concen-
tration changes during major events, such as stresses (osmotic, ionic etc.)

(¢) The chemical modification of DNA in the promoter region has, in general,
a negative effect on transcription.

(d) The degree of supercoiling of DNA affects its activity.

(e) A repressor protein (encoded by a repressor gene, not belonging to the
operon itself) inactivates the transcription (see lac operon).

(f) Autogenous regulation concerns the regulation of genes that encode re-
pressor protein that is sometimes brought about by their own gene prod-
uct, the repressor they produce; the autogenous regulation thus provides
a mechanism by which a repressor can prevent its own overproduction.

Molecular Biology of Bacteria and Its Relevance for P Systems 11

2. Control of transcription termination occurs when, for example, a specific
protein (e.g., the factor Rho) blocks the activity of the RNA polymerase,
thus receiving the name of transcription termination factor.

The presentation of these processes by which the process of transcription is
controlled in bacteria aims to introduce the P systems scientists to the complex-
ity of regulatory processes occurring in living cells at the level of each cell and
opens the possibility to speculate about their significance for P systems.

The above processes show how the synthesis of mRNA is controlled both by
coarse mechanisms (through a repressor protein, see the lac operon, as the clas-
sical example) and by fine mechanisms that modulates the synthesis of mRNA
within a narrow value thus adjusting the concentration of mRNA to the needs
of the cell at that moment.

Some of the above processes are illustrative of what in P systems is called
forbidding and permitting conditions; furthermore, the fine mechanisms by which
mRNA synthesis is controlled could suggest the introduction of fine tuning with
respect to forbidding and permitting contexts also in P systems.

Introducing coarse (100% inhibition or 100% activity) forbidding and per-
mitting contexts in P systems is very fruitful for P systems. What about fine
forbidding and permitting contexts? How can they be captured in the P systems
formalism? Would they be of any use? Intuitively, the implementation of the
theory and the construction of a “P computer” may benefit from the possibility
to control the rules both at coarse and fine levels.

Furthermore, mainly in the last decade, it became more evident that the
response of a given bacterium to a change involves not only the activity of only
one operon, but also the activities of many operons organised in networks (see
van Bogelen et al., 1999; Thieffry and Thomas, 1998; Stormo and Tau, 2002;
Phelps et al., 2002; Jong, 2002).

These networks involve hierarchical regulatory systems such as regulons and
modulons. A regulon contains a few operons that are regulated by the same
specific repressor or activator, whereas a modulon comprises several regulons and
operons that are modulated by a common regulator; the control of this common
regulator is superimposed on the control at the level of each individual operon
or regulon. The common regulator responds to general conditions like nutrient
starvation (carbon, nitrogen, phosphate, etc.) and other stress conditions (cold
or heat shock, osmotic shift, oxidative stress) that demand major changes in the
metabolism.

The global regulators enable bacteria to respond in a rapid and co-ordinated
way to threats or opportunities presented by their environment (e.g., heat, cold,
presence or absence of essential nutrients, high or low pH) by reconfiguring their
biochemical machinery (McAdams and Arkin, 1998; Nougueira and Springer,
2000). The similarities between the logic of these genetic regulatory circuits
and electronic digital logic in computer chips (McAdams and Arkin, 1998) could
open the question about the capability of P systems theory to further improve the
understanding of these hierarchic regulatory networks by using its own concepts,
theorems etc.

12 Toan I. Ardelean

The control of transcription by global regulators, apart of being a popular
topic in contemporary microbiology could be instructive for P systems at least
in the following directions:

1. The suggestion to control the developmental rules of a P system not only at
the level of each individual/single rule but also at the level of sets or groups
of rules eventually related to a larger mathematical operation within the
process of calculation.

2. The suggestion to improve the response of a P system affected by a given
challenge by mimicking the way a living cell “warms up” different parts of
its capabilities when affected by an environmental challenge.

The above mechanisms are operating at different hierarchical levels within a
cell, but bacteria have developed abilities to control transcription by mechanisms
involving intercelullar communication through the excretion of defined chemicals.

These substances (N acyl-homoserine lactone and Peptide-pheromones in
case of Gram-negative and Gram-positive bacteria, respectively) accumulate in
the external medium and, when the concentration exceeds a threshold value,
they change the expression of some genes, by a mechanism known as quorum
sensing (Bassler, 1999). The quorum sensing participates in the self-regulation
of cell densities (McAdams and Arkin, 1998).

For P systems, self-regulation of cell density discovered in biology is an ex-
ample of how the function of a cell (P system) can be modulated by signals
(peptides in the case with bacteria) produced by other (similar) cells (P sys-
tems); these molecules change the behaviour of other cells and are real examples
of molecular switches. This example can lead to extensions of P systems, able to
control the developmental rules within a network of P systems (cells) (Ardelean,
2002). At the same time, the quorum sensing, an ongrowing topic in microbi-
ology (Bassler, 1999), argues for the importance of intercellular communication
for P systems.

Quorum sensing also plays a critical role in the formation of bacterial biofilms
where bacteria exhibit collective (multicellular) behaviour (Davies et al., 1998)
beneficial with respect to protection from the environment, nutrient availability
and metabolic co-operativity as well as acquisition of new genetic traits. In
biofilms, bacteria localised at different regions display specialised patterns of
gene expression and complex functional differentiation (Bassler, 1999).

This functional differentiation between cells could be suggestive of the func-
tional differentiation of individual P systems organised in a larger structure (P
network?) and/or for the operation in these differentiated P systems of different
evolution rules. It also suggests the possibility of self-assembly of individual P
systems, with or without differentiation within a larger structure.

4.2 Translational Regulation

The translational regulation of individual operon occurs mainly as a control of
RNA stability and of translation initiation. This type of regulation is illustrated

Molecular Biology of Bacteria and Its Relevance for P Systems 13

for flagellum (Aldridge and Huges, 2002). The control of cell processes at this
level could be interesting for P systems as an example of how a chemical object
can be “in the range of” a rule A when it remains as it is, or must obey a rule B,
when undergoes a minor change in its structure; these processes can occur either
in the same compartment or in two compartments separated by a membrane.

4.3 Posttranslational Control and Modification of Proteins

The control of enzymatic activity within enzymatic pathways and the given pool
of other metabolites is a very fast process (at the level of seconds), enabling the
cells to adjust their metabolic activity to unexpected changes in the growth
medium. The following are the main ways of control at this level:

1. Rewversible binding to an enzyme of a small size molecule called allosteric
effector, that changes the conformational state of the enzyme. It is assumed
that the allosteric enzymes exist in two conformational states, one in which
the active site of the enzyme has a high affinity for its substrate and another
state which the active site of the enzyme has a low affinity for its substrate.
Positive allosteric effectors increase enzymatic activity (by promoting the
high affinity conformation) while negative allosteric effectors decrease enzy-
matic activities (by promoting the low affinity conformation). It seems that
the property of allosteric enzymes to be either in a high activity conforma-
tion (when the positive allosteric effector is bound to the enzyme) or in a low
activity conformation (when the negative allosteric effector is bound to the
enzyme) can be an useful model for P systems: The object a follows the rule
A (active) when another object b (positive allosteric effector) binds to it, but
the object a follows rule I (inactive) only when another object ¢ (negative
allosteric effector) binds to it.

2. Covalent modification of an enzyme controls the enzyme activity by adding to
or removing from the protein certain chemicals groups such as a phosphate.
Is the reversible change of only one property of a given chemical object within
a P system useful for membrane computing?

3. Control of biosynthetic pathways by feedback inhibition, which means that
the end product of one metabolic pathway inhibits the first enzyme of that
pathway. Again the question is what will happen to a computation when
the first step of computation is affected, negatively or positively, by the last
step?

4. Control by the occurrence of isozymes that are proteins that catalyse exactly
the same chemical reaction.

5. The energy available within a cell greatly affects the enzymatic activities;
briefly, high levels of energy inhibit the energy producing reactions and stim-
ulate the energy consuming reactions.

6. Enzymatic degradation of proteins is another mechanism that is involved in
the regulation of enzymatic activity (by rather drastic methods).

Posttranslational regulation mechanisms govern responses in the range of
about 10~* — 102 seconds, while transcription and translation govern responses

14 Toan I. Ardelean

in the range of about 102—10® seconds (McAdams and Arkin, 1998) thus covering
a wide range of time scale.

The above presented hierarchical control in bacteria can be influenced by
mutations and (horizontal) exchange of mobile genetic elements, processes that
further stress on the importance of time, a factor that really deserves special
attention both in microbiology and P systems.

To illustrate the hierarchical control of a real process in bacteria, we choose
the antiporter system, because the transport of ions and molecules across the
cell membrane is a major topic of modern microbiology (see, e.g., Booth, 1988;
Jung, 2001; Kelly and Thomas, 2001; Nicholls and Ferguson, 1992; Padan et al.,
2001; Saier, 1999) and a nice example of communication between microbiology
and P systems (Paun et al., 2001; Piun and Paun, 2002; Martin Vide et al.,
2002; Ardelean, 2002, etc.).

Na™ /HT antiporters are membrane proteins that exchange Na™ (or Lit) for
H* (Padan et al., 2001) that are involved in the maintenance of a relatively
constant concentration (homeostasis) of these two ions inside the cell.

In E. coli cells which grow well in appropriate media having the pH between
6 and 8, the intracellular pH is kept in narrow limits (7.5-8.0). When growing
cells are shifted from an external pH 7.2 to 8.3, the cytoplasm pH rises imme-
diately to 8.3; however, within few minutes the cells restore the pH inside the
cell to approximately the initial value. The mechanism by which E. coli acidifies
its cytoplasm to maintain the pH value is not fully understood, but Na®™/HT
antiporters play a role in this process.

Two genes encoding Na®™ and Li™ specific antiporters were identified in E.
coli: nhaA and nhaB. The gene nhaA encodes a protein that is the main an-
tiporter which is required to withstand the upper limit concentration of Na¥t
for growth (0.9M, pH 7.0) and to tolerate the upper pH limit for growth in the
presence of Na™ (0.7M NaCl, pH 8.5). The gene nhaB encodes a protein that
acts as a housekeeper which becomes essential only in the absence of nhaA gene.

The experiments have shown that the increase in Nat and Li™ concentra-
tions are the environmental signals which turns on the nhaA gene; alkaline pH
potentiates the effect of these ions but neither increase of osmolarity nor of ionic
strength induces this gene. Further results showed that the intracellular Na™* con-
centration is actually the direct signal for the transcription of the nhaA gene.
These results demonstrate for the first time that E. coli has a unique regulatory
network responding specifically to Nat and Li* (Padan et al., 2001).

In the presence of Na*t, the protein nhaR (encoded by the nhaR gene) un-
dergoes a conformational change thereby inducing the transcription of the nhaA
gene and, consecutively, the synthesis of the nhaA antiporter.

The hierarchical control in the case of Na®™/H* antiporter in E. coli is il-
lustrated by the occurrence of three global regulators; one is the DNA-binding
protein named H-NS which controls the nhaR protein and two sigma factors.
One sigma factor activates promoter two (P2) and the other sigma factor ac-
tivates promoter 1 (PI). PI is the promoter for the nhaA gene in cells in the
exponential growth phase and its transcription is 10 times higher in Na™ induced

Molecular Biology of Bacteria and Its Relevance for P Systems 15

cells than in cells grown in the absence of Na™. P2 is the main promoter for the
nhaA gene in cells during stationary phase and is not induced by Nat.

Why P1 is the only promoter for the nhaA gene in cells which divide expo-

nentially and P2 the main promoter for cells during the stationary phase is still
an open question in microbiology.

In conclusion, we suggest that the following questions deserve a further at-

tention, believing that the advent of P systems is not only an exciting event in
the field of computer science, but also an opportunity to put new questions in
(micro)biology.

1.

Is a happy marriage possible between the type of mathematics used in P sys-
tems and that used so far in the modelling of metabolic pathways (reviews:
Bailey, 1998; Varner and Ramkhrishna ,1999; Szedlacsek, 2000; Stafford and
Stephanopoulos, 2001; Wolkenhauer, 2002) or in studying genome, transcrip-
tome, proteome, and metabolome (Spengler, 2000; Kampfner, 2002; Mari-
juan, 2002; Ouzounis, 2002; Gaasterland and Oprea, 2002; Goodman, 2002;
see also Conrad, 1972)7

Would P systems theories be beneficial for microbiology, and biology in gen-
eral, as a new mathematical tool to study the process of life?

Could the development of P systems enable the scientists to elaborate new
concepts in (micro)biology and a (nondescriptive) definition of life?

. Is the computational capacity a new aspect of the living cell? Our opinion

is that the cell computes as naturally as it performs chemical reactions; to
be more specific, these chemical reactions, as those shown to be involved
in respiration and photosynthesis, including their coefficients, could help to
find a scientific answer to this question.

Is the P systems paradigm the starting point for a new revolution in biology?

References

1.

2.

3.

P. Aldridge, K. Huges, Regulation of flagellar assembly, Curr. Opinion Microbiol.,
2 (2002), 160-165.

G. Alford, Membrane systems with heat control, Pre-proc. Workshop on Membrane
Computing, Curtea de Arges 2002 (G. Paun, C. Zandron, eds.), 7-15.

L.I. Ardelean, The relevance of cell membrane for P systems. General aspects,
Fundamenta Informaticae, 49, 1-3 (2002), 35-43.

J. Bailey, Mathematical modeling and analysis in biochemical engineering: past
accomplishments and future opportunities, Biotechnol. Prog., 14 (1998), 8-20.
B.L. Bassler, How bacteria talk each other: regulation of gene expression by quorum
sensing, Curr. Opinion Microbiol., 2 (1999), 582-587.

M.G. Boersema, 1.P. Solyanikova, W.J. Van Berkes, J. Vervoort, L.A. Golovleva,
I.M. Rietjens, 19F NMR metabolomics for the elucidation of microbial degradation
pathways of fluorophenols, J. Ind. Microbiol. Biotechnol., 26 (2001), 22-34.

L.LR. Booth, Bacterial transport: energetics and mechanisms, in Bacterial Energy
Transduction (C. Anthony, ed.), Academic Press, London, 1988, 377-428.

D. Bray, Protein molecules as computational elements in living cells, Nature, 376
(1995), 307-312.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Toan I. Ardelean

R. Bruckner, F. Titgemeyer, Carbon catabolite repression in bacteria: choice of the
carbonsource and autoregulatory limitation of sugar utilisation, FEMS Microbiol.
Lett., 209 (2002), 141-148.

F.J. Bruggeman, W.C. van Heeswijk, F.C. Boogerd, H.V. Westerhoff, Macromolec-
ular intelligence in microorganisms, Biol. Chem., 9-10 (2000), 965-972.

M. Conrad, Information processing in molecular systems, Curr. Modern. Biol., 5,
1(1972), 1-14.

D.G. Davies, M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton, E.P.
Greenberg, The involvement of cell to cell signals in the development of a bac-
terial biofilm, Science, 280 (1998), 295-299.

F. Devaux, P. Marc, C. Jacq, Transcriptomes, transcription activators and mi-
croarrays, FEBS Lett., 498 (2001), 140-144.

R. Freund, Energy-controlled P systems, Pre-proc. Workshop on Membrane Com-
puting, Curtea de Argeg 2002 (G. Paun, C. Zandron, eds.), 221-237.

R. Freund, M. Oswald, GP systems with forbidding context, Fundamenta Infor-
maticae, 49, 1-3 (2002), 81-102.

P. Frisco, H.J. Hoogeboom, Simulating counter automata by P systems with sym-
port/antiport, Pre-proc. Workshop on Membrane Computing, Curtea de Arges,
2002 (G. P&un, C. Zandron, eds.), 237-249.

P. Frisco, S. Ji, Towards a hierarchy of info-energy P systems, Pre-proc. Workshop
on Membrane Computing, Curtea de Arges, 2002 (G. P&un, C. Zandron, eds.),
265-283.

T. Gaasterland, M. Oprea, Whole-genome analysis: annotations and updates, Curr.
Opinion Str. Biology, 11 (2001), 377-381.

N. Goodman, Biological data becomes computer literate: new advances in bioin-
formatics, Curr. Opinion Biotechnol., 13 (2002), 68-71.

M.G. Gunnevijk, P.T. van den Bogaard, L.M. Venhoff, E.H. Heuberger, W.M.
de Vos, M. Kleerbezem, O.P. Kuipers, B. Poolman, Hierarchical control versus au-
toregulation of carbohydrate utilisation in bacteria, J. Mol. Microbiol. Biotechnol.,
3 (2001), 401-413.

L.H. Hartwell, J.L. Hopfield, S. Leibler, A.W. Murray, From molecular to modular
cell biology, Nature, 402 (1999), C47-C52.

K.R. Hess, W. Zhang, K.A. Baggerly, D.N. Stivers, K.R. Coombes, W. Zhang, Mi-
croarrays: handling the deluge of data and extracting reliable information, Trends
Biotechnol., 19 (2001), 463-468.

P. James, On genoms and proteoms, Biochem. Biophys. Res. Commun., 231, 1
(1997), 1-6.

H. Jong, Modeling and simulation of genetic regulatory systems: a literature review,
J. Comput. Biol., 9, 1 (2002), 67-103.

H. Jung, Towards the molecular mechanism of Na/solute symport in prokaryotes,
Biochem. Biophys. Acta, 1505 (2001), 131-143.

R.R. Kampfner, Digital and biological computing in organizations, BioSystems, 64
(2002), 179-188.

D.J. Kelly. G.H. Thomas, The tripartite ATP-independent periplasmic (TRAP)
transporters of bacteria and archaea, FEMS Microbiol. Rev., 25 (2001), 404—-424.
N. Levina, S. Totemeyer, N.R. Stokes, P. Louis, M.A. Jones, I.B. Booth, Protection
of Escherichia coli cells against extreme turgor by activation of MscS and MscL
mechanosensitive channels: identification of genes required for MscS activity, The
EMBO J., 18 (1999), 1730-1737.

P.C. Marijuan, Bioinformation: untangling the networks of life, BioSystems, 64
(2002), 111-118.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

Molecular Biology of Bacteria and Its Relevance for P Systems 17

C. Martin-Vide, A. Paun, G. Paun, G. Rozenberg, Membrane systems with coupled
transport: universality and normal forms, Fundamenta Informaticae, 49, 1-3 (2002),
1-15.

H. McAdams, A. Arkin, Simulation of prokaryotic genetic circuits, Annu. Rev.
Biophys. Biomol. Struct., 27 (1998), 199-224.

F. Meng, B.J. Cargile, L.M. Miller, A.J. Forbes, J.R. Johnson, N.L Kelleher, Infor-
matics and multiplexing of intact protein identification in bacteria and the archaea,
Nat. Biotechnol., 19 (2001), 952-957.

D.G. Nicholls, S.J. Ferguson, Bioenergetics, 2nd ed., Academic Press, London,
1992.

T.Y. Nishida, Simulation of photosynthesis by a K-subset transforming systems
with membranes, Fundamenta Informaticae, 49, 1-3 (2002), 249-2509.

T. Nougueira, M. Springer, Post-transcriptional control by global regulators of
gene expression in bacteria, Curr. Opinion Microbiol., 3 (2000), 154-158.

C. Ouzounis, Bioinformatics and the theoretical foundations of molecular biology,
Bioinformatics, 18, 3 (2002), 377-378.

E. Padan, M. Venturi, Y. Gercham, N. Dover, Na/H antiporters, Biochem. Biophys.
Acta, 1505 (2001), 144-157.

A. Pdun, Membrane systems with symport/antiport: universality results, Pre-proc.
Workshop on Membrane Computing, Curtea de Arges, 2002 (G. Paun, C. Zandron,
eds.), 333-345.

A. Paun, G. Paun, The power of communication: P systems with symport/antiport,
New Generation Computing, 20, 3 (2002), 295-306.

A. Paun, G. Paun, A. Rodriguez-Paton, Further remarks on P systems with sym-
port rules, Annals of Univ. Al.I. Cuza, lassy, Series Mathematics-Informatics, 10
(2001), 3-18.

G. Paun, P systems with active membranes: Attacking NP-complete problems, J.
Automata, Languages, and Combinatorics, 6, 1 (2001), 75-90.

G. Paun, From cells to computers: computing with membranes (P systems),
BioSystems, 59 (2001), 139-158.

G. Paun, Membrane computing. An Introduction, Springer, Berlin, 2002.

G. Paun, Y. Suzuki, H. Tanaka, P systems with energy accounting, Int. J. Com-
puter Math., 78, 3 (2001), 343-364.

T.J. Phelps, A.V. Palumbo, A.S. Beliaev, Metabolomics and microarrays for im-
proved understanding of phenotypic characteristics controlled by both genomics
and environmental constraints, Curr. Opinion Biotechnol., 13 (2002), 20-24.
L.M. Raamsdonk, B. Teusink, D. Broadhurst, N. Zhang, A. Hayes, M.C. Walsh,
J.A. Berden, K.M. Brindle, D.B. Kell, J.J. Rowland, H.V. Westerhoff, K. van Dam,
S.G. Oliver, A functional genomics strategy that uses metabolome data to reveal
the phenotype of silent mutations, Nat. Biotechnol., 19 (2001), 45-50.

A.J. Roe, D. Mc Laggan, C.P. O’Bryne, I.R. Booth, Rapid inactivation of the
Escherichia coli Kdp K uptake system by high potassium concentration, Mol. Mi-
crobiol., 35 (2000), 1235-1243.

M.H. Saier, Genome archeology leading to the characterization and classification
of transport proteins, Curr. Opinion Microbiol., 2 (1999), 555-561.

S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell mem-
branes, Science, 175 (1972), 720-731.

S.J. Singer, The molecular organization of membranes, Ann. Rev. Biochem., 43
(1974), 805-835.

S.J. Spengler, Bioinformatics in the information age, Science, 287 (2000), 1221—
1223.

18

52.

53.

54.

55.

56.

57.

58.

59.

60.

Toan I. Ardelean

D.E. Stafford, G. Stephanopoulos, Metabolic engineering as an integrating platform
for strain development, Curr. Opinion Microb., 4 (2001), 336—240.

G.D. Stormo, K. Tan, Mining genome data base to identify and understand new
gene regulatory systems, Curr. Opinion Microb., 5 (2002), 149-153.

J. Stulke, W. Hillen, Carbon catabolite repression in bacteria, Curr. Opinion Mi-
crob., 2 (1999), 195-201.

S.E. Szedlacsek, Time dependent or steady-state control of metabolic systems,
in Tehcnological and Medical Implications of Metabolic Control Analysis (A.J.
Cornish-Bowden, M.L. Cardenal, eds.), Kluwer Academic Publishers, 2000, 251
258.

D. Thieffry, R. Thomas, Quantitative analysis of gene networks, Pac. Symp. Bio-
computing, 1998, 77-88.

J. Varner, D. Ramkrishna, Mathematical models of metabolic pathways, Curr.
Opinion Biotechnol., 10 (1999), 146-150.

M.P. Washburn, J.R. Yates, Analysis of the microbial proteome, Curr. Opinion
Microbiol., 3 (2000), 292-297.

R.A. van Bogelen, K.D. Greis, R.M. Blumenthal, T. Tani, R.G. Matthews, Map-
ping regulatory networks in microbial cells, Trend. Microbiol., 7, 8 (1999), 320-328.
O. Wolkenhauer, Mathematical modelling in the post-genome era: understanding
genome expression and regulation: a system theoretic approach, BioSystems, 65
(2002), 1-18.

A Software Simulation of Transition P Systems
in Haskell*

Fernando Arroyo!, Carmen Luengo', Angel V. Baranda?, and Luis de Mingo?®

! Dept. Lenguajes, Proyectos y Sistemas Informéticos
Escuela de Informaética, Universidad Politécnica de Madrid
Crta. de Valencia km. 7, 28031 Madrid, Spain
{farroyo,cluengo}@eui.upn.es
http://www.lpsi.eui.upm.es
2 Dept. Inteligencia Artificial
Facultad de Informética, Universidad Politécnica de Madrid
Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
http://wuw.dia.fi.upm.es
3 Dept. Organizacién y Estructura de la Informacién
Escuela Universitaria de Informaética, Universidad Politécnica de Madrid
Crta. de Valencia Km. 7, 28031 Madrid, Spain
1fmingo@eui.upm.es
http://www.oei.eui.upm.es

Abstract. P systems are a parallel and distributed computational mo-
del, based on the membrane structure notion. Membranes define regions.
Inside regions, objects and rules are placed in order to make evolve the
P system. Evolution is achieved by transitions between two consecutive
system configurations. Therefore, a computation can be obtained as a
transitions series between consecutive configurations. Where and how P
systems can be implemented is nowadays an open problem, but imple-
mentation on digital computers could be one way to show the capabilities
of such systems. This paper presents a transition P systems implementa-
tion in Haskell, based on a theoretical framework previously developed.

1 Introduction

Transition P systems were introduced by G. Paun [5]. They are the simplest vari-
ant of P systems, however, they have the essential components of many variants
of P systems. In fact, in any variant of P systems two basic components can be
found: the static structure and the dynamic structure. The static structure con-
sists of the membrane structure and the multisets or strings associated with each
region defined by the membrane structure, while the dynamic structure consists
of the rules associated with the regions defined by the membrane structure of
the P system. These rules are responsible for the P system evolution, making
changes in the static structure, changing the multisets of strings associated with

* Work partially supported by contribution of EU commission under The Fifth Frame-
work Programme, project “MolCoNet” IST-2001-32008.

G. P&un et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 19-32, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

20 Fernando Arroyo et al.

each region, or even changing the membrane structure. Rules can be defined in
many different ways, depending on the variant of P system considered.

One of the main goals of the implementation described here is to keep close
enough the software to the philosophy of membrane computing. We try to achieve
this, keeping in the different software modules the fundamental functionality of
the corresponding ingredients of P systems. Therefore, any item (multiset, rule,
region, membrane, etc) has its corresponding module in the developed software.
Moreover, the functionality that the module provides to the software system is
what it is expected from it. The static and dynamic structures of P systems have
also their corresponding projection on the software.

The following sections are devoted to explain the software architecture in
connection with a previous theoretical work of formalization corresponding to
transition P systems. The formalization work has been essential in order to
analyze and design the software architecture.

2 System Architecture Description

The current implementation of transition P system has been written in Haskell.
The language has been chosen in order to keep as close as possible the imple-
mentation to a previously developed theoretical work, see [4],[3],[1] and [2]. Here
we describe the software architecture of the implementation, giving a short de-
scription of the main software modules (implementing Abstract Data Types)
and their functional dependencies.

2.1 Abstract Data Type Multiset

This module, ADTMultiset, implement the multiset concept. The module pro-
vides the Haskell type Multiset defined as follows:

— data Multiset a = CMultiset [(a, Int)]

From the above data definition in Haskell, multisets have been defined as
lists of tuples with two elements: the first one is a char and the second one is
the number of copies of the first element in the multiset.

This module also provides the most commonly used function in transition P
system over multisets. The following list shows the type of such functions in
Haskell:

— Empty multiset:
isEmptyMS :: Multiset a — Bool
— Multiset Union
(:Jl:++:]l.) :: Eq a => Multiset a — Multiset a — Multiset a
Multiset Intersection
(-]I:\/:]]-) :: Eq a => Multiset a — Multiset a — Multiset a
Multiset Difference
C-I:\\:]l.) :: Eq a => Multiset a — Multiset a — Multiset a

A Software Simulation of Transition P Systems in Haskell 21

— Multiset Size
SizeMS :: Multiset a — Int
— Support Multiset
supportMS :: Multiset a — [a]

For a formal definition of these functions over Multisets we refer to [4]. The
module implements a set of auxiliary functions that complements the Abstract
Data Type, and the input/output functions for Multiset.

2.2 Abstract Data Type Relationship

This module, ADTRelationship, implements in Haskell a general binary relation-
ship defined over rules. It is used for implementing the priority relation, which is
used by the evolution rule module. The module provides all the needed function-
ality for handling any partial order relation defined over a given arbitrary finite
set, including the finding of the maximal and minimal set over the relation, and
its transitive closure.

The module defines the Haskell data type Relationship as follows:

— data Relationship a b = CRelationship [(a, b)]

In this case, the type Relationship has been defined as a list of tuples with
two elements. The relation has been considered as a subset of a general Cartesian
product of two arbitrary sets.

The Haskell type of the most relevant functions from the ADTRelationship
module are the following:

— belonging: (..]:=>.]..)
(..]:=>.]..) = (Eq a, Eq b) => Relationship a b — (a, b) — Bool

— imageR

imageR :: (Eq a, Eq b) => Relationship a b — [b]
— maximalR

maximalR :: Eq a => Relationship a a — [a] — [a]
— minimalR

minimalR :: Eq a => Relationship a a — [a] — [a]
— transitiveClosureR

transitiveClosureR :: Eq a => Relationship a a — Relationship a a

2.3 Abstract Data Type Multirelationship

During the software development, some very interesting similarities between Re-
lationship and the consequent of one evolution rule were found. These similarities
were responsible for the inclusion of the ADTMultirelationship module into the
software. It can be said that a relationship is to a set what a multirelationship
is to a multiset. If one looks carefully to ADTRelationship and ADTMultirela-
tionship modules, one can see that all the implemented functions on the first
one can be implemented on the second one.

22 Fernando Arroyo et al.

This module defines the Haskell data type Multirelationship as follows:
— data Multirelationship a b = CMultirelationship [((a, b), Int)]
The module imports two of the modules defined above:

— import ADTMultiset
— import ADTRelationship

These import clauses determine the functional dependency of the module on
the previously defined modules.

The Haskell type of the most relevant functions defined in this module ac-
cording to the software implementation are:

— Support

supportMR :: (Eq a, Eq b) => Multirelationship a b — Relationship a b
— Origin From

originFromMR :: (Eq a, Eq b) => b — Multirelationship a b — Multiset a
— Multirelationship Union

(..[|-++:]]..) == (Eq a, Eq b) => Multirelationship a b —

Multirelationship a b — Multirelationship a b

2.4 Abstract Data Type Rule

This module implements evolution rules in transition P systems. The function-
ality of the module is based on a previous theoretical work, see [4], [3], [1] and

[2].
The ADTRule module defines the data type Rule as follow:

— data Rule = CRule Int (Multiset Char) (Multirelationship Char Int) Bool

A rule is a tuple with four elements; the first one is a label for the rule, the
second one is the antecedent, the third one is the consequent and the fourth one
is the dissolution capability of the rule.

The module import the following previously defined modules:

— import ADTRelationship
— import ADTMultiset
— import ADTMultirelationship

These import clauses determine the functional dependency of the module on
the previously defined modules ADTRelationship, ADTMultiset and ADTMul-
tirelationship.

The most relevant functions defined in this module are the following:

— LabelRule
LabelRule :: Rule — Int
— inputRule
inputRule :: Rule — Multiset Char

A Software Simulation of Transition P Systems in Haskell 23

— outputRule

outputRule :: Rule — Multirelationship Char Int
— dissolvesRule

dissolvesRule :: Rule — Bool
— outputToRule

outputToRule :: Int — Rule — Multiset Char
— isUssefulRule

isUssefulRule :: [Int] — Rule — Bool
— isApplicableRule

isApplicableRule :: Multiset Char — Rule — Bool
— isMinorRuleln

isMinorRuleIn :: Relationship Int Int — (Rule, Rule) — Bool
— addRule

addRule :: Rule — Rule — Rule

2.5 Abstract Data Type Region

From the computational point of view, the regions are considered as bags where
multisets, rules, and a priority relation among rules are placed.
The Haskell module ADTRegion defines the data type Region as follows:

— data Region = CRegion (Multiset Char) [Rule] (Relationship Int Int)

Hence, a region is defined as a tuple with three elements, the first one is an
object multiset, the second one is a set of evolution rules and the third one is a
priority relation defined among rules. The priority relation could be the empty
relation.

The functional dependencies of this module with others ones are expressed
by the following import clauses:

— import ADTMultiset
— import ADTRelationship
— import ADTRule

The Haskell data type of most important functions of the module are:

contentRegion :: Region — Multiset Char
rulesRegion :: Region — [Rule]

— prioritiesRegion :: Region — Relationship Int Int

— reactionRegion :: StdGen — [Int] — Region — Rule

As it can be seen from the list of functions defined above, the module provides
functions in order to obtain all the elements of the tuple: object multiset, set of
rules and priority relation. Region module is responsible for computing one rule
able to make evolve the region in one step. This functionality is implemented in
the reaction function.

The reaction function computes in a random way a complete linear combi-
nation of evolution rules. This means that no other applicable evolution rule
can be included in the linear combination. For more information about complete
multisets of evolution rules and their corresponding linear combinations we refer
to [1].

24 Fernando Arroyo et al.

2.6 Abstract Data Types Innermembrane and Externmembrane

These two modules, are quite similar. In fact, they have the same number of
functions and the same functionality. However, there is one important differ-
ence between them. The external membrane cannot be dissolved, while inner
membranes can be dissolved. This fact is very important when one wants to im-
plement evolution in transition P systems. Inner membranes can evolve in two
ways: dissolving or not dissolving the membrane; the external membrane evolves
in one way, the dissolution is not allowed. This is the reason why two differ-
ent modules have been implemented in the software. For a more comprehensive
explanation of evolution in transition P systems, we refer to [1].

The Haskell modules ADTInnermembrane and ADTExternalmembrane im-
plement the data type Innermembrane and Externalmembrane respectively. The
data type definitions in both modules are:

— data Innermembrane = CInnermembrane Int Region [Innermemb.]
— data Externalmembrane = CExternalmembrane Int Region [Innermemb.]

The data type definitions are very close because there is only one external
membrane in P systems, the “skin”, and all the other membranes are inner to
it.

Membranes are defined as tuples with three elements: the first one is the
label associated to the membrane, the second one is the region associated to the
membrane (the bag) and the third one is the set of inner membranes. This set
of inner membranes can be the empty set and then, the membrane is said to be
elementary.

The functional dependencies of these modules are defined by the following
import clauses:

— ADTExternalmembrane
e import ADTMultiset
e import ADTRelationship
e import ADTInnermembrane
e import DATRegion
e import ADTRule

— ADTInnermembrane
e import ADTMultiset
e import ADTRelationship
e import DATRegion
e import ADTRule

The functionality of these modules are the following:

— ADTExternalmembrane
e labelEM :: Externalmembrane — Int
e regionEM :: Externalmembrane — Region
e innerMembranesEM :: Externalmembrane — [Innermembrane]

A Software Simulation of Transition P Systems in Haskell 25

contetEM :: Externalmembrane — Multiset Char

rulesEM :: Externalmembrane — [Rule]

prioritiesEM :: Externalmembrane — Relationship Int Int
innerLabelsEM :: Externalmembrane — [Int)

reactionEM :: StdGen — Externalmembrane — Rule
evolutionEM :: StdGen — Multiset Char — Externalmembrane —
([Innermembrane], Multiset Char)

— ADTInnermembrane

e labellM :: Innermembrane — Int
regionIM :: Innermembrane — Region
innerMembranesIM :: Innermembrane — [Innermembrane]
contetIM :: Innermembrane — Multiset Char
rulesIM :: Innermembrane — [Rule]
prioritiesIM :: Innermembrane — Relationship Int Int
innerLabelsIM :: Innermembrane — [Int]
reactionIM :: StdGen — Innermembrane — Rule
evolutionIM :: StdGen — Multiset Char — Innermembrane —
([Innermembrane], Multiset Char)

Probably, the most important functions in both modules are those related to
evolution in membranes, and hence in P systems evolution. Functions involved
in evolution are named in two ways: reaction and evolution.

A reaction function obtains from the associated region one evolution rule
able to make evolve the membrane in one step. Once the complete linear com-
bination of evolution rules has been obtained, the evolution is produced inside
the membrane.

2.7 Abstract Data Type PSystem

This Haskell module implements a transition P system. Basically, it provides
the abstract data type PSystem as one output object multiset and one external
membrane. The output object multiset will be the external output of the P
system, if there is any.

The module defines the data type Psystem as follows:

— data PSystem = CPSystem (Multiset Char) Externalmembrane

The functional dependencies are given by the following import clauses:

— import ADTMultiset
— import ADTExternalmembrane

The most important function on this module is:

— evolutionPS :: StdGen — PSystem — PSystem

26 Fernando Arroyo et al.

This function make evolve the transition P system from one initial configura-
tion to the next one applying evolution to the external membrane. The evolution
is obtained by a random generation of one complete multiset of evolution rules.
Moreover, evolution only gives one evolution step. Hence, it will be necessary to
apply several times the function in order to get a successful computation.

Figure 1 shows the functional dependencies among the main software modules
described until now.

ADTMultirelationship

ADTPsystem

Fig. 1. Functional Dependencies Among Main Software Modules

2.8 The Main Module

This Haskell module implements the external function that makes possible to
launch the program execution. The module imports the following modules:

— import DATPSystem
— import DATMultiset
— import DATExternalMembrane

The functionality of this module is to make evolve several times the transition
P system in order to get a successful computation. The input to this function
is a text file on which the initial configuration of the P system is described (see
Section 3.1 of this paper). The output produced by the program is a new text
file in which the new configuration is stored. This output file must be used as
a new input to the program in order to get one more evolution step of the P
system.

A Software Simulation of Transition P Systems in Haskell 27

3 An Example of Use

This section will describe an example of use of the transition P systems software
simulator. In order to check the code execution of our software we have taken
from [5] the first example of Section 6. It will be recalled below for illustrating
the input file definition for our program.

Consider the P system of degree 4

= (V,p,wi,...,wa, (R1,p1), -y (Ra, pa), 4)
V ={a,b,c,d, e}
w = [1[2[3]3[ala]2]1
w1 =\ Ry =@,P1 =0
wo=MNRy={ri:a—bry:b—b(cing),rs:d> — de,ry:d— ed},
p2 = {ra <rs}
wyg ={de},Rz3 ={ry:d —d*ry:e—ea,r3:e—ad},p3 =10
wi=MNRy=0,ps=10 (1)

As shown in [5], the set of numbers generated by IT is:
N(T) = {m? | m>1}. (2)

First of all, the initial configuration (1) must be translated to an input file
for the software simulator. The explanation of how this translation is done is
given in the next subsection.

3.1 Structure of the Input File

This section shows the input file containing the initial configuration of the P
system II described above. Moreover, it explains the way to make the translation
from the formal definition of the P system to an input file. The corresponding
input file for IT will be given below.

The first line of the input file is the object multiset that the P system outputs
after each evolution step. The second line is just the beginning of the ”skin”
membrane and, hence, the beginning of the membrane structure of the P system.
All others membranes are included in it, as it was described in the Haskell
modules ADTExternalmembrane and ADTInnermembrane.

The membrane structure is defined as usual in P systems. Between two square
brackets [,. .. |n, we will place all the membrane elements in the following order:

. objects multiset

. set of evolution rules

. priority relation among rules

. set of membranes inner to the membrane we are defining with all theirs
elements (e.g., 1, 2, 3, 4).

=N

The following subsections will describe the different elements of the input
file.

28 Fernando Arroyo et al.

Example of an Input File. This subsection shows the input file for the P
system II previously considered. The file is shown without any comments in
order to appreciate the whole structure of it.

{3
[1
{
{3
{3
[2
{3
{r1: {Ca, D} —> {(CDb’, 0), DI},
r2: {Cb, 1)} —> {(Cb’, O, 1), (Cc’, 4), 1},
r3:{Ca, 2 ———> {(Ca’, 0), 1, (Ce’, 0), DI},
rd:{Cda, DY —-<> {(Ce’, 0), I}
{4, 3)}
[3

{Ce’, 1), CCa’, 1), (Cda’, 2)}

{r1:{Ca, D} —> {(Ca’, 0, 23,
r2:{Ce, D} -——> {(Ce’, 0), 1), (Ca’, 0), DI},
r3:{Ce, D} -—-<> {(Ca’, 0), 1}

{3

13
[4

{3

{3

{3

14
12
11

Now, some comments have been added to the file, marked with (* *), to
explain some details.

{} (#Output multiset from the P systemx)
[1 (#Beginning of the
"skin" membrane*)
{} (*Multiset on the ‘‘skin" membranex)
{} (xSet of rules associated to the ‘‘skin" membranex)
{ (*Priority relationship among rules on
the ‘‘skin" membranex)
[2 (*Beginning of the inner membrane 2%)
{3} (xMultiset of the membrane 2%*)
{(x#Set of rules associated to membrane 2x)
ri:{Ca, D} -—> {(Cb’, 0), 1},
r2:{Cb, 1D} —> {(Cpv’, OO, 1), (Cc’, 4), 1},
r3: {Ca, 2} —> {(Ca’, 0), 1, (Ce’, 0), DI},

A Software Simulation of Transition P Systems in Haskell 29

(*The rule r 4 dissolves the membrane if it is appliedx)

r4:{Cd, D} - {(Ce’, 0), DI}

(*Priority relationship among rules on the membrane 2%*)

{4, 3)}

[3 (*¥Beginning of the inner membrane 3%)
(*Multiset of the membrane 3%)
{Ce’, 1), Ca’, 1), (Cd’, 2)}
{(#Set of rules associated to the inner membrane 3%)
ri:{Cd, D} --—> {(Cd’, 0, 2)},
r2: {Ce, D} —> {(Ce’, 0), 1, (Ca’, 00, DI,
(*The rule r 3 dissolves the membrane if it is appliedx)
r3: {Ce, D} - {(Ca’, 00, D}}
(*Priority relationship among rules on the membrane 3%)
{3

] 3 (#End of the inner membrane 3%)

[4 (#Beginning of the inner membrane 4%*)
{} (Multiset of the inner membrane 4%)
{} (xSet of rules associated to the membrane 4%*)
(*Priority relationship among rules on the membrane 4%)
{3

] 4 (#End of the inner membrane 4x)

] 2 (#End of the inner membrane 2%)
] 1 (*End of the skin membrane. End of P system *)

How it can be appreciated from the input file structure, translation from the
classical formal definition of a transition P system to the file is not very difficult.
We only need to rearrange the data into the file in order to have the input to
the program.

Now, we will explain the way to define the different components of membranes
in the input file.

Multiset of Objects. A multiset of objects is described in the input file as a
set of tuples with two elements, the first one is an element from the alphabet
and the second one is the multiplicity of the object in the multiset. For instance,
the object multiset a2bd is described on the input file as the set:

{Ca’, 2), Cb’, 1, Cd’, 1}

Rules Description. In transition P systems, the rules have three components:
the antecedent, the consequent and the dissolving capability.

Now we will describe step by step all these elements in order to correctly
define rules in the input file.

First of all, in order to implement the priority relation among rules, all the
rules of the membrane must be labelled. The label starts with a character fol-
lowed by a blank, a different number for each rule in the membrane, a blank and

30 Fernando Arroyo et al.

the character . In fact, we only used the number associated to each rule for
defining the priority relation.

The antecedent is a multiset of objects as described above.

The consequent has been considered here as a multirelationship, therefore, it
has a special description in the input file. Basically, the consequent is described
as a tuple with two elements, the first one is a tuple containing the object and
the targeting address, where the rule is sending the object; the second one is the
number of copies of the object that the rule is sending to the target membrane.

Targeting is here described by numbers:

— -1 the copies of the object are sent outside of the membrane.
— 0 the copies of the object are preserved in the membrane
— n the copies of the object are sent to the membrane with label n.

Finally, the dissolving capability of the rule is included in the symbol repre-
senting the arrow of the rule.

The following example will clarify the way of defining rules in the input file.

Consider the following two rules:

r1:b— bc,ing) (3)

ro:d— ed (4)

The rule (3) will not dissolve the membrane, while the rule (4) will do. Their
representation in the input file are the following:

ri:{Cb, D} > {(Cb’, 0, 1, (Cc’, 4, D}
r2: {Cd, D} =< {(Ce’, 0, D}

Note the symbol representing the arrow in rule r 2. This symbol represents
the dissolution capability that the rule has.

We must also note that rules are included in regions arranged in sets. There-
fore, if the membrane contains the two rules described above, the set of rules
are included between { } separated by commas, hence, the representation in the
input file will be:

{r 1 {(’b,) 1)} -—=> {((,b’5 0), 1), ((,C” 4)’ 1)}’
r2: {Cd, D} =< {(Ce’, 00, D}}

Priority Relation Description. The last element included in a membrane,
before the set of its inner membranes, is the priority relation among rules. This
relation is described in the input file as a set of tuples with two natural numbers.
Each number in the tuple is the number associated to the label of a rule from the
membrane. The first element of the tuple has a lower priority than the second
one.

The Haskell module ADTRelationship calculates the transitive closure for the
set described in the input file. Therefore, we only need to express the priorities
among rules as it is usual in transition P systems.

A Software Simulation of Transition P Systems in Haskell 31

If we consider now the following priority relation among rules (3) and (4)
{r 1 > r 2}, the input file will contain the set:

{2, D}

Inner Membranes Description. Membranes inner to a given membrane must
be placed inside it. The definition of inner membranes follow the same principles
explained until now.

3.2 Running the Program

This section is related to software execution. The software has been written in
Haskell, a functional language, and the chosen interpreter has been Hugs98 for
Microsoft Windows. The interpreter for other operating systems can be found
at: http://cvs.haskell.org/Hugs/pages/downloading.htm. The source code
can also be downloaded from http://psystems.disco.unimib.it, the P sys-
tems web page.

Once we have installed the Hugs98 interpreter, we must follow the steps:

. Start the Hugs98 interpreter.

. Open the “Principal” Haskell module

. Type "main” + <return> (this will launch the program).

. The program will ask for a file (containing the transition P system). Type
the name of input file and return.

. Then it will ask for an output file; type the appropriate name for the output.

6. The program will make evolve only one evolution step and stops. One can

make evolve again the transition P system another evolution step going to

the step #3 and typing the output file of the #5 as the new input file for

the next iteration.

> W N

ot

4 Conclusions

This paper shows how a software simulation of transition P systems can be
implemented with some constrains, mainly those due to their inherent parallelism
and non-determinism. The presented implementation is very close to the general
theory of transition P systems, and it does not present many difficulties in order
to translate transition P systems to an input file in order to start the software
execution.

The P system can be easily modified in the input file. The software gives an
additional facility to the user in order to change the static and dynamic structure
of the P system and drive the execution of the computational device in the right
way.

We believe that simulations of P systems on digital computers is a good
alternative to the in vitro implementation as long as we have no other support
(for instance, special hardware devices for executing P systems) where P systems
can be executed.

32

Fernando Arroyo et al.

References

1.

F. Arroyo, A.V. Baranda, J. Castellanos, C. Luengo, L.F. Mingo, A Recursive Algo-
rithm for Describing Evolution in Transition P Systems, Pre-Proceedings of Work-
shop on Membrane Computing, Curtea de Arges, Romania, August 2001, Technical
Report 17/01 of Research Group on Mathematical Linguistics, Rovira i Virgili Uni-
versity, Tarragona, Spain, 2001, 19-30.

F. Arroyo, A.V. Baranda, J. Castellanos, C. Luengo, L.F. Mingo, Structures and
Bio-Language to Simulate Transition P Systems on Digital Computers, in Multiset
Processing. Mathematical, Computer Science, and Molecular Computing Points of
View (C.S. Calude, Gh. Paun, G. Rozenberg, A. Salomaa, eds.), Lecture Notes in
Computer Science 2235, Springer-Verlag, 2001, 1-16.

A.V. Baranda, J. Castellanos, F. Arroyo, R. Gonzalo, Towards an Electronic Im-
plementation of Membrane Computing: A Formal Description of Nondeterministic
Evolution in Transition P Systems, Proc. 7th Intern. Meeting on DNA Based Com-
puters (N. Jonoska, N.C. Seeman, eds.), Tampa, Florida, USA, 2001, 273-282.
A.V. Baranda, J. Castellanos, R. Gonzalo, F. Arroyo, L.F. Mingo, Data Structures
for Implementing Transition P Systems in Silico, Romanian J. of Information Science
and Technology, 4, 1-2 (2001), 21-32

G. Paun, Computing with Membranes, Journal of Computer and Systems Sciences,
61, 1 (2000) 108-143.

1

Authentication of Messages Using P Systems

Adrian Atanasiu

Faculty of Mathematics, Bucharest University
Str. Academei 14, sector 1
70109 Bucharest, Romania
aadrian@pcnet.ro

Abstract. The paper is an attempt to use P systems in dealing with
a cryptographic issue, that of message authentication. Two algorithms
are proposed, with and without confirmation from the sender, based
on P systems with active membranes. We are not concerned with the
practical usefulness of these algorithms, but with proving the usefulness
of the membrane computing framework in addressing the authentication
question.

Prerequisites

For the basic notions, notations, and results about P systems we refer to [5], [7],
[9]. In this paper we use a variant of P systems with active membranes similar
to the one defined and used in [2] and [3].

For the elements of cryptography, authentication, and electronic signature

used here we refer to [6], [11], and [12], and for formal language elements we
refer to [10].

A P system with active membranes is a construct IT = (V, T, H, p, wo, w1, . . .,

wy, R), where:

1.
2.

n > 1;
V is an alphabet (the total alphabet of the system); the strings from V* are
called objects;

3. T C V (the terminal alphabet);
4.

H is a finite set of labels for membranes;
w is a membrane structure, consisting of m membranes, labeled (not nec-
essarily in a one-to-one manner) with elements of H; there is a (unique)
membrane labelled with 0, called skin; all the other membranes are inside of
the skin; the membranes can be neutral or polarized (positive or negative);
wp, W1, - - ., Wy, are strings over V', placed initially in the n + 1 regions of y;
R is a finite set of development rules of the following types:
(@) jx =y, zeVt yeV* ae{0,+,—}
This is an internal rule, having no effect outside the membrane 7 or on
its polarity.
(b) [Zx]? _>y[1]zﬁ’ JJEV"’,yEV*, Oé,ﬁe {07+7_}
A string can go out of a membrane, possibly transformed into another
string.

G. P&un et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 33-42, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

34 Adrian Atanasiu

() alile =[], weV* yeV*, a,Be{0,+ -}
A string can go into a membrane, possibly transformed into another
string.

(d) [iz]¢ =y, zeVTyeV* aec{0,+,—},i#0.
The dissolution of a membrane. The skin is never dissolved.

(e) [lx]za - [Zy}zﬁ[tz]zﬁ’ RS V+7 y,zeVr, a,f € {07+’ _}7 i 7é 0.
The division of membranes: a membrane can be duplicated in two mem-
branes with the same label. The skin is never divided.

(5) [alf Ly)e — lalwlelf, yeVhawe Ve, ae {0,
The subordonation, which models the biological operation of endocytosis.
The string « (if appears) controls this operation and plays the role of a
catalyst.

These rules are applied according to the following principles ([8]):

— All the operations are applied in parallel to all nonempty strings and all
membranes to which they can be applied. At one step, a string or a membrane
can be used by only one operation, non-deterministically chosen (if there is
no priority relation used), but any string or membrane which can evolve by
an operation of any form, should evolve.

— If a membrane is dissolved, then all the strings and membranes situated in
its region are left free in the region immediately above it.

— All the strings and membranes not involved in the transition do not evolve,
and they are passed unchanged to the next step.

Note that the skin can use only rules of types (a) and (b). The strings which
are sent outside the skin form the output of the P system.

2 Authentication of Messages without Confirmation

Authentication is a widely used term in the process of transmission of messages,
being one of the most important information security objectives. Generally, an
identity authentication technique assures one communication partner (usually
called Alice) of the identity of a second partner (called Bob). This authentication
can be mutual or unilateral (if Bob whishes or not to be sure that Alice was the
right receiver of the message).

The ’bad’ person is often called Oscar; Oscar intercepts the messages, tries
to read them, tries to modify them, and tries to convince Alice that Bob is the
sender of these modified messages.

The two authentication protocols constructed here are based on the idea of
Merkle ([6]) to use a tree structure of information.

Thus, we shall consider the membrane structure I7 as a labeled tree, having
the property that there are two strings w;, w; situated in two distinct membranes,
so that the message m is a substring of w; and the sender authentication data
1D forms a substring of w;.

Obviously, m,ID € TT.

Authentication of Messages Using P Systems 35

In this context, a P system with active membranes as defined above is called
a comunication membrane system, in short, a CMS.

Both specified information (message and identification data) will be consid-
ered here as sequences whose content will be ignored; so, they can be considered
as objects.

The idea is that both the message and the identification data can be read
when they are outside the skin, and the problem is to find them in the “cell” and
to bring them out without changing the system in an “illegal” (and noticeable)
manner.

Assume that the membrane i (here the label i concerns the position, not
the membrane label, because the system can contain several membranes labeled
with) contains the message mpop, (written as a string of characters), and the
membrane j contains I Dp,;, (a string of characters identifying Bob: name, birth
data, social security number etc).

Moreover, IDpg,, contains an address of Bob.

In the first algorithm (authentication of the message mp,, without confirma-
tion), we assume that Alice and Bob have two “identification enzymes” ajice
and respectively apep; these objects are produced by these two partners and
transmitted before exchanging the messages.

Ezample 1. Let us consider that Alice is a bank, and Bob is a beneficiary (user).
When Bob opens an account at the bank, he offers for its own identification
apop (this string can have nothing in common with Bob’s name, address etc);
the bank can also produce such an object for Bob (this is a problem of trustness
between these two partners).

Also, the bank gives Bob its own “key” aajice (this can be common for several
users).

Let us suppose that Alice receives a C'M .S II and wants to read the message
mpep (signed by Bob). She will follow the following protocol:

1. Alice introduces in IT the object a ay;ce; it will generate the following actions:
(a) Finds a path to the node j;
(b) Takes outside the skin the sequence IDp,, (possibly a copy) contained
by this node;
(¢) Transforms the CM S IT into a P system II’ (possibly a CM .S, t0o).
In this way Alice finds whether IT was previously attacked by Oscar.

36 Adrian Atanasiu

2. Alice identifies Bob (using I Dpg,p); then she selects and introduces the object
apep in IT’. This object:
(a) Finds the path to the node i (if agop is the correct “enzyme”);
(b) Takes outside the skin the message mpop (possibly a copy);
(¢) Modifies the P system IT’;
As a variant, after this protocol is finished, the message mp,, can be
destroyed in IT'.

Ezample 2. Let us consider the CM S defined by the tree-structure:

0 (o)

2 (xo,mpop) 1 (21)

i

3 (x3,1Dpoy)

Here:

— Zp, Ta,x3 € V\T are “jailer” objects, which start the destroying of the CM S
II if they detect the illegal intrusion of any object;

— mpey € VT is a sequence which represents the message sent by Bob;

IDp,, € V7T is a sequence which identifies the sender.

For intermediate transformations also some objects «;, 5; € V\T 0 <i < 3,

are used.

Thus, Bob sends to Alice the CM S II with the initial configuration

lo[1#1[222, mBob)3]S 232 [121 373, ID Bob]3]71910-
The development rules of IT are:

(a) aaticelo]8 — focolg
(b) aBobo]) = loSolg
(the rules for starting the protocols of finding the sender 1D g, and respec-
tively the mesage mpop).
(a) ai[]0 — [jay]; , where (i,7) € {(0,2), (1,3), (2, 1)} (the legal path to the
Sender identification data);
(b) Bilj17 = ;8] where (i, 5) € {(0,2),(1,2),(2,1)}, € {0,+} (the legal
path to the message mpop).
) iz = aq];, 0<1i<3,
) [Bims = BIF, 0<i<2
the “jailer” objects confirm the receiving of correct enzymes);
a) joax; = x;];, for all a # ay,

(a
(b
(
(

Authentication of Messages Using P Systems 37

(b) Liax; — 2;]f, forall a#5;
(any illegal object is destroyed by the “jailers”). These rules have top priority
in the P system.

5. (a) [iIDBeb); — IDgwli]?, 0 <i < 3 (the negative polarity creates a path

for the sequence IDpg,p in order to go out from the CMS IT).

(b) [imBob];" — mpopli]¥, 0 < i < 3 (the positive polarity creates a path for
the message mp,p in order to go out from the system IT')

(after these operations are over, the polarity becomes neutral).

6. [as]d = a1, [l = @z, o)l = Ll I3 []) = 0195 (develop-
ment rules which modify the CM S II, a new P system II’ being obtained).

Using development rules (1a) — (4a), the CMS IT reaches the configuration

lo[121[222, mBo)3]0 [2]1 [sc3, I Dob)5 11 12 10

With rules (5a) the configuration obtained is

IDpob[o[121[222, mpob)5]T [2]1 [sxa]3] 9195

The rules (6) transform this configuration in
IDpoblol2l171 222, mBob)5)113 10,

represented by the following tree (the polarities of the nodes and the sequence
IDp,p obtained outside the skin are ignored):

(z1)

-~ —— N+

2 (w2, mpob)
If Alice introduces the object ape, in this configuration, the development
rules (1b) — (5b) lead to the final result

0

0 0]0

mpoblol2[1[2]5]919

A remark: if Alice (or Oscar) applies again aajice to the P system II’; then
the behaviour fails on the membrane structure [o[2[101 222, mBob)97 12 1o -

In the same manner, if the object apg. is directly applied in the CMS 11,
the failing appears in the membrane structure

lol1z1[272, mBob|9)L[2[151 323, IDBeb)3T 15)d -

Remark 1.

38 Adrian Atanasiu

1. The development rules (1), (3), (4), (5) from Example 2 can be considered
general rules, used by any such a CMS. The particularity of a CMS' is
represented by the development rules (2) and (6), which establish the paths
in the tree and respectively modify the CMS IT in IT'.

2. The manner of defining the development rules (4) in Example 2 represents
a “peaceful” variant of using a C'MS: the system is waiting until the legal
objects aay;ce and respectively ap,p are introduced.

If these rules are replaced by
) (a) [iax; — B]; for all a # ay,

(b) Loz — B for all a # G,
and 8 € V' \ T is an object which destroys the whole content of IT or IT’,
we will obtain a variant where any illegal attempt leads to the erasing of all
informations in the CM S II (respectively IT").
Actually, a hybrid variant is recommended, where the rules (4a) are preserved
as in Example 2, but the development rules (4b) are replaced by (4'b).

If the cryptanalist Oscar intercepts the CM .S II:

1. Without any additional information, the access to the message mpep is im-
possible for him.

2. If he knows aajice, then he can find IDpg,,. But any attempt to find the
message mpop Without using a g, can lead to the destruction of this message
(when the object 8 and its development rules are defined in the system IT').

3. If Oscar knows apep, applying it to IT has no effect.

Of course, if Oscar has both identification enzymes, his attack will be suc-
cessful.

As a supplementary precaution, I Dp,, can generate in the skin — before it
goes out — another object v € V'\ T. This object will ensure a protection of the
new P system II’, by eliminating at the first step any object different from agop,
which is trying to find a path for the message mpop.

3 Authentication of Messages with Confirmation

In the protocol constructed above, if Oscar knows a aj;ce, then he has a possible
succesfull attack of the following type:

1. He applies @ ajice in the CM S IT and finds IDpgep.
2. Then, he constructs a new CMS II; with IDpg,, and his own message
MOscar; this CM S is submitted to Alice.

In this way, Alice will accept the message moscqr as being correct and she believes
that Bob is the sender.

To avoid this attack, another message authentication protocol, with confir-
mation, will be proposed. This protocol extends the variant we presented above,
with a password submitted by Bob when Alice asks him to certify.

Let us suppose that Alice receives a CM S II and wishes to find the message
mpoep, authenticated by Bob. She follows the next protocol:

Authentication of Messages Using P Systems 39

1. Alice introduces a ;ice in the CM S II and obtains 1D pg.p; in the same time
IT is transformed in another P system II’.

2. Alice finds the sender and submits an authentication request to Bob, using
his address contained in IDpgy.

3. Bob submits the password ~;

4. Alice introduces the object apopy in II’ and obtains the message mpop.

In fact, v acts as a supplementary checking: it allows or forbids the message
mpep t0 go out of the skin. Usually, the introduction of apg,, only has the same
effect as the introduction of an illegal object: the loss of the message.

Ezxample 3. Let us consider a C M S having a similar membrane structure as that
from Example 2, where a new membrane is added in the skin:

0 (o)

1(xm 3
Lo T

2 (x2,mpop) 1(x1) 2 (Ygood) 1 (Ypad)
3 (x3,1Dpoy)

Here Ygood, Ypad € V' \ T are new objects. The development rules are the same
as in Example 2, where only the rule (5b) is restricted to 1 < i < 3.

Initially, all polarities are neutral.

At the request of Alice, Bob can use one of two passwords: vgood, Which
confirms the message and allows its going out of the skin, and 44, which blocks
the message going out of the skin (this object can be used by Bob in various
situations: he is not sure of the identity of Alice, he changes his mind and wants
to stop the transmission of the message mpop, etc).

Besides the rules (1) — (6) defined above (with (5b) restricted to 1 < i < 3)
the following development rules are added:

7. (a) Ygoodlol§ = [0Ygoodl§s Vgoodlil; = [iVgoodli » @ =2,3;
(D) Yadlol§ = [0Veaals> Veaalil? = [iVeaal; s i=1,3;
(the passwords «, reach the membrans where there are the objects ys s €

{good, bad}; the paths are marked with a negative polarity.

8. [iysl; = vs, s€{good,bad}, 1 <i<3;
(the object y is transported in the skin membrane, that labelled by 0);
(a) [Oygood]+ = [olf,
() ybad[] — [2]2_
(Ygooa neutralises the skin polarity; ypeq changes the polarity of a membrane
from the path of the message, by blocking its output).
0. [omBob]o — mBob[0]8

(the message can go out only if the skin is neutrally polarized).

9.

40 Adrian Atanasiu

In this example we assume that all actions are syncronized: the time of entering
membranes is the same for all objects and all membranes. Thus, the membrane
labelled by 2 can be blocked before the message mp,, reaches this node.

Let us see how this C'M S works: Alice receives the following configuration:
lo[121[222, mpob)9)S @2 [121 323, ID Bob] 313193 [2¥g00d] 3 [1¥baal §15]0-

After auapice is introduced in the skin, by transformations similar to those in
Example 2, the system becomes

IDgoblo[2[171 (272, MBob)3) 15 [312Yg00d]2[1Ybad] T 19]0s

represented by the tree

0
2 /\ 3
l T
1 (z1) 2 (Ygood) 1 (Ybad)

|

2 (w2, mBob)

At this moment Alice finds that the CMS was submitted by Bob. From
IDpg,p she extracts the coordinates of Bob and she requires him to confirm the
message. Two situations arise now:

1. Bob agrees and submits the password 700q. Alice introduces in the skin
of the system the objects apoy, and 74004; the membrane structure passes
through the following configurations:

A BobYgood [0 [2[1!101 [25627 mBob}g]ﬁ)];[S [2ygood]0[1ybad](1)]g]87

[OBO'Ygood[[1$1[2$27mBob}2]1]2 [3[2ygood] [1ybad]0]g]+7
[2ﬁ2 [1$1 [25627 mBob]O]O]+ [S“Vgood[zygood]o [1ybad] 1]3
[2[181[2%2, mBob)91 15 [3[27Vg00dYgood)a [1Ybad)l]5

o

o

[ol2[1 [252,m30b]2++]1+]2 [37goodygood[1ybad](f]3 lo>
[0 [Q[ImBob[QﬁQ]g]l] ’Ygoodygood[lybad]l]o)

[[2mBob[[252}](1)]2 ’Ygood[1ybad]ﬂoa

[omBobl2[1 [2ﬁ2]2]0]2%ood[1ybad]ﬂo7

mpob[o[2[1 (20219919 Ygood 19baal 115
and the message mp., becomes accessible to Alice.

2. Bob submits the password v4q. In this case, the steps are the following:
aBob’Ybad[o [2 [1561 [2!102, mBob]S]?H [3 [2ygood]g [1ybad]9]8]8,
[080Vbadl2[121 222, mBob]91Y]3 [3[2Yg00a]21Ybaal]8]g »
0[2ﬁ0[1$1[2$27m30b]2]1]2 [S’Ybad[zygood]g[1ybad]1]§ 0>
[2[1601 272, MBob)97 |3 [312Yg00d) S [1Vbad¥bad) 1 |3 19 s
[2[1 [252,m30b]2] 5 [3[2ygood]37badybad]§]o,
[2[1mBob[202]5]+]+[2Z/good]8%adybad]5r,
[2mBob[[252]]] [Zygood]g'ybad]g,
and the process fails, because mp,, cannot go out through membrane 2
which was negatively polarized by ypeq (using the rule (9b)).

)

0721
0
)

O O O

[
[
[
[
[

02
02
02
0

Authentication of Messages Using P Systems 41

We can remark that if in the second case Alice applies only apy, (without
the password), then the message mp,, cannot pass through the skin, because
the skin is positively polarized by the rule (1b), and the neutralisation of this
membrane can be performed only by ygo0d-

4 Final Remarks

This paper presents two variants of message authentication protocols, using the
framework of P systems. The approach is mainly intended to prove the possi-
ble usefulness of P systems in addressing this cryptographic issue, to test the
versatility of membrane computing area/language, rather than being a practical
proposal. The constructions are very easy, while their security (not examined
here from a computational complexity point of view) depends on the unicity of
objects which can interact, and on the blocking possibility of the P systems in
case of wrong action.
Among other features which can be considered, we mention:

1. At the second or the third attempt to activate the CM S with wrong “en-
zymes”, the system is self-destroyed. Such a construction is easy to be car-
ried.

2. If the system failed, then the application of the illegal object transforms
the initial CMS in another one, IT”; for this, another pair of identification
enzymes ('4;;.., @h,p) 8r€ NEcessary.

3. In the same CMS structure several messages and several identifications data
1D can be introduced; the basic idea of CMSs will not be essentially changed.

4. The CMS structure can be adapted for only one use (for example, in the
case of bills).

5. A time interval of validity can be assigned to each CMS; after the expiration
of this time, the object a 4. Will be not recognised as legal by the CMS.

The authentication type (and thus the signature type) we present here is
more similar to olograf signatures than to digital signatures. Here the CMS IT
does not depend on the message mpop, but only on the structure CMS chosen
by Bob.

We intend to continue the study of these ideas by looking for algorithms of
signatures and message authentication where the complexity will be also consid-
ered. In this moment this goal seems to be quite difficult, because we know that
NP-complete problems are easy to be solved in the P systems area (e.g., when
membrane division is available).

References

1. A. Atanasiu, P systems and arithmetic calculus, Report 14/00 of the Research
Group on Mathematical Linguistics, Universitat Rovira i Virgili Tarragona, Spain,
2000.

42

10.

11.
12.

Adrian Atanasiu

A. Atanasiu, Arithmetic with membranes, Romanian J. of Information Science
and Technology, 4, 1-2 (2001), 5-20.

A. Atanasiu, C. Martin-Vide, Recursive calculus with membranes, Fundamenta
Informaticae, 49, 1-3 (2002), 45-59.

A. Atanasiu, C. Martin-Vide, P systems and context-free languages, in Actas del
Primer Congreso Espanol de Algoritmos Evolutivos y Bioinspirados (AEB’02) (E.
Alba, F. Fernandez, J.A. Gomez, F. Herrera, J.I. Hidalgo, J. Lanchares, J.J. Merelo
et J.M. Sanchez, Eds.), Centro Universitario de Merida, Merida, 2002, 341-346.
S.N. Krishna, R. Rama, A variant of P systems with active membranes: Solving
NP-complete problems, Romanian J. of Information Science and Technology, 2, 4
(1999), 357-367.

R.C. Merkle, A digital signature based on a conventional encryption function, Proc.
of Advances in Cryptology - CRYPTO ’87, Springer-Verlag, 1990, 369-378.

Gh. Paun, Computing with membranes - A variant: P systems with polarized
membranes, Intern. J. of Foundations of Computer Science, 11, 1 (2000), 167-182.
Gh. Piun, Computing with membranes (P systems); Attacking NP-complete prob-
lems, Unconventional Models of Computing (I. Antoniou, C.S. Calude, M.J. Din-
nen, Eds.), Springer-Verlag, 2000, 94-115.

Gh. Paun, G. Rozenberg, A guide to membrane computing, Theoretical Computer
Science, 287, 1 (2002), 73-100.

G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, Springer-Verlag,
1997.

B. Schneier, Applied Cryptography, Second Edition, John Wiley and Sons, 1996.
D. Stinton, Cryptographie, Theorie et Pratique, Intern. Thomson Publ. France,
1996.

Eilenberg P Systems

Tudor Baldnescu', Marian Gheorghe?, Mike Holcombe?, and Florentin Ipate!
! Faculty of Sciences, Pitesti University
Str. Targu din Vale 1, 0300 Pitesti, Romania
f.ipate@ifsoft.ro
2 Department of Computer Science, Sheffield University
Regent Court, Portobello Street, Sheffield, S1 4DP, UK
{m.gheorghe,m.holcombe}@dcs.shef.ac.uk

Abstract. A class of P systems, called EP systems, with string objects
processed by evolution rules distributed alongside the transitions of an
FEilenberg machine, is introduced. A parallel variant of EP systems, called
EPP systems, is also defined and the power of both EP and EPP systems
is investigated in relationship with three parameters: number of mem-
branes, states and set of distributed rules. It is shown that EPP systems
represent a promising framework for solving NP-complete problems. In
particular linear time solutions are provided for the SAT problem.

1 Introduction

P systems were introduced in the history making paper [21] by Gh. Paun. One
of the main classes of P systems is that of string objects where the evolu-
tion rules are defined as string rewriting operations (see [22,21,6,18,19,20]) (an
up-to-date bibliography of the whole area may be found at the web address
http://psystems.disco.unimib.it). Because rewriting alone even in the con-
text of a highly parallel environment of a membrane structure is not enough
to lead to characterizations of recursively enumerable languages, various other
features have been considered, such as a priority relationship over the set of
rules, permitting or forbidding conditions associated with rules, restrictions on
the derivation mode, the possibility to control the membrane permeability [6] etc
(for more details see [22]). In general the most used priority relationship on the
set of rewriting rules is a partial order relationship, well studied in the context
of generative mechanisms with restrictions in derivation [4]. In this paper the
priority relationship will be replaced by a transition diagram associated with an
Eilenberg machine giving birth to two classes of Eilenberg systems, a sequential
version and a parallel one, called EP systems and EPP systems, respectively. In
both variants, each transition has a specific set of evolution rules acting upon
the string objects contained in different regions of the membrane system. The
system will start in a given state and with an initial set of string objects. Given a
state and a current set of string objects, in the case of EP systems, the machine
will evolve by applying rules associated with one of the transitions going out
from the current state. The system will resume from the destination state of the

G. P&un et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 43-57, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

44 Tudor Balanescu et al.

current transition. In the parallel variant, instead of one state and a single set
of string objects we may have a number of states, called active states, that are
able to trigger outgoing transitions and such that each state hosts a different
set of string objects; all the transitions emerging from every active state may be
triggered once the rules associated with them may be applied; then the system
will resume from the next states, which then become active states. EP systems
are models of cells evolving under various conditions when certain factors may
inhibit some evolution rules or some catalysts may activate other rules. EPP sys-
tems introduce a parallel behaviour of the system in respect of the transitions
emerging from active states, model cellular division and parallel development of
the new born cells as well as cell collision when multiple transitions join a target
state. The EP model has some similarities with the grammar systems controlled
by graphs [3], replacing a one-level structure, which is the current sentential
form, with a hierarchical structure defined by a membrane element. It is also
close to the state based model defined by Ji [15] in relation to the living cell,
called molecular machine. Whereas Ji’s molecular machine is a sort of Mealy ma-
chine [17], the proposed model penetrates inside of the cell as usually P systems
do. On the other hand, this P system variant may be viewed as an Filenberg
machine [5] having sets of evolution rules as basic processing relationships. EP
systems are also similar to the Eilenberg machines based on distributed grammar
systems [8]. Eilenberg machines, generally known under the name of X machines
[5], have been initially used as a software specification language [10], further on
intensively studied in connection with software testing [13], but also utilized as a
model of methabolic pathways [11], bee colony behaviour [9], or reactive agents
[16]; a survey of the whole area at the end of 2000 is given by [12]. EPP systems
present similarities with Petri nets [14], but also with communicating X-machine
systems (see [1], [16]). The main difference between EPP systems and the other
models consists in a structured framework which is a cell like structure, where at
every step, each string object in each region of the system may be transformed
by applying some evolution rules. The style of triggering transitions in parallel
recalls replicated rewriting derivation mode studied for some classes of P systems
[19].

In this paper it is investigated the power of both systems in connection with
three parameters: number of membranes, states and set of distributed rules. On
the other hand it is shown that EPP systems represent a promising framework
for solving NP-complete problems; in particular linear time solutions are pro-
vided for SAT problem. The last result relies heavily on similarities between
EPP systems and P systems with replicated rewriting [19], showing that more
connections with these types of P systems might be further investigated.

2 Definitions

Definition 1. A stream Eilenberg machine is a tuple

X = (27FaQaMa¢aF7I7T7mO)7

Eilenberg P Systems 45

where:

X and I' are finite sets called the input and the output alphabets, respectively;
— @ 1is the finite set of states;

M is a (possibly infinite) set of memory symbols;

@ is a set of basic partial relations on X x M x M x I'*;

F is the next state function F : Q x & — 29;

I and T are the sets of initial and final states;

— my s the initial memory value.

Definition 2. An EP system is a construct EII = (u, X), where p is a mem-
brane structure consisting of m membranes, with the membranes and the regions
labelled in a one to one manner with the elements 1,...,m and an Filenberg
machine whose memory is defined by the regions 1,...,m of u. The FEilenberg
machine is a system

X = (VapvaMla"'vaadsaij),
having the following properties

— V is the alphabet of the system;

— I'Q, F are as in Definition 1; I' CV, is called now terminal alphabet;

— M, ..., M,, are finite languages over V and represent the initial values oc-
curring in the regions 1,...,m of the system;

- & ={d1,....,Pp}, &; = (Ri1,.. . Rim), 1 < i < pand R;; is a set of
evolution rules (possibly empty) associated with region j, of the form X —
(u,tar), with X € V, uw € V*, tar € {here,out,in}; the indication here will
be omitted and the rule will be written X — u;

— I ={qo}, qo € Q is the initial state; all the states are final states (equivalent

to@Q=T).

It may be observed that the set X and mg from Definition 1 are no longer
used in the context of EP systems. In fact, these concepts have been replaced
by V and My, ..., M,,, respectively.

A P system has m sets of evolution rules, each one associated with a region.
An EP system has the evolution rules distributed among p components @;, 1 <
1 < p, each one containing m sets of evolution rules.

A computation in FII is defined as follows: it starts from the initial state gq
and an initial configuration of the memory defined by M, ... M,, and proceeds
iteratively by applying in parallel rules in all regions, processing in each one
all strings that can be rewritten; in a given state ¢, each string is processed
by a single rule following the target indication of that rule (for instance, when
rewriting zXv by a rule X — (u,tar), the string zuv obtained will be send to
the region indicated by tar, with the usual meaning in P systems (see [2], [22],
[6])); if several rules may be applied to a string, then one rule and one symbol to
which it is applied are randomly chosen; the rules are from a component @; which
is associated with one of the transitions emerging from the current state ¢ and

46 Tudor Balanescu et al.

the resulting strings constitute the new configuration of the membrane structure
with the associated regions; the next state, belonging to F(q,®;), will be the
target state of the selected transition. The result (a set of strings containing
only symbols from I') is collected outside of the system at the end of a halting
computation.

EPP systems have the same underlying construct (u, X), with the only dif-
ference that instead of one single membrane structure, it deals with a set of
instances having the same organization (u), but being distributed across the
system. More precisely, these instances are associated with states called active
states; these instances can divide up giving birth to more instances or collide
into single elements depending on the current configuration of the active states
and the general topology of the underlying machine. Initially only g¢ is an active
state and the membrane configuration associated with ¢¢ is My,..., M,,. All
active states are processed in parallel in one step: all emerging transitions from
these states are processed in parallel (and every single transition processes in
parallel each string object in each region, if evolution rules match them).

Cell division: if g; is one of the active states, M 1,..., M, ,, is its associ-
ated membrane configuration instance, and &@;1,...,9P;; are ¢'s components
associated with the emerging transitions from g;, then the rules occurring in
@i, 1 <1i < t, are applied to the string objects from M; q,..., M ,, the con-
trol passes onto gj1,...,qj,:, which are the target states of the transitions ear-
lier nominated, with Mj,l,l: ‘e ;Mj,m,ly ‘e an,l,ta ‘e ;Mj,7n,t7 their associated
membrane configuration instances, obtained from M; 1,..., M; ,, by applying
rulesof @, 1,...,P;; the target states become active states, ¢ is desactivated and
M;1,..., Mj, vanish. Only @, ; components that have rules matching the string
objects of Mj 1, ..., M, are triggered and consequently only their target states
become active and associated with memory instances Mj 1 ;, ..., M; m,i. If none
of &;; is triggered then in the next step ¢ is desactivated and M; 1,...,M;
vanish too. If some of @;; are indicating the same component of ¢ then the cor-
responding memory configurations M; 1, ..., M; n; are the same as well; this
means that always identical transitions emerging from a state yield the same
result.

Cell collision: if &1,...,P; enter the same state r and some or all of them
emerge from active states, then the result associated with r is the union of
membrane instances produced by those ®.s emerging from active states and
matching string objects from their membrane instances.

A computation of an EP (EPP) system halts when none of the rules associ-
ated with the transitions emerging from the current states (active states) may
be applied.

The language computed by a system EIT is denoted by L(FII) and consists
of all strings over I that are sent out of the system during a halting computation.

The family of languages generated by EP (EPP) systems with at most m
membranes, at most s states and using at most p sets of rules is denoted by
EP,, s p(EPPy, ;). If one of these parameters is not bounded, then the corre-
sponding subscript is replaced by *. An EP (EPP) system is called pure when

Eilenberg P Systems 47

V = I'" and the family of languages generated by such systems with the above
considered parameters is denoted by PEP,, s, (PEPP,, s).

A matrix grammar with appearance checking in the binary normal form (for
more details see [3]) is a construct G = (N, T,S, M, F) where N = N; U Ny U
{S, #}, with these three sets mutually disjoint, and the matrices in M with one
of the following forms:

(S — ZB), with Z € N1, B € N,

(X =Y, A—z), with X,)Y € Ny, A€ Ny, z € (N2 UT)*,
(X—)Y,A—)#), with X,Y € N1, A € Ns,

(X > MNA—2x), with X € Ny, A€ Ny, x € T*.

1.
- 2.
- 3.
— 4.
The set F' consists only of rules A — # appearing in matrices of type 3. The
family of languages produced by these devices is denoted by M AT,.. When rules
of type 3 are not used, then the corresponding family of languages is denoted
by M AT. With RE denoting the set of recursively enumerable languages, the
following relations hold M AT C M AT,. = RE, where the inclusion is proper.
It is also known that two nonterminals used in rules A — # suffice to generate
all RE languages [7].

3 Computational Power of EP and EPP Systems

It has been noted that rewriting alone even in a highly structured and parallel
environment of a membrane, does not suffice for characterizing the set of recur-
sively enumerable languages [6]. Thus various priority relationships have been
considered. In this paper, instead of a partial order relationship on the set of
rewriting rules, the rules are first distributed among sets @; and then controlled
by the next state function which selects the set of rules to be applied in the
current state. Let us first consider an example to illustrate how an EP system
works. Let EIT = ([1]1, X), where X contains the following elements:

-V= {A,A/,B,B/,#,Q,ZLC};

— I'={a,b,c};

— QS = {@1,@2,@3,@4,@5}, where

&1 = ({A— adb, A" - B',B' — #}),
$y = ({B — Be,B' — A", A" — #}),
&3 = ({A—ab, A’ = B', B — #}),
&y =({B — (c,out), B = N\, A — #}),
D5 = {# — #};

Q={1}, I ={1}

- F(;,1) ={1},1<i <5

M, = {aAbBc, A'}.

The region 1 always has one of the following forms:

L. {a"Ab" Btk A} n > 1,k >0,
2. {a" At Bt By n > 1,k > 0,

48 Tudor Balanescu et al.

3. {a" Tt B th By n >
4. {a”+1b"+1Bc7l+1+k,A'},n
5. {y, #LyeVr,

6. {A}.

This may be proved by induction on the number of the computation steps.
Initially it has the form 1, with n = 1,k = 0. Next, it may be seen that:

1,E>0,
>1,k>0

— from 1 it results 5 (applying ®5 or @4), or 2 (applying @1), or 3 (applying
P3);

— from 2 it results 5 (applying @; or @3), or 1 (applying @), or 6 (applying
Dy);

— from 3 it results 5 (applying &1 or ¥3), or 4 (applying P2), or 6 (applying
D4);

— from 4 it results 5 (applying @5 or @4), or 3 (applying Ps3);

— from 5 it results 5 (applying any set that matches y; @5 may be always
applied);

— in the form 6 the computation halts.

The only way to obtain terminal strings outside the system is to apply @4 on
the form 3 and to send out a string of the form a™T1p" e 14k n > 1,k > 0.
The language of all strings of this form is not context-free. Some lessons may
be learned from this simple example: the computation process of a set of words
cannot be split down into independent computations of the individual elements
(this property will be used further on in some more general proofs); using only
one membrane and one state (i.e., no control mechanism imposed by the next
state function F'), non-context-free languages may be generated.

If we consider the above specification as an EPP system denoted by EIIIT
then L(EIIIT) = (), because all first four components are triggered, # is intro-
duced, and the computation never halts. The following EIIII" using the above
defined V and I, but redefining @, Q, F' and M;

— & = {P1, Py, P3, Py, P5}, where

= ({A > adb, A — aA'b}),
&y = ({B — Be, B — B'c}),
P53 = ({A" — ab}),
&, = ({B' — B'c, B = Bc}),
@5 = {B — (c,out)};
={1,2,3,4}, I = {1}

- F((I)la) - {2}a
F(¢27) - {1}7
F(¢3a) - {S}a
FE¢4) - {3}7

F(®5,3) = {4};
- M1 = {143}7

leads to L(EIIII') = L(EII). The underlying system computes the same lan-
guage when it is to be considered an EP system as well.

Eilenberg P Systems 49

Some preliminary results follow directly from definitions ([P] means that the
involved relationships hold for both P being present in both its members or none
of them).

Lemma 1. (i) PEP,, s, C EPy sp, m,s,p > 1;
(“) []E-Pmsp [P]Epm+k1 s+ka,p+ks>s k17k27k3 > 0

The next result is similar to Lemma 2 in [6], giving also details about the number
of states and rules used by the proof.

Lemma 2. EP,, ;, € PEP, 1 641,p42, M,5,D > 1.

Proof. Let us consider an EP system EIT = (u, X), with g a membrane structure
with m regions and X a machine given by

=WV, [,Q,My,... M,, D, F,I),

according to Definition 2. We construct now the pure EP system EIT' = (u/, X'),
where p/ = [ou]o, and

X' =WV vV,Q , MiMj,...M & F' I,
with

_V/:VU{fv}’f¢V§

- Q' =QU{q} 9 ¢ Q;

fM'—{fw\weM} 1<i<m; M)=0;

- f{€15’|93 €D,1<i<ptU{P,,;,P,,5}, where
z ((Z) Rz,la” R’) fOI‘@ —(szl,...Ri’m),
p+1 = ({a— (a,in) |a € V\T},0,...0) and
Do = ({f = (N out)},0,...0);

—F’(q,@’)—F(g@),qGQ,@ eP,1<i<p,and
F'(q,P)41) = {ao}ts F'(q0,Ppi2) = {a0}-

According to the above construction any string x processed by FII exits the
system iff fx arrives in region 0 of EII’, in a state ¢ € Q. Indeed any application
of a set of rules @; in EII is simulated in EII’ by &}. Any string in region 0 is
checked to contain only elements from I', by applying @, ;. All strings in region
0 which contain some symbols in V' \ I" fall down into region 1. Otherwise the
rule f — (A, out) occurring in @), , pops out strings containing only symbols
from I'. Hence L(EIT) = L(EII"). O

Theorem 1. M AT = EP4,171 - PEP5)273.

Proof. An EP system with m membranes, a single state and only one set of rules
is an extended rewriting system [6], and for these systems it has been shown that
4 membranes suffice to generate M AT, and consequently the result holds. a

50 Tudor Balanescu et al.

It is also known that a graph controlling the derivation, = 1 style, in grammar
systems, without appearance checking feature, produces exactly M AT (Theo-
rem 4.7 in [3]). What about an EP system with only one membrane? The only
difference between such a system and a grammar system as described above is
that in an EP system all strings are kept in one membrane and are rewritten in
parallel in one step. From Theorem 1 we have learned that without spreading
the rules and using only one state we do not get more than M AT languages.

Theorem 2. EP,;, = PEP,,, = RE.

Proof. According to Turing-Church thesis and Lemma 2, it is only to prove the
inclusion RE C EP; ;.. As usually in such cases a matrix grammar with ap-
pearance checking in the binary normal form G = (N1 UNyU{S,#},T,S, M, F)
is considered. It is also assumed that the rules are labelled in a one to one man-
ner with my,..., mg, (the matrices of type 2), mg, +1,..., Mk, (the matrices of
type 3), and my,41, ..., Mk, (the matrices of type 4). The following EP system
is constructed EII = (u, X), where p is a membrane structure consisting of a
single membrane, and X an Eilenberg machine

X = (Nl U N2 U {37#} UT7T3 {q0}7M17¢7 F7 {q()})7
with

— M, containing Z and B, the symbols occurring in the right hand side of the
matrix of type 1;
— F(qo,%;) = {qo}, for any &; € &;
— the set @ containing
e for each matrix m; = (X = Y, A —), 1 <1 < ky, of type 2, a set of
rules
S,={A—-2,X >Y}IU{U—=#|Ue€ N UN,, U # X,U # A});
o for each matrix m; = (X = Y, A — #), k1 + 1 < i < ko, of type 3, a set
of rules
S, ={A=#X->YIU{U > #|U e N,U#£X});
e for each matrix m; = (X — A\, A — x), ko + 1 < i < k3, of type 4, a set
of rules
S, ={A—= 2, X - (N out)}U{U = # | U € NyUN,, U # X,U # A})
e a new rule is considered in the set &y = ({# — #});

The computation will start with {Z, B} in the main region defined by the skin
(main) membrane. If {X,uAv} is the current content of the region, then this
corresponds to the sential form XuAv associated with the grammar G. A ma-
trix m;, 1 <4 < ky is succesfully applied to XuAuw iff the corresponding rules of
@, are applied in one step in parallel to both X, and uAv. A failure in correctly
applying this matrix leads to blocking the derivation process in G' and accord-
ingly the introduction of # symbol in the current membrane. Similarly, the set
of rules associated with matrices of types 3 and 4, simulate the use of these
matrices in G. Any blocking derivation in G is simulated in EII by introducing
'# symbol which leads to an endless computation (set @¢) or to the situation
when a terminal sequence is never sent out of the system. O

Eilenberg P Systems 51

The proof of Theorem 2 says that only one membrane and one state suffice to
compute all RE languages, but with an unbounded number of rules. On the other
hand the simulation is very efficient and natural, the number of steps involved
in a computation in EII is exactly equal to the number of matrices required
by the corresponding equivalent derivation of G. What can be said when all
three parameters are bounded? The next result shows that by increasing either
the number of membranes or the number of states, EP systems with a bounded
number of functions that compute all RE languages may be found.

Theorem 3. (i)EP173’8 = RE, (ZZ) EP2’1’7 = RFE.

Proof. Again we consider a matrix grammar with appearance checking in the
binary normal form G = (N U Ny U {S,#} UT,T,S, M, F). It is assumed that
the rules are labelled in a one to one manner with my, ..., my, (matrices of type
2), Mpy 41, - - ., My, (matrices of type 3), and my,41,..., Mk, (matrices of type
4). Also we assume that type 3 matrices (with appearance checking) utilize only
two nonterminals A, Ay [7]. We denote by Dom; the set of nonterminal symbols
occurring in the left hand side of rules of matrices of type 7, 1 < ¢ < 4.

(i) Let FII = (u, X) be an EP system with one membrane and three states,
where p is a membrane structure, and X an Eilenberg machine. The underlying
machine is given by

X:(Nl UNQU{Sa#af}U{ZJ|OJSZJ S(k/‘3)],1§jg4}UT,
TaQ7M17¢aFﬂ {ql})7

where f and i; are new symbols and

- Q={q1, 42, 43};
— M, contains Z f and Bf, with Z and B the symbols occurring in the right

hand side of the rule of type 1, and f is the new symbol introduced by X;
- ¢ = {@1,.. @8} where
o § = ({X —Yiy |13 <idy < (k1)1, and thereis iy : (X = Y, A — 1)
a matrix of type 2 }U
{X — Xig | 13 < i3 < (k3)s3, and there is i3 : (X — A\, A —)
a matrix of type 4 }U
{A = zis | 13 < iy < (k1)2, and thereisig: (X = Y, A — x)
a matrix of type 2 }U
{A — ziyg | 14 <ig < (k3)4, and thereis iy : (X = N\, A — z)
a matrix of type 4 }U
{U—=#|Ue¢€ N, UNy,U ¢ Domg U Domy}),
M 452*({111%1.] 1|1<j<401<i1_(k1)1,
02 <idg < (k1)2,03 < i3 < (ka)3, 04 <idg < (k3)a, FULS — #}),
@3:({01%)\702%)\}U{1J%#|Z] >O 1§]§4})
Py = ({f = A}),
= ({03 —)\,04 — ()\,out)} U {ij — # ‘ ij >0,1< 7 < 4}),
={X -V, A4 - #| (X =Y, A — #) matrix of type 3 }U
{U — # | UeM \Domg}),

52

Tudor Balanescu et al.

e O =({X =Y, A = #| (X =Y, Ay — #) matrix of type 3 }U
{U%#|U€N1\Dom3}),

o O3 = ({# — #});

F(q1,®;) = {q1}, i € {6,7,8}, F(q1,P1) = {a2}, F(q2,P2) = {q2},

F(go, @3) = {a1}, F(q2,P1) = {g3}, F(g3,95) = {a1}.

A computation in EII develops as follows:

— the process starts in state ¢; with initial configuration {Z f, Bf};
— given a configuration {X f, «AGf}, one of @1,Ps or $7 may be applied; if

&, is selected then it meant to simulate either matrices ¢ : (X — Y, A — x)
of type 2 ori: (X — A\ A — z) of type 4, by applying X — Yiy, A — wiy
or X — Mg, A — xi4 and leading to {Yi1 f,axis8f} or {isf,axisff} in
state go; in both cases rules of @, are iteratively applied to check whether
the previous rules came from the same matrix (either i; = is or iz = i4); if
one index, i; reaches 0; and the other not then a # symbol is introduced by
f — #; if &, is left before reaching 0; then either @3 or @5 introduces # by
one of the rules i; — #; when ¢; and 42 or i3 and 74 indicate the same value,
then

o for {Yiyf, axiz8f}, the two i’s become 0, and 0Oq, respectively, by ap-
plying @5; then @3 makes them A and the process successfully simulates
i: (X =Y A—)

e similarly for {isf, azisSf}, the two i's become 03 and 04, respectively,
by applying ®; then f is deleted from both strings (using ¢4 and going
to state g3); @5 removes both 03 and 04 and 04 — (A, out) sends out
axB;

when either &g or @7 is applied to {X f,aABf} this means that the use of
either (X —» Y, A; — #) or (X =Y, Ay — z) is simulated (using @¢ for the
former or @7 for the latter);

once a symbol # is introduced the process never ends as &g may be always
triggered.

The EP system EII computes exactly what G generates.

(ii) The EP systems EIT = (u, X) with one state and two membranes is built

as follows: p is a membrane structure [1[2]2]; and X the Eilenberg machine:

X = (N1UN2 U{S, #, f1, f2} U{i; | 0; < ij < (k3);,1 < j <4}
UTaT, {QI}7M17M2a¢5F7 {ql})a

where f1, f2 and i; are new symbols and:

— M, contains Z f1 and B fs, with Z and B the symbols occurring in the right

hand side of the rule of type 1, and M, is empty;

— @ = {Pyq,...,D7}, is very similar with @ built for the above proof (i), but

makes use of the two membranes; @ contains:

— &1 = ({X = (Yir,in) | 11 <iy3 < (k1)1, and thereis iy : (X = Y, A —)

a matrix of type 2 }U

Eilenberg P Systems 53

{X — (N3, in) | 13 < i3 < (k3)3, and thereis iz : (X = X\, A — x)
a matrix of type 4 }U
{A = (zig,in) | 12 <o < (k1)2, and thereis iz : (X - Y, A — x)
a matrix of type 2 U
{A = (zig,in) | 14 <iq < (k3)4, and thereis iy : (X = N\ A — z)
a matrix of type 4 U
{U%# | U € Ny UN5, U ¢ Doms U Domyt, (),

— (@ {i]—)ij—l|1<j<4,01<i1_(k1)1,02<22 (k‘l)
03 <y < (ks)s, 04 <ida < (ks)a} U{f1 = #. fo = #}),

— &3 =(0,{0; = (N out)} U{ij = # |i; >0,1<j<4}),

- @4 - ({fl -)‘7f2 - ()‘70Ut)}7®)7

- P5=({X =Y, 4 - #| (X =Y, A — #) matrix of type 3 }U
010 € M\ D) 0,

- Ps={X =Y, 4y —» #| (X =Y, Ay — #) matrix of type 3 }U
{U — # | U e N1 \Domg},ﬂ),

- &= ({# > #L{# > #}).

In a manner very similar to the proof of (i) it may be shown that FII computes
exactly what G generates. ad

EPP systems exhibit a parallel behaviour not only inside of the membrane
structure but also at the underlying machine level. Potentially, all transitions
emerging from active states may be triggered in one step giving birth to new
cells or colliding others. One problem addressed in this case is also related to the
power of these mechanisms. One may adopt the previous strategy by considering
a RE language generated by a matrix grammar in binary normal form to find
the EPP systems computing that language. Given that EP systems have been
studied in this respect, another solution would be to compare them with EPP
systems. More precisely, given an EP systems with m membranes, s states and
p production rules associated via ¢ components, is it possible to simulate it by
an EPP system? If yes, what are the values for the number of membranes, states
and rules? The next theorem gives an answer to this problem.

Lemma 3. If EII is an EP system with m membranes, s states and p sets of
rules then there exists EIIII an EPP systems with m’ > m membranes, s’ > s
states and p' > p rule transitions such that L(EIT) = L(EIIII).

Proof. Let EFII = (u,X), be an EP systems where p is a membrane structure
consisting of m membranes, and X an Eilenberg machine

:(‘/;FanM17"'Mm7Q§aF7I)a

where () has s states and @ contains p components. The following EPP system
is built EITIT = (¢, X'), where p' = [ou]o and

= (V/7FaQ/7M07M17"'Mmaé/aF/7I)7

with

54 Tudor Balanescu et al.

— V' =VU{z}U{k | 1 < k <t}, where ¢ is the maximum number of transitions
going out from every state of X;

Q' =QU{go | €QtU{grnlg€Q1<k<t,1<h<d)

— My = .

- =0U{P,, P14,..., Py, Pr, Py}, where

o b, =({z—k|1<k<t}0,...,0),
o &, = ({k — z},0,..)1<k<t
0¢p—({a—>(aout)|aef}® ,0),
.@V/:({X*)(XZTL)‘XEV/\F}@ @)

— for any ¢; € @ if there are 1 < u < ¢, tran51t10ns emerging from ¢; and

F(qj, ;1) =1{¢j. }, 1 < k < u (not all $; are supposed to be distinct) then
the following transitions are built in EITIT :

F/(q.ﬂ) - {qJ,O} F’ (QJ,Ovdskl) = {q]',k,l}, 1 < k < u,

F'(qj0,1:Pjk) = {dj,5,2: 5 }

F'(gjn2:Pvr) = {ajksts F'(Gk3, Pr) = {gjral, 1<k <.

A computation in system EITII proceeds in the following way: at the begin-
ning, only the initial state is active and the memory configuration in this state
is Mo, My,..., Mp,. If the EPP system EII is in a state ¢; and the memory
configuration is Mj o, Mj 1,..., M;m, then FIIII must be in g; as well. We will
show that always EIIII has either an active state or at most two active states
but in this case one of them is g; xn, 2 < h < 4, and from the last one (g;x4)
the membrane configuration will vanish and possibly the EPP system sends out
a string. Indeed, if ¢; is an active state in FIIII and M; o, M;1,..., M;,, are
its associated membrane configuration, then in one step = from M; o is changed
by &, into k, a value between 1 and ¢; if v is the number of emerging transitions
from ¢; in E1I, then k > v implies that in the next step the current membrane
configuration will vanish as no more continuation is then allowed from g; o; oth-
erwise, when 1 < k£ < u, only one transition may be triggered from g¢; o and this
is associated with &, which restores back into M; o (the other transitions
emerging from g¢; ¢ cannot be triggered). Pr, leads the EPP system into g; 1.
From this state there are two transitions both associated with &;; that are

triggered in the same time and consequently Mj o, M; 1,..., M; , are processed
by both @; ;.’s and yield the same memory configuration Mj o, M ,,..., M;,, in

both g; 1,2 and g;, . These are then processed in parallel, being both active states.
From the former the current configuration is checked for nonterminal symbols,
@y, and then in the next step only terminal strings are sent out by using @r;
then this memory configuration vanishes as no further transition emerges from
gj k4. In fact this path introduced from every g¢; 1 has the role of collecting
terminal strings outside of the system. From g;; the process resumes as from
gj, and in two steps at most one state will be active on the path from g;. In this
way EII and EIIII compute the same language, thus L(EIT) = L(EIIIT). O

Note 1. From Lemma 3 it follows that if the EP system EII has m membranes,
s states, p components of @, and the maximum number of transitions emerging
from every state is ¢ then the equivalent EPP system has m’ = m+1 membranes,
at most s = (2 + 4t)s states, and at most p’ = p + ¢ + 3 sets of rules.

Eilenberg P Systems 55

Theorem 4. EPP2754715 = EPP3730717 = RE.

Proof. By using Note 1 and the constructions from the proof of Theorem 3 the
result follows. ad

Obviously lower bounds may be obtained for the above discussed parameters
when the two constructions from the proof of Theorem 3 are used in order to get
an EPP equivalent system. This is achieved by applying the procedure provided
by the proof of Lemma 3, but it is left as an exercise for the reader.

4 Linear Solution to SAT Problem

SAT (satisfiability of propositional formulae in conjunctive normal form) is a well
known NP-complete problem. This problem asks whether or not, for a given for-
mula in the conjunctive normal form, there is a truth-assignment of the variables
such that it becomes true. So far some methods to solve in polynomial or just
linear time this problem have been indicated, but at the expense of using an
exponential space of values.

Theorem 5. The SAT problem can be solved in a time linear in the number of
variables and the number of clauses by using an EPP system.

Proof. Let v be a formula in conjunctive normal form consisting of m clauses,
C1,...,Ch, each one being a disjunction, and the variables used are z1, ..., x,.
The following EPP system, EITIT = (u, X), may be then constructed:

p=l1l2- - [mta]me - 21,
X = (VaeraM17"'Mm+17©aFaI)a

where:

V={ap, tg, f | 1 <k <n};
={tp, f |1 <k<n}

- Q={q, %}
— M1 :...:Mm:@, Mm+1 :{al};
- ¢ = {@1,...,@5};
o P :(@,...,@,{ak%fkak“ |1<k<n-—1}),
o Oy =(0,...,0,{ar = tpagy1 |1 <k <n-—1}),
o O3 =(0,...,0,{an, = (fn,out)}),
o &y =(0,...,0,{an — (tn,out)}),
o &5 = ({ty — (t,out) | x is present in Cq,1 < k < n}U

{fx = (fr,out) | 7z is present in C1,1 < k < n},

{tx — (tg,out) | z) is present in Cp,, 1 < k < n}U

{fr = (fx,out) | ~zy is present in Cy,, 1 < k < n}, 0);
= F(q1,P1) = {a1}, 1 <k <2, F(q1,P1) = {2}, 3 < k <4, F(q2,P5) = {q2};
o {Q1}~

56 Tudor Balanescu et al.

EIIII starts from state ¢; with @, ...,0, {a;1}. By applying n—1 times ¢; and &
in parallel and then @3 and &, one generates all truth values for the n variables
in the form of 2™ strings with ¢, or fi indicating that variable x; is either true
or false. All these combinations are obtained in n steps in state ¢2. In the next m
steps @5 checks whether or not at least one truth-assignment satisfies all clause;
this, if exists, will exit the system. The SAT problem is solved in this way in
n + m steps. O

5 Conclusions

In this paper two types of Eilenberg P systems, namely EP systems and EPP
systems, have been introduced. They combine the control structure of an Eilen-
berg machine as a driven mechanism of the computation with a cell-like structure
having a hierarchical organisation of the objects involved in the computational
process. The computational power of EP systems is investigated in respect of
three parameters: number of membranes, number of states, and number of sets
of rules. It is proved that when only one state and one set of rules are used,
four membranes suffice to compute M AT languages. It may be easily observed
that in this case the number of states is irrelevant as with only one single set of
rules, even distributed across many states, one cannot compute more than with
a single state and the same set of rules, ie., EPp, s1 = MAT, m > 4,5 > 1.
When at least three states and eight sets of rules or two membranes and seven
sets of rules are used, then the whole set of RE languages may be computed,
ie, EP 38 = RE or EP>17 = RE. A number of questions regarding lower
limits for the above parameters remain to be further addressed. It is possible to
compute RE by using EP systems with less than three states and/or eight sets
of rules, i.e., EP; s p, where s < 3 and/or p < 87 Is it true that EP, 17 = RE,
p<T7?

EPP systems represent the parallel counter-part of EP systems, allowing not
only the rules inside of the cell-like structure to develop in parallel, but also the
transitions emerging from the same state. More than this, all states that are
reached during the computation process as target states, may trigger in the next
step all transitions emerging from them. It is shown that a general method to
simulate an EP system as an EPP system computing the same language may be
stated. This result allows us to map all properties concerning computationally
completeness properties of EP systems onto EPP systems. Apart from the fact
that EPP systems might describe interesting biological phenomena like cell di-
vision and collision, it is also a computationally complete device and an effective
mechanism for solving NP-complete problems, like SAT, in linear time.

References

1. T. Balanescu, T. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, C. Ver-
tan, Communicating stream X-machines systems are no more than X-machines, J.

Universal Comp. Sci., 5,9 (1999), 494-507.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Eilenberg P Systems 57

C. Calude, Gh. Paun, Computing with Cells and Atoms, Taylor and Francis, Lon-
don, 2000.

E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun, Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation, Gordon & Breach, London,
1994.

J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory, Springer
Verlag, Berlin, 1989.

S. Eilenberg, Automata, Languages and Machines, Academic Press, 1974.

C. Ferretti, G. Mauri, Gh. Paun, C. Zandron, On Three Variants of Rewrit-
ing P Systems, Pre-proceedings of Workshop on Membrane Computing (WMC-
CdeA2001), (C. Martin-Vide, Gh. Paun, eds), Curtea de Arges, Romania, August
2001, 63-76, and Theor. Comp. Sci., to appear.

R. Freund, Gh. Paun, On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars, Proc. Conf. Universal Machines and Computa-
tions, Chisinau, 2001 (M. Margenstern and Y. Rogozhin, eds.), Springer-Verlag,
Berlin, 2001.

M. Gheorghe, Generalised stream X-machines and cooperating grammar systems,
Formal Aspects of Computing, 12 (2000), 459-472.

M. Gheorghe, M. Holcombe, P. Kefalas, Computational models of collective forag-
ing, BioSystems, 61 (2001), 133-141.

M. Holcombe, X-machines as a basis for dynamic system specification, Software
Engineering Journal, 3, 2 (1988), 69-76.

M. Holcombe, Computational models of cells and tissues: Machines, agents and
fungal infection, Briefings in Bioinformatics, 2 (2001), 271-278.

M. Holcombe, What are X-machines, Formal Aspects of Computing, 12 (2000),
418-422.

M. Holcombe, F. Ipate, Correct Systems Building a Business Process Solution,
Springer, Applied Computing Series, 1998.

K. Jensen, Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical
Use, vol 1-3, Springer, Berlin, 1992, 1994, 1997.

S. Ji, The Bhopalator, An information/energy dual model of the living cell, Pre-
proceedings of Workshop on Membrane Computing (WMC-CdeA2001) (C. Martin-
Vide, Gh. Pdun, eds), Curtea de Arges, Romania, August 2001, 123-141, and
Fundamenta Informaticae, 49 (2002), 147-165.

P. Kefalas, Formal modelling of reactive agents as an aggregation of simple be-
haviours, LNAI 2308 (I.P. Vlahavas, C.D. Syropoulos, eds.), Springer, 461-472,
2002.

Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, 1978.

S.N. Krishna, R. Rama, On the power of P systems with sequential and parallel
rewriting, Intern. J. Computer Math., 77, 1-2 (2000), 1-14.

S.N. Krishna, R. Rama, P systems with replicated rewriting, Journal of Automata,
Languages and Combinatorics, 6 (2001), 345-350.

A. Paun, P systems with string objects: Universality results, Pre-proceedings
of Workshop on Membrane Computing (WMC-CdeA2001) (C. Martin-Vide, Gh.
Paun, eds), Curtea de Arges, Romania, August 2001, 229-241.

Gh. Paun, Computing with membranes, Journal of Computer System Sciences, 61,
1 (2000), 108143 (see also Turku Center for Computer Science, TUCS Report No
208, 1998, http://www.tucs.fi).

Gh. Paun, Membrane Computing. An Introduction, Springer, Berlin, 2002.

A MzScheme Implementation
of Transition P Systems

Delia Balbontin Noval, Mario J. Pérez Jiménez,
and Fernando Sancho Caparrini

Dpto. Ciencias de la Computacién e Inteligencia Artificial
Universidad de Sevilla, Espana
{Delia .Balbontin,Mario.Perez,Fernando. Sancho}@cs .us.es

Abstract. The main goal of this paper is to present the design of an
MzScheme program that allows us to simulate the behavior of transition
P systems. For that, a library of procedures have been developed that
work in two stages. In the first one, the parsing/compiling stage, the
input P system is checked, and if it is well defined, then it is represented
by means of an internal grammar. In a second stage, the simulation, the
computation tree associated to the P system is generated until a prefixed
level.

1 Introduction

In October 1998, Gheorghe Paun [1] introduced a new computability model of
a non-deterministic and highly parallel type, the membrane systems. They are
based on the synchronized work of several units, called membranes, structured
in a dynamic hierarchy (understood as vesicles in a space) embedded in a skin
membrane that separates the system from the environment. When a membrane
has no membrane inside, it is called elementary. Each membrane encloses a space
between it and the membranes directly included in it (if any). This space (the
region of the membrane) can contain a multiset (a set where the elements can
be repeated) of objects (represented by symbols of a given alphabet) and a set
of (evolution) rules for them. Each membrane defines an unique region.

This model, called transition P systems, is inspired from the observation that
the processes which take place in the complex structure of a living cell can be
viewed as computation—like processes.

We present here a library of MzScheme procedures [5], that allows us both
to input easily a transition P system and to simulate its non-deterministic and
highly parallel behavior. It reads, analyzes and compiles the input data defining
a P system; then, it generates the subsequent computations.

Our implementation is based on the formalization given in [3].

The program runs in two independent stages: parsing/compiling and simula-
tion/running.

parser [compiler simulator

II — input n ————— Comp(H)

G. P&un et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 58-73, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

A MzScheme Implementation of Transition P Systems 59

At stage one, parsing/compiling, the input data are read and the respective
P system is rewritten as an element of the language generated by a proposed
internal grammar. To get it, the input data have to be syntactically correct
according to the input grammar. Moreover, they have to define a well defined P
system (according to the formalization above mentioned).

Stage two, simulation/running, starts when the parsing/compiling is finished.
Starting from the P system initial configuration, the associated computation tree
is generated. The expansion of that computation tree is made in a progressive
way, level by level (breadth expansion), until to a given depth level. To get it
we follow a breadth-expansion-tree scheme based on the definitions and steps
proposed in [3]:

applicable-rules —
applicability-vectors —
applicability-matrices — configurations

This paper is organized as follows: Section 2 briefly presents some basic con-
cepts about a formalization of transition P systems, following [3]. Section 3 de-
scribes briefly the whole simulator scheme. Section 4 is about the way to input a
P system, showing the proposed input grammar. Section 5 presents the internal
grammar and describes the parser/compiler performance. Section 6 describes the
simulator behavior properly. Finally, in Section 7 we present a complete example
to illustrate the way of working of the program.

2 Preliminaries about a Formalization
of Transition P Systems

Following [3], we recall here the basic concepts and definitions about P systems.

2.1 Membrane Structure and Cells

A membrane structure is a rooted tree, where the nodes are called membranes,
the root is called skin, and the leaves are called elementary membranes.

A cell over an alphabet, A, is a pair (u, M), where p = (V(u), E(u)) is a
membrane structure, and M is an application, M : V(u) — M(A) (the set of
multisets over A).

2.2 Evolution Rules

Let C' = (u, M) be a cell over an alphabet A. Let x € V(u). An evolution rule
associated to z is a 3-tuple r = (d,, v,,) where d,. is the left-side of the rule,
vy is the right-side of the rule, and 4, € {—4, ¢} indicates if the application of
the rule dissolves the membrane.

A collection R of evolution rules associated to C' is a function with domain
V(p) such that for every membrane x € V(u), Ry = {rg.1,...,7s,s,) is a finite

60 Delia Balbontin Noval, Mario J. Pérez Jiménez, Fernando Sancho Caparrini

set (possibly empty) of (evolution) rules associated to z. A priority relation over
R is a function, p, with domain V(x) such that for every membrane z € V (1),
Pz 18 a strict partial order over R, (possibly empty).

2.3 Transition P Systems
A transition P system is a 4-tuple IT = (A, Cy, R, ip), where:

— A is a non-empty finite set (usually called base alphabet).

— Co = (po, M) is a cell over A.

— R is an ordered pair (R, p) where R is a collection of (evolution) rules asso-
ciated to Cp, and p is a priority relation over R.

— g is a node of pg, which specifies the output membrane of I1.

The number |V (p9)] is called the degree of IT.

2.4 Configurations

A configuration, C, of a P system, IT = (A, Co, R,ip) with Cy = (uo, Mp), is a
cell C = (u, M) over A, where V(1) C V(uo), and g has the same root as po.
The configuration Cy will be called the initial configuration of II.

2.5 Applicability

Let € V(10). We say that the (evolution) rule r € R, is semi-applicable to C
if the membrane associated to node x exists in C' (dissolution is not allowed in
the root node), the membrane associated to x has all the necessary objects to
apply the rule, and nodes where the rule tries to send objects (by means of in,)
are children of x.

We say that the rule r € R, is applicable to C, if it is semi-applicable to C
and there is no semi-applicable rules in R, with higher priority.

We say that p € NN is an applicability vector over x € V(u) for C, and we
will denote it as p € Ap(z, (), if it has correct size (that is, for all j greater the
number of rules associated to z we have p(j) =), every rule can be applied as
many times as the vector p indicates, all the rules can be applied simultaneously,
and it is maximal.

We will say that P : V(ug) — NN is an applicability matriz over C, denoted
P € Map(C), if for every x € V(10) we have that P(x) € Ap(x,C).

2.6 Transitions

The ezecution of P over C = (p, M), denoted P(C'), returns a new configuration
C' = (¢, M') of II, that can be considered acting in two stages: (u, M) —
(1, M) — (4, M").

In the first stage we suppose that the rules are applied without attending
dissolving actions, and in the second one dissolution and distribution of contents
are carried out.

A MzScheme Implementation of Transition P Systems 61

We will say that a configuration C; of a P system II yields a configuration Cs
by a transition in one step of II, denoted C; =-j7 Co, if there exists a non—zero
applicability matrix over C1, P, such that P(C7) = Cs.

2.7 Computation Tree

The computation tree of a P system II, denoted Comp(II), is a rooted labeled
maximal tree defined as follows: the root of the tree is the initial configuration,
Cy, of II; the children of a node are the configurations that follow in one step
of transition; nodes and edges are labeled by configurations and applicability
matrices, respectively, in such way that two labeled nodes C,C’ are adjacent in
Comp(IT), by means of an edge labeled with P, if and only if P € Ma,(C)—{0}
and €’ = P(C'). The maximal branches of Comp(II) will be called computations
of IT. We will say that a computation of IT halts if it is a finite branch. The
configurations verifying Map,(C) = {0} will be called halting configurations.

3 Preliminaries about the P Systems Simulator

We consider that the basic features of a computing program able to simulate
transition P systems should be the following:

. To have a formal definition of transition P systems to be based on.

. To choose a suitable programming language to implement the simulation.

. To have an easy way to input the data describing the P system.

. To choose an efficient internal representation of P systems.

. To design a parser/compiler to analyze the input data and to obtain the P
system internal representation.

6. To design a P system simulator of computations to generate the respective

computation tree.

Tk W N~

As we said previously, the implementation we present here has been deve-
loped on MzScheme (a functional language from Lisp family), and it is based
on the formalization given in the above section, but slightly modified. This mo-
dification arises from the convenience to identify the applicable rules to a given
configuration.

The rules of a P system are static elements. Nevertheless, to determine if a
rule r = (d,, vy, 0,) is applicable to an arbitrary configuration C, a new compo-
nent o, € {#t,#£} has been added, getting r* = (d,, vy, §,, ;). Initially, a,. will
be set to #£; it will be modified to #t if (and only if) the rule r is applicable to
C. Consequently, if we denoted for every € V(uo), Ry = {71, ... ,Ts,s, }, then
we have Ry = {r} 1,...,75 . }, with v} s = (dy j, vz j, 0z, Oz) and g j = #£;
then, R* = U, cv(,,) ft, and R = (R", p).

Moreover, for every configuration, C' = (p, M) and every x € V (ug), we will
denote by RS = {rS,...,rS Y, with S = (duj, vaj, 0c j, aj) and o j = #t
if and only if the rule r ; is applicable to C, the tagged-rules of x to C. Finally,
we will note RS = J,ey () RS -

62 Delia Balbontin Noval, Mario J. Pérez Jiménez, Fernando Sancho Caparrini
4 The Input of a Transition P System

To define a P system we need to input its membrane structure and describe the
content of every membrane. Each membrane has symbols from a given alphabet,
transition rules and priority relations over them. The membrane structure has
to be a rooted tree and the priority between rules must be a strict partial order.

4.1 Default Settings
In order to introduce easily any P system we have considered, by default, that:

1. Only finite alphabets A will be used, and the elements of A are symbols.

2. A word € A* is a string of symbols of A. We will represent the empty word
by ().

3. The membranes will be labeled with the the first N natural numbers, where
N is the degree of the P system.

4. The skin membrane is labeled with 1.

5. A distinguished membrane is considered as the output membrane.

6. We will input the membrane structure of a P system as a list of contain-pairs
(i j), representing the relation “membrane i contains membrane j”.

7. Every rule has a word as its antecedent, and a set of actions as its consequent.
Only the last action could be “delete”. The other ones have the form (word
target).

8. A target could be “here”, “out” or a membrane label.

9. If a membrane has k > 0 rules, then their labels go from 1 to k.

10. We represent the relation “rule r runs before rule s” by the preference-pair
(r s).

11. Every membrane contains a word, a list of rules, and a list of preference-pairs.

4.2 The Input Grammar

With the default settings provided above, any P system of degree N, over an
alphabet A, is recognized by the input grammar defined as follows:

< input — ps > u= (A N < struct >< objects >< rules >< orders >< output >)
< struct > =(<arc><arc>--- <arc>)

< arc> = (< memb —ref >< memb—ref >)

<memb—ref> u=1[2|3]|... |N

< objects > n= [< word >< word >N.< word >]

< word > n=Ywe A"

< rules > n= [< memb — rules >.N.< memb — rules >]

< memb — rules > == (< rule >< rule > --- < rule >)

< rule > u= (K word > — (< action > --- < action > delete)) |
(< word > — (< action > -+ < action >))

A MzScheme Implementation of Transition P Systems 63

< action > n= (< word >< target >)
< target > x=here | out | < memb-—ref >
< orders > = [< memb — or >< memb — or >.N.< memb — or >|

< memb—or > u= (< pref — pair >< pref — pair > --- < pref — pair >)
< pref —pair > == (< rule —ref >< rule —ref >)

<rule—ref> ==1]2]|3...

< output > n= < memb—ref >

Here, (a b...z) stands for a list (standard MzScheme list), and [a b N). 2] stands
for a vector of N elements (standard MzScheme vector).

5 The Parser/Compiler

The parser/compiler reads the input data describing a P system and analyzes:
if they are syntactically correct according to the input grammar, if they define
a well defined P system according to the chosen formalization, and, if no error
appears, it returns the P system according to the proposed internal grammar.

Even if the input system is syntactically correct, we cannot conclude that
any input data recognized by the input grammar, define a well-defined P system.
In fact, it could happen that the structure < struct > defined as a list of arcs
(< arc >*) were not a rooted tree with root at membrane label 1; or, that there
exists a membrane, such that the order relation (< mem — or >) defined as a
list of preference pairs (< pref — pair >*) were not a strict partial order.

The MzScheme sentence to execute the parser/compiler is:

(parser-ps N A <struct> <objects> <rules> <orders> <output>)

This process of parsing/compiling works as follows:

— The alphabet A is checked.

— The rooted tree 1, associated to the membrane structure, is created.

— For every membrane x, its objects are encoded as a multiset M, getting
M :V(p) — M(A).

— Then, the initial configuration, Co = (u, M), is built.

— Every rule, r, from the input data is encoded by r* = (d,., v, é,, «;), where
a,- is set initially to #£. Then, one gets R*.

— For every membrane z a strict partial order p, : R, x R, — {#t,#£} is
returned, with: p,(r,t) = #t < ¢ r runs before s” at x. So, we obtain p.

— From R* and p we have R = (R*, p).

— The output membrane is checked to be in V(u), getting 4.

If no error occurs, the parser-ps procedure returns a well-defined P system
T = (A, Co, R,ip) as an element recognized by the internal grammar below.

64 Delia Balbontin Noval, Mario J. Pérez Jiménez, Fernando Sancho Caparrini

5.1 Internal Grammar

The grammar to represent internally and to deal with P systems of degree N is
the following;:

< ps > = [<alph >; < conf >; < Rules >; < orders > ; < output >|
< alph > = [a1,asz,...,aK]

< conf > n= [< tree > < multisets >|

< tree > = [< vertices > ; < arcs > ; < root >]
<wvertices > u={<z>,...,<z>}

< arcs > s={<arc>, <arc>, ..., <arc>}

< arc> n=<Kr > <z >

<z> s=VneNT |n<N

< root > n=1

< multisets > 1= [< multiset >< multiset > N, < multiset >]
< multiset > == [< nat ><nat > ¥ < nat >]

< nat > n=VneN

< Rules > n= [< rules >< rules > N < rules >]

< rules > n= (< rule >< rule > ... < rule >|

< rule > = [< anteced > ; < actions > ; < dissol > ; < app — tag >|
< anteced > = < multiset >

< actions > = (< action >< action > --- < action >)

< action > n= [< multiset > ; < target >]

< target > :=here | out | <z>

< dissol > =#t | #f

<app—tag > == F#t | F#f

<orders > u=[<test><test> N. <test>]

< test > = X:rules X rules — {#t,#£}

< output > =<r>

6 The Simulator

Once the parsing/compiling task is finished, we have a well-defined P system,
namely IT = (A,Cy, R,ip), and we have to generate the computation tree
Comp(IT). To do that we use the procedure configurations:

configurations

n Comp ()

We get the computation tree Comp(I7) through the MzScheme sentence
(configurations II level).

A MzScheme Implementation of Transition P Systems 65

The procedure configurations is based on the breadth-expansion-tree
procedure that, starting from the initial configuration Cj, generates level by level
the computation tree. It uses the auxiliary procedures applicability-vectors,
tag-rules and apply-matrix. Here we present a brief outline. We will give in
the next sections a detailed description of every one.

The operators to compute the successor configurations of a given configura-
tion, C, are the applicability matrices. The process to generate the elements of
Ma, (C) works as follows:

— RC (that is, the tagged-rules of x to C) is obtained by the tag-rules pro-
cedure. For every rule r* = (d,,v,,0,,,) € R*, it sets a,, = #t iff r is
applicable to C.

— Every RS, for every membrane x in C, is easily obtained from RC.

— Every Ap(z,C) (that is, the applicability vectors of membrane x in C) is
generated from RS, by means of the applicability-vectors procedure.

— Finally, Map(C) is constructed as a cartesian product from the set of ap-
plicability vectors Ap(x,C), of every membrane z in C.

xry
/(Rgl applicability—vectors Ap(l'l, C) \
_ %o . i
C tag—rules RC _*2, Rgz applicability—vectors Ap(l‘g, C) — MAP (C)

x3

C licability— t
\‘ Rz3 applicability—vectors Ap(l‘3,0) /‘

Then, every P € Map(C) is applied to C' to obtain the successor configuration
P(C). To do that the apply-matrix procedure is used.

7P E Mp, (C) S ¢y = py(0)
MAP(C) — Pe MAP(C) m} Cy = PQ(C)
N Py € My, (C) SBUTmE o0 py(0)

6.1 The Breadth-Expansion-Tree Procedure

This procedure is based on a dynamic breadth-search scheme; this means that
for every node of the tree to be built, the applicable operators are generated
dynamically.

To start, the breadth-expansion-tree procedure needs: (1) an initial node,
ng, (2) a test final-node? to check if a node n is or not a final node, (3) a
function generate-op, that, taking a node n, returns the set of operators Op,,
to be applied to n and, finally, (4) another function apply-op that, taking a node
n and an operator op € Op,,, returns the successor node of n by this operator
op.

The breadth-expansion-tree procedure expands the tree and returns the
set of final nodes.

66

Delia Balbontin Noval, Mario J. Pérez Jiménez, Fernando Sancho Caparrini

Procedure breadth-expansion-tree (no final-node? generate-op
apply-op)
final-nodes < {}
open-nodes < {np}
Repeat until open-nodes = () do
n < the first node in open-nodes
suce, — {}
If (final-node? n) = #t
then final-nodes <— {n}U final-nodes
else
Op,, < (generate-op n)
For every op € Op,, do
suc < (apply-op op n)
If suc # #£ A suc ¢ open-nodes then
sucey, « suce, U {suc}
open-nodes < (open-nodes—{n}) U succy,
Return final-nodes

The procedures configurations and applicability-vectors, to generate

configurations and applicability vectors, respectively, are based on this proce-
dure.

6.2 The Configurations Procedure

For a given P system II = (A, Cy, R,ip), we generate Comp(I7) (until a level
given by the user), through the MzScheme sentence (configurations I1 level).
This procedure works as follows:

1.

2.

It starts defining locally:

— The node-structure as < node > ::= [C;Rc;patth where C' ia a con-
figuration; R, the tagged-rules for C; and pathc, the list of operators
applied to reach the actual node from the initial one.

— The final-node? test. A node n = [C; RC, path] is a final node if either
it is a halting node, or the path length has reached the value of level.

— The generate-op function. It takes a node n = [C;R®;path] and re-
turns the applicability matrices M ap(C). It needs the procedure appli-
cability-vectors.

— Finally, the procedure apply-op, which, taking a node n = [C; R®, path]
and an applicability matrix P € Map(C), returns the successor node
n' = [C'; R®"; P U path]. Tt needs the procedures apply-matrix and
tag-rules.

Then, it builds the init-node: ng = [Co; R°°; ()], making use of the procedure
tag-rules to get R0,

A MzScheme Implementation of Transition P Systems 67

3. It expands the tree through the sentence:
(breadth-expansion-tree
init — node final-node? generate-op apply-op)
4. Finally, it returns the list of final-nodes [C; R®; pathc).

Procedure configurations (II level)

1. Local definitions
< node > = [C; RY; pathc]
final —node? ::= \; : < node > — {#t, #f}
generate —op =)\ : <node > — Ma _(C) = (P, P,,...)
apply — op = A3 : k X < node > — [C"; Rclgpathc/]
with C' = P (C)
and, pathcr = P, U pathe
2. The initial node
R ¢+ (tag — rules Co R* p)
pathc, < ()
ng + [Co; RY; pathc,)
3. The final-nodes
final-nodes < (breadth-expansion-tree
no final-node? generate-op apply-op)
4. Return final-nodes

Notes:

— M ([C; RY; pathc]) = #t < (o = #£ Vr € RY) V |pathc| = level
— Ao uses applicability-vectors procedure to get Ma, (C).
— A3 uses apply-matrix procedure to get C' = P(C) and then, tag-rules to
get R,
Every node [C; RY;pathc] € final-nodes, contains all the information we
need about the computation tree. Particularly,
o If for every r € RC is o, = #£, then C is a halting configuration, and
pathe is a halting computation of II.
e Otherwise, C is a non-halting configuration, and the branch pathe could
be extended further than the prefixed level.

6.3 The Applicability-Vectors Procedure

To generate the applicability vectors for a membrane z in C, we only need M,
and D = [dy,ds, . ..,ds, |, where M, is the multiset of z, and d,. (r =1,2,..., ;)
is the antecedent of the tagged-rule r in RS, provided that a, = #t. (Note: if
a, = #£, then we take d,. = #£.) We generate Ap(x, C) through the MzScheme
sentence: (applicability-vectors M, D). The procedure works as follows:

68 Delia Balbontin Noval, Mario J. Pérez Jiménez, Fernando Sancho Caparrini

1. It starts defining locally:
— The node-structure as < node > ::= [m; V], where m is a multiset, and
V= [’Ul,UQ, ce ,Usw].
— The final-node? test. A node n = [m;V] is a final node if Vd, €
D (d, = #£fVm<d,).

— The generate-op function. It returns the operators list (dy, da, ..., ds,).
— The apply-op procedure. From a node n = [m;V], and an operator
d, # #f£, it returns the successor node n’ = [m/; V'], with m’ = m —

dr, v, = v, + 1, and v} =v;, V j # r. If d, = #£, then it returns #£.
2. Then, it builds the init-node: ng = [M,;[0,0, 5= ,0]].
3. It expands the tree through the sentence:
(breadth-expansion-tree
init — node final-node? generate-op apply-op)y
4. Finally, it returns the applicability vector V of every final node [m; V].

Procedure applicability-vectors (M, D)

1. Local definitions

< node > n=[m; V] ;whith Vo = [vq, va, ..., vs,]
final —node? ::= Aj : < node > — {#t,#f}
generate — op = Ay : < node > — (dy,ds,...,ds,)
apply —op = A3:7 X <node > — [m/; V']
with, m" =m —d, , V' = [v},vy,...,v,],

being, v, = v, + 1 but, v; = v; Vj #r
2. The initial node
mo <— M,
Vo + 10,0, 5=, 0]
no < [mo; Vol
3. The final-nodes
final-nodes < (breadth-expansion-tree
ng final-node? generate-op apply-op)
4. Returns the vector V of every node [m; V] of final-nodes

Notes:
— Every v, counts the times the rule r could be applied.
— M(m;V]) =#t < Vd,. € D(d, = #EfVm <d,)
— A3(r, [m; V]) = #£ if d,. = #£

6.4 The Tag-Rules Procedure

The tag-rules procedure updates the app-tag «, of those rules r of R* that
are applicable to a given configuration C' = (u, M). The MzSheme sentence
(tag-rules C' R* p) returns RC. The procedure works as follows:

A MzScheme Implementation of Transition P Systems 69

1. It starts getting the degree, N, of II.
2. Then, its work is based on an ezternal and an internal loop, to go through
the membranes and through the rules of every membrane, respectively.

— The external loop generates Rf, for every x = 1,2,..., N, and, once it is
finished, it builds R = (RY,RY,...,R). If ¢ V(u) V M, = 0, then
RS = R, otherwise, RS has to be generated by the internal loop.

— The internal loop generates RS for a given x € V(u). It checks the
applicability of every rule r, ; € R} to C, it changes o, ; from #f£ to #t
if so, and it obtains the tagged-rule rf) ;> finally, it builds and returns to

C C C)_

the external loop, RS = (r$,,rSy, ... 15,

3. It returns RC.

Procedure tag-rules (C' R* p)
N « length of p
For every x=1,2,...,N do
If v ¢ V() V M, =0 then RS + R
else
For every j=1,2,...,5; do
If ry; is not semi-applicable to C then rf,j T
else
If Jk < j | agk =#t A p(k,j) = #t then rgj 7y
else rgj — (dg,j,Va,5, 05,5, #t)
If o, ; = #t then
For every k < j| agk =#t Ap(j, k) = #t do

J

C
Qg < #1
C C C C
Rw A (rLl? rw,27) rw,sm)
C C C C
RC « (RS,RS,...,R%)
Return R

6.5 The Apply-Matrix Procedure

The apply-matrix procedure computes one transition step, C' = P(C), from
a configuration, C' = (u, M), and an applicability matriz, P € Map(C). The
MzSheme sentence is (apply-matrix C P RY). It works in two steps:

1. For every membrane z in C and every rule r, ; in RS, provided P, ; #0:
— rg; is applied P, ; times without dissolution. So, some objects of mem-
brane = are consumed, and maybe itself and/or, its father and children
receive some objects. A more internal loop identifies the target where
every action of the rule sends its objects,
— then, if r;, ; is a dissolution rule, x is stored in A as a node to be dissolved.

70 Delia Balbontin Noval, Mario J. Pérez Jiménez, Fernando Sancho Caparrini

2. Then, we visit the nodes of u in a bottom-up ordered way, the nodes kept on
A are dissolved. Every dissolved node sends its objects (and children) to its
father and disappears from p.

Procedure apply-matrix (C' P RY)
M M
W p
A}
For every z € V(u') do
If x # root(y') then f, < the father of x in ' else f, < #f
For every 7y ; = (dy j, Vs j, 0,z ;) € RS do
If P,; #0 then
MJ/ — M]/ — P, ®dy;
For every action = (m,tar) € v, ; do
If tar ¢ V(i) then
If tar = here then tar < x else tar < f,
If tar # #f then M, < M|, + P, ;®m
If 0, ; = #t then A+ AU {z}
nodes < the bottom-up ordered V(i)
For every z € nodes do
If x € A then
M}« M)}, + M,
M, 0
i delete-node (u',)
Return C’ = (¢, M)

7 A Complete Example: Generating Squares 12, 22,...,n2

Finally we present here a complete example to illustrate the way our simulator
should be used. The P system to be considered is the following one:

b —= b (e, in)

88— g >g—ad

A MzScheme Implementation of Transition P Systems 71

7.1 The Input Data

First of all, we have to input the data describing the P system. We do that
defining the different elements: A, N, struct, output, objects, rules, and orders.
As we need the symbol a™cf, for the given n, this one is generated by the
auxiliar procedure generate-symbol. The MzScheme sentence (sql n), assigns
the respective value to every compound, and invokes the parser/compiler.

> (define sql
(lambda (n)
(let ((N 5)
(A’@bcefg)
(o_m 4)
(struct ’((1 2) (2 3) (2 4) (3 5)))
(objects
(vector) O O () (generate-symbol
(list ’an) ’(c 1) (£ D))
(rules
(vector
>0
>((b —> ((b here) (e 4)))
(gg -> ((g here)))
(g -> ((a here) delete)))
>((ff -> ((g here) delete)))
>
’((ac -> ((bc here)))
(ac -> ((bc here) delete))
(f -> ((£ff here))))))
(orders
(vector () *((23)) O >0 >N

(parser-ps N A struct objects rules orders o_m))))

7.2 The Parser-Compiler

The parser/compiler returns the internal representation of the P system, and
displays it in a readable way. So, if n = 4 the sentence

(define ps (sql 4))
defines, if no error occurs, ps as the representation to be used together with the
configurations procedure.

7.3 Configurations

Finally, using the procedure configurations to expand the computation tree, we
obtain all configurations until the given level. In particular, with an appropriate
level we get all the final configurations. In the previous example it is enough to
use 9 as depth level.

72 Delia Balbontin Noval, Mario J. Pérez Jiménez, Fernando Sancho Caparrini

> (configurations ps 9)
TREE: ((12345) ((12) (23) (24) (35)) 1) ;a non-halting
CONTENTS: ;configuration
Membrane 1 and Membrane 4:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #Q)
Membrane 2:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #(#f #f #f)
Membrane 3:
Multiset: #(0 0 0 0 0 0)
Applic-Rules: #(#f)
Membrane 5:

Multiset: #(0 4 1 0 512 0)

Applic-Rules: #(#f #f #t) ;the third rule could be applied
TREE: (1 4) ((14) D ;a halting configuration
CONTENTS:

Membrane 1:
Multiset: #(1 4 10 0 0)
Applic-Rules: #(Q)
Membrane 4:
Multiset: #(0 0 0 16 0 0)
Applic-Rules: #(Q)
TREE: (1 4) (14 D ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(2 310 0 0)
Applic-Rules: #(Q)
Membrane 4:
Multiset: #(0 0 0 9 0 0)
Applic-Rules: #(Q)
TREE: ((14) (14 D ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(3 210 0 0)
Applic-Rules: #(Q)
Membrane 4:
Multiset: #(0 0 0 4 0 0)
Applic-Rules: #(Q)
TREE: (1 4) ((14)) D ;a halting configuration
CONTENTS:
Membrane 1:
Multiset: #(4 1100 0)
Applic-Rules: #()
Membrane 4:
Multiset: #(0 0 0 1 0 0)
Applic-Rules: #()

Output Membranes: (() ecececececececececee ceceecece eecee €)

A MzScheme Implementation of Transition P Systems 73

8 Conclusions

Up to now there is no implementation of P systems with a practical usefulness
that allows the researchers to test and improve the abstract designs they make.
The simulation of P systems by conventional programming languages can be
considered not only as a practical approach to this computing model, but also
as an useful way to understand and improved the P systems designed to solve
real problems. We think that, because of the standard grammar it uses, the
program presented here can be used both as a research tool and a teaching tool,
allowing to see the way the P system evolves along its running. The program
has been developed in such a way that it could be improved to simulate different
variants of P systems. In a future work a graphical interface will be added, to
make easier the interaction with the user.

References

1. Gh. Paun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108-143, and Turku Center for Computer Science-TUCS Report No
208, 1998 (www.tucs.fi).

2. Gh. Paun, G. Rozenberg, A guide to membrane computing, Theoretical Computer
Science, 287, 1 (2002), 73-100.

3. M.J. Pérez—Jiménez, F. Sancho-Caparrini. A formalization of transition P systems.
Fundamenta Informaticae, 49, 1-3 (2002), 261-272.

4. M.J. Pérez—Jiménez, F. Sancho-Caparrini. Verifying a P system generating squares.
Romanian Journal of Information Science and Technology, 5, 2-3 (2002), 181-191.

5. MzScheme Home Page. http://www.cs.rice.edu/CS/PLT/packages/mzscheme/

Preliminaries about Some Possible Applications
of P Systems in Linguistics

Gemma Bel Enguix

Rovira i Virgili University
Pca Imperial Tarraco, 1, 43005 Tarragona
gbe@astor.urv.es

Abstract. Membrane computing [Paun, 2000] is a new and fruitful pa-
radigm of natural computing. The present paper is devoted to some
preliminary ideas about how membrane computing can be applied to
linguistics. To this end, first some concepts are defined which introduce
what we call linguistic P systems. Then, three examples of quite sim-
ple applications to pragmatics, phonetic evolution, and dialogue are dis-
cussed.

1 Introduction

The most important intuition this paper is based on is that membranes can be
understood as contexts. Contexts may be different words, persons, social groups,
historical periods, languages. They can accept, reject, or produce changes in
elements they have inside. At the same time, contexts/membranes and their
rules evolve, that is, change, appear, vanish, etc.

This analogy gives rise to a quite suggestive framework to deal with language,
understood as an element continuously evolving in a changing world. Language
develops and evolves closely related with the environment and, likewise, it can
be an active factor of change in its environment. Therefore, following our first
analogy, membranes and elements of the system are constantly interacting.

The main elements in the process of communication are the addresser, the
addressee, the message, and the context. Syntax is the branch of linguistics which
deals with the internal structure of the message. This approach does not seem to
be the best to explain how utterances are constructed. Nevertheless, membranes
can explain, simulate, and perhaps predict how the elements involved in the
communicative process are able to modify the structure or the meaning of the
message, and also how the message can create new contexts or transform those
which already exist. Pragmatics, language evolution, semantics, sociolinguistics,
dialogue, belong to the set of sciences of language that are susceptible to be
approached from this perspective.

The present paper is the first attempt to construct a complex game deal-
ing with the simulation of behavior of languages, whose structures, rules, and
meanings depend on the space-time coordinates where utterances are generated.

Bearing these goals in mind, linguistic P systems are introduced in Section
2. In Section 3, a preliminary application to pragmatics is discussed. Section 4

G. P&un et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 74-89, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

Preliminaries about Some Possible Applications of P Systems in Linguistics 75

is devoted to define a P system that is able to reproduce linguistic evolution
and, finally, Section 5 is a very preliminary introduction to dialogue in terms of
membrane computing.

2 Linguistic P Systems

The starting point of linguistic P systems are P systems as they were defined in
[Paun, 2000]. Original P systems are designed to generate formal languages, that
is, languages that lack interaction with the environment and semantics. In order
to adapt P systems to the complexity of verbal language, some concepts must
be modified or introduced. In this section, we define some new notions about
domains, alphabets, membranes, operations with membranes, as well as new
rules. These notions refer to phenomena that occur in human verbal language.

2.1 Domains and Alphabets

A linguistic P system has one or more alphabets, which can change or evolve
during the computation. Each alphabet evolves independently.

The domain D of a membrane is the definition of the symbols it accepts.
Domains are related to one or more alphabets (for example, the domain DM,
can be the union of two alphabets, V;,, UV}). The domain of the skin membrane
is the union of the domains of its internal membranes. Several membranes of the
same system can have the same domain.

The function h, called function of emigration, establishes a correspondence
between symbols placed in different membranes. For instance, the function h(M,,
< M,,) establishes the correspondence between symbols belonging to the mem-
brane M,, and symbols belonging to the membrane M,,. The rules of this func-
tion have the following form: h(M,, < M,,) = {@iny,, <> Qingg,, s- -5 bingg,
Biny,, }- They are called rules of emigration. Sometimes, emigration rules have
the symbol “—” instead “<”. They are non-return emigration rules.

The subscript ; attached to an element in a membrane means that this ele-
ment is not accepted by the domain of the membrane which it belongs to. If a is
not included in the domain of M,, and the rule h(M,, <+ M) = Gin,,, 4 Qiny,,
does not exist, then a;p,, = a;. Elements marked with ; are not taken into ac-
count as output of the membrane system when computation stops.

Alphabets can evolve by means of two processes:

1. Some symbols are added to the vocabulary: for example, for V7 = {1, 2, 3},
the rule ADD {4} TO V; increases the alphabet so as V7 = {1,2,3,4}.

2. Some symbols are erased from the vocabulary: for example, for V; = {1, 2, 3},
the rule DEL {3} FROM V; decreases the alphabet so as V4 = {1, 2}.

Domains associated with each membrane can evolve. If they do it, they are
called wvariable domains. The processes for changing domains are the following
four:

76 Gemma Bel Enguix

1. New symbols are added to vocabularies belonging to the domain. For exam-
ple, for Vi = {1,2,3} and Dy, = Vi, the rule ADD {4} TO V; increases
the domain.

2. Symbols are deleted from vocabularies belonging to the domain. For example,
for V1 = {1,2,3} and Dy, = Vi, the rule DEL {3} FROM V; decreases
the domain.

3. New vocabularies are added to a domain. For example, for V; = {1,2,3},
Vo = {a,b,c} and Dy, = Vi, the rule ADD Vo TO Dy, has as result
DM" = Vl U Vg.

4. A vocabulary is deleted from a domain. DEL V; FROM D)y, , applied to
D, = V1 U Vs, has as result Dy, = Va.

2.2 Membranes and Operations with Membranes

We define several operations with the membranes of a linguistic P system.

A membrane M,, in a linguistic P system, is defined in each state by means
of two items: a) its domain, D, and b) the symbols that the membrane contains
inside, (z..z). Thus, M,, = (DM,,x..2).

1

2

Fig. 1. Basic configuration

A linguistic P system can have one or more than one output membranes.

Deletion is the operation by means of which a membrane M, is dissolved and
its elements go to the immediately external membrane. These elements will be
accepted or rejected according to the definition of the new membrane. The rule
for deleting membrane M, is written as dM,,.

2

Fig. 2. Deletion

Ezample 1. Let IT be a P system with three membranes, [1 [2]2 [3]3]1, where
V1 = {a,b, C,d}, ‘/2 = {Oé,ﬂ}, DMQ = ‘/17 DMg = ‘/2, DMl = DMQ UDM3

Preliminaries about Some Possible Applications of P Systems in Linguistics 77

Assume that after some evolution steps the configuration reached is as shown
in Fig. 1.
In this moment, the rule 6 M3 is applied, with the result as shown in Fig. 2.

1

3
a;biciB66
aibi bzaﬁ

Fig. 3. Expansion

Ezxpansion is the operation by means of which a membrane M, can be
expanded to other adjacent or external membranes using the rule ¥ M, TO
M,,, M. That means that membranes M,, and M; are dissolved in M, and
their elements must be reformulated following the definition of M,,.

Ezxample 2. By applying the rule 9»Ms TO Ms to the system in the previous
example, we obtain the situation in Fig. 3.

1
2
abeBi B Bi
abbay; B3;

Fig. 4. Absorption

Absorption is the operation by means of which a membrane M,, disappears
dissolved in another adjacent or external membrane M,,. Its elements must be
reformulated according to the definition of M,,. The rule is ¢M,, IN ,,.

Example 3. If we apply ¢Ms IN My to II, the result is the system in Fig. 4.

1
2

Fig. 5. Erasing

Erasing is the operation by means of which, given a membrane M,,, this can
completely disappear with all its elements. The rule is xM,

78 Gemma Bel Enguix

Ezample 4. If we apply xM3 to I, the result is the system in Fig. 5.

Cloning is the operation by means of which a membrane M,,, with exactly
the same domain and elements, is copied somewhere in the system. The rule has
the form «M,, IN M,,.

FEzample 5. For instance, in II we can apply kMg IN M. The result is the
system from Fig. 6.

abe3;8; 8
4

Fig. 6. Cloning

In this example, M}, is the clone of Ms3.

Invasion is the operation by means of which a membrane M, is generated
in any place in the system using the rule vM,, IN M,,. The new membrane is
empty and its domain definition is given by the notation BY M, where M, is
either the membrane where it is generated or the membrane that de rule belongs
to.

Ezample 6. For instance, we can crate a new membrane in Ms from the mem-

brane Mjs. The rule is vMy IN My BY Ms.

abef3; 3; 8;

Fig. 7. Invasion

In this example M, has the same domain than M3.

If a linguistic P system has more than one alphabet but only one domain or
more than one domain, but only one alphabet, then it is called non-integrative.

Fact 1. Let M,, and M, be two adjacent membranes. Then ¢M,, IN M,, =
WMy, TO M,,. Thus, for adjacent membranes, absorption (¢) and expansion (i)
are inverse operations.

Preliminaries about Some Possible Applications of P Systems in Linguistics 79

]

Fact 2. Let M,, be a membrane immediately external to M,. Then §M,
oM, IN M,,.

Ezample 7. $M,, IN M,, = v M,, TO M, (Fig. 8).

k k
n m
m éM, IN Mo
VM, TO M,

Fig. 8. Absorption and expansion as inverse operations

Ezample 8. 6M,, = ¢M,, IN M, (Fig. 9).

k
m abB;
az 15 éM,, IN M,,

Fig. 9. Deletion and absorption as equivalent operations

2.3 Inactive and Sleeping Rules

Rules belonging to a membrane can only use the elements that the membrane
accepts as domain. If a membrane has any rule with an element that does not
belong to its domain, then that rule becomes inactive. If the membrane evolves
during the computation and it accepts the necessary element, then the rule is
immediately activated.

Sleeping rules are well-formed rules in a given membrane, but they are in-
active until some element activates them. Sleeping rules are denoted by o. For
example, there can exist a rule such that or, : ¢ — §, but this rule cannot be
applied before being activated. There are several ways of activating a sleeping
rule (the symbol ¢ is used to express the ctivation). These rules are the following:

1. To put the sleeping rule into another one which is active. For example, having
a sleeping rule ors, we can writte r1 : b — absrsce.

2. There can exist conditional rules; for instance, consider IF 6 M3 — ¢rs. In
this case, if M3 is deleted, then the rule ors is activated.

80 Gemma Bel Enguix

3. Finally, there can be a clock regulating the activation of some sleeping rules.
It can be programmed as a counter, so that after some rule or set of rules has
been applied several times, another one is activated. For example, a counter
¢, can be considered, that increases each time a rule is applied in a system.
Then, we can have, for instance, a rule of the form r,, : ¢, = 14 — ¢rs.

The same procedures may be used for deactivating a rule. The only difference
is the adjunction of o (the symbol of sleeping) instead of <.

3 Applications to Pragmatics

Many definitions of pragmatics have been given. We will deal with several ones
that P systems can deal with, those which highlight the connection between
linguistic utterances and addressee. In other words, we think that P systems can
explain the different interpretation of an utterance depending on the context
(personal or social, related to the time or ideology) where it is uttered and
decodified. In this sense, some opinions and formalizations are pointed up.

According to [Levinson, 1983, 1], “the modern usage of the term pragmatics
is attributable to the philosopher [Morris, 1938], who was concerned to outline
(after Locke and Peirce) the general shape of a science of signs, or semiotics.
Within semiotics, Morris distinguished three distinct branches of inquiry: syntax,
being the study of ‘the formal relation of signs to one another’, semantics, the
study of ‘the relations of signs to the objects to which the signs are applicable’,
and pragmatics, the study of ‘the relations of signs to the interpreters’”.

As we have seen, according to Morris, syntax, semantics and pragmatics
are three constituents of a formal model that is able to explain the systems
of meaning. The first and deepest one is syntax, the second one is semantics
and, finally, pragmatics is the last component playing in the game of generating
utterances with meaning.

Some other authors, as Katz and Fodor, understand pragmatics as the theory
concerned with the disambiguation of sentences by the context in which they
were uttered. The formal definition is the following [Katz, 1977, 19]:

Let S be the set of sentences in language L, C' the set of possible contexts,
P the set of propositions, and U the cartesian product of S x C, and let the
corresponding lower case letters stand for elements or members of each of those
sets such as s € S, ce C, pe P, u € U; then

f(S,C) =P

Thus, when the meaning of a proposition is established, it is necessary to
take into account the utterance plus the context, that is to say, the variations
that the context causes in the meaning.

In this way, [Levinson, 1983, 21] uphold that: Pragmatics is the study of the
relations between language and context that are basic to an account of language
understanding.

As a formal recapitulation of all these definitions, we take the Katz’ formal-
ization f(s,¢) = p. We will show the suitability of P systems in the interpretation

Preliminaries about Some Possible Applications of P Systems in Linguistics 81

of utterances depending on the context. To do so, we need a P system with at
least two output membranes, since it is necessary to compare the final elements
in each one of them. Rules are thought so as, with only one vocabulary, and the
same membrane definition, languages generated in each of the output membranes
would be the same. Then, there is a unique utterance, which can change depend-
ing on if the addressee accepts or not the message and how it is interpreted by
it.

3.1 An Example

We can imagine a simple P system with two output membranes, My and My, and
generating a regular language in each of them, which are the output membranes.
Specifically, let us consider the system:

@m@: 00
ou@} :

3

I

cab

Fig. 10. P systems applied to pragmatics

I = (Vl,‘/Q,Ml, ...,]\447 DMl, ..7DM4, h(MQ,Mg — M4), h(Ml — M4),
(R17p1)7"'7(R4ap4)a2a4)7

Vl = {aabaca d}a

V2 = {aaﬁav}a

n = [1[2 }2 [3]3 [4]4]1,
= (ViuVa, a),

M2 = (Vl7 @),

82 Gemma Bel Enguix

M3 = (Vh @),

My = (V27 Q))v

h(Msg, Mz — My) = (ainMQ,g © Qinagys Vinagy s € Binagy s Qinagy 5 < 'YinM4)7
h(Ml — M4) - (aian — ainM47 bian — ﬁinM47 dian — ’YinM4)7

Ry = {r1:a— (btos), ra:a— (x,to3)}, p1 = 0,

Ry = {d—) ab}, P2 = @,

Rs = {b — (cd,to2)d, d — (cd,tos)}, p3 = 0,

Ry = {y = (o, to1)aB}, ps = 0.

(The target indications to; are interpreted as “go to membrane j”, irrespective
whether j is an adjacent membrane or not.)

In the first step we can apply the rule Rir; or Rire. With Ryro the system
stops immediately, and the outcome is (). Therefore, we will apply Riri. The
system evolves as shown in Fig. 10.

In this state, the process can start again or, by means of the application of
Ryry, M3 disappears and the system stops. In this easy example, by applying
the same rules, changing only depending on the domain, two different results
are obtained in Ms and My, the output membranes. When the system stops we
have My = (cab)™ and My = (af)™ for n > 0. Remember that elements as ¢;"”,
without rules of emigration, are eliminated when computation finishes.

Therefore, it can be said that, following the formalization given by Katz,
f(s,¢) = p, in this context we have: f(cab, My) = cab, f(cab, My) = af.

4 Applications to Linguistic Evolution

P systems can be useful for modeling linguistic evolution of languages from a
historical point of view. Our intuition is that, by means of the activation/de-
activation of rules and the change in alphabets and domains, it is possible to
explain the mechanisms of linguistic changes, being phonetic or syntactic ones.

The most important features of linguistic P systems applied to languages
evolution are the following;:

1. This type of P systems works with ordered sets of elements in each mem-
brane. These ordered sets of elements are strings.

2. In phonetic evolution vowels and consonants play very different roles. There-
fore, it seems advisable to establish at least two different alphabets which,
if necessary, can act differently. However, the domain of membranes will be
composed by vowels and consonants, since phonetic change is carried out
according to some laws that combine both types of phonemes.

3. Sometimes, for non-complex systems and quite wide domains, it is possible
to work without rules of emigration.

4. Systems of phonetic evolution need some context sensitive rules of emigra-
tion. Also the rules in each membrane can be context sensitive. Therefore,
in this respect, complexity increases.

5. New membranes with associated domains can appear any time during the
computation. The process is interpreted as the generation of new tongues.

Preliminaries about Some Possible Applications of P Systems in Linguistics 83

6. An important feature of rules in linguistic evolution is that they are quite
delimited in time and space, that is to say, they act during a “short” time in
a local place and later they vanish. Thus, the use of activation/deactivation
mechanisms is important.

7. Domains associated to each membrane usually evolve. The most important
causes for this change in domains are: a) influence among different contem-
porary tongues, called adstrat, and b) some internal evolutions which modify
the set of phonemes existing in the domain of a language.

4.1 An Example

In the present example we reproduce three phonetic changes, carried out in
different historical moments and languages.

1. Rotacisme: [—s—] > [—r—]. This change was brought about in IV Century
B.C. It causes some strange things like the existence of a nominative flos
(ﬂower) with a genitive floris.

[k¢'—] > [t [=] in vulgar Latin. That process dates from the first centuries
of our age In the example [t f] is denoted by ¢, for simplicity.

3. [~t—] > [-d—]. The alveolar plosive voiceless placed between vowels becomes
voiced. This change took place approximately in the VI century A.C. in
Western Romance languages.

These changes are simulated in the same membrane without taking into
account the chronological order.

The domain in the present P system does not evolve, because it is wide
enough to different languages and periods. There are two vocabularies, and the
rules of emigration are context sensitive. There is only one output membrane.
The P system which can simulate these processes is the following:

I = (V17‘/2,M1, ...,]\447 DMU -~DM47 h(u — Mg), (Rl,pl), ceny (1%47[)4),3)7
Vl = {a;iau}a
V2 = {s,k,t,c,d},
= [1l2]2 [3]s [4 Ja]1,
= (V1 U Vs, tussa),
Mz = (V3 UV, @),
Mz = (VU Vy, @),
My = (Vi U Vs, kk),
h(p < Mz) = (Ki{a,u}in, > cf{a, uliny,, ViTsVito, & ViTraT,
ittt e Vitdnt,,
Ry = {ry1:ss — (k,to3), r2 : tu — (a,toq), 73 : a — (a,tos),
p1 = {r1 >ry>r3},
Ry = {r1: 5 — (s,to4), 72 : at — (s,toy), r3 : t — (s,to3)},
p2 = {r2 > 73},
Rs = {r1 :ia — (t,tos)t},
Ry = {r1 : k — (ia,to3), r2 : s = (t,t02)a, r3 : a — (a,to3)},
P2 = {7"2 > 7”3}.

84 Gemma Bel Enguix

The system evolves from the initial state as in Fig. 11.

=089
=955
=

Fig. 11. A P system simulating phonetic evolution

The outcome obtained with this system is the same as the one obtained
by applying point mutations, which allow the change of an element for another
one in a string, even depending on the context. The advantage of P systems
is that they allow the parallel modeling of different processes. For instance, we
can imagine a cellular system to obtain, as an output, two Romance languages,
Romanian and Catalan, starting from Latin. The only thing we must do is to
consider two output membranes.

Given classical Latin, in order to obtain Catalan, it is necessary to apply
some phonetic rules. However, in order to obtain Romanian, some of those rules
are not necessary and others must be used.

Let us consider the following phonetic rules:

L [k%—] > [t [*" —]: a velar sound becomes palatal in vulgar Latin. In the
example, [t [] is denoted by ¢, for simplicity.

2. [t [=] > [s] in Catalan.

3. [~u—] > 0 in Romanian.

4. [—u—] > [b] in Catalan.

5. Pre tonic vowels disappear, in the whole domain of Romance Languages.

We will define the following linguistic P system without rules of emigration.
Membrane M; does not work because it represents Latin. M5 is a new membrane
representing vulgar Latin. Finally, V3 denotes tonic sounds.

Preliminaries about Some Possible Applications of P Systems in Linguistics 85

= (Vl7 ‘/Qa ‘/33 M17 cey M5a Dla "7D57 (Rla pl)v) (R47P4)7 (27 3))a

‘/37)7
Vs, kiuiT Ate),

V1= {i,a,e,u},
VZ = {k,t,&c,b},
V3:{T7A}7
p= 212 [3]s [4 Jals]s]1,
My = (Vi UV U V3, 0),
My = (Vi UV U V3, 0),
M3: Vl U‘/Q UV37 (Z))a
U
@]

Vi u W,
, P1 = @
cviTA— TA}, pa =0,
Ry = {ry : bT — (4, t04)uT pg =
Ry ={ry:s5— (si,toz), ro : t — (,to3), 131 i — ATtoz}, py = 0,
Rs ={r1: ki —ci,ry:ci —> (cz,to), 73 ui — (ui, tos)u, rq s uT — (t,tos)T},
rg: TA— (TA tox)T, re : Tt = (T, tos), r7: (e = te, tos), ps =11 > 19 > 13 >
T4 >T5>T¢ > T7.

(

(

(
My=(Vi U Vi

(

0

{r1

This system evolves, starting from the initial configuration, as we can see in
Fig. 12.

5 Applications to Dialogue

Among many existent definitions of dialogue, we choose the one introduced by
[Moulin, Rousseau, and Lapalme, 1994, p. 35], who state “A conversation can
be thought of as the result of coordinated interactions among agents to reach a
common goal called a conversational goal”. In what concerns the interactions
carried out among speakers in a conversation, Levinson [Levinson, 1983, p. 284]
says “Interactions can be understood as the sustained production of chains of
mutually-dependent acts, constructed by two or more agents each monitoring
and building on the actions of the other.”

From that point of view, P systems can be constructed that may able to
simulate (or generate?) dialogue. Such systems have the following features:

— They do not act in parallel. Despite some rules can be applied at the same
time, this will never happen, since the system is blocked (the dialogue is
not possible in parallel). By default, the agents are acting in the order
My, Ms, .., M,, or in a way defined in the system.

— All the membranes (except the skin membrane) are output membranes. Even
the skin membrane can be an output membrane if it acts as a distributor.

— During the dialogue, some membranes can dissolve or vanish. If only one out-
put membrane remains, then the system stops, for it cannot exist a dialogue
with only one output membrane.

86

Gemma Bel Enguix

(3

0e

w

I

kiuiTAte ciuiTAte

=~ (V]
.. 'm
=
\ ot w/

[N
w

w0
=

SN
(@3]

I

uiTAte uTAte

[y

S

Tte

i
=]
=
o
—_ [\
| | / \.e)
ot w t w

[y

sibT siuT

N

eo[eo]ec]ae
9000
eo[en]ec/ee

S

[y

siuTAT

Reo
I,

S

=]
=
>
3
N
@.

ot

Fig. 12. Phonetic evolution: a specific case

[y

[y

[y

[y

I

I

I

l

—_

N

E

0

>

al

IS

e

[

E

88

N
Q

)

—_

N

.O

S

Q

100000
@

—_

2
aaaq

4
BB83:3:3;

2
3acece

4

e}

)

—_

E

18BBp
3i3i3i

2
ad 3acceee
4
BB
3:3:3:

SN

—_

Rags

Fig. 13. Dialogue:

]

_C)

=}

_C)

=}

_C)

YYYYYY3i3idi

2
ab 3accee

BB83:3:3;

SN

2
3acece
4
BB8B
3i3:3i
3acceee

abbbbbbb

i

N N

a simple case

—_

—_

—_

—_

—_

—_

Preliminaries about Some Possible Applications of P Systems in Linguistics

E

ﬂiu

H:’:.U

ﬂtf

ﬂiu

i

=

=

[

[N

88 Gemma Bel Enguix

Formally, the system is:

I = (Vi,Va, V3, Vi, My, ..., My, D1, D2, D3 h(D1 — Dz), h(D2 — D),
h(Dl — D3)7(R17p1)a ceey (R47P4)7 (27 334))7

Vl = {CL,b,C},
V2 - {aaﬂa’y}a
V3 = {17253}5
V4 = {A, B,C},

12]2 [3 [a Ja]1,

(Vl UV uVs, 104@)
(V17)7
(V37)

M4 - (V27)

h(vl <~ ‘/2) - (ainvl e ainV27 binvl A4 /Binv27 Cinvl e 'Vinv2)7

h(Vi < V3) = (@iny, <> Liny,, biny, < 3iny,),

h(‘/Q — ‘/3) = (linvl — ﬁinv27 2inv1 — 'yinvz)v

Ry = {r1 : al — (abe, toz), ro : a2 — (bb,tos)ar},

Ry = {r1 : b — (bc,tos), ra2 : aa — (be,toz)b, r5 : b — (be,tos)a, ra @ aa — aA,

7"52A%’IZJM2 TO Mg},

Rs = {7’1 1 — (2,t01)7 re 3 — (2237t04)7 r3: IF|1“ eD,UDy >4THEN (5},

Ry ={r1:9y— (a,in2)B, r2 : v6 — ADD V4 IN DMs}.

_[

It evolves as shown in Fig. 13. At this point the system stops because there is
only one output membrane. In the present dialogue, it can be said that Ms wins.

6 Final Remarks

Several suggestions have been given in this paper about applications of mem-
brane computing to linguistics. The paper is only an intuitive and preliminary
approach to what seems to be a good way for a computational treatment of some
branches of linguistics that usually have strong difficulties for being formalized.
Many notions, examples, and applications remain to be considered in this field.

References

Calude and P&un, 2001. Calude, C. and Paun, Gh. (2001), Computing with Cells and
Atoms, London, Taylor and Francis.

Katz, 1977. Katz, J.J. (1977), Propositional Structure and Illocutionary Force, New
York, Crowell.

Katz and Fodor, 1963. Katz, J.J. and Fodor, J.A. (1963), The structure of a semantic
theory, Language, 39: 170-210.

Levinson, 1983. Levinson, S. (1983), Pragmatics, London, Cambridge University Press.

Morris, 1938. Morris, C.W. (1938), Foundations of the Theory of Signs, in Neurath, O.,
Carnap, R., and Morris, C. (eds.), Internation Encyclopaedia of Unified Science,
Chichago, University of Chicago Press: 77-138.

Preliminaries about Some Possible Applications of P Systems in Linguistics 89

Moulin, Rousseau, and Lapalme, 1994. Moulin, B., Rousseau, D., and Lapalme, G.
(1994), A multi-agent approach for modelling conversations, in AI’94, Natural
Language Processing. Proceedings of the Fourtheenth International Avignon Con-
ference, Paris, vol. 3, 35-50.

Paun, 1999. Paun, Gh. (1999), Computing with membranes: An introduction, Bulletin
of the EATCS, 67: 139-152.

P#un, 2000. Paun, Gh. (2000), Computing with membranes, J. of Computer and Sys-
tem Sciences, 61: 108-143.

Tagliavini, 1973. Tagliavini, C. (1973), Origenes de las lenguas latinas, Mexico, Fondo
de cultura econémica.

An Application of Dynamic P Systems:
Generating Context-Free Languages

Gemma Bel Enguix!*, Matteo Cavaliere!**, Rodica Ceterchi?***,
Radu Gramatovici?, and Carlos Martin-Vide!

! Research Group on Mathematical Linguistics, Rovira i Virgili University
P1. Imperial Tarraco 1, 43005 Tarragona, Spain
gbe@astor.urv.es, mcl.doc@estudiants.urv.es, cmv@astor.urv.es
2 Faculty of Mathematics, University of Bucharest
14, Academiei st., 70109 Bucharest, Romania
{rc,radu}@funinf .math.unibuc.ro

Abstract. We present a method of generating context-free languages,
in a parallel way, using dynamic P systems, which evolve in time in a
coherent manner. The evolution is described by a contextual grammar
D(G), which can be canonically associated to any context-free grammar
G. The dynamic P system generated by D(G) will “compute” the lan-
guage L(G), i.e., one of the configurations of the system will contain all
words of L(G) of length n at depth 2n — 1. Our approach is an attempt
to prove the richness and power of the concept of dynamic P system,
both in the area of P systems, and in the area of contextual grammars.

1 Introduction

We present in this paper a method of generating the words of a context-free
language using P systems with string objects and rewriting rules.

The advantage of using P systems lies in the fact that several rewritings can
take place, in a parallel manner, each in an appropriate membrane.

The same problem was addressed and solved in [1], but the method proposed
here is completely different. Namely, we use a variant of the concept of dynamic
P systems, introduced in [2]. However, even if we avoid the use of dynamic
P systems, and simulate our method with membrane-generation rules, the two
approaches are still different.

We rewrite entire words contained in elementary membranes. After rewrit-
ing, the non-terminals still present in the string determine which rules of the
initial grammar G are applicable, and a dynamic step generates new elementary

* This author’s work has been partially supported by a grant of the Ministerio de
Educacién y Ciencia GT2001-0017.
** This author’s work was possible thanks to a research grant Beca URV from Rovira
i Virgili University.
*** This author’s work was possible thanks to the grant SAB2000-0145, from the Se-
cretaria de Estado de Educacién y Universidades, Spanish Ministry for Education,
Culture and Sport.

G. P&un et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 90-106, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

An Application of Dynamic P Systems: Generating Context-Free Languages 91

membranes with those associated rules, making possible a next step of maximal
parallel rewriting. The words of the context-free language L(G) are obtained in
elementary membranes.

In section 2 we present some basic notations for context-free grammars and
languages, and rewriting membrane systems.

In section 3 we present some notions of contextual grammars that we will
use in the sequel of the paper. We define a new type of contextual grammar, the
total contextual grammar with an infinite set of contexts, and parallel derivation.
It has features already used in the past, and studied in the literature, but not
in this combination: total selection function, infinite number of contexts and
parallel derivation.

In section 4 we present the notions of dynamic P system with one-step com-
putations, and its associated dynamic computation sequence. While retaining
the same general idea, the concepts introduced here are different from those
introduced and studied in [2]. The differences concern two essential points: the
type (length) of the internal computation step of the dynamic P system in ques-
tion, and the type of the contextual grammar mechanism used as a generative
device. While in [2] dynamic P systems with stable computations were studied,
here we deal with dynamic P systems with one-step computations. Also, the type
of contextual grammar used here is not of the same type as that from [2].

In the main section, 5, we make the canonical construction: starting from a
context-free grammar G, we construct a total contextual grammar D(G) with
an infinite number of contexts, and whose associated parallel derivation relation
will describe the evolution of the membrane structure. The dynamic P system
to which D(G) gives rise, II(G), will “compute” the words of L(G). The main
result states that, if G is in Chomsky normal form, then one of the configurations
will produce all words of length n at depth 2n — 1. This is similar to the result
proved in [1], but the present result is stronger because we produce all words in
a configuration, while in [1] the “good” configurations produce only one word.
Also, if we consider the problem of collecting the produced words, it will be
easier in the present model, since the words are in elementary membranes, while
in the other model a word is represented by its sequence of letters in a nested
membrane structure, which makes extraction more difficult.

In section 6 we illustrate the model with an example: we take a context-free
grammar G and construct the first terms of the sequence II(G), the dynamic P
system canonically associated to it.

Section 7 is devoted to concluding remarks and further research topics. A
more detailed comparison with the approach proposed in [1] can also be found
there.

2 Preliminaries

We recall from [4] the following notations. If V' is a non-empty and finite set
called alphabet, we denote by VT the set of non-empty words over V, with A the
empty word and with V* = V+ U {A} the set of words over V.

92 Gemma Bel Enguix et al.

A context-free grammar is a construct G = (N,T,S,P) where N and T
are alphabets, denoting the sets of non-terminals and terminals, respectively,
S € N denotes the start symbol, and P C N x (N UT)* denotes the (finite) set
of production rules. A production (A,«) € P will be denoted by A — «. The
derivation in G is defined by:

= yiff x = uAv, y=wuov, and A - « € P.

If == is the reflexive and transitive closure of =, then L(G) = {w € T* |
S == w} denotes the language generated by G.
We say that a language L is context-free if there exists a context-free grammar
G such that L = L(G). A context-free grammar G = (N, T, S, P) is in Chomsky
Normal Form (CNF)iff P C N x (NNUT). We recall that, for every context-free
language L, there exists a context-free grammar G’ in CNF such that L(G’) = L.
The grammar from the following example will be used later.

Ezample 1. Let us consider G = ({S, A, B}, {a,b}, S, P) a context-free grammar
with the productions (X — ulv is a short writing for X — u, X — v):

S — bA|aB,

A — bAAlaS]a,

B — aBB|bS|b.

The generated language is L(G) = {w € {a,b}* | |w|o, = |w|p}, where |w|q
denotes the number of occurrences of the symbol « in the string w.

The context-free grammar G' = ({S, A, B,Cq,Cy, D1, D2},{a,b}, S, P’) in
CNF is equivalent to the grammar G, where the productions of P’ are:

S — CbA‘CaB,

A — C,S|CyDyla,

B — CyS|CyDo|b,

Dy — AA,

Dy — BB,

C, —a,

Cb — b.

Remark 1. Using a grammar G in CNF, any word in L(G) of length n is derived
in exactly 2n — 1 derivation steps.

We recall from [11] the following notions.
A rewriting membrane system is a construct of the following form:

I = (‘/:TvﬂaMlv"'ava(Rlap1)7"'7(Rm7pm))a

where V is an alphabet, T C V (terminal alphabet), p is a membrane structure
with m membranes, labelled with 1,2,---,m, My,---, M, are finite languages
over V (initial string-objects placed in the regions of), Ry, - - -, R,, are finite sets
of context-free evolution rules associated with the m regions of i, and p1,-- -, pm
are partial order relations over Ry, -+, Ry,.

The rules from the sets Ry,---, Ry, are of the forms a — (v,tar) or a —
(v,tar)a, where a — v is a context-free rule over V, that is, a € V and z €

An Application of Dynamic P Systems: Generating Context-Free Languages 93

V* tar € {here,out,in}, and a € {0, 7}, with the usual meaning as described in
[11]: the string produced by using this rule will go to the membrane indicated by
tar (here means that the string remains in the same region, out means to send
the string out of the region where the rule is applied, and in means to go to any
directly lower membrane, non-deterministically chosen); sometimes one can also
use indications of the form in;, where j is the label of the membrane where the
string should be sent. To any rule we can append the symbols §, 7, indicating
that after using the rule the respective membrane changes its permeability as
described in [11]. A system with 7" = V is said to be non-extended, hence a
system of the general form is said to be extended.

The language generated by IT is denoted by L(IT) and it is defined as follows:
we start from the initial configuration of the system and proceed iteratively, by
transition steps performed by applying the rules in parallel, to all strings which
can be rewritten, obeying the priority relations. We observe that each string is
rewritten by only one rule in a sequential manner and not by rewriting all its
symbols. All strings over the alphabet T sent out of the system during any step
of any computation form the language L(IT).

We denote by [E|LSP,,(rw,in,pri,d,7) the family of languages generated
by [extended] string-object P systems of degree at most m > 1, using rewriting
rules, the target indications here, out, in, priorities, and actions ¢, 7. When we
use the target indications in; instead of in, we write LSP,,(rw,tar, pri,d, 7);
as usual m is replaced with * if the degree of the system is not bounded, and
pri, d, 7 are removed if the corresponding feature is not used.

In this paper, we use a particular version of a rewriting membrane system:
its terminal alphabet T is the terminal alphabet of the grammar to simulate; the
rules are of the form a — (v, here) (hence without § or 7, and with tar always
fixed as here); also, there is exactly one evolution context-free rule associated
with each membrane of the system (this means that no priority relation is used).
An important point where we depart from the standard notations is the follow-
ing: in the standard literature, brackets with indices 1,---,m are used for the
description of a membrane structure p as in the definition above, the indices
playing the role of correctly matching brackets which express one membrane; in
the present paper we have not used these kind of indices. The ones we use are
the labels of a fixed set of rules, and the expression [; |; refers to a membrane
having the ¢ rule associated to it.

3 Contextual Grammars: Old and New Types

The following notions of contextual grammars and languages are based on defi-
nitions from [7]. For the purposes of our model, we will need to extend standard
concepts of contextual grammars, more precisely, the concept of total contextual
grammar, along two lines, mentioned and used in [7], but only for other types
of contextual grammars.

A total contextual grammar is a construct G = (V, A, C, ¢), where V is an
alphabet, A is a finite language over V (the set of azioms), C is a finite subset

94 Gemma Bel Enguix et al.

of V* x V* (the set of contexts), and ¢ : V* x V* x V* — P(C) is the choice (or
selection) map. The derivation in a total contextual grammar is defined by:

x =y iff £ = zy@o23, y = v1uT20x3, and (u,v) € ¢(x1, x2,x3).

If = is the reflexive and transitive closure of =, then L(G) = {z € V* |
w == z for some w € A} denotes the language generated by G. We denote by
TC the family of languages generated by total contextual grammars.
Characteristic for total contextual grammars is the highly constrained deriva-
tion. As a consequence, total contextual grammars generate languages that can-
not be generated by other basic contextual grammars (as external or internal
contextual grammars!). We mention that the class of context-free languages is
entirely included in T'C. Also, the following three non-context-free constructions
— triple agreement, cross dependencies and marked reduplication — which are
usually found in natural languages, prove to be of a total contextual type.

Ezample 2. Let us consider G = ({a, b, c},{abc},{(a,bc)}, @) a total contextual
grammar, where ¢ is defined by:

[A{(a,be)} if x1 = a™ ke = 0", kg = "yn > 1,
o1, 22, 73) = {(Z) otherwise.

We have
L(G) = {a"b"c" | n > 1},

and thus, the language of triple agreement is in TC.

Ezample 3. Let us consider G = ({a,b,c,d},{abed}, {(a,c), (b, d)},) a total
contextual grammar, where ¢ is defined by:
{(a,0)} if x1 € a™T,x0 € b, x5 € dT,
d(z1,22,23) = {(b,d)} if x1 € atbT, 20 € ¢t x5 € dT,
) otherwise.
We have
L(G) = {a"b™c™d™ | n,m > 1},

and thus, the language of cross dependencies is in T'C.

Ezample 4. Let us consider G = ({a,b,c},{c},{(a,a), (b,b)},$) a total contez-
tual grammar, where ¢ is defined by:

[{(a,a),(b,b)} if z1 € {a,b}*,z2 € {c}{a,b}*, x5 = A,
(@1, 22, 73) = 0 otherwise.

We have
L(G) = {wew [w € {a,b}"},
and thus, the language of marked reduplication is in TC'.

' We do not account here for other constraints on the derivation than the usual
selection map.

An Application of Dynamic P Systems: Generating Context-Free Languages 95

In the following, we will extend the notion of a total contextual grammar,
along two lines. The first extension refers to the cardinality of the set of contexts.

In [7] some contextual grammars with infinite sets of contexts were introduced
and studied. More precisely, in section 10.9 of [7], contextual grammars were
considered, having an infinite set of contexts C, and such that their selection
function, ¢, has finite image in every point, i.e., ¢(z) is finite for every x € V*.
However, only the classes of languages generated in the internal and the external
mode were considered and studied there. For the model which we propose in
this paper, a similar notion, allowing for an infinity of contexts, but for total
contextual grammars, is needed, so we introduce it in the sequel.

A total contextual grammar with an infinite set of contexts is a construct
G = (V,A,C,¢), where all the elements keep their meaning and definition as in
a (normal) total contextual grammar, except for the following two modifications:

— the set of contexts, C, is not anymore a finite subset of V* x V* but an
arbitrary one;

— the total selection function is such that ¢(x1, 2, x3) is a finite subset of C,
for any (z1,z9,23) € V* X V* x V*.

Total contextual grammars with an infinite set of contexts generate languages
that cannot be generated by (normal) total contextual grammars.

In order to prove this assertion we will use the bounded growth property.

We say that a language L C V* has the bounded growth property iff there is
a bound on the difference between the length of any word in the language and
the length of the word immediately longer and belonging to the language, i.e.:
there exist two natural numbers p and ¢, such that, for any word x € L with
|z| > p, there exists a word y € L with 0 < |z| — |y| < q.

We know (see [7]) that languages generated by all basic contextual grammars
(including the total contextual ones) have the bounded growth property.

Let us denote by T'C the family of languages generated by total contextual
grammars with an arbitrary (it may be infinite) set of contexts.

We have the following result.

Proposition 1. The inclusion TC C TCy is strict.

Proof. The inclusion itself is trivial. For its strictness, consider the following
total contextual grammar with an infinite set of contexts

G = ({a,b, ¢}, {c}, {(a, b ") | n > 0}, ¢),
where ¢ is defined by:

b2n+1 2" if — 4N — an _ 2" >0
¢($1a$27$3> = {é(a’ c)} ;t}férwi:e’xQ y L3 c ,n=U

‘We have)
L(G) = {a™™ ¢*" | n > 0}.

96 Gemma Bel Enguix et al.

L(G) does not have the bounded growth property. If we order the words of
this language according to their length, we have

L(G) = {UJO,’LUl7 cee s Wpy .. .},

with w; = aibchT7 for any 7 > 0.

The differences between the lengths of any two consecutive words in this
enumeration of L(G) form an infinite sequence of natural numbers s,, = |wy4+1|—
|wy,|, which converges to oco. Therefore, regardless of the choice of the constant
p from the definition of the bounded growth property, there exists no constant
¢ which may bound the difference between a word z € L(G) longer than p and
any other word in L(G), shorter than x. O

The second extension of the notion of a total contextual grammar concerns
the parallelism of derivations.

A notion of parallel derivation is defined in [7] (section 10.5), for (classical)
internal contextual grammars (with a finite set of contexts).

We generalize this notion of parallel derivation for total contextual gram-
mars. While in the case of internal contextual grammars the string to which the
derivation is applied is decomposed into selectors, in our case the string will be
decomposed into triple selectors.

The parallel derivation in a total contextual grammar (with or without an
infinite set of contexts) G = (V, A, C, ¢) is defined by:

r=pyiffc =z125... 2, and y = y192 . .. Y, Where
Ty = T1,iX2,iT3,4 and y; = X1,iU; T2 VT3 4y with
(uiv;) € P(21,5,22,0,23,4),1 <i<mn, n>1.

The two newly added features — the infinity of the set of contexts, and the
parallelism of the derivation — can be combined, giving rise to total contextual
grammars with an infinite set of contexts and parallel derivation, and in section
5 we will construct precisely such a grammar.

4 Dynamic P Systems

The notion of dynamic P system was first introduced in [2].

In the most general sense, a dynamic P system is a P system which changes/
evolves in time, in a coherent manner (aside from the computations done inside
it), and the changes are made via a contextual grammar mechanism. We can also
see the contextual grammar mechanism as describing an evolutionary process
intrinsic to the system.

The idea to use a grammar to describe changes in a system, more specifically
in a P system, is not so unexpected; but it requires a “good” string-description
of a type of P systems. The derivation associated to the grammar takes us from
one system to another one, in a coherent way.

An Application of Dynamic P Systems: Generating Context-Free Languages 97

More specifically, suppose we have a set of well-formed strings (well-formed
according to some formal definition), denoted Exp(V'), over an alphabet V', and
containing also separators. Among the separators we will use the brackets {[,]},
to describe the membrane structure of the system, but we can use also other
kinds of separators (like | and ; in [2]). The strings in Exp(V) describe some
particular type of P systems.

Suppose that we also have a contextual grammar D of a certain type (in-
ternal contextual, total contextual, insertion grammar, etc.) with the following
properties:

(1) its set of axioms is contained in Exp(V);

(2) its derivation relation, = p, keeps us inside the set of well-formed strings,
ie,if x € Exp(V) and x =>p y, then y € Exp(V).

Then, starting from a P system described by an axiom of D, and applying
repeatedly derivations of D, we obtain a sequence of P systems which have
“evolved” in a coherent manner from the original one. We can also conceive of
this mechanism as being not a generative device, but a descriptive tool.

We can use contextual grammars and their associated derivation to describe
any kind of changes in a P system — changes in string or object contents, or rule
contents, but, of course, the most interesting ones are changes of the membrane
structure, maybe accompanied by other changes as well.

On the other hand, in a P system we have “internal computations”, which can
be one or several of the following operations: string rewriting, communication by
means of symport/antiport rules, moving symbol objects, etc. (see [11] and [12]
for a longer list of operations). The computations inside a P system take place
in general in a maximal parallel way. We will call one computation step what is
known in the standard literature of P systems as a transition: the passage from
one configuration of the P system to the next one.

If IT is a P system, let us denote by Il ~» CII one internal computation step,
the new P system CII being the result of the computation step.

Definition 1. A dynamic P system with one-step computations, associated to
the grammar D will be a sequence of P systems {II,, | n > 1} such that:

(i) I1; is an aziom of D;

(i) for each i > 1, CII; denotes the P system obtained from II; after one-step
computations;

(i) for i > 2, each II; is obtained from II;_y by one derivation in the gram-
mar G, that is CII;_y = p II;.

The dynamic computation sequence associated to the above system is the
following alternating sequence of derivations in G and one-step computations:

1 ~ CIIL :>DH2MCH2:>D...:>DHZ"\’>OH¢:>D....

The dynamic P systems considered in [2] were of a slightly different type,
namely, they were dynamic P systems with stable computation steps (see [3]),
in which the internal computations were allowed to take place till the system
reached a stable configuration.

98 Gemma Bel Enguix et al.

A dynamic computation sequence might begin either with an internal com-
putation, or, if this is not possible, i.e., IT; = CII, with a derivation in G.

We say that a dynamic P system is stationary if the sequence {II,, | n > 1} is
stationary in the usual sense, i.e., there exists an index m such that for all £ > m
I, = Ik41. This means that neither internal computations, nor derivations in
D are possible in I1,, or CII,,.

In [2] and [3] we have dealt with P systems with symport/antiport rules,
first without string-objects inside, then allowing string-objects in some of the
membranes, and finally, in the most general form, allowing string-objects inside
any of the membranes. In the present paper we will deal with completely dif-
ferent types of P systems: they contain string objects only in the elementary
membranes, and each membrane has one and only one rewriting rule associated
with it. Each membrane is typed according to the unique string rewriting rule it
contains. The indices of the brackets representing membranes will refer, in this
paper, to types, and not to some indexing method generally used to eliminate
ambiguity by matching appropriate pairs of open and closed brackets, like they
are used in general.

The contextual dynamic mechanism presented in [2] and [3] is based on the
notion of enriched bracketed contextual grammar, a generalization of the brack-
eted contextual grammars of [6]. Even if we still use brackets to delimitate mem-
branes, the total contextual grammar with an infinite set of contexts D(G) which
we will construct in the next section, in order to describe a different dynamic of
a different type of P system, is not essentially of a contextual bracketed type.

P systems which allow for changes in the membrane structure (generation of
new membranes, merging, dissolving, etc.) have been considered in the literature
on P systems (see [11], [12], [5]). The main difference between other approaches
and ours is that other approaches describe membrane behavior by rewriting rules,
for instance, placed at the same level as the object or string handling rules, while
in our approach the changes are generated/described by a contextual grammar
mechanism (that is way we call them “coherent”), and the mechanism works in
an alternating pattern with the rest of the internal operations.

5 The Contextual Dynamic Mechanism

In what follows we will consider a fixed context-free grammar, G = (N, T, S, P),
with the rules in P labelled by integers from 1 to n. We can suppose that G is
in CNF, but for the time being this is not essential.

Let V.= NUT, and consider also the alphabet of separators Sep = Sep; U
Sepy, where Sep; = {[; | 0 <i < n}, Sepy = {]; | 0 <i < n}, ie., the set of pairs
of open and closed brackets indexed by the rules in P, together with an extra
pair of brackets indexed by 0. We will use the separators to denote membranes
with associated rules from P, for instance [;]; will denote an empty membrane
having associated the rule ¢ of P.

An Application of Dynamic P Systems: Generating Context-Free Languages 99

Definition 2. A string e € (V U Sep)* will be called a G-expression iff:

(i) either e = [;a;, with « € V', or
(ii) e =[ie1...emli, with eq,..., ey G-expressions.

Denote by E(G) the set of all G-expressions. Consider on E(G) the equivalence
relation defined by:

[iel [N em]i ~ [ieg(l) ce eg(m)]i,
for any permutation o of m elements.

The equivalence class of a string e in F(G), denoted still by e, will describe
a membrane structure with the properties:

— every membrane, with the exception of the skin membrane []p, has an as-
sociated rule in P (i.e., every membrane is typed according to this unique
rule, and [;]; is the notation for membrane with rule i),

— every elementary membrane contains a string from VT, and no other mem-
brane contains strings.

Let us consider now the total contextual grammar with an infinite set of
contexts, canonically associated to the fixed context-free grammar G:

D(G) = (V U S6p7 {[05]0}7 Oa ¢)7
where C is defined by:

C= {([in]il[iza]iz s [lka]lk) | (OAS V+ \T+’ 1< ij <n,l S.] < k‘,k? > 1,
where {i; < ... <y} is the ordered set of all labels of all rules in P
which have as left-hand side the non-terminal symbols of a} U {(A, A)}

and ¢ is defined by:

{([i17]i1 [iza]iQ s [Ha]lk)} ifz; = 5[i7x2 =aecV"t \T+7
x3 =7, 1<i<n,

I6AS Sepr,'y € Sep]*,

if r1 = ﬂ[i,xQ =« c T+,Z3 :]1’)/,
1<i<n,pe Sepf‘,v € Sep]*,

0 otherwise.

R WY

Note that [¢S]o € E(G).

Note also that, if « € VT \ T, then {i; < ... < i} is the ordered set of all
possible rules in P which can be used to rewrite a in G.

If a € T*, then actually no insertion of contexts takes place in D(G), so we
can replace this with “no rule” (the power of the empty context).

Fora e VT \TT, g€ Sep(',y € Sep[', the (normal) derivation relation =
in D(G) is:

Blicdiy = Blili, i, - - - [i Jiv-

100 Gemma Bel Enguix et al.

In terms of membrane structures, the application of the above derivation has
the effect of transforming the elementary membrane i which contains the string
a, in membrane ¢, no longer elementary, containing submembranes 1, io,. .., ik,
each of them in possession of a copy of a.

In terms of P systems, this derivation works like a rule of “membrane creation
with string replication”:

lia)i = [ilin iy -+ (i @ig)is

where the types of the new generated membranes depend essentially on the string
content « of the initial membrane 3.
We have the following, easy to prove, result:

Lemma 1. Ifx € E(G) and v =y, then y € E(G).

The parallel derivation relation in D(G) will transform in the above manner
all elementary membranes whose strings contain nonterminals.

Lemma 2. Ifz € E(G) and © =, y, then y € E(G).

From the above lemmas, it also follows:

Lemma 3. 1. Ifz € B(G) and x = vy, then y € E(G).
2. Ifr € E(G) and x ==, y, then y € E(G).

Note that, from the way the derivation in D(G) was defined, the most re-
cently generated elementary membranes can perform internal computations, in
the form of rewriting, on the string they contain. Actually, the derivations in
D(G) generate only such membranes. Because of this reason, the grammar D(G)
generates a dynamic P system IT(G) = {II,, | n > 1}, with the following associ-
ated dynamic computation sequence:

le[OS]OzCﬂl :>pHQMCH2:>p...:>pHnMCHn:>p...

Each derivation step will change the membrane structure; actually, it will
enrich it by adding new elementary membranes, and increasing the depth of the
membrane structure by 1. Each internal computational step will change the string
content of the elementary membranes, by performing a rewriting operation.

The processes are strongly linked together: the derivation step creates the
conditions for an internal computational step to take place, and the result of
the internal rewriting determines the next derivation, the next change in the
membrane structure.

There are several possible configurations of the above dynamic P system,
which arise from the nondeterminism of the one-step internal computations, i.e.,
the rewriting process: if a non-terminal occurs more than once in a string «,
then there are several rewritings of «, using the same rule. This will influence
both the possible next derivation step, and also the next internal computation
step, that is, the next rewriting.

We have the following theorem, the main result of our paper:

An Application of Dynamic P Systems: Generating Context-Free Languages 101

Theorem 1. Let G be a context-free grammar, and D(G) its canonically asso-
ciated grammar, i.e., the total contextual grammar with an infinite number of
contexts and having parallel derivations, as constructed above.

Let II(G) = {II, | n > 1} denote the dynamic P system with one-step
computations associated to D(G).

The following assertions are true:

(i) For all the terms of the dynamic P system II(G), all the strings inside their
membranes are sentential forms of the initial grammar G.
(ii) If the language L(QG) is finite, then the dynamic P system II(G) is station-
ary.
(iii) If the grammar G is in Chomsky normal form, then there exists one con-

figuration which, at depths 2n — 1, contains all words of length n, i.e., the
set {w € L(Q) | |lw| =n}.

Proof. For assertion (i): it is true of the first term of the sequence. The terms
of type CII,, are the results of a one-step internal computation, which consists
precisely of one application of a derivation in GG in the membranes where this is
possible. The terms of type II,, result from a derivation in the grammar D(G),
and the derivations do not alter the string contents of the membranes, they
just create “optimal” conditions (membranes) for other derivations in G to take
place.

For (ii) use the fact that, once a word in L(G) is produced in a membrane,
then, in the corresponding string description of the entire P system, we have no
more selectors for applying a derivation which adds contexts others than (A, \).

For (iii) use remark 1. O

The assertion (#iz) of our theorem resembles very much, in spirit if not in
form, Theorem 1 of [1].

6 An Example

We illustrate our generative mechanism in this section, with the example of
a dynamic P system with one-step computations, and its associated dynamic
computation sequence, associated to a CF grammar.

We use the grammar in Example 1, G = ({S, A, B},{a,b}, S, P) with the
set of productions, P, which we list below, and label each production with an
integer:

(1) S —aB, (3) A—bAA, (6) B— aBB,

(2) S = bA, (4) A—aS, (7)B—bS,

(5)A—a, (8)B—b.

Each membrane will have an associated rule in P, and will be labelled with
the corresponding integer. The skin membrane does not have any rule associated
to it.

Let us consider the P system IT; = [p S]o, and take it as the axiom of
our dynamic grammar D(G). II; consists of the skin membrane (with no rules),

102 Gemma Bel Enguix et al.

in which we have fed the start symbol S. There are no internal computations
possible inside this system, so Il; = CII;.

Next follows a dynamic step, a derivation in D(G), with the following gen-
eral description: for every derivation which can be applied to a string inside a
membrane, we generate a sub-membrane associated to that derivation, and feed
a copy of the string inside. In our case, there are two rules which can be applied,
labelled (1) and (2). We have

oo, S, Jo) = {(l1; 1[2512)},

and the derivation IT, ==, II, will generate precisely IIs = [o[1.5]1[25]2]o-

Now, an internal computation step is possible, since rules (1) and (2) can,
in their respective membranes, rewrite S. The one-step internal computation
Il ~ C1II5 leads to the P system Cll, = [0[1&3}1[2()14]2]0. The transition is
depicted in Figure 1.

Since
¢([ol1,aB,]1) = {([6,]6[raBl7[saBls)},
B([2,bA,]2]0) = {([3,]3[4bA]a[50A]5)},

the parallel derivation step Clly =, II5 will give us:

II3 = [ol1[saBls[raB]7[saB]s]1[2[3bA]3[4bA]4[sbA]5]2]0-

0 0
1 2 1 2
Fig. 1. First internal computation step: 13 ~ CII2

10)

bS A N bA@ CA N as>

J

Fig. 2. The system II3

An Application of Dynamic P Systems: Generating Context-Free Languages

The second internal computation, II3 ~ CII3 will produce:

CHg = [0 [1 [6aaBB]6[7abS]7[gab]g]1 [2 [3bbAA]3 [4[)&5]4[56@]5]2}0,

and is depicted in Figure 3.

Oﬁ

C

aaBB

)

(=

N

~

C

bbAA >

(

basS

)

/

Fig. 3. Second internal computation step: I3 ~ ClIl3

Fig. 5. I14, the result of the third derivation step, CIlIs =, II4

103

104 Gemma Bel Enguix et al.

Fig. 6. The tree structure of II;. The black nodes are the elementary membranes
where rewriting will take place during the next internal computation step. Note that
the nodes whose string content is in 7™ are leaves in this tree, and will remain leaves
in subsequent trees

Since we have the following values for the selection function:

¢(lol1ls; aaBB,|s) = {([6; |s[raaBB]z[saaBBls)},
(|7, abS,17) ={([1,]1[2ab5]2},
¢([2[s,00AA, 3) = {([3,]3[4bbAA]4[5bbAA]5)},
¢(la, ba$,la) ={([x.]1[20a5]2)},
o([s, ab, Js]1) ={(A N},
O([5,baJs]2Jo) = {(XA)},
the total derivations in D(G) which will be applied in parallel to C'II5 are:

[[[6CLCLBB]6 - [0[[[6aaBB]6[7aaBB]7[8aaBB]8]6,
[7@[)5]7 - [7[1&1)5] [20,[)5]2}7,

[2[3bbAA]3 = [2[3[30bAA]3[4bbAA4[sbbAA]5]3,
[4baS] [[1baS] [21)&5]2}4,

[sabls]1, [5bals]2]o no actual derivations take place.
Finally, we will have CIl3 =, I14, with

H4 = [0 [1 [6 [GaaBB]g[7aaBB]7[gaaBB]8]6[7[1abS]1 [Qab5]2]7[8ab]gh
[2 [3 [3bbAA]3[4bbAA]4[5bbAA]5]3 [4[1[)&5]1 [2[)@5}2]4[5[)&]5]2]0.

7 Concluding Remarks

We have proposed in this paper a generative mechanism for context-free lan-
guages, which uses parallelism, and the parallelism is implemented using the
notion of a P system. As such, it is in some ways similar to the approach in [1].

It is interesting to note the differences and the similarities of the two ap-
proaches. The central idea of [1] is to use evolution rules for symbol-objects,
and simulate the derivations of a context-free grammar using membrane oper-
ations (division of neutral polarized membranes, subordination of membranes
polarized positively and negatively, see [1]). In this way, all strings of L(G) are
generated, composing sequences of symbol-objects and storing the order of th