

Lecture Notes in Computer Science 3850
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rudolf Freund Gheorghe Păun
Grzegorz Rozenberg Arto Salomaa (Eds.)

Membrane
Computing

6th International Workshop, WMC 2005
Vienna, Austria, July 18-21, 2005
Revised Selected and Invited Papers

13

Volume Editors

Rudolf Freund
Vienna University of Technology
Faculty of Informatics
Favoritenstr. 9–11, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Gheorghe Păun
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, 014700 Bucureşti, Romania
and
Sevilla University, Dept. of Computer Science and AI
Research Group on Natural Computing
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: gpaun@us.es

Grzegorz Rozenberg
Leiden University
Leiden Center of Advanced Computer Science (LIACS)
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rozenber@liacs.nl

Arto Salomaa
Turku Centre for Computer Science (TUCS)
Leminkäisenkatu 14, 20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi

Library of Congress Control Number: 2005937334

CR Subject Classification (1998): F.1, F.4, I.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-30948-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30948-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11603047 06/3142 5 4 3 2 1 0

Preface

The present volume is based on papers presented at the 6th Workshop on Mem-
brane Computing, WMC6, which took place in Vienna, Austria, in the period
July 18–21, 2005. The first three workshops were organized in Curtea de Argeş,
Romania – they took place in August 2000 (with the proceedings published in
Lecture Notes in Computer Science, volume 2235), in August 2001 (with a selec-
tion of papers published as a special issue of Fundamenta Informaticae, volume
49, numbers 1–3, 2002), and in August 2002 (with the proceedings published
in Lecture Notes in Computer Science, volume 2597). The fourth and the fifth
workshops were organized in Tarragona, Spain, in July 2003, and in Milan, Italy,
in June 2004, with the proceedings published as volumes 2933 and 3365, respec-
tively, of Lecture Notes in Computer Science.

The pre-proceedings of WMC6 were published by the Institute for Computer
Languages of the Vienna University of Technology, and they were available dur-
ing the workshop. Conforming with tradition, this workshop, too, was a lively
scientific event, with many questions and engaged discussions following presen-
tations of papers.

The current volume is based on a selection of papers from the pre-proceedings.
These papers were significantly modified according to the discussions that took
place during the workshop, and all the selected papers were additionally refereed.
The papers in this volume cover all the main directions of research in membrane
computing, ranging from theoretical topics in mathematics and computer sci-
ence, to application issues, especially in biology. More specifically, these papers
present research on topics such as: computational power and complexity classes,
new types of P systems, relationships to Petri nets, quantum computing, and
brane calculi, determinism vs. nondeterminism, hierarchies, the size of small fam-
ilies, algebraic approaches, and designing polynomial solutions to NP-complete
problems through the use of membrane systems. Like the previous workshops,
the scientific program of WMC6 included invited lectures by leading researchers
in membrane computing (all the invited talks are represented in this volume)
as well as contributed talks based on refereed papers. Altogether, the volume is
a faithful illustration of the current state of research in membrane computing
(a comprehensive source of information about this fast emerging area of natural
computing is the website http://psystems.disco.unimib.it).

The workshop was organized by the Institute for Computer Languages of the
Vienna University of Technology, under the auspices of the European Molecular
Computing Consortium (EMCC).

The Program Committee consisted of Erzsebeth Csuhaj-Varjú (Budapest,
Hungary), Rudolf Freund (Vienna, Austria) – Co-chair, Marian Gheorghe (Shef-
field, UK), Hendrik Jan Hoogeboom (Leiden, The Netherlands), Oscar H. Ibarra
(Santa Barbara, USA), Natasha Jonoska (Tampa, Florida), Kamala Krithivasan

VI Preface

(Madras, India), Vincenzo Manca (Verona, Italy), Maurice Margenstern (Metz,
France), Gheorghe Păun (Bucharest, Romania, and Seville, Spain) – Co-chair,
Mario J. Pérez-Jiménez (Seville, Spain), Grzegorz Rozenberg (Leiden, The Ne-
therlands, and Boulder, Colorado, USA), Petr Sośık (Opava, Czech Republic),
and Claudio Zandron (Milan, Italy).

The editors are indebted to the participants of WMC6 and in particular to
the contributors of this volume. Special thanks go to Springer for the efficient
cooperation in the timely production of this volume.

November 2005 Rudolf Freund
Gheorghe Păun

Grzegorz Rozenberg
Arto Salomaa

Table of Contents

Invited Lectures

Computational Power of Symport/Antiport: History, Advances, and
Open Problems

Artiom Alhazov, Rudolf Freund, Yurii Rogozhin 1

Structural Operational Semantics of P Systems
Oana Andrei, Gabriel Ciobanu, Dorel Lucanu . 31

Some Recent Results Concerning Deterministic P Systems
Oscar H. Ibarra . 49

Membrane Algorithms
Taishin Y. Nishida . 55

On Evolutionary Lineages of Membrane Systems
Petr Sośık, Ondřej Vaĺık . 67

Regular Presentations

Number of Protons/Bi-stable Catalysts and Membranes in
P Systems. Time-Freeness

Artiom Alhazov . 79

Symbol/Membrane Complexity of P Systems with Symport/Antiport
Rules

Artiom Alhazov, Rudolf Freund,
Marion Oswald . 96

On P Systems as a Modelling Tool for Biological Systems
Francesco Bernardini, Marian Gheorghe, Natalio Krasnogor,
Ravie C. Muniyandi, Mario J. Pérez-J́ımenez,
Francisco José Romero-Campero . 114

Encoding-Decoding Transitional Systems for Classes of P Systems
Luca Bianco, Vincenzo Manca . 134

On the Computational Power of the Mate/Bud/Drip Brane Calculus:
Interleaving vs. Maximal Parallelism

Nadia Busi . 144

VIII Table of Contents

A Membrane Computing System Mapped on an Asynchronous,
Distributed Computational Environment

Guido Casiraghi, Claudio Ferretti, Alberto Gallini,
Giancarlo Mauri . 159

P Systems with Memory
Paolo Cazzaniga, Alberto Leporati, Giancarlo Mauri,
Claudio Zandron . 165

Algebraic and Coalgebraic Aspects of Membrane Computing
Gabriel Ciobanu, Viorel Mihai Gontineac . 181

P Systems and the Modeling of Biochemical Oscillations
Federico Fontana, Luca Bianco,
Vincenzo Manca . 199

P Systems, Petri Nets, and Program Machines
Pierluigi Frisco . 209

On the Power of Dissolution in P Systems with Active Membranes
Miguel A. Gutiérrez–Naranjo, Mario J. Pérez–Jiménez,
Agust́ın Riscos–Núñez, Francisco J. Romero–Campero 224

A Linear Solution for QSAT with Membrane Creation
Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez,
Francisco J. Romero-Campero . 241

On Symport/Antiport P Systems and Semilinear Sets
Oscar H. Ibarra, Sara Woodworth, Hsu-Chun Yen, Zhe Dang 253

Boolean Circuits and a DNA Algorithm in Membrane Computing
Mihai Ionescu, Tseren-Onolt Ishdorj . 272

Towards a Petri Net Semantics for Membrane Systems
Jetty H.C.M. Kleijn, Maciej Koutny, Grzegorz Rozenberg 292

Quantum Sequential P Systems with Unit Rules and Energy Assigned
to Membranes

Alberto Leporati, Giancarlo Mauri, Claudio Zandron 310

Editing Distances Between Membrane Structures
Damián López, José M. Sempere . 326

Relational Membrane Systems
Adam Obtu�lowicz . 342

Table of Contents IX

On the Rule Complexity of Universal Tissue P Systems
Yurii Rogozhin, Sergey Verlan . 356

Non-cooperative P Systems with Priorities Characterize PsET0L
Dragoş Sburlan . 363

Author Index . 371

Computational Power of Symport/Antiport:
History, Advances, and Open Problems

Artiom Alhazov1,2, Rudolf Freund3, and Yurii Rogozhin2

1 Research Group on Mathematical Linguistics,
Rovira i Virgili University, Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

artiome.alhazov@estudiants.urv.es
2 Institute of Mathematics and Computer Science

of the Academy of Sciences of Moldova,
Str. Academiei 5, Chişinău, Moldova

{artiom, rogozhin}@math.md
3 Faculty of Informatics, Vienna University of Technology,

Favoritenstr. 9–11, A–1040 Vienna, Austria
rudi@emcc.at

Abstract. We first give a historical overview of the most important
results obtained in the area of P systems and tissue P systems with
symport/antiport rules, especially with respect to the development of
computational completeness results improving descriptional complexity
parameters. We consider the number of membranes (cells in tissue P
systems), the weight of the rules, and the number of objects. Then we
establish our newest results: P systems with only one membrane, symport
rules of weight three, and with only seven additional objects remaining in
the skin membrane at the end of a halting computation are computation-
ally complete; P systems with minimal cooperation, i.e., P systems with
symport/antiport rules of size one and P systems with symport rules
of weight two, are computationally complete with only two membranes
with only three and six, respectively, superfluous objects remaining in
the output membrane at the end of a halting computation.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communication
rules assigned to membranes, were introduced in [38]. Symport rules move objects
across a membrane together in one direction, whereas antiport rules move objects
across a membrane in opposite directions. These operations are very powerful,
i.e., P systems with symport/antiport rules have universal computational power
with only one membrane, e.g., see [15], [22], [17].

After establishing the necessary definitions, we first give a historical overview
of the most important results obtained in the area of P systems and tissue P sys-
tems with symport/antiport rules and review the development of computational
completeness results improving descriptional complexity parameters, especially
concerning the number of membranes and cells, respectively, and the weight of

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 1–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A. Alhazov, R. Freund, and Y. Rogozhin

the rules as well as the number of objects. Moreover, we establish our newest
results: first we prove that P systems with only one membrane and symport
rules of weight three can generate any Turing computable set of numbers with
only seven additional symbols remaining in the skin membrane at the end of a
halting computation, which improves the result of [21] where thirteen superflu-
ous symbols remained. Then we show that P systems with minimal cooperation,
i.e., P systems with symport/antiport rules of weight one and P systems with
symport rules of weight two, are computationally complete with only two mem-
branes modulo some initial segment. In P systems with symport/antiport rules
of weight one, only three superfluous objects remain in the output membrane at
the end of a halting computation, whereas in P systems with symport rules of
weight two six additional objects remain. For both variants, in [5] it has been
shown that two membranes are enough to obtain computational completeness
modulo a terminal alphabet; in this paper, we now show that the use of a termi-
nal alphabet can be avoided for the price of superfluous objects remaining in the
output membrane at the end of a halting computation. So far we were not able
to completely avoid these additional objects, hence, it remains as an interesting
question how to reduce their number.

2 Basic Notions and Definitions

For the basic elements of formal language theory needed in the following, we
refer to [45]. We just list a few notions and notations: N denotes the set of
natural numbers (i.e., of non-negative integers). V ∗ is the free monoid generated
by the alphabet V under the operation of concatenation and the empty string,
denoted by λ, as unit element; by NRE, NREG, and NFIN we denote the family
of recursively enumerable sets, regular sets, and finite sets of natural numbers,
respectively. For k ≥ 1, by NkRE we denote the family of recursively enumerable
sets of natural numbers excluding the initial segment 0 to k − 1. Equivalently,
NkRE = {k + L | L ∈ NRE}, where k + L = {k + n | n ∈ L}.

Let {a1, . . . , an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by |x|ai

; the Parikh vector associated with x with
respect to a1, . . . , an is

(
|x|a1

, . . . , |x|an

)
. The Parikh image of a language L over

{a1, . . . , an} is the set of all Parikh vectors of strings in L. A (finite) multiset
〈m1, a1〉 . . . 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, can be represented by any string
x the Parikh vector of which with respect to a1, . . . , an is (m1, . . . ,mn) .

The family of recursively enumerable sets of vectors of natural numbers is
denoted by PsRE.

2.1 Register Machines and Counter Automata

The proofs of the main results discussed in this paper are based on the simulation
of register machines or counter automata, respectively; with respect to register
machines, we refer to [37] for original definitions, and to [13] for definitions like
those we use in this paper.

Computational Power of Symport/Antiport 3

A (non-deterministic) register machine is a construct

M = (d,Q, q0, qf , P) ,

where:

– d is the number of registers,
– Q is a finite set of label for the instructions of M,
– q0 is the initial label,
– qf is the final label, and
– P is a finite set of instructions injectively labelled with elements from Q.

The labelled instructions are of the following forms:
1. q1 : (A (r) , q2, q3);

add 1 to the contents of register r and proceed to one of the instructions
(labelled with) q2 and q3 (“ADD”-instruction).

2. q1 : (S (r) , q2, q3);
if register r is not empty, then subtract 1 from its contents and go
to instruction q2, otherwise proceed to instruction q3 (“SUBTRACT”-
instruction).

3. qf : halt;
stop the machine; the final label qf is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector of nat-
ural numbers (s1, . . . , sk) if, starting with the instruction with label q0 and all
registers containing the number 0, the machine stops (it reaches the instruction
qf : halt) with the first k registers containing the numbers s1, . . . , sk (and all
other registers being empty).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of natural numbers which can be generated by Turing machines, i.e.,
the family PsRE. More precisely, from the main result in [37] that the actions
of a Turing machine can be simulated by a register machine with two registers
(using a prime number encoding of the configuration of the Turing machine)
we know that any recursively enumerable set of k-vectors of natural numbers
can be generated by a register machine with k+ 2 registers where only “ADD”-
instructions are needed for the first k registers.

A non-deterministic counter automaton is a construct

M = (d,Q, q0, qf , P) ,

where:

– d is the number of counters, and we denote D = {1, . . . , d};
– Q is a finite set of states, and without loss of generality, we use the notation
Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, . . . , f},

– q0 ∈ Q is the initial state,
– qf ∈ Q is the final state, and
– P is a finite set of instructions of the following forms:

4 A. Alhazov, R. Freund, and Y. Rogozhin

1. (qi → ql, k+), with i, l ∈ F, i �= f, k ∈ D (“increment”-instruction).
This instruction increments counter k by one and changes the state of
the system from qi to ql.

2. (qi → ql, k−), with i, l ∈ F, i �= f, k ∈ D (“decrement”-instruction). If
the value of counter k is greater than zero, then this instruction decre-
ments it by 1 and changes the state of the system from qi to ql. Otherwise
(when the value of register k is zero) the computation is blocked in state
qi.

3. (qi → ql, k = 0), with i, l ∈ F, i �= f, k ∈ D (“test for zero”-instruction).
If the value of counter k is zero, then this instruction changes the state
of the system from qi to ql. Otherwise (the value stored in counter k is
greater than zero) the computation is blocked in state qi.

4. halt. This instruction stops the computation of the counter automaton,
and it can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state q0
with all counters being equal to zero. The result of the computation of a counter
automaton is the value of the first k counters when the automaton halts in state
qf ∈ Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of k-vectors of natural numbers. As for register machines, we
know that any set of k-vectors of natural numbers from PsRE can be generated
by a counter automaton with k+2 counters where only “increment”-instructions
are needed for the first k counters.

A special variant of counter automata uses a set C of pairs {i, j} with i, j ∈ Q
and i �= j. As a part of the semantics of the counter automaton with conflicting
counters M = (d,Q, q0, qf , P, C), the automaton stops without yielding a result
whenever it reaches a configuration where, for any pair of conflicting counters,
both are non-empty.

Given an arbitrary counter automaton, we can easily construct an equivalent
counter automaton with conflicting counters: For every counter i which shall
also be tested for zero, we add a conflicting counter ı̄; then we replace all “test
for zero”-instructions (l → l′, i = 0) by the sequence of instructions (l → l′′, ı̄+),
(l′′ → l′, ı̄−). Thus, in counter automata with conflicting counters we only use
“increment”-instructions and “decrement”-instructions, whereas the “test for
zero”-instructions are replaced by the special conflicting counters semantics.

Another special variant of a counter automaton is called partially blind (multi)
counter automaton (or machine, [23]); we shall use the abbreviation PBCA for
this restricted type of counter automata which consists of a finite number (we call
the number m) of counters that can add one and subtract one, but cannot test
for zero. If there is an attempt to decrement a zero counter, the system aborts
and does not accept. The first k counters (for some k ≤ m) are input counters.
The system is started with some nonnegative integers (n1, . . . , nk) in the input
counters and the other counters set to zero. The input tuple is accepted if the

Computational Power of Symport/Antiport 5

system reaches a halting state and all the counters are zero. Hence, the language
accepted by a PBCA is the set of k-tuples of nonnegative integers accepted by
the system.

Formally a PBCA is defined as M = (m,B, l0, lh, R) where m is the number
of partially blind counters in the system, B is the set of instruction labels, l0 is
the starting instruction, lh is the halting instruction, and R is the set of labelled
instructions. These labelled instructions in R are of the forms:

– li : (ADD(r), lj),
– li : (SUB(r), lj),
– li : HALT ,

where li and lj are instruction labels and r is the counter that should be
added/ subtracted.

For notational convenience, we will denote the family of sets of tuples of
natural numbers accepted by some PBCA as aPBLIND and the family of
sets of tuples of natural numbers accepted by PBCAs with m counters as m-
aPBLIND.

A related model called blind (multi)counter automaton (or machine, see [23]) is
a (multi)counter automaton that can add one and subtract one from a counter,
but cannot test a counter for zero. The difference between this model and a
partially blind counter automaton is that a blind counter automaton does not
abort when a zero counter is decremented. Thus, the counter can store negative
numbers. Again, an input is accepted if the computation reaches an accept state
and all the counters are zero.

We note that blind counter automata are equivalent in power to reversal
bounded counter automata [23] which are equivalent to semilinear sets [30].
Partially blind counter automata are strictly more powerful than blind counter
automata [23].

We have defined a PBCA as an acceptor for k-tuples of nonnegative inte-
gers. One can also define a partially blind counter automaton that is used as
a generator of k-tuples of nonnegative integers [29]. A partially blind counter
generator (PBCG) M consists of m counters, where the first k ≤ m counters
are distinguished as the output counters. M starts with all counters set to zero.
Again, at each step, each counter can be incremented/decremented by 1 (or left
unchanged), but if there is an attempt to decrement a zero counter, the system
aborts and does not generate anything. If the system halts in a final state with
zero in counters k + 1, . . . ,m, then the tuple (n1, . . . , nk) in the first k counters
is said to be generated by M .

A restricted variant of a counter automaton is called linear-bounded multi-
counter automaton (or machine).

A deterministic multicounter automaton Z is linear-bounded if, when given
an input n in one of its counters (called the input counter) and zeros in the other
counters, it computes in such a way that the sum of the values of the counters
at any time during the computation is at most n. One can easily normalize
the computation so that every increment is preceded by a decrement (i.e., if Z

6 A. Alhazov, R. Freund, and Y. Rogozhin

wants to increment a counter Cj , it first decrements some counter Ci and then
increments Cj) and every decrement is followed by an increment. Thus we can
assume that every instruction of Z, which is not “Halt”, is of the form:

p: If Ci �= 0, decrement Ci by 1, increment Cj by 1,
and go to k else go to state l

where p, k, l are labels (states). We do not require that the contents of the coun-
ters is zero when the automaton halts.

If in the instruction as defined above there is a “choice” for states k and/or
l, then the automaton is called non-deterministic.

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [40]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it.

A P system with symport/antiport rules is a construct

Π = (O,μ,w1, . . . , wk, E,R1, . . . , Rk, i0),

where:

1. O is a finite alphabet of symbols called objects ;
2. μ is a membrane structure consisting of k membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k;
3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated with

the region i (delimited by membrane i);
4. E ⊆ O is the set of objects that appear in the environment in an infinite

number of copies;
5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated

with membrane i; these rules are of the forms (x, in) and (y, out) (symport
rules) and (y, out;x, in) (antiport rules), respectively, where x, y ∈ O+;

6. i0 is the label of an elementary membrane of μ that identifies the correspond-
ing output region.

A P system with symport/antiport rules is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure μ), where to each membrane i there are assigned
a multiset of objects wi and a finite set of symport/antiport rules Ri, 1 ≤ i ≤ k.
A rule (x, in) ∈ Ri permits the objects specified by x to be moved into region i
from the immediately outer region. Notice that for P systems with symport rules
the rules in the skin membrane of the form (x, in), where x ∈ E∗, are forbidden.
A rule (x, out) ∈ Ri permits the multiset x to be moved from region i into
the outer region. A rule (y, out;x, in) permits the multisets y and x, which are
situated in region i and the outer region of i, respectively, to be exchanged. It is
clear that a rule can be applied if and only if the multisets involved by this rule

Computational Power of Symport/Antiport 7

are present in the corresponding regions. The weight of a symport rule (x, in)
or (x, out) is given by |x| , while the weight of an antiport rule (y, out;x, in) is
given by max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules is obtained
by applying the rules in a non-deterministic maximally parallel manner. Specif-
ically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport rules do not allow the system to modify
the objects placed inside the regions. Initially, each region i contains the corre-
sponding finite multiset wi, whereas the environment contains only objects from
E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P sys-
tem reaches a configuration where no rule can be applied anymore. The result of a
successful computation is a natural number that is obtained by counting all objects
(only the terminal objects as it done in [5], if in addition we specify a subset of O
as the set of terminal symbols) present in region i0. Given a P systemΠ , the set of
natural numbers computed in this way byΠ is denoted byN(Π). If the multiplicity
of each (terminal) object is counted separately, then a vector of natural numbers is
obtained, denoted by Ps(Π), see [40]. For short, we shall also speak of a P system
only when dealing with a P system with symport/antiport rules as defined above.

By
NOnPm(syms, antit)

we denote the family of sets of natural numbers (non-negative integers) that are
generated by a P system with symport/antiport rules having at most n > 0
objects in O, at least m > 0 membranes, symport rules of size at most s ≥ 0,
and antiport rules of size at most t ≥ 0. By

NkOnPm(syms, antit)

we denote the corresponding families of recursively enumerable sets of natural
numbers without initial segment {0, 1, . . . , k − 1}. If we replace numbers by
vectors, then in the notations above N is replaced by Ps. When any of the
parameters m,n, s, t is not bounded, it is replaced by ∗; if the number of objects
n is unbounded, we also may just omit n. If s = 0, then we may even omit syms;
if t = 0, then we may even omit antit.

It may happen that P systems with symport/antiport (symport) rules can
simulate deterministic register machines (i.e., register machines where in each
ADD-instruction q1 : (A (r) , q2, q3) the labels q2 and q3 are equal) in a deter-
ministic way, i.e., from each configuration of the P system we can derive at most
one other configuration. Then, when considering these P systems as accepting
devices (the input from a set in PsRE is put as an additional multiset into
some specified membrane of the P system), we can get deterministic accepting
P systems; the corresponding families of recursively enumerable sets of natural
numbers then are denoted in the same way as before, but with the prefix aD;
e.g., from the results proved in [18] and [14] we immediately obtain

PsRE = aDPsOP1(anti2).

8 A. Alhazov, R. Freund, and Y. Rogozhin

Sometimes, the results we recall use the intersection with a terminal alphabet,
in that way avoiding superfluous symbols to be counted as a result of a halting com-
putation. In that case, we add the suffix T at the end of the corresponding notation.

2.3 Tissue P Systems with Symport/Antiport Rules

Tissue P systems were introduced in [34], and tissue-like P systems with channel
states were investigated in [19]. Here we deal with the following type of systems
(omitting the channel states).

A tissue P system (of degree m ≥ 1) with symport/antiport rules is a con-
struct

Π =
(
m,O,w1, . . . , wm, ch,

(
R(i,j)

)
(i,j)∈ch

)
,

where:

– m is the number of cells,
– O is the alphabet of objects,
– w1, . . . , wm are strings over O representing the initial multisets of objects

present in the cells of the system (it is assumed that the m cells are labelled
with 1, 2, . . . ,m) and, moreover, we assume that all objects from O appear
in an unbounded number in the environment,

– ch ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . ,m} , (i, j) �= (0, 0)} is the set of links (chan-
nels) between cells (these were called synapses in [19]; 0 indicates the envi-
ronment), R(i,j) is a finite set of symport/antiport rules associated with the
channel (i, j) ∈ ch.

A symport/antiport rule of the form y/λ, λ/x, or y/x, respectively, x, y ∈ O+,
from R(i,j) for the ordered pair (i, j) of cells means moving the objects specified
by y from cell i (from the environment, if i = 0) to cell j, at the same time
moving the objects specified by x in the opposite direction. For short, we shall
also speak of a tissue P system only when dealing with a tissue P system with
symport/antiport rules as defined above.

The computation starts with the multisets specified by w1, . . . , wm in the m
cells; in each time unit, a rule is used on each channel for which a rule can be used
(if no rule is applicable for a channel, then no object passes over it). Therefore,
the use of rules is sequential at the level of each channel, but it is parallel at the
level of the system: all channels which can use a rule must do it (the system is
synchronously evolving). The computation is successful if and only if it halts.

The result of a halting computation is the number described by the multiplic-
ity of objects present in cell 1 (or in the first k cells) in the halting configuration.
The set of all (vectors of) natural numbers computed in this way by the system
Π is denoted by N(Π) (resp., Ps(Π)). The family of sets N(Π) (Ps(Π)) of
(vectors of) natural numbers computed as above by systems with at most n > 0
symbols and m > 0 cells as well as with symport rules of weight s ≥ 0 and
antiport rules of weight t ≥ 0 is denoted by

NOnt
′Pm(syms, antit) (resp., PsOnt

′Pm(syms, antit)).

When any of the parameters m,n, s, t is not bounded, it is replaced by ∗.

Computational Power of Symport/Antiport 9

In [19], only channels (i, j) with i �= j are allowed, and, moreover, for any
i, j only one channel out of {(i, j) , (j, i)} is allowed, i.e., between two cells (or
one cell and the environment) only one channel is allowed (this technical detail
may influence considerably the computational power). The family of sets N(Π)
(resp., Ps(Π)) of (vectors of) natural numbers computed as above by systems
with at most n > 0 symbols and m > 0 cells as well as with symport rules of
weight s ≥ 0 and antiport rules of weight t ≥ 0 is denoted by

NOntPm(syms, antit) (resp., PsOntPm(syms, antit)).

3 Descriptional Complexity – A Historic Overview

In this section we review the development of computational completeness results
with respect to descriptional complexity parameters, especially concerning the
number of membranes (cells in tissue P systems), the weight of the rules, and
the number of objects.

3.1 Rules Involving More Than Two Objects

We first recall results where rules involving more than two objects are used.
As it was shown in [38], two membranes are enough for getting computational
completeness when rules involving at most four objects, moving up to two objects
in each direction, are used, i.e.,

NRE = NOP2(sym2, anti2).

Using antiport. The result stated above was independently improved in [15],
[17], and [22] – one membrane is enough:

NRE = NOP1(sym1, anti2).

In fact, only one symport rule is needed; this can be avoided for the price of one
additional object in the output region:

N1RE = N1OP1(anti2).

It is worth mentioning that the only antiport rules used are those exchanging
one object by two objects.

Using symport. The history of P systems with symport only is longer. In [33]
the results

NRE = NOP2(sym5) = NOP3(sym4) = NOP5(sym3)

were proved, whereas in [21]

N13RE = N13OP1(sym3)

was shown; the additional symbols can be avoided if a second membrane is used:

NRE = NOP2(sym3).

10 A. Alhazov, R. Freund, and Y. Rogozhin

In this paper we now will show that we can bound the number of additional
symbols by 7:

N7RE = N7OP1(sym3).

Determinism. It is known that deterministic P systems with one membrane
using only antiport rules of weight at most 2 (actually, only the rules exchanging
one object for two objects are needed, see [18], [11]) or using only symport rules
of weight at most 3 (see [18]) can accept all sets of vectors of natural numbers (in
fact, this is only proved for sets of numbers, but the extension to sets of vectors
is straightforward), i.e.,

PsRE = aDPsOP1(anti2) = aDPsOP1(sym3).

3.2 Minimal Cooperation

Already in [38] it was shown that

NRE = NOP5(sym2, anti1),

i.e., five membranes are already enough when only rules involving two objects
are used. However, both types of rules involving two objects are used: symport
rules moving up to two objects in the same direction, and antiport rules moving
two objects in different directions.

Minimal cooperation by antiport. We now consider P systems where sym-
port rules move only one object and antiport rules move only two objects across
the a membrane in different directions. The first proof of the computational
completeness of such P systems can be found in [9]:

NRE = NOP9(sym1, anti1),

i.e., these P systems have nine membranes. This first result was improved by
reducing the number of membranes to six [31], five [10], and four [20, 32], and
finally in [46] it was shown that

N5RE = N5OP3(sym1, anti1),

i.e., three membranes are sufficient to generate all recursively enumerable sets
of numbers (with five additional objects in the output membrane).

In [6], a stronger result was shown where the output membrane did not contain
superfluous symbols:

PsRE = PsOP3(sym1, anti1).

In [5] it was shown that even two membranes are enough to obtain computational
completeness, yet only modulo a terminal alphabet:

PsRE = PsOP2(sym1, anti1)T .

In this paper we now will show that we can bound the number of additional
symbols by 3:

N3RE = N3OP2(sym1, anti1).

Computational Power of Symport/Antiport 11

Minimal cooperation by symport. We now consider P systems moving only
one or two objects by a symport rule; these systems were shown to be compu-
tationally complete with four membranes in [22]:

NRE = NOP4(sym2).

In [6], this result was improved down to three membranes even for vectors of
natural numbers:

PsRE = PsOP3(sym2).
Moreover, in [6] it was also shown that even two membranes are enough to obtain
computational completeness (modulo a terminal alphabet):

PsRE = PsOP2(sym2)T .

In this paper we will show that the number of additional objects in the output
region can be bound by six:

N6RE = N6OP2(sym2).

The tissue case. If we do not restrict the graph of communication to be a
tree, certain advantages appear. It was shown in [48] that

NRE = NOtP3(sym1, anti1),

i.e., three cells are enough when using symport/antiport rules of weight one.
This result was improved in [8] to two cells, again without additional objects in
the output cell, and an equivalent result holds if antiport rules of weight one are
replaced by symport rules of weight two:

PsRE = PsOtP2(sym1, anti1) = PsOtP2(sym2).

Moreover, it was shown in the same article that accepting can be done deter-
ministically:

PsRE = aDPsOtP2(sym1, anti1) = aDPsOtP2(sym2).

A nice aspect of the proof is that it not only holds true for P systems with
channels operating sequentially (as it is usually defined for tissue P systems),
but also for P systems with channels operating in a maximally parallel way (like
in standard P systems, generalizing the region communication structure of P
systems to the arbitrary graph structure of tissue P systems).

Below computational completeness. In [8], it was also shown that

NOP1(sym1, anti1) ∪ NOtP1(sym1, anti1) ⊆ NFIN.

Together with the counterpart results for symport systems,

NOP1(sym2) ∪ NOtP1(sym2) ⊆ NFIN

obtained in [21], this is enough to state the optimality of the computational
completeness results for the two-membrane/two-cell systems.

The most interesting open questions remaining in the cases considered so far
concern the possibility to reduce the number of extra objects in the output region
in some of the results stated above.

12 A. Alhazov, R. Freund, and Y. Rogozhin

3.3 Small Number of Objects

In the preceding subsections, a survey of computational completeness results
depending on the number of membranes or cells and the weights of the rules has
been given. We now follow another direction of descriptional complexity: we try
to keep the number of membranes or cells and especially the number of objects
small, yet on the other hand allow rules of unbounded weight.
P Systems. A quite surprising result was presented in [42]: using symport/
antiport rules of unbounded weight, P systems with four membranes are com-
putationally complete even when the alphabet contains only three symbols:

NRE = NO3P4(sym∗, anti∗).

Then it has been shown in [1] that

NRE = NO5P1(sym∗, anti∗),

i.e., for P systems with one membrane, even five objects are enough for getting
computational completeness.

The original result was improved in [3]; in sum, the actual computational
completeness results for P systems can be found there:

NRE = NOnPm(sym∗, anti∗) = aNOnPm(sym∗, anti∗)
for (n,m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

The results mentioned above are presented as part of a general picture (“com-
plexity carpet”), including results for generating/accepting/computing functions
on vectors of specified dimensions.

Below computational completeness. The same article ([3]) presents unde-
cidability results for the families

(a)NO2P3(sym∗, anti∗), (a)NO3P2(sym∗, anti∗), (a)NO4P1(sym∗, anti∗);

moreover, it was shown that

NO1P2(sym∗, anti∗) ∩ NO2P1(sym∗, anti∗) ⊇ NREG;
aNO3P1(sym∗, anti∗) ∩ aNO2P2(sym∗, anti∗) ⊇ NREG;
NO1P1(sym∗, anti∗) = NFIN ;
aNO2P1(sym∗, anti∗) ⊇ NFIN.

The last result has been improved in [29]; in the same article, also some results
on one-symbol P systems are presented:

aNO2P1(sym∗, anti∗) � NREG;
aNO1P5m+3(sym∗, anti∗) � am-PBLIND;
NO1P5m+3(sym∗, anti∗) ⊇ m-PBLIND.

The parameter 5m+ 3 in the last two results can even be reduced to 2m+ 3,
i.e., 2m + 3 membranes are enough to simulate partially blind counter au-
tomata/generators (these results will appear in the final version of [29].

Computational Power of Symport/Antiport 13

Several questions are still open; the most interesting one is to determine the
computational power of P systems with one symbol (we conjecture that they
are not computationally complete, even if we can use an unbounded number of
membranes and symport/antiport rules of unbounded weight).

Tissue P Systems. The question concerning systems with only one object has
been answered in a positive way in [16] for tissue P systems:

NRE = NO1tP7(sym∗, anti∗) = NO1t
′P6(sym∗, anti∗).

In [2] the “complexity carpet” for tissue P systems was completed:

NRE = NOntPm(sym∗, anti∗)
for (n,m) ∈ {(4, 2) , (2, 3) , (1, 7)} ,

but
NREG = NO∗tP1(sym∗, anti∗) = NO2tP1(sym∗, anti∗)

and
NFIN = NO1tP1(sym∗, anti∗) = NO1t

′P1(sym∗, anti∗).

Using two channels between a cell and the environment, one cell can sometimes
be saved, and one-cell systems become computationally complete:

NRE = NOnt
′Pm(sym∗, anti∗)

for (n,m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1, 6)} .

3.4 Computational Completeness - Summary

We now finish our historical review with repeating (some of) the best known
results of computational completeness:

One membrane:
aDPsOP1(anti2) = aDPsOP1(sym3) = PsRE,
N1RE = N1OP1(anti2),
N7RE = N7OP1(sym3).

P systems - minimal cooperation:
PsRE = PsOP2(sym1, anti1)T = PsOP2(sym2)T ,
N3RE = N3OP2(sym1, anti1),
N6RE = N6OP2(sym2).

Tissue P systems – minimal cooperation:
PsRE = aDPsOtP2(sym1, anti1) = aDPsOtP2(sym2),
P sRE = PsOtP2(sym1, anti1) = PsOtP2(sym2).

P systems – small number of objects:
NRE = NOnPm(sym∗, anti∗)

for (n,m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

14 A. Alhazov, R. Freund, and Y. Rogozhin

Tissue P systems – small number of objects:
NRE = NOntPm(sym∗, anti∗)

for (n,m) ∈ {(4, 2) , (2, 3) , (1, 7)} ,
NRE = NOnt

′Pm(sym∗, anti∗)
for (n,m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1, 6)} .

3.5 Bounded Symport/Antiport Systems

The question whether or not the deterministic version is weaker than the non-
deterministic version of a specific variant of (tissue)P systems is an interesting
and fundamental research issue in membrane computing, in particular for P
systems with symport/antiport rules (see [41], [18], [26]).

Let us consider P systems that are used as acceptors. A symport/antiport P
systems is called bounded if the only rules allowed are of the form (u, out; v, in)
such that u, v are multisets of objects with the restriction that |u| = |v|. (Note
that all the rules are antiport rules). The power of these systems is exactly
equivalent to that of linear-bounded (multi)counter automata or log (n) space-
bounded Turing machines (see [27]).

The deterministic and non-deterministic versions of such systems are equiva-
lent if and only if deterministic and non-deterministic linear-bounded automata
are equivalent, the latter problem being a long-standing open problem in com-
plexity theory (see [27, 28]). This is in contrast to the fact that determinis-
tic and non-deterministic 1-membrane unrestricted symport/antiport systems
are equivalent and are universal (see, for example, Subsection 3.1 of this
paper).

4 New Results

We first improve the result N13OP1(sym3) = N13RE from [21]. For the proof,
we use the variant of counter automata with conflicting counters and implement
the semantics that if two conflicting counters are non-empty at the same time,
then the computation is blocked without producing a result.

Theorem 1. N7OP1(sym3) = N7RE.

Proof. Let L be an arbitrary set from N7RE and consider a counter au-
tomaton M = (d,Q, q0, qf , P, C) with conflicting counters generating L − 7
(= {n− 7 | n ∈ L}); C is a finite set of pair sets of conflicting counters {i, ı̄} .
We construct a P system simulating M :

Π = (O,E, [1]1, w1, R1, 1),
O = {xi | 1 ≤ i ≤ 6} ∪Q ∪ {(p, j) | p ∈ P, 1 ≤ j ≤ 6}

∪ {ai, Ai | i ∈ C} ∪ {#, b, d} ,
E = {ai, Ai | i ∈ C} ∪ {x2, x3,#}

∪ Q ∪ {(p, j) | p ∈ P, j ∈ {2, 4, 5, 6}},
w1 = l0dx1x4x5x6

∏
p∈P (p, 1) (p, 3) b.

Computational Power of Symport/Antiport 15

The following rules allow us to simulate the counter automaton M :

– The rules (daiaı̄, out) implement the special semantics of conflicting coun-
ters {i, ı̄} with leading to an infinite computation by applying the rules
(d#, out) and (d#, in).

– The simulation of the instructions of M is initiated by also sending out x1 in
the first step; the rules (x1x2x3, in) as well as (x2x4x5, out) and (x3x6, out)
then allow us to send out the specific signal variables x4, x5, and x6 which
are needed to guide the sequence of rules to be applied.

– The instruction p : (l → l′, i−) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)ai, out), ((p, 2)(p, 3)d, out),
((p, 3)x5(p, 4), in),
((p, 4)(p, 5), out),
((p, 5)x6l

′, in).

In case that no symbol ai is present (which corresponds to the fact that
counter i is empty), the rule ((p, 2)(p, 3)d, out) leads to an infinite computa-
tion by applying the rules (d#, out) and (d#, in). Otherwise, decrementing
is successfully accomplished by applying the rule ((p, 2)(p, 3)ai, out).

– The instruction p : (l → l′, i+) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)Ai, out),
((p, 3)x5l

′, in),
(Aix6ai, in).

The symbol Ai is sent out to take exactly one symbol ai in.
– A simulation of M by Π terminates with sending out the symbols from

{(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C} which were used during the simulation
of the instructions of M as soon as the halting label lh of M appears:
(lhbx, out),
x ∈ {(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C},
(lhb, in).
If the system halts, the objects inside correspond with the contents of the
output registers, and the extra symbols are lh, d, b, x1, x4, x5, x6, i.e., seven
in total. ��

We now show that two membranes are enough to obtain computational complete-
ness with symport/antiport rules of minimal size 1 with only three additional
objects remaining in halting computations.

16 A. Alhazov, R. Freund, and Y. Rogozhin

Theorem 2. N3OP2(sym1, anti1) = N3RE.

Proof. We simulate a counter automaton M = (d,Q, q0, qf , P) which starts with
empty counters. We also suppose that all instructions from P are labelled in a
one-to-one manner with elements of {1, . . . , n} = I; I is the disjoint union of
{n} as well as I+, I−, and I=0 where by I+, I−, and I=0 we denote the set
of labels for the “increment”-, “decrement”-, and “test for zero”-instructions,
respectively. Additionally we suppose, without loss of generality, that on the
first counter of the counter automaton M only “increment” instructions – of the
form (qi → ql, c1+) – are operating.

We construct the P system Π1 as follows:

Π1 = (O, [1 [2]2]1, w1, w2, E,R1, R2, 2),
O = E ∪ {Ic, q′0, F1, F2, F3, F4, F5,#1,#2, bj , b

′
j | j ∈ I},

E = Q ∪ {aj, a
′
j , a

′′
j | j ∈ I} ∪ C ∪ {F2, F3, F4, F5},

w1 = q′0Ic#1#1#2#2,

w2 = F1F1F1

∏
j∈I

bj
∏
j∈I

b′j,

Ri = Ri,s ∪Ri,r ∪Ri,f , i = 1, 2.

The functioning of this system may be split into two stages:

1. simulating the instructions of the counter automaton;
2. terminating the computation.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a symbol

qi ∈ Q; region 2 will hold the value of all counters, represented by the number
of occurrences of symbols ck ∈ C, k ∈ D, where D = {1, . . . , d}. We also use the
following idea realized by the phase “START” below: from the environment, we
bring symbols ck into region 1 all the time during the computation. This process
may only be stopped if all stages finish correctly; otherwise, the computation
will never stop.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system we present is the union of all these
parts. The rules Ri are given by three phases:

1. START (stage 1);
2. RUN (stage 1);
3. END (stage 2).

The parts of the computations illustrated in the following describe differ-
ent stages of the evolution of the P system given in the corresponding the-
orem. For simplicity, we focus on explaining a particular stage and omit the
objects that do not participate in the evolution at that time. Each rectangle

Computational Power of Symport/Antiport 17

represents a membrane, each variable represents a copy of an object in a cor-
responding membrane (symbols outside of the outermost rectangle are found in
the environment). In each step, the symbols that will evolve (will be moved)
are written in boldface. The labels of the applied rules are written above the
symbol ⇒.

1. START.

R1,s = {1s1 : (Ic, in), 1s2 : (Ic, out; ck, in), 1s3 : (ck, out) | ck ∈ C}
∪ {1s4 : (q′0, out; q0, in)},

R2,s = ∅

Symbol Ic brings one symbol ck from the environment into region 1 (rules 1s1,
1s2), where it may be used immediately during the simulation of the “increment”
instruction and then moved to region 2. Otherwise symbol ck returns to the
environment (rule 1s3). Rule 1s4 is used for synchronizing the appearance of
the symbols ck and qi in region 1.

We illustrate the beginning of the computation as follows:

ck1q0ajck2 q′
0Ic bj ⇒1s2,1s4 Icq′0ajck2 q0ck1 bj ⇒1s1,1s3,1r1

q′0q0ck1ck2 ajIc bj ⇒1s2,2r1 q′0q0ck1Ic ck2bj aj · · ·

2. RUN.

R1,r = {1r1 : (qi, out; aj, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}
∪ {1r2 : (bj, out; a′j , in), 1r3 : (aj , out; bj, in),
1r4 : (#1, out; bj, in) | j ∈ I}

∪ {1r5 : (a′j , out; a
′′
j , in) | j ∈ I+ ∪ I−} ∪ {1r6 : (#1, out; #1, in)}

∪ {1r7 : (b′j, out; a
′′
j , in), 1r8 : (a′j , out; b

′
j, in),

1r9 : (#1, out; b′j, in) | j ∈ I=0}
∪ {1r10 : (a′′j , out, ql, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}
∪ {1r11 : (bj , out), 1r12 : (b′j , out) | j ∈ I},

R2,r = {2r1 : (bj, out; aj , in) | j ∈ I}
∪ {2r2 : (aj , out; ck, in) | (j : qi → ql, ck+) ∈ P}
∪ {2r3 : (a′j , in) | j ∈ I+}
∪ {2r4 : (a′j , out; bj, in) | j ∈ I+ ∪ I−}
∪ {2r5 : (aj , out) | j ∈ I− ∪ I=0}
∪ {2r6 : (ck, out; a′j, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {−,= 0}}
∪ {2r7 : (b′j, out; bj , in), 2r8 : (b′j , in) | j ∈ I=0}
∪ {2r9 : (aj , out; #2, in) | j ∈ I+} ∪ {2r10 : (#2, out; #2, in)}.

18 A. Alhazov, R. Freund, and Y. Rogozhin

“Increment”-instruction:

aja
′
ja

′′
j ql qick#1#1 bj ⇒1r1 a′ja

′′
j qiql ajck#1#1 bj ⇒2r1

a′
ja

′′
j qiql bjck#1#1 aj ⇒1r2,2r2 bja

′′
j qiql aja′

j#1#1 ck

Now there are two possibilities: we may either apply
a) rule 1r5 or
b) rule 2r3.

It is easy to see that case a) leads to an infinite computation:

bja′′
j qiql aja′

j#1#1 ck ⇒1r5,1r3

aja′
jqiql bja′′

j #1#1 ck ⇒1r2,1r10 ajbjqia′′
j a′

jql#1#1 ck

After that rule 1r4 will eventually be applied, object #1 will be moved to the
environment and then applying rule 1r6 leads to an infinite computation.

Now let us consider case b):

bja
′′
j qiql aja′

j#1#1 ck ⇒1r3,2r3 aja
′′
j qiql bj#1#1 a′

jck

We cannot apply rule 1r2 as this leads to an infinite computation (see above).
Hence, rule 2r4 has to be applied:

aja
′′
j qiql bj#1#1 a′

jck ⇒2r4 aja′′
j qiql a′

j#1#1 bjck ⇒1r5

aja
′
jqiql a′′

j #1#1 bjck ⇒1r10 aja
′
ja

′′
j qi ql#1#1 bjck

In that way, qi is replaced by ql and ck is moved from region 1 into region 2.

“Decrement”-instruction:

aja
′
ja

′′
j ql qi#1#1 bjck ⇒1r1 a′ja

′′
j qiql aj#1#1 bjck ⇒2r1

a′
ja

′′
j qiql bj#1#1 ajck ⇒1r2,2r5 bja

′′
j qiql aja′

j#1#1 ck ⇒1r3,2r6

aja
′′
j qiql bjck#1#1 a′

j ⇒2r4 aja′′
j qiql a′

jck#1#1 bj ⇒1r5

aja
′
jqiql a′′

j ck#1#1 bj ⇒1r10 aja
′
ja

′′
j qi qlck#1#1 bj

In the way described above, qi is replaced by ql and ck is removed from region
2 to region 1.

Computational Power of Symport/Antiport 19

“Test for zero”-instruction:
qi is replaced by ql if there is no ck in region 2, otherwise a′j in region 1

exchanges with ck in region 2 and the computation will never stop.

(i) There is no ck in region 2:

aja
′
ja

′′
j ql qi#1#1 bjb

′
j ⇒1r1 a′ja

′′
j qiql aj#1#1 bjb

′
j ⇒2r1

a′ja
′′
j qiql bj#1#1 ajb

′
j

Now there are two possibilities: we apply either
a) rule 2r7 or
b) rule 1r2.

It is easy to see that case a) leads to an infinite computation:

a′ja
′′
j qiql bj#1#1 ajb′

j ⇒2r7,2r5 a′ja
′′
j qiql ajb′

j#1#1 bj ⇒2r1,2r8

a′ja
′′
j qiql bj#1#1 ajb′

j ⇒2r7,2r5 · · · ⇒2r1,2r8 a′
ja

′′
j qiql bj#1#1 ajb

′
j

⇒1r2,2r5 bja
′′
j qiql aja

′
j#1#1 b

′
j ⇒1r3 aja

′′
j qiql bja

′
j#1#1 b

′
j

Again there are two possibilities: we can apply either
c) rule 1r2 or
d) rule 2r7.

Case c) leads to an infinite computation (rules 1r4 and 1r6).

Now let us consider case d):

aja
′′
j qiql bja

′
j#1#1 b′

j ⇒2r7 aja′′
j qiql b′

ja
′
j#1#1 bj ⇒1r7

ajb′
jqiql a′′

j a
′
j#1#1 bj ⇒1r8,1r10 aja

′
ja

′′
j qi qlb′

j#1#1 bj

There are two possibilities: we can apply either
e) rule 1r7 or
f) rule 2r8.

Case e) leads to infinite computation (rules 1r9 and 1r6).

In case f), the object b′j comes back to region 2.

(b) There is some ck in region 2:
Consider again case d):

aja
′′
j qiql bja′

j#1#1 b′
jck ⇒2r7,2r6 aja′′

j qiql b′
jck#1#1 a

′
jbj ⇒1r7

ajb′
jqiql a′′

j ck#1#1 a
′
jbj ⇒1r9,1r10 aja

′′
j #1qi qlb′

jck#1 a
′
jbj

20 A. Alhazov, R. Freund, and Y. Rogozhin

Now the application of rule 1r6 leads to an infinite computation.
Finally, let us notice that applying the rules 1r11 and 1r12 during the phase

RUN leads to infinite computation. Hence, we model correctly the “test for zero”
instruction.

3. END.

R1,f = {1f1 : (F1, out;F2, in), 1f2 : (F2, out;F3, in),
1f3 : (F3, out;F4, in), 1f4 : (F4, out;F5, in)},

R2,f = {2f1 : (F1, out; qf , in), 2f2 : (qf , out; Ic, in),
2f3 : (qf , out; #1, in), 2f4 : (qf , out; #2, in), 2f5 : (F5, out),
2f6 : (bj , out;F5, in), 2f7 : (b′j , out;F5, in)}.

We illustrate the end of computations as follows:

F2F3F4F5Icck1ck2 qf#1#1#2#2 F1F1F1bj1b
′
j2 ⇒2f1,1s1

F2F3F4F5ck1ck2 Ic#1#1#2#2F1 qfF1F1bj1b
′
j2

⇒2f3,1s2,1f1

F2F3F4F5Icck2F1 F2ck1#1#2#2qf #1F1F1bj1b
′
j2

⇒1s1,1s4,1f2,2f1

F2F3F4F5ck1ck2F1 F3Ic#1#2#2F1 qf#1F1bj1b
′
j2

⇒1s2,1f1,1f3,2f3

F2F3F4F5ck1IcF1F1 F2F4ck2#2#2qf #1#1F1bj1b
′
j2 ⇒1s1,1s4,1f2,1f4,2f1

F2F3F4F5ck1ck2F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

Notice that now rule 2f2 will eventually be applied, as otherwise the appli-
cation of rule 2f4 will lead to an infinite computation (rule 2r10). Hence, we
continue as follows:

F2F3F4F5ck1ck2F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

⇒1f1,1f3,2f2,2f6

F2F3F4F5ck1ck2F1F1F1 F2F4#2#2bj1qf Ic#1#1F5b
′
j2 ⇒1f2,1f4,1r11,2f5

F2F3F4F5ck1ck2F1F1F1bj1 F3F5F5#2#2qf Ic#1#1b
′
j2

We continue in this manner until all objects bj , b′j , j ∈ I from the elementary
membrane 2 have been moved to the environment. Notice that the result in the
elementary membrane 2 (multiset ct1) cannot be changed during phase END, as
object Ic now is situated in the elementary membrane and cannot bring symbols
c1 from the environment. Recall that the counter automaton can only increment
the first counter c1, so all other computations of P system Π1 cannot change

Computational Power of Symport/Antiport 21

the number of symbols c1 in the elementary membrane. Thus, at the end of
a terminating computation, in the elementary membrane there are the result
(multiset ct1) and only the three additional objects Ic,#1,#1. ��
A “dual” class of systems with minimal cooperation is the class where two objects
are moved across the membrane in the same direction rather than in the opposite
ones. We now prove a similar result for this class using six additional symbols.

Theorem 3. N6OP2(sym2) = N6RE.

Proof. As in the proof of Theorem 1 we simulate a counter automaton M =
(d,Q, q0, qf , P) that starts with empty counters. Again we suppose that all
instructions from P are labelled in a one-to-one manner with elements of
{1, . . . , n} = I and that I is the disjoint union of {n} as well as I+, I−, and
I=0 where by I+, I−, and I=0 we denote the set of labels for the “increment”-,
“decrement”-, and “test for zero”-instructions, respectively. Moreover, we define
I ′ = {1, 2, . . . , n + 4}, Qk = {qi,k}, 1 ≤ k ≤ 5, i ∈ K, K = {0, 1, . . . , f}, and
C = {ci | 1 ≤ i ≤ d}.

We construct the P system Π2 as follows:

Π2 = (O, [1 [2]2]1, w1, w2, E,R1, R2, 2),

O = {#0,#1,#2, $1, $2, $3, â, b̂, Ic} ∪ {ak | 1 ≤ k ≤ 5} ∪Q
⋃

1≤k≤5

Qk

∪ C ∪ {aj , a
′
j , ǎj, âj , bj , dj , d

′
j , d

′′
j | j ∈ I} ∪ {et, ht | t ∈ I ′},

E = {a1, a3, a5,#0} ∪ {aj, a
′
j | j ∈ I} ∪ {ht | t ∈ I ′} ∪Q ∪Q2 ∪Q4 ∪ C,

w1 = #1âb̂a2a4$3

∏
j∈I

ǎj

∏
j∈I

d′j
∏
j∈I

d′′j
∏
t∈I′

et

∏
i∈K

q̂i

∏
i∈K

qi,1

∏
i∈K

qi,3

∏
i∈K

qi,5,

w2 = #2$n+1
1 $2

∏
j∈I

âj

∏
j∈I

bj
∏
j∈I

dj ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i ∈ {1, 2}.

The functioning of this system again may be split into two stages:

1. simulating the instructions of the counter automaton;
2. terminating the computation.

We code the counter automaton as in Theorem 1 above: region 1 will hold the
current state of the automaton, represented by a symbol qi ∈ Q; region 2 will hold
the value of all counters, represented by the number of occurrences of symbols ck ∈
C, k ∈ D, where D = {1, . . . , d}. We also use the following idea (called “circle”)
realized by phase “START” below: from the environment, we bring symbols ck into
region 1 all the time during the computation. This process may only be stopped if
all stages finish correctly; otherwise, the computation will never stop.

We split our proof into several parts that depend on the logical separation
of the behavior of the system. We will present the rules and the initial symbols
for each part, but we remark that the system that we present is the union of all
these parts.

22 A. Alhazov, R. Freund, and Y. Rogozhin

The rules Ri again are given by three phases:

1. START (stage 1);
2. RUN (stage 1);
3. END (stage 2).

1. START.

R1,s = {1s1 : (Ic, out), 1s2 : (Icck, in), 1s3 : (ck, out) | k ∈ D},
R2,s = ∅.

Symbol Ic brings one symbol c ∈ C from the environment into region 1
(rules 1s1, 1s2) where it may be used immediately during the simulation of
an “increment”-instruction and moved to region 2. Otherwise symbol c returns
to the environment (rule 1s3).

2. RUN.

R1,r = {1r1 : (qiq̂i, out) | i ∈ K}
∪ {1r2 : (aj q̂i, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−,= 0}, k ∈ D}
∪ {1r3 : (aj â, out) | j ∈ I+ ∪ I−} ∪ {1r4 : (aj b̂, out) | j ∈ I=0}
∪ {1r5 : (#2, out), 1r6 : (#2, in)} ∪ {1r7 : (bjǎj , out) | j ∈ I}
∪ {1r8 : (bj#1, out) | j ∈ I} ∪ {1r9 : (âj#1, out) | j ∈ I}
∪ {1r10 : (#0#1, in), 1r11 : (#0b̂, in)} ∪ {1r12 : (a′jbj , in) | j ∈ I}
∪ {1r13 : (âa1, in), 1r14 : (a1a2, out), 1r15 : (a2a3, in)}
∪ {1r16 : (a3a4, out), 1r17 : (a4a5, in), 1r18 : (a5, out)}
∪ {1r19 : (a′jql,1, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−,= 0}, k ∈ D}
∪ {1r20 : (qi,1qi,2, in), 1r21 : (qi,2qi,3, out), 1r22 : (qi,3qi,4, in) | i ∈ K}
∪ {1r23 : (qi,4qi,5, out), 1r24 : (qi,5qi, in) | i ∈ K}
∪ {1r25 : (dj â, out), 1r26 : (dj#0, in) | j ∈ I+ ∪ I−}
∪ {1r27 : (dj ǎj , in) | j ∈ I} ∪ {1r28 : (dj#1, out) | j ∈ I+ ∪ I−}
∪ {1r29 : (djd

′
j , out) | j ∈ I=0} ∪ {1r30 : (d′j b̂, in) | j ∈ I=0},

R2,r = {2r1 : (aj ǎj , in) | j ∈ I} ∪ {2r2 : (bj ǎj , out) | j ∈ I}
∪ {2r3 : (ajck, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {−,= 0}, k ∈ D}
∪ {2r4 : (aj#2, out) | j ∈ I−} ∪ {2r5 : (aj âj , out) | j ∈ I+}
∪ {2r6 : (#0, in), 2r7 : (#0, out)}
∪ {2r8 : (ckâj , in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {2r9 : (a′jbj , in) | j ∈ I} ∪ {2r10 : (a′jdj , out) | j ∈ I}
∪ {2r11 : (dja5, in) | j ∈ I+ ∪ I−} ∪ {2r12 : (a5, out)}
∪ {2r13 : (djd

′′
j , in) | j ∈ I=0} ∪ {2r14 : (ajd

′′
j , out) | j ∈ I=0}.

Computational Power of Symport/Antiport 23

“Increment”-instruction:

ajc Icqiq̂iǎj â bj âj ⇒1r1,1s1 qiq̂iajIcc ǎj â bj âj ⇒1r2,1s2

qi Iccq̂iaj ǎj â bjâj where c ∈ C

Now there are two variants of computations (depending on the application of
rule 2r1 or rule 1r3). It is easy to see that the application of rule 1r3 leads to
an infinite computation (by “circle”). Consider applying rule 2r1:

qick Iccq̂iajǎjâ bj âj ⇒2r1,1s1,1s3

qiIcckc q̂iâ bjǎjajâj ⇒2r2,2r5,1s2

qic Icck q̂iâbjǎjaj âj

Notice that object âj cannot be idle, as the application of the rules 1r9, 1r10,
2r6, 2r7 leads to an infinite computation. Hence, rule 2r8 will be applied and ob-
ject ck will be moved to region 2 (thus, we increase the number of objects ck in re-
gion 2 by one and model the increment-instruction of the counter automaton). In
an analogous way, object bj cannot be idle, as applying rules 1r8, 1r10, 2r6, 2r7
leads to an infinite computation. Thus, rule 2r1 cannot be applied and rule 1r7
will eventually be applied.

ca′ja1a3a5 Icckq̂iâbjǎjajâja2a4ql,1

Icca′
jbjǎjaj âa1a3a5 q̂ia2a4ql,1 âjck ⇒1r12,1r13,1s2

ǎjaja3a5 Iccq̂iâa1a2a4ql,1a
′
jbj âjck

Notice that applying rule 1r19 leads to an infinite computation, as object bj
cannot be idle. Thus, rule 2r9 will eventually be applied.

ǎjaja3a5ql,2ql,4 Iccq̂iâa1a2a4ql,1a′
jbjql,3ql,5 dj âjck

⇒2r9,1r14,1s1,1s3

Iccǎjaja1a2a3a5ql,2ql,4 q̂iâa4ql,1ql,3ql,5 dja′
jbjâjck

⇒2r10,1r15,1s2

ǎjaja1a5ql,2ql,4 Iccq̂ia2a3a4âdja′
jql,1ql,3ql,5 bjâjck

⇒1r19,1r25,1r16,1s1,1s3

Iccaj ǎjdjâa1a3a4a5a
′
jql,1ql,2ql,4 q̂ia2ql,3ql,5 bj âjck

⇒1r27,1r13,1r17,1r20,1s2

aja3a
′
jql,4 Iccq̂iâa1a2a4ǎjdja5ql,1ql,2ql,3ql,5 bjâjck

24 A. Alhazov, R. Freund, and Y. Rogozhin

Now we can apply the rules 1r25, 1r18 or 2r11. It is easy to see that applying
rule 1r25 leads to an infinite computation (rules 1r26, 2r6, 2r7), which is true
for rule 1r18, too (rules 1r28, 1r10, 2r6, 2r7). Hence, now consider applying rule
2r11.

aja3a
′
jql,4ql Iccq̂lq̂iâa1a2a4ǎjdja5ql,1ql,2ql,3ql,5 bj âjck

⇒2r11,1r21,1r14,1s1,1s3

Iccaja1a2a3a
′
jql,2ql,3ql,4ql q̂lq̂iâa4ǎjql,1ql,5 dja5bj âjck

⇒2r12,1r15,1r22,1s2

aja1a
′
jql,2ql Iccq̂lq̂iâa2a3a4a5ǎjql,1ql,3ql,4ql,5 djbj âjck

⇒1r16,1r18,1r23,1s1,1s3

Iccaja1a3a4a5a
′
jql,2ql,4ql,5ql q̂lq̂iâa2ǎjql,1ql,3 djbj âjck

⇒1r17,1r24,1s2

aja1a3a
′
jql,2ql,4 Iccqlq̂lq̂iâa2a4a5ǎjql,1ql,3ql,5 djbjâjck

⇒1r1,1r18,1s1,1s3

Iccaja1a3a5a
′
jql,2ql,4qlq̂l q̂iâa2a4ǎjql,1ql,3ql,5 djbjâjck

Thus, we begin a new circle of modelling.

“Decrement”-instruction.
If there is an object ck in region 2, we obtain the following computation:

aj qiq̂iǎj â bjck#2 ⇒1r1 qiq̂iaj ǎj â bjck#2 ⇒1r2

qi q̂iaj ǎjâ bjck#2

Now there are two variants of computations (depending on the application of
rule 2r1 or rule 1r3). It is easy to see that the application of rule 1r3 leads to
an infinite computation (by “circle”). Now consider applying rule 2r1:

qi q̂iajǎjâ bjck#2 ⇒2r1 qi q̂iâ bjǎjajck#2 ⇒2r2,2r3

qi q̂ibjǎj âajck #2

Thus, object ck is moved from region 2 to region 1 (i.e., we decrease the
number of objects ck in region 2 by one and in that way model the “decrement”-
instruction of the counter automaton).

The case when there is no object ck in region 2 leads to an infinite compu-
tation (rules 2r4, 1r5, 1r6), hence, again we correctly model the “decrement”-
instruction. The further behavior of the system is the same as in the case of
modelling the “increment”-instruction.

Computational Power of Symport/Antiport 25

“Test for zero”-instruction:
qi is replaced by ql if there is no ck in region 2 (case a)), otherwise the

computation will never stop (case b)).

Case a):

aj qiq̂iǎj b̂d
′
jd

′′
j bjdj#2 ⇒1r1 qiq̂iaj ǎj b̂d

′
jd

′′
j bjdj#2 ⇒1r2

qi q̂iaj ǎj b̂d
′
jd

′′
j bjdj#2

Now there are two variants of computations (depending on the application
of rule 2r1 or rule 1r4). It is easy to see that the application of rule 1r4
leads to an infinite computation (by “circle”). Consider the application of rule
2r1:

qiql,2ql,4qla
′
j q̂iajǎjql,1ql,3ql,5b̂d

′
jd

′′
j bjdj#2 ⇒2r1

qiql,2ql,4qla
′
j q̂iql,1ql,3ql,5b̂d

′
jd

′′
j ajǎjbjdj#2 ⇒2r2

qiql,2ql,4qla
′
j q̂iǎjbjql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒1r7

qiql,2ql,4qlǎjbja′
j q̂iql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒1r12

qiql,2ql,4qlǎj q̂ibja
′
jql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2

Again there are two variants of computations, depending on the application
of rule 1r19 or rule 2r9. Notice that applying rule 1r19 leads to an infinite
computation, as object bj cannot be idle (rules 1r8, 1r10, 2r6, 2r7). Hence, we
only consider the case of applying rule 2r9:

qiql,2ql,4qlǎj q̂ibja′
jql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒2r9

qiql,2ql,4qlǎj q̂iql,1ql,3ql,5b̂d
′
jd

′′
j ajbja′

jdj#2 ⇒2r10

qiql,2ql,4qlǎj q̂ia
′
jql,1ql,3ql,5b̂djd

′
jd

′′
j ajbj#2

Now there are two variants of computations, depending on the application
of rule 2r13 and 1r29. It is easy to see that applying rule 2r14 leads to an
infinite computation (rules 2r14, 1r4, 1r11, 2r6, 2r7). Hence, consider applying
rule 1r29:

26 A. Alhazov, R. Freund, and Y. Rogozhin

qiql,2ql,4qlǎj q̂ia′
jql,1ql,3ql,5b̂djd′

jd
′′
j ajbj#2 ⇒1r29,1r19

qia
′
jql,1ql,2ql,4qlǎjdjd

′
j q̂iql,3ql,5b̂d

′′
j ajbj#2 ⇒1r20,1r27

qia
′
jql,4qld

′
j q̂iql,1ql,2ql,3ql,5b̂ǎjdjd′′

j ajbj#2 ⇒1r21,2r13

qia
′
jql,2ql,3ql,4qld

′
j q̂iql,1ql,5b̂ǎj djd′′

j ajbj#2 ⇒1r22,2r14

qia
′
jql,2qld

′
j q̂iql,1ql,3ql,4ql,5d

′′
j ajb̂ǎj djbj#2 ⇒1r4,1r23

qia
′
jql,2ql,4ql,5qlajb̂d′

j q̂iql,1ql,3d
′′
j ǎj djbj#2 ⇒1r24,1r30

qia
′
jql,2ql,4aj q̂iql,1ql,3ql,5qlb̂d

′
jd

′′
j ǎj djbj#2

Thus, qi is replaced by ql in region 1.

Case b):

aj qiq̂iǎj b̂ ckbjdj#2 ⇒1r1 qiq̂iaj ǎj b̂ ckbjdj#2 ⇒1r2

qi q̂iaj ǎj b̂ ckbjdj#2

Again there are two variants of computations (depending on the application
of rule 2r1 or rule 1r4). It is easy to see that the application of rule 1r4 leads
to infinite computation (by “circle”). Consider the applying of rule 2r1:

qi q̂iajǎjb̂ ckbjdj#2 ⇒2r1 qi q̂ib̂ ckajǎjbjdj#2 ⇒2r2,2r3

qi q̂iǎjbjckaj b̂ dj#2

There are two variants of computations, depending on the application of rule
2r1 or rule 1r4. Notice that they both lead to infinite computations. Indeed, if
rule 2r1 will be applied, then rules 1r8, 1r10, 2r6, 2r7 will be applied (applying
rules 2r6, 2r7 leads to an infinite computation). If rule 1r4 will be applied, it
again leads to an infinite computation (rules 1r11, 2r6, 2r7). Thus, we correctly
model a “test for zero”-instruction.

3. END.

R1,f = {1f1 : ($1ǎj , out) | j ∈ I}
∪ {1f2 : ($2e1, out), 1f3 : ($1$3, out)}
∪ {1f4 : (etht, in) | t ∈ I ′}
∪ {1f5 : (htet+1, out) | 1 ≤ t ≤ n+ 3},

Computational Power of Symport/Antiport 27

R2,f = {2f1 : (qf , in), 2f2 : (qf$1, out), 2f3 : (qf$2, out)}
∪ {2f4 : ($1â, in), 2f5 : ($1#1, in), 2f6 : ($1Ic, in)}
∪ {2f7 : (hn+4, in)}
∪ {2f8 : (hn+4âj , out) | j ∈ I}
∪ {2f9 : (hn+4bj , out) | j ∈ I}
∪ {2f10 : (hn+4dj , out) | j ∈ I}.

At first, all objects ǎj will be moved to the environment and the objects
â,#1, Ic to region 2 (thus, we stop without continuing the loop) and after that
all objects âj , bj , dj will be moved from region 2 to region 1. Hence, in region 2
now there are only the objects c1 (representing the result of the computation)
and the six additional objects #1, #2, â, Ic, qf , hn+4. ��

Both constructions from Theorem 2 and Theorem 3 can easily be modified to
show that

PsOP2(sym1, anti1)T = PsRE and
PsOP2(sym2)T = PsRE,

i.e., the results proved in Theorem 2 and Theorem 3 can be extended from sets
of natural numbers to sets of vectors of natural numbers.

5 Final Remarks

In this paper we have proved the new results that P systems with minimal cooper-
ation, i.e., P systems with symport/antiport rules of size one, are computationally
complete with only two membranes: they generate all recursively enumerable sets
of vectors of nonnegative integers excluding (at most) the initial segment {0, 1, 2}.
In an analogous manner, P systems with symport rules of size two are computa-
tionally complete with only two membranes: they generate all recursively enumer-
able sets of vectors of nonnegative integers excluding (at most) the initial segment
{0, 1, 2, 3, 4, 5}. On the other hand it is known that systems with such rules in only
onemembrane cannot be universal, see [21, 47, 7].Hence, the resultswehave proved
in this paper are optimal with respect to the number of membranes. Notice that for
tissue P systems with minimal cooperation this problem has already been solved
successfully ([8]), i.e., it was proved that two cells are enough to generate all recur-
sively enumerable sets of natural numbers.

Moreover, for P systems with symport rules of weight three we already obtain
computational completeness with only one membrane modulo the initial seg-
ment {0, 1, 2, 3, 4, 5, 6}, which improves the result of [21], where thirteen objects
remained in the skin membrane at the end of a halting computation.

As so far we have not been able to completely avoid additional symbols that
remain after a computation has halted, the interesting open question remains
to find the minimal numbers of these additional objects that permit to obtain
computationally completeness in the cases described above.

28 A. Alhazov, R. Freund, and Y. Rogozhin

Acknowledgements

The first author is supported by the project TIC2002-04220-C03-02 of the Re-
search Group on Mathematical Linguistics, Tarragona. The first author and the
third author acknowledge the U.S. Civilian Research and Development Founda-
tion (CRDF)and theMoldavianResearch andDevelopmentAssociation (MRDA),
Award No. MM2-3034 for providing a challenging and fruitful framework for co-
operation. This article was written during the first author’s stay at the Vienna
University of Technology.

References

1. A. Alhazov, R. Freund: P systems with one membrane and symport/antiport rules
of five symbols are computationally complete. In [25], 19–28.

2. A. Alhazov, R. Freund, M. Oswald: Tissue P systems with antiport rules and
a small number of symbols and cells. In Developments in Language Theory, 9th
International Conference, DLT 2005 (C. De Felice, A. Restivo, eds.), Palermo,
Italy, July 4 – 8, 2005, LNCS 3572, Springer, Berlin, 2005, 100–111.

3. A. Alhazov, R. Freund, M. Oswald: Symbol/membrane complexity of P systems
with symport/antiport rules. In [12], 123–146.

4. A. Alhazov, R. Freund, Yu. Rogozhin: Computational power of symport/antiport:
history, advances and open problems. In [12], 44–78.

5. A. Alhazov, R. Freund, Yu. Rogozhin: Some optimal results on communicative P
systems with minimal cooperation. In [24], 23–36.

6. A. Alhazov, M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: Communica-
tive P systems with minimal cooperation. In [36], 161–177.

7. A. Alhazov, Yu. Rogozhin: Minimal cooperation in symport/antiport P systems
with one membrane. In [25], 29–34.

8. A. Alhazov, Yu. Rogozhin, S. Verlan: Symport/antiport tissue P systems with
minimal cooperation. In [24], 37 – 52.

9. F. Bernardini, M. Gheorghe: On the power of minimal symport/antiport. In
Pre-proceedings of Workshop on Membrane Computing, WMC-2003 (A. Alhazov,
C. Mart́ın-Vide, Gh. Păun, eds.), Tarragona, July 17–22, 2003, Technical Report
RGML 28/03, Universitat Rovira i Virgili, Tarragona, 2003, 72–83.

10. F. Bernardini, A. Păun: Universality of minimal symport/antiport: five membranes
suffice. In Membrane Computing, International Workshop, WMC 2003, Tarragona,
July 2003, Selected Papers (C. Martin-Vide, G. Mauri, Gh. Păun, G. Rozenberg,
A. Salomaa, eds.), LNCS 2933, Springer, Berlin, 2004, 43–45.

11. C.S. Calude, Gh. Păun: Bio-steps beyond Turing. BioSystems, 77 (2004), 175–194.
12. R. Freund, G. Lojka, M. Oswald, Gh. Păun, eds.: Pre-proceedings of Sixth Inter-

national Workshop on Membrane Computing, WMC6, Vienna, July 18–21, 2005.
13. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Infor-

maticae, 49 (2002), 81–102.
14. R. Freund, M. Oswald: A short note on analysing P systems with antiport rules.

Bulletin of the European Association for Theoretical Computer Science, 78 (2002)
231–236.

15. R. Freund, M. Oswald: P systems with activated/prohibited membrane channels.
In [44], 261–268.

Computational Power of Symport/Antiport 29

16. R. Freund, M. Oswald: Tissue P systems with symport/antiport rules of one symbol
are computationally universal. In [24], 187–200.

17. R. Freund, A. Păun: Membrane systems with symport/antiport: universality re-
sults. In [44], 270–287.

18. R. Freund, Gh. Păun: On deterministic P Systems. Manuscript, 2003 (available at
http://psystems.disco.unimib.it).

19. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel
states. In [43], 206–223, and Theoretical Computer Science, 330 (2005), 101–116.

20. P. Frisco: About P systems with symport/antiport. In [43], 224–236.
21. P. Frisco, H.J. Hoogeboom: P systems with symport/antiport simulating counter

automata. Acta Informatica, 41 (2004), 145–170.
22. P. Frisco, H.J. Hoogeboom: Simulating counter automata by P systems with sym-

port/antiport. In [44], 288–301.
23. S. Greibach: Remarks on blind and partially blind one-way multicounter machines.

Theoretical Computer Science, 7 (1978), 311–324.
24. M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.: Cellular Computing.

Complexity Aspects. Fenix Editora, Sevilla, 2005.
25. M.A. Gutierrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, eds.:

Proceedings of the Third Brainstorming Week on Membrane Computing, Sevilla
(Spain), January 31 – February 4, 2005.

26. O.H. Ibarra: On determinism versus nondeterminism in P systems. Theoretical
Computer Science, to appear.

27. O.H. Ibarra, S.Woodworth: On bounded symport/antiport P systems. Proc.
DNA11, UWO, London, Ontario, 2005, 37–48, and LNCS, to appear.

28. O.H. Ibarra: Some recent results concerning deterministic P systems. In [12], 24–25.
29. O. Ibarra, S. Woodworth: On symport/antiport P systems with one or two symbols.

In Pre-Proceedings of the Workshop on Theory and Applications of P Systems,
Timişoara, September 26-27, 2005, 75–82.

30. O.H. Ibarra, S. Woodworth, H. Yen, Z. Dang: On symport/antiport systems and
semilinear sets. In [12], 312–335.

31. L. Kari, C. Mart́ın-Vide, A. Păun: On the universality of P systems with mini-
mal symport/antiport rules. In Aspects of Molecular Computing. Essays Dedicated
to Tom Head on the Occasion of His 70th Birthday (N. Jonoska, Gh. Păun, G.
Rozenberg, eds.), LNCS 2950, Springer, Berlin, 2004 254–265.

32. M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: About P systems with
minimal symport/antiport rules and four membranes. In [35], 283–294.

33. C. Mart́ın-Vide, A. Păun, Gh. Păun: On the power of P systems with symport
rules, Journal of Universal Computer Science, 8 (2002), 317–331.

34. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón: Tissue P systems. The-
oretical Computer Science, 296 (2003), 295–326.

35. G. Mauri, Gh. Păun, C. Zandron, eds.: Pre-Proceedings of Fifth Workshop on
Membrane Computing (WMC5), Universitá di Milano-Bicocca, Italy, June 14–16,
2004.

36. G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.: Mem-
brane Computing. 5th Inter. Workshop, WMC5, Milan, Italy, June 2004, Revised
Selected and Invited Papers. LNCS 3365, Springer, Berlin, 2005.

37. M.L. Minsky: Finite and infinite machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

38. A. Păun, Gh. Păun: The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20 (2002), 295–305.

30 A. Alhazov, R. Freund, and Y. Rogozhin

39. Gh. Păun: Computing with membranes. Journal of Computer and Systems Science,
61 (2000), 108–143.

40. Gh. Păun: Membrane computing. An Introduction. Springer-Verlag, 2002.
41. Gh. Păun: Further twenty six open problems in membrane computing. In [25],

249–262.
42. Gh. Păun, J. Pazos, M.J. Perez-Jimenez, A. Rodriguez-Paton: Symport/antiport

P systems with three objects are universal. Fundamenta Informaticae, 64 (2005),
1–4.

43. Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.: Second
Brainstorming Week on Membrane Computing. Technical report of Research Group
on Natural Computing, University of Seville, TR 01, 2004.

44. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.: Membrane Computing.
International Workshop, WMC-CdeA 02, Curtea de Arges, Romania, August 19–
23, 2002. Revised Papers. LNCS 2597, Springer, Berlin, 2003.

45. G. Rozenberg, A. Salomaa, eds.: Handbook of formal languages (3 volumes).
Springer, Berlin, 1997.

46. Gy. Vaszil: On the size of P systems with minimal symport/antiport. In [35], 422–
431.

47. S. Verlan: Optimal results on tissue P systems with minimal symport/antiport.
Presented at EMCC meeting, Lorentz Center, Leiden, The Netherlands, 22–26
November, 2004.

48. S. Verlan: Tissue P systems with minimal symport/antiport. In Developments in
Language Theory, DLT 2004 (C.S. Calude, E. Calude, M.J. Dinneen, eds.), LNCS
3340, Springer, Berlin, 2004, 418–430.

Structural Operational Semantics of P Systems

Oana Andrei1, Gabriel Ciobanu2, and Dorel Lucanu1

1 “A.I.Cuza” University of Iaşi, Faculty of Computer Science,
Str. General Berthelot 16, Iaşi, Romania

2 Romanian Academy, Institute of Computer Science,
Blvd. Carol I nr.8, 700505 Iaşi, Romania

{oandrei, gabriel, dlucanu}@info.uaic.ro

Abstract. The paper formally describes an operational semantics of P
systems. We present an abstract syntax of P systems, then the notion of
configurations, and we define the sets of inference rules corresponding to
the three stages of an evolution step: maximal parallel rewriting, paral-
lel communication, and parallel dissolving. Several results assuring the
correctness of each set of inference rules are also presented. Finally, we
define simulation and bisimulation relations between P systems.

1 Introduction

Structural operational semantics (SOS) provides a framework of defining a for-
mal description of a computing system. It is intuitive and flexible, and it became
more attractive during the years by the developments presented by Plotkin [14],
Kahn [7], and Milner [9]. Configurations are states of transition systems, and
computations consist of sequences of transitions between configurations, and
terminating (if they terminate) in a final configuration. In the usual style of
structural operational semantics, computations proceed by small steps through
intermediate configurations.

In this paper we present a structural operational semantics of P systems.
The operational semantics of P systems is given in a rather big-step style, each
step representing the collection of parallel steps due to the maximal parallelism
principle. In P systems a computation is regarded as a sequence of parallel
application of rules in various membranes, followed by a communication step
and a dissolving step. An SOS of P systems emphasizes the deductive nature
of the membrane computing by describing the transition steps by using a set of
inference rules. Considering a set R of inference rules of form premises

conclusion , we can
describe the computation of a P system as a deduction tree. As a consequence,
given two configurations C,C′ of a P system, SOS provides a formal method to
show that C′ is obtained in a transition step from C, i.e., R � C ⇒ C′.

First we give an abstract syntax of P systems, and then we define an appropri-
ate notion of configuration. We introduce three sets of inference rules correspond-
ing to distinct phases in the evolution of a P system. We prove the soundness
of our inference rules. The (bi)simulation relations between P systems are also
defined; they allow to compare the evolution behaviour of two P systems. The

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 31–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

32 O. Andrei, G. Ciobanu, and D. Lucanu

structure of the paper is as follows. Section 2 presents briefly the P systems.
Section 3 represents the principal part of the paper; it presents the structural
operational semantics of the P systems. Conclusion and references end the paper.

2 Definition of P Systems

P systems represent a new abstract model of parallel and distributed computing
inspired by cell compartments and molecular membranes [12]. A cell is divided
in various compartments, each compartment with a different task, and all of
them working simultaneously to accomplish a more general task of the whole
system. P systems provide a nice abstraction for parallel systems, and a suitable
framework for distributed and parallel algorithms [3].

A detailed description of P systems can be found in [12]. A P system consists
of a hierarchy of membranes that do not intersect, with a distinguishable mem-
brane, called the skin membrane, surrounding them all. A membrane without
any other membranes inside is elementary, while a non-elementary membrane is
a composite membrane. The membranes produce a demarcation between regions.
For each membrane there is a unique associated region. The space outside the
skin membrane is called the outer region. Because of this one-to-one correspon-
dence we sometimes use membrane instead of region. Regions contain multisets
of objects, evolution rules and possibly other membranes. Only rules in a region
delimited by a membrane act on the objects in that region. The multisets of
objects from a region correspond to the “chemicals swimming in the solution
in the cell compartment”, while the rules correspond to the “chemical reactions
possible in the same compartment”. The rules must contain target indications,
specifying the membrane where the new objects obtained after applying the rule
are sent. The new objects either remain in the same region when they have a
here target, or they pass through membranes, in two directions: they can be
sent out of the membrane which delimits a region from outside, or can be sent
in one of the membranes which delimit a region from inside, precisely identified
by its label. In a step, the objects can pass only through one membrane. We
consider that all the objects are enclosed in messages together with the target
indication. Therefore we have here messages of typical form (w, here) with w a
possibly empty multiset of objects, out messages of typical form (w, out), and in
messages of typical form (w, inL), both with w a non-empty multiset of objects.
For the sake of simplicity, we consider that the messages with the same target
indication merge into one message, such that

(w1, here) . . . (wn, here) = (w, here),
(w1, inL) . . . (wn, inL) = (w, inL), and
(w1, out) . . . (wn, out) = (w, out),

where w = w1 . . . wn.
A membrane is dissolved by the symbol δ resulted after a rule application; this

action is important when discussing about adaptive executions. When such an ac-
tion takes place, the membrane disappears, its contents (objects and membranes)

Structural Operational Semantics of P Systems 33

remain free in the membrane placed immediately outside, and the evolution rules
of the dissolved membranes are lost. The skin membrane is never dissolved. The
application of evolution rules is done in parallel, and it is eventually regulated
by priority relationships between rules.

A P system has a certain structure represented by a tree (with the skin mem-
brane as its root and elementary membranes as leaves), or by a string of correctly
matching parentheses, placed in a unique pair of matching parentheses; each pair
of matching parentheses corresponds to a membrane. Graphically, a membrane
structure is represented by a Venn diagram in which two sets can be either dis-
joint, or one is a subset of the other. This representation makes clear that the
order of sibling membranes is irrelevant (as they float around), while, on the
contrary, the inclusion relationship (or parent-child relationship in the tree-like
representation) between membranes is essential. The membranes (and the cor-
responding regions) are labelled in a one-to-one manner with labels from a given
set, usually ranging from 1 to the total number of membranes.

Formally, a P system is a structure Π = (O,μ,w1, . . . , wm, (R1, ρ1),. . . ,
(Rm, ρm), io), where:

– O is an alphabet of objects;
– μ is a membrane structure;
– for each membrane i = 1, . . . ,m, wi is the initial multiset over O;
– Ri is a finite set of evolution rules over O associated with the membrane i;

the typical form of a rule is u→ v, with u a multiset over O, and v consisting
of messages and/or the dissolving symbol δ;

– ρi is a partial order relation over Ri, specifying a priority relation among
the rules: (r1, r2) ∈ ρi iff r1 > r2 (i.e., r1 has a higher priority than r2);

– i0 is either a number between 1 and m specifying the output membrane of
Π , or it is equal to 0 indicating that the output is the outer region.

Since the skin is not allowed to be dissolved, we consider that the rules of the
skin do not involve δ. These are the general P systems, or transition P systems;
many other variants and classes were introduced [12].

The membranes preserve the initial labelling, evolution rules, and priority
relation among them in all subsequent configurations. Therefore in order to de-
scribe a membrane we consider its label and the current multiset of objects
together with its structure. We use the mappings rules and priority to asso-
ciate to a membrane label the set of evolution rules and the priority relation:
rules(Li) = Ri, priority(Li) = ρi, and the projections L and w which return
from a membrane its label and its current multiset, respectively.

Notation. If X is a set, then X∗
c denotes the set of the finite multisets defined

over X , and X+
c denotes X∗

c without the empty multiset. These notations are
inspired by the one-to-one correspondence from the set of the finite multisets
defined over X onto the free commutative monoid generated by X .

Formally, the set of membranes for a P system Π , denoted by M(Π), and the
membrane structure are inductively defined as follows:

34 O. Andrei, G. Ciobanu, and D. Lucanu

– if L is a label, and w is a multiset over O∪(O∗
c ×{here})∪(O+

c ×{out})∪{δ},
then 〈 L | w 〉 ∈ M(Π); 〈 L | w 〉 is called simple (or elementary) membrane,
and it has the structure 〈〉;

– if M1, . . . ,Mn ∈ M(Π) with n ≥ 1, the structure of Mi is μi for all i ∈ [n],
L is a label, w is a multiset over O ∪ (O∗

c × {here}) ∪ (O+
c × {out}) ∪

(O+
c × {inL(Mj)|j ∈ [n]}) ∪ {δ}, then 〈 L | w ; M1, . . . ,Mn 〉 ∈ M(Π);

〈L |w ; M1, . . . ,Mn 〉 is called a composite membrane, and it has the structure
〈μ1, . . . , μn〉.

A finite multiset of membranes is usually written asM1, . . . ,Mn. We denote by
M+(Π) the set of non-empty finite multisets of membranes. The union of two
multisets of membranes M+ = M1, . . . ,Mm and N+ = N1, . . . , Nn is written
as M+, N+ = M1, . . . ,Mm, N1, . . . , Nn. An element from M+(Π) is either a
membrane, or a set of sibling membranes.

A committed configuration for a P system Π is a skin membrane which has
no messages and no dissolving symbol δ, i.e., the multisets of all regions are
elements in O∗

c . We denote by C(Π) the set of committed configurations for Π ,
and it is a proper subset of M+(Π). We have C ∈ C(Π) iff C is a skin membrane
of Π and w(M) is a multiset over O for each membrane M in C.

An intermediate configuration is a skin membrane in which we have messages
or the dissolving symbol δ. The set of intermediate configurations is denoted by
C#(Π). We have C ∈ C#(Π) iff C is a skin membrane of Π such that there is a
membrane M in C with w(M) = w′w′′, w′ ∈ (Msg(O) ∪ {δ})+c , and w′′ ∈ O∗

c .
By Msg(O) we denote the set (O∗×{here})∪(O+ ×{out})∪(O+×{inL(M)}).

A configuration is either a committed configuration or an intermediate con-
figuration. Each P system has an initial committed configuration which is char-
acterized by the initial multiset of objects for each membrane and the initial
membrane structure of the system.

Example 1. We give an example of a deterministic P system computing n2 for
a given n. The initial configuration of such a system is:

and it is written as 〈 1 | empty ; 〈 2 | empty ; 〈 3 | ancf 〉, 〈 4 | empty 〉 〉 〉.

3 Structural Operational Semantics of P Systems

Structural operational semantics descriptions of systems start from abstract syn-
tax. Specifications of abstract syntax introduce symbols for syntactic sets, meta-
variables ranging over those sets, and notation for constructor functions. Some
of the syntactic sets are usually regarded as basic, and left open or described
only informally. The abstract syntax for P systems is given as follows:

Objects: o ∈ O
Multisets of objects: w ∈ O∗

c

Labels: L ∈ {Skin} ∪ L
Messages: (w, here), (w, inL), (w, out) ∈ Msg(O)
Dissolving symbol: δ

Structural Operational Semantics of P Systems 35

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

1

2

3
4

ancf

ca → (cd, here)
> c → δ

f → (ff, here)

d → (c, here)

c → (a, here)

a → (a, here)(e, in4)

ff → (f, here) > f → δ

Fig. 1. An example of a P system

Membrane contents: w ∈ (O ∪Msg(O) ∪ {δ})∗c
Membranes: M ∈ M(Π)

M ::= 〈L | w〉 | 〈L | w;M+〉
Sibling membranes: M+ ∈ M+(Π) = M(Π)+c
Committed configurations: C ∈ C(Π)
Intermediate configurations: C ∈ C#(Π)

In structural operational semantics, the evolution of systems is modelled by
a transition system inductively specified by rules. The transition system for a P
system Π is intuitively defined as follows. For two committed configurations C1
and C2 of Π , we say that there is a transition from C1 to C2, and write C1 ⇒ C2,
if the following steps are executed in the following given order:

1. the maximal parallel rewriting step, written C1
mpr
=⇒ C′

2, is consisting in non-
deterministically assigning objects to evolution rules in every membrane, and
executing them in a maximal parallel manner;

2. the parallel communication of objects through membranes, written C′
2

tar=⇒
C′′

2 , is consisting in sending the existing messages;

3. the parallel membrane dissolving, written C′′
2

δ=⇒ C2, consisting in dissolving
the membranes which contain the δ symbol.

36 O. Andrei, G. Ciobanu, and D. Lucanu

The last two steps are executed only if there are messages or δ symbols resulted
from the first step, respectively. If the first step is not possible, consequently
neither the other two steps, then we say that the system has reached a halting
configuration. A halting configuration is always a committed one.

Next we present in the terms of SOS each of the three steps.

3.1 Maximal Parallel Rewriting Step

We can pass from a configuration to another one by using the evolution rules.
This is done in parallel: all objects from all membranes evolve simultaneously
according to the evolution rules and their priority relation. The rules of a mem-
brane are using its current objects as much as this is possible in a parallel and
non-deterministic way. However, an object introduced by a rule cannot evolve
at the same step by means of another rule. The use of a rule u → v in a region
with a multiset w means to subtract the multiset identified by u from w, and
then adding the objects of v according to the form of the rule.

We denote the maximal parallel rewriting on membranes by
mpr
=⇒ and by

mpr
=⇒L

the maximal parallel rewriting over the multisets of objects of the membrane
labelled by L (we omit the label whenever it is clear from the context). The SOS
definition of

mpr
=⇒ uses two predicates regarding mpr-irreducibility and (L,w)-

consistency.

Definition 1. The irreducibility property w.r.t. the maximal parallel rewriting
relation for multisets of objects, messages, and δ, for membranes, and for sets
of sibling membranes is defined as follows:

– a multiset w consisting only of objects is L-irreducible iff there are no rules
in rules(L) applicable to w w.r.t. the priority relation priority(L);

– a multiset containing at least a message or the dissolving symbol δ is L-
irreducible;

– a simple membrane 〈 L | w 〉 is mpr-irreducible iff w is L-irreducible;
– a non-empty set of sibling membranes M1, . . . ,Mn is mpr-irreducible iff
Mi is mpr-irreducible, for every i ∈ [n];

– a composite membrane 〈L|w;M1, . . . ,Mn〉, with n ≥ 1, is mpr-irreducible
iff w is L-irreducible, and the set of sibling membranes M1, . . . ,Mn is mpr-
irreducible.

Definition 2. Let M be a membrane labelled by L, and w a multiset of objects.
A non-empty multiset R = (u1 → v1, . . . , un → vn) of evolution rules is (L,w)-
consistent iff:

- R ⊆ rules(L),
- w = u1 . . . unz, so that all the rules in R are applicable in parallel over w,
- (∀r ∈ R, ∀r′ ∈ rules(L)) r′ applicable on w implies (r′, r) /∈ priority(L),
- (∀r′, r′′ ∈ R) (r′, r′′) /∈ priority(L),
- the dissolving symbol δ has at most one occurrence in the multiset v1 . . . vn.

Structural Operational Semantics of P Systems 37

The maximal parallel rewriting relation
mpr
=⇒ is defined by the following

inference rules:

– For each w = u1 . . . unz ∈ O+
c such that z is L-irreducible, and (L,w)-

consistent rules (u1 → v1, . . . , un → vn),

(R1)
u1 . . . unz

mpr
=⇒L v1 . . . vnz

– For each w ∈ O+
c , w′ ∈ (O ∪Msg(O) ∪ {δ})+c , and label L,

(R2)
w

mpr
=⇒L w′

〈 L | w 〉 mpr
=⇒ 〈 L | w′ 〉

– For each w ∈ O+
c , w′ ∈ (O∪Msg(O)∪{δ})+c , M+,M

′
+ ∈ M+(Π), and label

L,

(R3)
w

mpr
=⇒L w′,M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉 mpr
=⇒ 〈 L | w′ ; M ′

+ 〉
– For each w ∈ O+

c , w′ ∈ (O∪Msg(O)∪{δ})+c , mpr-irreducibleM+ ∈ M+(Π),
and label L,

(R4)
w

mpr
=⇒L w′

〈 L | w ; M+ 〉 mpr
=⇒ 〈 L | w′ ; M+ 〉

– For each L-irreducible w ∈ O∗
c , and M+,M

′
+ ∈ M+(Π), and label L,

(R5)
M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉 mpr
=⇒ 〈 L | w ; M ′

+ 〉

– For each M,M ′ ∈ M(Π), and M+,M
′
+ ∈ M+(Π),

(R6)
M

mpr
=⇒ M ′,M+

mpr
=⇒ M ′

+

M,M+
mpr
=⇒ M ′,M ′

+

– For each M,M ′ ∈ M(Π), and mpr-irreducible M+ ∈ M+(Π),

(R7)
M

mpr
=⇒ M ′

M,M+
mpr
=⇒ M ′,M+

Example 2. Considering the P system of Example 1, the inference tree for

〈1 |empty ; 〈2 |aaf ; 〈4 |ee 〉 〉 〉 mpr
=⇒ 〈1 |empty ; 〈2 | (aa, here)(ee, in4)δ ; 〈4 |ee 〉 〉 〉

is:
(R1)

aaf
mpr=⇒2 (aa, here)(ee, 4)δ

(R4)
〈 2 | aaf ; 〈 4 | ee 〉 〉 mpr

=⇒ 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉
(R5)

〈 1 | empty ; 〈 2 | aaf ; 〈 4 | ee 〉 〉 〉 mpr
=⇒

〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉

38 O. Andrei, G. Ciobanu, and D. Lucanu

Lemma 1. If w
mpr
=⇒L w′, then w′ is L-irreducible.

Proof. We get w
mpr
=⇒L w′ only applying (R1) using a (L,w)-consistent multiset

of rules. Then we have w′ = w′′z such that w′′ ∈ (Msg(O)∪{δ})+c , and z ∈ O∗
c is

L-irreducible. Then w′ is L-irreducible by definition because it contains messages
or δ. �

Lemma 2. If M+
mpr
=⇒ M ′

+ then M ′
+ is mpr-irreducible.

Proof. LetM+,M
′
+ be two non-empty sets of membranes such that M+

mpr
=⇒ M ′

+.
We prove that M ′

+ is mpr-irreducible by induction on the depth of the asso-
ciated inference tree. We consider all possible cases for the final step of the
inference:

(i) M+
mpr
=⇒ M ′

+ is inferred by (R2). Then M+ = 〈L|w〉 and M ′
+ = 〈L|w′〉 with

w
mpr
=⇒ w′. By Lemma 1 w′ is L-irreducible, therefore M ′

+ is mpr-irreducible
by definition.

(ii) M+
mpr=⇒ M ′

+ is inferred by (R3). Then M+ = 〈 L | w ; N+ 〉 and M ′
+ =

〈 L | w′ ; N ′
+ 〉 with w

mpr
=⇒L w′ inferred by (R1), and N+

mpr
=⇒ N ′

+ inferred
by a shorter inference tree. By Lemma 1 w′ is L-irreducible, and by induc-
tive hypothesis, N ′

+ is mpr-irreducible. Therefore M ′
+ is mpr-irreducible by

definition.
(iii) M+

mpr
=⇒ M ′

+ is inferred by (R4). Then M+ = 〈 L | w ; N+ 〉 and M ′
+ =

〈 L | w′ ; N+ 〉 with w
mpr
=⇒ w′ (therefore w′ is L-irreducible by Lemma

1) and N+ mpr-irreducible. By definition we obtain that M ′
+ is mpr-

irreducible.
(iv) M+

mpr
=⇒ M ′

+ is inferred by (R5). Then M+ = 〈 L | w ; N+ 〉 and M ′
+ =

〈L |w ; N ′
+ 〉 with w L-irreducible and N+

mpr
=⇒ N ′

+ inferred by a shorter in-
ference tree. By inductive hypothesis N ′

+ is mpr-irreducible, therefore M ′
+

is mpr-irreducible.
(v) M+

mpr
=⇒ M ′

+ is inferred by (R6). Then M+ = M,N+ and M ′
+ = M ′, N ′

+

where M
mpr
=⇒ M ′ and N+

mpr
=⇒ N ′

+ are inferred by shorter inference trees.
By inductive hypothesis M ′ and N ′

+ are mpr-irreducible, therefore M ′, N ′
+

is mpr-irreducible.
(vi) M+

mpr
=⇒ M ′

+ is inferred by (R7). Then M+ = M,N+ and M ′
+ = M ′, N+

where M
mpr
=⇒ M ′ is inferred by a shorter inference tree, and N+ is

mpr-irreducible. By inductive hypothesis M ′ is mpr-irreducible, therefore
M ′, N+ is mpr-irreducible by definition.

This completes the proof. �

Theorem 1. Let Π be a P system. If C ∈ C(Π) and C′ ∈ C#(Π) such that
C

mpr
=⇒ C′, then C′ is mpr-irreducible.

The proof follows straightforward from Lemma 1 and Lemma 2.

Structural Operational Semantics of P Systems 39

3.2 Parallel Communication of Objects

Communication through two membranes M1 and M2 can take place only if one
is inside the other.

We say that a multiset w is here-free/inL-free/out-free if it does not con-
tain any here/inL/out messages, respectively. For w a multiset of objects and
messages, we introduce the operations obj, here, out, and inL as follows:

obj(w) is obtained from w by removing all messages,

here(w) =
{
empty if w is here-free,
w′′ if w = w′(w′′, here) ∧ w′ is here-free,

out(w) =
{
empty if w is out-free,
w′′ if w = w′(w′′, out) ∧ w′ is out-free,

inL(w) =
{
empty if w is inL-free,
w′′ if w = w′(w′′, inL) ∧ w′ is inL-free.

We recall that all the messages with the same target merge in one message.

Definition 3. The tar-irreducibility property for membranes and for sets of
sibling membranes is defined as follows:

1. a membrane 〈 L | w 〉 is tar-irreducible iff L �= Skin ∨ (L = Skin ∧
w is out-free);

2. a non-empty set of sibling membranes M1, . . . ,Mn is tar-irreducible iff Mi

is tar-irreducible, for every i ∈ [n];
3. a composite membrane 〈L |w ; M1, . . . ,Mn 〉, n ≥ 1, is tar-irreducible iff:

(a) L �= Skin ∨ (L = Skin ∧ w is out-free),
(b) w is inL(Mi)-free, for every i ∈ [n],
(c) for all i ∈ [n], w(Mi) is out-free,
(d) the set of sibling membranes M1, . . . ,Mn is tar-irreducible.

Notation. We treat the messages of form (w′, here) as a particular commu-
nication inside their membranes consisting in substitution of (w′, here) by w′.
We denote by w the multiset obtained by replacing (here(w), here) by here(w)
in w. For instance, if w = a (bc, here) (d, out) then w = abc (d, out), where
here(w) = bc. We note that inL(w) = inL(w), and out(w) = out(w).

The parallel communication relation tar=⇒ is defined by the following in-
ference rules:

For each tar-irreducible M1, . . . ,Mn ∈ M+(Π), label L, and multiset w such
that
here(w) �= empty, or L = Skin ∧ out(w) �= empty, or it exists i ∈ [n] with
inL(Mi)(w)out(w(Mi)) �= empty or here(w(Mi)) �= empty,

(C1)
〈 L | w ; M1, . . . ,Mn 〉 tar=⇒ 〈 L | w′ ; M ′

1, . . . ,M
′
n 〉

40 O. Andrei, G. Ciobanu, and D. Lucanu

where

w′ =
{
obj(w) out(w(M1)) . . . out(w(Mn)) , if L = Skin
obj(w) (out(w), out) out(w(M1)) . . . out(w(Mn)) , otherwise

and
w(M ′

i) = obj(w(M ′
i)) inL(Mi)(w), for all i ∈ [n]

For each M1, . . . ,Mn,M
′
1, . . . ,M

′
n ∈ M+(Π), multiset w, and label L,

(C2)
M1, . . . ,Mn

tar=⇒ M ′
1, . . . ,M

′
n

〈 L | w ; M1, . . . ,Mn 〉 tar=⇒ 〈 L | w′′ ; M ′′
1 , . . . ,M

′′
n 〉

where

w′′ =
{
obj(w) out(w(M ′

1)) . . . out(w(M ′
n)) if L = Skin,

obj(w) (out(w), out) out(w(M ′
1)) . . . out(w(M ′

n)) otherwise,
and each M ′′

i is obtained from M ′
i by replacing its resources by

w(M ′′
i) = obj(w(M ′

i)) inL(M ′
i)(w), for all i ∈ [n]

For each multiset w such that here(w) out(w) �= empty,

(C3)
〈 Skin | w 〉 tar=⇒ 〈 Skin | obj(w) 〉

For each M,M ′ ∈ M(Π), and tar-irreducible M+ ∈ M+(Π),

(C4)
M

tar=⇒ M ′

M,M+
tar=⇒ M ′,M+

For each M ∈ M(Π), M+ ∈ M+(Π),

(C5)
M

tar=⇒ M ′,M+
tar=⇒ M ′

+

M,M+
tar=⇒ M ′,M ′

+

Example 3. Considering the P system of Example 1, the inference tree for

〈1 |empty ; 〈2 |(aa, here)(ee, in4)δ ; 〈4 |ee〉〉〉 tar=⇒ 〈1 |empty ; 〈2 |aaδ ; 〈4 |eeee〉〉〉

is:

(C1)
〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 tar=⇒ 〈 2 | aaδ ; 〈 4 | eeee 〉 〉

(C2)
〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉 tar=⇒
〈 1 | empty ; 〈 2 | aaδ ; 〈 4 | eeee 〉 〉 〉

Lemma 3. If M+
tar=⇒ M ′

+, then M ′
+ is tar-irreducible.

Structural Operational Semantics of P Systems 41

Proof. LetM+,M
′
+ be two non-empty sets of membranes such that M+

tar=⇒ M ′
+.

We prove that M ′
+ is tar-irreducible by induction on the depth of the associated

inference tree. We consider all possible cases for the final step of the inference
tree, i.e., each of the five rules for communication:

(i) M+
tar=⇒ M ′

+ is inferred by (C1). Then M+ = 〈 L | w ; M1, . . . ,Mn 〉,
M ′

+ = 〈 L | w′ ; M ′
1, . . . ,M

′
n 〉 where M1, . . . ,Mn is a tar-irreducible set of

membranes, and (here(w) �= empty, or L = Skin ∧ out(w) �= empty, or
it exists i ∈ [n] with inL(Mi)(w)out(w(Mi)) �= empty or here(w(Mi)) �=
empty). Then M ′

+ is tar-irreducible by Definition 3.3.

(ii) M+
tar=⇒ M ′

+ is inferred by (C2). Then M+ = 〈 L | w ; M1, . . . ,Mn 〉, M ′
+

= 〈L |w′′ ; M ′′
1 , . . . ,M

′′
n 〉 and the hypothesis M1, . . . ,Mn

tar=⇒ M ′
1, . . . ,M

′
n

is inferred by a shorter inference tree. M ′
1, . . . ,M

′
n is tar-irreducible by

inductive hypothesis. For the membraneM ′
+, w′′ is out-free if L = Skin, w′′

is inL(Mi)-free and w(M ′′
i) is out-free, for all i ∈ [n]. Moreover, the sibling

membranes M ′′
1 , . . . ,M

′′
n are tar-irreducible. Then M ′

+ is tar-irreducible by
Definition 3.3.

(iii) M+
tar=⇒ M ′

+ is inferred by (C3). ThenM+ =〈Skin|w〉,M ′
+ =〈Skin|obj(w)〉,

where out(w) �= empty, and w(M ′
+) is out-free. Then M ′

+ is tar-irreducible
by Definition 3.1.

(iv) M+
tar=⇒ M ′

+ is inferred by (C4). Then M+ = M,N+, M ′
+ = M ′, N+ where

N+ is tar-irreducible, and M
tar=⇒ M ′ is inferred by a shorter inference tree.

It follows that M ′ is tar-irreducible by inductive hypothesis. Therefore M ′
+

is tar-irreducible by Definition 3.2.
(v) M+

tar=⇒ M ′
+ is inferred by (C5). Then M+ = M,N+, M ′

+ = M ′, N ′
+ where

M
tar=⇒ M ′ and N+

tar=⇒ N ′
+ are inferred by shorter inference trees. M ′ and

N ′
+ are tar-irreducible by inductive hypothesis. It follows that M ′, N ′

+ is a
tar-irreducible by Definition 3.2.

The proof is complete. �

Theorem 2. Let Π be a P system. If C ∈ C#(Π) with messages and C
tar=⇒ C′,

then C′ is tar-irreducible.

The proof follows straightforward from Lemma 3.

3.3 Parallel Membrane Dissolving

If the special symbol δ occurs in the multiset of objects of a membrane labelled
by L, the membrane is dissolved producing the following changes in the system:

– its evolution rules and the associated priority relation are lost, and
– its contents (objects and membranes) are added to the contents of the region

which was immediately external to the dissolved membrane.

42 O. Andrei, G. Ciobanu, and D. Lucanu

We consider the extension of the operator w (previously defined over mem-
branes) to non-empty sets of sibling membranes by setting w(M1, . . . ,Mn) =
w(M1) . . . w(Mn). We say that a multiset w is δ-free if it does not contain the
special symbol δ.

Definition 4. The δ-irreducibility property for membranes and for sets of
sibling membranes is defined as follows:

1. a simple membrane is δ-irreducible;
2. a non-empty set of sibling membranes M1, . . . ,Mn is δ-irreducible iff every

membrane Mi is δ-irreducible, for 1 ≤ i ≤ n;
3. a composite membrane 〈L |w ; M+ 〉 is δ-irreducible iff M+ is δ-irreducible,

and w(M+) is δ-free.

The parallel dissolving relation δ=⇒ is defined by the following inference
rules:

For each multisets of objects w1, w2, and labels L1, L2,

(D1)
〈 L1 | w1 ; 〈 L2 | w2δ 〉 〉 δ=⇒ 〈 L1 | w1w2 〉

For eachM+ ∈ M+(Π), multiset w2, and labels L1, L2 such that 〈L2 |w2δ ;M+〉
is δ-irreducible,

(D2)
〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉 δ=⇒ 〈 L1 | w1w2 ; M+ 〉

For each M+ ∈ M+(Π), δ-free multiset w2, and labels L1, L2,

(D3)
〈 L2 | w2 ; M+ 〉 δ=⇒ 〈 L2 | w′

2 〉
〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉 δ=⇒ 〈 L1 | w1 ; 〈 L2 | w′

2 〉 〉

For each M+,M
′
+ ∈ M+(Π), δ-free multiset w2, multisets w1, w

′
2, and labels

L1, L2

(D4)
〈 L2 | w2 ; M+ 〉 δ=⇒ 〈 L2 | w′

2 ; M ′
+ 〉

〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉 δ=⇒ 〈 L1 | w1 ; 〈 L2 | w′
2 ; M ′

+ 〉 〉

For each M+ ∈ M+(Π), multisets w1, w2, w
′
2, and labels L1, L2

(D5)
〈 L2 | w2δ ; M+ 〉 δ=⇒ 〈 L2 | w′

2δ 〉
〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉 δ=⇒ 〈 L1 | w1w′

2 〉

For each M+ ∈ M+(Π), multisets w1, w2, w
′
2, and labels L1, L2

(D6)
〈 L2 | w2δ ; M+ 〉 δ=⇒ 〈 L2 | w′

2δ ; M ′
+ 〉

〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉 δ=⇒ 〈 L1 | w1w′
2 ; M ′

+ 〉

Structural Operational Semantics of P Systems 43

For each M+, N+ ∈ M+(Π), multiset w′, and label L such that 〈L |w ; N+ 〉 is
δ-irreducible,

(D7)
〈 L | w ; M+ 〉 δ=⇒ 〈 L | w′ 〉

〈 L | w ; M+, N+ 〉 δ=⇒ 〈 L | w′ ; N+ 〉

For each M+,M
′
+, N

′
+ ∈ M+(Π), multisets w′, w′′, and label L such that

〈 L | w ; N+ 〉 is δ-irreducible,

(D8)
〈 L | w ; M+ 〉 δ=⇒ 〈 L | w′ ; M ′

+ 〉
〈 L | w ; M+, N+ 〉 δ=⇒ 〈 L | w′ ; M ′

+, N+ 〉

(D9)
〈 L | w ; M+ 〉 δ=⇒ 〈 L | ww′ 〉 〈 L | w ; N+ 〉 δ=⇒ 〈 L | ww′′ 〉

〈 L | w ; M+, N+ 〉 δ=⇒ 〈 L | ww′w′′ 〉

(D10)
〈 L | w ; M+ 〉 δ=⇒ 〈 L | ww′ 〉 〈 L | w ; N+ 〉 δ=⇒ 〈 L | ww′′ ; N ′

+ 〉
〈 L | w ; M+, N+ 〉 δ=⇒ 〈 L | ww′w′′ ; N ′

+ 〉

(D11)
〈 L | w ; M+ 〉 δ=⇒ 〈 L | ww′ ; M ′

+ 〉〈 L | w ; N+ 〉 δ=⇒ 〈 L | ww′′ ; N ′
+ 〉

〈 L | w ; M+, N+ 〉 δ=⇒ 〈 L | ww′w′′ ; M ′
+, N

′
+ 〉

Example 4. Considering the P system of Example 1, the inference tree for

〈1|empty ; 〈2|empty ; 〈3|dffffδ〉, 〈4|empty〉〉〉 δ=⇒ 〈1|empty ; 〈2|dffff ; 〈4|empty〉〉〉
is:

(D1)

〈 2 | empty ; 〈 3 | dffffδ 〉 〉 δ=⇒ 〈 2 | dffff 〉
(D7)

〈 2 | empty ; 〈 3 | dffffδ 〉, 〈 4 | empty 〉 〉 δ=⇒ 〈 2 | dffff ; 〈 4 | empty 〉 〉
(D4)

〈 1 | empty ; 〈 2 | empty ; 〈 3 | dffffδ 〉, 〈 4 | empty 〉 〉 〉 δ=⇒
〈 1 | empty ; 〈 2 | dffff ; 〈 4 | empty 〉 〉 〉

Lemma 4. If M+
δ=⇒ M ′

+ , then M ′
+ is δ-irreducible.

Proof. LetM+,M
′
+ be two non-empty sets of membranes such that M+

δ=⇒ M ′
+.

We prove that M ′
+ is δ-irreducible by induction on the depth of the associated

inference tree. We consider all possible cases for the final step of the inference:

(i) M+
δ=⇒ M ′

+ is inferred by (D1). Since M ′
+ is a simple membrane, M ′

+ is
δ-irreducible by Definition 4.1.

44 O. Andrei, G. Ciobanu, and D. Lucanu

(ii) M+
δ=⇒M ′

+ is inferred by (D2). Then M+ = 〈 L1 | w1 ; 〈 L2 |w2δ ; N+ 〉 〉
and M ′

+ = 〈 L1 | w1w2 ; N+ 〉, where 〈 L2 | w2δ ; N+ 〉 is δ-irreducible. It
follows that w(N+) is δ-free, and M ′

+ is δ-irreducible by Definition 4.3.

(iii) M+
δ=⇒M ′

+ is inferred by (D3). Then M+ = 〈L1 |w1 ; 〈L2 |w2 ; N+ 〉 〉 and

M ′
+ = 〈L1 |w1 ; 〈L2 |w′

2 〉 〉, where 〈L2 |w2 ; N+ 〉 δ=⇒ 〈L2 |w′
2 〉 is inferred

by a shorter inference tree, and w2 is δ-free. 〈 L2 | w′
2 〉 is δ-irreducible by

inductive hypothesis. Since w2 is δ-free and no dissolving rule preserves δ,
it follows that w′

2 is δ-free. Then M ′
+ is δ-irreducible by Definition 4.3.

(iv) M+
δ=⇒M ′

+ is inferred by (D4). We proceed in a similar way as for (D3).

(v) M+
δ=⇒M ′

+ is inferred by (D5). M ′
+ is δ-irreducible by Definition 4.1.

(vi) M+
δ=⇒M ′

+ is inferred by (D6). Then M+ = 〈 L1 | w1 ; 〈 L2 |w2δ ; N+ 〉 〉
and M ′

+ = 〈L1 |w1w
′
2 ; N ′

+ 〉, where 〈L2 |w2δ ; N+ 〉 δ=⇒ 〈L2 |w′
2δ ; N ′

+ 〉
is inferred by a shorter inference tree. 〈 L2 | w′

2δ ; N ′
+ 〉 is δ-irreducible by

inductive hypothesis, and hence N ′
+ is δ-irreducible, and w(N ′

+) is δ-free.
M ′

+ is also δ-irreducible by Definition 4.3.

(vii) M+
δ=⇒ M ′

+ is inferred by (D7). Then M+ = 〈 L | w ; N ′
+, N

′′
+ 〉 and

M ′
+ = 〈 L | w′ ; N ′′

+ 〉, where 〈 L | w ; N ′
+ 〉 δ=⇒ 〈 L | w′ 〉 is inferred by a

shorter inference tree, and 〈 L | w ; N ′′
+ 〉 is δ-irreducible. It follows that

w(N ′′
+) is δ-free, and M ′

+ is δ-irreducible by Definition 4.3.

(viii) M+
δ=⇒ M ′

+ is inferred by (D8). Then M+ = 〈 L | w ; N1
+, N

2
+ 〉 and

M ′
+ = 〈L |w′ ; N3

+, N
2
+ 〉, where 〈L |w ; N1

+ 〉 δ=⇒ 〈L |w′ ; N3
+ 〉 is inferred by

a shorter inference tree, and 〈L|w;N2
+〉 is δ-irreducible. N3

+ is δ-irreducible
and w(N3

+) is δ-free by inductive hypothesis and Definition 4.3. It follows
that N3

+, N
2
+ is δ-irreducible by Definition 4.2. Since w(N3

+, N
2
+) is δ-free,

we get that M ′
+ is δ-irreducible by Definition 4.3.

(ix) M+
δ=⇒M ′

+ is inferred by (D9). M ′
+ is δ-irreducible by Definition 4.1.

(x) M+
δ=⇒ M ′

+ is inferred by (D10). Then M+ = 〈 L | w ; N1
+, N

2
+ 〉 and M ′

+
= 〈 L | ww′w′′ ;
N3

+ 〉, where 〈L |w ; N1
+ 〉 δ=⇒ 〈L |ww′ 〉 and 〈L |w ; N2

+ 〉 δ=⇒ 〈L |ww′′ ; N3
+ 〉

are inferred by shorter inference trees. 〈 L | ww′′ ; N3
+ 〉 is δ-irreducible by

inductive hypothesis, and hence N3
+ is δ-irreducible, and w(N3

+) is δ-free.
Then M ′

+ is δ-irreducible by Definition 4.3.

(xi) M+
δ=⇒ M ′

+ is inferred by (D11). Then M+ = 〈 L | w ; N1
+, N

2
+ 〉 and M ′

+
= 〈 L | ww′w′′ ;
N3

+, N
4
+ 〉, where 〈 L | w ; N1

+ 〉 δ=⇒ 〈 L | ww′ ; N3
+ 〉 and 〈 L | w ; N2

+ 〉 δ=⇒
〈 L | ww′′ ; N4

+ 〉 are inferred by shorter inference trees. Both N3
+ and

N4
+ are δ-irreducible, and both w(N3

+) and w(N4
+) are δ-free by inductive

hypothesis and Definition 4.3. Therefore N3
+, N

4
+ is also δ-irreducible, and

w(N3
+, N

4
+) is δ-free. It follows that M ′

+ is δ-irreducible by Definition 4.3.

This completes the proof. �

Structural Operational Semantics of P Systems 45

Theorem 3. Let Π be a P system. If C ∈ C#(Π) is mpr- and tar-irreducible
and C

δ=⇒ C′, then C′ ∈ C(Π), i.e., C′ is a committed configuration.

The proof follows straightforward from Lemma 4.

Proposition 1. Let Π be a P system. If C
mpr
=⇒ C′ and C′ tar=⇒ C′′ such that

C ∈ C(Π), C′ ∈ C#(Π), and C′′ is δ-irreducible, then C′′ ∈ C(Π).

Proof. C′ is mpr-irreducible by Theorem 1, and C′′ is tar-irreducible by Theo-
rem 2. Therefore C′′ does not contain both messages and δ, and hence it is a
committed configuration, i.e., C′′ ∈ C(Π). �

Proposition 2. Let Π be a P system. If C
mpr
=⇒ C′ and C′ δ=⇒ C′′ such that

C ∈ C(Π), C′ ∈ C#(Π), and C′ is tar-irreducible, then C′′ ∈ C(Π).

Proof. C′ is mpr-irreducible by Theorem 1, and C′′ is δ-irreducible by Theo-
rem 3. Therefore C′′ does not contain both messages and δ, and hence it is a
committed configuration, i.e., C′′ ∈ C(Π). �

Proposition 3. Let Π be a P system. If C
mpr
=⇒ C′, C′ tar=⇒ C′′, and C′′ δ=⇒ C′′′

such that C ∈ C(Π), and C′, C′′ ∈ C#(Π), then C′′′ ∈ C(Π).

Proof. C′ is mpr-irreducible by Theorem 1, C′′ is tar-irreducible by Theorem 2,
and hence C′′ does not contain messages. C′′′ is δ-irreducible by Theorem 3, and
hence it does not contain both messages and δ. Therefore C′′′ is a committed
configuration, i.e., C′′′ ∈ C(Π). �
Definition 5. Let Π be a P system. A transition step in Π is defined by the
following inference rules:

For each C,C′′ ∈ C(Π), and δ-irreducible C′ ∈ C#(Π),

C
mpr
=⇒ C′, C′ tar=⇒ C′′

C ⇒ C′′

For each C,C′′ ∈ C(Π), and tar-irreducible C′ ∈ C#(Π),

C
mpr
=⇒ C′, C′ δ=⇒ C′′

C ⇒ C′′

For each C,C′′′ ∈ C(Π), and C′, C′′ ∈ C#(Π),

C
mpr
=⇒ C′, C′ tar=⇒ C′′, C′′ δ=⇒ C′′′

C ⇒ C′′′

The consistency of this definition follows from the previous three propositions.
A sequence of transition steps represents a computation. A computation is

successful if this sequence is finite, namely there is no rule applicable to the
objects present in the last committed configuration. In a halting committed
configuration, the result of a successful computation is the total number of ob-
jects present either in the membrane considered as the output membrane, or in
the outer region.

46 O. Andrei, G. Ciobanu, and D. Lucanu

3.4 Bisimulation

Operational semantics provides us with a formal and mechanizable way to find
out which transitions are possible for the current configurations of a P system. It
provides an abstract interpreter for P systems, as well as the basis for the defini-
tion of certain equivalences and congruences between P systems. Moreover, given
an operational semantics, we can reason about the rules defining the semantics.

Operational semantics allows a formal analysis of membrane computing, per-
mitting the study of relations between systems. Important relations include sim-
ulation preorders and bisimulation. These are especially useful in the context of
P systems, allowing to compare two P systems.

A simulation preorder is a relation between transition systems associated to
P systems expressing that the second one can match the transitions of the first
one. We present a simulation as a relation over the states in a single transition
system rather than between the configurations of two systems. Often a transition
system consists intuitively of two or more distinct systems, but we also need our
notion of simulation over the same transition system. Therefore our definitions
relate configurations within one transition system, and this is easily adapted
to relate two separate transition systems by building a single transition system
consisting of their disjoint union.

Definition 6. Let Π be a P system.

1. A simulation relation is a binary relation R over C(Π) such that for every
pair of configurations C1, C2 ∈ C(Π), if (C1, C2) ∈ R, then for all C′

1 ∈
C(Π), C1 ⇒ C′

1 implies that there is a C′
2 ∈ C(Π) such that C2 ⇒ C′

2 and
(C′

1, C
′
2) ∈ R.

2. Given two configurations C,C′ ∈ C(Π), C simulates C′, written C′ ≤ C, iff
there is a simulation R such that (C′, C) ∈ R. In this case, C and C′ are
said to be similar, and ≤ is called the similarity relation.

The similarity relation is a preorder. Furthermore, it is the largest simulation
relation over a given transition system. A bisimulation is an equivalence relation
between transition systems associated to systems which behave in the same way,
in the sense that one system simulates the other and vice-versa. Intuitively two
systems are bisimilar if they match each other’s transitions, and their evolutions
cannot be distinguished.

Definition 7. Let Π be a P system.

1. A bisimulation relation is a binary relation R over C(Π) such that both R
and R−1 are simulation preorders.

2. Given two configurations C,C′ ∈ C(Π), C is bisimilar to C′, written C ∼ C′,
iff there is a bisimulation R such that (C,C′) ∈ R. In this case, C and C′

are said to be bisimilar, and ∼ is called the bisimilarity relation.

The bisimilarity relation ∼ is an equivalence relation. Furthermore, it is the
largest bisimulation relation over a given transition system.

Structural Operational Semantics of P Systems 47

4 Conclusion and Related Work

Structural operational semantics is an approach originally introduced by Plotkin
[14] in which the operational semantics of a programming language or a compu-
tational model is specified in a logical way, independent of a machine architecture
or implementation details, by means of rules that provide an inductive definition
based on the elementary structures of the language or model.

We have two main approaches in SOS. Big-step semantics is also called natu-
ral semantics by Kahn [7], Gunter [5], and Nielson and Nielson [11], and evalu-
ation semantics by Hennessy [6]. In this approach, the main inductive predicate
describes the overall result or value of executing a computation, ignoring the in-
termediate steps. On the other hand, in small-step semantics the main inductive
predicate describes in more detail the execution of individual steps in a com-
putation, with the overall computation roughly corresponding to the transitive
closure of such small steps. Small-step semantics is also called structural oper-
ational semantics by Plotkin [14] and Nielson and Nielson [11], computational
semantics by Hennessy [6], and transition semantics by Gunter [5]. In general,
the small-step style tends to require a greater number of rules that the big-step
style, but this is outweighed by the fact that the small-step rules also tend to be
simpler. The small-step style facilitates the description of interleaving [10].

In this paper we present an abstract syntax of the membrane systems, and we
define a structural operational semantics of P systems by means of three sets of
inference rules corresponding to maximal parallel rewriting, parallel communica-
tion, and parallel dissolving. The inference rules come together with correctness
results. The simulation and bisimulation relations between P systems are also
defined. The inference rules provide a big-step operational semantics due to the
parallel nature of the model. As a continuation of this work, we translated this
big-step operational semantics of P systems into rewriting logic [8], and so we get
a small-step operational description. Moreover, by using an efficient implemen-
tation of rewriting logic as Maude [4], we obtain an interpreter for membrane
systems, and we can verify various properties of these systems by means of a
search command (a semi-decision procedure for finding failures of safety prop-
erties), and a LTL model checker. These achievements are presented in [2].

Acknowledgements

This work has been supported by the research grant CNCSIS 1426/2005.

References

1. O. Andrei, G. Ciobanu, D. Lucanu: Executable specifications of the P systems.
In Membrane Computing, International Workshop, WMC5, Milano, Italy, 2004,
Selected Papers (G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Sa-
lomaa, eds.), LNCS 3365, Springer, Berlin, 2005, 127–146.

2. O. Andrei, G. Ciobanu, D. Lucanu: Operational semantics and rewriting logic in
membrane computing. Proceedings SOS Workshop, 2005, to appear in ENTCS.

48 O. Andrei, G. Ciobanu, and D. Lucanu

3. G. Ciobanu: Distributed algorithms over communicating membrane systems.
Biosystems, 70 (2003), 123–133.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, J.F. Quesada:
Maude: Specification and programming in rewriting logic. Theoretical Computer
Science, 285 (2002), 187–243.

5. C. Gunter: Forms of semantic specification. Bulletin of the EATCS, 45 (1991),
98–113.

6. M. Hennessy: The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. Wiley, 1990.

7. G. Kahn: Natural semantics. Technical Report 601, INRIA Sophia Antipolis, 1987.
8. N. Marti-Oliet, J. Meseguer: Rewriting logic as a logical and semantical framework.

In Handbook of Philosophical Logic, 2nd. edn., Kluwer Academic, 2002, 1–87.
9. R. Milner: Operational and algebraic semantics of concurrent processes. In Hand-

book of Theoretical Computer Science (J. van Leeuwen, ed.), vol. B, Elsevier, 1990,
1201–1242.

10. P. Mosses: Modular structural operational semantics. BRICS RS 05-7, 2005.
11. H.R. Nielson, F. Nielson: Semantics with Applications: A Formal Introduction.

Wiley, 1992.
12. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
13. A. Pitts: Semantics of Programming Languages. Lecture Notes, University of Cam-

bridge, 1989.
14. G. Plotkin: Structural operational semantics. Journal of Logic and Algebraic Pro-

gramming, 60 (2004), 17–139.

Some Recent Results Concerning
Deterministic P Systems

Oscar H. Ibarra

Department of Computer Science,
University of California,

Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Abstract. We consider P systems that are used as acceptors (recogniz-
ers). In the standard semantics of P systems, each evolution step is a
result of applying all the rules in a maximally parallel manner: at each
step, a maximal multiset of rules are nondeterministically selected and
applied in parallel to the current configuration to derive the next con-
figuration (thus, the next configuration is not unique, in general). The
system is deterministic if at each step, there is a UNIQUE maximally
parallel multiset of rules applicable. The question of whether or not the
deterministic version is weaker than the nondeterministic version for var-
ious models of P systems is an interesting and fundamental research issue
in membrane computing.

Here, we look at three popular models of P systems – catalytic sys-
tems, symport/antiport systems, and communicating P systems. We re-
port on recent results that answer some open problems in the field. The
results are of the following forms:

1. The deterministic version is weaker than the nondeterministic version.
2. The deterministic version is as powerful as the nondeterministic

version.
3. The question of whether the deterministic version is weaker than

the nondeterministic version is equivalent to the long-standing open
problem of whether deterministic linear-bounded automata are
weaker than nondeterministic linear-bounded automata.

1 Catalytic Systems

An interesting subclass of symport/antiport system [8, 9, 10] was studied
in [3] – each system is deterministic in the sense that the computation path of
the system is unique, i.e., at each step of the computation, the maximal multiset
of rules that is applicable is unique. It was shown in [3] that any recursively enu-
merable unary language L ⊆ o∗ can be accepted by a deterministic 1-membrane
symport/antiport system. Thus, for symport/antiport systems, the determinis-
tic and nondeterministic versions are equivalent and both are universal. It also
follows from the construction in [13] that for another model of P systems, called
communicating P systems, the deterministic and nondeterministic versions are

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 49–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 O.H. Ibarra

equivalent as both can accept any unary recursively enumerable language. How-
ever, the deterministic-versus-nondeterministic question was left open in [3] for
the class of catalytic systems (these systems have rules of the form Ca → Cv
or a → v), where the proofs of universality involve a high degree of parallelism
[13, 2]. For a discussion of this open question and its importance, see [1, 11]. We
resolved this question in the negative in [7]. Since nondeterministic catalytic
systems are universal, this result also gives the first example of a P system for
which the nondeterministic version is universal, but the deterministic version
is not.

For a catalytic system serving as a language acceptor, the system starts with
an initial configurationwz, where w is a fixed string of catalysts and noncatalysts
not containing any symbol in z, and z = an1

1 . . . ank

k for some nonnegative integers
n1, . . . , nk, with {a1, . . . , ak} a distinguished subset of noncatalyst symbols (the
input alphabet). At each step, a maximal multiset of rules is nondeterministically
selected and the rules are applied in parallel to the current configuration to
derive the next configuration (note that the next configuration is not unique, in
general). The string z is accepted if the system eventually halts.

Unlike nondeterministic 1-membrane catalytic system acceptors (with 2 cat-
alysts) which are universal, we showed in [7] using a graph-theoretic approach
that the Parikh map of any language which is included in a∗1 . . . a

∗
k is accepted

by any deterministic catalytic system is a simple semilinear set which can be
effectively constructed. This result gives the first example of a P system for
which the nondeterministic version is universal, but the deterministic version
is not. We also proved that for deterministic 1-membrane catalytic systems us-
ing only rules of type Ca → Cv (i.e., purely catalytic rules), the set of reach-
able configurations from a given initial configuration is effectively semilinear.
In contrast, the reachability set is no longer semilinear in general if rules of
type a → v are also used. Our results generalized to multi-membrane catalytic
systems.

We also considered in [7] deterministic catalytic systems which allow rules
to be prioritized. We investigated three types of such systems, namely, totally
prioritized, strongly prioritized, and weakly prioritized catalytic systems. For to-
tally prioritized systems, the rules are divided into different priority groups,
and if a rule in a higher priority group is applicable, then no rules from a
lower priority group can be used. For both strongly prioritized and weakly
prioritized systems, the underlying priority relation is a strict partial order
(i.e., irreflexive, asymmetric, and transitive). Under the semantics of strong
priority, if a rule with higher priority is used, then no rule of a lower prior-
ity can be used even if the two rules do not compete for objects. For weakly
prioritized systems, a rule is applicable if it cannot be replaced by a higher
priority one.

For these three prioritized systems, we obtained contrasting results by showing
that deterministic strongly and weakly prioritized catalytic systems are univer-
sal, whereas totally prioritized systems only accept semilinear sets.

Some Recent Results Concerning Deterministic P Systems 51

2 Restricted Symport/Antiport Systems

2.1 Bounded S/A Systems

As we already noted, it is known that for 1-membrane symport/antiport sys-
tems, the deterministic and nondeterministic versions are equivalent and they
are universal [3]. It also follows from the results in [13] that for another model of
P systems, called communicating P systems, the deterministic and nondetermin-
istic versions are equivalent as both can accept any unary recursively enumerable
language.

In [6], we looked at some restricted versions of these systems. One model,
called bounded S/A system, have rules are of the form: (u, out; v, in), where u, v
are strings representing multisets of objects (i.e., symbols) with the restriction
that |u| ≥ |v| ≥ 1. Actually, the result in [6] was for when |u| = |v| ≥ 1, but it also
holds for our case. (Note that we are only interested in the multiplicities of the
objects.) An input z = an1

1 . . . ank

k (each ni is a nonnegative integer) is accepted
if the system when started with wz, where w is a fixed string independent of z
and not containing ai (1 ≤ i ≤ k) eventually halts. We showed the following:

1. A language L ⊆ a∗1 . . . a
∗
k is accepted by a bounded S/A system if and only

if it is accepted by a log n space-bounded Turing machine, and if and only
if it is accepted by a two-way multihead finite automaton. This result holds
for both deterministic and nondeterministic versions.

2. Deterministic and nondeterministic bounded S/A systems over a unary in-
put alphabet are equivalent if and only if deterministic and nondeterministic
linear-bounded automata (over an arbitrary input alphabet) are equivalent.
The latter problem is a long-standing open question in complexity theory [12].

2.2 Multi-membrane Bounded S/A Systems

We also studied multi-membrane S/A systems, called special S/A systems, which
are restricted in that only rules of the form (u, out; v, in), where |u| ≥ |v| ≥ 1,
can appear in the skin membrane. Thus, the number of objects in the system dur-
ing the computation does not increase. Let E be the alphabet of symbols in the
environment (note that there may be other symbols in the system that are not
transported into the environment and, therefore, not included in E). We showed
that for every nonnegative integer t, special S/A systems with environment alpha-
bet E of t symbols has an infinite hierarchy in terms of the number of membranes.
Again, this holds for both deterministic and nondeterministic versions.

2.3 Bounded S/A Systems Accepting String Languages

We also investigated in [6] another model – a (one-membrane) bounded S/A
system whose alphabet of symbols V contains a distinguished input alphabet Σ.
We assume that Σ contains a special symbol $, called the (right) end marker.
The rules are restricted to be of the forms:

52 O.H. Ibarra

(1) (u, out; v, in)
(2) (u, out; vc, in)

where u is in V + and v is in (V − Σ)+ with |u| ≥ |v| ≥ 1, and c is in Σ. The
second type of rule is called a read-rule. There is an abundance of symbols from
V −Σ in the environment. The only symbols from Σ available in the environment
are in the input string z = a1 . . . an (where ai is in Σ − {$} for 1 ≤ i < n, and
an = $), which is provided online externally.

There is a fixed string w in (V − Σ)∗, which is the initial configuration of
the system. Maximal parallelism in the application of the rules is assumed as
usual. Hence, in general, the size of the multiset of rules applicable at each step
is unbounded. In particular, the number of instances of read-rules (i.e., rules
of the form (u, out; vc, in)) applicable in a step is unbounded. However, clearly,
the number of read-rules in an applicable multiset cannot exceed the number
of symbols remaining to be read, and the symbols in these read-rules, say there
are s of them, must be consistent with the next s symbols of the input string
z that have not yet been processed. Note that rules of types 1 do not consume
any input symbol from z.

The input string z = a1 . . . an (with an = $) is accepted if, after reading all
the input symbols, the system eventually halts.

As described above, the system is nondeterministic. In the deterministic case,
the maximally parallel multiset of rules applicable at each step of the computa-
tion is unique. In [6] we showed that the deterministic version is strictly weaker
than the nondeterministic version: There are languages accepted by the non-
deterministic version that cannot be accepted by the deterministic version. An
example is the language L = {x#p | x is a binary number with leading bit 1 and
p �= 2val(x)}, where val(x) is the value of x. It was shown in [6] (using a similar
result in [5]) that L can be accepted by the nondeterministic version but not by
the deterministic version.

Let NBSA (DBSA) be the class of languages accepted by the nondeterministic
(deterministic) acceptors defined above. The following was also shown in [6]
(again, using similar results in [5]):

1. NBSA is closed under union and intersection, but not under complementation.
2. DBSA is closed under union, intersection, and complementation.

3 Restricted Communicating P Systems

The model we investigated in [5] is a restricted version of the communicating P
system (CPS). A CPS, first introduced and studied in [13], has multiple mem-
branes labeled 1, 2, . . ., where 1 is the skin membrane. The rules are of the form:

1. a → ax,
2. ab → axby,
3. ab → axbyccome,

Some Recent Results Concerning Deterministic P Systems 53

where a, b, c are objects, x, y (which indicate the directions of movements of
a and b) can be here, out, or inj . The designation here means that the object
remains in the membrane containing it, out means that the object is transported
to the membrane directly enclosing the membrane that contains the object (or
to the environment if the object is in the skin membrane). The designation inj

means that the object is moved into the membrane, labeled j, that is directly
enclosed by the membrane that contains the object. A rule of the form (3) can
only appear in the skin membrane. When such a rule is applied, c is imported
through the skin membrane from the environment and will become an element
in the skin membrane. In one step, all rules are applied in a maximally parallel
manner.

An RCPS [4, 5] is a restricted CPS where the environment does not contain
any object initially. The system can expel objects into the environment but
only expelled objects can be retrieved from the environment. Hence, at any time
during the computation, the objects in the system (including in the environment)
are always the same.

Let o be a distinguished object (called the input symbol) in V . Assume that an
RCPS has m membranes, with a distinguished input membrane. We say that the
system accepts on if, when started with on in the input membrane initially (with
no o’s in the other membranes), the system eventually halts. Note that objects
in V −{o} have fixed numbers and their distributions in the different membranes
are fixed initially. Also, at any time during the computation, the number of each
object a ∈ V −{o} in the whole system (including the environment) remains the
same, although the distribution of the a’s among the membranes may change at
each step. The RCPS model can be generalized to have k input membranes (see
[5]). Such a system then accepts a language which is a subset of a∗1 . . . a

∗
k.

A nondeterministic (deterministic) RCPS is one in which there may be more
than one (at most one) maximally parallel multiset of rules that is applicable at
each step. It turns out that nondeterministic (deterministic) RCPSs are equiv-
alent to nondeterministic (deterministic) bounded S/A systems (of Section 2.1)
(see [6, 5]. Hence, we have:

1. The following are equivalent for a language L ⊆ a∗1 . . . a
∗
k:

(a) L is accepted by an RCPS.
(b) L is accepted by a bounded S/A system.
(c) L is accepted by a log n space-bounded Turing machine
(d) L it is accepted by a two-way multihead finite automaton.
The above holds for both deterministic and nondeterministic versions.

2. Deterministic and nondeterministic bounded RCPSs over a unary input al-
phabet are equivalent if and only if deterministic and nondeterministic linear-
bounded automata (over an arbitrary input alphabet) are equivalent.

Finally, we mention that a restricted multi-membrane CPS that is an acceptor
of string language, called SCPA, was introduced in [5], and this model is equivalent
to the the bounded S/A system accepting string languages of Section 2.3. Hence,
the results cited in that section hold for SCPAs as well.

54 O.H. Ibarra

Acknowledgements

This work was supported in part by NSF Grants CCF-0430945, IIS-0451097,
and CCF-0524136. Some of the results reported here were obtained jointly with
Sara Woodworth and Hsu-Chun Yen.

References

1. C.S. Calude, Gh. Păun: Computing with Cells and Atoms: After Five Years. New
text added to Russian edition of the book with the same title first published by
Taylor and Francis Publishers, London, 2001. To be published by Pushchino Pub-
lishing House, 2004.

2. R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science, 330,
2 (2005), 251–266.

3. R. Freund, Gh. Păun: On deterministic P systems. Manuscript, 2003 (available at
http://psystems.disco.unimib.it).

4. O.H. Ibarra: The number of membranes matters. In Membrane Computing. Intern.
Workshop, WMC2003, Tarragona, LNCS 2933, Springer, Berlin, 2004, 218–231.

5. O.H. Ibarra: On determinism versus nondeterminism in P systems. Theoretical
Computer Science, to appear.

6. O.H. Ibarra, S. Wood: On bounded symport/antiport systems. Pre-proceedings of
11th International Meeting on DNA Computing, UWO, London, Ontario, 2005,
37–48.

7. O.H. Ibarra, H. Yen: On deterministic catalytic systems. Pre-proceedings of 10th
International Conference on Implementation and Application of Automata, 2005,
to appear.

8. A. Păun, Gh. Păun: The power of communication: P systems with sym-
port/antiport. New Generation Computers, 20, 3 (2002), 295–306.

9. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108-143.

10. Gh. Păun: Membrane Computing: An Introduction. Springer, Berlin, 2002.
11. Gh. Păun: Further twenty six open problems in membrane computing. Proc.

Third Brainstorming Week on Membrane Computing, Sevilla, 2005, RGNC Report
01/2005, 249–262. Available at http://psystems.disco.unimib.it.

12. W. Savitch: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci., 4, 2 (1970), 177–192.

13. P. Sosik: P systems versus register machines: two universality proofs. In Pre-
Proceedings of Workshop on Membrane Computing (WMC-CdeA2002), Curtea de
Arges, Romania, 2002, 371–382.

Membrane Algorithms

Taishin Y. Nishida

Faculty of Engineering,
Toyama Prefectural University,
Imizu, 939-0398 Toyama, Japan

nishida@pu-toyama.ac.jp

Abstract. A new type of approximate algorithms for optimization prob-
lems, called membrane algorithms, is proposed, which can be seen as an
application of membrane computing to evolutionary computing. A mem-
brane algorithm consists of several membrane separated regions, where
subalgorithms and tentative solutions to the optimization problem to
be solved are placed, as well as a solution transporting mechanism be-
tween adjacent regions. The subalgorithms improve tentative solutions
simultaneously. After that, the best and worst solutions in a region are
sent to adjacent inner and outer regions, respectively. By repeating this
process, a good solution will appear in the innermost region. The algo-
rithm terminates if a terminate condition is satisfied. A simple condition
of this type is the number of iterations, while a little more sophisticated
condition becomes true if the good solution is not changed during a pre-
determined period. Computer experiments show that such algorithms
are rather efficient in solving the travelling salesman problem.

1 Introduction

An NP-complete (or, even more difficult, NP-hard) problem has a large num-
ber of possible solutions (at least O(2n) for an instance of size n) and no (up
to now) effective deterministic procedure to decide the optimum solution. As
a consequence, it is of interest, and there are many investigations in this re-
spect, to find approximate algorithms for them. Such approximate algorithms
are tractable in time complexity and provide close to optimal solutions. This is
the case with genetic algorithms, simulated annealing, tabu search, neural net-
works, ant colony algorithm, and so on [1]. An approximate algorithm is better
than another one if the former obtains solutions closer to the optimum solution
than the latter.

It is obvious that the simple random search algorithm which randomly selects
a solution from O(2n) candidates is the worst approximate algorithm. On the
other hand, any local search algorithm which transforms a tentative solution
into a new solution by modifying a part of the tentative solution often falls into
local optima and cannot find better solutions even if such solutions exist. That
is why many approximate algorithms consist of a pool of tentative solutions, a
stochastic mechanism of changing them, and a rule which selects the next pool
of solutions from the changed solutions.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 55–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 T.Y. Nishida

The present paper contributes to this area of research by making use of some
attractive features of membrane computing [11]. The starting point is the obser-
vation that P systems provide a natural framework for approximate algorithms: a
multiset of objects represents a pool of tentative solutions and transition rules cor-
respond to change and select mechanisms. Moreover, the P systems paradigm can
bring to the approximate algorithms area “space” and “time” varying strategies:
membrane structures and dynamic behaviors of rules and membranes. In the evo-
lutionary computing literature, there are many researches on algorithms with spa-
tial and/or temporal structures (e.g., simulated annealing, ant colony algorithm,
spatially structured evolutionary algorithms [14], etc.). They all have limitations,
because they only use their specific features; for example, a simulated annealing
algorithm never uses the recombination mechanism of genetic algorithms. On the
other hand, a P systems inspired algorithm, called below a membrane algorithm,
can both use any existing approximate algorithm, and can bring new ideas into the
stage, inspired from the cell biology, such as, hierarchical compartmentalization,
dynamical membrane structure, communication across membranes, etc.

In the next section, the basic ideas of membrane algorithms are explained.
Then two types of membrane algorithms, which solve the travelling salesman
problems approximately, are defined and computer experiments with these algo-
rithms are shown in Section 3.

2 The Framework of Membrane Algorithms

Here we explain the new type of algorithms, called membrane algorithms, as
introduced and discussed already in [7, 8, 9].

A membrane algorithm consists of three different kinds of components:

1. A number of regions which are separated by nested membranes (Figure 1).
2. For every region, a subalgorithm and a few tentative solutions of the opti-

mization problem to be solved.
3. Solution transporting mechanisms between adjacent regions.

Outermost region

innermost region

Fig. 1. A membrane structure of a membrane algorithm

Membrane Algorithms 57

After initial settings, a membrane algorithm works as follows:

1. For every region, the tentative solutions are updated by the subalgorithm
associated with that region, simultaneously in all regions.

2. In every region, the best and worst solutions, with respect to the optimization
criteria, are sent to the adjacent inner and outer regions, respectively.

3. In every region, the next population of tentative solutions is selected from
the solutions left in the region and received from the adjacent regions. The
selection is done by the subalgorithm associated with that region.

4. One repeats updating and transporting until a terminate condition is
satisfied.

5. During the execution, a membrane algorithm can change the membrane
structure or even produce a new membrane structure, and then repeat pro-
cedures 1 – 3.

6. After all terminate conditions are satisfied, the best solution in the innermost
regions of all membrane structures will be the output of the algorithm.

A membrane algorithm can have a number of subalgorithms which are any
approximate algorithm for the optimization problem, for example, genetic algo-
rithms, tabu search, simulated annealing, local search, and so on. A membrane
algorithm is expected to be able to escape from local optimal solutions by us-
ing in upper regions a subalgorithm which is similar to random search. On the
other hand, it can preserve (and may sometimes improve) good solutions in the
inner regions by a subalgorithm which resembles local search. So, assigning ap-
propriate subalgorithms for the given problem, the performance of a membrane
algorithm can be improved.

3 Computer Experiments in Solving the Travelling
Salesman Problem

In this section we fix the components of membrane algorithms to solve the trav-
elling salesman problem (TSP for short). Then the algorithm is implemented
and experimented on a computer.

3.1 Travelling Salesman Problem

An instance of TSP with n nodes contains n pairs of real numbers (xi, yi)
(i = 0, 1, . . . , n − 1) which correspond to points in the two dimensional space.
The distance between two nodes vi = (xi, yi) and vj = (xj , yj) is the geometrical
distance d(vi, vj) =

√
(xi − xj)2 + (yi − yj)2. A solution (or a tour) is a list of

nodes (v0, v1, . . . , vn−1) in which no nodes appear twice, i.e., ∀i, j i �= j implies
vi �= vj . The value of a solution v = (v0, v1, . . . , vn−1), denoted by W (v), is
given by

W (v) =
n−2∑
i=0

d(vi, vi+1) + d(vn−1, v0).

58 T.Y. Nishida

For two solutions u and v, v is better than u if W (v) < W (u). The solution
which has the minimum value from all possible solutions is said to be the strict
solution of the instance. A solution which has a value close to the strict solution
is called an approximate solution.

3.2 Simple Membrane Algorithms

First we examine a simple realization of a membrane algorithm.
Let m be the number of membranes and let region 0 be the innermost and

region m− 1 be the outermost regions, respectively.
A simple membrane algorithm has one tentative solution in region 0 and two

solutions in regions 1 to m− 1.
We use a tabu search as the subalgorithm in region 0. Tabu search searches

a neighbor of the tentative solution by exchanging two nodes in the solution. In
order for the same solution not to appear twice, tabu search has a tabulist which
consists of solutions already appeared. Solutions in the tabulist do not appear
again. Tabu search resets the tentative solution and the tabulist if one of the
next three conditions occurs:

1. The value of the neighboring solution is less than that of the tentative solu-
tion. The neighboring solution becomes the tentative solution.

2. The value of the best solution in region 1 is less than that of the tentative
solution. The best solution in region 1 becomes the new tentative solution.

3. Neighbor search exceeds a predetermined number of turns (in this case n
5).

The tentative solution remains. Only the tabulist is reset.

51

27
6

48
23

7
43

24

14

25

13

41

40

19

42

44
15

45 33

39

10

49

9

30

34

50

16
21

29
2

20

35

36

3

28
31

26

8

22

1

32

11

38

5

37
17

4

18
47 12

46

Fig. 2. An example tour (solution) obtained by a simple membrane algorithm. The
instance is eil51.

Membrane Algorithms 59

In case 3, no improvement occurs. However, tabu search tries to search other
neighbors, since there are many unsearched neighbors.

The tentative solutions in regions 1 to m− 1 (there are two solutions in each
region) are improved by the subalgorithm summarized below:

1. If the two solutions have the same value, then a part of one solution (which
is selected probabilistically) is reversed.

2. The two solutions are recombined and two new solutions are produced.
3. The two new solutions are modified by point mutations. In the i-th region,

a mutation occurs with probability i
m .

4. From the four solutions (the two old solutions and the two newly produced
solutions), the best solution is sent to the adjacent inner region and the worst
solution is sent to the adjacent outer region.

5. The best two solutions are selected from the four solutions (two remaining
solutions and two received solutions).

Obviously, the subalgorithm described above resembles the genetic algorithm.
However, the subalgorithm always recombines the two solutions in a region while
the genetic algorithm randomly selects solutions to be recombined. If the two
solutions in a region are identical, then recombination makes no new solutions.
In this case, step 1 introduces a new solution using the reverse operation, which
is a kind of mutation.

The overall algorithm looks as follows:

1. An instance of TSP is given.
2. One tentative solution is made for region 0 and two tentative solutions are

made for every region 1 to m− 1, randomly.
3. 3.1 to 3.3 are repeated d times (d is given as a parameter).

3.1 Tentative solutions are modified simultaneously in every region using the
subalgorithms from the regions.

3.2 For every region i (1 ≤ i ≤ m− 2), the best among the solutions in the
region (old solutions and modified solutions) is sent to region i− 1 and
the worst solution to region i+1. (In region 0, the worst solution is sent
to region 1 and in region m−1, the best solution is sent to region m−2.)

3.3 For every region 1 to m− 1 all solutions but the best two are erased.
4. The tentative solution in region 0 becomes the output of the algorithm.

3.3 Computer Experiments

We have implemented the algorithm above using Java programming language.
By using Java, modifications of the algorithm have been easily tested on a com-
puter. For example, we have implemented several recombination methods and
have found that the edge exchange recombination (see [4] and the Appendix) is
superior to other methods.

Tables 1 and 2 show results of the program for TSP benchmark problems
eil51 and kroA100 from TSPLIB [12]. Results of genetic algorithm [5], simulated
annealing [17], temperature parallel simulated annealing [3], ant colony algorithm
[6], and neural network [15] are also shown in the tables.

60 T.Y. Nishida

Table 1. Results of membrane algorithm (MA), genetic algorithm (GA), simulated
annealing (SA), temperature parallel simulated annealing (TPSA), and ant colony
algorithm (AC) for the benchmark problem eil51 whose optimum value is 426. The
membrane algorithm repeats step 3 100,000 times. The number of membranes is 50
and the number of trials is 100. NA stands for no data available for the worst case of
the ant colony algorithm.

Algorithm MA GA SA TPSA AC
Best 426 426 430 426 426
Average 430 428 438 427 427
Worst 438 432 445 427 NA

Table 2. Results for benchmark problem kroA100 whose optimum value is 21282. NN
stands for neural network. The conditions for the membrane algorithm are the same
as for eil51. There are no data for GA and AC for the problem.

Algorithm MA SA TPSA NN
Best 21319 21369 21384 22246
Average 21937 21763 21418 22765
Worst 23389 22564 21482 23167

It should be noted that all simulations of Tables 1 and 2 and the optimum
values are computed with integer distances between nodes, that is, for nodes
vi = (xi, yi) and vj = (xj , yj), the distance d(vi, vj) is the rounded integer of√

(xi − xj)2 + (yi − yj)2. In the previous papers [7, 8, 9] computations have been
done with real distances (without rounding).

3.4 Shrink Membrane Algorithm

Now we incorporate in our algorithms a central feature of membrane comput-
ing, that of dynamically changing membrane structures, thus leading to shrink
membrane algorithms.

A shrink membrane algorithm consists of two phases. The first phase starts
with m membranes and subalgorithms of GA type in all regions, where m is a
parameter. If the best solution in region 0 does not change during 100n iterations
(where n is the size of the instance, i.e., number of nodes), then the number of
membranes becomes 2, with tabu search in region 0 and a GA type subalgorithm
in region 1. The two regions have the same initial solutions, which are the best
solution obtained so far. Then the algorithm improves solutions until the solution
in region 0 does not change during 300n iterations.

The first phase has a number, say t, of membrane structures. All structures
do the same computation independently. They get different solutions because
the subalgorithms use a probabilistic choice1.

1 Of course, the results of the first phase may be unique if the strict solution is ob-
tained.

Membrane Algorithms 61

The second phase of the shrink membrane algorithm has one membrane struc-
ture with t

2 regions. The t solutions obtained in the first phase are sorted and
put into the t

2 regions. The best solution is put into the innermost region. The
subsequent solutions are put into regions 1 to t

2 , two in each region, and better
solutions are put in inner regions. In other words, the results of the first phase
become the initial solutions of the second phase. The subalgorithms of the sec-
ond phase are identical to those of simple membrane algorithms, but the shrink
membrane algorithm terminates if the best solution does not change during 100n
iterations.

Figure 3 and Table 3 illustrate the evolution and the parameters of the shrink
membrane algorithm. The parameters shown in Table 3 are selected by several
preliminary experiments of solving eil51 and kroA100 with various combinations
of parameters.

Fig. 3. Shrink membrane algorithm

Table 3. Parameters of shrink membrane algorithm used in the computer experiment

Phase number of subalgorithms terminate conditions
structures membranes unchange during

1–1 t = 100 m = 5 GA type only 100n

1–2 t = 100 2 GA type and 300n
tabu search

2 1 t
2 = 50 GA type and 100n

tabu search

62 T.Y. Nishida

Table 4. Results of 10 trials of simple and shrink MAs for various benchmark problems

Problem best average worst
shrink simple shrink simple shrink simple

eil51 429 429 431 434 436 444
eil76 547 556 556 564 561 575
eil101 655 669 667 684 677 693
kroA100 21299 21651 21504 22590 21750 24531
ch150 6751 7073 6889 7320 6961 7633
tsp225 4031 4073 4112 4154 4172 4239

Table 4 shows results of simple and shrink membrane algorithms for benchmark
problems in TSPLIB. We can see that the shrink algorithm yields a good approx-
imate solution in every trial. The results shown in Table 4 are obtained with real
distances between nodes (see the note of Subsection 3.3), hence the results cannot
be compared to the results in Tables 1 and 2 nor the optimum values.

4 Conclusion

In this paper, the idea of membrane algorithms and several computer experi-
ments in solving the traveller salesman problem are presented. Such algorithms
incorporate several basic features of P systems, such as compartmentalization,
communication among compartments, dynamic membrane structure.

We have considered two types of membrane algorithms, simple and shrink algo-
rithms, and we examined their behaviors in solving the traveller salesman problem
on a computer. We have observed that simple membrane algorithms provide as
good approximate solutions as other approximate algorithms. On the other hand,
shrink membrane algorithms always finds quite good approximate solutions. The
programs used in the computer experiments are available from the web-site [10].

Membrane algorithms inherit the parallelism of P system. Therefore, mem-
brane algorithms are naturally implemented on a parallel hardware, while the
other approximate algorithms must be modified before being implemented on
a parallel computer (cf [13]). A preliminary experiment shows that the shrink
membrane algorithms become 30 ∼ 40 % faster if they are implemented on a
loosely coupled multiprocessing computer with two CPU’s (SUN Blade 1000).

Finally, it is worth mentioning that membrane algorithms have a possibility
of avoiding the “No Free Lunch Theorem” [2, 16], because membrane algorithms
can use various algorithms as subalgorithms.

References

1. C.A. Floudas, P.M. Pardalos, eds.: Encyclopedia of Optimization. Kluwer, Dor-
drecht, 2001.

2. C. Igel, M. Toussaint: On classes of functions for which No Free Lunch results hold.
Information Processing Letters, 86 (2003), 317–321.

Membrane Algorithms 63

3. K. Konishi et al.: An application of temperature parallel simulated annealing to
the travelling salesman problem and its experimental analysis. Trans. IEICS D-I,
J80-DI (1997), 127–136 (in Japanese).

4. K. Maekawa et al.: A solution of travelling salesman problem by genetic algorithm.
SICE, 31 (1995), 598–605 (in Japanese).

5. K. Maekawa et al.: A genetic solution for the travelling salesman problem by means
of a thermodynamical selection rule. SICE, 33 (1997), 939–946 (in Japanese).

6. Y. Nakamichi et al.: The effects of diversity control based on random selection in
ant colony optimization. Journal of IPSJ, 43 (2002), 2939–2947 (in Japanese).

7. T.Y. Nishida: An application of P-system: A new algorithm for NP-complete opti-
mization problems. In Proceedings of The 8th World Multi-Conference on Systems,
Cybernetics and Informatics (N. Callaos et al., eds.), 2004, vol V, 109–112.

8. T.Y. Nishida: An approximate algorithm for NP-complete optimization problems
exploiting P-systems. In Proceedings of Brainstorming Workshop on Uncertainty
in Membrane Computing, Palma de Majorca, 2004, 185–192.

9. T.Y. Nishida: Membrane algorithms. Approximate algorithms for NP-complete
optimization problems. In Application of Membrane Computing (G. Ciobanu, Gh.
Păun, M.J. Pérez-Jiménez, eds.), Springer, Berlin, 2005, 301–312.

10. T.Y. Nishida: URL http://www.comp.pu-toyama.ac.jp/nishida/.
11. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,

61 (2000), 108–143.
12. G. Reinelt: TSPLIB, URL http://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/.
13. M. Tomassini: Parallelism and evolutionary algorithms. IEEE Trans. Evolutionary

Computation, 6 (2002), 443–462.
14. M. Tomassini: Spatially Structured Evolutionary Algorithms. Springer, Berlin, 2005.
15. T. Tanaka et al.: Performance comparisons of two Hopfield neural networks for

large-scale travelling salesman problem. Journal IPSJ, 38 (1997), 2157–2164.
16. D.H. Wolpert, W.G. Macready: No Free Lunch Theorem for optimization. IEEE

Transactions on Evolutionary Computation, 1 (1997), 67–82.
17. M. Yoneda: URL http://www.mikilab.doshisha.ac.jp/dia/research/person/

yoneda/research/2002 7 10/SA/07-sareslut.html

Appendix: Edge Exchange Crossover

We describe here the edge exchange crossover algorithm.
For a positive integer n, let [n] denote the set {0, 1, . . . , n−1}. An instance of

TSP with n nodes is a weighted complete graph of n nodes2. A (pseudo) tour of
a TSP instance of n nodes is a function X : [n] → [n]. If X is a bijection, then X
is a tour of the instance; otherwise, X is a pseudo tour. For every i ∈ [n], X(i)
stands for the i-th node of the (pseudo) tour X .

For a (pseudo) tour X and an integer i ∈ [n], E(X, i) stands for the i-th edge
of the (pseudo) tour, i.e., E(X, i) = (X(i), X((i + 1) mod n)). For an edge e of
a (pseudo) tour X , s(e), and t(e) denote the beginning and the ending nodes of
e, respectively. The following equations are obvious:

2 The definition here corresponds to all types of weights, not only to the geometrical
distance in the two dimensional space.

64 T.Y. Nishida

s(E(X, i)) = X(i),
t(E(X, i)) = X((i+ 1) mod n).

In the sequel, all additions and subtractions are those of the modulo-n residue
ring.

The edge exchange crossover (EXX for short) is the algorithm described below.

Algorithm EXX:
Input: A TSP instance and two tours A, B
Output: Recombined tours A′, B′

1. Select i ∈ [n] randomly.
2. Let j be an integer such that s(E(B, j)) = s(E(A, i)).
3. Make new (pseudo) tours A′, B′ by

A′(k) =

{
A(k) 0 ≤ k ≤ i, i+ 2 ≤ k ≤ n− 1
t(E(B, j)) k = i+ 1

B′(k) =

{
B(k) 0 ≤ k ≤ j, j + 2 ≤ k ≤ n− 1
t(E(A, i)) k = j + 1

4. While t(E(A, i)) �= t(E(B, j)) do
/* If t(E(A, i)) = t(E(B, j)), then A′ and B′ are tours and
the algorithm terminates. See Lemma 1. */

5. Let i′ and j′ be integers such that s(E(A, i′)) = t(E(B, j)) and
s(E(B, j′)) = t(E(A, i)).

6. Make (pseudo) tours A′′ and B′′ by
case i < i′

A′′(k) =

{
A′(k) 0 ≤ k ≤ i+ 1 or i′ ≤ k ≤ n− 1
A(i + i′ + 1 − k) i+ 2 ≤ k ≤ i′ − 1

case i′ < i

A′′(k) =

{
A′(k) i′ ≤ k ≤ i+ 1
A(i + i′ + 1 − k) 0 ≤ k ≤ i′ − 1 or i+ 2 ≤ k ≤ n− 1

case j < j′

B′′(k) =

{
B′(k) 0 ≤ k ≤ j + 1 or j′ ≤ k ≤ n− 1
B(j + j′ + 1 − k) j + 2 ≤ k ≤ j′ − 1

case j′ < j

Membrane Algorithms 65

B′′(k) =

{
B′(k) j′ ≤ k ≤ j + 1
B(j + j′ + 1 − k) 0 ≤ k ≤ j′ − 1 or j + 2 ≤ k ≤ n− 1

7. Let i ← i′, j ← j′, A ← A′′, B ← B′′

8. Make new (pseudo) tours A′, B′ by

A′(k) =

⎧⎪⎨⎪⎩
A(k) 0 ≤ k ≤ i− 1 or i+ 2 ≤ k ≤ n− 1
B(j) k = i

t(E(B, j)) k = i+ 1

B′(k) =

⎧⎪⎨⎪⎩
B(k) 0 ≤ k ≤ j − 1 or j + 2 ≤ k ≤ n− 1
A(i) k = j

t(E(A, i)) k = j + 1

/* the end of “while” loop */

Example 1. If tours A and B are given by the following table

x 0 1 2 3 4 5 6 7
A(x) 0 1 2 3 4 5 6 7
B(x) 1 4 3 0 5 6 2 7

and i is selected to 1, then the algorithm EXX calculates j = 0, i′ = 4, and
j′ = 6. The pseudo tours A′′ and B′′ are given by

x 0 1 2 3 4 5 6 7
A′′(x) 0 1 4 3 4 5 6 7
B′′(x) 1 2 6 5 0 3 2 7

.

Now, i = 4, j = 6, i′ = 7, and j′ = 3. The next A′′ and B′′ become

x 0 1 2 3 4 5 6 7
A′′(x) 0 1 4 3 2 7 6 7
B′′(x) 6 2 1 5 0 3 4 5

.

Then i = 7 and j = 3 and the terminate condition of the algorithm becomes
true obtaining the tours

x 0 1 2 3 4 5 6 7
A′(x) 0 1 4 3 2 7 6 5
B′(x) 6 2 1 7 0 3 4 5

.

Lemma 1. Let A, B, A′, B′, A′′, B′′, i, j, i′, and j′ be the symbols defined in
the algorithm EXX. The following conditions are equivalent.

66 T.Y. Nishida

1. A′ and B′ are not tours.
2. t(E(A, i)) �= t(E(B, j)), A′′(i′) = A′′(i + 1), B′′(j′) = B′′(j + 1), ∀x, y ∈

[n]−{i′, i+1} x �= y implies A′′(x) �= A′′(y), and ∀x, y ∈ [n]−{j′, j+1} x �= y
implies B′′(x) �= B′′(y).

Proof. The proof of 2 → 1 is obvious.
We prove the 1 → 2 by induction on the “while” loop.
At the first execution of the loop, A′ has t(E(B, j))(= B(j + 1)) at A′(i+ 1)

and B′ has t(E(A, i))(= A(i + 1)) at B′(j + 1). If A(i + 1) �= B(j + 1), then
there exist i′, j′ ∈ [n] such that i �= i′, j �= j′, A(i′) = A′(i′) = A′(i + 1), and
B(j′) = B′(j′) = B′(j + 1) because A and B are tours. Then all assertions of 2
hold.

Next let 1 and 2 be equivalent until the previous execution of the loop. In
this case we have A′(i) = B(j), A′(i + 1) = t(E(B, j)), B′(j) = A(i), and
B′(j + 1) = t(E(A, i)). If A(i + 1) �= B(j + 1), then there exist i′, j′ ∈ [n] such
that i �= i′, j �= j′, A(i′) = A′(i′) = A′(i + 1), and B(j′) = B′(j′) = B′(j + 1)
because of the hypothesis of induction. Then assertions of 2 hold. ��

Lemma 2. The algorithm EXX always terminates.

Proof. It is easily seen that the algorithm EXX is reversible, that is, given A′′,
B′′, i, j, i′, and j′, A, and B are uniquely determined. The observation implies
that the algorithm EXX is an injection on the direct product of the sets of pseudo
tours. Then the lemma follows from Lemma 1 and the fact that the domain of
the algorithm is finite. ��

Lemmas 1 and 2 prove the next theorem.

Theorem 1. The algorithm EXX always terminates and outputs recombined
tours.

On Evolutionary Lineages of Membrane Systems

Petr Sośık1,2 and Ondřej Vaĺık2

1 Facultad de Informática, Universidad Politécnica de Madrid,
Campus de Montegancedo s/n, Boadilla del Monte 28660, Madrid, Spain

2 Institute of Computer Science, Silesian University,
74601 Opava, Czech Republic

{petr.sosik, ondrej.valik}@fpf.slu.cz

Abstract. We introduce a simple model of P system motivated by cer-
tain restrictions found in biological systems. Its computational power is
rather limited and corresponds to that of a finite transducer. An im-
portant characteristics of the model is its interactive behavior. Then we
study the computational power of evolutionary lineages of such P sys-
tems. Referring to known results from the structural complexity theory
(Karp and Lipton, Wiedermann and van Leeuwen), we show that a super-
Turing computational potential can emerge in non-uniform lineages of
these restricted P systems.

Furthermore, key features of our model are related to lineages of bi-
ological systems. In this way, our results provide another argument sup-
porting the thesis from [14] and others that a super-Turing potential is
naturally and inherently present in evolution of living organisms.

1 Introduction

Membrane systems (currently called P systems) are biologically inspired (particu-
larly, cell inspired) formal computational models introduced in [8]. For an overview
of membrane computing theory we refer the reader to [9]. Computational opera-
tions in P systems are motivated by some properties of living cells which are math-
ematically abstracted and generalized. Many of the recently studied variants of P
systems achieve universal (in Turing sense) computational power, provided that
their membranes can contain an unlimited number of objects.

In this paper, however, we attempt to relate (although freely) our theoretical
results to limits of computational potential of biological cells and their lineages.
Therefore, we adopt the assumption that each living cell or a multicellular organ-
ism is a finite body and its behavior can in principle be modelled by a finite-size
model, however complicated. A similar approach can be found also in the recently
developed model of P colonies [7]. One can argue that organisms can use their
(potentially infinite) environment as an external memory, but even then there
is a barrier of their limited length of life during which only a limited portion of
“memory” can be used.

An important part of our model are certain properties of living organisms
which, due to [12, 14], give them power beyond the level of classical formal au-
tomata:

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 67–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

68 P. Sośık and O. Vaĺık

(i) interactivity, i.e., a continuous flow of information, contrasting with a
beforehand-given input of conventional automata;

(ii) unpredictability of interactions and information exchange (notice the differ-
ence from a nondeterministic Turing machine where all possible configura-
tions can be found and simulated by its deterministic variant);

(iii) continuous lineage of individuals, transferring information from one gener-
ation to another, and capable of continuous changes due to intensive inter-
actions with their environment.

Also nowadays computers connected into a worldwide network possess exactly
the same properties (i)–(iii). Indeed, they intensively interact in an unpredictable
manner (often too unpredictable to our taste). When solving difficult problems,
they can consult other network machines. They get continuous upgrade through
the network, often without our knowledge. Last, but not least, there exists a
continuity between their generations. Therefore, the original paradigm of a com-
puter as a Turing machine does not correspond to the recent situation and maybe
the time has come for its change [13].

Based on this argumentation, we incorporate the properties (i)–(iii) into our P
system model and study its power. Rather surprisingly, we show that the result-
ing lineage of simple P systems reaches a super-Turing computational potential.

The history of super-Turing computation originates, paradoxically, in the Tur-
ing’s dissertation thesis [11], where the modified variant of the Turing machine
augmented with the oracle device has been introduced and its power studied.
The machine has a special oracle tape and a corresponding query state. The
machine can write a question on the oracle tape and enter the query state. Then
in one step, an (in principle uncomputable) answer appears on the oracle tape.
There have been also considered limitations on the size of the oracle’s answer.
In 1980 there was defined the weaker advice Turing machines [6]. The advice
differs from the oracle in the following: while the oracle assigns an individual
answer to each query, the advice provides an answer due to the length of the
query and ignores its content. Therefore, all queries with the same length are
given the same answer. Usually, length of the advice is polynomially restricted
with respect to the length of the query. We denote an advice Turing machine
by TM/A. We refer the reader, e.g., to [1] for more information on non-uniform
complexity classes.

In 1980’s and 1990’s many super-Turing models were studied, such as Inter-
action Machines, Site and Internet Machines, π-kalkul, $-kalkul, etc. The reader
is referred to [3] or [4] for an overview. We mention two super-Turing compu-
tational models with biological inspiration. In [2], authors show a super-Turing
power of deterministic P systems which can speed up their operations gradually
(a reversed Achilles and Tortoise principle). Another paper [15] introduces the
model called bacterioid which combines computational and non-computational
mechanisms. The bacterioid conforms with the requirements for a minimal arti-
ficial life and exhibits also rudimentary cognitive properties.

In this context we argue together with [12, 14] and others that a super-Turing
potential can naturally emerge in evolutionary lineages of finite (biological or

On Evolutionary Lineages of Membrane Systems 69

other) systems. Indeed, the requirements (i)–(iii) form elementary components
of biological evolutionary processes. Together with the finiteness of living organ-
isms we obtain a reasonable scenario suggesting that a super-Turing potential is
not only possible, but probably rather necessary phenomenon during biological
evolution.

2 Interactive Finite Machines

In this section we focus on the first natural property of the living entities –
interactivity. We fix some basic notation first. An alphabet Σ is a finite and
nonempty set of symbols. The set of all words over Σ is denoted by Σ∗. This set
includes the empty word ε. The set of all nonempty words Σ∗ \ {ε} is denoted
by Σ+. The length of a word w is denoted by |w|. For a nonnegative integer n
and a word w, we use wn to denote the word that consists of n concatenated
copies of w. For more information on formal language theory we refer the reader
to [10].

Now we present a canonical model of an interactive finite machine – the
interactive finite transducer (IFT), introduced in [12], which is an analog of
Mealy automaton. Recall that a Mealy automaton is a finite-state machine which
at each computational step inputs and outputs symbols from a given alphabet. Of
course, when considering suitable computational models for embodiment of the
lineages of evolving organisms, we may think about finite-state neural networks
or other models with evolutionary capabilities. However, as they are in general
finite-state machines, IFT’s appear to be a proper choice for the study of their
computational limits due to their simplicity.

Definition 1. A Mealy automaton is a six-tuple M = (I,O,Q, δ, ρ, q0), where

– I is an input alphabet,
– O is an output alphabet,
– Q is a finite nonempty set of states,
– δ : Q× I −→ Q is a transition function,
– ρ : Q× I −→ O is an output function,
– q0 ∈ Q is an initial state.

The input of a Mealy automaton is an input tape containing a finite word over
the input alphabet. At each step, the Mealy automaton reads a symbol from the
input tape, changes eventually its state due to δ, and outputs a symbol from the
output alphabet selected by ρ.

IFT’s differ from Mealy automata mainly in their computational scenario.
Unlike a Mealy automaton, an IFT inputs a (potentially infinite) input stream
over an input/output alphabetΣ via its input channel and outputs a (potentially
infinite) output stream. Therefore we do not assume that the whole input is fixed
and written on a tape beforehand. Let Σω denote the set of all infinite streams
over the alphabet Σ. Hence an IFT realizes a translation φ : Σω −→ Σω. In the
sequel, however, we use Mealy automata as a formal representation of IFT’s.

70 P. Sośık and O. Vaĺık

2.1 Interactive Finite P Systems

Membrane computing offers a computational framework in which the assump-
tions (i)–(iii) from Section 1 can be naturally implemented. We build on a “clas-
sical” variant of P system computing with multisets of objects. However, we
impose some restrictions motivated by reflections in Section 1. Also, commu-
nication with the outer environment is performed via an input and an output
channel similarly as in P automata with communication rules [5]. At each step
our model can receive at most one symbol via its input channel and send at most
one symbol via its output channel. Of course, living organisms receive at each
moment an n-tuple of “inputs” via their “input channels”, but let us assume that
n is limited from above and hence the the set of all such n-tuples can be mapped
one-to-one into a finite alphabet. The resulting model is called Interactive Finite
P System (IFPS). We note that an alterative variant of an interactive finite P
systems might be also considered using the formalism of ω-P automata [5].

Definition 2. An interactive finite P system of degree n, n ≥ 1, is a construct

Π = (Σ,Γ,�, μ, w1, . . . , wn, R1, . . . , Rn),

where:

– Σ is an alphabet; its elements are called objects;
– Γ ⊂ Σ is an input/output alphabet;
– � ∈ Γ is a special symbol denoting an undefined input/output;
– μ is a hierarchical structure of n membranes, with membranes denoted by

integers 1, . . . , n; the outermost membrane is called also the skin membrane;
– wi, 1 ≤ i ≤ n, is an initial content of region i of the membrane structure
μ; formally, wi is a word in Σ∗ representing by its Parikh vector a multiset
m(wi) over Σ;

– Ri, 1 ≤ i ≤ n, is a finite set of evolutional rules u → v over Σ belonging to
region i of the structure μ; forms of the rules can be:
(a) a → bτ , a, b ∈ Σ, τ ∈ ({here}∪{inj | 1 ≤ j ≤ n}); if [i]i is not the skin

membrane, then it is also allowed that τ = out ;
(b) ab → aτ1cτ2 , a, b, c ∈ Σ, τ1, τ2 ∈ ({here} ∪ {inj | 1 ≤ j ≤ n}); if [i]i is

not the skin membrane, then it is also allowed that τ1 = out or τ2 = out
or both;

(c) ab → aτboutccome , a ∈ Σ, b, c ∈ Γ , τ ∈ ({here} ∪ {inj | 1 ≤ j ≤ n});
these rules can exist only within the skin membrane.

The components w1, . . . , wn form an initial state of Π . Generally, each n-
tuple w′

1, . . . , w
′
n is called a configuration of Π . For two configurations C1 =

(w′
1, . . . , w

′
n) and C2 = (w′′

1 , . . . , w
′′
n) we write C1 =⇒ C2, and we say that we

have a transition from C1 to C2, if we can pass from C1 to C2 by using the
evolution rules appearing in R1, . . . , Rn in the following manner:

– If an object appears in v in a form ahere , then it will remain in the same
region i (instead of ahere we often write simply a).

On Evolutionary Lineages of Membrane Systems 71

– If an object appears in v in a form aout , then a will exit the membrane i and
will become an element of the region immediately outside it; or, in case of
(c)-type rules, it is sent out of the system via its output channel.

– If an object appears in a form ainq
, then a will be added to the multiset

m(w′
q), provided that a is adjacent to the membrane q.

– If an object appears in a form acome , then a is imported into the skin mem-
brane via the input channel. At each step, only one rule of type (c) can be
applied.

All these operations are done in parallel, for all possible applicable rules u →
v, for all occurrences of multisets u in the region associated with the rules, for all
regions at the same time. The system continues these parallel steps until there
remain any applicable rules in any compartment of Π. Both an input and an
output of the system are infinite streams of symbols in Γω.

In this paper we restrict ourselves to deterministic IFPS’s, which at each config-
urationC1 and for each symbol in the input channel canpass to atmost one possible
configurationC2 and send at most one possible symbol to its output channel.

Definition 3. A translation mapping φ : Σω −→ Σω is called an interactive
translation realized by a deterministic IFPS Π if the following holds: φ(x) = y
iif Π with the input x never halts and outputs y, for x, y ∈ Σω.

It follows by the above definition that those IFPS’s which halt after a finite
number of steps, as well as those which input/output only a finite number of
symbols, do not realize an interactive translation.

Example 1. The following IFPS Πab searches the input stream for strings ab, see
Fig. 1. Its response to such a string is the output #. In other cases the system
just copies an input string to the output.

�

�

�

�

c a b #

ca → cin2 aoutacome

cb → cboutbcome

caa → caaoutacome

ca# → ca;in2#outbcome bb → b#

1

�

�

�

�

d

dc → dca;out

dca → dcout

2

Fig. 1. Interactive finite P system Πab

72 P. Sośık and O. Vaĺık

Let Πab = (Σ,Γ,�, μ, w1, w2, R1, R2) be an IFPS of degree 2, where

Σ = {a, b, c, ca, d,�,#},
Γ = {�, a, b,#},
μ = [1[2]2]1,
w1 = cab#,
w2 = d,
R1 = {r1 : ca → cin2aoutacome ,

r2 : cb → cboutbcome ,
r3 : caa → caaoutacome ,
r4 : ca# → ca;in2#outbcome,
r5 : bb → b#},

R2 = {r6 : dca → dcout , r7 : dc → dca;out .}

The system Πab works as follows:

1. In the initial configuration only the rules r1 or r2 are applicable. If the input is
– a, then r1 is applied, the object a is copied to the output and c is sent

to region 2; we continue by step 2;
– b, then r2 is applied, b is sent to the output and we continue in the same

configuration.
2. In region 2 the rule r7 is now applicable, rewriting c to ca and sending it to

region 1.
3. Now in region 1 the rules r3 or r4 are applicable. If the input is

– a, then r3 is applied, copying a to the output without a change of the
recent configuration;

– b, then r4 is applied, sending # to the output as an indicator of the input
ab, sending simultaneously ca into region 2, and we continue by step 4.

4. Rules r5 and r6 are simultaneously applied, turning the system back into the
initial configuration, and we continue by step 1.

2.2 Equivalence of IFT and IFPS

We show that interactive P systems compute exactly the same translation func-
tions as IFT’s. Our result extends Theorem 1 in [14] which states the equivalence
of IFT with several other computational models, such as discrete neural nets or
combinatorial circuits.

Theorem 1. For a translation φ : Σω → Σω the following is equivalent:

(i) φ is realized by an interactive finite transducer;
(ii) φ is realized by a deterministic interactive finite P system.

Proof. (i)⇒(ii) Let M = (I,O,Q, δ,�, q0) be a Mealy automaton, where I =
{x1, . . . , xk}, O = {y1, . . . , yl}, and Q = {q0, . . . , qn}.

We construct a deterministic interactive P system ΠM = (Σ,Γ,�, μ, w1, . . . ,
wm, R1, . . . , Rm) of degree m = n+ 2 realizing the same translation.

On Evolutionary Lineages of Membrane Systems 73

�

�

�

�

v0 q0 y1 . . . yl

1

�
�

�
�Q0

�
�

�
�Q1

v1
. . .

�
�

�
�Qn

vn

Fig. 2. An interactive P system simulating an IFT

– Γ = {�, x1, . . . , xk, y1, . . . , yl},
– Σ = {q0, . . . , qn, p0, . . . , pn} ∪ Γ,
– μ = [1[Q0]Q0 . . . [Qn]Qn]1,
– w1 = q0p0y1 . . . yl, wQ0 = ε and wQi = pi, 1 ≤ i ≤ n,
– R1 is constructed as follows: for each pair of rules δ(qi, x) = qj , ρ(qi, x) = y,
qi, qj ∈ Q, x ∈ I, y ∈ O, we add to R1 the rules:

piy → pi;inQi
youtxcome , (1)

qix→ qi;inQj
y, (2)

– RQi = {pip → pi;outqi;out | δ(p, x) = qi, for some p ∈ Q, x ∈ I}, 0 ≤ i ≤ n.

Each step of the automaton M is simulated by the P system ΠM as follows.

1. Input and output of a symbol: the presence of an object pi, 0 ≤ i ≤ n, in
the skin membrane represents the state qi of M. An application of a rule
ρ(qi, x) = y of M is simulated by a rule of type (1). Notice that a complete
set of output objects y1, . . . , yl is present within the skin membrane.

2. State transition – phase I: A rule of type (2) completes the set of output
objects within the skin membrane. Simultaneously it sends the object qi into
the membrane Qj which is equivalent to the rule δ(qi, x) = qj of M.

3. State transition – phase II: Now the membrane Qj contains objects pj and
qi. The object qi is rewritten to qj and sent to the skin membrane together
with pj to represent the new state qj of M.

It follows by the above description that the deterministic IFPS ΠM realizes the
same translation as the IFT M.

(i)⇐(ii) Let Π = (Σ,Γ,�, μ, w1, . . . , wn, R1, . . . , Rn) be a deterministic IFPS
which realizes a translation φ. Let us denote by CΠ the set of all configurations
of Π. The number of all possible configurations is determined by the membrane
structure μ, the size of the alphabet l = |Σ|, and the initial number of objects
within the system, m = |w1| + |w2| + . . . + |wn|. Observe that the number of

74 P. Sośık and O. Vaĺık

objects does not change during the work of the system. The reader can verify
that the system has |CΠ | = (m+ ln− 1)!/(m!(ln− 1)!) possible configurations.

Then the IFPS Π can be simulated by a Mealy automaton MΠ =
(Γ, Γ,Q, δ, ρ, C0), where:

– Q = {C0} ∪ {C ∈ C | C0 ⇒∗ C′ ⇒r C, r = ab → aτboutccome},
– δ(C, c) = C′ and ρ(C, c) = b, b, c ∈ Γ, if and only if C ⇒+

Π C′, and
this sequence of transitions involves exactly one application of a rule ab →
aτboutccome in its last step, for some a ∈ Σ, τ ∈ ({here}∪{in j | 1 ≤ j ≤ n}).

Due to the determinism of Π, it is guaranteed that the sequence of transitions
C ⇒+

Π C′ is unique for a given c ∈ Γ. The above description shows that the
translation φ realized by Π is identical with the translation realized by MΠ .

3 From Machines to Lineages

In this section we consider the other two mentioned properties of communities
of living organisms: continuous lineages of unpredictably evolving individuals.
Similarly as in the previous section, we present first a canonical model of lineage
[12] based on the theory of finite automata. We denote by U the universe of
possible states of all automata in the lineage.

Definition 4. Let A = {A1, A2, . . .} be a sequence of IFT’s over an in-
put/output alphabet Σ and let Qi ⊆ U be a set of states of Ai. Let G =
{G1, G2, . . .} be a sequence of states from U such that Gi ⊂ Qi and Gi ⊆ Gi+1,
i ≥ 1. Then A together with G is called a sequence of IFT’s with global states.

The sequence A is non-uniform, i.e., there is no algorithmic way how to describe
its members. The only way how to define the sequence is to list all its members.
The set

⋃
i Gi ⊆ U is called the set of global states of A. The sequence A

processes an infinite input stream from Σω as follows. At the beginning, the
automaton A1 processes the input stream using its local states Q1 − G1. At a
certain moment A1 enters a global state g ∈ G1, finishes its computation and
passes the control to A2. The input stream is redirected to the input of A2 which
starts its computation in the same state g ∈ G2 and processes another symbol.
After a certain number of steps in its local states, A2 enters a global state g′,
passes control to A3, and so on. Although it is not explicitly mentioned in the
definition, it is assumed that the number of states of automata {A1, A2, . . .}
increases, although possibly non-monotonically (unlike the monotonic sequence
G1 ⊆ G2 ⊆ G3 ⊆ . . .).

Therefore, the input stream is processed by automata with an increasing index
i. The next active automaton represents a new generation with potentially richer
configuration space. This mechanism allows for a transfer and improvement of
structural information from the previous generation. These improvements are
understood as a result of unpredictable interactions of an individual (transducer)
with its environment and other individuals.

On Evolutionary Lineages of Membrane Systems 75

3.1 Computational Potential of Lineages of IFT’s

We use an interactive advice Turing machine to characterize the computational
power of non-uniform lineages of IFT’s. The interactive Turing machine (ITM)
is – similarly as an IFT – a computational device working over infinite input and
output streams. Unlike an IFT, however, an ITM has an internal architecture
of a Turing machine with an infinite tape and therefore its configuration space
is infinite. Besides tape operations in spirit of Turing machines, at each step an
ITM reads a symbol from its input channel and sends a symbol to its output
channel. Moreover, after receiving a nonempty symbol from its input channel,
the ITM is required to send a nonempty symbol to its output channel within a
finite number of steps. In this way the ITM realizes an interactive translation
φ : Σω −→ Σω. We refer the reader to [12] for more details.

The computational power of ITM’s is in principle equivalent to that of a
standard Turing machine. Indeed, an input/output of a standard TM can be a
part of input/output streams of an ITM, on one hand. On the other hand, each
translation of an ITM, Pref(x) −→ Pref(y) for finite prefixes of x and y of the
same length, is Turing-computable. The ingredient we add to ITM’s to increase
their power is the advice function introduced in Section 1.

Definition 5. An advice is a function f : N+ −→ {0, 1}∗. We say that an
advice f is S(m)-bounded if |f(m)| ≤ S(m) for each m ∈ N.

The resulting device is called an interactive advice Turing machine (ITM/A).
See [13] for motivation and more results about ITM/A. An ITM/A can in a step
t ask only a query of length t1 ≤ t. To get an advice, the ITM/A is equipped with
a special advice tape and an advice state. When ITM/A writes an argument t1 on
the advice tape and enters the advice state, the value of f(t1) rewrites in one step
the original content of the advice tape. Due to the possible non-computability of
the advice, an ITM/A is a super-Turing computational device [12]. The following
result can be found in [14].

Theorem 2. A translation φ : Σω → Σω can be realized by a sequence of IFT’s
with global states iff it can be realized by an ITM/A.

3.2 Lineages of IFPS’s

Theorem 2 can be naturally extended to sequences of interactive finite P systems.
Consider an IFPS

Π = (Σ,Γ,�, μ, w1, . . . , wm, R1, . . . , Rm)

with a configuration C = (w1, . . . , wm). A state of Π is a pair (μ′, C′), where C′

is obtained from C by omitting all empty strings ε corresponding to membranes
containing no objects, and μ′ is obtained from μ by omitting these membranes.
The universe of states U is the set of all possible states (including all possible
membrane structures).

76 P. Sośık and O. Vaĺık

Consider further a sequence of IFPS’s P = {Π1, Π2, . . .} such that each Πi

has assigned a finite set of states Qi ⊆ U determined by its structure and possible
contents of its membranes. Some selected states form a set Gi ⊂ Qi of global
states. The sequence P must satisfy the conditions of Definition 4: Gi ⊆ Gi+1,
i ≥ 1. Then P is called an evolutionary sequence of interactive P systems.

Example 2. Let P = {Π1, Π2, . . .} be a sequence of IFPS’s. Denote by Qi the
set of states of Πi, i ≥ 1. Let Δi ⊆ Γi be a nonempty alphabet of global symbols,
where Γi is the alphabet of Πi. Let further Δi ⊆ Δi+1, i ≥ 1. Let global states
of Πi be those of its states which contain a symbol from Δi.

A transition from Πi to Πi+1 is realized by its mutation, during which:

– a rule can be added/deleted/replaced,
– a symbol can be added to the system’s alphabet,
– an empty membrane together with rules can be added.

When Πi enters a global state, it is changed to Πi+1 which starts from the
same state. Then Πi+1 operates over input/output streams until it enters again
a global state. This can happen even in its first step if all global symbols are not
removed during this step.

Thus, the sequence of IFPS’s P = {Π1, Π2, . . .} satisfies the conditions of
Definition 4 and we have the following result:

Theorem 3. A translation φ : Σω → Σω can be realized by a sequence of IFT’s
with global states iff it can be realized by an evolutionary sequence of IFPS’s.

Corollary 1. A translation φ : Σω → Σω can be realized by an evolutionary
sequence of IFPS’s iff it can be realized by an ITM/A.

Note that all members of the sequence P operate with the same number of
objects. The evolution changes only their alphabet, membrane structure, and
rules.

4 Conclusion

We have studied a simple variant of P system called the interactive finite P
system – IFPS. An IFPS can at each step contain only a fixed, pre-defined
number of objects and a fixed number of membranes, therefore its configuration
space is finite. It communicates with the outer environment via an input and
an output channel. The key ingredient increasing its power is the capability of
evolutionary lineages of IFPS’s to evolve from one generation to another in an
unpredictable, non-computable manner.

We have shown that evolutionary lineages of IFPS’s reach the super-Turing
computational potential. This result extends the work of [12, 14, 15] and others
where one studies the power of lineages of finite-state machines. Our biologically

On Evolutionary Lineages of Membrane Systems 77

inspired model of IFPS, however, is restricted to use elementary cell-like com-
putational operations. We have therefore settled the open question in [15] how
to implement such lineages within the framework of P systems.

One might ask whether now we are able to solve some concrete, a priori given
undecidable problems with lineages of IFPS’s? On the one hand, it has been
shown in [12] that ITM/A’s (and in turn also lineages of IFPS’s) are strictly
more powerful than ITM’s (and hence than standard Turing machines). In other
words, some undecidable problems (e.g., the halting problem) can in principle
be solved by lineages of IFPS’s in a finite number of steps. On the other hand,
computational evolutionary processes are by definition of an interactive and
unpredictable nature and cannot be simulated by an equivalent deterministic
device in a finite number of steps. (Unlike a nondeterministic TM which can
be simulated by a deterministic TM with an exponential slowdown.) Therefore,
one cannot solve non-computable problems “on command” with IFPS’s. Which
problems will be solved and when depends on the evolutionary process. What
one can do is to increase the chances for finding answers by providing a “rich
and inspirative” evolutionary environment.

There remain many other open questions. For instance, we imposed a few
restrictions on the form of evolution of IFPS’s. However, in [12] authors show
that polynomially bounded lineages of IFT’s are computationally equivalent to
logarithmic space-bounded ITM’s with a polynomially bounded advice. Hence
the complexity problems of lineages of IFPS’s are subject of further research.

Similar open problems exist for uniform lineages of IFPS’s with various evo-
lutionary restrictions. We conjecture that NP-complete or PSPACE-complete
problems are solvable in polynomial time by certain uniform lineages of IFPS’s.
An interesting question is whether similar results can be obtained by even sim-
pler membrane computing models, such as the recently introduced P colonies
[7]. Communities of IFPS’s or P colonies can not only reach the computational
power exceeding the power of each of its members [7], but they might also be
useful for modelling complex social behavior of living cells, e.g., of bacteria.

Acknowledgements

This research was supported by the Silesian University Science Foundation, grant
No. 26/2005, and by the Czech Science Foundation, grant No. 201/04/0528.
Authors are obliged to A. Alhazov and J. Wiedermann for comments improving
the paper.

References

1. J.L. Balcazar, J. Diaz, J. Gabarro: Structural Complexity I, Second Edition.
Springer, Berlin, 1995.

2. C.S. Calude, Gh. Păun: Bio-steps beyond Turing. Biosystems, 77 (2004), 175–194.
3. B.J. Copeland, ed.: Minds and Machines. 12, 4 (2002), and 13, 1 (2003).
4. E. Eberbach, P. Wegner: Beyond Turing machines. Bulletin of the EATCS, 81

(2003), 279–304.

78 P. Sośık and O. Vaĺık

5. R. Freund, M. Oswald, L. Staiger: ω-P automata with communication rules.
In Membrane Computing, International Workshop, WMC 2003, Tarragona, July
2003, Selected Papers (C. Martin-Vide, G. Mauri, G. Rozenberg, A. Salomaa, eds.),
LNCS 2933, Springer, Berlin, 2004, 203–217.

6. R.M. Karp, R.J. Lipton: Some connections between nonuniform and uniform com-
plexity classes. In Proc. 12th Annual ACM Symposium on the Theory of Computing
(STOC ’80), 1980, 302–309.

7. J. Kelemen, A. Kelemenova, Gh. Păun, P colonies: In Workshop on Artificial Chem-
istry, ALIFE9, Boston, USA (M. Bedan et al., eds.), 2004, 82–86.

8. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, (2000), 108–143.

9. Gh. Păun: Membrane Computing: An Introduction. Springer, Berlin, 2002.
10. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin,

1997.
11. A.M. Turing: Systems of logic based on the ordinals. Proceedings of the London

Mathematical Society, 45 (1939), 161–228.
12. J. van Leeuwen, J. Wiedermann: Beyond the Turing limit: evolving interactive

systems. In SOFSEM’01: Theory and Practice of Informatics (L. Pacholski, P.
Rùzièka, eds.), LNCS 2234, Springer, Berlin, 2001, 90–109.

13. J. van Leeuwen, J. Wiedermann: The Turing machine paradigm in contempo-
rary computing. In Mathematics Unlimited – 2001 and Beyond (B. Enquist, W.
Schmidt, eds.), Springer-Verlag, Berlin, 2001, 1139–1155.

14. J. Wiedermann, J. van Leeuwen: The emergent computational potential of evolving
artificial living systems. AI Communications, 15 (2002), 205–216.

15. J. Wiedermann: Coupling computational and non-computational processes: mini-
mal artificial life. Pre-proceedings of the Fifth Workshop on Membrane Computing
(WMC5) (G. Mauri, Gh. Păun, C. Zandron, eds.), University of Milan – Bicocca,
2004, 432–445.

Number of Protons/Bi-stable Catalysts
and Membranes in P Systems. Time-Freeness

Artiom Alhazov

Research Group on Mathematical Linguistics,
Rovira i Virgili University,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
artiome.alhazov@estudiants.urv.es

Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,

Str. Academiei 5, Chişinău, MD 2028 Moldova
artiom@math.md

Abstract. Proton pumping P systems are a variant of membrane sys-
tems with both rewriting rules and symport/antiport rules, where a set
of objects called protons is distinguished, every cooperative symport or
antiport rule involves a proton, but no rewriting rule does. Time-freeness
property means the result of all computations does not depend on the
time it takes to execute the rules.

The goal of this article is to improve (showing that two membranes are
sufficient) the known universality results on proton pumping P systems,
establishing at the same time an upper bound on the number of protons,
namely one, or four for time-free systems.

All results mentioned hold for proton pumping P systems with non-
cooperative rewriting and either symport/antiport rules of weight one
(classical variant) or symport rules of weight at most two. As a corol-
lary, we obtain the universality of P systems with one membrane and
one bi-stable catalyst, or the universality of time-free P systems with
one membrane and four bi-stable catalysts. All universality results are
stated as generating RE (except the time-free systems without targets
generate PsRE).

1 Introduction

Membrane computing is a rapidly developing field, launched in 1998 by Gheorghe
Păun; see [14] for a systematic survey and [16] for a comprehensive bibliography.
It studies, among others, the computational power of devices with multisets dis-
tributed over a tree-like membrane structure and rules rewriting and/or moving
objects (elements of these multisets).

In evolution-communication P systems as introduced in [6], there are two
types of rules: simple rewriting rules associated to regions and symport/antiport
rules associated to membranes. Rules of the first type change the objects in
the region where they are, while the latter ones move the objects across the
membrane, thus, separating evolution and communication.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 79–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 A. Alhazov

Proton pumping P systems as introduced in [5] are a restricted variant of
evolution-communication P systems: the set of protons is a subset of objects, no
evolution rule involves a proton, while every cooperative communication rule has
to involve exactly one proton. Thus, a proton is a “catalyst of communication”.
However, since the proton is also moved to another region, this hints its “multi-
stability” (bi-stability if it moves between two regions), allowing the one-proton
results of this paper.

It is worth mentioning that these models, although being formal and abstract,
are motivated by cell biology (e.g., in many bacteria, the only antiports avail-
able are those that can exchange a proton with some chemical objects), see [1]
and [15].

Time-freeness is a property introduced in [9],[7]. Consider a fixed P system Π
and an arbitrary mapping e from the set of all rules to the set of positive integers.
If the result of all halting computations of Π , where the rules are executed in the
number of steps specified by e, is independent on e, then Π is called time-free.

It has been established that EC P systems with 2 membranes are universal
with non-cooperative evolution and either symport/antiport rules of weight 1
([2]) or symport rules of weight at most 2 ([11]); moreover, the constructions can
be made time-free ([4]). For the proton pumping P systems with non-cooperative
evolution and symport/antiport rules of weight 1, three membranes are enough
for universality, while considering only one kind of protons and strong or weak
priority of proton pumping rules, at least Parikh images of ET0L languages can
be generated with two membranes.

In this article we improve the universality result of proton pumping P sys-
tems with symport/antiport rules of weight 1 from three membranes and an
unbounded number of protons to only two membranes and only 4 protons; more-
over, the underlying system is even time-free. We also strengthen the universality
result of time-free evolution-communication P systems with two membranes and
symport rules of weight at most 2 by proving the same result for proton pumping
P systems with 4 protons.

Surprisingly, one can decrease the number of kinds of protons to one by giving
up the time-freeness for the proton pumping P systems with non-cooperative
evolution, symport of weight 1 and either form of minimal cooperation (antiport
of weight 1 or symport of weight 2).

Finally, protons in two-membrane P systems behave like bi-stable catalysts in
one region, so the corresponding corollaries hold for one-membrane P systems
with bi-stable catalysts, improving results from [12] and [7].

2 Definitions and Preliminaries

2.1 Proton Pumping

We will now recall from [5] the definition of proton pumping P systems. The nota-
tion has been changed a little, and the definition has been slightly reformulated
(restricted). First, the multiset describing the initial contents of the environ-
ment is no longer considered, as the environment is initially empty. Second, all

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 81

communicative rules are listed together (for a shorter description, symport and
antiport rules associated to region i are not divided any more into two sets).
Third, we now also require that cooperative symport rules also involve a proton
(in [5], cooperative symport rules were not studied). Fourth, the rules involving
a proton are now restricted to involve exactly one (like in the catalyst case).

Definition 1. A proton pumping P system of degree m ≥ 1, is defined as

Π = (O,P, μ, w1, w2, · · · , wm, R1, · · · , Rm, R
′
1, · · · , R′

m, i0), where:

– O is the alphabet of objects, P ⊆ O is a set of protons;
– μ is a membrane structure with m membranes injectively labeled

by 1, 2, · · · ,m;
– wi are strings which represent multisets over O associated with

regions 1, 2, · · · ,m of μ;
– Ri, 1 ≤ i ≤ m, are finite sets of simple evolution rules over O; Ri is associ-

ated with the region i of μ;
– R′

i, 1 ≤ i ≤ m, are finite sets of symport/antiport rules over O of a restricted
form; R′

i is associated with the membrane i of μ;
– i0 ∈ {0, 1, 2, · · · ,m} is the output region; if i0 = 0, then it is the environment,

otherwise i0 is a label of some membrane of μ.

A simple evolution rule is of the form u → v, where u and v are strings over
O − P (the variant can be extended by allowing to assign the target indications
here, out, inj, to the symbols in v; for evolution–communication P systems
this was first used in [11]). The only symport/antiport rules allowed are of the
following forms: (a) uniport rules: (a, in), (a, out), a ∈ O (notice that in this
article we never use uniport of protons); (b) antiport rules with a proton on one
side: (x, out; p, in), (p, out;x, in), p ∈ P , x ∈ (O − P)+; (c) symport rules with
a proton: (px, out), (px, in), p ∈ P , x ∈ (O − P)+.

The m-tuple of multisets of objects present at any moment in the regions of
Π represents the configuration of the system at that moment (the m-tuple
(w1, · · · , wm) is the initial configuration). A transition between configurations
is governed by the mixed application of the evolution rules and of the sym-
port/antiport rules. All rules are applied in a maximally parallel way (no rules
are applicable to the objects that remain idle), chosen non-deterministically.

The system continues parallel steps until there remain no applicable rules
(evolution rules or symport/antiport rules) in any region of Π . Then the system
halts, and we consider the number of objects in the output region i0 at the
moment when the system halts as the result of the computation of Π . The set
of all natural numbers computed in this way is denoted by N(Π). If instead of
the total number, the multiplicities of objects are considered, then the result is
denoted by Ps(Π). In case of external output, one can also consider the sequence
in which the objects are sent into the environment, denoting the result by L(Π).

A bi-stable catalyst is a pair of symbols c, c′ ∈ O such that all rules where these
symbols appear are of the following forms: ca → cv, ca→ c′v, c′a → cv, c′a → c′v.

82 A. Alhazov

When speaking of a P system with bi-stable catalysts, we will additionally spec-
ify the set Cb of bi-stable catalysts in the description of the P system. We use the
following notations

XProP k
m(α, tar, symi, antij)

to denote the family of languages (X = L), vector sets (X = Ps) or number sets
(X = N) generated by proton pumping P systems with at most m membranes,
k different types of protons (i.e., k is the cardinality of the set P), using symport
rules of weight at most i, antiport rules of weight at most j, and non-cooperative
(α = ncoo) or bi-stable catalytic (α = 2catl) with l bi-stable catalysts evolution
rules with targets. If targets are not allowed, then tar is removed from the
notation (like any other unused feature). If one of the numbers m, k, i, j, l is
unbounded, we write ∗ instead). For P systems without protons, we will replace
ProP k by OP in the notation and exclude the specification of the set P , as well
as the sets of symport/antiport rules if they are not used, from the description
of the P system.

2.2 Time-Freeness

We now recall from [9] the definition of time-free P systems for the case of proton
pumping P systems (for P systems without protons it is done in the same way).

Given a time-mapping e : R1 ∪ · · · ∪Rm ∪R′
1 ∪ · · · ∪R′

m −→ N1 and a proton
pumping P system Π as defined above, it is possible to construct a timed proton
pumping P system Π(e) working in the following way.

We suppose the existence of an external and global clock that ticks at uniform
intervals of time. At each time in the regions of the system we have both rules
(both evolution and transport) in execution and rules not in execution. At each
time all the evolution and transport rules that can be applied (started) in each
region, have to be applied. If a rule r ∈ Ri, R

′
i, 1 ≤ i ≤ m, is applied, then all

objects that can be processed by the rule have to evolve by this rule (a rule is
applied in a maximally parallel manner as standard in the P system area).

As usual, the rules from Ri are applied to objects in region i and the rules
from R′

i govern the communication of objects through membrane i. There is no
difference between evolution rules and communication rules: they are chosen and
applied in the non-deterministic maximally parallel manner. When an evolution
rule or a transport rule r is started at time j, its execution terminates at time
j+e(r). If two rules are started in the same time unit, then possible conflicts for
using the occurrences of symbol-objects are solved assigning the objects in a non-
deterministic way (again, in the way usually defined in the P system area). Notice
that when the execution of a rule r is started, the occurrences of objects used by
this rule are not anymore available for other rules during the entire execution of r.

A proton pumping P system Π is time-free if and only if every system in the
set {Π(e) | e : R −→ N1} (where R = R1 ∪ · · · ∪Rm ∪R′

1 ∪ · · · ∪R′
m) produces

the same result.
As all Π(e) generate the same result, in this case the set of natural num-

bers (vectors, words) generated by a time-free proton pumping P system Π is

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 83

denoted by N(Π) (Ps(Π), L(Π)). For the notation of what is generated by
a family of time-free P systems, we add f to the notation introduced before:
fXProPk

m(α, tar, symi, antij), fXOPk
m(α, tar, symi, antij).

2.3 Register Machines

In what follows, we will use register machines as an important tool for showing
the computational completeness results. Let us recall their definitions from [13].

An n-register machine is a construct M = (n, l0, lh, I) where:

– n is the number of registers;
– I is a set of labeled instructions of the form (l : op(i), l′, l′′) where op(i) is

an operation on register i of M ; symbols l, l′, l′′ belong to the set of labels
associated in a one-to-one manner with instructions of I;

– l0 is the initial label;
– lh is the final label.

The instructions allowed by an n-register machine are:

– l : (A(i), l′, l′′) – add one to the contents of register i and proceed to instruc-
tion l′ or to instruction l′′;

– l : (S(i), l′, l′′) – jump to instruction l′′ if register i is empty; otherwise
subtract one from register i and jump to the instruction labeled by l′ (these
two cases are often called zero-test and decrement);

– lh : halt – finish the computation. This is the unique instruction with label h;
– l : (write(a), l′, l′′) – write symbol a ∈ T to the output tape and proceed to

instruction l′ or to instruction l′′ (these instructions are only used in register
machines with an output tape, denoted by (n, T, l0, lh, I)).

If a register machine M = (n, l0, lh, I), starting from the instruction labeled by
l0 with all registers being empty, halts with values nj in register j, 1 ≤ j ≤ m,
and the contents of registers m + 1, · · · , n being empty, then it generates the
vector (n1, · · · , nk) ∈ Nm. The result of a halting computation of a register
machine with an output tape is a sequence of symbols written on that tape.

It is known that register machines with m + 2 registers can generate all re-
cursively enumerable sets of m-dimensional vectors (we can also require that the
only instructions associated to the output registers are increment instructions).
Moreover, register machines with 2 registers and an output tape can generate
all recursively enumerable languages.

3 Time-Free Results

Theorem 1. fPsProP 4
2 (ncoo, sym1, anti1) = PsRE.

Proof. We only prove the inclusion ⊇. Consider an arbitrary recursively enu-
merable set S of m-dimensional vectors. Then there is a register machine M =
(m+ 2, l0, lh, I) generating S. Let I− = {l | l : (S(i), l′, l′′) ∈ I}.

84 A. Alhazov

We will construct a P system Π simulating M in such a way that the value
of register i ∈ W = {m + 1,m + 2} is represented by the multiplicity of the
object ai in the skin region. The proton Di will be used to decrement the value
of register i, while Ei will be used to check if the register i is empty.

Π = (O,P, [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = {ai | 1 ≤ i ≤ m+ 2} ∪ {lj | l ∈ I−, 1 ≤ j ≤ 4} ∪ {#1,#2} ∪ I ∪ P,

P = {Di, Ei | i ∈W},
w1 = l0Dm+1Dm+2Zm+1Zm+2#1, w2 = λ,

and the sets of rules are the following:
For each instruction l : (A(i), l′, l′′) ∈ I,

l → ail
′, l → ail

′′ ∈ R1.

Moreover, for 1 ≤ i ≤ m we have the rules

(ai, out) ∈ R′
1.

For each instruction l : (S(i), l′, l′′) ∈ I,

(l, in) ∈ R′
2,

(decrement) l → l4 ∈ R2,

(l4, out;Di, in), (Di, out; ai, in), (Di, out; #1, in) ∈ R′
2,

l4 → l′ ∈ R1,

(zero test) l → l1, l2 → l3 ∈ R2,

(Ei, in; l1, out), (Ei, out; ai, in), (Ei, out; l2, in) ∈ R′
2,

(l3, out) ∈ R′
2,

l1 → l2, l2 → #2, l3 → l′′ ∈ R1.

Finally, we also have the rules

#1 → #1 ∈ R2,

#2 → #2 ∈ R1.

The system constructed in that way simulates the corresponding register ma-
chine. The increment instructions are simulated in one step: the instruction
symbol changes to a symbol corresponding to the next instruction and a symbol
corresponding to the register being incremented.

Decrement: l comes to region 2, changes to l4 and returns to region 1, bringing
Di to region 2, and then changes to l′. The “duty” of Di is to decrement register i
by returning to region 1 and removing one copy of ai from region 1. If register i is
empty, thenDi exchanges with #1 and the computation never halts (if decrement
is possible, Di can still exchange with #1, but this case is not productive).

Zero-test: after l has come to region 2, it changes to l1 and returns to region
1, bringing Ei to region 2, and then changes to l2. The “duty” of Ei is to check

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 85

l
���
�

l4

Di
�
����
�
�� �

l′

�
���ai
���

�
���

#1

�
���
�

l
���
�

l1

Ei
�
����
�
�� �

l2
�#2

�
�
���

ai

���
������	

�
�
��
�

l3

� �

l′′

Fig. 1. Using (ncoo, sym1, anti1) decrement: left, zero-test: right

l
���
�

l4
Di

�

� �

l′

ai
�
�

�
�
�

��
��
��

#1
��
��
���

�
l
���
�

l1
Ei

�

� �

l2
�#2

�ai
�
�

�
�
�

�
�
�
��

�
�
�
�
�

�

l3�
�
��� �

l′′

Fig. 2. Using (ncoo, sym2) decrement: left, zero-test: right

that register i is empty by waiting for l2. If register i is not empty, then Ei will
immediately exchange with ai and then l2 will change to #2, so the computation
will never halt (if Ei waits for l2, l2 can still change to #2, but this case is not
productive).

The decrement and zero-test are illustrated in Figure 1. From these figures it
is clear that the system is time-free: most of the correct simulation is sequential,
and we only remark one point – the time it takes to exchange Di and ai is not
relevant because after the start of the rule ai is already unavailable in region 1,
and, moreover, if Di still has not returned to region 1 for the next decrement
instruction, the system will simply wait for it. �

Theorem 2. fPsProP 4
2 (ncoo, sym2) = PsRE.

Proof. This is a “dual” theorem: the simulation of a register machine is done in
exactly the same way, except that the protons that were in region 1 are now in
region 2, and vice-versa. The system we consider is:

Π = (O,P, [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = {ai | 1 ≤ i ≤ m+ 2} ∪ {lj | l ∈ I−, 1 ≤ j ≤ 4} ∪ {#1,#2} ∪ I ∪ P,

P = {Di, Ei | i ∈W},
w1 = l0#1, w2 = Dm+1Dm+2Zm+1Zm+2,

R1 = {l → ail
′, l → ail

′′ | l : (A(i), l′, l′′) ∈ I} ∪ {#2 → #2}
∪ {l4 → l′, l1 → l2, l2 → #2, l3 → l′′ | l : (S(i), l′, l′′) ∈ I},

R2 = {l → l4, l → l1, l2 → l3 | l : (S(i), l′, l′′) ∈ I} ∪ {#1 → #1},

86 A. Alhazov

R′
1 = {(ai, out) | 1 ≤ i ≤ m},

R′
2 = {(l, in), (l4Di, out), (aiDi, in), (#1Di, in),

(l1Ei, out), (aiEi, in), (l2Ei, in), (l3, out) | l : (S(i), l′, l′′) ∈ I}.

The system constructed above simulates the corresponding register machine.
The increment instructions are simulated in one step: the instruction symbol
changes to a symbol corresponding to the next instruction and a symbol corre-
sponding to the register being incremented.

Decrement: l comes to region 2, changes to l4 and returns to region 1 with
Di, and then changes to l′. The “duty” of Di is to decrement register i by
returning to region 2 and removing one copy of ai from region 1. If regis-
ter i is empty, then Di exchanges with #1 and the computation never halts
(if decrement is possible, Di can still exchange with #1, but this case is not
productive).

Zero-test: after l has come to region 2, it changes to l1 and returns to region
1 with Ei, and then changes to l2. The “duty” of Ei is to check that register
i is empty by waiting for l2. If register i is not empty, then Ei will immedi-
ately exchange with ai and then l2 will change to #2, so the computation will
never halt (if Ei waits for l2, l2 can still change to #2, but this case is not
productive).

As in the previous proof, the time-freeness of the system immediately becomes
clear from the illustrations in Figure 2. �

One can consider simulating a register machine with an output tape generating
an arbitrary recursively enumerable language L: simulating an instruction (l :
write(a), l′, l′′) is done exactly as simulating (l : A(i), l′, l′′) by replacing ai with
a. Then the output symbols are generated in the right order; however, generating
languages by these constructions is not time-free because the different execution
times of the rules sending output symbols to the environment might lead to
changing the order of symbols in the output word.

Nevertheless, if target indications are allowed, then, replacing rules l → al′ ∈
R1, l → al′′ ∈ R1, (a, out) ∈ R′

1 for a ∈ T by l → aoutl
′ ∈ R1, l → aoutl

′′ ∈ R1,
one obtains time-free P systems generating RE.

Corollary 1. fLProP 4
2 (ncoo, tar, sym1, anti1) = RE,

fLProP 4
2 (ncoo, tar, sym2) = RE.

4 One Proton

We will now show that even one proton is enough for computational complete-
ness, again with only two membranes.

Theorem 3. LProP 1
2 (ncoo, sym1, anti1) = RE.

Proof. We only prove the inclusion ⊇. Consider an arbitrary recursively enu-
merable language L ⊆ T ∗. Then there is a register machine M = (2, T, l0, lh, I)
generating L.

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 87

We will construct a P system Π simulating M in such a way that the value
of register i ∈ W = {1, 2} is represented by the multiplicity of the object ai

in region i. The proton p will be used to decrement/zero test the value of the
working registers.

Π = (O,P, [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = T ∪ {ai, a
′
i | 1 ≤ i ≤ 2} ∪ {lj | l ∈ I, 1 ≤ j ≤ 9} ∪ I ∪ P

∪ {#, I2,4, I1,3, I0,2} ∪ {Ij | 0 ≤ j ≤ 2} ∪ {Oj | 0 ≤ j ≤ 5},
P = {p}, w1 = pI1, w2 = O0l0,

and the sets of rules are the following:
Rules related to special objects which “wait” for a certain time and then must

exchange with the proton (or else the trap symbol will be introduced):

I2,4 → I1,3, I1,3 → I0,2 ∈ R2,

(I0,2, out) ∈ R′
2,

I0,2 → I0I2 ∈ R1,

Ij+1 → Ij ∈ R1, 0 ≤ j ≤ 1,
(p, out; I0, in) ∈ R′

2,

O0 → λ, I0 → #, # → # ∈ R1,

Oj+1 → Oj ∈ R2, 0 ≤ j ≤ 4,
(O0, out; p, in) ∈ R′

2,

I0 → λ, O0 → #, # → # ∈ R2.

Rules of interaction of the proton and register symbols:

(p, out; a1, in), (a2, out; p, in) ∈ R′
2.

For each instruction l : (A(i), l′, l′′) ∈ I,

l → a′il1O3O1I0,2 ∈ R2,

lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,
l3 → l′, l3 → l′′ ∈ R2.

The output instructions l : (write(a), l′, l′′) ∈ I are simulated exactly as the
addition instructions above, replacing a′i by a.

The register symbols ai in region i and the output symbols a in the environ-
ment are produced by the rules

a′2 → a2 ∈ R2,

(a′1, out), (a, out) ∈ R′
2, a ∈ T,

a′1 → a1 ∈ R1,

(a, out) ∈ R′
1, a ∈ T.

88 A. Alhazov

For each instruction l : (S(1), l′, l′′) ∈ I,

(decrement) l → l1O1O3O5I2,4 ∈ R2,

lj → lj+1 ∈ R2, 1 ≤ j ≤ 4,
l5 → l′ ∈ R2,

(zero test) l → l6O1O4I1,3 ∈ R2,

lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,
l9 → l′′ ∈ R2.

For each instruction l : (S(2), l′, l′′) ∈ I,

(decrement) l → l1O3I0,2 ∈ R2,

lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,
l3 → l′ ∈ R2,

(zero test) l → l6O2O4I1,3 ∈ R2,

lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,
l9 → l′′ ∈ R2.

For terminating the computation we have

lh → λ ∈ R2.

The simulation is illustrated by the tables below. Notice that every time an
antiport rule is possible it must be executed, otherwise one of the objects O0, I0
will change to #, leading to an infinite computation.

The intuitive idea behind this construction is to create a “predefined scenario”
for the proton; if the system tries to decrement an empty register or the system
zero-tests a non-empty register, then the proton ends up in a “wrong” region and
cannot follow the “scenario” anymore. We now list the scenarios for the proton,
for different instructions:

– Decrement a1: p exchanges with O0, then with I0, then with O0, then with
a1, then with O0, and finally with I0.

– Zero-test a1: p exchanges with O0, then with I0, then with O0, then waits
one step because there is no a1, and finally with I0.

– Decrement a2: p exchanges withO0, then with I0, then with a2, and finally I0.
– Zero-test a2: p exchanges with O0, then with I0, then waits one step because

there is no a2, then with O0, and finally I0.
– Increment any register or output a symbol: p exchanges with O0, then with
I0, then with O0, and finally I0.

Notice that the first two steps of the simulation are always the same. This is
needed to “keep the proton busy” while the object associated to the instruction
creates the rest of the scenario. The scenario is created by producing objects O0
in region 2 and objects I0 in region 1, with corresponding delays.

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 89

When the output register is incremented, the corresponding symbol is sent to
the environment, contributing to the result. At the end of the correct simulation,
object lh is erased, registers 1 and 2 are empty, so no objects are present in region
2, while region 1 only contains p.

Instruction Decrement a1 Zero-test a1

Step Region 1 Region 2 Region 1 Region 2
1 a1I1p lO0 I1p lO0
2 a1I0O0 l1I2,4O5O3O1p I0O0 l6I1,3O4O1p
3 a1p l2I1,3O4O2O0I0 p l7I0,2O3O0I0
4 a1O0 l3I0,2O3O1p I0,2O0 l8O2p
5 I0,2p a1l4O2O0 I2I0 l9O1p
6 I2I0O0 a1l5O1p I1p l′′O0I0
7 I1p a1l

′O0I0 Next instr. Next instr.

Instruction Decrement a2 Zero-test a2

Step Region 1 Region 2 Region 1 Region 2
1 I1p a2lO0 I1p lO0
2 I0O0 a2l1I0,2O3p I0O0 l6I1,3O4O2p
3 I0,2p a2l2O2I0 p l7I0,2O3O1I0
4 a2I2I0 l3O1p I0,2p l8O2O0
5 a2I1p l′O0I0 I2I0O0 l9O1p
6 Next instr. Next instr. I1p l′′O0I0

Instruction Increment ai/write a a i=1 i=2 Terminate
Region 1 2 0 1 1 2 1 2
1 I1p lO0 pI1 lhO0
2 I0O0 l1(a′i or a)I0,2O3O1p O0I0 p
3 I0,2p l2O2O0I0 a a′m+1 am+2 p I0
4 I2I0O0 l3O1p a am+1 am+2 p
5 I1p (l′ or l′′)O0I0 am+1 am+2 Halt Halt

Theorem 4. LProP 1
2 (ncoo, sym2) = RE.

Proof. This is a “dual” theorem: the simulation of a register machine is done
in exactly the same way, except that the proton that was in region 1 is now in
region 2, and vice-versa, and except that the halting is slightly modified such
that the proton stays in region 1.

Let I+ = {l | l : (A(i), l′, l′′) ∈ I} and Iout = {l | l : (write(a), l′, l′′) ∈ I}. We
consider the system:

Π = (O,P, [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = T ∪ {ai, a
′
i | 1 ≤ i ≤ 2} ∪ {lj | l ∈ I, 1 ≤ j ≤ 9} ∪ I ∪ P

∪ {#, I2,4, I1,3, I0,2} ∪ {Ij | 0 ≤ j ≤ 2} ∪ {Oj | 0 ≤ j ≤ 5},
P = {p}, w1 = I1, w2 = pO0l0,

90 A. Alhazov

and the sets of rules are the following:

R1 = {I0,2 → I0I2, O0 → λ, I0 → #,# → #}
∪ {Ij+1 → Ij ∈ R1 | 0 ≤ j ≤ 1}
∪ {a′1 → a1},

R2 = {l → a′il1O3O1I0,2, l3 → l′, l3 → l′′ | l : (A(i), l′, l′′) ∈ I}
∪ {l → al1O3O1I0,2, l3 → l′, l3 → l′′ | l : (write(a), l′, l′′) ∈ I}
∪ {lj → lj+1 | 1 ≤ j ≤ 2, l ∈ I+ ∪ Iout}
∪ {l → l1O1O3O5I2,4, l5 → l′, l → l6O1O4I1,3, l9 → l′′

| l : (S(1), l′, l′′) ∈ I}
∪ {l → l1O3I0,2, l3 → l′, l → l6O2O4I1,3, l9 → l′′

| l : (S(2), l′, l′′) ∈ I}
∪ {lj → lj+1 | 1 ≤ j ≤ 4, l : (S(1), l′, l′′) ∈ I}
∪ {lj → lj+1 | 1 ≤ j ≤ 2, l : (S(2), l′, l′′) ∈ I}
∪ {lj → lj+1 | 6 ≤ j ≤ 8, l : (S(i), l′, l′′) ∈ I}
∪ {I2,4 → I1,3, I1,3 → I0,2, I0 → λ,O0 → #,# → #}
∪ {a′2 → a2, lh → O1} ∪ {Oj+1 → Oj | 0 ≤ j ≤ 4},

R′
1 = {(a, out) | a ∈ T },

R′
2 = {(I0,2, out), (pI0, in), (pO0, out), (pam+1, in), (pam+2, out)}
∪ {(a′1, out)} ∪ {(a, out) | a ∈ T }.

The simulation is illustrated by the tables below. Notice that every time an
antiport rule is possible it must be executed, otherwise one of the objects O0, I0
will change to #, leading to an infinite computation.

Like in the previous proof, to arrive at a halting configuration, the proton must
follow the “predefined scenario” created by instruction objects. If the system tries
to decrement an empty register or the system zero-tests a non-empty register,
then the proton ends up in a “wrong” region and cannot follow the “scenario”.
We now list the proton’s scenarios.

– Decrement am+1: p accompanies O0, then I0, then O0, then am+1, then O0,
and finally I0.

– Zero-test am+1: p accompanies O0, then I0, then O0, then waits one step
because there is no am+1, and finally goes with I0.

– Decrement am+2: p moves O0, then I0, then am+2, and finally I0.
– Zero-test am+2: p accompanies O0, then I0, then waits one step because

there is no am+2, then goes with O0, and finally with I0.
– Increment or output: p accompanies O0, then I0, then O0, and finally I0.
– Halt: p accompanies O0, then I0, and finally O0.

Again, the first two steps are the same, to “keep the proton busy” while the
object associated to the instruction creates the rest of the scenario. The scenario
is created by producing objects O0 in region 2 and objects I0 in region 1, with
corresponding delays.

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 91

When the output register is incremented, the corresponding symbol is sent to
the environment, contributing to the result. At the end of the correct simulation,
object lh changes to O0 in 3 steps, moving p to region 1. Since registersm+ 1 and
m+2 are empty, no objects are present in region 2, while region 1 only contains p.

Instruction Decrement a1 Zero-test a1

Step Region 1 Region 2 Region 1 Region 2
1 a1I1 lO0p I1 lO0p
2 a1I0O0p l1I2,4O5O3O1 I0O0p l6I1,3O4O1
3 a1 l2I1,3O4O2O0I0p l7I0,2O3O0I0p
4 a1O0p l3I0,2O3O1 I0,2O0p l8O2
5 I0,2 a1l4O2O0p I2I0p l9O1
6 I2I0O0p a1l5O1 I1 l′′O0I0p
7 I1 a1l

′O0I0p Next instr. Next instr.

Instruction Decrement a2 Zero-test a2

Step Region 1 Region 2 Region 1 Region 2
1 I1 a2lO0p I1 lO0p
2 I0O0p a2l1I0,2O3 I0O0p l6I1,3O4O2
3 I0,2 a2l2O2I0p l7I0,2O3O1I0p
4 a2I2I0p l3O1 I0,2 l8O2O0p
5 a2I1 l′O0I0p I2I0O0p l9O1
6 Next instr. Next instr. I1 l′′O0I0p

Instruction Increment ai/write a a i=1 i=2 Terminate
Region 1 2 0 1 1 2 1 2
1 I1 lO0p I1 lhO0p
2 I0O0p l1(a′i or a)I0,2O3O1 O0I0p O1
3 I0,2 l2O2O0I0p a a′1 a2 I0O0p
4 I2I0O0p l3O1 a a1 a2 O0p
5 I1 l′/l′′ O0I0p a1 a2 p

Consider either of the theorems above. Remove from the construction all rules
(a, out), a ∈ T . The output of the system is now internal: when it halts, one can
consider objects a ∈ T in the elementary membrane as a result (no other objects
will be there). Let the superscript int stand for systems with internal output and
let subscript ne mean that no rule uses the environment and the skin membrane.

Corollary 2. PsProP 1,int
2,ne (ncoo, sym1, anti1) = PsRE,

PsProP 1,int
2,ne (ncoo, sym2) = PsRE.

5 Bi-stable Catalysts

An interesting observation is that, interpreting the same object in different re-
gions of the system as different objects in the same region (encoding regions in

92 A. Alhazov

objects), one can easily see that the proton becomes a bi-stable catalyst. Let us
explain this more formally.

Given a proton pumping P system with two membranesΠ = (O,P , [1 [2]2]1,
w1, w2, R1, R2, R

′
1, R

′
2) such that the communication rules are minimally cooper-

ative (either symport rules of weight at most two and antiport rules of weight 1)
and the only rules associated to the skin membrane are the rules that output
the terminal symbols, one can construct a P system with bi-stable catalysts in
the following way:

Π ′ = (O′, Cb, [1]1, w
′
1, R

′) where
O′ = {a, h(a) | a ∈ O} ∪ {bp | {p, h(p)} ∈ Cb},
Cb = {{p, h(p)} | p ∈ P},
w′

1 = hb(w1h(w2)),
R′ = R1 ∪ {h(u) → h(v) | (u → v) ∈ R2} ∪R′′,
R′′ = {u → uout | (u, out) ∈ R′

1} ∪ {h(u) → u | (u, out) ∈ R′
2}

∪ {u → h(u) | (u, in) ∈ R′
2} ∪ {h(u)v → h(v)u | (u, out; v, in) ∈ R′

2}
∪ {h(p)bp → pbp | (p, out) | R′

2, p ∈ P}
∪ {pbp → h(p)bp | (p, in) | R′

2, p ∈ P},
where h : O → {a′ | a ∈ O} and hb : O → O∗ are morphisms defined by
h(a) = a′ for every a ∈ O, h(a) = a for a ∈ O − {p, p′ | p ∈ P}, h(p) = pbp for
p ∈ P , and h(p′) = p′bp; h is the priming morphism for objects of region 2, and
hb is the morphism adding objects bp to objects p or p′.

It is easy too see that the behavior of Π ′ is exactly the same as that of Π :
the objects in region 1 of Π are also in Π ′, while the objects in region 2 of Π
are renamed (i.e., primed) and also placed in region 1 of Π , and the rules are
changed accordingly. The role of extra objects bp (one copy for every copy of
bi-catalytic symbols in w1 and w2) is to transform all non-cooperative proton
rules in cooperative bi-stable catalytic rules (because rules p → p′ or p′ → p,
{p, p′} ∈ Cb, are forbidden by the definition of P system with bi-stable catalysts).

Clearly, non-cooperative rules (except the uniport of protons) remain non-
cooperative, while other rules are changed as follows:

In Π (pa, out) (pa, in) (p, out; a, in) (a, out; p, in)
In Π ′ p′a′ → pa pa → p′a′ p′a → pa′ pa′ → p′a

In Π (p, out) (p, in)
In Π ′ p′bp → pbp pbp → p′bp

We can now claim that during this transformation the proton pumping com-
putational completeness constructions become the computational completeness
constructions of P systems with (the same number as protons in the original
construction) bi-stable catalysts.

Example 1. Transformed time-free P system from Corollary 1 to Theorem 2
(extra objects are not needed: the construction does not have uniport rules
of protons).

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 93

Π = (O,Cb, [1]1, w1, R1), where
O = T ∪ {ai, a

′
i | 1 ≤ i ≤ 2} ∪ {lj, l′j | l ∈ I−, 1 ≤ j ≤ 4}

∪ {#1,#2,#′
1,#

′
2} ∪ {l, l′ | l ∈ I} ∪ P,

Cb = {{Di, D
′
i}, {Ei, E

′
i} | 1 ≤ i ≤ 2},

w1 = l0#1D
′
m+1D

′
m+2Z

′
m+1Z

′
m+2,

R1 = {l → aoutl
(1), l → aoutl

(2) | l : (write(a), l(1), l(2)) ∈ I}
∪ {l → ail

(1), l → ail
(2) | l : (A(i), l(1), l(2)) ∈ I} ∪ {#2 → #2}

∪ {l4 → l(1), l1 → l2, l2 → #2, l3 → l(2) | l : (S(i), l(1), l(2)) ∈ I},
∪ {l′ → l′4, l

′ → l′1, l
′
2 → l′3 | l : (S(i), l(1), l(2)) ∈ I} ∪ {#′

1 → #′
1},

∪ {l → l′, l′4D
′
i → l4Di, aiDi → a′iD

′
i,#

′
1D

′
i → #1Di, l

′
1E

′
i → l1Ei,

aiEi → a′iE
′
i, l2Ei → l′2E

′
i, l

′
3 → l3 | l : (S(i), l(1), l(2)) ∈ I}.

Thus we obtain a (clearly, optimal) computational completeness result for sys-
tems with one bi-stable catalyst: LOP1(2cat1, tar) = RE, improving NOP5
(cat2, 2cat1, tar) = NRE from [12]. Another new result (see the example above) is
that time-free systems with four bi-stable catalysts are computationally complete:
fLOP1(2cat4, tar) = RE (improving fPsOP1(2cat∗, tar) = PsRE from [7]).

6 Concluding Remarks

We have studied proton pumping P systems, a variant of P systems which is both
biologically motivated and mathematically elegant. The obtained results are then
transferred to P systems with bi-stable catalysts. Since every object only carries
a finite amount of information, the cooperation of objects (i.e., the exchange
of information) is crucial to obtain any non-trivial computational device. Here,
the cooperation is reduced to the minimum: objects can only cooperate directly
with protons, by moving together to another region, or with bi-stable catalysts,
by changing their state.

Nevertheless, this is enough to reach computational completeness, even with
low parameters like rewriting objects in two regions and communicating them
across one membrane using just one proton, or rewriting objects in one region
using just one bi-stable catalyst. The latter result nicely correlates with the com-
putational completeness of P systems with two catalysts, [10]. The same systems
are computationally complete in a time-free way with four protons/bi-stable cat-
alysts instead of one.

Yet another point worth mentioning is that the constructions in the proofs
have a low number of cooperative rules: four for both one-proton constructions
and |I+|+ 2|I−|+ 6 (where I+ is the number of ADD instructions and I− is the
number of SUB instructions in the simulated register machine) for both time-
free constructions (exactly the same results can be claimed for P system with
bi-stable catalysts).

The one-proton results obtained here are optimal for P systems with external
output in terms of number of membranes and protons, assuming that the skin

94 A. Alhazov

membrane is only used to output the result: with only one membrane (i.e.,
output membrane) or zero protons the behavior of the system is non-cooperative.
However, some challenging open problems remain:

– Is rewriting in both regions necessary for completeness (most of the construc-
tions in evolution–communication and proton pumping P systems heavily
rely on rewriting in all regions)?

– What is the generative power of proton pumping P systems with one mem-
brane and internal output?

– What about restricted proton pumping P systems, where the only uniport
rules allowed are uniport rules of protons (i.e., protons appear in no evolution
rules but in all communication rules)?

– Are four protons (or bi-stable catalysts) necessary for time-free computa-
tional completeness?

Acknowledgements

The author is thankful to Francesco Bernardini for suggesting to use the register
machines to show that four protons are enough, and to Rudolf Freund for the
useful discussions of the results on catalytic P systems. The paper was written
during the author’s visit of the Vienna University of Technology. This article is
a final version of [3].

The author is supported by the project TIC2002-04220-C03-02 of the Research
Group on Mathematical Linguistics, Tarragona, and acknowledges the Moldovan
Research and Development Association (MRDA) and the U.S. Civilian Research
and Development Foundation (CRDF), Award No. MM2-3034 for providing a
challenging and fruitful framework for cooperation.

References

1. B. Alberts et al.: Essential Cell Biology, An Introduction to the Molecular Biology
of the Cell. Garland Publ, New York, London, 1998.

2. A. Alhazov: Minimizing evolution-communication P systems and automata. In: [8],
23–31, and New Generation Computing, 22 (2004), 299–310.

3. A. Alhazov: Number of protons/bi-stable catalysts and membranes in P systems.
Time-freeness. In Preproceedings of the Workshop on Membrane Computing (R.
Freund, G. Lojka, M. Oswald, Gh. Păun, eds.), Vienna Institute of Technology,
2005, 102–122.

4. A. Alhazov, M. Cavaliere: Evolution-communication P systems: Time-freeness. In
Proceedings of the Third Brainstorming Week on Membrane Computing (M.A.
Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, eds.),
Technical Report 01/2005, Sevilla University, 2005, 11–18.

5. A. Alhazov, M. Cavaliere: Proton pumping P systems. In Preproceedings of the
Workshop on Membrane Computing (A. Alhazov, C. Mart́ın-Vide, Gh. Păun, Eds.),
Technical Report 28/03, Rovira i Virgili University, Tarragona, 2003, 1–16, and
in Membrane Computing, International Workshop, WMC 2003, Tarragona, 2003,
Revised Papers (C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa,
Eds.), LNCS 2933, Springer, Berlin, 2004, 1–18.

Number of Protons/Bi-stable Catalysts and Membranes in P Systems 95

6. M. Cavaliere: Evolution-communication P systems. In Membrane Computing. In-
ternational Workshop, WMC-CdeA 2002, Curtea de Argeş (Gh. Păun, G. Rozen-
berg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer, Berlin, 2003, 134–145.

7. M. Cavaliere, V. Deufemia: Further results on time-free P systems. In Proceedings of
the ESF PESC Exploratory Workshop on Cellular Computing (Complexity Aspects)
(M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.), Fénix Editora,
Sevilla, 2005, 95–116.

8. M. Cavaliere, C. Mart́ın-Vide, Gh. Păun, eds.: Brainstorming Week on Membrane
Computing. Technical Report 26/03, Rovira i Virgili University, Tarragona, 2003.

9. M. Cavaliere, D. Sburlan: Time-independent P systems. In Membrane Computing,
International Workshop WMC5, Milano, Italy, 2004, Selected Papers (G. Mauri,
Gh. Paun, M.J. Peréz-Jiménez, G. Rozenberg, A. Salomaa, eds.), LNCS 3365,
Springer, Berlin, 2005.

10. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science, 330
(2005), 251–266.

11. S.N. Krishna, A. Păun: Some universality results on evolution-communication P
systems. In [8], 207–215, and New Generation Computing, 22 (2004), 377–394.

12. S.N. Krishna, A. Păun: Three universality results on P systems. In [8], 198–206.
13. M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New

Jersey, 1967.
14. Gh. Păun: Computing with Membranes: An Introduction. Springer, Berlin, 2002.
15. M.H. Saier, jr.: A functional-phylogenetic classification system for transmembrane

solute transporters. Microbiology and Molecular Biology Reviews, 2000, 354–411.
16. The P systems Web Page: http://psystems.disco.unimib.it

Symbol/Membrane Complexity of P Systems
with Symport/Antiport Rules

Artiom Alhazov1,2, Rudolf Freund3, and Marion Oswald3

1 Research Group on Mathematical Linguistics,
Rovira i Virgili University,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
artiome.alhazov@estudiants.urv.es

2 Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,

Str. Academiei 5, Chişinău, MD 2028, Moldova
artiom@math.md

3 Faculty of Informatics, Vienna University of Technology,
Favoritenstr. 9–11, A–1040 Vienna, Austria

{rudi, marion}@emcc.at

Abstract. We consider P systems with symport/antiport rules and
small numbers of symbols and membranes and present several results
for P systems with symport/antiport rules simulating register machines
with the number of registers depending on the number s of symbols and
the number m of membranes. For instance, any recursively enumerable
set of natural numbers can be generated (accepted) by systems with s ≥ 2
symbols and m ≥ 1 membranes such that m+s ≥ 6. In particular, the re-
sult of the original paper [17] proving universality for three symbols and
four membranes is improved (e.g., three symbols and three membranes
are sufficient). The general results that P systems with symport/antiport
rules with s symbols and m membranes are able to simulate register ma-
chines with max {m (s − 2) , (m − 1) (s − 1)} registers also allows us to
give upper bounds for the numbers s and m needed to generate/accept
any recursively enumerable set of k-dimensional vectors of non-negative
integers or to compute any partial recursive function f : Nα → Nβ.
Finally, we also study the computational power of P systems with sym-
port/antiport rules and only one symbol: with one membrane, we can
exactly generate the family of finite sets of non-negative integers; with
one symbol and two membranes, we can generate at least all semilin-
ear sets. The most interesting open question is whether P systems with
symport/antiport rules and only one symbol can gain computational
completeness (even with an arbitrary number of membranes) as it was
shown for tissue P systems in [1].

1 Introduction

In the area of membrane computing there are two main classes of systems: P sys-
tems with a hierarchical (tree-like) structure as already introduced in the original

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 96–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 97

paper of Gheorghe Păun (see [15]) and tissue P systems with cells arranged in an
arbitrary graph structure (see [12], [9]). We here consider “classical” P systems
using symport/antiport rules for the communication through membranes (these
communication rules first were investigated in [14]).

It is well known that equipped with the maximally parallel derivation mode P
systems/tissuePsystemswithonlyonemembrane/onecell alreadyreachuniversal
computationalpower,evenwithantiportrulesofweighttwo(e.g., see [4]and[7]);yet
on the other hand, in these P systems the number of symbols remains unbounded.

Considering the generation of recursively enumerable sets of natural numbers
we may also ask the question how many symbols we need for obtaining computa-
tional completeness in a small number of membranes. In [17] the quite surprising
result was proved that three symbols are enough in the case of P systems with
symport/antiport rules. The specific type of maximally parallel application of
at most one rule in each connection (link) between two cells or one cell and the
environment, respectively, in tissue P systems allowed for an even more surpris-
ing result proved in [10]: The minimal number of one symbol is already sufficient
to obtain computational completeness, e.g., it was shown that any recursively
enumerable set of natural numbers can be generated by a tissue P system with at
most seven cells using symport/antiport rules of only one symbol. The question
remained open whether such a result for the minimal number of symbols can
also be obtained for “classical” P systems with symport/antiport rules.

The study of the computational power of tissue P systems depending on the
number of cells and symbols was continued in [1]; many classes of these tissue P
systems characterize the class of recursively enumerable sets of natural numbers,
and some of them were shown to characterize or at least to include the families
of finite and regular sets of natural numbers, respectively.

In this paper we continue the direction of [2] and consider “classical” P sys-
tems with symport/antiport rules simulating register machines with the number
of registers depending on the number s of symbols and the number m of mem-
branes. After some definitions in Sections 2 and 3, in Subsection 3.1, we show
that P systems with one symbol and one membrane can exactly generate the
family of finite sets of non-negative integers. In Subsections 3.2 and 3.3, some
general results for the simulation of register machines by P systems with sym-
port/antiport rules with s symbols and m membranes that allow us to give up-
per bounds for the numbers s and m needed to generate/accept any recursively
enumerable set of vectors of non-negative integers or to compute any partial
recursive function are elaborated: We show that any recursively enumerable set
of natural numbers can be generated (accepted) by systems with s ≥ 2 symbols
and m ≥ 1 membranes such that m + s ≥ 6. In particular, the result of the
original paper [17] proving universality for three symbols and four membranes
is improved (i.e., three symbols and three membranes or two symbols and four
membranes are shown to be sufficient). Finally, in Subsection 3.4 we show that
P systems with symport/antiport rules with one symbol and two membranes
can generate at least all semilinear (i.e., regular) sets of natural numbers. A
summary of the obtained results and some open questions conclude the paper.

98 A. Alhazov, R. Freund, and M. Oswald

2 Preliminaries

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [3] and [19]. We just list
a few notions and notations: N denotes the set of non-negative integers (natural
numbers). V ∗ is the free monoid generated by the alphabet V under the operation
of concatenation and the empty string, denoted by λ, as unit element; by RE
(RE (k)) we denote the family of recursively enumerable languages (over a k-
letter alphabet). By ΨT (L) we denote the Parikh image of the language L ⊆ T ∗,
and by PsFL we denote the set of Parikh images of languages from a given family
FL. PsRE (k) corresponds with the family of recursively enumerable sets of k-
dimensional vectors of non-negative integers; for PsRE (1) we also write NRE.
NlREG denotes the family of regular sets of numbers not containing any number
smaller than l; if l = 0 we simply write NREG. NFIN denotes the family of
finite sets of natural numbers.

2.1 Register Machines

The proofs of the main results established in this paper are based on the simu-
lation of register machines; we refer to [13] for original definitions, and to [4] for
definitions like those we use in this paper:

An n-register machine is a construct M = (n,R, l0, lh) , where n is the number
of registers,R is a finite set of instructions injectively labelled with elements from
a given set lab (M), l0 is the initial/start label, and lh is the final label.

The instructions are of the following forms:

– l1 : (A (r) , l2, l3),
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) l2 and l3. (We say that we have an ADD instruction.)

– l1 : (S (r) , l2, l3),
If register r is not empty, then subtract 1 from its contents and go to in-
struction l2, otherwise proceed to instruction l3. (We say that we have a
SUB instruction.)

– lh : halt,
Stop the machine. The final label lh is only assigned to this instruction.

(Deterministic) Register machines can be used to compute any partial recur-
sive function f : Nα → Nβ ; starting with (n1, . . . , nα) ∈ Nα in registers 1 to
α, M has computed f (n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label h
with registers 1 to β containing r1 to rβ . If the final label cannot be reached,
f (n1, . . . , nα) remains undefined.

A deterministic register machine can also analyze an input (n1, . . . , nα) ∈ Nα

in registers 1 to α, which is recognized if the register machine finally stops by
the halt instruction with all its registers being empty. If the machine does not
halt, the analysis was not successful.

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 99

A (non-deterministic) register machine M is said to generate a vector (s1, . . . ,
sk) of natural numbers if, starting with the instruction with label l0 and all
registers containing the number 0, the machine stops (it reaches the instruction
lh : halt) with the first k registers containing the numbers s1, . . . , sk (and all
other registers being empty).

Without loss of generality, in the succeeding proofs we will assume that in each
ADD instruction l1 : (A (r) , l2, l3) and in each SUB instruction l1 : (S (r) , l2, l3)
the labels l1, l2, l3 are mutually distinct (for a short proof see [9]).

The registermachines are knowntobe computationally complete, equal inpower
to (non-deterministic)Turingmachines: they generate exactly the sets of vectors of
naturalnumberswhichcanbegeneratedbyTuringmachines, i.e., the familyPsRE.

The results proved in [5] (based on the results established in [13]) as well as
in [6] and [8] immediately lead to the following results:

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β} + 2)-register machine M computing f in such a way
that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f (n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label h with registers 1 to β
containing r1 to rβ , and all other registers being empty; if the final label cannot
be reached, f (n1, . . . , nα) remains undefined.

In particular we know that k + 2-register machines generate/accept any recur-
sively enumerable set of k-dimensional vectors of non-negative integers (see [4],
[13]):

Proposition 2. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to β+2 being
empty, M non-deterministically computes and halts with ni in registers i, 1 ≤
i ≤ β, and registers β+ 1 and β + 2 being empty if and only if (n1, . . . , nβ) ∈ L.

Proposition 3. For any recursively enumerable set L ⊆ Nα of vectors of non-
negative integers there exists a deterministic (α+ 2)-register machine M accept-
ing L in such a way that M halts with all registers being empty if and only if M
starts with some (n1, . . . , nα) ∈ L in registers 1 to α and the registers α + 1 to
α+ 2 being empty.

From the main result in [13] that the actions of a Turing machine can be simu-
lated by a 2-register machine (using a prime number encoding of the configura-
tion of the Turing machine) we also know that the halting problem is undecidable
for 2-register machines.

Moreover, it is well-known that 1-register machines can generate/accept
NREG.

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [16]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it.

100 A. Alhazov, R. Freund, and M. Oswald

A P system (of degree m ≥ 1) with symport/antiport rules (in the following
we shall only speak of a P system) is a construct

Π = (O,μ,w1, · · · , wm, R1, · · · , Rm) ,

where:

– O is the alphabet of objects,
– μ is the membrane structure (it is assumed that we have m membranes,

labelled with 1, 2, . . . ,m, the skin membrane usually being labelled with 1),
– wi, 1 ≤ i ≤ m, are strings over O representing the initial multiset of objects

present in the membranes of the system,
– Ri, 1 ≤ i ≤ m, are finite sets of symport/antiport rules of the form x/y, for

some x, y ∈ O∗, associated with membrane i (if |x| or |y| equals 0 then we
speak of a symport rule, otherwise we call it an antiport rule).

An antiport rule of the form x/y ∈ Ri means moving the objects specified
by x from membrane i to the surrounding membrane j (to the environment,
if i = 1), at the same time moving the objects specified by y in the opposite
direction. (The rules with one of x, y being empty are, in fact, symport rules,
but in the following we do not explicitly consider this distinction here, as it is
not relevant for what follows.) We assume the environment to contain all objects
in an unbounded number.

The computation starts with the multisets specified by w1, . . . , wm in the m
membranes; in each time unit, the rules assigned to each membrane are used in
a maximally parallel way, i.e., we choose a multiset of rules at each membrane in
such a way that, after identifying objects inside and outside the corresponding
membranes to be affected by the selected multiset of rules, no objects remain to
be subject to any additional rule at any membrane. The computation is successful
if and only if it halts; depending on the function of the system, the input and
the output may be encoded by different symbols in different membranes, the
input then being added in the initial configuration as the corresponding number
of respective symbols in the designated membranes.

The set of all k-dimensional vectors generated/accepted in this way by the
system Π is denoted by g (k)N(Π) and a (k)N(Π), respectively. The family
of sets g (k)N(Π)/a (k)N(Π) of vectors computed as above by systems with
at most m membranes and at most s symbols is denoted by g (k)NOsPm and
a (k)NOsPm, respectively. The family of functions from k-dimensional vectors
to l-dimensional vectors computed as above by P systems with at most m mem-
branes and at most s symbols is denoted by f (k, l)NOsPm. When any of the
parameters k, l,m, s is not bounded, it is replaced by ∗.

3 Results

We now establish our results for P systems with symport/antiport rules and
small numbers of membranes and symbols. The main constructions show that a

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 101

P system with symport/antiport rules and m ≥ 1 membranes as well as s ≥ 2
symbols can simulate a register machine with max {m (s− 2) , (m− 1) (s− 1)}
registers. For example, in that way we improve the result NRE = g (1)NO3P4
as established in [17] to NRE = g (1)NO3P3 = g (1)NO2P4.

3.1 One Membrane

The following characterization of NFIN by P systems with only one membrane
and only one symbol corresponds with the similar characterization by tissue P
systems with only one cell and only one symbol as established in [1].

Example 1. g (1)NO1P1 = NFIN.
Consider an arbitrary non-empty set M ∈ NFIN . Then we construct a P

system Π = ({a}, [1]1, w1, R1) where w1 = am with m = max (M) + 1 and
R1 = {am/aj | j ∈M}.

Clearly, j < m for any j ∈ M , so the computation finishes in one step gener-
ating the elements of M as the corresponding number of symbols a in the skin
membrane.

The special case of generating the empty set can be done by the following
trivial P system: Π = ({a}, [1]1, a, {a/a}). A computation in this system will
never halt.

The inclusion NFIN ⊇ g (1)NO1P1 can easily be argued (like in [1]) as
follows:

Consider a P system Π = ({a}, [1]1, w1, R1).
Let m = min {j | j/i ∈ R1 for some i}. Then a rule from R1 can be applied as

long as region 1 contains at leastm objects. Therefore, g (1)N(Π) ⊆ {j | j < m};
hence, g (1)N(Π) ∈ NFIN .

Let us recall another relatively simple construction for tissue P systems from [1]
that also shows a corresponding result for the membrane case.

Example 2. g (1)NO2P1 ⊇ NREG.
We will use the fact that for any regular set M of nonnegative integers there

exist finite sets of numbers M0, M1 and a number k such that M = M0∪{i+jk |
i ∈M1, j ∈ N} (this follows, e.g., from the shape of the minimal finite automaton
accepting the unary language with length set M).

We now construct a P system Π = ({a, p}, [1]1, w1, R1) where w1 = pp and
R1 = {pp/ai | i ∈M0} ∪ {pp/pa, pa/pak+1} ∪ {pa/ai | i ∈M1}, which generates
Mas the number of symbols a in the skin membrane in halting computations.

Initially, there are no objects a in region 1, so the system “chooses” between
generating an element of M0 in one step or exchanging pp by pa. In the latter
case, there is only one copy of p in the system. After an arbitrary number j of
applications of the rule pa/pak+1 a rule exchanging pa by ai for some i ∈M1 is
eventually applied, generating jk+i symbols a. Hence, g (1)N(Π) = M0∪{i+jk |
i ∈M1, j ∈ N} = M .

We will now show two simple constructions to illustrate the accepting power of
P systems with one membrane.

102 A. Alhazov, R. Freund, and M. Oswald

Example 3. {ki | i ∈ N} ∈ a (1)NO1P1 for any k ∈ N.
The set of numbers divisible by a fixed number k (represented by the mul-

tiplicity of the object a in the initial configuration) can be accepted by the P
system Π = ({a}, [1]1, w1, {ak/λ, a/a}); w1 is the input of the P system in the
initial configuration. The rule ak/λ sends objects out in groups of k, while the
rule a/a “keeps busy” all objects not used by the other one. Hence, the system
halts if and only if a multiple of k symbols a has been sent out in several steps
finally not using the antiport rule a/a anymore.

Example 4. NFIN ⊆ a (1)NO2P1.
Any finite set M of natural numbers (represented by the multiplicity of the

object a in the initial configuration) can be accepted by the P system Π =
({a, p}, [1]1, pw1, {a/a, p/p}∪{pan/λ | n ∈M}); w1 is the input of the P system
in the initial configuration as the number of symbols a in the skin membrane
representing the corresponding element from M. The rule pan/λ can send out p
together with a “correct” number of objects a, while the rules a/a and p/p (in
the case of w1 = λ)“keep busy” all other objects.

Example 3 illustrates that even P systems with one membrane and one object
can accept some infinite sets (as opposed to the generating case, where we exactly
get all finite sets). Example 4 shows that when using two objects it is already
possible to accept all finite sets.

3.2 At Least Three Symbols

It was already shown in [2] that any d-register machine can be simulated by a P
system in one membrane using d + 2 symbols. In this subsection we generalize
this result: P systems with m membranes and s ≥ 3 symbols can simulate
m(s− 2)-register machines:

Theorem 1. Any mn-register machine can be simulated by a P system with
2 + n symbols and m membranes.

Proof. Let us consider a register machine M = (d,R, l1, lhalt) with d = mn reg-
isters. No matter what the goal of M is (generating/accepting vectors of natural
numbers, computing functions), we can construct the P system (of degree m)

Π = (O,μ,w1, · · · , wm, R1, · · · , Rm),
O = {p, q} ∪ {aj | 1 ≤ j ≤ n} ,
μ = [1 [2]2 · · · [m]m]1,
w1 = w0

∏n
j=1 a

rj

j ,

wi =
∏n

j=1 a
rj+(i−1)n
j , 2 ≤ i ≤ m,

that simulates the actions of M as follows. The symbols p and q are needed for
encoding the instructions of M ; q also has the function of a trap symbol, i.e., in
case of the wrong choice for a rule to be applied we take in so many symbols q
that we can never again rid of them and therefore get “trapped” in an infinite

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 103

loop. Throughout the computation, the value of register j+(i−1)n is represented
by the multiplicity of symbol aj in region i. In the generating case, w1 = w0
and wi = λ for 2 ≤ i ≤ m; in the accepting case and in the case of computing
functions, the numbers of symbols aj as defined above specify the input.

An important part of the proof is to define a suitable encoding c : N → N (a
strictly monotone linear function) for the instructions of the register machine:
As we will use at most 6 different subsequent labels for each instruction, without
loss of generality we assume the labels of M to be positive integers such that the
labels assigned to ADD and SUB instructions have the values 6i−5 for 1 ≤ i < t,
as well as l0 = 1 and lhalt = 6 (t− 1) + 1, for some t ≥ 1.

For the operations assigned to a label l and working on register r, we will use
specific encodings by the symbols p and q which allow us to distinguish between
the operations ADD, SUBTRACT, and ZERO TEST. As we have d registers,
this yields 3d multisets for specifying operations. The number of symbols p and
q in these operation multisets is taken in such a way that the number of symbols
p always exceeds the number of symbols q. Finally, the number of symbols q
can never be split into two parts that could be interpreted as belonging to two
operation multisets.

Hence, the range for the number of symbols q is taken as the interval [3d +
1, 6d] and the range for the number of symbols p is taken as the interval
[6d+ 1, 9d+ 1] . Thus, with h = 12d + 1 we define the following operation
multisets:

ADD : α+(r) = q3d+rph−(3d+r), 1 ≤ r ≤ d,

SUBTRACT : α−(r) = q4d+rph−(4d+r), 1 ≤ r ≤ d,
ZEROTEST : α0(r) = q5d+rph−(5d+r), 1 ≤ r ≤ d.

The encoding c : N → N which shall encode the instruction l of M to be
simulated as pc(l) also has to obey to the following conditions:

– For any i, j with 1 ≤ i, j ≤ 6t− 5, c (i) + c (j) > c (6t− 4) , i.e., the sum of
the codes of two instruction labels has to be larger than the largest code we
will ever use for the given M , hence, if we do not use the maximal number
of symbols p as interpretation of a code for an instruction (label), then the
remaining rest of symbols p cannot be misinterpreted as the code for another
instruction label.

– The distance g between any two codes c (i) and c (i+ 1) has to be larger
than any of the multiplicities of the symbol p which appear besides codes in
the rules defined above.

As we shall see in the construction of the rules below, we may take

g = 2h = 24d+ 2.

In sum, for a function c fulfilling all the conditions stated above we can take

c (x) = g(x+ 6t− 4) for x ≥ 0.

104 A. Alhazov, R. Freund, and M. Oswald

For example, with this function, for arbitrary i, j ≥ 1 we get

c (i) + c (j) = g(i+ 6t− 4) + g(j + 6t− 4) > g(6t− 4 + 6t− 4) =
c (6t− 4) .

Moreover, for l1 = 1 we therefore obtain

c (l1) = g (6t− 3) = (24d+ 2) (6t− 3)

as well as

w0 = pc(l1) = p(24d+2)(6t−3).

Finally, we have to find a number f which is so large that after getting f
symbols we inevitably enter an infinite loop with the rule

qf/q3f ;

as we shall justify below, we can take

f = c (lhalt + 1) = 2g(6t− 4).

Equipped with this coding function and the constants defined above we are
now able to define the following set of symport/antiport rules assigned to the
membranes for simulating the actions of the given register machine M :

R1 =
{
pc(l1)/pc(l2)as, p

c(l1)/pc(l3)as |
l1 : (A(s), l2, l3) ∈ R, 1 ≤ s ≤ n}

∪ {pc(l1)/pc(l1+1)α+(s+ (s′ − 1)n)as, p
c(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α+(s+ (s′ − 1)n)/pc(l2)

pc(l1+3)α+(s+ (s′ − 1)n)/pc(l3) |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪
{
pc(l1)as/p

c(l2), pc(l1)/pc(l1+1)α0(s),
pc(l1+1)/pc(l1+2), α0(s)as/q

3f ,

pc(l1+2)α0(s)/pc(l3) | l1 : (S(s), l2, l3) ∈ R, 1 ≤ s ≤ n
}

∪ {pc(l1)/pc(l1+1)α−(s+ (s′ − 1)n), pc(l1+1)/pc(l1+2),
pc(l1+2)/pc(l1+3), pc(l1+3)α−(s+ (s′ − 1)n)as/p

c(l2),

pc(l1)/pc(l1+4)α0(s+ (s′ − 1)n), pc(l1+4)/pc(l1+5),
pc(l1+5)α0(s+ (s′ − 1)n)/pc(l3),
α−(s+ (s′ − 1)n)/q3f |
l1 : (S(s+ (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪
{
pc(lhalt)/λ, ph/q3f , qf/q3f

}
as well as for 2 ≤ s′ ≤ m

Rs′ = {λ/α+(s+ (s′ − 1)n)as, α+(s+ (s′ − 1)n)/λ |
l1 : (A(s+ (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪ {as/α−(s+ (s′ − 1)n), α−(s+ (s′ − 1)n)/λ,
as/α0(s+ (s′ − 1)n) |
l1 : (S(s+ (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}.

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 105

The correct work of the rules can be described as follows:

1. Throughout the whole computation in Π, it is directed by the code pc(l) for
some l ≤ 6t− 5; in order to guarantee the correct sequence of encoded rules
the trap is activated in case of a wrong choice, which in any case guarantees
an infinite loop with the symbols q by the “trap rule”

qf/q3f .

The minimal number of superfluous symbols p to start the trap is h and
causes the application of the rule ph/q3f .

2. For each ADD instruction l1 : (A(s), l2, l3) of M , i.e., for incrementing reg-
ister s for 1 ≤ s ≤ n, we use the following rules in R1:

pc(l1)/pc(l2)as, and
pc(l1)/pc(l3)as.

In that way, the ADD instruction l1 : (A(s), l2, l3) of M for one of the first n
registers is simulated in only one step: the number of symbols p representing
the instruction of M labelled by l1 is replaced by the number of symbols
p representing the instruction of M labelled by l2 or l3, respectively, in
the same moment also incrementing the number of symbols as. Whenever
a wrong number of symbols p is taken, the remaining symbols cannot be
used by another rule than the “trap rule” ph/q3f , which in the succeeding
computation steps inevitably leads to the repeated application of the rule
qf/q3f thus flooding the skin membrane with more and more symbols q.

On the other hand, incrementing register s + (s′ − 1)n, for 1 ≤ s ≤ n,
2 ≤ s′ ≤ m, i.e., registers n + 1 to nm is accomplished by the rules

pc(l1)/pc(l1+1)α+(s+ (s′ − 1)n)as,
pc(l1+1)/pc(l1+2)

pc(l1+2)/pc(l1+3),
pc(l1+3)α+(s+ (s′ − 1)n)/pc(l2)

pc(l1+3)α+(s+ (s′ − 1)n)/pc(l3)

in R1 as well as by the rules

λ/α+(s+ (s′ − 1)n)as,
α+(s+ (s′ − 1)n)/λ in Rs′ .

Hence, adding one to the contents of registers n + 1 to nm now needs four
steps: the number of symbols p representing the instruction of M labelled by
l1 is replaced by pc(l1+1) together with 3d+ s+ (s′ − 1)n additional symbols
q, h− (3d+ s+ (s′ − 1)n) symbols p and the symbol as. In the second step,
pc(l1+1) is exchanged with pc(l1+2), while at the same time the additional
3d + s + (s′ − 1)n symbols q and h − (3d + s + (s′ − 1)n) symbols p are
introduced together with as in membrane s′. In the third step, the c(l1 + 2)
symbols p in the skin membrane are exchanged with c(l1+2) symbols p from
the environment, whereas the additional 3d + s + (s′ − 1)n symbols q and
h− (3d+ s+(s′ − 1)n) symbols p pass out from membrane r. Finally, in the

106 A. Alhazov, R. Freund, and M. Oswald

fourth step, these latter symbols together with pc(l1+3) in the skin membrane
are replaced by the number of symbols p representing the next instruction
of M labelled by l2 or l3, respectively.

3. For simulating the decrementing step of a SUB instruction l1 : (S(s), l2, l3)
from R we introduce the following rules:

pc(l1)as/p
c(l2)

for decrementing the contents of register s, for 1 ≤ s ≤ n, represented by
the symbols as in the skin membrane.

In thatway, the decrementing step of the SUB instruction l1 : (S(s), l2, l3) of
M now is also simulated in one step: togetherwith pc(l1) we send out one symbol
as and take in pc(l2), which encodes the label of the instruction that has to be
executed after the successful decrementing of register s, for 1 ≤ s ≤ n.

For decrementing the registers s + (s′ − 1)n, for 1 ≤ s ≤ n, 2 ≤ s′ ≤ m,
we need the following rules:

pc(l1)/pc(l1+1)α−(s+ (s′ − 1)n),
pc(l1+1)/pc(l1+2)

pc(l1+2)/pc(l1+3),

pc(l1+3)α−(s+ (s′ − 1)n)as/p
c(l2) in R1

as well as

as/α−(s+ (s′ − 1)n),
α−(s+ (s′ − 1)n)/λ in Rr.

In this case, the SUB instruction is simulated in four steps: pc(l1) is re-
placed by pc(l1+1) together with the “operation multiset” α−(s+ (s′ − 1)n),
i.e., q4d+rph−(4d+r), r = s + (s′ − 1)n, for 1 ≤ s ≤ n, 2 ≤ s′ ≤ m. While
in the next two steps, two intermediate exchanges of symbols p with the
environment take place, the symbol as is exchanged with α−(s+ (s′ − 1)n)
in membrane r, that, in the third step, goes out again to the skin membrane,
where it can now together with pc(l1+3) be exchanged with pc(l2), i.e., the
representation of the next instruction of M.

Again we notice that if we do not choose the correct rule, then the trap is
activated by the rule ph/q3f , especially if no symbol as is present in mem-
brane r, then we have to apply the “trap rule” α−(s+ (s′ − 1)n)/q3f .

4. For simulating the zero test, i.e., the case where we check the contents of
register r to be zero, of a SUB instruction l1 : (S(s), l2, l3) fromR for registers
1 to n we take the following rules:

pc(l1)/pc(l1+1)α0(s),
pc(l1+1)/pc(l1+2), and
pc(l1+2)α0(s)/pc(l3) in R1.

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 107

If the rule α0(s)as/q
3f from R1 can be applied, then in the next step we

cannot apply pc(l1+2)α0(s)/pc(l3) from R1, hence, only a rule using less than
c(l1 + 2) symbols p can be used together with the “trap rule” ph/q3f .

For simulating the zero test, i.e., the case where we check the contents
of register r to be zero, of a SUB instruction l1 : (S(s), l2, l3) from R for
registers n+ 1 to nm we now take the following rules:

pc(l1)/pc(l1+4)α0(s+ (s′ − 1)n),
pc(l1+4)/pc(l1+5), and
pc(l1+5)α0(s+ (s′ − 1)n)/pc(l3) in R1.

If the rule as/α0(s+ (s′ − 1)n) from Rr can be applied, then in the next
step we cannot apply pc(l1+5)α0(s+ (s′ − 1)n)/pc(l3) from R1, hence, only a
rule using less than c(l1 + 5) symbols p can be used together with the “trap
rule” ph/q3f .

5. The number of symbols p never exceeds c (lhalt) = 2g(6t − 4) as long as
the simulation of instructions from R works correctly. By definition, f =
c (lhalt + 1) = 2g(6t − 4), hence, there will be at least three times more
symbols q in region 1 than symbols p in the system after having applied a
“trap rule”, thus introducing 3f symbols q. As by any rule in R1, the number
of symbols p coming in is less than double the number sent out, the total
number of symbols p in the system, in one computation step, can at most
be doubled in total, too. As every rule that removes some symbols q from
region 1 involves at least as many symbols p as symbols q, the “trap rule”
qf/q3f guarantees that in the succeeding steps this relation will still hold
true, no matter how the present symbols p and q are interpreted for rules in
Π . Therefore, if as soon as a “trap rule” has been applied, then the number
of objects q will grow and the system will never halt.

6. Finally, for the halt label lhalt = 6t− 5 we only take the rule

pc(lhalt)/λ,

hence, the work of Π will stop exactly when the work of M stops (provided
the trap has not been activated due to a wrong non-deterministic choice
during the computation).

From the explanations given above we conclude that Π halts if and only if M
halts, and moreover, the final configuration of Π represents the final contents of
the registers in M. These observations conclude the proof. �
As already proved in [2], when using P systems with only one membrane, at
most five objects are needed to obtain computational completeness:

Corollary 1. g (1)NO5P1 = a (1)NO5P1 = NRE.

Moreover, from Theorem 1 we can also conclude that P systems with two mem-
branes are computationally complete with only four objects:

Corollary 2. g (1)NO4P2 = a (1)NO4P2 = NRE.

108 A. Alhazov, R. Freund, and M. Oswald

3.3 At Least Two Symbols and at Least Two Membranes

On the other hand, for s,m ≥ 2, we can show that P systems with s symbols
and m membranes can simulate (s− 1)(m− 1)-register machines:

Theorem 2. Any mn-register machine can be simulated by a P system with
n+ 1 symbols and m+ 1 membranes, with n,m ≥ 1.

Proof. Consider a register machine M = (d,R, l0, lhalt) with d = mn registers.
We construct the P system

Π = (O,μ,w1, · · · , wm+1, R1, · · · , Rm+1),
O = {p} ∪ {aj | 1 ≤ j ≤ n},
μ = [1 [2]2 · · · [m+1]m+1]1,
w1 = w0,

wi+1 =
∏n

j=1 a
rj+(i−1)n
j , 1 ≤ i ≤ m,

that simulates the actions of M as follows. The contents of register j+(i−1)n is
represented by the multiplicity of symbols aj in region i+1, whereas the symbol
p is needed for encoding the instructions of M ; this time, too many copies of a1
in the skin membrane have the function of trap symbols.

Again, an important part of the proof is to define a suitable encoding c : N →
N for the instructions of the register machine, and at most 6 different subsequent
labels will be used for each instruction, hence, without loss of generality we
assume the labels of M to be positive integers such that the labels assigned to
ADD and SUB instructions have the values 6i−5 for 1 ≤ i < t, as well as l0 = 1
and lhalt = 6 (t− 1) + 1, for some t ≥ 1.

Since one copy of as will be used for addition/subtraction, now the oper-
ation multisets will be encoded by even numbers of object a1, i.e., we take
h = 2 (12d+ 1) = 24d+ 2 and define the following operation multisets:

ADD : α+(r) = a1
6d+2rph−(6d+2r), 1 ≤ r ≤ d,

SUBTRACT : α−(r) = a1
8d+2rph−(8d+2r), 1 ≤ r ≤ d,

ZEROTEST : α0(r) = a1
10d+2rph−(10d+2r), 1 ≤ r ≤ d.

In a similar way as before, we now take

g = 2h = 48d+ 4

and define the function c by

c (x) = g(x+ 6t− 4) for x ≥ 0.

For l1 = 1 we therefore obtain

c (l1) = g (6t− 3) = (48d+ 4) (6t− 3)

as well as

w0 = pc(l1) = p(48d+4)(6t−3).

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 109

Finally, for f we again take
f = c (lhalt + 1) = 2g(6t− 4)

which is so large that after getting f symbols we inevitably enter an infinite loop
with the rule

a1
f/a1

3f .
Equipped with this coding function and the constants defined above we are

now able to define the following set of symport/antiport rules assigned to the
membranes for simulating the actions of the given register machine M :

R1 = {pc(l1)/pc(l1+1)α+(s+ (s′ − 1)n)as, p
c(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α+(s+ (s′ − 1)n)/pc(l2),

pc(l1+3)α+(s+ (s′ − 1)n)/pc(l3) |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪ {pc(l1)/pc(l1+1)α−(s+ (s′ − 1)n), pc(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α−(s+ (s′ − 1)n)as/p
c(l2),

α−(s+ (s′ − 1)n)/a1
3f ,

pc(l1)/pc(l1+4)α0(s+ (s′ − 1)n), pc(l1+4)/pc(l1+5),
pc(l1+5)α0(s+ (s′ − 1)n)/pc(l3) |
l1 : (S(s+ (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪
{
pc(lhalt)/λ, ph/a1

3f , a1
f/a1

3f
}

and for 1 ≤ r ≤ m,

Rr+1 = {λ/α+(s+ (s′ − 1)n)ar, α+(s+ (s′ − 1)n)/λ |
l1 : (A(s+ (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪ {as/α−(s+ (s′ − 1)n), α−(s+ (s′ − 1)n)/λ,
as/α0(s+ (s′ − 1)n) |
l1 : (S(s+ (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}.

The operations ADD, SUBTRACT, and ZERO TEST now are carried out
for all registers r as in the preceding proof for the registers r > n. Hence, we
do not repeat all the arguments of the preceding proof, but stress the following
important differences:

We now take advantage that the operation multisets additionally satisfy the
property that now the number of symbols p can never be split into two parts that
could be interpreted as belonging to two operation multisets; this guarantees that
during a correct simulation, inside an elementary membrane at most one operation
can be executed - and if it is the wrong one (i.e., we do not use all symbols p, but
instead use more symbols a1 from the amount representing the contents of a regis-
ter), then we return a number of symbols p which is too small to allow the correct
rule to be applied from R1, instead the “trap rule” ph/a1

3f will be applied. �
From the result proved above we can immediately conclude the following, thus
also improving the result from [17] where g (1)NO3P4 = NRE was proved: we
can reduce the number of membranes from four to three when using only three
objects or the number of symbols from three to two when using four membranes.

Corollary 3. NRE = g(1)NO3P3 = a(1)NO3P3 = g(1)NO2P4 = a(1)NO2P4.

110 A. Alhazov, R. Freund, and M. Oswald

3.4 One Symbol

If only one symbol is available, then so far we do not know whether computational
completeness can be obtained even when not bounding the number of membranes
(in contrast to tissue P systems which have been shown to be computationally
complete with at most seven cells, see [1]). Yet at least we can generate any
regular set of natural numbers in only two membranes (remember that with
only one membrane we have got a characterization of NFIN, see Example 1).

Example 5. g (1)NO1P2 ⊇ NREG.
Any finite set can be generated without using the second membrane (see

Example 1), so we proceed with infinite sets. Let M ∈ NREG − NFIN , then
there exist finite sets M0, M1 with M1 �= ∅ and a number k > 0 such that
M = M0 ∪ {i+ jk | i ∈ M1, j ∈ N}.

Let m be the smallest element of M such that m > max (M0 ∪M1 ∪ {2k});
moreover, let m′ = m + 2k (thus, m′ ∈ M). Then we consider the P system
constructed as follows:

Π = ({a}, [1 [2]2]1, a
m′
, λ, R1, R2) where

R1 = {am′
/ai | i ∈ M0} ∪ {am′

/am, am/am+k} ∪ {am/ai | i ∈M1},
R2 = λ/a.

We assume the result of a halting computation to be collected in the second
membrane, and we claim g (1)N(Π) = M :

g (1)N(Π) ⊇M :

The elements of M0 are generated in one step, while the rest of M can be
generated by

[1 a
m′

[2]2]1 ⇒ [1 a
m[2]2]1 => [1 a

m+k[2]2]1 ⇒j−1

[1 a
m+k[2 a

(j−1)k]2]1 ⇒ [1 a
i[2 a

jk]2]1 ⇒ [1 [2 a
i+jk]2]1

or by

[1 a
m′

[2]2]1 ⇒ [1 a
m[2]2]1 ⇒ [1 a

i[2]2]1 ⇒ [1 [2 a
i]2]1.

g (1)N(Π) ⊆ M :

What other derivations can we get different from those described above?

– If all m′ symbols enter membrane 2, m′ ∈M .
– If all m symbols enter membrane 2 (possibly after some additions of k),

m+jk ∈M (by the definition of m, m ∈M and, moreover, it can be prolongued
by multiples of k).

– If during the first step m copies of the symbol a are used instead of m′

(and 2k fall inside), then the system generates some number 2k + (i + jk) or
2k + (m+ jk); all these numbers belong to M , too.

Nothing else can happen, because m+ k < m′ and max(M0 ∪M1) < m and
because all symbols not used by R1 fall into region 2.

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 111

4 Summary and Open Questions

From the main theorems (Theorem 1 and Theorem 2) established in the preced-
ing section showing that P systems with symport/antiport rules and m ≥ 1
membranes as well as s ≥ 2 symbols can simulate a register machine with
max {m (s− 2) , (m− 1) (s− 1)} registers in combination with Propositions 2
and 3 we infer the following general results:

Theorem 3. g (1)NOsPm = a (1)NOsPm = NRE, for m ≥ 1, s ≥ 2, m +
s ≥ 6.

We conjecture that these results establishing the computational completeness
bounds are optimal.

As the halting problem for d-register machines is undecidable for d ≥ 2, from
Theorems 1 and 2 we also obtain the following result:

Theorem 4. The halting problem for P systems with symport/antiport rules and
s ≥ 2 symbols as well as m ≥ 1 membranes such that m+ s ≥ 5 is undecidable.

As 1-register machines can generate/accept all regular number sets, we obtain
the following:

Theorem 5. NREG ⊆ g (1)NO3P1∩g (1)NO2P2∩a (1)NO3P1∩a (1)NO2P2.

The main results established in this paper now can be summarized in the fol-
lowing table:

Membranes
|O| 1 2 3 4 5 m
1 A B B B B B
2 B 1 2 (U) 3 4 m− 1
3 1 2 (U) 4 6 8 2m− 2
4 2 (U) 4 6 9 12 3m− 3
5 3 6 9 12 16 4m− 4
6 4 8 12 16 20 5m− 5
s s− 2 2s− 4 3s− 6 4s− 8 5s− 10 max{m (s− 2) ,

(m− 1) (s− 1)}

In the table depicted above, the class of P systems indicated by

A generates exactly NFIN ;
B generates at least NREG;
d can simulate any d-register machine. A box around a number indicates a

known computational completeness bound, (U) indicates a known unpre-
dictability bound, and a number in boldface shows the diagonal where Theo-
rem 2 and Theorem 1 provide the same result (because in that case m (s− 2)
equals (m− 1) (s− 1)); the numbers above this diagonal are taken from The-
orem 2, while the numbers below the diagonal are taken from Theorem 1.

112 A. Alhazov, R. Freund, and M. Oswald

Based on these simulation results, we now could discuss in more detail how
many symbols s and membranes m at most are needed to accept or generate
recursively enumerable sets of vectors of natural numbers or compute functions
Nk→ Nl (e.g., recursively enumerable sets of d-dimensional vectors, d ≥ 1, can
be generated / accepted by P systems with symport/antiport rules using at most
d+ 4 symbols in one membrane, see also [2]). Yet as all these results are direct
consequences of the corresponding computational power of the simulated register
machines (see Propositions 3, 2, 1), we do not follow this line any further.

Just recently, the computational power of P systems with symport/antiport
rules and small numbers of symbols and membranes has also been investigated
in [11]. There the authors show that P systems with symport/antiport rules
with one symbol and three membranes or with two symbols and one membrane
can accept the non-semilinear set L = {2n | n ≥ 0}. Moreover, they prove that
for any k ≥ 1, the class of sets of k-tuples of non-negative integers accepted by
partially blind (multi-)counter machines is a proper subclass of the class of sets
of k-tuples accepted by P systems with symport/antiport rules with one object
and multiple membranes. Similarly, the class of sets of k-tuples of non-negative
integers generated by partially blind counter machines is shown to be a subclass
(but is not known to be proper) of the class of sets of k-tuples generated by P
systems with one object and multiple membranes.

Yet the interesting question whether or not P systems with one symbol are
universal still remains open. (The corresponding result holds for tissue P systems,
see [1].)

Acknowledgements

Artiom Alhazov is supported by the project TIC2002-04220-C03-02 of the Re-
search Group on Mathematical Linguistics, Tarragona; he also acknowledges the
Moldovan Research and Development Association (MRDA) and the U.S. Civilian
Research and Development Foundation (CRDF), Award No. MM2-3034. This
paper was written during his stay at the Vienna University of Technology.

The work of Marion Oswald is supported by FWF-project T225-N04.

References

1. A. Alhazov, R. Freund, M. Oswald: Tissue P systems with antiport rules and
a small number of symbols and cells. In Developments in Language Theory, 9th
International Conference, DLT 2005 (C. De Felice, A. Restivo, eds.), Palermo,
Italy, 2005, LNCS 3572, Springer, Berlin, 2005, 100–111.

2. A. Alhazov, R. Freund: P systems with one membrane and symport/antiport rules
of five symbols are computationally complete. In Proceedings of the Third Brain-
storming Week on Membrane Computing (M.A. Gutiérrez-Naranjo, A. Riscos-
Núñez, F.J. Romero-Campero, D. Sburlan, eds.), Sevilla, Spain, 2005, 19–28.

3. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
Berlin, 1989.

Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules 113

4. R. Freund, M. Oswald: P Systems with activated/prohibited membrane channels.
In [18], 261–268.

5. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Infor-
maticae, 49 (2002), 81–102.

6. R. Freund, Gh. Păun: On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars. In Machines, Computations, and Universality,
Third International Conference, MCU 2001 (M. Margenstern, Yu. Rogozhin, eds),
Chisinau, Moldavia, May 23-27, 2001, LNCS 2055, Springer, Berlin, 2001, 214–225

7. R. Freund, A. Păun: Membrane systems with symport/antiport rules: universality
results. In [18], 270–287.

8. R. Freund, Gh. Păun: From regulated rewriting to computing with membranes:
Collapsing hierarchies. Theoretical Computer Science, 312 (2004), 143–188.

9. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel
states. In Proceedings of the Brainstorming Week on Membrane Computing (Gh.
Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), Sevilla,
February 2004, TR 01/04 of Research Group on Natural Computing, Sevilla Uni-
versity, 206–223, and Theoretical Computer Science, 330 (2004), 101–116.

10. R. Freund, M. Oswald: Tissue P systems with symport/antiport rules of one symbol
are computationally complete. In Cellular Computing. Complexity Aspects (M.A.
Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.) Fénix Editora, Sevilla,
2005, 185–197.

11. O.H. Ibarra, S. Woodworth: On symport/antiport P systems with one or two sym-
bols. In Proceedings of the first International Workshop on Theory and Applica-
tions of P Systems, TAPS ’05 (Gh. Păun, G. Ciobanu, eds.), Timişoara, Romania,
September 26-27, 2005, IeAT Technical Report 05-11, 2005, 75–82

12. C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón: Tissue P systems. The-
oretical Computer Science, 296 (2003), 295–326.

13. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1967.

14. A. Păun, Gh. Păun: The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20 (2002), 295–306.

15. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61 (2000), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi).

16. Gh. Păun: Computing with Membranes: An Introduction. Springer, Berlin, 2002.
17. Gh. Păun, J. Pazos, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón: Symport/antiport

P systems with three objects are universal. Fundamenta Informaticae, 64 (2005),
353-367

18. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.: Membrane Computing.
International Workshop WMC 2002, Curtea de Argeş, Romania. LNCS 2597,
Springer, Berlin, 2003.

19. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages (3 volumes).
Springer, Berlin, 1997.

20. The P Systems Web Page, http://psystems.disco.unimib.it

On P Systems as a Modelling Tool
for Biological Systems

Francesco Bernardini1, Marian Gheorghe1, Natalio Krasnogor2,
Ravie C. Muniyandi1, Mario J. Pérez-J́ımenez3,

and Francisco José Romero-Campero3

1 Department of Computer Science, The University of Sheffield,
Regent Court, Portobello Street, Sheffield, S1 4DP, UK

{F.Bernardini, M.Gheorghe, R.Muniyandi}@dcs.shef.ac.uk
2 Automated Scheduling, Optimisation and Planning Research Group,

School of Computer Science and Information Technology,
University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK

Natalio.Krasnogor@nottingham.ac.uk
3 Research Group on Natural Computing,

Department of Computer Science and Artificial Intelligence,
University of Seville, Avda. Reina Mercedes 41012, Sevilla, Spain

{marper, fran}@us.es

Abstract. We introduce a variant of P systems where rules have asso-
ciated a real number providing a measure for the “intrinsic reactivity”of
the rule and roughly corresponding to the kinetic coefficient which, in
bio-chemistry, is usually associated to each molecular reaction. The be-
haviour of these P systems is then defined according to a strategy which,
in each step, randomly selects the next rule to be applied depending upon
a certain distribution of probabilities. As an application, we present a P
system model of the quorum sensing regulatory networks of the bac-
terium Vibrio Fischeri. In this respect, a formalisation of the network
in terms of P systems is provided and some simulation results concern-
ing the behaviour of a colony of such bacteria are reported. We also
briefly describe the implementation techniques adopted by pointing out
the generality of our approach which appears to be fairly independent
from the particular choice of P system variant and the language used to
implement it.

1 Introduction

Membrane computing represents a new and rapidly growing research area which
is part of the natural computing paradigm and which was initiated by Ghe-
orghe Păun in 1998 with a seminal paper initially circulated on the web and
later published in [13]. Already a monograph has been dedicated to this sub-
ject [14] and some fairly recent results can be found in [15],[9],[10]. Membrane
computing aims at defining computational models which abstract from the func-
tioning and structure of the cell. Specifically, membrane computing starts from
the observation that membranes play a fundamental role in the functioning of

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 114–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On P Systems as a Modelling Tool for Biological Systems 115

a living cell. Membranes are essentially involved in many reactions taking place
inside various compartments of a cell, and they act as selective channels of com-
munication between different compartments as well as between the cell and its
environment [1].

Membrane computing formalises these essential features of living cells by in-
troducing the notion of membrane systems, which are usually called P systems.
P systems are characterised by four fundamental features: a membrane structure
where objects evolve according to some evolution rules, which also determine the
communication of objects between membranes. Specifically, the membrane struc-
ture consists in a number of membranes arranged in a hierarchical structure, all
of them but one included in an unique main membrane called skin membrane.
This most external membrane defines the boundary between the inside of the
system and its outside, which is called environment. A membrane without any
membrane inside is called elementary. Each membrane identifies a corresponding
region inside the system: the space between the membrane and the membranes
(if any) directly contained in it. A graphical representation of such a membrane
structure is reported in Figure 1.

�

�

�

�

�

�

�

�

�

�

��
�

�

�
�

�
�

�
�

�
�

�
�

�
	

�
�
�
�
�
�
�
�

�
�
���

�
�
��

�
�
�
��

membrane

�

skin elementary membranemembrane

regions ������������

�
�
���

1 2

3

4
5

6

7

8

9

Fig. 1. A membrane structure containing 9 membranes and 9 corresponding regions;
labels are used to uniquely identify each distinct membrane in the system.

Some objects are then assigned to the regions, each object appearing with a
specific multiplicity. That is, each region, in general, contains a multiset of ob-
jects rather than a set. As well as this, finite sets of evolution rules are assigned
to the region, one per each region, which are used to modify the objects associ-
ated with the regions and to move them across the membrane from one region to
the other. Rules have a local scope: the rules assigned to a specific region inside
the system can be applied only to the objects associated with that same region.
P systems were originally introduced to investigate the computational nature of

116 F. Bernardini et al.

various features of biological membranes [13], with an approach typical to formal
language theory and theory of computing, rather than to provide a comprehen-
sive model of the living cell. Nevertheless, some recent researche trends [4], [5],
[16] have been actually dedicated to the study of P systems as a modelling tool
where P systems are used as a formalism for describing, and possibly simulating,
the behaviour of biological systems. Therefore, there is a growing interest in de-
veloping implementations for the membrane computing paradigm in order to be
able to execute P system models and run simulations of biological phenomena
of various interest. In this respect, a number of tools have already been pro-
duced (some of them are available from http://psystems.disco.unimib.it/,
the P systems web pages) but yet correct implementation techniques need to be
identified, especially when the quantitative aspects featuring the ”reality” of a
biological phenomenon are considered in the model.

In this paper, we present a variant of P systems (Section 2) where rules are
generalised boundary rules which allow us to express transformations affect-
ing simultaneously the objects placed on both sides of a membrane, that is,
both the objects placed inside that compartment and the objects placed into
the surrounding region. As well as this, each rule has associated a real number
providing a measure for the “intrinsic reactivity”of the rule and roughly corre-
sponding to the kinetic coefficient which, in bio-chemistry, is usually associated
to each molecular reaction [16]. Moreover, in this variant, rules are applied ac-
cording to a strategy which, in each step, randomly selects the next rule to be
applied depending upon a certain distribution of probabilities. The main dif-
ference with respect to the usual approach adopted in membrane computing
is that, in our approach, there is no parallelism in the application of the rules
as the system evolves only by means of a rule at a time. Next, in Section 3,
we present, as a case-study, a P system model for the quorum sensing system
of the marine bacterium Vibrio fischeri together with some simulation results
obtained by implementing the model in Scilab (a free software package avail-
able at http://scilabsoft.inria.fr/). The novelty of our approach consists
in the fact that we do not only provide a description for the reactions involved
in the quorum sensing regulatory network but we are also able to provide a
model for an arbitrarily large colony of bacteria. In this respect, we can say
our simulations provides a snapshot of the behaviour of the colony as a whole
complex system. Finally, the last section describes implementation techniques
for our P system model by presenting the data structures and the code that
are necessary to support its execution. Moreover, by following [12], we advocate
the use of the mark-up language SBML as a “machine-interpretable” language
for defining executable specifications of P systems and the corresponding code
that can be automatically generated from. In this respect, we want to stress
the generality of our approach which appears to be fairly independent of the
particular choice of a P system variant, the language used to implement it,
and flexible enough with respect to the strategy of applying the rules of the
system.

On P Systems as a Modelling Tool for Biological Systems 117

2 Definitions

We start by recalling from [14] some basic notions of formal language theory
which are commonly used in the area of membrane computing. An alphabet is
a finite non-empty set of abstract symbols. Given an alphabet O, we denote
by O∗ the set of all possible strings over O, including the empty string λ. The
length of a string x ∈ O∗ is denoted by |x| and, for each a ∈ O, |x|a denotes
the number of occurrences of the symbol a in x. A multiset over O is a mapping
M : O −→ N such that, M(a) defines the multiplicity of a in the multiset M
(N denotes the set of natural numbers). Such a multiset can be represented by
a string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ O∗ and by all its permutations with aj ∈ O,

M(aj) �= 0, 1 ≤ j ≤ n. In other words, we can say that each string x ∈ O∗

identifies a finite multiset over O defined by Mx = { (a, |x|a) | a ∈ O }. Moreover,
given two strings x, y ∈ O∗, we denote by xy their catenation, which corresponds
to the union of the multiset represented by string x and the multiset represented
by string y.

Membrane structures are represented as usual by means of strings of matching
pairs of square-brackets, with each pair of square-brackets representing a mem-
brane and each one of them being labelled with a different value in {1, 2, . . . , n},
for n the number of membranes in the structure. For example, the membrane
structure of 1 can be represented by using the following string of matching square
brackets:

[1 [2]2 [3]3 [4 [5]5 [6 [8]8 [9]9]6 [7]7]4]1

where:

• membrane 1 is the skin membrane,
• membrane 2, membrane 3, membrane 5, membrane 7, membrane 8 and mem-

brane 9 are elementary membranes, Moreover,
• membrane 1 directly contains membrane 2, membrane 3 and membrane 4,
• membrane 4 directly contains membrane 5, membrane 6 and membrane 7,
• membrane 6 directly contains membrane 8 and membrane 9.

We refer to [14] for further details about this representation.
A P system is then defined in the following way.

Definition 1. A P system is a construct

Π = (O,L, μ, C1, C2, . . . , Cn, R)

where:

• O is a finite alphabet of symbols representing objects;
• L is a finite alphabet of symbols representing labels for the compartments;
• μ is a membrane structure consisting of n ≥ 1 membranes;
• Ci = (li, wi), for each 1 ≤ i ≤ n, is the initial configuration of the com-

partment i with li ∈ L and wi ∈ O∗ a finite multiset of objects;

118 F. Bernardini et al.

• R is a finite set containing m ≥ 1 rules that are labelled in one-to-one
manner with values in {1, 2, . . . ,m} and that are of the form

j : u [v]l
kj→ u′[v′]l

with 1 ≤ j ≤ m, u, v, u′, v′ ∈ V ∗ some finite multisets of objects, l ∈ L a
label for the compartment, and ki a real number.

Thus, a P system is characterised by a finite alphabet O for the objects placed
into the compartments, a finite alphabet L for labelling the compartments, a
membrane structure μ, an initial configuration for each compartment in the
system, and a finite set R containing rules describing transformations that can
be applied to the objects placed inside the compartments. Specifically, the ini-
tial configuration of a compartment consists of a label from the alphabet L
and a finite multiset of objects from O represented as a string in O∗; these
objects are those which are initially placed inside that compartment. Compart-
ments can interact each other by means of the rules in R which are of the form

u [v]l
kj→ u′[v′]l. Such a rule specifies that a multiset u, which is supposed to

be contained in the outside part of a compartment labelled by l, and a multiset
v, which is supposed to be contained inside a compartment labelled by l, can be
simultaneously replaced by the multisets u′, v′ in the respective places. More-
over, each rule in R has associated a real constant which is meant to provide a
measure of the ”reactivity” of the rule in a similar way to what was done in [5],
[16]. In other words, in our P systems, multisets of objects are used to model
bags or soups of chemicals whereas rules are used to model generic biochemical
processes which affect the number and distribution of these objects within the
system. All these rules are supposed to consume certain chemicals in order to
produce some new ones.

Then, in order to make the system transit from one configuration to the other,
a strategy for the application of the rules is adopted that makes the system evolve
only by means of a rule at a time. Moreover, in each step, only one rule to be ap-
plied inside a specific cell is randomly selected according to a given distribution
of probabilities. To this aim, we developed an adaption of Gillespie’s algorithm in
order to associate a stochastic behaviour to population P systems. Gillespie’s al-
gorithm [8] (see also [7] for some recent improvements) provides an exact method
for the stochastic simulation of systems of bio-chemical reactions; the validity
of the method is rigorously proved and it has been already successfully used to
simulate various biochemical processes [11]. As well as this, Gillespie’s algorithm
is used in the implementation of stochastic π-calculus [17] and in its application
to the modelling of biological systems [18] (an implementation of the stochas-
tic pi-machine is avaliable at http://www.doc.ic.ac.uk/~anp/spim/). Here,
with respect to the original algorithm, we have to take into account the fact
that in P systems we have different cells, each one with its own set of rules,
and the fact that the application of a rule inside a cell can affect the content of
environment too.

On P Systems as a Modelling Tool for Biological Systems 119

Specifically, let Π = (O,L, μ, (w1, l1), . . . , (wn, ln), R) be a P system as spec-
ified in Definition 1. At any moment, a configuration of the system Π can be
represented as a tuple

Γ = ((x1, l1), . . . , (xn, ln), μ)

where, for each 1 ≤ i ≤ n, xi is the multiset of objects currently contained in
compartment i. Thus, given such a configuration, for each 1 ≤ i ≤ n, we define
the set R(i) of pairs (j, pj) such that:

• j is the index of a rule in R of the form u [v]li
kj→ u′[v′]li , with xf = y u

and xi = z v, for f the index of the compartment that directly contains
i and some y, z ∈ O∗ (i.e., the rule j is applicable inside compartment i
because it is labelled by li, the surrounding region contains the multiset u,
and compartment i contains the multiset v);

• pj is the probability of the rule j to be applied in the next step of evolution;
this probability is computed by multiplying the constant kj by the number of
possible combinations of the objects present on the left-side of the rules with
respect to the multisets xi and xf (for example, if we have a rule [ab]li →
[w]li , with a, b ∈ O, w ∈ O∗, the probability pj is given by kj ∗ |xi|a ∗ |xi|b
(i.e., there are |xi|a ∗ |xi|b different possible ways of assigning objects to the
rule [ab]li → [w]li);

Then, given these probabilities, the strategy for the application of the rules is
defined according to the following procedure.

First, for each compartment i, we compute the index of the next rule to be
used inside cell i and its waiting time by using the classical Gillespie’s algorithm:

1. construct the sets R(i) containing pairs (j, pj) where pj is the probability
associated to rule j currently applicable inside compartment i; let us denote
byMi, Mi ≥ 1, the number of elements ofR(i); the pairs inR(i) are supposed
to be associated in an one-to-one manner with values in {1, . . . ,Mi}, i.e.
k : (jk, pjk

) , for 1 ≤ k ≤Mi;
2. calculate a0 =

∑
pj , for all (j, pj) ∈ R(i);

3. generate two random numbers r1 and r2 uniformly distributed over the unit
interval (0, 1);

4. calculate the waiting time for the next reaction as τi =
1
a0

ln(
1
r1

)

5. take the index h, 1 ≤ h ≤ Mi, such that
h−1∑
k=1

pk < r2a0 ≤
h∑

k=1

pk, with

k : (jk, pjk
) ∈ R(i), and pk = pjk

, for all 1 ≤ k ≤ h;
6. return the triple (τi, jh, i), if h : (jh, pjh

) ∈ R(i).

Notice that the larger the stochastic constant of a rule and the number of occur-
rences of the objects placed on the left-side of the rule inside a membrane are,
the greater is the chance that a given rule will be applied in the next step of
the simulation. There is no constant time-step in the simulation. The time-step

120 F. Bernardini et al.

is determined in every iteration and it takes different values depending on the
configuration of the system.

Next, a step of application of the rules is simulated by using the following
procedure:

• Initialisation
◦ set time of the simulation t = 0;
◦ for each compartment i in μ compute a triple (τi, j, i) by using the

procedure described above;
◦ sort the list according to each waiting time;

• Iteration
1. extract the first triple, (τm, j,m) from the list;
2. set time of the simulation t = t+ τm;
3. update the waiting time for the rest of the triples in the list by sub-

tracting τm;
4. apply the rule j only once changing the number of objects in the com-

partment and in the surrounding region
5. if the surrounding region has been affected by the application of the

rule then remove the corresponding triple from the list;
6. re-run the Gillespie algorithm for the compartment m and for the

compartment associated with the surrounding region in order to obtain
the new corresponding triples; add these new triples to the list;

7. sort this list according to each waiting time and iterate the process.
• Termination

1. Terminate simulation when time of the simulation t reaches or exceeds
a preset maximal time of simulation.

Specifically, in each step, the compartment selected is the cell with the minimal
waiting time.

3 Modelling Quorum Sensing in Vibrio Fischeri

Bacteriaaregenerally consideredtobe independentorganisms.However ithasbeen
observed that certain bacteria, like the marine bacterium Vibrio Fischeri, exhibit
coordinatedbehaviourwhich allows an entire population of bacteria to regulate the
expression of certain or specific genes in a coordinated way depending on the size
of the population. This cell density dependent gene regulation system is referred to
as quorum sensing [6], [19], QS for short. In this respect, a comprehensive literature
about QS can be found at http://www.nottingham.ac.uk/quorum/– a web page
maintained by the Nottingham Quorum Sensing Group.

This phenomenon was first investigated in the marine bacterium Vibrio Fis-
cheri. This bacterium exists naturally either in a free-living planktonic state
or as a symbiont of certain luminescent squid. The bacteria colonise specialised
light organs in the squid, which cause it to luminesce. Luminescence in the squid
is thought to be involved in the attraction of prey, camouflage and communica-
tion between different individuals. The source of the luminescence is the bacteria

On P Systems as a Modelling Tool for Biological Systems 121

themselves. The bacteria only luminesce when colonising the light organs and
do not emit light in the free-living state. The QS process in Vibrio Fischeri re-
lies on the synthesis, accumulation and subsequent sensing of a signal molecule,
3-oxo-C6-HSL, an N-acyl homoserine lactone or AHL, we will call it OHHL.
When only a small number of bacteria are present these proteins are produced
at a low level. OHHL diffuses out of the bacterial cells and into the surrounding
environment. At high cell density the signal accumulates in the area surrounding
the bacteria and can also diffuse to the inside of the bacterial cells. The signal is
able to interact with the LuxR protein to form the complex LuxR-OHHL. This
complex binds to a region of DNA called the Lux Box causing the transcription
of the luminescence genes, a small cluster of 5 genes, luxCDABE. As well as the
transcription of LuxR and OHHL, which are therefore called autoinducers as
they activate their own synthesis. In this way, bacteria can effectively communi-
cate each other by responding to changes in the concentration of signal molecules
inside and in the surrounding environment.

Next, a model for quorum sensing in Vibrio fischeri is obtained by considering
a P system consisting of a number of distinct compartments placed inside an
unique main membrane, which represents the environment, and where each one
of these compartments represents a bacterium and contains rules describing the
reactions involved in the regulation of the luminescence genes. Compartments
representing bacteria interact each other by sending objects into the environment
and receiving some others from it. Specifically, given a population of m ≥ 1
bacteria, we define the P system Π(m) such that

Π(m) = (O, {e, b}, μ, C1, C2, . . . , Cm, Cm+1, R)

and where:

• O = {OHHL,LuxR,LuxR-OHHL,LuxBox}∪
∪{LuxBox-LuxR-OHHL},

• μ = [[]1 []2 . . . []m]m+1,
• Ci = (b, LuxBox), for each 1 ≤ i ≤ m,
• Cm+1 = (e, λ),
• R = Rb∪Re with Rb the set of rules to be used inside compartments labelled

by b and Re the set of rules to be used inside the compartment labelled by e.
Each compartment labelled by b represents a bacterium whereas the unique
compartment labelled by e represents the environment.

Notice that the P system Π(m) is a parametric one as its definition depends on
the value m, the number of bacteria in the colony.

The set Rb contains the following rules:
An unstressed bacterium produces the signal OHHL and the protein LuxR at

basal rates - very low rates:

1 : [LuxBox]b
k1→ [LuxBox, OHHL]b,

2 : [LuxBox]b
k2→ [LuxBox, LuxR]b.

122 F. Bernardini et al.

The protein LuxR acts as a receptor and OHHL as its ligand. Both together
form the complex LuxR-OHHL which in turn can dissociate into OHHL and
LuxR again:

3 : [LuxR, OHHL]b
k3→ [LuxR-OHHL]b,

4 : [LuxR-OHHL]b
k4→ [LuxR, OHHL]b.

The complex LuxR-OHHL acts as a transcription factor or as a promoter binding
to a region of the bacterium DNA called LuxBox and starting the transcription of
different proteins involved in the production of light. The complex LuxR-OHHL
can also dissociate from the LuxBox:

5 : [LuxBox, LuxR-OHHL]b
k5→ [LuxBox-LuxR-OHHL]b,

6 : [LuxBox-LuxR-OHHL]b
k6→ [LuxBox, LuxR-OHHL]b.

The binding of the complex LuxR-OHHL to the LuxBox produces a massive
increase of the production of the signal OHHL and of the protein LuxR. In this
sense OHHL and LuxR are autoinducers:

7 : [LuxBox-LuxR-OHHL]b
k7→ [LuxBox-LuxR-OHHL, OHHL]b,

8 : [LuxBox-LuxR-OHHL]b
k8→ [LuxBox-LuxR-OHHL, LuxR]b.

OHHL is a small molecule that diffuses outside the bacterium and so it can
accumulate in the environment:

9 : [OHHL]b
k9→ OHHL []b.

Due to the presence of proteases and other chemical substances OHHL, LuxR and
the complex LuxR-OHHL undergo a process of degradation in the bacterium:

10 : [OHHL]b
k10→ []b,

11 : [LuxR]b
k11→ []b,

12 : [LuxR-OHHL]b
k12→ []b.

The set Re contains the following rules:
When the signal OHHL accumulates in the environment it can diffuse inside

the bacteria. OHHL also undergoes a process of degradation in the environment

13 : OHHL []b
k13→ [OHHL]b,

14 : [OHHL]e
k14→ []e.

4 Simulation Results and Discussion

In order to implement our model in the aforementioned simulator, we have cho-
sen the following set of kinetic constants [5], k1 = 2, k2 = 2, k3 = 9, k4 =
1, k5 = 10, k6 = 2, k7 = 250, k8 = 200, k9 = 1, k10 = 50, k11 = 30, k12 = 15,

On P Systems as a Modelling Tool for Biological Systems 123

k13 = 20, k14 = 20. These values have been set such that the degradation rates
(k11, k12, k13, k14) compensate the basal production of the signal and the protein
(k1, k2) and such that the production rates when the regulatory region is occu-
pied (k7, k8) produce a massive increase in the transcription of the signal and
the protein.

We have studied the behaviour of the system for populations of different sizes
to examine how bacteria can sense the number of bacteria in the population and
produce light only when the number of individuals is big enough. First we have
considered a population of 300 bacteria. Next we show in Figure 2 the evolution
over time of the number of quorated bacteria and the number of signal (OHHL)
in the environment. We say a bacterium is quorated if and only if, the LuxBox
is occupied by the complex LuxR-OHHL.

It may be observed that the signal, OHHL, accumulates in the environment
until saturation and then, when this threshold is reached, bacteria are able to
detect that the size of the population is big enough. At the beginning, a few bac-
teria get quorated and then they accelerate a process of recruitment that makes
the whole population behave in a coordinated way. There exists a correlation
between the number of signals in the environment and the number of quorated
bacteria such that, when the number of signals in the environment drops, so
does the number of quorated bacteria and when the signal goes up it produces
a recruitment of more bacteria.

Now we show in Figure 3 the evolution over time of the average bacterium
across the population of the number of signal (OHHL), protein (LuxR) and the
complex (LuxR-OHHL).

Note that on average there is a correlation among the signal OHHL, the pro-
tein LuxR and the complex LuxR-OHHL. Moreover, the patterns in the evolution
of the average number of complexes across the population and the number of
quorated bacteria are similar.

0 4 8 12 16 20 24 28 32 36 40
0

40

80

120

160

200

240

Time

OHHL
Quorated Bacteria

Fig. 2. The evolution of the quorated bacteria and the number of OHHL in the envi-
ronment

124 F. Bernardini et al.

0 4 8 12 16 20 24 28 32 36 40
0

1

2

3

4

5

Time

Number of Molecules

OHHL
LuxR
LuxR-OHHL

Fig. 3. The evolution of the number of signal molecule (OHHL), protein (LuxR) and
the complex (LuxR-OHHL) for the average bacterium

0 4 8 12 16 20 24 28 32 36 40
0

2

4

6

8

10

12

Time

OHHL

0 4 8 12 16 20 24 28 32 36 40
0

2

4

6

8

10

12

Time

OHHL

Fig. 4. The correlation between the amount of signal inside each bacterium (left) and
the occupation of the LuxBox by the complex (right)

In our approach the behaviour of each individual in the colony can be tracked.
We have taken a sample of two bacteria and have studied (see Figure 4) the
correlation between the amount of signal inside each bacterium (left) and the
occupation of the LuxBox by the complex (right) which represents that the
bacterium has been quorated.

In Figure 5 it is shown that the number of signal molecules inside the bac-
terium has to exceed a threshold in order to recruit the bacterium. It may be
observed that when the number of molecules is greater than the threshold the
bacterium gets quorated or up-regulated (left), but when there are less signal
molecules the bacterium switches off (right) the system and goes down-regulated.

We can also study how rules are applied across the evolution of the system.
For instance, we can show the evolution of the number of applications of the
rule representing the basal production of the signal OHHL (Figure 6) and the
number of applications of the rules representing the production of the signal
OHHL after the binding of the complex to the LuxBox (Figure 7).

On P Systems as a Modelling Tool for Biological Systems 125

0 4 8 12 16 20 24 28 32 36 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Time

LuxBox occupped

0 4 8 12 16 20 24 28 32 36 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Time

LuxBox occupied

Fig. 5. The number of signal molecules inside bacterium when the level is greater than
the threshold (left) and under the threshold (right)

0 4 8 12 16 20 24 28 32 36 40
0

40

80

120

160

200

240

[LuxBox]b −−> [LuxBox, OHHL]b

Time

Number of Applications

Fig. 6. The evolution of the number of applications of the rule representing the basal
production of the signal OHHL

This can be compared with the number of applications of the rules represent-
ing the production of the signal OHHL after the binding of the complex to the
LuxBox. In this way, we can show how at the beginning the basal production
rule is the most applied rule while the other one is seldomly applied. Then, as
a result of the recruitment process the bacteria sense the size of the population
and they behave in a coordinate way by applying massively the third rule. Thus,
the system moves from a down-regulated state to an up-regulated one where
the bacteria collectively emit light. Specifically, this can be clearly seen if you
compare the last graph above with the next one. Two similar graphs can be
obtained for the rules producing the protein LuxR.

Finally, in order to study how bacteria can sense the number of individuals
in the colony and get quorated only when the size of the colony is big enough,
we have examined the behaviour of a population of only 10 bacteria. In this
case, as shown in Figure 8, we observed that the recruitment process does
not take place. Only one of the bacteria guessed wrong the size of the popu-

126 F. Bernardini et al.

0 4 8 12 16 20 24 28 32 36 40
0

40

80

120

160

200

240

280

320

360

[LuxBox−LuxR−OHHL]b −−> [LuxBox−LuxR−OHHL , OHHL]b

Time

Number of Applications

Fig. 7. The evolution of the number of applications of the rule representing the pro-
duction of the signal OHHL after binding the complex to the LuxBox

0.00 4.29 8.57 12.86 17.14 21.43 25.71 30.00
0

1

2

3

4

5

6

7

8

9

10

Time

Quorated Bacteria

Fig. 8. No recruitment

lation and got up-regulated but then it switches off after sensing that the signal
does not accumulate in the environment. The average number of molecules (see
Figure 9) shows no pattern which means that the colony is not coordinating its
behaviour.

Furthermore, we tracked the behaviour of two bacteria in the colony (see
Figure 10) by obtaining that one never got quorated whereas the other one got
quorated. Observe that this bacterium got quorated because the amount of signal
inside exceeded the threshold.

Summing up, our simulations show that Vibrio fischeri has a quorum sensing
system where a single bacterium can guess that the size of the population is
big enough and starts to produce light. Then this bacterium starts to massively

On P Systems as a Modelling Tool for Biological Systems 127

0.00 4.29 8.57 12.86 17.14 21.43 25.71 30.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time

Number of Molecules

OHHL
LuxR
LuxR-OHHL

Fig. 9. No pattern of coordinating behaviour

0.00 4.29 8.57 12.86 17.14 21.43 25.71 30.00
0

1

2

3

4

5

6

7

8

9

10

BACTERIUM 1

Time

OHHL

0.00 4.29 8.57 12.86 17.14 21.43 25.71 30.00
0

1

2

3

4

5

6

7

8

9

10

BACTERIUM 2

Time

OHHL

0.00 4.29 8.57 12.86 17.14 21.43 25.71 30.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

BACTERIUM 1

Time

LuxBox occupied

0.00 4.29 8.57 12.86 17.14 21.43 25.71 30.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

BACTERIUM 2

Time

LuxBox occupied

Fig. 10. The behaviour of two bacteria

produce signals, if the signal does not accumulate in the environment meaning
that the guess was wrong it switches off. On the other hand if the signal does ac-
cumulate in the environment, meaning that the number of bacteria in the colony
is big, then a recruitment process takes place that makes the whole population
of bacteria to luminesce. These results agree well with in vitro experiments and
with results obtained by using differential equations [6].

128 F. Bernardini et al.

5 Implementation of the P System Model

We implemented the P system model of Definition 1 by following the approach
proposed in [12] that is based on an initial specification in SBML of the model
and a subsequent automatic generation of the executable code. In this section,
we briefly describe the data structures necessary to support the execution of our
variant of P systems. The language chosen is Scilab but similar considerations
may apply to other commonly-used programming languages, such as C, Java,
MatLab. Moreover, our approach appears to be fairly independent from the
particular choice of P system variant. An SBML specification of the P system
modelling quorum sensing in Vibrio fischeri is reported as an appendix.

The data structures used to represent the different components of P systems
are the follows:

• Rules:

Recall that we are using rules of the form:

j : u [v]l
kj→ u′[v′]l

Which will be represented as:

Comp father(l) l kj multisets

with multisets = length(u) u length(v) v length(u′) u′ length(v′) v′ and where
Comp represents the compartment where the rule j can be applied, father(l)
represents the father of the membrane with label l in the membrane structure, l
is the label of the compartment involved in the rule and kj is the kinetic constant.
length(u), length(v), length(u′) and length(v′) tell us the size of u, v, u′ and v′,
respectively. And u and v are the strings of objects representing the left-hand
side (reactants) and u′ and v′ represent the right-hand side (products) of the
rule j.

• Compartments:

Each compartment is represented by:

label n-copies multiplicity-of -o1 · · · multiplicity-of -on

The first component represents the label associated with the compartment, the
second component is the number of instances of the compartment in the initial
configuration; the other components describe for each object oi ∈ O its corre-
sponding multiplicity inside that compartment.

• Configurations of the system:

A configuration of the system is made up of compartments; each compartment
is represented:

identifier label multiplicity-of -o1 · · · multiplicity-of -on

On P Systems as a Modelling Tool for Biological Systems 129

identifier is an index associated in a one-to-one manner with each compart-
ment, label is the label of the compartment and the last n components are the
multiplicities of the objects in the compartment in the current configuration of
the system.

Thus, the operation of a multiset u with a multiset v can be implemented by
just subtracting and adding the corresponding vectors to the vectors representing
the content of a certain compartment.

6 Conclusions

There is a growing interest in membrane computing in using P systems for
modelling biological systems. This often requires the introduction into the model
of quantitative aspects featuring the “reality” of the biological phenomenon to
be modelled which are not usually considered in the abstract model of P systems.
In this paper, these quantitative aspects have been considered for P systems by
associating to each rule a real number (i.e., a kinetic constant), and by defining
a Gillespie-like strategy for the application of the rules. This approach has been
used to model the quorum sensing process in a colony of Vibrio fischeri bacteria
by obtaining some simulation results which show the transition from a population
of down-regulated cells to a population of up-regulated cells.

Our interest for the future is in developing a flexible software platform for
running in silico experiments that integrates tools for the specification, exe-
cution and verification/validation of P system models. The details of the im-
plementation provided in this paper can be viewed as a first step in this di-
rection. A model checking approach is now being investigated that is based
on Maude term rewriting tool [2]. In this framework, a central issue is the in-
tegration of the specification at individual level (e.g., a bacterium) with the
specification at population level (e.g., the colony) such us to allow us to model
more complex and larger biological systems. In this respect, a number of case
studies need to be identified together with appropriate simulation/validation/
verification techniques.

Acknowledgements

The research of F.B. and M.G. has been supported by the Engineer-
ing and Physical Sciences Research Council of United Kingdom (EPSRC),
grant GR/R84221/01. N.K. acknowledges the support of the Biotechnological
and Biological Sciences Research Council (BBSRC) for supporting his grant
BB/C511764/1 and also to the EPSRC for the grant GR/T07534/01. The re-
search of M.P. and F.R. has been supported by the Ministero de Ciencia y
Tecnoloǵıa of Spain, by the Plan Nacional de I+D+I (2002-2003) (TIC-2002-
04220-C03-01), co-financed by FEDER funds, and by a FPI fellowship from the
Universidad de Seville, Spain.

130 F. Bernardini et al.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002). The
Molecular Biology of The Cell. Fourth Edition. Garland Publ. Inc., London.

2. Andrei, O., Ciobanu, G., Lucanu, D., (2005). Executable Specifications of P Sys-
tems. In [10], 126–145

3. Bernardini, F., Gheorghe, M., (2004). Population P systems. Journal of Universal
Computer Science, 10, 509–539.

4. Besozzi, D., (2004). Computational and Modelling Power of P systems. PhD Thesis,
Università degli Studi di Milano, Milan, Italy.

5. Bianco, L., Fontana, F., Franco, G., Manca, V. (2005). P Systems for Biological
Dynamics. In: Applications of Membrane Computing (Ciobanu, G., Păun, Gh.,
Pérez-Jiménez, M.J., eds.), Springer-Verlag, Berlin, Heidelberg, New York, 81–126.

6. Fargerströn, T., James, G., James, S., Kjelleberg, S., Nilsson, P., (2000). Lumi-
nescence Control in the Marine Bacterium Vibrio Fischeri : An Analysis of the
Dynamics of lux Regulation. Journal of Molecular Biology, 296, 1127–1137.

7. Gibson, M.A., Bruck, J., (2000). Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels. Journal of Physical Chemistry,
104, 25, 1876–1889.

8. Gillespie, D.T., (1977). Exact Stochastic Simulation of Coupled Chemical Reac-
tions. The Journal of Physical Chemistry, 81, 25, 2340–2361.

9. Martin-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A., eds., (2004).
Membrane Computing. International Workshop, WMC 2003, Tarragona, Spain,
July 2003. Revised Papers. Lecture Notes in Computer Science, 2933, Springer-
Verlag, Berlin, Heidelberg, New York.

10. Mauri, G., Păun, Gh., Pérez-Jiménez, M., J., Rozenberg, G., Salomaa, A., eds.,
(2005). Membrane Computing. International Workshop, WMC 2004, Milan, Italy,
June 2004. Revised and Invited Papers. Lecture Notes in Computer Science, 3365,
Springer-Verlag, Berlin, Heidelberg, New York.

11. Meng, T.C., Somani S., Dhar, P., (2004). Modelling and Simulation of Biological
Systems with Stochasticity. In Silico Biology, 4, 0024.

12. Nepomuceno, I, Nepomuceno, J.,A, Romero-Campero, F., (2005) . A Tool for Us-
ing the SBML Format to Represent P System which Model Biological Reaction
Networks. In: Proceeding of the Third Brainstorming Week in Membrane Comput-
ing, Seville, Spain, January 31st-February 4th, 2005, University of Seville, Seville,
Spain.

13. Păun, Gh., (2000). Computing with Membranes. Journal of Computer and System
Sciences, 61, 1, 108–143.

14. Păun, Gh. (2002). Membrane Computing. An Introduction. Springer-Verlag, Berlin,
Heidelberg, New York.

15. Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C., eds., (2003). Membrane
Computing. International Workshop, WMC-CdeA 02, Curtea de Arges, Romania,
August 19-23, 2002. Revised Papers. Lecture Notes in Computer Science, 2597,
Springer-Verlag, Berlin, Heidelberg, New York.

16. Pérez-Jiménez, M.J.; Romero-Campero, F.J.,(2005). Modelling EGFR Signalling
Cascade Using Continuous Membrane Systems. In: Proceedings of the Third Inter-
national Workshop on Computational Methods in Systems Biology 2005 (CMSB
2005) (Plotkin, G., ed.), University of Edinburgh, Edinburgh, United Kingdom.

17. Philips, A., Cardelli. L., (2004). A Correct Abstract Machine for the Stochastic
Pi-calculus. Electronical Notes in Theoretical Computer Science, to appear.

On P Systems as a Modelling Tool for Biological Systems 131

18. Priami, C., Regev, A., Shapiro, E., Silverman, W., (2001). Application of a Stochas-
tic Name-Passing Calculus to Representation and Simulation of Molecular Pro-
cesses. Information Processing Letters, 80, 25–31.

19. Taga, M., E., Bassler, B., L., (2003). Chemical Communication among Bacteria.
Proceedings of the National Academy of Sciences of the United States of America
(PNAS), 100, 2, 14549–14554.

A An SBML Specification

Consider the P system Π(m), with m = 100, defined in Section 3. We start by
specifying the structure of the system by listing the compartments present in
the system and the relationships of inclusion between them.

<listOfCompartments>
<compartment id="e" />
<compartment id="b" outside="b"/>

</listOfCompartments>

There are two different “types” of compartments: compartments labelled by e
and compartment labelled by b; all the compartments labelled by b, the bacteria,
are included in a compartment with label e, the environment. Specifically, this is
just a shorthand for a membrane structure consisting of a number of membranes,
each one associated with a compartment labelled by b, contained inside an unique
main membrane associated with a compartment labelled by e. The actual number
of bacteria in the system is specified as a parameter of the system together with
the constants ki, 1 ≤ i ≤ 14.

<listOfParameters>
<parameter id="k1" value="2’’constant="true"/>
<parameter id="k2" value="2" constant="ture"/>
<parameter id="k3" value="9" constant="true"/>
<parameter id="k4" value="1" constant="true"/>
<parameter id="k5" value="10" constant="true"/>
<parameter id="k6" value="2" constant="true"/>
<parameter id="k7" value="250" constant="true"/>
<parameter id="k8" value="200" constant="true"/>
<parameter id="k9" value="1" constant="true"/>
<parameter id="k10" value="50" constant="true"/>
<parameter id="k11" value="30" constant="true"/>
<parameter id="k12" value="15" constant="true"/>
<parameter id="k13" value="20" constant="true"/>
<parameter id="k14" value="20" constant="true"/>
<parameter id="m" value="100" constant="true"/>

</listOfParameters>

Next, we specify the initial distribution of objects inside the system by listing
out the species and their initial concentration inside each compartment.

132 F. Bernardini et al.

<listOfSpecies>
<specie id="OHHL_e"
initialConcentration="0" compartment="e" />
<specie id="OHHL_b"
initialConcentration="0" compartment="b" />
<specie id="LuxR_b"
initialConcentration="0" compartment="b" />
<specie id="LuxR_OHHL_b"
initialConcentration="0" compartment="b" />
<specie id="Lux_Box_b"
initialConcentration="1" compartment="b" />
<specie id="Lux_Box_LuxR_OHHL_b"
initialConcentration="0" compartment="b" />

</listOfSpecies>

The objects that can be contained inside the environment are labelled by e
whereas the objects that can appear inside a bacterium are labelled by b.

Finally we specify the rules as a list of SBML reactions. We just report here
two of them as an example.

<reaction name="Reaction1" reversible="false">
<listOfReactants>
<specieReference specie="Lux_Box_b" />

</listOfReactants>
<listOfProducts>
<specieReference specie="Lux_Box_b" />
<specieReference specie="OHHL_b" />

</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<ci>k1</ci>
<ci>Lux_Box_b</ci>

</apply>
</math>

</kineticLaw>
</reaction>

<reaction name="Reaction9" reversible="false">
<listOfReactants>
<specieReference specie="OHHL_b" />

</listOfReactants>
<listOfProducts>
<specieReference specie="OHHL_e" />

</listOfProducts>
<kineticLaw>

On P Systems as a Modelling Tool for Biological Systems 133

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<ci>k9</ci>
<ci>OHHL_b</ci>

</apply>
</math>

</kineticLaw>
</reaction>

The movement of objects is specified by changing the labels of the products
according to the labels of the reactants.

Encoding-Decoding Transitional Systems
for Classes of P Systems

Luca Bianco and Vincenzo Manca

University of Verona,
Department of Computer Science,

15 strada Le Grazie – 37134 Verona, Italy
bianco@sci.univr.it, vincenzo.manca@univr.it

Abstract. A useful tool in the research on computation systems, and
in particular on P systems, is the translation of a system under inves-
tigation into another one which is, in some sense, better known. Such
kinds of translations were the bases of many computational universal-
ity and equivalence results in formal languages theory and in membrane
computing. Here we outline a general framework for comparing systems
at various descriptive levels and very different in nature.

1 Introduction

A fundamental aspect in the investigation of computation systems, and especially
of P systems, is the use of many translation methods in order to pass from a
certain kind of systems to another one. In this way it is possible to perform
all computations in the translated system, rather than in the original one. For
example, many computational universality and equivalence results on P systems
[6, 5, 9] are based on such a technique.

The aim of this work is to define a notion of computational encoding, which
allows us to extend to complex membrane structures the metabolic algorithm
[2, 3, 4] that was developed for basic membrane systems and has proved to be
very useful in the simulation of many biological phenomena. In this preliminary
work, we give fundamental definitions and the main framework of this approach,
then we discuss two applications of these concepts.

Our notion of computational encoding resembles, in some aspects, the notion
of bisimulation developed in concurrency theory [7]. However, computational
encoding does not intend to cope with the operational semantics of systems or
processes “at the same level”, but rather it deals with the reduction of a compu-
tation from a “machine” to another one at a different (simpler or more complex)
descriptive level. In fact, this notion of encoding is related to the interpretation
of a computational system into another one. This aspect is apparent in Figure 1,
if we compare the upper computation with the lower one, where in general one
step at the upper level corresponds to many steps at the lower level. The ratio be-
tween the computation lengths is a parameter related to the different descriptive
levels of the two corresponding transitional systems.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 134–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Encoding-Decoding Transitional Systems for Classes of P Systems 135

2 Transitional Systems

Let us start by introducing formally the notion of transitional system.

Definition 1. A transitional system is a 7-tuple Π = (A,C,R, σ,⇒, G, F),
where:

– A is the alphabet;
– C is a set of strings defined over A, representing configurations of the system;
– R is a set of rewriting rules, defined over C;
– σ is the transitional or program function, where ∀μ ∈ C, σ(μ) is a set of

sets of rules, that is, every element Q ∈ σ(μ) contains the rules that are
simultaneously applicable to the configuration μ ∈ C;

– ⇒ is the transition, a ternary relation C×℘(R)×C. Given two configurations
μ, μ′ ∈ C and a subset of rules Q ∈ σ(μ), we denote by μ ⇒Q μ′ the
transition from μ to μ′ by means of the application of the set of rules Q;

– G is a set of sequences of transitions and its elements are called computa-
tions. Given an initial configuration μ1, a computation Γ ∈ G is denoted
by:

Γ = (μ1 ⇒Q1 μ2 ⇒Q2 · · · ⇒Qn−1 μn),

where for each i:
(a) μi ∈ C,
(b) σ(μi) = Qi,
(c) μi ⇒Qi μi+1,
(d) μn ∈ F ;

– F ⊆ C is the set of final configurations.

Note that if the set of initial configurations is fully specified, thenG is completely
defined by the other elements of the transitional system. As it is apparent from
the notation, the computation Γ = (μ1 ⇒Q1 μ2 ⇒Q2 · · · ⇒Qn−1 μn) is basically
a sequence of transitions between configurations, originated from the initial con-
figuration μ1 by means of the application of the rules of the system.

It is useful to denote with Γ (i) the ith configuration of the computation Γ
and with lΓ = |Γ | the length of the computation Γ .

In the following, μ ⇒∗Q μ′ is a compact representation meaning the existence
of a computation μ ⇒Q1 μ2 ⇒Q2 · · · ⇒Qn−1 μn for some n ∈ N where, for every
1 ≤ i ≤ n, Qi ⊆ Q.

3 Computational Encodings

We introduce two distinct notions of computational encodings between different
transitional systems.

Definition 2. A computational encoding E from a transitional system Π =
(A,C,R, σ,⇒, G, F) to another transitional system Π ′ = (A′, C′, R′, σ′,⇒′, G′,
F ′) is a triple of functions E = (γconf , γrule, γcomp) with:

136 L. Bianco and V. Manca

– γconf : C → C′ is an injective function used to encode configurations of Π
into configurations of Π ′,

– γrule : R → ℘(R′) is an injective function encoding rules of Π into a set of
rules of Π ′, where ℘(R′) is the power set of R′,

– γcomp : G → G′ is an injective function used to encode computations of Π
into computations of Π ′,

in which, for every Γ ∈ G, the following conditions are satisfied:

(i) γconf (Γ (1)) = γcomp(Γ)(1),
(ii) γconf (Γ (lΓ)) = γcomp(Γ)(lΓ).

Given a computational encoding E that encodes a transitional system Π into
another one Π ′, we write Π ′ = E(Π).

It is interesting to point out that, due to the injectivity of γconf , a mirror
principle holds. In fact, starting from an initial configuration μ of Π , we can
encode it in μ′ = γconf (μ) of E(Π) and in this encoded transitional system we
can execute the computation Γ ′ until we reach its last configuration Γ ′(lΓ ′).
After this, we can obtain the final configuration Γ (lΓ) = γ−1

conf (Γ ′(lΓ ′)) of the
computation Γ in the transitional system Π . The mirror principle becomes in-
teresting when we can encode a transitional system into another one, that is
more efficient, according to some computational perspective.

Let us introduce a more strict notion of encoding, in which we require a step-
by-step correspondence between configurations of a transitional system Π and
their corresponding configurations in E(Π):

Definition 3. A computational encoding E = (γcomp, γconf , γrule) from a tran-
sitional system Π = (A,C,R, σ,⇒, G, F) to another one Π ′ = (A′, C′, R′, σ′,⇒′,
G′, F ′) is strict (or 1-1 step) if the step commutativity holds for every Γ ∈ G:

(i) γcomp(Γ)(i) = γconf(Γ (i)), ∀ i, 1 ≤ i ≤ lΓ ,
(ii) Γ (i) ⇒Q Γ (i+ 1) ⇔ γconf (Γ (i)) ⇒′

γrule(Q) γconf (Γ (i+ 1)).

Γ ′ = μ′
1 =⇒′

∗Q′
1
μ′

2 =⇒′
∗Q′

2
. . . =⇒′

∗Q′
n−1

μ′
n

Γ = μ1 =⇒Q1 μ2 =⇒Q2 . . . =⇒Qn−1 μn

�

γcomp

�

γconf

�

γrule

�

γconf

�

γ−1
conf

Fig. 1. Schematic representation of a computational encoding

Encoding-Decoding Transitional Systems for Classes of P Systems 137

Note that, when a computational encoding E is strict, γcomp is completely de-
termined by the couple (γconf , γrule).

Figure 1 depicts a schematic representation of a computational encoding. The
three encoding functions (γconf , γrule, γcomp) are represented as arrows which
connect elements of the computation Γ to the corresponding ones in computation
Γ ′. In the case of strict encoding the relationship between elements of Γ and the
corresponding ones in Γ ′ can be extended to all elements of computations. This
means that in the previous picture we have to remove the symbols * from rules
and add arrows going from all up configurations and rules to the corresponding
elements on the lower path.

4 Encoding Examples

The definitions of transitional systems and of computational encoding, expressed
in previous sections, allow us to use the general schema of Figure 2 to compare
the computational dynamics of different systems. In fact, starting from two dis-
tinct systems S1 and S2 of different nature, we can represent them in terms of
transitional systems (respectively Π1 and Π2) and then compare their dynamics
in the common and homogeneous environment of the transitional systems.

Π1S1

Π2S2

Fig. 2. General framework for systems encodings

4.1 Encoding n-PBR Systems into 0-PBR Systems

We apply a similar schema to that expressed previously (refer to Figure 3) in order
to determinate the dynamics of an n-PBR system by means of a 0-PBR system.
We have defined the metabolic algorithm [2, 3, 4], only in the case of 0-PBR sys-
tems, as a method to compute the dynamics of many interesting biological phe-
nomena. Now we can extend its applicability to the case of n-PBR systems (i.e.,
PBR systems with n > 0 membranes) by using a strict computational encoding.

PBR systems [3, 4] are an extension and generalization of PB systems [1]. They
introduce reactionmapsneeded todescribe their time-varyingdynamics andgener-
alize PB Systems rules in such a way to obtain forms allowing us to perform an easy
translation from multi-membrane (n-PBR) to zero-membrane (0-PBR) systems.

138 L. Bianco and V. Manca

�
�

�
�

�� ��

� Π2

Π1

�

�

�

system
encoding

transitional

encoding

transitional

decoding

compositional
encoding

?

S2 ∈ 0-PBR

S1 ∈ n-PBR=

Fig. 3. Simulation of a n-PBR system by means of a 0-PBR system

A n-PBR system (i.e., a PBR system with n membranes) is a construct

Π = (A, μ0, R, F,E), (1)

where:

– A is the alphabet of symbols;
– μ0, is the initial configuration, a string in which alphabet symbols contained

in n nested parentheses, labelled 0, . . . , n−1, denote the objects contained in
corresponding membranes. For instance, the configuration [1a[2bc]2[3d]3]1,
where a, b, c, d ∈ A, says a belongs to membrane 1, bc to membrane 2, and
d to membrane 3, moreover that membrane 1 contains membranes 2 and 3.

– R is a finite set of rules of the following three possible forms, with α, β, δ, γ ∈
A∗:
(a) [h[jα[iβ → [h[jδ[iγ, with 1 ≤ j, i ≤ n − 1 and 0 ≤ h ≤ n − 1, telling

that α is transformed into δ in membrane j and β is transformed into γ
in membrane i, moreover that membrane i is contained into membrane
j and they are both placed inside membrane h;

(b) [0α[iβ → [0δ[iγ, with 1 ≤ i ≤ n − 1, telling that α is transformed into
δ in membrane 0 (e.g., the skin membrane) and β is transformed into
γ in membrane i, moreover that membrane i is contained in the skin
membrane;

(c) [0β → [0αβ, telling that α is created inside the skin membrane in pres-
ence of β.

Note that [iα[jβ means that α is a substring of the string representing a mul-
tiset of objects contained in membrane i, which in turn contains membrane
j comprising β.

– F is a finite set of functions called reaction maps, each associated to a rule
in a one-to-one manner;

– E is the environment, a set of rules of the type (c).

Note that when n = 0 there are no membranes in the system. In this case a
configuration is simply a string over the alphabet A, rules of type (a) and (b)
have the form α → β, while rules of type (c) have the form β → αβ, with
α, β, γ ∈ A∗.

Encoding-Decoding Transitional Systems for Classes of P Systems 139

We refer the reader to [3, 4] for more details on reaction maps, their relation-
ship with rules and for an accurate description on how these elements are used
by the metabolic algorithm.

The encoding strategy from n-PBR into 0-PBR systems is made of two parts,
the former managing configurations, the latter dealing with rules.

The following set of rewriting rules defines an encoding γconf of n-PBR con-
figurations into 0-PBR configurations:

[
i
]
i

→ λ,
[iX → Xi[i,
[jXi → Xj,i[j ,

[hXj,i → Xj,i[h,
X0 → X0,0,

(2)

in which X ∈ A, 0 ≤ i, j, h ≤ n−1, with i �= j �= h. When these rules are applied
to configurations of the n-PBR system they provide configurations of the 0-PBR
system. The idea behind this encoding is to get rid of membranes, by indexing
objects with the identifiers of membranes containing them. To keep track of the
whole membrane structure it is sufficient to mark every object with the label j of
the membrane containing it in combination with the label i of the immediately
outer membrane. We encode an object X within the skin membrane (that is
conventionally labelled with 0) as X0,0.

Before proceeding any further, let us see an encoding example for the following
configuration of a 3 membrane system:

[0 A [1 BC]1 [2 A]2 B]0,

that, according to rules (2), applied in a maximal parallel way, originate the
following sequence of strings:

[0 A [1 BC]1[2 A]2 B]0 → A0 [0 B1 [1 C]1 A2 [2]2 B]0
→ A0,0 [0 B1C1 [1]1 A2B]0 → A0,0 B0,1 [0 C1A2B]0
→ A0,0B0,1C0,1[0 A2B]0 → A0,0B0,1C0,1A0,2 [0 B]0
→ A0,0B0,1C0,1A0,2B0 [0]0 → A0,0B0,1C0,1A0,2B0,0,

(3)

where only the first and the last strings represent admissible configurations,
respectively for a 3-PBR system and for a 0-PBR system.

The second part of the encoding deals with meta-rules which establish how
to transform n-PBR rules into 0-PBR rules. As defined in (1), an n-PBR system
has three types of rules. So, in the 0-PBR system:

– rules of type (a) must be substituted by rules in the form αh,jβj,i → δh,jγj,i;
– rules of type (b) must be substituted by rules in the form α0,0β0,i → δ0,0γ0,i;
– rules of type (c) must be substituted with rules in the form β0,0 → α0,0β0,0.

To summarize, the encoding of an n-PBR into a 0-PBR system changes the
configuration and the rules by removing all parentheses (that represent mem-
branes). Localization is now encoded into symbols, this making the alphabet

140 L. Bianco and V. Manca

different: every symbol in the 0-PBR system is indexed with the two innermost
membranes containing it (in the n-PBR system). Obviously, the alphabet A1
of a 0-PBR system that has been derived by an n-PBR system can have larger
cardinality than A.

It is important to notice that in this case the computational encoding E =
(γconf , γrule, γcomp) is strict, for this reason γcomp is fully specified once we give
γconf and γrule. Therefore, from the mirror principle we can calculate the dy-
namics of an n-PBR system by means of a 0-PBR system, and this construction
can be used to extend the applicability of the metabolic algorithm to the case
of n-PBR systems. The following picture illustrates the underlying schema of
the method.

4.2 Encoding a Register Machine into a Cell-Like P System

Inspired from the construction proposed in [5], we represent here another exam-
ple of transitional encoding, dealing with the case of a register machine [8] and
a cell-like P system [9].

A register machine is a theoretical computing device composed by a set of
registers containing positive integer values and by a program. The program is
made by a sequence of instructions each one of them uniquely associated to a
label. Every instruction specifies how to change the value of a register and the
instruction that will follow its execution. Following the Minsky formulation, a
register machine is a quintuple M = (m,B, l0, lh, P), where:

– m is the number of registers;
– B ⊆ N is the set of instruction labels;
– l0 is the label of the first instruction;
– lh is the label of an halting instruction (i.e., an instruction halting the com-

putation of the machine);
– P is a set of instructions that are of three different types:

• ADD(r), li: adds 1 to register r and forces the machine to execute in-
struction li;

• SUB(r), li, lj : if register r is not empty the machine subtracts 1 to it and
then executes instruction li otherwise no subtraction is performed and
the machine executes instruction labelled lj;

• HALT: stops the computation of the machine.
Each rule is uniquely identified by its label, for this reason in the following
we will denote each rule φ ∈ P as lφ : φ where lφ is the label of rule φ.

A cell-like P system of degree m (i.e., with m membranes) has the form
Π = (O,H, η, w1, . . . , wm,R1, . . . ,Rm), where:

– O is the alphabet;
– H is a set of unique membrane labels;
– η is the membrane structure composed by m membranes, labelled 1, . . . ,m

that can be represented, as usual in P systems, by means of a string of
matching indexed parentheses [9];

Encoding-Decoding Transitional Systems for Classes of P Systems 141

– wi ∈ O∗, 1 ≤ i ≤ m, is the multiset of objects contained in membrane i;
– Ri is the set of rules associated to membrane i; rules can be of two distinct

types:
• multiset processing rules: u → v or u → vδ, with u ∈ O+, v ∈ (O ×
TAR)∗, for TAR = {here, out, in}, and δ is the special symbol repre-
senting membrane dissolution;

• membrane creation rules: a → [v]h, where a ∈ O, v ∈ O∗, and h ∈ H ,
saying that an object a creates a membrane labelled h containing the
multiset v.

The policy of rules application is a maximally parallel one and objects to evolve
are chosen in a nondeterministic way.

In [5] a reduction of a (deterministic) register machine to a cell-like P systems
is shown; here we see that such kind of reduction is a transitional encoding.

Let us describe Π1 = (A1, C1, R1, σ1,⇒1, F1, G1), the transitional system
associated with a (deterministic) register machine M = (m,B, l0, lh, P):

– A1 = N;
– C1 = {r1, r2, . . . , rm, l | l, ri ∈ N, 1 ≤ i ≤ m}, where each ri is the content of

the ith register of M and l represents the label of the current instruction;
– R1 = P ;
– given a configuration μ = r1, r2, . . . , rm, l ∈ C1, σ1(μ) = pl, where pl ∈ P is

the instruction of M labelled l; note that M is deterministic, and for this
reason given a configuration of M we can apply a single instruction to it
(i.e., |σ1(μ)| = 1 for every μ ∈ C1);

– given two configurations μ, μ′ ∈ C1, μ ⇒1p μ′ if and only if μ′ is obtained
by μ when applying to it the instruction p ∈ P ;

– G1 is the set of configurations obtained by programs of M when applied to
the initial configuration 0, 0, . . . , 0, l0 with l0 ∈ N being the label of the first
instruction;

– F1 = {r1, r2, . . . , rm, lh | lh, ri ∈ N, 1 ≤ i ≤ m} with lh being the label of the
halting instruction.

Let us now describe the transitional system Π2 = (A2, C2, R2, σ2,⇒2, F2, G2)
associated with the P system Π = (O,H, η, w1, . . . , wm,R1, . . . ,Rm):

– A2 = O;
– C2 is a string of correctly nested parenthesis, reflecting the membrane struc-

ture η, augmented with the multiset of objects contained inside each mem-
brane;

– R2 = R1 ∪ . . . ∪Rm;
– σ2 is the function used by Π to choose the set of rules appliable to a config-

uration, fulfilling the nondeterminism and maximal parallelism;
– given two configurations μ, μ′ ∈ C2, μ ⇒2Q μ′ if and only if μ′ is obtained

by μ when applying to it the set of rules Q ∈ R2 in a nondeterministic and
maximally parallel way;

142 L. Bianco and V. Manca

– G2 is the set of configuration sequences obtained by applying in a nondeter-
ministic and maximally parallel way the rules of R2 to the initial configu-
ration μ0 ∈ C2, in which all membranes of η contain the initial multiset of
objects wi and whose last configuration has no appliable rules;

– F2 = {μ ∈ C2 | in μ no rules are appliable}.

We are now ready to discuss the encoding of a register machine into a cell-like P
system by means of the computational encoding E = (γconf , γrule, γcomp) defined
over the transitional systems Π1 and Π2 introduced previously. Note that this
construction follows the one proposed in [5], but it is slightly different. The
P system we use has a very simple membrane structure, composed by a single
membrane. Moreover, a symbol ai is introduced in the cell-like P system for each
register i used by the register machine M . The multiplicity of ai encodes the
value of the ith register and another set of objects is used to encode the current
instruction of the register machine. Here are the details of the encoding E:

– γconf : C1 → C2.
Given μ = r1, r2, . . . , rm, l ∈ C1, γconf (μ) = ar1

1 ar2
2 . . . arm

m l ∈ C2, where
in the configuration γconf (μ) we have not specified the membrane structure
that contains only one membrane holding all elements, each one of them
present respectively with the multiplicities obtained by the value of the cor-
responding register ri, 1 ≤ i ≤ m.

– γrule : R1 → ℘(R2).
Rules in R1 are of three types:
• Add rule: given φ = l : ADD(r), li ∈ R1

γrule(φ) = {l → arli}.

• Subtract rule: given φ = l : SUB(r), li, lj ∈ R1,

γrule(φ) = {l → l′ l′′, l′ ar → l̈, l′′ → l̂, l̈ l̂ → li, l
′ l̂ → lj},

where l′, l′′, l̈, l̂ are newly created objects relative to the instruction
labelled l.

• Halt rule: given φ = l : HALT ∈ R1,

γrule(φ) = {l → lhalt},

where lhalt is a newly created object; note that there is no rule dealing
with this symbol and due to the fact that each rule needs a rule label in
order to be fired, lhalt forces the computation to stop.

– γcomp : G1 → G2.
The register machine we encode is deterministic, and for this reason once we
specify the initial configuration and the set of rules, then the computation is
determined. In this way, given Γ ∈ G1, we can obtain γcomp(Γ) by encoding
Γ (1) into the corresponding configuration γconf(Γ1) and then letting the
transitional system work until its execution stops, and this gives γcomp(Γ).

Encoding-Decoding Transitional Systems for Classes of P Systems 143

The correctness of this construction follows directly from the proof proposed in
[5], but we would like to emphasize that this example of computational encoding
is not strict, because the subtraction rule of the register machine is encoded in
several steps of the corresponding P system.

5 Conclusions

We have proposed the definition of a general framework in which it is possible to
describe translations between different kinds of computational systems, focusing
particularly on P systems. The two examples we proposed highlight the implicit
presence of our general notions into specific cases of P systems. We plan to
refine the notions here outlined in the context of descriptional complexity and
of dynamical systems. In fact, a systematic evaluation of the way computational
encodings alter some parameters could be very useful in the comparison and
simulation of computational systems.

References

1. F. Bernardini, V. Manca: Dynamical aspects of P systems. BioSystems, 70 (2002),
85–93.

2. L. Bianco, F. Fontana, G. Franco, V. Manca: P systems for biological dynamics. In
[6], 81–126.

3. L. Bianco, F. Fontana, V. Manca: Reaction-driven membrane systems. In Proc. First
International Conference on Advances in Natural Computation (L. Wang, K. Chen,
Y.S. Ong, eds.), LNCS 3611, Springer, Berlin, 2005, 1155–1158.

4. L. Bianco, F. Fontana, V. Manca: P systems with reaction maps. International J. of
Fundations of Computer Science, to appear.

5. C.S. Calude, Gh. Păun: Bio-steps beyond Turing. BioSystems, 77 (2004), 175–194.
6. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-

puting. Springer, Berlin, 2006.
7. R. Milner: Communicating and Mobile Systems: The π-calculus. Prentice-Hall, En-

glewood Cliffs, New York, 1999.
8. M. Minsky: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood

Cliffs, New York, 1967.
9. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

On the Computational Power of the
Mate/Bud/Drip Brane Calculus:

Interleaving vs. Maximal Parallelism

Nadia Busi

Dipartimento di Scienze dell’Informazione,
Università di Bologna,

Mura A. Zamboni 7, 40127 Bologna, Italy
busi@cs.unibo.it

Abstract. Brane calculi are a family of biologically inspired process cal-
culi proposed in [3] for modeling the interactions of dynamically nested
membranes. In [3] two basic calculi are proposed. Mate/Bud/Drip
(MBD) is one of such basic calculi, and its primitives are inspired by
membrane fusion and fission.

In this paper we investigate the expressiveness of MBD w.r.t. its abil-
ity to act as a computational device. In particular, we compare the
expressiveness of two different semantics for MBD: the standard inter-
leaving semantics – where a single interaction is executed at each com-
putational step – and the maximal parallelism semantics – according to
which a computational step is composed of a maximal set of independent
interactions.

For the interleaving semantics, we show a nondeterministic encoding
of Register Machines in MBD, that preserves the existence of a termi-
nating computation, but that could introduce additional divergent (i.e.,
infinite) computations.

For the maximal parallelism semantics, we provide a deterministic
encoding of Register Machines, which preserves both the existence of a
terminating computation and the existence of a divergent computation.

The impossibilty of providing a deterministic encoding under the in-
terleaving semantics is a consequence of the decidability of the existence
of a divergent computation proved in [1].

1 Introduction

Brane calculi [3] are a family of process calculi proposed for modeling the behav-
iour of biological membranes. In a process algebraic setting, brane calculi rep-
resent an evolution of BioAmbients [10], a variant of Mobile Ambients [4] based
on a set of biologically inspired primitives of interaction. The main novelty of
brane calculi consists in the fact that the active entities reside on membranes,
and not inside membranes.

However, the formal investigation of biological membranes has been initiated
by G. Păun with membrane computing [8], in the field of automata and formal

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 144–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Computational Power of the Mate/Bud/Drip Brane Calculus 145

language theory. Quoting from [5], the objectives of brane calculi and mem-
brane computing [9] are different: “While membrane computing is a branch of
natural computing, which tries to abstract computing models, in the Turing
sense, from the structure and the functioning of the cell, making use especially
of automata, languages, and complexity theoretic tools, brane calculi pay more
attention to the fidelity to the biological reality, have as primary target systems
biology, and use especially the framework of process algebra.” Another differ-
ence is concerned with the semantics of the two formalism: whereas brane calculi
are usually equipped with an interleaving, sequential semantics (each computa-
tional step consists of the execution of a single instruction), the usual semantics
in membrane computing1 is based on maximal parallelism (a computational step
is composed of a maximal set of independent interactions).

Despite such differences, some recent papers try to establish some contact
points between the two areas. A very preliminary step in this direction is rep-
resented by [1], where the computational power of two variants of basic brane
calculi is investigated. A more relevant step is [5], where a variant of P systems
(the formalism of membrane computing) is defined, inspired by the interaction
primitives of the brane calculi, and its computational power is investigated. The
present paper goes in the same direction, as it continues the investigation of the
computational power of brane calculi started in [1], and investigates an alterna-
tive semantics for brane calculi, inspired by the maximal parallelism semantics
usually adopted for P systems.

The focus in this paper is on the Mate/Bud/Drip calculus (MBD), a vari-
ant of basic brane calculus whose primitives are inspired by membrane fusion
(mate) and fission (mito). Because membrane fission can split a membrane at
an arbitrary place, it turns out to be a rather uncontrollable process. Hence, it
is replaced by two simpler operations: budding, that is splitting off one internal
membrane, and dripping, that consists in splitting off zero internal membranes.
This paper originates from an open problem raised in [1], where the expres-
siveness of two basic brane calculi of [3], namely, MBD and PEP (a basic Brane
Calculus with interaction primitives inspired by endocytosis and exocytosis) was
investigated.

In [1] an encoding of Register Machines (RAMs) in PEP is defined. Such an
encoding provides a very faithful representation of the behaviour of RAMs. In
fact, the encoding of RAMs in PEP is deterministic. As RAMs are a deterministic
computing device, we have that the RAM can either terminate or diverge, but
cannot have both a divergent and a terminated computation. As the encoding
has the same property, and the encoding respects the terminating behaviour of
the RAM (i.e., the encoding terminates iff the RAM terminates), we obtain the
undecidability of both the existential termination (there exists a terminating
computation) and the universal termination (all computations terminate) for
PEP. In [1] we also prove the decidability of universal termination for MBD, and
the decidability of existential termination for MBD was left as an open problem.
In this paper we answer to the above question by providing a nondeterministic

1 With the notable exception of, e.g., [6].

146 N. Busi

encoding of RAMs in MBD, which preservers the existence of a terminating
computation. The encoding is nondeterministic because it introduces additional
computations which do not follow the expected behaviour of the modeled RAM.
However, all these computations are infinite. This ensures that, given a RAM, its
modeling has a terminating computation if and only if the RAM terminates. A
direct consequence of this result is the undecidability of existential termination
for MBD.

The decidability of universal termination for MBD in [1] ensures that we
cannot do better, namely, it is impossible to provide a deterministic encoding of
RAMs in MBD. It is also impossible to provide a (nondeterministic) encoding
of RAMs in MBD that preserves the existence of a divergent computation, or
satisfying the following property: the RAM terminates iff all the computations
of the encoding terminate.

The computational power of MBD is increased if we move to the maximal
parallelism semantics typical of Membrane Computing [9]. According to the
maximal parallelism semantics, at each computational step a maximal set of
independent reductions is simultaneously executed. Hence, all the membranes
that can evolve have to do it. By exploiting such maximal progress hypothesis,
we provide a deterministic encoding of RAMs in MBD with maximal parallelism
that preserves the existence of a terminated computation (hence also the exis-
tence of a divergent computation). Thus we obtain the undecidability of both
existential and universal termination for MBD with maximal parallelism. This
result confirms the intuition emerging from [6], where the interleaving (sequen-
tial) and the maximal parallelism semantics of many variants of P systems are
compared: in most cases, the computational power increases when moving from
interleaving to maximal parallelism.

The paper is organized as follows: in Section 2 we present the syntax of
MBD, and equip MBD with both a standard, interleaving semantics and a max-
imal parallelism semantics. Section 3 contains the nondeterministic encoding
of RAMs in MBD with interleaving semantics, and the deterministic encoding
of RAMs in MBD with maximal parallelism semantics. Section 4 reports some
conclusive remarks.

2 MBD Calculus: Syntax and Semantics

In this section we recall the syntax and the standard, interleaving semantics
of Brane Calculi, and specialize it to MBD [3]. Then, we define an alternative
semantics that enforces the execution, at each computational step, of a maximal
set of independent operations.

2.1 Syntax and Structural Congruence of Brane Calculi

A system consists of nested membranes, and a process is associated to each
membrane.

On the Computational Power of the Mate/Bud/Drip Brane Calculus 147

Definition 1. The set of systems is defined by the following grammar:

P,Q ::= � | P ◦Q | !P | σ(|P |)

The set of membrane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions, that will be detailed later.

The term � represents the empty system; the parallel composition operator on
systems is ◦. The replication operator ! denotes the parallel composition of an
unbounded number of instances of a system. The term σ(|P |) denotes the mem-
brane that performs process σ and contains system P .

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !σ we denote the parallel composition of an unbounded number
of instances of process σ. Term a.σ is a guarded process: after performing the
action a, the process behaves as σ.

We adopt the following abbreviations: with a we denote a.0, with (|P |) we
denote 0(|P |), and with σ(| |) we denote σ(| � |).

The structural congruence relations on systems and processes is defined as
follows:2

Definition 2. The structural congruence ≡ is the least congruence relation sat-
isfying the following axioms:

P ◦Q ≡ Q ◦ P σ | τ ≡ τ | σ
P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ � ≡ P σ | 0 ≡ σ

!� ≡ � !0 ≡ 0
!(P ◦Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0(| � |) ≡ �

2.2 Interleaving Semantics of Brane Calculi

We recall the standard, interleaving semantics. At each computational step, a
single reaction is chosen and executed. The next definition provides the set of
generic reaction rules that are valid for all brane calculi, while the reaction
axioms are specific for each brane calculus; the reaction axioms for MBD will be
provided in Definition 5.

2 With abuse of notation we use ≡ to denote both structural congruence on systems
and structural congruence on processes.

148 N. Busi

Definition 3. The basic reaction rules are the following:

(par)
P → Q

P ◦R → Q ◦R
(brane)

P → Q

σ(|P |) → σ(|Q |)

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

Rules (par) and (brane) are the contextual rules that respectively permit to
a system to execute also if it is in parallel with another process or if it is in-
side a membrane, respectively. Rule (strucong) ensures that two structurally
congruent systems have the same reactions.

With →∗ we denote the reflexive and transitive closure of a relation →.
Given a reduction relation →, we say that the system P ′ is a derivative of
the system P if P →∗ P ′; the set of derivatives of a system P is denoted by
Deriv(P).

We say that a system P has a divergent computation (or infinite computation)
if there exist an infinite sequence of systems P0, P1, . . . , Pi, . . . such that P = P0
and ∀i ≥ 0 : Pi → Pi+1. We say that a system P has a terminating computation
if there exists Q ∈ Deriv(P) such that Q �→. We say that all computations of a
system P terminate if P has no divergent computations.

We use
∏

(resp. ©) to denote the parallel composition of a set of processes
(resp. systems), i.e.,

∏
i∈{1,...,n} σi = σ1 | . . . | σn and ©i∈{1,...,n}Pi = P1 ◦

. . . ◦ Pn. Moreover,
∏

i∈∅ σi = 0 and ©i∈∅Pi = �. Finally,
∏

n σ (resp. ©nP)
denotes the parallel composition of n copies of process σ (resp. system P).

2.3 Syntax and Interleaving Semantics of MBD

The actions of the MBD calculus, proposed in [3], are inspired by membrane
fusion and splitting. To make membrane splitting more controllable, in [3] two
more basic operations are used: budding, consisting in splitting off one internal
membrane, and dripping, consisting in splitting off zero internal membranes.
Membrane fusion, or merging, is called mating.

Definition 4. LetName be a denumerable set of names, ranged over by n,m,
The set of actions of MBD is defined by the following grammar:

a ::= maten | mate⊥
n | budn | bud⊥

n(σ) | drip(σ)

Actions maten and mate⊥
n will synchonize to obtain membrane fusion. Action

budn permits to split one internal membrane, and synchronizes with the co-
action bud⊥

n . Action drip permits to split off zero internal membranes. Actions
bud⊥ and drip are equipped with a process σ, that will be associated to the new
membrane created by the membrane performing the action.

On the Computational Power of the Mate/Bud/Drip Brane Calculus 149

Definition 5. The reaction relation for MBD is the least relation containing
the following axioms, and satisfying the rules in Definition 3:

(mate) maten.σ|σ0(|P |) ◦ mate⊥
n .τ |τ0(|Q |) → σ|σ0|τ |τ0(|P ◦Q |)

(bud) bud⊥
n(ρ).τ |τ0(| budn.σ|σ0(|P |) ◦Q |) → ρ(|σ|σ0(|P |) |) ◦ τ |τ0(|Q |)

(drip) drip(ρ).σ|σ0(|P |) → ρ(| |) ◦ σ|σ0(|P |)

2.4 Maximal Parallelism Semantics of MBD

In this section we introduce a semantics based on maximal progress, and inspired
by the standard semantics of Membrane Computing [9]. The idea is that at each
computational step, a maximal set of independent reductions is simultaneously
executed. Hence, all the membranes that can evolve have to do it. For example,
the system

matea(|P |) ◦ drip(0)(|Q|) ◦ mate⊥
a (|R|)

performs the maximal progress move

matea(|P |) ◦ drip(0)(|Q|) ◦ mate⊥
a (|R|) ⇒ 0(|P |) ◦ 0(|Q|) ◦ 0(| |) ◦ 0(|R|)

On the other hand, the following move does not involve all the membranes
that can evolve, hence it is not allowed:

matea(|P |) ◦ drip(0)(|Q|) ◦ mate⊥
a (|R|) �⇒ 0(|P |) ◦ drip(0)(|Q|) ◦ 0(|R|)

At each computational step, a membrane can be involved in at most one
reduction rule. Hence, also the following move, where three membranes are si-
multaneously fused, is not allowed:

matea|mateb(|P |) ◦ mate⊥
a (|Q|) ◦ mate⊥

b (|R|) �⇒ 0(|P ◦ Q ◦ R|)

In such case, one of the following computational steps can be performed:

matea|mateb(|P |) ◦ mate⊥
a (|Q|) ◦ mate⊥

b (|R|) ⇒
mateb(|P ◦ Q|) ◦ mate⊥

b (|R|)

matea|mateb(|P |) ◦ mate⊥
a (|Q|) ◦ mate⊥

b (|R|) ⇒
matea(|P ◦ R|) ◦ mate⊥

a (|Q|)

A maximal parallelism computational step is obtained as a maximal sequence
of independent reductions. To formalize this notion, we take a modified reduction
semantics, obtained by “freezing” all the processes associated to a membrane,
after that such a membrane has been involved in a reduction. After the execution
of a maximal parallelism computational step, the frozen processes are “heated”
and can be involved in the next computational step.

150 N. Busi

To this aim, we extend the grammar of systems with a new term, denoting a
membrane whose process is frozen:

P,Q ::= . . . | 〈σ〉(|P |)

The reaction relation is modified as follows:

Definition 6. The reaction relation → for MBD is the least relation contain-
ing the following axioms, and satisying the rules in Definition 3 (obtained by
replacing → with →):

(mate) maten.σ|σ0(|P |) ◦ mate⊥
n .τ |τ0(|Q |) → 〈σ|σ0|τ |τ0〉(|P ◦Q |)

(bud) bud⊥
n(ρ).τ |τ0(| budn.σ|σ0(|P |) ◦Q |) →

〈ρ〉(| 〈σ|σ0〉(|P |) |) ◦ 〈τ |τ0〉(|Q |)

(drip)drip(ρ).σ|σ0(|P |) → 〈ρ〉(| |) ◦ 〈σ|σ0〉(|P |)

The heating function heated() transforms the frozen processes of a system in
active processes.

Definition 7. The heating function, called heated(P), is defined inductively on
the structure of (the extended set of) systems:

heated(�) = �
heated(P ◦Q) = heated(P) ◦ heated(Q)
heated(!P) =!heated(P)
heated(σ(|P |)) = σ(|P |)
heated(〈σ〉(|P |)) = σ(|P |)

Now we are ready to define the maximal parallelism computational step ⇒,
consisting in a maximal (not extendable) sequence of reductions →.

Definition 8. Let P,Q be MBD systems (not containing frozen processes).
P ⇒ Q iff there exists a system Q′ such that P →+ Q′ , Q′ � → and Q =
heated(Q′).

3 Computing with MBD

In this section we investigate the computational power of MBD. We show how to
model Register Machines (RAMs) [12], a well known Turing powerful formalism.
We start by recalling what RAMs are.

Then, we provide a nondeterministic encoding of RAMs in MBD (with inter-
leaving semantics), which preservers the existence of a terminating computation.
The encoding is nondeterministic because it introduces additional computations
which do not follow the expected behaviour of the modeled RAM. However, all
these computations are infinite. This ensures that, given a RAM, its modeling

On the Computational Power of the Mate/Bud/Drip Brane Calculus 151

has a terminating computation if and only if the RAM terminates. A direct con-
sequence of this result is the undecidability of existential termination for MBD.

Finally, we provide a deterministic encoding of RAMs in MBD with maximal
parallelism that preserves the existence of a terminated computation (hence also
the existence of a divergent computation). Thus we obtain the undecidability of
both existential and universal termination for MBD with maximal parallelism.

3.1 Register Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers r1, . . . , rn,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : I1), . . . , (m : Im). In [7] it is shown that the following two
instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next
instruction;

– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by execut-
ing the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the
program is reached.

A state of a RAM is modelled by (i, c1, . . . , cn), where i is the program counter
indicating the next instruction to be executed, and c1, . . . , cn are the current
contents of the registers r1, . . . , rn, respectively.

A state (i, c1, . . . , cn) is terminated if the program counter i is strictly greater
than the number of instructions m. We say that a RAM R terminates if its
computation reaches a terminated state.

3.2 A Nondeterministic Encoding of RAMs in MBD with
Interleaving Semantics

In this section we show how to obtain a nondeterministic encoding of RAMs.
The encoding satisfies the following property. If the RAM terminates, then the
encoding has at least one terminating computation; otherwise, no computation
of the encoding terminates. Hence, even if the RAM terminates, it may happen
that a run of the encoding diverges. This is due to the fact that it is not possible
to perform a test for zero on the (representation of the) contents of registers.
When a DecJump instruction is performed, one of the two branches (decrement
or jump) is chosen nondeterministically. If the right branch is taken, then the
encoding behaves correctly. On the other hand, if the wrong branch is taken,
then a system is reached such that any computation starting from such a system
will diverge.

152 N. Busi

The modelling of RAMs is based on an encoding function, which transforms
instructions and registers independently.

The basic idea for modelling the natural numbers contained in the registers
is the following: the natural number n contained in register rj is represented by
n copies of a system Rj collected inside a register membrane. The increment
is performed by fusing the register membrane with a membrane containing one
copy of Rj , thus obtaining n + 1 copies of Rj inside the register membrane.
The decrement is performed by mating the register membrane with a membrane
whose process permits to perform a budding of one of the systems Rj contained
inside the register membrane, thus leaving n− 1 copies of Rj inside the register
membrane.

Consider a RAM R with instructions (1 : I1), . . ., (m : Im) and registers r1, . . .,
rn; the encoding of an initial state (1, c1, . . . , cn) is defined as follows:

[[(1, c1, . . . , cn)]] = [[PC = 1]]◦! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦
[[r1 = c1]] ◦ . . . ◦ [[rn = cn]] ◦ LOOP (| |)

where LOOP =!mate⊥
loop.drip(mateloop) is the process on the loop membrane,

ensuring that the system will diverge if the wrong branch of the encoding of
a DecJump instruction is taken. If a membrane mateloop(| . . . |) is produced,
then such a membrane may fuse with the loop membrane, and another similar
membrane is dripped, that may fuse with the loop membrane, and so on, thus
preventing the system to terminate.

The encoding of an initial state of the RAM is composed by the following
parts: the program counter, (an unbouded number of occurrences of) the encod-
ings of each instruction, the encodings of the initial contents of registers, and
the loop membrane.

The encoding of the contents of the program counter is defined as follows:

[[PC = i]] = matepi(| |)

The presence of such a program counter membrane denotes the fact that
the next instruction to be executed is Ii. The encoding of the program counter
membrane [[PC = i]] will fuse with the encoding of the i-th instruction to activate
the execution of such instruction.

The encoding of the contents of register rj is

[[rj = cj]] = mate⊥
oprj

(| ©ci Rj |)

where Rj = (buddecrj | budlooprj)(| |).
If an increment operation on rj is executed, then a membrane, containing

one copy of Rj , is fused with [[rj = cj]], thus obtaining a representation of
[[rj = cj + 1]].

If a decrement operation on rj is executed, then a membrane – decorated
with a budding instruction on name decrj – is fused with [[rj = cj]]. At this
point, the only operation that can be performed by the register membrane is
such a budding. If cj > 0, then at least one copy of Rj is present in the register

On the Computational Power of the Mate/Bud/Drip Brane Calculus 153

membrane; by performing action buddecrj , one copy of Rj is “expelled” from the
register membrane. Such an expelled copy is surrounded by a membrane with an
empty program, hence becoming an innocuous garbage that can neither perform
reductions nor interact with the other membranes. If cj = 0, then the register
membrane contains no membranes and no further operation can be performed
by the register membrane.

If the zero branch is selected, then a membrane – decorated with a budding
instruction – is fused with [[rj = cj]], and a new system [[rj = 0]] is produced. If
cj = 0, then the old register membrane contains no membranes inside; as the
only instruction that the old register membrane can perform is a budding, it
becomes innocuous garbage. If cj > 0, then the old register membrane contains
at least one copy of Rj ; such Rj can be expelled, and surrounded by a membrane
that can activate the loop membrane, thus starting a divergent computation.

The encoding for the instruction (i : Ii) is as follows:

[[(i : Succ(rj))]] = mate⊥
pi
.mateoprj .drip(matepi+1).mate⊥

oprj
(|Rj |)

[[(i : DecJump(rj , s))]] = DECRi,j,s(| |) | ZEROi,j,s(| |)
where

DECRi,j,s = mate⊥
pi
.mateoprj .drip(mateloop).bud⊥

decrj
(0).

mate⊥
loop.drip(matepi+1).mate⊥

oprj

ZEROi,j,s = mate⊥
pi
.mateoprj .drip(mate⊥

oprj
).drip(mateps).

bud⊥
looprj

(mateloop)

The encoding of each instruction consists in a membrane, and the encoding of a
RAM contains an unbounded number of copies of the encoding of each instruction.

When a program counter system matepi appears at top-level, an (occurrence
of) instruction (i : Ii) is activated by fusing it with the program counter.

If the i-th instruction is an increment of register rj , and the actual con-
tents of rj is k, then the instruction membrane is fused with the register mem-
brane by performing mateoprj . As the instruction membrane for increment,
[[(i : Succ(rj))]], contains one copy of system Rj , now the register+instruction
membrane (the result of the fusion of register membrane and instruction mem-
brane) contains k + 1 copies of Rj . At this point, the program counter mem-
brane corresponding to instruction i+1 is dripped, and the register+instruction
membrane becomes the register membrane corresponding to [[rj = k + 1]], and is
ready to accept the execution of new operations on the register.

Suppose that the i-th instruction is a decrement of register rj , or jump to
instruction s if the contents of rj is zero. Independently of the actual contents
of register rj , the program counter membrane is fused with either the decrement
part or the zero part of the instruction, thus selecting nondeterministically one
of the two branches of the DecJump instruction.

Suppose that the decrement part is selected. The instruction membrane is
fused with the register membrane by performing mateoprj , and a loop activator
membrane mateloop(| |) is dripped. Now the register+instruction membrane is
ready to perform a budding of a copy of Rj . Two cases can happen:

154 N. Busi

– If the contents of rj is not zero, e.g., rj = k + 1, the right branch has been
chosen. Moreover, the register+instruction membrane contains at least one
copy of Rj . Hence, the budding operation is performed, and the expelled
copy of Rj is surrounded by a membrane with an empty program, thus
producing innocuous garbage. Now the register+instruction membrane con-
tains k copies of Rj . The loop activator membrane is removed (by fusing
it with the register+instruction membrane by operation mate⊥

loop) and the
program counter membrane corresponding to instruction i+1 is dripped. At
this point, the register+instruction membrane becomes the register mem-
brane [[rj = k]], and is ready to accept the execution of new operations on
the register.

– If rj = 0, then the wrong branch has been chosen. Moreover, the regis-
ter+instruction membrane contains no membranes. As the only instruction
that can be performed by the register+instruction membrane is a budding,
no other reduction or interaction can be performed by such a membrane. No
other computation is possible, but the fusion of the loop activator membrane
with the loop membrane. At this point, the computation can only diverge.

Suppose that the zero part is selected. The instruction membrane is fused
with the register membrane by performing mateoprj . A new register membrane
[[rj = 0]] and a program counter mateps are produced, thus the computation
continues from instruction s. Now the old register+instruction membrane can
only perform a budding budlooprj (mateloop):

– If rj = 0, then the right branch has been chosen. Moreover, the old regis-
ter+instruction membrane contains no membranes. As the only operation
the old register+instruction membrane can perform is a budding, it has be-
come innocuous garbage.

– If the contents of rj is not zero, e.g., rj = k+ 1, the wrong branch has been
chosen. Moreover, the old register+instruction membrane contains at least
one copy of Rj . Hence, the budding operation is performed, and the expelled
copy of Rj is surrounded by a membrane with program mateloop, that can
fuse with the loop membrane, thus preventing the computation to terminate.

We can now conclude with the Theorem which states that our modelling of
RAMs preserves existential termination.

Theorem 1. Let R be a RAM with program (1 : I1), . . . , (m : Im) and initial
state (1, c1, . . . , cn). Then we have that the RAM R terminates if and only if the
system [[(1, c1, . . . , cn)]] has a terminating computation.

3.3 A Deterministic Encoding of RAMs in MBD with Maximal
Parallelism Semantics

In this section we show how to obtain an encoding that behaves deterministically
under the maximal parallelism hypothesis.

The modeling of the RAM is quite similar to the one of the previous section.
The key idea is to use the maximal progress hypothesis to ensure that the right

On the Computational Power of the Mate/Bud/Drip Brane Calculus 155

branch of a DecJump instruction is taken. Both the decrement and the zero
branches of the instruction are activated in parallel, but the execution of the
relevant part of the zero branch is delayed by innocuous drip(0) operations, so
that the zero branch will be executed only if the decrement branch fails.

The modelling of the contents of registers and of the increment instruction
is the same as for the previous encoding, but in the present encoding all the
components are surrounded by an external membrane. Such an external mem-
brane permits to bud the garbage membranes that are not innocuous but could
interfere with the correct components.

For completeness, here we report the whole encoding, and we highlight the
differences.

Consider a RAMR with instructions (1 : I1), . . ., (m : Im) and registers r1, . . .,
rn; the encoding of an initial state (1, c1, . . . , cn) is defined as follows:

[[[(1, c1, . . . , cn)]]] = EXT (| [[[PC = 1]]]◦
! [[[(1 : I1)]]] ◦ . . . ◦ ! [[[(m : Im)]]] ◦
[[[r1 = c1]]] ◦ . . . ◦ [[[rn = cn]]] |)

where EXT =! bud⊥
ext(0) is the process surrounding the external membrane,

permitting to expell the garbage membranes.
The encoding of the program counter is the same as in the previous section,

whereas the encoding of the contents of registers is slightly simpler (as it is no
longer necessary to start a loop in the case the wrong branch is taken):

[[[PC = i]]] = matepi(| |)
[[[rj = cj]]] = mate⊥

oprj
(| ©ci Rj |)

where
Rj = buddecrj(| |)

The main difference w.r.t. the previous section is represented by the encoding
of the DecJump instruction, whereas the encoding of the Succ instruction is
unchanged:

[[[(i : Succ(rj))]]] = mate⊥
pi
.mateoprj .drip(matepi+1).mate⊥

oprj
(|Rj |)

[[[(i : DecJump(rj, s))]]] = mate⊥
pi
.mateoprj .drip(ZEROi,j,s).

drip(matedorj).
bud⊥

decrj
(drip(0).matezero.budext).

mate⊥
dorj.drip(0).drip(0).drip(matepi+1).

mate⊥
oprj

(| |)

where

ZEROi,j,s = drip(0).drip(0).drip(0).mate⊥
dorj.drip(mate⊥

oprj
).

drip(drip(0).mateps).budext |
mate⊥

zero

156 N. Busi

As in the previous section, instruction (i : Ii) is activated by fusing it with
the program counter membrane matepi .

Suppose that the i-th instruction is a decrement of register rj , or jump to
instruction s if the contents of rj is zero.

The instruction membrane is fused with the register membrane by performing
mateoprj , and a zero branch membrane with process ZEROi,j,s is dripped.

Also a mutual exclusion membrane matedorj(| |) is dripped, and the zero branch
membrane perform the first innocuous drip(0).

Now the register+instruction membrane is ready to perform a budding of a
copy of Rj . Two cases can happen:

– If the contents of rj is not zero, e.g., if rj = k+1, then the register+instruction
membrane contains at least one copy of Rj . Hence, the budding operation is
performed, and the expelled copy ofRj is surrounded by a the membrane with
process drip(0).matezero.mategarb. The zero branch membrane performs the
second drip(0).

Now the register+instruction membrane contains k copies of Rj .
The register+instruction membrane removes the membrane for mutual

exclusion by performing mate⊥
dorj, the zero branch membrane performs the

third drip(0) and the membrane surrounding the expelled Rj performs the
drip(0).

At the next step, the register+instruction membrane performs the first
drip(0), and the zero branch membrane fuses with the membrane surround-
ing the expelled Rj by performing mate⊥

zero. Note that the zero branch
membrane can no longer perform mate⊥

dorj, because the mutual exclusion
membrane has been already been removed.

At the next step, the register+instruction membrane performs the sec-
ond drip(0), and the membrane, obtained by fusing the zero branch mem-
brane with the membrane surrounding the expelled Rj , is expelled from
the external membrane, and surrounded by a membrane with empty
process.

At the next step, the only active membrane is the register+instruction mem-
brane, that produces the programcountermembranematepi+1(| |); now the reg-
ister+instruction membrane has become the register membrane [[[rj = k]]], and
is ready to accept the execution of new operations on the register.

– If rj = 0, then no membrane is contained in the register+instruction mem-
brane. Hence, the register+instruction membrane is blocked on the budding
instruction. As no membrane can be fused with it, the register+instruction
membrane has become innocuous garbage. The only active membrane is the
zero branch membrane, which performs the two drip(0), then it consumes the
mutual exclusion membrane by performing mate⊥

dorj. A new register mem-
brane [[[rj = 0]]] is produced by performing drip(mate⊥

oprj
). A quasi program

counter membrane drip(0).mateps(| |) is produced.
At the next step, the quasi program counter membrane performs the

drip(0) and becomes the program counter mateps(| |), and the zero branch
membrane performs the budding. Hence, the zero branch membrane has been

On the Computational Power of the Mate/Bud/Drip Brane Calculus 157

expelled outside the surrounding external membrane, and surrounded by a
membrane with empty program, thus becoming innocuous garbage.

We can now conclude with the Theorem which states that our modelling of
RAMs faithfully represents the behaviour of the RAM.

Theorem 2. Let R be a RAM with program (1 : I1), . . . , (m : Im) and initial
state (1, c1, . . . , cn). Then we have that the RAM R terminates if and only if all
the computations of the system [[[(i, c1, . . . , cn)]]] terminate.

4 Conclusion

We investigated the expressiveness of two different semantics (interleaving and
maximal parallelism) for the MBD brane calculus w.r.t. the ability to encode
computable functions.

Even if the underlying formalisms are different, the present work is intimately
connected with the result in [5], namely, the Turing equivalence of P systems with
mate and drip operations. A deep comparison of the two formalisms deserves
a further investigation; however, at a first sight, it seems that the interaction
primitives in the P systems defined in [5] are more powerful that the primitives of
the MBD calculus. Moreover, in [5] only the halting computations are considered
as successful, but it is not clear if a deterministic encoding of RAMs can be
provided in P systems with mate and drip.

As observed in [5], it is not clear if moving to an interleaving semantics leads
to a decrease of the computational power.

In [5], only a finite number of membranes is needed to obtain Turing equiv-
alence, whereas in the present paper an unbounded number of membranes is
required. The (im)possibility to encode RAMs in MBD with a fixed number of
membranes deserves further investigation. Probably the technique adopted in [2]
to reduce the process calculus Mobile Ambients on Petri nets [11] could provide
some inspiration for an impossibility result.

Finally, an interesting topic is the expressivity of fragments of MBD obtained
by dropping some primitive.

For example, [5] shows that inP systems themate anddrip primitives are enough
to obtain Turing equivalence. We plan to investigate what is the impact of the re-
moval of budding on the computational expressiveness of the MBD brane calculus.

Regarding the removal of drip, we claim that the results presented in this
paper continue to hold in the brane calculus with mate and bud primitives. The
basic idea is to encode a drip performed by a membrane with a co-bud operation,
and by adding a submembrane ready to perform a bud. For example, the system
drip(σ)(|P |) is encoded with the system bud⊥

dop(σ)(| P ◦ buddop(| |) |) (we assume
that σ does not contain drip operations and that dop is a fresh name not used
in P or σ). We plan to investigate the possibility to provide an encoding of
the MBD brane calculus in the fragment with mate and bud primitives, that
preserves some reasonable behavioural equivalence.

158 N. Busi

Acknowledgements

I would like to thank the organizers and the participants of WMC6 for the
stimulating discussions.

References

1. N. Busi, R. Gorrieri: On the computational power of brane calculi. In Proc. Third
Workshop on Computational Methods in Systems Biology (CMSB’05), Edinburgh,
Scotland, 2005.

2. N. Busi, G. Zavattaro: Deciding reachability in mobile ambients. In Proc. ESOP’05,
LNCS 3444, Springer, Berlin, 2005, 248–262.

3. L. Cardelli: Brane calculi – Interactions of biological membranes. In Proc. Compu-
tational Methods in System Biology (CMSB 2004), Paris, France, May 2004. LNCS
3082, Springer, Berlin, 2004, 257–280.

4. L. Cardelli, A.D. Gordon: Mobile ambients. Theoretical Computer Science, 240, 1
(2000), 177–213.

5. L. Cardelli, Gh. Păun: An universality result for a (mem)brane calculus based on
mate/drip operations. International Journal of Foundations of Computer Science,
to appear.

6. R. Freund: Asynchronous P Systems and P Systems Working in the Sequential
Mode. In Proc. 5th International Workshop on Membrane Computing, WMC2004,
Milan, Italy, 2004. Revised Selected and Invited Papers, LNCS 3365, Springer,
Berlin, 2005, 36–62.

7. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
8. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,

61, 1 (2000), 108–143.
9. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

10. A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro: BioAmbients:
An abstraction for biological compartments. Theoretical Computer Science, 325,
1 (2004), 141–167.

11. W. Reisig: Petri Nets: An Introduction. Springer, Berlin, 1985.
12. J.C. Shepherdson, J.E. Sturgis: Computability of recursive functions. Journal of

the ACM, 10 (1963), 217–255.

A Membrane Computing System Mapped
on an Asynchronous, Distributed

Computational Environment

Guido Casiraghi, Claudio Ferretti, Alberto Gallini, and Giancarlo Mauri

DISCo – Dipartimento di Informatica Sistemistica e Comunicazione,
Università degli Studi di Milano–Bicocca,

Via Bicocca degli Arcimboldi 8 – 20126 Milano – Italy
ferretti@disco.unimib.it

Abstract. We show how to simulate a membrane system on a (simu-
lated) distributed and bio-inspired computational architecture (BME).
The advantages of this approach are the ease of representing each mem-
brane with a processing element and the perspective of exploiting the
expected nano-technological implementation of such an architecture.

By combining these two non-conventional computing architectures,
we touch interesting subproblems, such as the trade-off between being
synchronous (P systems) and asynchronous (BME), or between struc-
tural adjacency and position-independent communications.

1 Introduction

Processing elements (PE) arrays have gained attention as suitable architectures
for computational machines based on molecular scale device. Thanks to their
regular structure this kind of systems make design simpler, and could allow
manufacturing techniques based on molecular self-organization. Lack of a clock
avoids signal propagation troubles, but imposes an asynchronous interaction sys-
tem based on messages exchange. Having such constraints on computational ar-
chitecture and communication subsystem, the issue about which computational
model to employ on them arises.

In this paper, we want to investigate how to map the membrane synchronous
computations on such an environment; in particular, we will describe a tech-
nique to implement P systems on an asynchronous PE grid by employing a
simulation environment for asynchronous parallel computational system, named
Bio-Molecular Engine(BME).

BME in short. BME ([2]) is a graphical simulation environment for distributed
computational systems architecture. Every simulated system has, as elementary
unit, a processing element (PE, or “cell”), characterized by a certain computa-
tional capability defined by the virtual machine the user associates to it. Ev-
ery cell is provided with one or more net-interface to manage messages incom-
ing/outgoing to the computing environment, and all cells are linked together in
a toroidal mesh.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 159–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 G. Casiraghi et al.

Cells dynamically acquire a code to execute from the environment, and they
themselves can ask to the environment the availability of a cell to be dedicated
to the execution of a certain piece of code. Cells internally execute operations
specified by the user who, in the BME simulator, can choose the formalism used
to write the code (e.g., a simple specialized programming language, or plain
Java). However, a small group of primitives has to be used for environment
dependent operations (e.g., assignment of code to cells, communication, and so
on). In particular, for our purposes three primitives have been employed:

– Run: used by a cell to dynamically associate a code to another cell in the
environment. The new specialized cell executes the code without inheriting
constraints from the cell which has instantiated it.

– Send: a cell sends a BME-data-message containing a small amount of infor-
mation.

– Wait: a cell waits for an incoming BME-data-message.

Motivations. Both BME computing architecture and membrane systems have
biological inspiration. In particular, BME considers features like: staminal (re-
dundant) cells, specialization, tissue-like topology, massive parallelism. But there
are also significant differences, for instance: P systems have nested structures,
while BME has PEs in a lattice structure, the former usually have a clocked syn-
chronous evolution of computation, while the latter has PEs cooperating without
a clock.

Given this kind of comparison, we thought that the two models could be
interestingly combined, with BME simulating the P systems; we look forward to
advantages like the exploitation of current highly flexible and distributed BME
simulating environment, but also future (nanoscale) hardware implementation
of BME architecture, and thus also of P systems.

2 The Simulated Membrane System Model

We define membrane systems (P systems) omitting some definitions, which can
be found, for instance, in [4].

A P system is defined by a tuple:

Π = (O,μ,w1, . . . , wm, R1, . . . , Rm, i0),

where:

1. O is an alphabet, whose elements are called objects ;
2. μ is a nested membrane structure;
3. wi, 1 ≤ i ≤ m, are multisets on O, describing objects initially contained in

regions 1, 2, . . . ,m of μ;
4. Ri, 1 ≤ i ≤ m, are finite sets of evolution rules on strings of objects from

O; Ri is the set of rules active in region i of μ; an evolution rule has form
u → v, where u is a string on O and v is a string on Otar = (O∗ × TAR) ∪
(O∗ × TAR× {δ}), with TAR = {here, out, in} ∪ {inj | 1 ≤ j ≤ m};

A Membrane Computing System Mapped on an Asynchronous 161

5. if a rule ends with the symbol δ, then after its application the membrane to
which the rule belongs dissolves, and the objects contained in that membrane
move to its parent membrane;

6. i0 ∈ {1, 2, . . . ,m} is the label of one of the membranes (output membrane).

Evolution rules are applied in each membrane in a maximally parallel way,
and each membrane applies its rules and then communicates the results in
synchronous parallelism with other membranes. In case that more than one
alternative rule matchings appear, then a non-deterministic choice is made.
Finally, each evolution rule states, with symbols from TAR, where each of
its results have to be sent. If destination is in, without subscript, then the
result is sent to one of inner membranes, non-deterministically chosen, if
available.

A computation in the membrane system ends when no membrane can apply
any rule.

3 Simulation of P Systems on the BME Environment

Both P systems and BME simulated architectures are distributed systems, but
while BME cells interact asynchronously P systems are synchronous i.e., there
is a sort of master clock that forces the transitions of data among membranes to
occur together at any tick, defining a function from natural numbers (time axis)
and the global states of a P system.

The basic idea of our simulation is to associate a membrane to a single cell,
internally keeping a data structure tracing relationships with other membranes
(inner membranes and parent membrane). The topology of the membrane system
is thus not represented by relative positions of simulating PEs, chosen on the lat-
tice by core algorithms of BME computational model. We use BME-primitives
for message exchange to simulate the synchronous behaviour of P systems. A
P system has a tree structure and when it is mapped on a BME virtual ar-
chitecture, it is dynamically built starting from a single cell (the root of the
tree), named skin membrane, that executes the BME primitive “Run” for each
of its inner membranes; the same policy is employed by inner membranes and
so on until the leaves of the tree are activated (i.e., membranes with no inner
membranes).

The P systems simulator we developed consists of a Java package, which ex-
ploits two kinds of messages: data messages to pass data between two membranes
and event messages (both implemented by BME-data-messages) to communicate
events about the evolution of system’s structure (i.e., when a inner membrane
dissolves it communicates the results of this event to its parents and to its inner
membranes).

Given the asynchronous nature of the BME sub-system, every cell, i.e., every
simulated membrane, evolves autonomously. The evolution of a membrane is a
sequence of computational steps, where each step can be described by a loop of
four subsequent stages:

162 G. Casiraghi et al.

1. internal evolution rules application (to objects acquired in the previous it-
eration);

2. the sending of data to other PEs-membranes, by exploiting BME communi-
cation sub-system, and the waiting for incoming data messages;

3. the sending of event messages to signal structural (i.e., inner/parent mem-
branes) changes, and the waiting for incoming event messages;

4. update of local messages buffer, containing messages arrived out of sequence.

In fact, since the evolution of internal state of the membranes is untied with
the rest of the environment, it is not possible, at receiver side, to state to which
simulated P system’s step an incoming message is related.

An approach to this problem is to introduce packets numbering policies in
order to associate them to a computational step of the emitting membrane.
When a membrane M, at computational step n, receives a message (data or
event) emitted by another membrane S at step n + k (k is the communication
“window”), M stores it into a buffer. When M will be at step n + k, it will
be able to consume the received message. The problem is to verify if an upper
bound exists for k, so to easily manage incoming traffic.

Another important issue is to maintain the structural consistency of the sys-
tem: in an asynchronous system, the membranes can expire (dissolve) indepen-
dently by the state of other membranes.

To solve both “window upper-bound” and “structural consistency” problems
we have defined a message processing protocol (MPP) at the level of the single
membrane that covers the second and the third point of the previously described
algorithm for simulated membrane evolution. MPP is essentially organized in
such a way that, for instance, a PE-membrane, which has a parent membrane and
at least a inner membrane, will strictly alternate the exchange of data messages
and event messages.

In this way, it can be proved that, for instance, even if we cannot be sure
about delays and reordering of messages traveling along the lattice toward the
PE associated to the parent membrane, nonetheless we will receive messages
associated to simulated evolutions far at most one step from what we are now
simulating in our PE-membrane.

This allowed us to simulate a synchronous P system by means of a set of
asynchronous PEs in BME, just by numbering messages and allowing PEs to
have a buffer memory for the small amount of messages which can arrive one
step apart from what we are simulating.

4 Examples

The P system we want to simulate on BME is described by a set of simple Java
modules, one for each membrane, and each of them will be transported to a
single PE which will execute it. Inside each module the starting multiset and
the set of rules of the associated membrane are defined by simple strings.

A multiset xn1
1 xn2

2 . . . xnk

k , where x1, x2, . . . , xk are objects and n1, n2, ,
nk ∈ N , is represented by:

A Membrane Computing System Mapped on an Asynchronous 163

[(x1:n1),(x2:n2),...,(xk:nk)]

For instance, the multiset a2b3c is represented by:

[(a:2),(b:3),(c:1)]

Evolution rules have a LHS, which is a multiset, and a RHS which lists result-
ing multisets and their destination, e.g., bhere(a2c)outdin. This example becomes:

[(b:1)].here[(a:2),(c:1)].out[(d:1)].in

If the destination is a specific membrane, it can be specified. For instance,
dintwo becomes:

[(d:1)].in_two

LHS and RHS are separated by “=>”. Operator δ, possibly appearing as suffix
of evolution rules is represented by “!”. Therefore, a complete evolution rule is:

[(a:2),(b:3)] => [(b:1)].here[(a:2),(c:1)].out[(d:1)].in!

Each membrane has a name, which also is the name of the corresponding Java
module. The skin membrane has always the name Main().

Each module will:

– build a RuleList (using also parse());
– build the starting multiset of the membrane (with parse() of a correspond-

ing Java class);
– create and instantiate on BME the (possible) inner membranes (“Run” prim-

itive of BME);
– finally, start itself.

An instance membrane follows: it has name “one”, it is inside skin membrane,
and it has an inner membrane named “two”. It has the evolution rule d →
e2outfinδ and a starting multiset d2:

one() {

bmeModuleSig("null");

rl = new RuleList();
rl.add(Rule.parse("[(d:1)] => [(e:2)].out[(f:1)].in!"));
c = MembraneContent.parse("[(d:2)]");
m = new Membrane(new MembraneName("one"),

Membrane.SKIN_MEMBRANE_NAME, c, rl);

m.addInnerMembraneName(new MembraneName("two"));
bmeRun("two");

bmeMembrane = new BmeMembrane(own, m);
while (!bmeMembrane.stop()) bmeMembrane.evolve();

}

164 G. Casiraghi et al.

5 Discussion

Our approach is not focused on providing a powerful simulator of P systems,
but it aims instead at discovering synergies and/or contrasts between the two
different non-conventional computing models considered. Results and further ref-
erences about software simulation of P systems can be found, for instance, in [3].

By using our already well developed BME simulator, rich in graphical visual-
ization tools and in features like tools for doing heavy simulations on distributed
high-performance clusters, we easily obtained a good user interface for display-
ing simulated P systems. Moreover, since BME is being defined together with
researchers from the nano-technology field, with the aim of making that com-
putational model implementable on (future) nano-scale devices, we like to think
that in this way also P systems could be brought to specialized hardware.

An important detail about the system we presented here, is that our BME-
based simulator substitutes non-deterministic choices with random choices, thus
making it more suited to simulation of confluent P systems (that is, systems
where, for a given input, all the computations produce the same output).

Two interesting issues are worth of further development. One is that of how
well time-independent P systems ([1]) could be simulated on the asynchronous
BME architecture. Another one is that of looking for higher performance by using
bigger message buffers in PEs, while exploiting pipelined flow control algorithms
to build correct message streams at destination, instead of the current message
protocol, essentially corresponding to a pipeline of size 1.

References

1. M. Cavaliere, D. Sburlan: Time-independent P systems. In Membrane Computing
International Workshop WMC 2004, Milan, Italy, 2004, Revised Selected and Invited
Papers (G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.),
LNCS 3365, Springer, Berlin, 2005, 239–258.

2. A. Gallini, C. Ferretti, G. Mauri: Bio molecular engine: A bio-inspired environment
for models of growing and evolvable computation. Genetic and Evolutionary Com-
putation Conference (GECCO)’05, 2005.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nùnez: A simulator for con-
fluent P systems. Second Brainstorming Week on Membrane Computing, Sevilla,
2004, 169–184.

4. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

P Systems with Memory

Paolo Cazzaniga, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Università degli Studi di Milano–Bicocca,
Dipartimento di Informatica, Sistemistica e Comunicazione,

via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{cazzaniga, leporati, mauri, zandron}@disco.unimib.it

Abstract. We propose P systems in which the solutions of previously
executed computations can be stored in sub-systems composed by a num-
ber of membranes which act as memory elements. When a new input
is inserted into the system, the computation on that input is started
in parallel with the search for the corresponding solution in all mem-
ory membranes. If the solution is found in memory, then a copy of it
is expelled from that memory membrane; the search in all other mem-
ory membranes is stopped, and the same is done with the computing
sub-system. If no solution for that input is found, then the computation
produces the solution, which is subsequently stored in a memory cell.

1 Introduction

P systems were introduced by Gh. Păun in [3] as a class of distributed parallel
computing devices, inspired by the functioning of living cells. The basic model
consists of a membrane structure composed by several cell-membranes, hierar-
chically embedded in a main membrane called the skin. The membranes delimit
regions and can contain objects. The objects evolve according to given evolu-
tion rules associated with the regions. A rule can modify the objects and send
them outside the membrane or to an inner membrane. Moreover, membranes
can be dissolved. When a membrane is dissolved, all the objects of the dissolved
membrane are released into the membrane placed immediately outside, while
the evolution rules of the dissolved membrane are lost. The skin membrane is
never dissolved.

The evolution rules are applied in a maximally parallel manner: at each step,
all the objects which can evolve should evolve. A computation device is obtained:
we start from an initial configuration and we let the system evolve. A computa-
tion halts when no rule can be applied. In such a case, the objects in a specified
output membrane are the result of the computation.

Further information concerning P systems can be found in [7], and at the
Internet web address: http://psystems.disco.unimib.it.

In this paper we propose P systems in which solutions of previously executed
computations can be stored in some static memory cells, to speed-up computa-
tions. In fact, one possible way to speed-up computations would be to create new
membranes by means of division (see, e.g., [6]). However, with this approach the

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 165–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 P. Cazzaniga et al.

number of membranes can grow exponentially. Here, the defined systems have
two main sub–components: the first sub-component is a standard computing P
system; the second sub-component is constituted by a fixed number of mem-
branes which act as memory elements. Each time a solution is produced by the
computing sub-system, we store that solution in a memory membrane.

When a new input is inserted in the system to start a new computation, we
start in parallel the search for the solution in all memory membranes and, at
the same time, the computation on that input in the computing sub-system. If
the solution is found in one memory cell before the computation ends, then a
copy of the solution is expelled from that memory membrane; the search in all
other memory membranes is stopped, and the same is done with the computing
sub-system. On the other hand, if the solution is not found in any memory
membrane, then the computing sub-system produces the new solution, which is
then stored in a free memory membrane. In order to keep at least one memory
membrane available all the time, oldest solutions are deleted from memory when
necessary.

We will show that the search for a solution stored in memory can be done in
linear time with respect to the input length. As a consequence, the system could
be effectively used in all cases when the computation time order is greater than
linear and the output for the same input is requested many times with a high
probability within a short time. This occurs, for example, in image and vocal
processing applications.

We will implement our systems by means of usual rewriting P systems which
make use of the following features:

– Membranes of variable thickness: membranes can be made thicker or
thinner (also dissolved, as told above), in order to change its permeability
with respect to the passage of objects through them.

– Membrane polarization: electrical charges are associated to membranes:
they can be marked with a “positive” (+), “negative” (−) or “neutral” (0)
charge. The rules are applied to strings by taking into account the electrical
charges of the membranes.

– Replicated rewriting rules: the rules allow to create k copies of the string
starting from a single copy. A symbol in the original copy is deleted from the
string to create k different strings; in each of these copies the deleted symbol
is replaced by a specific sub-string, and each obtained string is then sent to
a specific target membrane (as usual, it can remain in the same membrane,
it can be sent to the region immediately outside or it can be sent to an
immediately inner membrane).

For further details about P systems and the properties of the features described
above, we refer the reader to [1, 2, 4, 8, 9, 11, 12].

The remaining of the paper is organized as follows. In section 2, we give some
formal definitions concerning rewriting P systems with active membranes. In
section 3, we give the description of P systems with memory. In section 4, we de-
scribe the functioning of such systems. Finally, section 5 contains the conclusions
and some perspectives for future work.

P Systems with Memory 167

2 Rewriting P Systems with Active Membranes

We will not recall here the basic definitions of P systems. For details, we refer
to [7]. For elements of Formal Language Theory, we refer to [10].

In the following, we will make use of Replicated Rewriting P Systems with
polarized membranes of variable thickness. In such systems, objects can be de-
scribed by finite strings over a given finite alphabet. The evolution of an object
will correspond to a transformation of a string, by means of context free rewrit-
ing rules. The evolution of objects will depend also on the electrical charges
associated with the membranes. The thickness of membranes can be modified,
to dissolve them or to obtain thicker membranes that are impermeable to the
passage of objects. Finally, a string can be replicated to obtain more copies
starting from a single one.

Formally, such a system of degree n, n ≥ 1, is defined as follows:

Π = (V, T,H, μ,M1, . . . ,Mn, R1, . . . , Rn, i0),

where:

– V is an alphabet (the total alphabet of the system);
– T ⊆ V is the terminal alphabet;
– H is a finite set of labels for membranes;
– μ is a membrane structure, consisting of n membranes, labeled (not neces-

sarily in a one-to-one manner) with elements of H ; all membranes in μ are
supposed to be initially neutral;

– Mi, 1 ≤ i ≤ n, are finite languages over V ;
– i0 is the label of the output membrane. If i0 is omitted, then the output is

collected in the region outside the skin membrane;
– Ri, 1 ≤ i ≤ n, are finite sets of evolution rules.

The rules are context free evolution rules of the following form:
(a) [ha → v]αh or [ha → vγ]αh , for h ∈ H , a ∈ V , v ∈ V ∗, α ∈ {+,−, 0},

γ ∈ {δ, τ} (string evolution rules),
(b) a[h]α1

h → [hv]α2
h or a[h]α1

h → [hvγ]α2
h , where a ∈ V, v ∈ V ∗, h ∈ H,

α1, α2 ∈ {+,−, 0}, γ ∈ {δ, τ} (the symbol a in the string is rewritten as
v and the obtained string is introduced in membrane h),

(c) [ha]α1
h → [h]α2

h v or [ha]α1
h → [h]α2

h vγ, where h ∈ H, α1, α2 ∈ {+,−, 0},
a ∈ V, v ∈ V ∗, γ ∈ {δ, τ} (the symbol a in the string is rewritten as v and
the obtained string is moved from membrane h to the region immediately
outside),

(d) [ha]α1
h → [hv1γ1(tar1)||v2γ2(tar2)||...||vkγn(tark)]α2

h , where h ∈ H , α1, α2
∈ {+,−, 0}, a ∈ V, vi ∈ V ∗, γi is empty or γi ∈ {δ, τ}, 1 ≤ i ≤ k,
tari ∈ {here, out, j | j is the label of a membrane immediately inside
membrane h}, 1 ≤ i ≤ k (the string containing the symbol a is repli-
cated in k copies and then a symbol a in each of them is replaced by
the corresponding substring vi; each string is then communicated to a
target membrane specified by the target label).

168 P. Cazzaniga et al.

These rules are applied according to the following principles:

1. If a rule contains the special symbol δ and the membrane where this rule is
applied has thickness 1, then that membrane is dissolved and it is no longer
recreated; the objects in the membrane become objects of the membrane
placed immediately outside, while the rules of the dissolved membrane are
removed from the system. If the membrane has thickness 2, then this symbol
reduces the thickness to 1. The skin membrane is never dissolved.

2. If a rule contains the special symbol τ , then the thickness of the membrane
where this rule is applied is increased; the thickness of a membrane of thick-
ness 2 is not further increased. If a membrane has thickness 2, then no object
can pass through it. All rules involving a passage through a membrane of
thickness 2 cannot be applied until the thickness is reduced to 1 by means of
another rule which introduces the symbol δ in that membrane (note that this
also applies to the case for replicated rewriting rules: if a replicated string
cannot reach its target, then the whole rule cannot be applied).

3. If the symbols δ and τ are simultaneously introduced in the same region (by
applying two or more different rules on two or more different objects), then
the corresponding membrane preserves its thickness.

4. The communication of objects has priority over the actions of δ and τ ; if at
the same step an object has to pass through a membrane and a rule changes
the thickness of that membrane, then we first transmit the object and after
that we change the thickness.

5. All objects evolve in parallel: at each step of computation, an object can be
modified by only one rule, non-deterministically chosen among all applicable
rules. On the other hand, any object which can evolve by a rule of any form,
is forced to evolve.

6. All objects and membranes not specified in a rule and which do not evolve
are passed unchanged to the next computation step.

The membrane structure at a given time, together with all the strings associated
with the regions defined by the membrane structure, is the configuration of the
system at that time. The initial configuration is (μ,M1, . . . ,Mn). A transition
between two configurations is performed by applying the rules in R according
to the principles described above. A computation is a sequence of transitions
between configurations. A computation halts when there is no rule which can be
applied to objects and membranes in the current configuration. In such a case,
the output of the computation consists of all strings in membrane i0 when the
computation halts. A non-halting computation does not produce an output.

3 The Structure of the Storage Device

As told above, the main idea is to define a system which allows to store in-
formation of previously executed computations, in order to save computation
time. Hence, the final system (we will call it the Storage Device) is obtained by
adding to an original computation system (i.e., a P System designed to solve a

P Systems with Memory 169

OutputBuffer

Calc

Mem

Cell Cell

Cell Cell1 2

n−1 n

Skin

Fig. 1. The general structure of the storage membrane system

given computational problem), a memory sub-system, an output membrane, and
a buffer membrane (which is used to store the information needed during the
computation). All these components are then surrounded by a skin membrane.

In this section we illustrate the main components of the storage device, and
then we formally define it. The detailed functioning of the system will be de-
scribed in the next section.

The general structure of the storage device is depicted in Fig. 1. As one can
see, there are four main sub-systems.

The computational sub-system consists of a P system that performs com-
putations on the input strings that are injected from outside. This system does
not have an output membrane, but it expels the output strings to its environ-
ment, which is the skin membrane of the storage device.

The memory sub-system consists of a certain number n of complex cells,
where a cell is a region with a complex structure. Each cell is used to store
previously computed solutions (together with their corresponding inputs), and
to produce them when the same input is injected again in the system at a later
time.

The buffer membrane is used to store information concerning the solution
that the system is currently computing. In particular, the buffer is used when
the input string is not stored in the memory sub-system and, as a consequence,
the solution has to be calculated by the computational sub-system. As told
above, at the end of the computation the storage device has to store the new
computed solution, together with the corresponding input string, into the same
memory cell. Inside the buffer there are two sub-membranes, used to start up
the operations needed to retrieve the string previously stored and to empty the
buffer, respectively.

170 P. Cazzaniga et al.

The output membrane collects the result of the computation, be it retrieved
from the memory sub-system or calculated by the computational sub-system.

The computation in the system proceeds as follows. The input string (injected
through the skin membrane) is replicated to obtain three copies: a copy is sent
to the computation sub-system, where it will start a computation in order to
calculate a new solution, while a second copy is sent into the buffer membrane.
At the same time, the third copy is sent to the memory sub-system, where it
is replicated and forwarded to all the memory cells, to check (in parallel in all
memory cells) if the solution is already stored into the system.

If the solution is found in the memory sub-system, then it is sent to the
output membrane and the system proceeds to empty the buffer and to stop the
execution in the computational sub-system. Otherwise, the computational sub-
system produces the new solution, and sends it both to the output membrane
and to the memory sub-system. The solution has to be stored in a memory
membrane together with its corresponding input, which is found in the buffer
membrane where it was stored at the beginning of the computation. Thus, the
system non-deterministically chooses an empty cell in the memory sub-system
and sends into this membrane the two strings. The system is now ready to
execute a new computation.

Formally, the system is defined as follows:

DdM = (μ, V,WCalc,WBuf ,WMem, R,Output),

where:

– μ = [Skin [Output]Output [Calc]Calc [Buf]Buf

[Mem [Cell1]Cell1 . . . [Celln]Celln]Mem]Skin

The internal structure of every cell belonging to Mem is:
[Celli [Count]Count [Countβ]Countβ [Sol [Empty]Empty [Double]Double

]Sol [Input [Compare]Compare [Syncro [Empty]Empty [Double]Double

]Syncro]Input]Celli , for 1 ≤ i ≤ n;
– V = {a1, . . . , ak, α, . . . , ω, A, $, $

′
, $

′′
, $PΠ,X,X

′}∪
{Y,D, 〈, 〈′

, 〈′′
, 〉, th, pol, per, Stop, F, λ,=, �=, �=′}

is the total alphabet of the system; we assume the alphabet is sorted in
increasing order from a1 to ak, k = |V |;

– WCalc is the family of strings belonging to the Calc region;
– WBuf is the family of strings belonging to the Buffer region. In the initial

configuration WBuf is empty.
– WMem is the family of strings belonging to the Mem region. In the initial

configuration, the only set belonging to WMem is wCompare = {�=}.
– R = {RSkin, RMem, RCelli , RSol, RDoub., REmpty, RInput, RSync., RComp},
i ∈ {1, 2, . . . , n} is the family of rules of the system.

RSkin = {
r1 : [Skin X]Skin → [Skin (X, inMem) || (X, inBuf) || (Π

′
, inCalc)]Skin

r2 : [Skin $
′
]Skin → [Skin (λ, inOut) || ($

′
, inBuf) || (Stop, here)]Skin

P Systems with Memory 171

r3 : [Sk.$P]Skin → [Sk.($, inBuf)||(λ, inOut)||($, inMem)||(Stop, here)]Skin

r4 : 〈 [Mem]Mem → [Mem 〈]Mem}
r1 replicates and forwards the input string to the Mem, Buffer and Calc
membranes at the beginning of each computation.
r2, r3 are used to forward the solution string to the Output, Buffer and Mem
membranes at the end of each computation.
r4 sends the input string to the Mem membrane, to store it in the system.

RMem = {r1 : [Mem $]Mem → [Mem $−]Mem

r2 : [Mem X]Mem → [Mem(X, inCell1)||(X, inCell2)|| . . . ||(X, inCelln)]Mem

r3 : [Mem $
′
]Mem → [Mem]Mem $

′

r4 : [Mem 〈]Mem → [Mem 〈+]Mem}
r1, r4 are used to non–deterministically send the input string and the corre-
sponding solution into an empty cell, to store them in the system.
r2 is used to forward the input string that comes from the environment to
all the memory cells in order to start the comparison procedure.
r3 when a solution is found in memory, this rule is used to send it to the
skin membrane, where it will then be sent to the output membrane.

RCelli = {r1 : [Celli 〈]−Celli
→ [Celli [Input〈

′′
]Input]0Celli

r2 : [Celli pol]Celli → [Celli]
+
Celli

th
r3 : X → [Input X]Input

r4 : [Celli $
′
]Celli → [Celli]Celli $

′

r5 : [Celli F]Celli → [Celli (F, inSol) || (F, inInput)]Celli

r6 : [Celli $]+Celli
→ [Celli$

′′
]−Celli

r7 : [Celli $
′′
]Celli → [Celli($, inSol) || (=, incount)]Celli}

r1, r6, r7 are used to store information concerning the inputs and their cor-
responding solutions into the sub–membranes of the cell.
r2, r5 are used to empty the cell from solutions which become too old.
r3 sends the input string to be compared into the Input sub-membrane.
r4 is used to expel the solution.

RSol = {r1 : [Sol $]Sol → [Sol $−]Sol

r2 : = [Double]0Double → [Double th]+Double

r3 : [Sol th]Sol → [Sol]Sol th
r4 : F [Empty]0Empty → [Empty th]+Empty

r5 : [Sol $
′
]Sol → [Sol]Sol $

′

r6 : [Sol pol]Sol → [Sol]Sol pol}
r1, r2, r3, r5 are used to duplicate the solution and to send out one copy.
r4, r6 are used to empty the cell.

RDouble = {r1 : [Double th]Double → [Double]Double th
r2 : [Double $]Double → [Double ($

′
, here) || ($

′′
, here)]Double

r3 : [Double $
′
]Double → [Double]Double $

r4 : [Double $
′′

]+Double → [Double]0Double $
′

r5 : [Double X
′
]Double → [Double X]Double

172 P. Cazzaniga et al.

r6 : [DoubleX]+Double → [Double]0Double X

r7 : [Double 〈]Double → [Double (〈, out) || (〈′
, out)]Double}

r1, r2, r3, r4 are used to duplicate the solution string.
r5, r6, r7 are used to duplicate the input string stored within a cell.

REmpty = {r1 : [Empty$]+Empty → [Empty]0Empty pol

r2 : [Empty〈]+Empty → [Empty]0Empty th}
r1, r2 are used to delete solution and input strings, respectively.

RInput = {
r1 : [Input X

′
[Comp.]+Comp.]Input → [Input [Comp. X

′−]+Comp.]Input

r2 : [Input X
′
[Comp.]0Comp.]Input → [Input [Comp. th]0Comp.]Input

r3 : Xα [Compare]Compare → [CompareXα]Compare, ∀ α ∈ V
r4 : 〈α [Compare]Compare → [Compare〈α]Compare, ∀ α ∈ V
r5 : XY [Compare]Compare → [CompareXY]Compare

r6 : 〈〉 [Compare]Compare → [Compare〈〉]Compare

r7 : [Input �=]Input → [Input]Input th τ
r8 : [Input X]Input → [Input]Input th

r9 : �=′
[Compare]Compare → [Compare th]Compare

r10 : [Input D]Input → [Input]Input th δ
r11 : [Input th]Input → [Input]Input th
r12 : F [Syncro]+Syncro → [Syncro F]0Syncro

r13 : [Input pol]Input → [Input]Input pol

r14 : 〈′′
[Syncro]0Syncro → [Syncro 〈]+Syncro}

r1 is used to send the input string into the Syncro membrane only if the cell
actually stores data.
r2 is used to delete the input string if the cell is empty.
r3−r11 are used to compare the input string that comes from the environment
with the string stored into the cell.
r12, r13 are used to empty the cell.
r14 is used to store the input string into the cell.

RSyncro = {r1 : [Syncro 〈]Syncro → [Syncro 〈−]Syncro

r2 : X
′
[Double]Double → [DoubleX

′
]+Double

r3 : [Syncro th]Syncro → [Syncro]Syncro th
r4 : [Syncro X]Syncro → [Syncro]Syncro X

r5 : [Syncro 〈′
]Syncro → [Syncro]Syncro 〈

r6 : F [Empty]0Empty → [Empty th]+Empty}
r1, r2 are used to activate the duplication procedure on the input string.
r3, r4, r5 are used to begin the comparison procedure.
r6 is used to empty the cell.

RComp = {r1 : [Compare X Y]Compare → [Compare X z]Compare

r2 : [Compare X αn]Compare → [Compare X αn−1]Compare

r3 : [Compare 〈 〉]Compare → [Compare 〈 z]Compare

r4 : [Comp. 〈 αn]Comp. → [Comp. 〈 αn−1]Comp., ∀ α ∈ V and n ≥ 2

P Systems with Memory 173

r5 : [Compare X a]Compare → [Compare]CompareXλ τ
r6 : [Compare 〈 a]Compare → [Compare]Compare〈λ δ
r7 : [Compare 〈]Compare → [Compare per]Compare

r8 : [Compare per]Compare → [Compare]Compareth δ }
The comparison of the string is performed in a left to right manner: the
leftmost symbols of the two strings are compared. If they are different, then
a negative answer is returned. Otherwise, both symbols are deleted from their
corresponding strings and the comparison proceeds with the (new) leftmost
symbols. If all symbols are deleted from both strings, then a positive answer
is returned.
r1 − r4 are used to check if the leftmost symbols of the two strings are
different.
r5, r6 are used to delete the leftmost symbol of the input strings.
r7, r8 are used to end the comparison algorithm.

– Output is the output membrane.

4 Functioning of the Storage Device

The computation of the system starts when an input string is injected from the
environment into the skin region. As told above, the input string is replicated
in three copies: the first copy is sent to the computation sub-system, to start a
computation which calculates a new solution; the second copy is sent to the buffer
membrane, to be eventually used later to store the string and its corresponding
solution in a memory cell. The third copy is sent to the memory sub-system,
where it is replicated in n copies to be forwarded to all memory cells, to check
(in parallel in all memory cells) if the corresponding solution is already stored
into the system.

When the solution string is already stored in memory, it is retrieved from the
memory cell and then sent to the output membrane. Then, the system proceeds
to empty the buffer membrane and to stop the execution of the computational
sub-system. On the contrary, if the solution is not stored in the system, then the
computational sub-system produces the new solution, which is then sent both
to the output membrane and to the memory sub-system. The solution has to be
stored in a memory membrane together with its corresponding input string; this
last string is thus retrieved from the buffer membrane, where it was stored at the
beginning of the computation. The system chooses, in a non–deterministic-way,
an empty cell in the memory sub–system, and sends to this membrane both the
input and the corresponding solution strings.

In the following, we describe the internal structure of memory cells and (by
means of pseudo-code) the tasks executed by them. The structure of a cell in-
cluded inside the memory of the system is depicted in Fig. 2.

All the cells have different labels; however, they have the same internal struc-
ture and the same initial configuration. Every cell is made up of three parts: two
of these are used to store the input string and the solution string, while the third
part manages the counter of the cell. In the initial configuration of the system

174 P. Cazzaniga et al.

Count

Empty
Syncro

Input

Cell i

Sol

Compare

Empty

Double Double

Fig. 2. The structure of a memory cell

all the cells have a positive electrical charge but the sub–membranes, which have
null electrical charge. The polarization is used to distinguish empty cells from
cells that contain some information. This distinction is useful when the system
has to store a new solution: using the polarization of the cell, the system is able
to select an empty cell.

When the system stores some information inside a cell, it changes its electrical
charge from positive to null, and modifies the polarization of the sub–membrane
(from null to positive) where the input string is delivered. This value will be used
by the system to detect the cells that contain information when it is needed to
compare the input string that comes from the environment with the string stored
in the cell.

Inside the membrane where the input string is stored, there is a membrane
used to compare the strings. The comparison is carried out by synchronizing the
entrance and the going out from this membrane of the strings to be compared.
The strings enter into the membrane simultaneously; then, the rules that reduce
the symbol value until deleting it are applied. It is clear that if two symbols are
equal they will be deleted at the same time, whereas if they are different the
deleting rules will be applied at different times. During the delete operations, the
strings are also sent out of the comparison membrane and, while going out, the
applied rules perform a δ and a τ operation, respectively. In this way, if the strings
leave the membrane simultaneously, the operations are executed at the same
computation step and they have no effect. On the other hand, by applying one
rule before the other one, it is impossible to carry on the algorithm. This is due
to the change of thickness, because the membrane is dissolved or its permeability
is increased, and the strings are not able to pass through the membrane.

Besides the structure that realizes the algorithm, there are two membranes
which are able to duplicate and to erase data, respectively. These membranes
are used only when the system explicitly needs to execute these operations.
The second region of the cell is used to store the solution strings. Also inside

P Systems with Memory 175

this membrane there are two sub–membranes: one is used to duplicate solution
strings when the comparison algorithm successfully ends, and the second to
delete it when the system needs to empty the cell.

The last part of the cell is made of two membranes, which are used to manage
the counter of the cell. The counter is used to establish when information are
obsolete. We assume that the oldest solutions have a low probability of being
requested at a later time. The counter starts to count the life time of a solution
when this is stored inside a cell; at every computation step, the counter value is
decreased. The starting value of the counter can be chosen over an established
threshold, so that the solution inside a cell is not deleted too early; the aim is
to store information as long as possible before deleting it. When the counter
reaches the value zero it produces a special symbol F , which is used to delete
the contents of the cell, and to restore its original positive polarization.

Let us show now the three procedures which are used to insert, delete and
retrieve the information inside a cell. Moreover, we describe the algorithm used
to compare two strings.

Procedure insert (input,solution)
begin

If the memory is full (no cell with positive polarization exists) then
delete();

Choose non–deterministically a cell among those with a positive charge;
Send into this cell the solution string, and change its charge

to negative polarization;
Send the input string in the (unique) membrane

with negative polarization, changing its charge to neutral;
Send the solution string in sub-membrane Sol;
Send the input string in sub-membrane Input and then

in sub-membrane Syncro;
Change the charge of membrane Syncro from 0 to +;

end.

The insert procedure is executed when the storage device needs to store a new
solution. If no free cells are available (i.e., no cells with positive polarization are
present), then the system proceeds to free some cells by means of the delete pro-
cedure (described below). When one or more free cells are available, the solution
string and its corresponding input string are non–deterministically sent inside one
of them; first, the solution string is sent through the chosen membrane, changing
its charge from positive to negative. Then, the input string (which is still inside
the memory region) is sent in the same membrane, that can be identified as it is
the only one with negative charge. During this passage, the polarization of the
membrane is changed to neutral, to label this cell as non-empty. Then, the solu-
tion string is sent to the internal sub-membrane Sol, while the input string is sent
to the internal sub-membrane Input and, from here, in the inner region delimited
by membrane Syncro. During the last passage, the electrical charge of the mem-
brane Syncro is changed from neutral to positive; this fact will be exploited when
the solution will be searched in a following computation.

176 P. Cazzaniga et al.

After the end of the procedure, the cell starts to count the solution life time.

Procedure delete ()
begin

Send a special symbol F in sub-membranes Sol and Input;
Send F in sub-membrane Empty;
Change the charge of membrane Empty from 0 to +;
Send solution in Empty;
Send input in Empty;
Delete solution;
Delete input;

end.

The delete procedure is executed when the memory is full or when a solution
stored into a cell is too old to be held, that is, the age counter of the stored
solution reaches the value 0.

In the first case, when all the cells are full and the system needs to store a
new solution produced by the current computation, it has to choose a cell and
activate from the outside the delete procedure. The cell that the system has to
empty is non–deterministically chosen, sending inside of it a message marked
with the special symbol F. In the second case, when the counter of a cell reaches
the value 0, the symbol F is created within the cell.

The delete procedure starts when the message marked with F is sent or is cre-
ated inside a memory cell. The first operation uses a replicated rewriting rule to
forward the message inside the membranes Sol and Input. Now within these mem-
branes, concurrently, the string message is sent to the membrane labelled with
Empty, that is a sub–membrane belonging to both membranes (Sol and Input).
When the string passes through the membrane, it changes its polarization from
null to positive. Now, inside the membranes Sol and Input it is possible to apply
rules to send both strings into the two membranes Empty. Inside the two mem-
branes Empty, it is now possible to apply the appropriate rules which delete the in-
put and solution strings. When the procedure has ended, the storage device sends
out to the environment all the strings that are no longer useful to the system.

Procedure retrieve (inputE)
begin

if cell contains data then
Send inputE in Syncro

Duplicate input;
Send out input and inputE;
if Comparison(input,inputE) = TRUE then
begin

Duplicate solution;
Send out solution;

end
end.

P Systems with Memory 177

The retrieve procedure is used to search inside the memory cell the solution
of the current computation. At the beginning of every computation, the input
string that comes from the environment (in the above pseudo–code, this string
is called inputE) is sent to every cell of the system memory. When this string
reaches every cell, the retrieve procedure starts. This procedure is executed in
parallel in every cell.

The first operation is to check if the cell contains data. If it does, then the
input string coming from the environment is sent inside the sub–membrane la-
belled with Syncro; otherwise the procedure ends. If the memory cell contains
information, then the procedure goes on duplicating the stored input string.
Then, in the same computational step, the input string currently stored into
the cell and the one that comes from the environment are sent out from the
membrane Syncro; hence, the comparison procedure is started. The two strings
are compared symbol by symbol, in a left to right order. We recall from the
definition of the storage device that the alphabet of the system is sorted in in-
creasing order from a1 to ak, k = |V |. The decrement of a symbol of the alphabet
ai, 1 < i ≤ k, corresponds to replace it with the symbol ai−1. If the comparison
procedure successfully ends, then the solution string is duplicated and sent out,
otherwise the retrieve procedure ends.

The pseudo–code of the comparison algorithm is the following:

Procedure comparison(inputM,inputE)
begin

while (length(InputM) > 0 AND length(InputE) > 0)
begin

Send inputM,inputE in Compare;
while first char (InputM) �= a1 AND first char (InputE) �= a1

Decrease first char value;
if first char value(InputM) = a1 AND first char value(InputE) = a1

Delete first char;
Send input,inputE out;

else return FALSE;
end
if (length(InputM) = 0 AND length(InputE) = 0) then

return TRUE
else return FALSE

end.

The comparison algorithm is the main task executed by the storage device: it
is used to compare the input string that comes from the environment (InputE)
with the string contained within a cell (InputM). Just like the retrieve procedure,
the comparison algorithm is executed in parallel in all memory cells.

The algorithm compares every symbol of the two strings in a left to right
order and, in case all these symbols are equal, returns a TRUE value, otherwise
it returns FALSE. The procedure to check whether the two strings are equal
is realized with the synchronized entrance and going out of the strings through

178 P. Cazzaniga et al.

a special membrane. The procedure begins by sending the strings inside the
comparison membrane at the same computation step, only if their length is
positive. Now, within the comparison membrane, some rules are activated that
operate on the leftmost symbol of the strings. These rules decrease the symbol
value until it becomes a1 (that is, the first symbol belonging to V).

It is now possible to use the rule that deletes the symbol a1 and sends the
strings to the outside region; then the procedure proceeds to analyze the second
symbol of the strings. The procedure works simultaneously on the two strings,
as it needs a method to determine if the current leftmost symbols of the two
strings are equal. This is done by exploiting the rules that send out the strings
from the comparison membrane: when the system executes the rules in order to
delete the first character of the strings, δ and τ operations are executed by the
rule that sends out the string InputM and the rule that sends out the string
InputE, respectively.

It is clear that if the two rules are concurrently applied, then the effect of
the δ and τ operations is null and nothing happens to the membrane. On the
contrary, if the two symbols that the system is comparing are different, then
the two rules used to send out the strings are applied at different computation
steps (due to the different number of rules executed to decrease the value of
the leftmost symbol of the two strings). Applying one of these rules before the
other means to use a δ or τ operation before the other one. It is clear that the
net effect is to dissolve or to increase the thickness of the compare membrane.
In both cases, it is impossible to carry on the comparison algorithm, and the
system determines that the two strings are different.

For instance, if the system is comparing the strings s1 = a3a2a2a1 and s2 =
a3a2a2a1, first it sends concurrently s1 and s2 into the compare membrane, and
it applies rules like a3 → (a2, here) on both strings. Now s1 = a2a2a2a1 and
s2 = a2a2a2a1, and the procedure goes on by applying rules as: a2 → (a1, here)
so that s1 = a1a2a2a1 and s2 = a1a2a2a1. The analysis of the leftmost symbol
ends with the concurrent execution of the rule a1 → (λ, out)δ on the first string
and a1 → (λ, out)τ on the other string. The effect of the δ and τ operations is
then null and the system understands that the two characters are equal and can
go on to compare the remaining symbols of the strings. Now s1 = a2a2a1 and
s2 = a2a2a1, and the algorithm continues analyzing the current leftmost symbol.
When all symbols have been deleted, the algorithm returns the value TRUE.

Let us denote by Tm(n) the computation time of the P system with memory,
by TP (n) the computation time of the original computational system (which
is equal to the computational sub-system) and by Tc(n) the time required to
compare an input in a memory cell. From the previous description, it is easy to
see that the system with memory works with the following computation time:

– If the solution is not stored in memory, then the time required by the system
is the time required by the original computational system plus a (constant)
time to store the new solution. Thus, Tm(n) = O(Tp(n)).

– If the solution is already stored in memory, then the time required by the
system with memory is the minimum time between the time to calculate

P Systems with Memory 179

the new solution and the time to retrieve such solution from memory; thus,
Tm(n) = min{TP (n), Tc(n)}. It is easy to see that Tc(n) = O(n), as the
time required to compare the input and the string stored in memory is
linear. Hence we can conclude that, when a solution is stored in memory,
Tm(n) = O(n).

Thus, the proposed system requires a constant time to store new solutions, when
the input is not (anymore) known, while it allows to cut down the computation
time to a linear one, when the input is stored in memory. Therefore, such systems
could be effectively used when many computations are requested where the same
input is submitted many times with a high probability.

5 Conclusions

We presented P systems in which solutions of previously executed computations
can be stored in memory cells, which are added to a standard computing system.
Each time a solution is produced by the computing sub-system, the solution is
stored in a memory membrane. When a new input is inserted in the system to
start a new computation, we start in parallel the search for the solution in all
memory membranes and, at the same time, the computation on that input in
the computing sub-system.

If the solution is found in one memory cell before the computation ends, then
a copy of the solution is expelled from that memory membrane; the search in all
other memory membranes is stopped, and the same is done with the computing
sub-system. In case the solution is not found in any memory membrane, then
the computing sub-system produces the new solution, which is stored in a free
memory membrane. In order to keep at least one memory membrane available
all the time, oldest solutions are deleted from memory when necessary. Such
system can be used to speed-up computations, when the output for the same
input is requested many times with a high probability within a short time. This
happens, for example, in image and vocal processing applications.

We point out that this is a preliminary approach, which could be developed
following different lines; as an example, we could consider the possibility to
store not only solutions of previously executed computations, but also to store
programs.

An issue related to the system presented above concerns the size of the mem-
ory, i.e., the number of memory cells to use. In the solution we proposed here,
the memory cells are static. The number of cells has a direct influence on the
efficiency of the computations. A small number of cells reduce the probability
to find a solution in memory, and requires further computation steps to free
one memory cell and to store the new solution. One possible enhancement of
the system could be to consider dynamic memory cells, which can be added
and removed during the computation. This could be accomplished by means of
membrane division (see [5]) and membrane dissolution (already considered in
our systems).

180 P. Cazzaniga et al.

Acknowledgements

This work has been supported by the Italian Ministry of University (MURST),
under project FIRB-01 “Biomolecular algorithms to solve NP-Complete prob-
lems”.

The authors wish to thank the anonymous referees for their helpful sugges-
tions, that allowed us to improve a previous version of this paper.

References

1. V. Manca, C. Martin-Vide, Gh. Păun: On the power of P systems with replicated
rewriting. J. Automata, Languages, and Combinatorics, 6, 3 (2001), 359-374.

2. C. Martin-Vide, Gh. Păun: String objects in P systems. Proc. of Algebraic Systems,
Formal Languages and Computations Workshop, Kyoto, 2000, RIMS Kokyuroku,
Kyoto Univ., 2000, 161-169.

3. Gh. Păun: Computing with membranes. J. of Computer and System Sciences, 61,
1 (2000), 108–143.

4. Gh. Păun: Computing with membranes – A variant: P systems with polarized
membranes. Intern. J. of Foundations of Computer Science, 11, 1 (2000), 167–182.

5. Gh. Păun: Computing with membranes: Attacking NP–complete problems. In Un-
conventional Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen,
eds.), Springer, London, 2000, 94-115.

6. Gh. Păun: P systems with active membranes: Attacking NP–complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90.

7. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
8. Gh. Păun, G. Rozenberg, A. Salomaa: Membrane computing with external output.

Fundamenta Informaticae, 41, 3 (2000), 259–266. (www.tucs.fi).
9. I. Petre: A normal form for P systems. Bulletin of EATCS, 67 (Febr. 1999), 165–

172.
10. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin,

1997.
11. C. Zandron, C. Ferretti, G. Mauri: Two normal forms for rewriting P systems.

Proc. Third. Intern. Conf. on Universal Machines and Computations, Chisinau,
Moldova, 2001, LNCS 2055 (M. Margenstern, Y. Rogozhin, eds.), Springer, Berlin,
2001, 153-164.

12. C. Zandron, C. Ferretti, G. Mauri: Using membrane features in P systems. Rom.
Journ. of Information Science and Technology, 4, 1-2 (2001), 241–257.

Algebraic and Coalgebraic Aspects
of Membrane Computing

Gabriel Ciobanu1 and Viorel Mihai Gontineac2

1 Romanian Academy, Institute of Computer Science,
Blvd. Carol I nr.8, 700505 Iaşi, Romania

gabriel@iit.tuiasi.ro
2 “A.I. Cuza” University, Faculty of Mathematics,

Blvd. Carol I nr.11, 700506 Iaşi, Romania
gonti@uaic.ro

Abstract. We introduce and study a new class of automata able to
consume and produce multisets; we call them Mealy multiset automata.
We are interested in their algebraic and coalgebraic properties. After
some useful properties of multisets, we present the notions of bisimula-
tion, observability, and behavior for Mealy multiset automata. We give
a characterization of the bisimulation between two Mealy multiset au-
tomata, and a result relating their general behavior to their sequential
behavior. We describe an endofunctor of the category of Set such that
a Mealy multiset automaton is a coalgebra of this functor. This functor
preserves coproducts, coequalizers, and weak pullbacks. Moreover, the
new defined bisimulation is an instance of a more general coalgebraic
definition.

1 Introduction

Membrane systems described in [11] represent bio-inspired abstract models. We
try to connect membrane computing with the classical theory of Mealy automata.
The approach is mainly algebraic, identifying the main operations able to de-
scribe membrane systems, and some algebraic rules governing their functioning.

Membrane systems are also called P systems, and they represent a new ab-
stract model of parallel and distributed computing inspired by cell [11]. A cell
is divided in various compartments, each compartment with a specific duty, and
all of them working simultaneously to accomplish the task of the whole system.
The membranes of a P system determine regions where objects and evolution
rules can be placed. The objects evolve according to the rules associated with
each region, and the regions cooperate in order to maintain the proper behavior
of the whole system. It is desirable to find more connections with various fields
of computer science, including the classical automata theory.

In this paper we present some algebraic properties of multisets, we present
Mealy multiset automata [3], and then we define direct and cascade products
of Mealy multiset automata corresponding to their parallel and serial connec-
tions. We give a characterization of the bisimulation between two Mealy multiset

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 181–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 G. Ciobanu and V.M. Gontineac

automata, and a result relating their general behavior to their sequential behav-
ior. Mealy multiset automata satisfy the criteria of general state based systems,
namely their behavior depends on internal states which can be invisible for the
user, the system interacts with its environment and it is not necessarily termi-
nating, and it has a set of operations through which this interaction takes place.
For these systems, the notions of behavior, observability, bisimulation become
interesting and important. We describe two distinct concepts of behavior: the
sequential behavior dealing with a specific order of consuming multisets, and a
more general behavior dealing with the outcome of a Mealy multiset automaton.
The concept of observer could be useful, particularly when we deal with com-
plex structures. The behavior of a system can be defined as the set of all possible
sequences of configurations during a computation. Rather than being concerned
with the computations resulting in new states, coalgebraic approaches of the
dynamical systems focus on the observable behavior; the notion of bisimulation
is used to formalize observational indistinguishability.

The remarks regarding a coalgebraic approach, as well as other advantages
that we emphasize in this paper provide reasons for using category theory as an
appropriate formalism. We define the category of Mealy multiset automata, and
we prove that we can view every Mealy multiset automaton as a coalgebra of a
suitable endofunctor of the category of sets.

2 On Algebra of Multisets

The evolution rules performed by membranes are multiset operators; the multiset
operators are associative and commutative, and have also an identity. In this
section we look at multisets, providing some of their algebraic properties.

A multiset over an alphabet A = {a1, a2, ..., an} is a mapping α : A → N.
It can be represented by {(a1, α(a1)), (a2, α(a2)), ..., (an,α(an))}. As it is men-
tioned in [11], a multiset can be also represented as a string aα(a1)

1 a
α(a2)
2 ...an

α(an)

together with all its permutations. A certain extra computation power of P sys-
tems comes from the fact that applying a multiset rule u → v means that we
actually apply at most |u|!|v|! classical rules on strings. The use of multiplicative
notation for both multisets and strings may produce confusion when we inter-
play multiset and strings rules. It is therefore useful to have distinct notations
for multiset operations and string operations.

There are various approaches to deal with multiplicities of the elements of a
set. Multisets could be viewed as a particular case of the so-called formal power
polynomials [10] (i.e., a formal power polynomial over a finite alphabet). However
almost all the studies in formal power series do not take care of multisets, and
we think that a lot of specific properties are lost. Inspired from formal power
polynomials, we denote by N 〈A〉 = {α : A → N | α is a mapping} the set of all
multisets on A. The structure of N 〈A〉 is mainly an additive one, since we add
multiplicities of appearance (in fact, it is induced by the addition in N). This
argument is sustained also by the chemical reactions that are the base of the

Algebraic and Coalgebraic Aspects of Membrane Computing 183

biological modeling. They provide a notation for defining the way a biological
system evolves.

If α, β ∈ N 〈A〉, then their sum is the multiset (α + β) : A → N defined
by (α + β)(ai) = α(ai) + β(ai), i = 1, n. Moreover, if we consider the letters
from A as multisets, i.e., ai is given by μai , where μai : A→ N, μai(ai) = 1 and
μai(aj) = 0 for all j �= i, then we can express every multiset α ∈ N 〈A〉 as a

linear combination of ai, i.e., α =
n∑

i=1

α(ai) · ai (see also [3]). We can define an

external operation mα =
n∑

i=1

(mα(ai)) · ai, for all m ∈ N and α ∈ N 〈A〉.

Proposition 1. N 〈A〉 has a structure of N-semimodule (semimodule over the
semiring of positive integers).

If we want to deal with strings, and apply both kinds of rules, we can work
with multisets over A∗, or formal power polynomials, N 〈A∗〉 = {α : A∗ → N |
Supp(α) < ∞ }, where Supp(α) = {w ∈ A∗ | α(w) �= 0} is a support set of the
multiset α.

The addition of two multisets over strings is defined like in the usual multiset
case, and with respect to “+” we have a structure of commutative monoid. In
this manner every multiset over A∗ may be viewed as a finite linear combination
with natural coefficients, i.e., α =

∑
w∈A∗

∗
α(w) · w.

The Cauchy product induced by the concatenation of strings is defined by
α • β =

∑
w∈A∗

∗ ∑
uv=w α(u)β(v) · w. Note that the star from

∑
w∈A∗

∗
means that

this sum is finite. Since concatenation is not commutative, the product is also a
non-commutative one. Moreover, (N 〈A∗〉 , •) is a non-commutative monoid.

Proposition 2. (N 〈A∗〉 ,+, •) is a semiring.

For other properties of formal power series and related subjects we refer to [10].
We use also the difference between two multisets over A or A∗, defined by

(α− β)(w) = α(w) − β(w),

for all α, β such that α ⊇ β (i.e., α(w) ≥ β(w) for all w).
It is possible to work also with strings of multisets, i.e., with elements from the

free monoid (N 〈A〉)∗. It is worth to mention that this non-commutative monoid
has a different structure than N 〈A∗〉. Therefore it is useful to clarify what are
the relationships between N 〈A〉, (N 〈A〉)∗ and N 〈A∗〉.

We consider the canonical inclusion i : N 〈A〉 → (N 〈A〉)∗ and the identity
map id : N(A) → N(A). By the universal property of the free monoid (N 〈A〉)∗,
we know that there exists a unique homomorphism of monoids IA : (N 〈A〉)∗ →
N 〈A〉 such that IA ◦ i = id. We also know that IA is defined by IA(a1...an) =
a1 + ... + an, where ai are all from IA . Since id is onto, it follows that IA is

184 G. Ciobanu and V.M. Gontineac

onto, and so, applying the isomorphism theorem for monoids, we obtain that
(N 〈A〉)∗/kerIA � N 〈A〉. Moreover, we have the following diagrams revealing
the connections between N 〈A〉, (N 〈A〉)∗ and N 〈A∗〉.

A ⊂ j � N〈A〉 ⊂ � (N〈A〉)∗

A∗
�

∩

⊂ �

j
∗

�

(N〈A∗〉,+)

i

�

∩

� ⊃
�

i 1

N〈A〉

IA

�

and

N〈A〉 ⊂ � (N〈A〉)∗

(N〈A∗〉, •)

�

i 2

⊂

i
�

In these diagrams, “↪→” represents the canonical inclusion, and j∗ : A∗ →
N 〈A〉 represents the unique homomorphism induced by j : A → N 〈A〉.

We mention here the well-known property of universality of the free monoid
over a set, in order to explain better the other homomorphisms of our diagram:

Theorem 1. If Σ is an arbitrary set, Σ∗ is the free monoid on Σ and i : Σ →
Σ∗ is the canonical inclusion, then any mapping f : Σ → M , where (M,�) is a
monoid, can be uniquely extended to a monoid homomorphism f∗ : Σ∗ → (M,�).
Moreover, f∗ is defined by f∗(α1α2...αn) = f(α1) � f(α2) � ... � f(αn).

We look back to our diagrams, and we consider Σ = N 〈A〉 and f = i : N 〈A〉 ↪→
N 〈A∗〉. We have two cases:

(M,�) = (N 〈A∗〉 ,+). According to the previous theorem, there exists a unique
homomorphism i1 : (N 〈A〉)∗→N 〈A∗〉 extending i. Moreover i1(α1α2...αn) =
α1 + α2 + ... + αn, where αi are from N 〈A∗〉 . Since i is one-to-one, and
its image is N 〈A〉, we can conclude that ker i1 = ker IA and Im i1 =
N 〈A〉. This means that we do not have any hierarchical relationship between
(N 〈A∗〉 ,+) and (N 〈A〉)∗.

(M,�) = (N 〈A∗〉 , •), where “•” is the Cauchy product of formal power poly-
nomials. According to the previous theorem, there exists a unique homo-
morphism i2 : (N 〈A〉)∗ → N 〈A∗〉 extending i. Moreover i2(α1α2...αn) =
α1 • α2 • ... • αn, where αi are from N 〈A∗〉 .

We pay a little more attention to the second case because there are a lot of
possibilities to confuse the reader. ker i2 �= ∅ because (a + b)(2a+ 2b) �= (2a+

Algebraic and Coalgebraic Aspects of Membrane Computing 185

2b)(a + b) in (N 〈A〉)∗, but (a + b) • (2a + 2b) = (2a + 2b) • (a + b) in N 〈A∗〉.
Once again, we cannot claim any hierarchical relationship between N 〈A∗〉 and
(N 〈A〉)∗. By a hierarchical relationship we understand here any connection of
epimorphic or monomorphic type allowing us to express that one structure can
be viewed as a substructure of the other.

According to all these considerations, we can say that, when dealing with the
sequential behavior of P systems, (N 〈A〉)∗ is more suitable than N 〈A∗〉. The
main reason is given by the fact that the Cauchy product of N 〈A∗〉 is not able
to keep the objects multiplicities; for instance, 2a•5b•3(a+ b) = 30a• b• (a+ b)
in N 〈A∗〉 and, whenever we have 30a • b • (a+ b), we cannot recover the initial
sequences.

3 Mealy Multiset Automata

3.1 Algebraic Description

We introduce and study the notion of Mealy multiset automata (MmA). Roughly
speaking, an MmA consists of a storage location (a box for short) in which we
place a multiset over an input alphabet, and a device to translate that multiset
into a multiset over an output alphabet. MmA works in the following way: we
have a detection head able to detect whether a given sub-multiset appears in the
multiset available in the box. If the sub-multiset is detected, then it is removed
from the box, and MmA inserts a multiset over an output alphabet. MmA stops
when no further move is possible. We say that the sub-multiset read by the head
was translated to a multiset over the output alphabet.

Definition 1. A Mealy multiset automaton is a construct

A = (Q, V,O, f, g, q0),

where
Q is a finite set, the set of states;
q0 ∈ Q is a special state, both initial and final;
V is a finite set of objects, the input alphabet;
O is a finite set of objects, the output alphabet, such that O ∩ V = ∅;
f : Q× N 〈V 〉 → P(Q) is the state-transition (partial) mapping;
g : Q× N 〈V 〉 → P(N 〈O〉) is the output (partial) mapping.

If |f(q, a)| ≤ 1 we say that A is Q-deterministic, and if |g(q, a)| ≤ 1 we say that
A is O-deterministic. MmA is endowed with a box where it receives a multiset. It
begins to process this multiset over V , passing through different configurations.
It starts with a multiset from N 〈V 〉, and ends with a multiset from N 〈V ∪O〉.

Definition 2. A configuration of A is a triple (q, α, β̄) where q ∈ Q, α ∈ N 〈V 〉,
and β̄ ∈ N 〈O〉. We say that a configuration (q, α, β̄) passes to (s, α − a, β̄ + b̄)
(or, that we have a transition between these configurations) if there is a ⊆ α such
that s ∈ f(q, a), and b̄ ∈ g(q, a). We denote this by (q, α, β̄) � (s, α − a, β̄ + b̄).
We also denote by �∗ the reflexive and transitive closure of �.

186 G. Ciobanu and V.M. Gontineac

Remark 1. We could alternatively define a configuration to be a pair (q, α) where
α ∈ N 〈V ∪O〉, and the transition relation is (q, α) � (s, α − a + b̄), with the
same conditions as above.

Definition 3. A multiset α ∈ N 〈V 〉 is said to be a totally consumed multiset
(tc-multiset) for A if, starting from the configuration (q0, α, ε), MmA can pass
through various configurations till it arrives in a configuration (q0, ε, β̄) (i.e.,
(q0, α, ε) �∗ (q0, ε, β̄)).

A multiset α ∈ N 〈V 〉 is said to be a consumed multiset (c-multiset) for A
if, starting from a configuration (q, α, ε), MmA can pass through various config-
urations till it arrives in a configuration (s, ε, β̄) (i.e., (q, α, ε) �∗ (s, ε, β̄)).

In both cases, we say that α is entirely translated to β̄. In all the other
situations we say that α ∈ N 〈V 〉 is partially consumed (pc-multiset), or it is
partially translated.

We denote by TC(A) the set of all tc-multisets of A, by C(A) the set of all
c-multisets of A, and by PC(A) the set of all pc-multisets of A. It is clear that
TC(A) ⊆ C(A).

Theorem 2. TC(A) is a N-sub-semimodule of N 〈V 〉. Moreover, if we define
A(α) = β̄ for all α ∈ TC(A) with (q0, α, ε) �∗ (q0, ε, β̄), we may view A as an
N-homomorphism from TC(A) to N 〈O〉.

Remark 2. In general, C(A) it is not an N-sub-semimodule of N 〈V 〉. Let us
consider α, α′ ∈ C(A). We have (q, α, ε) �∗ (q′, ε, β̄) and (s, α′, ε) �∗ (s′, ε, β̄′);
therefore (q, α + α′, ε) �∗ (q′, α′, β̄), and it is possible the automaton cannot go
further (for instance, we may have f(q′, a′) = ∅ for all a′ ⊆ α′).

It is possible for two multisets α, α′ ∈ N 〈V 〉 to have their sum in TC(A),
even they are not in TC(A). Let us give an example:

Example 1. Consider A = ({s0, s1, s2}, {a, b, c}, {d, e, l}, f, g, s0) with

– f(s0, 2a) = {s1, s2}, f(s1, b) = s0, f(s2, c) = s0 for the transition function,
– g(s0, 2a) = e if f(s0, 2a) = s1, g(s0, 2a) = d if f(s0, 2a) = s2, g(s1, b) = e,
g(s2, c) = l for the output mapping.

It is easy to see that TC(A) = {m(2a+ b) + n(2a + c) | m,n ∈ N}. The set of
tc-translations is A(TC(A)) = {2me+ n(d + l) | m,n ∈ N}. We have also that
a+b and a are neither in TC(A), nor in C(A), but their sum belongs to TC(A).
Similarly, 6a+ b, 2a+ 3c �∈ TC(A), 6a+ b, 2a+ 3c ∈ PC(A), and their sum is in
TC(A).

Remark 3. We do not provide a representation for MmA as a graph like in [5],
simply because graphs are strongly related with sequencing and do not permit
to express facts like “if we can consume two multisets a and b, and their sum
is available in the box, it does not matter the order of consuming them”. This
is an important difference between MmA and weighted automata [10] (or K-Σ
automata [7]).

Algebraic and Coalgebraic Aspects of Membrane Computing 187

From now on, we restrict ourselves to the deterministic case, i.e., our MmA’s are
both Q-deterministic and O-deterministic. Moreover, we do not include an initial
state in our definition, simply because there is no reason to focus attention to one
particular state. In the classical theory of automata, initial states play a certain
role, for instance in the definition of the sequential composition of two automata,
where all the terminating states of the first automaton are connected to the initial
state of the second automaton. Without specifying the initial set of an MmA, all
the considerations are valid, except the tc-multiset notion; we consider now only
c-multisets and pc-multisets associated with an arbitrary state q.

Definition 4. Given two MmA’s A = (Q, V,O, f, g) and A′ = (Q′, V, O, f ′, g′),
a function h : Q → Q′ is called a morphism from A to A′ if the following
conditions

h(f(q, a)) = f ′(h(q), a) and g(q, a) = g′(h(q), a)

are satisfied for all q ∈ Q, and for all a ∈ N 〈V 〉.

If h : Q → Q′ is a morphism between A and A′, we denote this by h : A → A′.
Let h : A → A′ be a morphism, and (q, α, β̄) a configuration of A. Let us
suppose that we have the transition (q, α, β̄) � (s, α − a, β̄ + b̄). This means
that s = f(q, a), b̄ = g(q, a). We get that h(s) = h(f(q, a)) = f ′(h(q), a), and
b̄ = g(q, a) = g′(h(q), a), and so we have (h(q), α, β̄) � (h(s), α − a, β̄ + b̄).
Therefore we have the following result:

Theorem 3. Let h : A → A′ be a morphism of MmA’s. If the multiset α ∈
N 〈V 〉 is a c/pc-multiset for A, then α has the same nature for A′.

This result underlines that if h is a morphism between two MmA’s, then it is
not possible to have α both as a pc-multiset for A, and as a c-multiset for A′,
i.e., we get a kind of invariance property under morphisms for C(A) and PC(A).

3.2 Series and Parallel Connections

The cascade product. This is a way to make a series connection in the case
of Mealy automata, and provides also some results in decompositions of such
machines in irreducible ones. Even we are not prepared yet to provide such a
decomposition result (this involves a lot of algebra for multisets), we define the
cascade product of two MmA’s.

Let A = (Q, V,O, f, g) andA′ = (Q′, V ′, O′, f ′, g′) two MmA’s. In order to link
them by a series connection, we need a multiset mapping to link the output of one
of them to the input of the other. This can be done using an N-homomorphism
from N 〈O′〉 to N 〈V 〉; this homomorphism can be obtained as usual by using a
mapping fromO′ to V . We denote this homomorphism byΛ : N 〈O′〉 → N 〈V 〉, and
we get a mapping Ω : Q′ × N 〈V ′〉 → N 〈V 〉, defined by Ω(q′, a′) = Λ(g′(q′, a′)).
This mapping gives us the cascade product induced by Ω:

AΩA′ = (Q×Q′, V ′, O, fΩ, gΩ),

188 G. Ciobanu and V.M. Gontineac

where fΩ : (Q×Q′) × N 〈V ′〉 → Q×Q′, gΩ : (Q×Q′) × N 〈V ′〉 → O are given
by fΩ((q, q′), a′) = (f(q,Ω(q′, a′)), f ′(q′, a′)), and gΩ((q, q′), a′) = g(q,Ω(q′, a′))
for all a′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′.

The transition relation becomes ((q, q′), α′, β̄) � ((s, s′), α′−a′, β̄+b̄) if there is
a′ ⊆ α′ such that (s, s′) ∈ fΩ((q, q′), a′), b̄ ∈ gΩ((q, q′), a′), where a′, α′ ∈ N 〈V ′〉,
(q, q′) ∈ Q×Q′, and β̄ ∈ N 〈O〉.

We can alternatively define the transition relation by

((q, q′), α′ + β̄) � ((s, s′), α′ − a′ + β̄ + b̄)

if there is a′ ⊆ α′ such that s ∈ f(q, Λ(g′(q′, a′))), s′ ∈ f ′(q′, a′), and b̄ ∈
g(q, Λ(g′(q′, a′))), where a′, α′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′, and β̄ ∈ N 〈O〉.

As we already mention in [3], in order to simulate an elementary membrane,
we also need a kind of direct product of MmA’s. We consider only a restricted
variant because the input alphabets (and also the output alphabets) are the
same for all MmA’s involved.

Restricted direct product. Let Ai = (Qi, V, O, fi, gi) be a finite family of
Mealy multiset automata, and Bi their corresponding boxes, i = 1, n. We can
connect them in parallel in order to obtain the restricted direct product of Ai

defined by A =
∧n

i=1 Ai = (×n
i=1Qi, V, O, f, g), where:

– f((q1, q2, ..., qn), a) = (f1(q1, a), f2(q2, a), ..., fn(qn, a));
– g((q1, q2, ..., qn), a) = (g1(q1, a), g2(q2, a), ..., gn(qn, a));
– the box B of A is the disjoint union

⊔n
i=1 Bi;

– a configuration of A is a triple (q, α, β̄), where q = (q1, q2, ..., qn), α =
(α1, α2, ..., αn), and β̄ = (β̄1, β̄2, ..., β̄n);

– the (asynchronous) transition relation of A: (q, α, β̄) � (s, α−a, β̄+ b̄) if and
only if there is at least an i ∈ 1, n such that si ∈ fi(qi, ai), and b̄i ∈ gi(qi, ai),
where a = (a1, a2, ..., an), and b̄ = (b̄1, b̄2, ..., b̄n).

3.3 Bisimulation and Observability

The bisimulation relation between states of a transition system was originally
introduced by Park and Milner, in order to formalize the behavioral equivalence
of concurrent processes.

Definition 5. A bisimulation between two MmA’s A = (Q, V,O, f, g, q0) and
A′ = (Q′, V, O, f ′, g′, q′0) is a relation R ⊆ Q×Q′ such that for all a ∈ N 〈V 〉, if
qRq′, then g(q, a) = g′(q′, a) and f(q, a)Rf ′(q′, a).

It can be verified without difficulty that union and (relational) composition of
bisimulations are bisimulations again. We write q ∼ q′ whenever there exists a
bisimulation R with qRq′. This relation is the union of all bisimulations and,
therewith, the largest bisimulation. The largest bisimulation on the same au-
tomaton, again denoted by ∼, is called the bisimilarity relation, and it is an
equivalence relation.

Two states related by a bisimulation relation are observationally indistin-
guishable in the sense that

Algebraic and Coalgebraic Aspects of Membrane Computing 189

1. they provide the same output, and
2. performing the same experiment on both states, we get states that are in-

distinguishable again.

We can relate the notion of MmA morphism to that of bisimulation [4].

Theorem 4. A function h : Q → Q′ is a morphism from A to A′ if and only if
its graph relation G(h) = {(q, h(q)) | q ∈ Q} is a bisimulation.

Regarding the observability, we can remark that one of the main features of
our Mealy multiset automata is that we have an intrinsic observer given by the
output mapping. As we can see in our previous example, there are transitions that
cannot be observed from outside, i.e., transitions for which the output mapping
is the empty multiset ε.

A state q is observable from an other state s if there exist a multiset α such
that (s, α, ε) � (q1, α− a1, b1) � (q2, α− a1 − a2, b1 + b2) � ... � (qn, α− a1 − ...−
an, b1 + ...+ bn), qn = q and bn �= ε.

One of the main differences between MmA and the classical automata is
given by the possibility of the detection head of MmA to choose, in a given
state, various sub-multisets from the input multiset. This means that for the
same input multiset, we can have various possibilities to go further from a given
state. This remark emphasize the important role played by the output mapping
as an observer.

3.4 Behavior

Behavior is often appropriately viewed as consisting of both dynamics and ob-
servations, namely state-transition and output mappings. The main advantage
of an MmA is given by its output function playing an important role in observ-
ability (we do not construct other machinery to describe the behavior of our
MmA).

Definition 6. Let A = (Q, V,O, f, g) be a Mealy multiset automaton. The gen-
eral behavior of a state q ∈ Q is a function beh(q) that assigns to every input
multiset α ∈ N 〈V 〉 the output multiset obtained after consuming α.

When talking about behavior of a state, we have to consider a specific order of
consuming multisets in terms of strings of multisets. A certain feature for MmA
is that its behavior is always finite because we cannot go further after consuming
the given multiset. On the other hand, since the outputs go back into the box
and it can become larger, it is possible that we cannot track the sequence of
intermediate states. If we are interested only on the outcome of our machine,
we should not take care of the intermediate states, but if the input multiset
is partially consumed (i.e., is a pc-multiset), it should be of interest to know
the state where the MmA arrives, in order to (possibly) provide the box with
a supplementary multiset, or in order to make the initial multiset a consumed
multiset. These considerations lead us to the following notion.

190 G. Ciobanu and V.M. Gontineac

Definition 7. Let A = (Q, V,O, f, g) be a Mealy multiset automaton. The se-
quential behavior of a state q ∈ Q is a function seqbeh(q) that assigns to every
multiset α ∈ N 〈V 〉 all the sequences of the output multisets obtained during
consuming α.

Example 2. Suppose that we have the following sequence of transitions (q, α, ε) �
(q1, α−a1, b1) � (q2, α−a1−a2, b1+b2) � . . . � (qn, α−a1−...−an, b1+...+bn) and
suppose that this MmA stops. Then beh(q)(α) = b1+ ...+bn, and seqbeh(q)(α)
contains b1...bn. Moreover, b1 + ...+ bn belongs to N 〈O〉, while b1...bn belongs to
(N 〈O〉)∗, the free monoid on N 〈O〉.

We consider the canonical inclusion i : N 〈O〉 → (N 〈O〉)∗, and the identity
id : N 〈O〉 → N 〈O〉. As we have already mentioned, there exists a unique ho-
momorphism of monoids IO : (N 〈O〉)∗ → N 〈O〉 such that IO ◦ i = id. This
homomorphism IO is defined by IO(b1...bn) = b1 + ... + bn. Since id is onto, it
follows that IO is onto, and by applying the isomorphism theorem for monoids,
we have that (N 〈O〉)∗/kerIO � N 〈O〉. Moreover, IO ◦ (seqbeh)(q) = beh(q).

Example 3. Consider A = ({s0, s1, s2, s3}, {a, b}, {c, d}, f, g) with the transition
function f given by f(s0, 2a) = s1, f(s0, a) = s2, f(s1, 2b) = s2, f(s0, 2b) = s3,
f(s0, 3b) = s2, f(s1, 2a + b) = s3, f(s1, a) = s3, f(s2, a) = s3, f(s2, b) = s1,
and the output function g given by g(s0, 2a) = 2c, g(s0, a) = c, g(s1, 2b) = d,
g(s0, 2b) = 2c + d, g(s0, 3b) = ε, g(s1, 2a + b) = c, g(s1, a) = ε, g(s2, a) = ε,
g(s2, b) = c, where ε corresponds to the transitions that cannot be “viewed” by
an external observer. Then seqbeh(s0)(3a+2b) contains (2c)dε for the sequence
of transitions (s0, 3a+2b, ε) � (s1, a+2b, 2c) � (s2, a, 2c+d) � (s3, ε, 2c+d). The
same input multiset can also be consumed in the following ways: (s0, 3a+2b, ε) �
(s1, a+ 2b, 2c) � (s0, 2b, 2c) � (s3, ε, 2c+ d), or

(s0, 3a+ 2b, ε) � (s2, 2a+ 2b, d) � (s1, 2a+ b, c+ d) � (s3, ε, 2c+ d).

Hence seqbeh(s0)(3a + 2b) = {(2c)d, dcc}. Therefore, independent of the con-
suming sequences, the general behavior of s0 is beh(s0)(3a+ 2b) = 2c+ d.

It is interesting to remark that our bisimulation preserves seqbeh. If q, q′ are
two bisimilar states, i.e., q ∼ q′, then they have the same sequential behavior
seqbeh(q) = seqbeh(q′). This implies that they also have the same behavior
beh(q) = beh(q′). Since the reciprocal statement is not true, we can define a
weaker equivalence relation, namely

q ≈ q′ ⇔ beh(q) = beh(q′)

We have the following result:

Proposition 3. q ≈ q′ if and only if (seqbeh(q), seqbeh(q′)) ∈ kerIO for all
α ∈ N 〈V 〉.

Since this weaker equivalence relation over states is given by the general behavior
beh, we can say that this relation is independent of the order of consuming

Algebraic and Coalgebraic Aspects of Membrane Computing 191

resources from the box, and we call it an output conservative equivalence. The
importance of this equivalence is given mainly by the idea of consuming and
producing resources by over passing the sequential framework represented by
seqbeh. This problem appears to be of interest when we consider the concurrent
processes competing for resources.

4 Category Theory and Mealy Multiset Automata

The aim of this section is to explore some of the current ideas from category
theory that enable various mathematical descriptions of hierarchical structures,
and membrane systems in particular. The abstraction level of category theory
allows us to work with objects and morphisms without considering their internal
structure. This seems to be an appropriate setting for membrane computing.
The categorical approach is based on the definition of a category whose objects
model system components, and whose morphisms represent how systems are
composed, simulated, refined, etc. Complex systems can be modeled as diagrams
in category theory. This approach is best suited for modeling systems based on
shared resources (see also eMMA of [3, 4]), sharing being expressed through
morphisms.

4.1 Categories and Functors

Definition 8. A category C consists of: – a class of objects;

– a class of morphisms (arrows);
– for each morphism f , one object as domain, and another as codomain of f ;
– for each object A, an identity morphism idA;
– for each pair of morphisms f : A → B and g : B → C (cod(f)=dom(g)), a

composite morphism g◦f : A → C. This composition have to satisfy the following
rules:

– Associativity: For each set of morphisms f : A → B, g : B → C, h : C → D,
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

– Identity: For each morphism f : A → B, f ◦ idA = f , idB ◦ f = f .

The functorial character of a categorial construction is important for at least
two reasons:

– working within categories, we make explicit the morphisms which corre-
spond to appropriate notions of simulation or refinement between systems;

– functors act on objects and behave consistently on their simulations, preserv-
ing them (moreover, when functors are adjoint, they preserve limits or colimits,
yielding good compositional properties, since complex systems can be expressed
as (co)limits of their simpler components).

Definition 9. Given two categories C and D, a functor between them F : C → D
is a pair F = (Fob, Fmor), where:

Fob : Ob(C) → Ob(D) the object mapping;

192 G. Ciobanu and V.M. Gontineac

Fmor : MorC(A,B) → MorD(Fob(A), Fob(B)) the morphism mapping, such
that if f : A → B then Fmor(f) : Fob(A) → Fob(B), satisfying the following
axioms:

Compositionality: Fmor(gf) = Fmor(g)Fmor(f),
Identity: Fmor(idA) = idFmor(A).

Interesting examples of categories in computer science include the category
MAUT of Mealy automata, and the category BEH of behaviors. We empha-
size the functorial connection between the category of Mealy automata and the
category of their behaviors.

Example 4. Let A = (Q, V,O, f, g, s0) be a Mealy automaton with a distin-
guished state s0, where Q, V,O are the sets of states, input symbols and output
symbols, respectively; f is the transition function, and g is the output function.
We denote, as usual, with the same letters f and g the extension of f from Q×V
to Q×V ∗, and the extension of g from Q×O to Q×O∗. For every state we can
define behA : V ∗ → O∗ by behA(w) = g(s0, w). We consider now the following
categories:

MAUT : the category of Mealy automata. It has Mealy automata as objects,
and a morphism α : A → A′ is a triple (α1, α2, α3), α1 : Q→ Q′, α1(s0) = s′0,
α2 : V → V ′ and α3 : O → O′ such that α1(f(s, a)) = f ′(α1(s), α2(a)) and
α3(g(s, a)) = g′(α1(s), α2(a)).

BEH: the category of behaviors. It has triples (V,O, beh : V → O) as objects,
and a morphism β : (V,O, beh) → (V ′, O′, beh′) is a pair (β1, β2), β1 : V →
V ′, β2 : O → O′ such that β2 ◦ beh = beh′ ◦ β1.

We can define a functor Beh : MAUT → BEH :
– on objects: Beh(A) = (V,O, behA),
– on morphisms: if α:A→A′ is a morphism in MAUT , thenBeh(α)=(α2, α3).

We can also organize Mealy multiset automata as a category.

Proposition 4. For fixed alphabets V and O, the collection of Mealy multiset
automata together with their morphisms form a category denoted by MAV O.

More notions and results of the category theory are available in [2]. As we have
already explained, the lack of a comprehensive approach for the algebra of mul-
tisets, together with the necessity of some mechanisms to connect and compose
several MmA’s, lead us to initiate a study of the category MAV O. We have
two possible approaches to prove the existence of some usual constructions (e.g.,
limits and colimits like (co)products, pushout, pullback, (co)equalizers) in the
category of Mealy multiset automata. We can either use the classical way, i.e.,
we can construct step by step everything we need, consuming a lot of effort and
without visible benefits, or, more elegant, we can use the categorial coalgebraic
point of view for transition-like systems. Moreover, this latter approach permits
us to work easier with concepts like bisimulation, bisimilarity, and behavior.

Algebraic and Coalgebraic Aspects of Membrane Computing 193

4.2 Short Introduction to Coalgebra

We introduce briefly some of the basic notions of coalgebra, homomorphism, and
bisimulation relation; see [12] for more details.

Let C be a category, and F : C → C be a functor. An F -coalgebra or F -system
is a pair (S, αS) consisting of an object S and a morphism αS : S → F (S). The
object S is called the carrier of the system, also to be called the set of states ; the
morphism αS is called the F -transition structure of the system. When no explicit
reference to the functor is needed, we simply speak of system and transition
structure. Moreover, when no explicit reference to the transition structure is
needed, we often use S instead of (S, αS).

Definition 10. Let (S, αS) and (T, αT) be two F -systems, where F is again an
arbitrary functor. A morphism f : S → T is a homomorphism of F -systems, or
F -homomorphism, if F (f) ◦αS = αT ◦ f , i.e., the following diagram is commu-
tative:

S
αS−−−−→ F (S)

f

⏐⏐� ⏐⏐�F (f)

T
αT−−−−→ F (T)

Intuitively, homomorphisms are functions that preserve and reflect F -transition
structures. We sometimes write f : (S, αS) → (T, αT) to express that f is an
F -homomorphism. The identity function of an F -system (S, αS) is a homomor-
phism, and the composition of two homomorphisms is again a homomorphism.
Thus the collection of all F -systems together with F -system homomorphisms is
a category, denoted by CF .

Definition 11. Let F be an arbitrary functor F : C → C and let (S, αS), (T, αT)
be F -coalgebras. An object (R,αR) from CF , together with two morphisms p :
R → S, q : R → T (called projections), is called a bisimulation between (S, αS)
and (T, αT) if p and q are also homomorphisms of F -coalgebras, i.e., F (p)◦αR =
αS ◦ p and F (q) ◦ αR = αT ◦ q. See also the following diagram:

S
p←−−−− R

q−−−−→ T

αS

⏐⏐� ⏐⏐�αR

⏐⏐�αT

F (S) ←−−−−
F (p)

F (R) −−−−→
F (q))

F (T)

A special case is obtained when C is Set, the category of sets. For a comprehensive
approach we refer to [12]. We mention here only some facts. A subset R ⊆ S×T
of the Cartesian product of S and T is called an F -bisimulation between S
and T if there exists an F -transition structure αR : R → F (R) such that the
projections from R to S and T are F -homomorphisms. We say that (R,αR) is
a bisimulation between (S, αS) and (T, αT). If (S, αS) = (T, αT), then (R,αR)
is called a bisimulation on (S, αS). A bisimulation equivalence is a bisimulation

194 G. Ciobanu and V.M. Gontineac

that is also an equivalence relation. Two states s and t are called bisimilar if
there exists a bisimulation R with (s, t) ∈ R. According to [12], a fundamental
relationship between homomorphisms and bisimulations is given by

Theorem 5. Let (S, αS) and (T, αT) be two systems. f : S → T is a homo-
morphism if and only if its graph G(f) is a bisimulation between (S, αS) and
(T, αT).

5 Mealy Multiset Automata as Coalgebras

Coalgebra can be understood as a theory that deals with behavioral aspects of
dynamic systems in a rather wide sense. Behavior is often appropriately viewed
as consisting of both dynamics and observations, which have to do with change
of states and partial access to states, respectively. Bisimulation was introduced
into the world of coalgebra by Aczel and Mendler [1], who gave a categorical
definition of bisimulation that applies to arbitrary coalgebras. Let us consider
two alphabets V and O and the functor F : Set → Set defined by

– F (Q) = (Q× N 〈O〉)N〈V 〉

– if h : Q → Q′ is a mapping (i.e., morphism in Set), then F (h) : (Q ×
N 〈O〉)N〈V 〉 → (Q′ × N 〈O〉)N〈V 〉 is defined by F (h)(k) =

〈
h, idN〈O〉

〉
◦ k

Definition 12. A coalgebra for F is a set Q together with a morphism αQ :
Q → F (Q) = (Q× N 〈O〉)N〈V 〉.

It is obvious that, starting from a coalgebra (Q,αQ), we can obtain an MmA
A = (Q, V,O, f, g) where f(q, a) is the first component of αQ(q)(a), and g(q, a) is
the second component of αQ(q)(a). Of course, if A = (Q, V,O, f, g) is an MmA,
we can obtain a coalgebra for F with αQ : Q → F (Q) = (Q×N 〈O〉)N〈V 〉 defined
by αQ(q)(a) = (f(q, a), g(q, a)).

Let h : (Q,αQ) → (Q′, αQ′) be an F -morphism, i.e., F (h) ◦ αQ = αQ′ ◦ h,
and A = (Q, V,O, f, g), A′ = (Q′, V, O, f ′, g′) their attached MmA’s. This im-
plies that for all q ∈ Q and for all a ∈ N 〈V 〉 we have (F (h) ◦ αQ)(q)(a) =
(αQ′ ◦ h)(q)(a) ⇔ F (h)(αQ(q))(a) = αQ′(h(q))(a) ⇔

〈
h, idN〈O〉

〉
(αQ(q)(a)) =

(f ′(h(s), a), g′(h(s), a)) ⇔
〈
h, idN〈O〉

〉
(f(q, a), g(q, a)) = (f ′(h(q), a), g′(h(q), a))

⇔ (h(f(q, a)), g(q, a)) = (f ′(h(s), a), g′(h(s), a)).

Proposition 5. h : (Q,αQ) → (Q′, αQ′) is an F -morphism if and only if h :
Q → Q′ is a morphism between their associated automata.

It can be proved that the classical MmA bisimulation is an instance of the general
coalgebraic definition.

Theorem 6. If R ⊆ Q × Q′ is an F -bisimulation between coalgebras (Q,αQ)
and (Q′, αQ′), then R is a bisimulation between their corresponding MmA’s A =
(Q, V,O, f, g,) and A′ = (Q′, V, O, f ′, g′,).

Algebraic and Coalgebraic Aspects of Membrane Computing 195

If we want to prove statements like: “the union of a collection of bisimulations
is again a bisimulation”; “the quotient of a system with respect to a bisimula-
tion equivalence is again a system”; and: “the kernel of a homomorphism is a
bisimulation equivalence” we need three basic constructions in the category of
F -systems: coproducts (sums), coequalizers, and (weak) pullbacks. The first two
constructions exist according to Theorem 4.2 from [12]:

Theorem 7. Let F : Set → Set be any functor. In the category SetF of F -
coalgebras, all coproducts and coequalizers exist, and are constructed as in Set.

As a corollary, we obtain directly that all coproducts and coequalizers exist in
the category of Mealy multiset automata.

Therefore we have to construct only the pullbacks. Following some results
from [12], we get the following theorem:

Theorem 8. Let F : Set → Set be any functor, SetF the category of F -
coalgebras, and U : SetF → Set the forgetful functor.

1. If F preserves pullbacks, then pullbacks exist in SetF .
2. If F preserves weak pullbacks, and let f : (S, αS) → (T, αT) and g : (Q,αQ) →

(T, αT) be homomorphisms of F -coalgebras. Then the pullback (P, π1, π2)of
f and g in Set is a bisimulation between S and T .

3. The functor U : SetF → Set creates colimits. This means that any type of
colimit in SetF exists, and it is obtained by first constructing the colimit in
Set and next supplying it (in a unique way) with an F -transition structure.

In order to obtain our desired construction, the only thing that we have to
do is to prove that our functor F introduced in the beginning of this section
preserves weak pullbacks.

Let f : S → T and g : Q → T be morphisms in Set, (P, π1, π2) a weak
pullback of f and g in Set (P = {(s, q) ∈ S×Q | f(s) = g(q)}), and our functor
F : Set → Set which is defined by F (−) = (− × N 〈O〉)N〈V 〉. We have to prove
that (F (P), F (π1), F (π2)) is a weak pullback of F (f) and F (g).

Let us consider the following diagram

F (P)
F(π1)−−−−→ F (S)

F (π2)

⏐⏐� ⏐⏐�F (f)

F (Q)
F(g)−−−−→ F (T)

Since f ◦ π1 = g ◦ π2, and F is a functor, we have F (f) ◦ F (π1) = F (g) ◦ F (π2),
and so the above diagram is commutative.

It remains to prove the property of universality, i.e., for all (P ′, p1, p2) such
that F (f) ◦ p1 = F (g) ◦ p2, there is a morphism h : P ′ → F (P) such that
F (π1) ◦ h = p1, F (π2) ◦ h = p2. This means that the following diagram is
commutative:

196 G. Ciobanu and V.M. Gontineac

F (P)
F (π1) � F (S)

P ′

p 1

�

�
∃
h

F (Q)

F (π2)

�
F (g) �

�
p 2

F (T)

F (f)

�

Consider r ∈ P ′. It follows that p1(r) ∈ F (S), p2(r) ∈ F (Q). Denote by
pi

j(r)(a) the i-th component of pj(r)(a). From F (f) ◦ p1 = F (g) ◦ p2 we obtain
F (f)(p1(r)) = F (g)(p2(r)), and so

〈
f, idN〈O〉

〉
◦ p1(r) =

〈
g, idN〈O〉

〉
◦ p2(r). This

means that for all a ∈ N 〈V 〉 we have (
〈
f, idN〈O〉

〉
◦ p1(r))(a) = (

〈
g, idN〈O〉

〉
◦

p2(r))(a), and so (f(p1
1(r)(a)), p

2
1(r)(a)) = (g(p1

2(r)(a)), p
2
2(r)(a)). The latter

equality leads us to f(p1
1(r)(a)) = g(p1

2(r)(a)) and p2
1(r)(a) = p2

2(r)(a). Since
P contains all the pairs that have the same image under f and g, we have
(p1

1(r)(a), p
1
2(r)(a)) ∈ P . This enables us to say that (p1(r), p2(r)) ∈ F (P).

The so-called “mediating morphism” that we need for the universality prop-
erty is h : P ′ → F (P) defined by h(r) = (p1(r), p2(r)). We check now that
it satisfies the commutativity of the diagram. (F (π1) ◦ h)(r) = F (π1)(h(r)) =〈
π1, idN〈O〉

〉
◦ h(r) =

〈
π1, idN〈O〉

〉
◦ (p1(r), p2(r)) = p1(r) for all r from P ′.

Similarly, it can be proved that F (π2) ◦ h = p2.

Theorem 9. The functor (−×N 〈O〉)N〈V 〉 : Set→ Set preserves weak pullbacks.

Combining this last theorem with the results of Section 5 in [12], we get the
following result:

Theorem 10. Let (S, αS), (T, αT), (Q,αQ) be three coalgebras associated to the
functor (− × N 〈O〉)N〈V 〉 : Set→ Set. The following assertions are true:

1. The diagonal ΔS of a system S is a bisimulation.
2. Let (R,αR) be a bisimulation between S and T . The inverse R−1 of R is a

bisimulation between T and S.
3. The composition R ◦R′ of two bisimulations R ⊆ S × T and R′ ⊆ T ×Q is

a bisimulation between S and Q.
4. The union

⋃
k Rk of a family {Rk} of bisimulations between systems S and

T is again a bisimulation. In particular, the largest bisimulation between S
and T exists, and it is the union of all bisimulations.

5. The kernel K(f) of a homomorphism f : S → T is a bisimulation equiva-
lence.

6. Let f : S → T be a homomorphism. If R ⊆ S × S is a bisimulation on S,
then f(R) is a bisimulation on T . If R′ ⊆ T ×T is a bisimulation on T , then
f−1(R′) is a bisimulation on S.

Algebraic and Coalgebraic Aspects of Membrane Computing 197

6 Conclusion and Related Work

The purpose of this paper is to present a class of automata able to work with re-
sources represented by multisets. Roughly speaking, a Mealy multiset automaton
is a machine able to consume and produce multisets. Mealy multiset automata
could be related to the multiset automata presented in [5] as a particular accept-
ing MmA having a “two letters” output alphabet. While [5] deals with multiset
grammars and Chomsky hierarchy, we are mainly interested in algebraic, catego-
rial and coalgebraic properties, emphasizing on their bisimulations, observation,
and behavior. The results presented in this paper guarantee useful properties of
our multiset automata, including that the (relational) product of bisimulations
is a bisimulation, the largest bisimulation is an equivalence relation, and kernels
of homomorphisms are always bisimulations. The link between MmA and P sys-
tems is initiated in [3], where the description of elementary Mealy membrane
automata is based on Mealy multiset automata [4].

We give here only the first results regarding an algebraic and categorical ap-
proach to Mealy multiset automata, and we begin to develop the formal instru-
ments for a further approach to membrane computing based on these notions.
The algebraic constructions are useful for defining and operating with notions
like bisimulation, observability, and behavior.

We have used elementary categorical language to model Mealy multiset au-
tomata and their behavior. The idea of this approach is that a categorical for-
mal language is rich enough to describe and analyze various aspects of complex
systems, and it could be applicable to membrane systems. The first paper in
category theory was written by Eilenberg and MacLane in 1945 [8]. It aimed
to describe both interactions and comparisons within a given context (topolog-
ical spaces, groups, other algebraic structures, etc.), and interactions between
different contexts. For instance, within the area of pure mathematics known as
algebraic topology, problems in the theory of spaces are attacked by assigning
various types of algebraic requirements to spaces, thus translating the topologi-
cal problem to a more tractable algebraic one. Some links of category theory with
the modeling of biological systems are briefly explored in [9]. Some categorical
aspects of the theory of hierarchical systems are presented in [6].

Acknowledgements

This work has been supported by the research grant CNCSIS 875/2005.

References

1. P. Aczel, N. Mendler: A final coalgebra theorem. LNCS 389, Springer, Berlin, 1989,
357–365.

2. M. Barr, C. Wells: Category Theory Lecture Notes for ESSLLI. Available on-line
at http://www.let.uu.nl/esslli/Courses/barr/barrwells.ps.

198 G. Ciobanu and V.M. Gontineac

3. G. Ciobanu, M. Gontineac: Mealy membrane automata and P systems complexity.
In Cellular Computing; Complexity Aspects (M.A. Gutiérrez-Naranjo, Gh. Păun,
M.J. Pérez-Jiménez, eds.), ESF Workshop, Fenix Editora, Sevilla, 2005, 149–164.

4. G. Ciobanu, M. Gontineac: Mealy multiset automata. International Journal of
Foundations of Computer Science, to appear in 2006.

5. E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana: Multiset automata. Multiset Pro-
cessing. Mathematical, Computer Science, and Molecular Computing Points of
View (C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2235,
Springer-Verlag, Berlin, 2001, 69–83.

6. A.C. Ehresmann, J.-P. Vanbremersch: Hierarchical evolutive systems: A mathe-
matical model for complex systems. Bull. of Math. Biol., 49 (1987), 13–50.

7. S. Eilenberg: Automata. Languages and Machines, vol. A. Academic Press, 1976.
8. S. Eilenberg, S. MacLane: The general theory of natural equivalences. Trans. Amer.

Math. Soc., 58 (1945), 231–294.
9. M.J. Fisher, G. Malcolm, R.C. Paton: Spatio-logical processes in intracellular sig-

nalling. Biosystems, 55 (2000), 83–92.
10. W. Kuich, A. Salomaa: Semirings, Automata, Languages. Springer, Berlin, 1986.
11. Gh. Păun: Membrane Computing. An Introduction, Springer, Berlin, 2002.
12. J. Rutten: Universal coalgebra: a theory of systems. Theoretical Computer Science,

249 (2000), 3–80.

P Systems and the Modeling
of Biochemical Oscillations

Federico Fontana, Luca Bianco, and Vincenzo Manca

University of Verona,
Department of Computer Science,

15 strada Le Grazie – 37134 Verona, Italy
{federico.fontana, vincenzo.manca}@univr.it,

bianco@sci.univr.it

Abstract. In this paper we discuss the role that P systems have in
the description of oscillatory biochemical processes once the membrane
system evolution depends on the process parameters. This discussion
focuses on a specific application example, meanwhile it includes a general
definition of oscillation based on which we want to explore the meaning
of oscillatory behaviors more deeply. The symbolic-based approach to
biochemical processes such as that provided by P systems has recently
resulted in insightful model descriptions. For this reason we expect it
to turn useful in computational systems biology, whose models must
deal with the twofold nature of the cell that is a continuous biochemical
reactor ruled by discrete information contained in the DNA.

1 Introduction

Originally conceived to assess the expressive power of grammars and to classify
formal languages [21], rewriting systems more recently have been applied to the
analysis of biological structures—for instance, they have demonstrated capabil-
ity to represent the development of living species such as the growing of some
simple organisms [13, 20]. Inspired by these investigations, P systems [17, 18, 16]
have been concerned particularly with the dynamic aspect of rewriting and its
application to biology and biochemistry [23, 1, 3]. Dynamic rewriting systems
have led to alternative representations of several biological phenomena [22] and
to exploratory models of known pathological processes [14, 19].

Along this direction of research, we have recently presented a symbolic rewrit-
ing algorithm [2] in which production rules are given along with reaction maps,
each one specifying the “strength” of a rule in modifying a population of sym-
bols (denoting concentrations of chemical reactants, individuals, molecules, and
so on) in the system. This algorithm has successfully simulated some well-known
biochemical models, such as the Lotka-Volterra population dynamics [25], and
the Brusselator model of the BZ chemical reaction [9]. These early results, along
with the inherent advantages that rewriting systems offer in terms of modeling
flexibility, ask for doing further tests on more elaborate biochemical models such
as those presented in this paper.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 199–208, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

200 F. Fontana, L. Bianco, and V. Manca

After a brief description of the algorithm, we show results obtained simulating
an extensive model of circadian rhythms in Drosophila melanogaster [12], whose
clarity and richness of quantitative data allows to make effective comparisons
between the numerical solutions of the differential equations found in that model
and the solutions coming out from our rewriting system. Although still partial
in front of the huge amount of simulations of circadian rhythms that have been
carried out through differential equation system models, these results, along with
those achieved in the simulation of the aforementioned dynamics, confirm the
effectiveness of our approach in modeling elaborate biochemical behaviors such
as those emerging in circadian rhythms.

Inspired by the flexibility and power of this model we have started thinking
about how to investigate on the meaning of oscillation taken as a phenomenon per
se. We have in fact discovered that no clear definition of this phenomenon exists.
This lack of a definition reflects an inherent difficulty to characterize oscillation
in formal (and consequently quantitative) terms, as opposite to periodicity for
which a huge amount of theoretical results have been found, the Fourier analysis
being on top of them [10].

Unlike ideal oscillatory systems, biochemical processes never show exact peri-
odic behavior [6]. In the meantime it is crucial to find if, and how, they oscillate.
Gaining insight on the ultimate meaning of oscillation may be useful to define
formal tools that help giving an answer to these two questions.

2 Algorithm Quick Overview

A detailed description of the algorithm we use to control the evolution of a sys-
tem has been previously given [2]; furthermore, a comprehensive formalization of
this algorithm in specific P system-based constructs is ongoing. Here, we briefly
recall the concepts that are necessary to set up a representation of the circadian
model.

Let a single-membrane system be made of a set R = {r1, . . . , rk} of rewrit-
ing rules working over strings on an alphabet A = {X,Y, . . .} containing
k symbols:

r1 : αr1 → βr1 , r2 : αr2 → βr2 , . . . rk : αrk
→ βrk

, (1)

in which αρ and βρ are strings denoting consumed and produced objects for each
rule ρ ∈ R, respectively.

Let the state of our system be a k-uple 〈q(X), q(Y), . . .〉 containing the number
of objects X,Y, . . . in the system at every temporal step (here we will make every
step correspond to a system transition, however in general this is not necessarily
true). To every rule we associate a corresponding reaction map Fr1 , Fr2 , . . . , Frk

,
i.e., a real function of the state of the system affecting the rule in the way we
explain below.

By denoting with α(i) the ith symbol in a string α, with |α| the length of
the same string, and with |α|X the number of occurrences of the symbol X in

P Systems and the Modeling of Biochemical Oscillations 201

α, then we define the reaction weight Wr

(
αr(i)

)
for r : αr → βr with respect to

the symbol αr(i):

Wr

(
αr(i)

)
=

Fr∑
ρ∈R |αr(i)∈αρ

Fρ

, i = 1, . . . , |αr| . (2)

Note that at the denominator we sum only over the rules containing the symbol
αr(i) in their left part.

If at this point we consider that every rule r cannot consume more than the
amount of the symbol (called also reactant) whose availability in the system is
lowest, then for every rule we have to minimize among all reactants—each one
taken with its own multiplicity in αr—participating to the reaction. In this way
for every symbol we find the population a rule applies to during a transition of
the system:

Λr = min
i=1,...,|αr|

{
Wr

(
αr(i)

) q(αr(i)
)∣∣αr

∣∣
αr(i)

}
. (3)

In the end, for every symbol X ∈ A the change in the number of objects due to
r is equal to |βr|X − |αr|X times Λr:

Δr(X) = Λr (|βr|X − |αr|X) . (4)

A detailed explanation of the algorithm structure, in particular the way
it works with discrete populations rather than concentrations, and its exten-
sion to multiple reaction environments made using membrane systems, is given
in [2].

3 Application to Circadian Rhythms

We have applied the algorithm discussed in Section 2 to the simulation of a
known model of circadian cycles (or rhythms) in Drosophila melanogaster, in-
volving the oscillation of the Period (PER) and Timeless (TIM) proteins [5]. Ex-
isting in every living organism, circadian rhythms are biochemical cycles evoked
by variations in the expression level of specific genes. Such variations give rise to
a surprisingly robust biological clock, synchronized with daylight and performing
a complete cycle about every 24 hours.

According to this model the genes involved in the process code for PER
and TIM proteins, meanwhile their expression is inhibited by the presence of a
PER-TIM protein complex, in its own made of PER and TIM. Under certain
conditions, this complex forms in the cytosol, then migrates inside the nucleus
where it behaves as a PER and TIM suppressor. Taken together, gene expression
and suppression result in a negative feedback network of signal transduction that
has been formalized by a non-trivial system made of several nonlinear differential
equations [6, 12].

A graphical scheme of the model is depicted in Figure 1.

202 F. Fontana, L. Bianco, and V. Manca

Details of its functioning can be found in [12]. At least it is interesting to note
that the formation of the PER-TIM complex is regulated by the degradation
induced on mature TIM (denoted as T2) by light. However, in our study we do
not include the effects of light.

In spite of its complexity, the PER and TIM model results in emergent os-
cillatory concentrations of the biochemical elements considered. The temporal
evolution of such concentrations exhibits clear mutual relationships between con-
centration onsets and decays. These relationships disclose the causality existing
between gene expression and the consequent change in concentration of the tran-
scribed mRNA and, hence, of the coded proteins.

Symbolic rewriting allows to describe this model by means of a set of rules,
avoiding the classical approach based on differential equations. By looking at
Figure 1 it is not difficult to figure out the following rewriting rules:

r1 : λ → MP , r2 : λ → MT ,
r3 : MP → λ, r4 : MT → λ,
r5 : MP → MPP0, r6 : MP → MTT0,
r7 : P0 → P1, r8 : T0 → T1,
r9 : P1 → P0, r10 : T1 → T0,
r11 : P0 → λ, r12 : T0 → λ,
r13 : P1 → λ, r14 : T1 → λ,
r15 : P1 → P2, r16 : T1 → T2,
r17 : P2 → P1, r18 : T2 → T1,
r19 : P2 → λ, r20 : T2 → λ,
r21 : P2T2 → C, r22 : C → P2T2,
r23 : C → CN , r24 : CN → C,
r25 : C → λ, r26 : CN → λ.

(5)

In these rules the symbol λ as usual represents the null string. In this way rules
in the form λ → X are production rules, and rules in the form X → λ are
degradation rules.

Furthermore, for each element X that is present in the system we intro-
duce a transparent rule in the form X → X . These rules do not cause any
change in the system. Rather, they are needed to model elements that do not
take part in a reaction (for example, reactants that are spatially far from each
other) [2].

Note that, besides the radical differences existing between the differential
and the rewriting system, our model differs from the continuous one especially
in what concerns the formation of the PER-TIM complex—expressed in our
system by rule r21. This rule is, in fact, cooperative and in this case we use the
limiter Λr21, discussed in Section 2, in order to calculate the variation of P2, T2,
and C.

As we have previously seen, each rule is coupled with a reaction map. Ac-
cording to the formulas proposed in the original model, we have come up with
the following maps:

P Systems and the Modeling of Biochemical Oscillations 203

Fr1 = vsP
Kn

IP
Kn

1P + Cn
N
, Fr2 = vsT

Kn
IT

Kn
1T + Cn

N
,

Fr3 = vmP
KmP +MP

+Kd, Fr4 = vmT
KmT +MT

+Kd,

Fr5 = KsP , Fr6 = KsT ,
Fr7 = v1P

K1P + P0
, Fr8 = v1T

K1T + T0
,

Fr9 = v2P
K2P + P1

, Fr10 = v2T
K2T + T1

,

Fr11 = Kd, Fr12 = Kd,
Fr13 = Kd, Fr14 = Kd,

Fr15 = v3P
K3P + P1

, Fr16 = v3T
K3T + T1

,

Fr17 = v4P
K4P + P2

, Fr18 = v4T
K4T + T2

,

Fr19 = Kd + vdT
KdT + T2

, Fr20 = Kd + vdP
KdP + P2

,

Fr21 = K3, Fr22 = K4,
Fr23 = K1, Fr24 = K2,
Fr25 = KdC , Fr26 = KdN .

(6)

Moreover, in agreement with [12], we choose the following set of parameters
(reported here dimensionless): vsP = vsT = 1, vmP = vmT = 0.7, KmP =

Fig. 1. Model for circadian rhythms in Drosophila (from Leloup and Goldbeter [12])

204 F. Fontana, L. Bianco, and V. Manca

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

STEPS

C
O

N
C

E
N

T
R

A
T

IO
N

CN
P2
P1
P0
C

Fig. 2. Above: plots for CN , P2, P1, P0, and C obtained using the metabolic algorithm
(elements ordered starting from the highest to the lowest maximum peak value, as
in the legend at the top-right corner). Below: plots for CN , P2, P1, P0, and C (from
Leloup and Goldbeter [12]).

KmT = 0.2, KsP = KsT = 0.9, vdP = vdT = 2, K1 = 0.6, K2 = 0.2, K3 = 0.5,
K4 = 0.2, KIP = KIT = 1, KdP = KdT = 0.2, n = 4 K1P = K1T =
K2P = K2T = K3P = K3T = K4P = K4T = 2, Kd = KdC = KdN = 0.01,
v1P = v1T = v1P = v1T = 8, v2P = v2T = v4P = v4T = 1. Note that the dif-
ferent interpretation given by r21 to the formation of the PER-TIM compound,

P Systems and the Modeling of Biochemical Oscillations 205

compared to that formalized by a numerical equation (typically as the product of
two reactants weighted by a proper kinetic constant rate), suggested to employ
different values for the variables K3 and K4 as opposite to the values chosen
in the continuous model, respectively set to 1.2 and 0.6. In addition to that we
have coupled a constant reaction map Fr = 1 to every transparent rule r.

Figure 2 (above) shows the salient result we have obtained by simulating circa-
dian rhythms using the membrane model. In this simulation, changes of variable
have been applied to all concentrations in order to magnify the dynamics of our
system by a scale factor 104. The resulting, magnified concentrations have been
finally scaled back by the same factor to display amounts of substance that could
be directly compared to those found in [12]. Otherwise, the effects of rounding
arising in our simulation would have overwhelmed the natural characteristics of
the cyrcadian dynamics.

Plots figure out the state along 130 transitions of the system, i.e., every plot
describes the evolution along discrete time of the corresponding element in the
k-tuple forming the state. It can be seen that a stable oscillatory dynamics is
achieved using the symbolic approach.

Such plots are compared to the numerical solution of the corresponding dif-
ferential equation model, reported in Figure 2 (below). It can be noted that
the relative temporal shifts between concentration peaks are preserved by our
simulation. This means that comparable dynamic behaviors exist for the two
models. In particular, the membrane system correctly models the sequence of
concentration peaks of the phosphorilating PER protein (P0, P1, and P2), fol-
lowed by the peak in the concentration of the cytosolic PER-TIM complex C
and, finally, by its nuclear counterpart CN . This dynamic behavior corresponds
to results obtained by Leloup and Goldbeter, which, in their turn, match with
experimental observations [26].

4 Toward a Characterization of Oscillations

For what we have seen in the previous example, oscillation is perhaps the most
important emergent property featured by a biochemical system. Investigating
its onsets, temporal extension, robustness against parameter changes, charac-
teristic evolution along time, deviation from an ideal periodic track, is crucial
for extracting many properties inherently present in the system structure. These
properties range from the topology of the signal transduction network underlying
the communication flows that are active in the system, to its distinctive parame-
ters which determine the modalities by which this evolution develops along time.

Curiously, oscillation is not yet well defined. On one hand, this depends on
the generality of the phenomenon. Oscillation in fact includes concepts such as
quasi-periodicity, recurrence, periodic chaotic attraction [8]. On the other hand,
it is precisely that generality that most biochemical systems exhibit: in some
sense, oscillation is a weak but, at the same time, one of the strongest and most
distinctive properties shown by nonlinear systems. It is with these questions in
mind that we try to formalize oscillation.

206 F. Fontana, L. Bianco, and V. Manca

Let us consider a state transition dynamics S = (S, q), in which q maps states
into sets of states: q : S −→ P(S) [14, 15]. In S, let us consider a local trajectory
T made of states X0, X1, . . . , Xn such that Xi is obtained by repeatedly applying
mi times the transition function to Xi−1 for each i = 1, . . . ,m (note that we
conveniently extend q to work over sets, i.e., q(X) =

⋃
s∈X q(s)):

T : X0
q(m1)

−→ X1
q(m2)

−→ · · · q(mi)

−→ Xi
q(mi+1)

−→ · · · q(mn−1)

−→ Xn−1
q(mn)

−→ Xn , (7)

with
Xi ⊆ q(mi)(Xi−1) =

(
q ◦ q ◦ · · · ◦ q︸ ︷︷ ︸

mi times

)
(Xi−1), i = 1, 2, . . . (8)

Definition 1. A local trajectory T in S oscillates around x0 with respect to a
(state observation) function μ : S −→ R if T exists such that

– μ(Xi) ≥ x0 for i even (odd),
– μ(Xi) < x0 for i odd (even).

Clearly, this definition does not prevent that several oscillations exist in one
single sequence. In particular, it does not exclude that inner oscillations are
present in between adjacent states in T . For instance, it may be likely that T
oscillates also around x1, and that this oscillation appears within states traced
by the local trajectory between Xk and Xk−1. And so on.

Whether this definition can form an initial basis to a future theoretical de-
velopment, enriching the wide amount of literature already existing on Fourier
and, more general, spectral analysis, will be a matter of forthcoming research.
We are now working on this definition in an attempt to find a more insightful
interpretation of the oscillation per se.

5 Concluding Remarks

Our experience with the representation of several biochemical phenomena, in-
cluding the circadian model we have presented here, suggests that membrane
systems are promising candidates for providing accurate models of such phe-
nomena provided their versatility in dealing with discrete (that is, symbolic)
representations of the information and its transmission along peculiar commu-
nication channels such as cell ports and signal transduction networks.

This first attempt of symbolic modeling of the circadian cycle in Drosophila
yet has not considered the effect of light on the degradation of the phosphorilated
TIM. We want to include this effect in a forthcoming session of further tests of
our algorithm, still relying on the well-documented figures proposed in [12]. Even
more interesting will be comparing our symbolic algorithm to some well-known
stochastic simulation methods that are used when the molecules involved in a
biochemical process are few, in a way that the deterministic approach turns out
to be no longer suitable. Surprising analogies exist in fact between the symbolic
and the stochastic approach to the simulation of circadian rhythms when our

P Systems and the Modeling of Biochemical Oscillations 207

algorithm is set to work over populations rather than concentrations, i.e., over
discrete rather than continuous domains [7, 4].

In parallel, an analysis focusing on the ultimate meaning of the behaviors we
observe in a dynamical system is needed, since, if successful, this analysis will be-
come a useful way to extract important structural information from a system, even
independently of its physical (viz. biological for us) nature: such kind of analy-
ses have already provided powerful conceptual frameworks based on control the-
ory [24] that have found fertile applications, for instance, in the identification of
“black-box” systems—as biological systems still are, at least to some extent [11].

A possible roadmap to follow along this research perhaps starts from properly
defining basic dynamic concepts, oscillation in primis for its major importance
in any dynamic phenomenon. We will try to move along this roadmap in the
next few months.

References

1. L. Bianco, F. Fontana, G. Franco, V. Manca: P systems for biological dynamics. In
Applications of Membrane Computing (G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez,
eds.), Springer, Berlin, 2006, 81–126.

2. L. Bianco, F. Fontana, V. Manca: Metabolic algorithm with time-varying reaction
maps. In Proc. of the Third Brainstorming Week on Membrane Computing, Sevilla,
Spain, 2005, 43–62.

3. L. Bianco, F. Fontana, V. Manca: Reaction-driven membrane systems. In Proc.
Advances in Natural Computation, First International Conference, ICNC 2005,
Changsha, China, August 27-29, 2005, Part II (L. Wang, K. Chen, Y.S. Ong,
eds.), LNCS 3611, Springer, Berlin, 2005, 1155–1158.

4. D.T. Gillespie: Exact stochastic simulation of coupled chemical reactions. J. of
Phys. Chem., 81 (1977), 2340–2361.

5. A. Goldbeter: Computational approaches to cellular rhythms. Nature, 420 (2002),
238–244.

6. A. Goldbeter: Biochemical Oscillations and Cellular Rhythms. The Molecular
Bases of Periodic and Chaotic Behaviour. Cambridge University Press, New York,
2004.

7. D. Gonze, J. Halloy, A. Goldbeter: Stochastic model for circadian oscillations:
Emergence of a biological rhythm. Int. J. of Quantum Chemistry, 98 (2004), 228–
238.

8. R.C. Hilborn: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford,
UK, 2000.

9. D.S. Jones, B.D. Sleeman: Differential Equations and Mathematical Biology. Chap-
man & Hall/CRC, London, UK, 2003.

10. T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs, 1980.
11. H. Kitano: Computational systems biology. Nature, 420 (2002), 206–210.
12. J.C. Leloup, A. Goldbeter: A model for circadian rhythms in Drosophila incor-

porating the formation of a complex between the PER and TIM proteins. J. of
Biological Rhythms, 13 (1998), 70–87.

13. A. Lindenmayer: Mathematical models for cellular interaction in development. J. of
Theoretical Biology, 18 (1968), 280–315, Part I and II.

208 F. Fontana, L. Bianco, and V. Manca

14. V. Manca, L. Bianco, F. Fontana: Evolutions and oscillations of P systems: Appli-
cations to biological phenomena. In [16], 63–84.

15. V. Manca, G. Franco, G. Scollo: State transition dynamics: Basic concepts and
molecular computing perspectives. In Molecular Computational Models - Uncon-
ventional Approaches (M. Gheorghe, ed.), Idea Group, 2004.

16. G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.: Mem-
brane Computing, 5th International Workshop, WMC 2004, Milan, Italy, June
14-16, 2004, Revised Selected and Invited Papers. LNCS 3365, Springer, Berlin,
2005.

17. Gh. Păun: Computing with membranes. J. Comput. System Sci., 61 (2000), 108–
143

18. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
19. M.J. Pérez-Jiménez, F.J. Romero-Campero: Modelling EGFR signalling network

using continuous membrane systems. In Proceedings of the Third International
Workshop on Computational Methods in Systems Biology 2005 (CMSB 2005) (G.
Plotkin, ed.), University of Edinburgh, UK, 2005.

20. P. Prusinkiewicz, M. Hammel, J. Hanan, R. Mech: Visual models of plant devel-
opment. In [21], Volume III: Beyond Words, 535–597.

21. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin,
1997.

22. I. Stamatopoulou, M. Gheorghe, P. Kefalas: Modelling dynamic organization of
biology-inspired multi-agent systems with communicating X-machines and popu-
lation P systems. In [16], 389–403.

23. Y. Suzuki, H. Tanaka: Chemical oscillation in symbolic chemical systems and its
behavioral pattern. In Proc. International Conference on Complex Systems (Y.
Bar-Yam, ed.), Nashua, NH, 1997.

24. T.L. Vincent, W.J. Grantham: Nonlinear and Optimal Control Systems. Wiley,
New York, 1997.

25. V. Volterra: Fluctuations in the abundance of a species considered mathematically.
Nature, 118 (1926), 558–560.

26. H. Zeng: Constitutive overexpression of the drosophila period protein inhibits pe-
riod mRNA cycling. The EMBO Journal, 13 (1994), 3590–3598.

P Systems, Petri Nets, and Program Machines

Pierluigi Frisco

Department of Computer Science,
School of Engineering, Computer Science and Mathematics,
University of Exeter, Harrison Building, North Park Road,

Exeter, EX4 4QF, U.K
P.Frisco@exeter.ac.uk

Abstract. Some features capturing the computational completeness of
P systems with maximal parallelism, priorities or zero-test using symbol
objects are studied through Petri nets.

The obtained results are not limited to P systems.

1 Introduction

Membrane systems (also called P systems) are a new class of distributed and par-
allel theoretical computing devices introduced in [19]. In the seminal paper the
author considers systems based on a hierarchically arranged, finite cell-structure
consisting of several cell-membranes embedded in a main membrane called the
skin. The membranes delimit regions where objects, elements of a finite set, and
evolution rules can be placed.

In [19] the author examines three ways to view P systems: transition, rewrit-
ing and splicing P systems. Starting from these, several variants were considered
[26, 20]. These variants can be divided in two main categories: P systems using
symbol objects and P systems using string objects. Several proofs of computa-
tional universality of P systems using symbol objects are based on a simulation
of program machines.

In this research we try to discover and study the principles underlying the
P systems using symbol objects that happen to be computationally complete.
A similar study but limited to specific variants of (tissue) P systems has been
reported in [4]. We focused our attention on the processes carried out by these
systems and we used Petri nets as a tool for our research. Links between P
systems and Petri nets have been already investigated [27, 22, 11, 12].

The obtained results are not limited to P systems.

2 Basic Definitions

We assume the reader to have familiarity with basic concepts of formal language
theory [10], in particular with the topic of P systems [20], Petri nets [23] and
program machines [16]. In the following subsections we recall particular aspects
relevant to our presentation.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 209–223, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

210 P. Frisco

2.1 General

We indicate with N the set of natural numbers while N0 = {0} ∪ N. We use
N0RE to denote the family of recursively enumerable sets of natural numbers.
For k ∈ N0, Nk ·RE equals the family of recursively enumerable sets with elements
greater than or equal to k.

Let V be a finite set of objects. With V ∗ we indicate the free monoid generated
by V with the operation of concatenation; λ indicates the empty word. A multiset
(over V) is a function M : V → N0 ∪ {+∞}; for a ∈ V , M(a) defines the
multiplicity of a in the multiset M . We will say that an element a of a multiset M
has infinite multiplicity if M(a) = +∞. In case the multiplicity of an element of a
multiset is 1 we will indicate just the element, otherwise (a,M(a)) or aM(a) (that
is, the symbol a repeated M(a) times) is indicated. The support of a multiset
M is the set supp(M) = {a ∈ V | M(a) > 0}. The size of a multiset is defined
by the function | · | : (V → N0 ∪ {+∞}) → N0 ∪ {+∞}, where for a multiset M
over V , |M | =

∑
a∈supp(M) M(a). The symbol φ indicates the empty multiset,

that is, the multiset whose support is the empty set ∅.
Let M1,M2 : V → N0 ∪ {+∞} be two multisets. The union of M1 and

M2 is the multiset M1 ∪ M2 : V → N0 ∪ {+∞} defined by (M1 ∪ M2)(a) =
M1(a)+M2(a), for all a ∈ V . The differenceM1\M2 is here defined only whenM2
is included in M1 (which means that M1(a) ≥ M2(a) for all a ∈ V) and it is the
multisetM1\M2 : V → N0∪{+∞} given by (M1\M2)(a) = M1(a)−M2(a) for all
a ∈ V . Of course, if M1(a) = +∞ and M2(a) is finite, then M1(a)\M2(a) = +∞.
If M2(a) = +∞, then by convention, M1(a)\M2(a) = 0.

2.2 P Systems

In this subsection we do not give the definition of a specific P system, rather we
give a general definition for P systems whose content of the membrane compart-
ments are multisets of objects.

Let us consider the construct Π = (V, μ, L1, . . . , Lm, R, fin), where:

V is a set of objects;
μ = (N,E) is a directed graph underlying Π . The set N ⊂ N contains ver-

tices; for simplicity we define N = {1, . . . ,m}. Each vertex in N defines a
membrane of Π . The set E ⊆ N ×N defines directed edges between vertices
indicated by (i, j).

Li over V → N0 ∪ {+∞} are the multisets associated with membranes i ∈ N .
They define the input of the system. If an object belongs to the support of
a multiset associated with a membrane, then we will say that the object is
present into the membrane.

R is a finite set of rules describing operations on one or two multisets of objects.
As we are not considering a specific P system we do not give a definition of
the rules.

fin ∈ N defines the final membrane indicating the multiset output of the
system when a certain condition is met. This condition can be, for instance,

P Systems, Petri Nets, and Program Machines 211

the impossibility to apply any rule (as in P systems with symport/antiport
[18, 13, 8, 2, 25]) or the presence of an object in a specific membrane (as in
conformon-P systems [6]).

A configuration of Π is an m-tuple (M1, . . . ,Mm) of multisets over V × N0 ∪
{+∞}. From two configurations (M1, . . . ,Mm), (M ′

1, . . . ,M
′
m) of Π we write

(M1, . . . ,Mm) ⇒ (M ′
1, . . . ,M

′
m) indicating a transition from (M1, . . . ,Mm) to

(M ′
1, . . . ,M

′
m) obtained by means of the parallel application of a multiset of

rules. In a transition Mj �= M ′
j for at least a 1 ≤ j ≤ m. If no rule is applied to a

multiset Mi, then Mi = M ′
i . Notice that transitions could be applied under the

requirement of maximal parallelism that is, a multiset of rules cannot be applied
if there is a strictly larger multiset of rules that could be applied.

A computation is a finite sequence of transitions between configurations of
a system Π starting from (L1, . . . , Lm) and ending with a configuration that
meets certain conditions. The result of a computation is given by the multiset of
objects present in membrane fin in the final configuration. The set of all such
multisets is indicated by L(Π).

2.3 Petri Nets

Definition 1. A Petri net is a quadruple M = (P, T, F, Cin), where:

i) (P, T, F) is a net, that is:
1. P and T are sets with P ∩ T = ∅;
2. F ⊆ (P × T) ∪ (T × P);
3. for every t ∈ T there exist p, q ∈ P such that (p, t), (t, q) ∈ F ;
4. for every t ∈ T and p, q,∈ P , if (p, t), (t, q) ∈ F , then p �= q.

ii) Cin ⊆ P is the initial configuration.

Elements of P are called places (graphically represented with circles), elements
of T are called transitions (graphically represented with rectangles), elements
of X = P ∪ T are called elements (of M), F is called the flow relation and, in
general, a C ⊆ P is a configuration. Graphically, a configuration is represented
by placing a ‘token’ (i.e., a dot) in every circle corresponding to a place in C.

Given a Petri net M = (P, T, F, Cin), (P, T, F) is the underlying net of M .
A directed edge-labelled tree is a tree provided with a labelling function for

its edges. Given a Petri net M = (P, T, F, Cin) we define the sequential con-
figuration graph of M, denoted by SCG(M), as a directed edge-labelled tree
having elements in CM (the set of all reachable configurations) as vertices, Cin

as root, E = {(C,D) | C,D ∈ CM , t ∈ T,C[t〉D} as set of directed edges and
label : E → T as labelling function. If e = (C,D) ∈ E, then label(e) = t if C[t〉D
(that is, if t ∈ T fires from C to D).

Moreover, UC,D = {Ui ⊆ T | Ui is a concurrent step from C to D} is the set
of concurrent steps from C to D and Umax

C,D = {U | |U | ≥ |V | ∀U, V ∈ UC,D} is
the maximal set of concurrent steps from C to D.

The configuration graph of M, denoted by CG(M), is similar to the SCG(M)
but it has E = {(C,D) | C,D ∈ CM , U ⊆ T,C[U〉D} and label : E → P(T)

212 P. Frisco

(where, given a set A, P(A) indicates its power set, the set of all subsets of A).
If e = (C,D) ∈ E, then label(e) = U if C[U〉D (that is, U ⊆ T is a concurrent
step from C to D).

The configuration graph with maximal concurrency of M, denoted by
CGMC(M), is similar to the CG(M) but it has E = {(C,D) | C,D ∈ CM , U ∈
Umax

C,D } and label : E → P(T) is such that if e = (C,D) ∈ E, then label(e) =
U ∈ Umax

C,D .

The definition of Petri nets can be extended to the one of place/transition
systems, P/T systems for short, allowing a place to contain more than one token
and more than one token to be removed/added from/to places as a consequence
of a firing.

Definition 2. A P/T system is a tuple M = (P, T, F,W,K,Cin), where:

i) (P, T, F) is a net (see Definition 1);
ii) W : F → N is a weight function;
iii) K : P → N ∪ {+∞} is a capacity function;
iv) Cin : P → N0 is the initial configuration.

A configuration of a P/T system is a multiset over P ; if we consider a linear
order on the elements of P , then a configuration can be regarded as a vector
(this fact will be used in Definition 3). The dynamic behaviour of a P/T system
is analogous to the one of a Petri net, but considering the weight and capacity
functions.

A P/T system M with maximal concurrency is such that for each C,D ∈ CM

if there is a U ⊆ T such that C[U〉D, then U ∈ Umax
C,D .

Petri nets can be regarded as a specific kind of a P/T systems having W : F →
{1} and K : P → {1} as weight and capacity functions, respectively. Moreover,
a P/T system can be regarded as a ‘compressed’ Petri net; given a P/T system
it is always possible to create a Petri net modelling the same process of the P/T
system.

Definition 3. Given a P/T system M = (P, T, F,W,K,Cin) a vector i : P → Z

is a p-invariant of M if for all configurations C,D of M and all t ∈ T , if C[t〉D,
then C · i = D · i (in this case a configuration is regarded as a vector).

2.4 Program Machines

Non-rewriting Turing machines were introduced by M. L. Minsky in [15] and
then reconsidered in [16] under the name of program machines.

Formally a program machine with n counters (n ∈ N), each counter able to
store any element in N0, is defined as M = (S,R, s0, f), where S is a finite set of
states, s0, f ∈ S are respectively called the initial and final states, R is the finite
set of instructions of the form (s, op(l), v, w), with s, v, w ∈ S, s �= f, op(l) ∈
{l+, l−}, 1 ≤ l ≤ n.

P Systems, Petri Nets, and Program Machines 213

A configuration of a program machine M with n counters is given by an
element in the n + 1-tuples S × Nn

0 . Given two configurations (s, val(l1), . . . ,
val(ln)), (s′, val(l′1), . . . , val(l′n)) (where val : N → N0 is the function returning
the content of a counter) we define a computational step as (s, val(l1), . . . ,
val(ln)) � (s′, val(l′1), . . . , val(l

′
n)) if (s, op(l), v, w) ∈ R and:

– if op(l) = l−, l = li and val(li) �= 0, then s′ = v, val(l′i) = val(li) −
1, val(l′j) = val(lj), j �= i, 1 ≤ j ≤ n;
if op(l) = l−, l = li and val(li) = 0, then s′ = w, val(l′j) = val(lj), 1 ≤ j ≤
n;
(informally: in state s if the content of counter l is greater than 0, then
subtract 1 from that counter and change state into v, otherwise change state
into w)

– if op(l) = l+, l = li, then s′ = v, val(l′i) = val(li) + 1, val(l′j) = val(lj), j �=
i, 1 ≤ j ≤ n;
(informally: in state s add 1 to counter l and change state into v).

The reflexive and transitive closure of � is indicated by �∗.
A computation is a finite sequence of transitions between configurations of a

program machine M starting from the initial configuration (s0, l1, . . . , ln) with
val(l1) �= 0, val(lj) = 0, 2 ≤ j ≤ n and ending with a configuration from which
no computational step is possible. If the last of such configurations has f as state,
then we say that M accepts val(l1). The set of numbers accepted by M is defined
as L(M) = {val(l1) | (s0, val(l1), . . . , val(ln)) �∗ (f, val(l′′1), . . . , val(l′′n))}.

2.5 From P to P

Throughout this paper we only consider systems, of the kind introduced in
the previous section, whose set of configurations contains some elements which
are final, i.e., there is no transition from a final configuration to any other
configuration.

The results present in Section 5 are related to the simulation of one system
performed by another one. A simulation is a relation from the set of subsets of
the configurations of a system, the simulating one, to the set of configurations
of another (different) system, the simulated one.

This relation (mapping) induces a partition in the set of configurations of the
simulating system and associates the final configurations of this system with the
final configurations of the simulated one.

Now we formally define a simulation between two systems.
Given a set A we define with Sub(A) = {A1, . . . , At}, Ai ⊆ A, 1 ≤ i ≤ t, a

subdivision of A into subsets. If Sub(A) is such that
⋃t

i=1 Ai = A and Ap ∩Aq =
∅, p �= q, 1 ≤ p, q ≤ t, then Sub(A) is a partition of A indicated with Part(A).

Let S, S′ be two different systems with C = {c1, c2, . . . , cv} and C′ =
{c′1, c′2, . . . , c′v′} their respective sets of configurations.

A computation of a system S is a finite sequence of configurations (in which
it can be that not all configurations of the system are present).

214 P. Frisco

Given the set of configurations C of a system S it is possible to distinguish
one subset FC in it: the set of final configurations (all sharing certain termination
criteria). The last configuration in all computations of S is an element of FC.

Let us denote with ⇒ (⇒′) the transition from one configuration to another in
a computation of S (S′). Moreover, let ⇒∗ (⇒′∗) be the reflexive and transitive
closure of ⇒ (⇒′).

We will say that S can simulate S′ if there is a relation Sim ⊆ Sub(C) × C′

such that:

1. for each c′g′ , c′h′ ∈ C′, g′ �= h′, such that c′g′ ⇒′ c′h′ there are G,H ∈ Sub(C)
such that Sim(G) = c′g′ and Sim(H) = c′h′ and cg ⇒ ch for each cg ∈ G and
ch ∈ H ;

2. for each c′f ′ ∈ FC′ there is F ∈ Sub(C), F = FC, such that Sim(F) = c′f ′ .

So, if b′ ⇒′∗ e′, e′ ∈ FC′ , then there are B,E ∈ Sub(C), E = FC, such that
Sim(B) = b′, Sim(E) = e′, and b ⇒∗ e for each b ∈ B and e ∈ FC. In this case
we can also write B ⇒∗ E.

S is called the simulating system and S′ the simulated system.
Notice that neither all elements in Sub(C) are in relation with an element

l′ ∈ C′, nor for each element in C′ there is L ∈ Sub(C) such that Sim(L) = l′.

Lemma 1. Given two systems S and S′ the simulation relation Sim ⊆ Sub(C)×
C′ induces a partition in C.

So we can say that if S can simulate S′, then there is a relation Sim ⊆
Part(C) × C′.

Given two systems it is possible to have several relations defining different
simulations.

3 Maximal Parallelism, Priorities and Indication of
Emptiness

Several proofs of the computational completeness of (tissue) P systems using
symbol objects are based on the simulation of program machines and use either
maximal parallelism [18], or priorities [24], or indication of emptiness of the
counters (of the simulated program machine) [6]. With indication of emptiness
we mean that in the P system there is a configuration associated with the one(s)
of the program machine in which one of the counters is zero (i.e., is empty). For
some of these variants (for instance, [7, 6]) it is proved that when these elements
are missing, then the computational power is reduced to the one of partially
blind program machines (see also [4]).

These facts suggest that maximal parallelism, priorities and indication of
emptiness are different aspects of the same feature, that is, that they are equiv-
alent. To our knowledge there is no direct proof of this (an indirect proof would
be to consider one computational device and show that with either maximal
parallelism, priorities or indication of emptiness it is computationally complete).

P Systems, Petri Nets, and Program Machines 215

In this section we prove that, for P/T systems maximal concurrency, priorities
and indication of emptiness are equivalent.

In [3] it is indicated that P/T systems with maximal concurrency (there called
maximum strategy) can perform the test for zero (addressed by us as the 0-test)
simulating rule (s, l−, v, w) (addressed by us as 0-rule) of a program machine.
This simulation is performed by the net underlying the P/T system with max-
imal concurrency depicted in Figure 1. The same P/T system simulates the
0-rule if the firing of transition t2 has priority on the firing of transition t5 (and
maximal concurrency is not present). In this P/T system the number of tokens
that can be present in pc is unbounded. It is important for us to notice that in
the P/T system simulating the program machine there are as many such P/T
systems performing the 0-test as many 0-rules present in the simulated program
machine. Moreover, as the program machine can be in only one state per time,
then at most one place ps in a P/T system performing a 0-test can have a token.

If we transform the net underlying the P/T system present in Figure 1 into a
Petri net, then we obtain the net depicted in Figure 2 (without considering the
dashed place and edge) where, if we consider the presence of priorities (and the
absence of maximal parallelism), all the ti2, i ∈ N, have priority on t5. In Figure
2, if the counter c of the simulated program machine has value i, i ∈ N, then a
place pc=i has a token (we will discuss the case i = 0 in a while).

It should be clear that neither the just mentioned P/T system, nor the Petri net
perform the 0-test if maximal parallelism and priorities are not considered. In the
net underlying the P/T system in Figure 1 it can be, for instance, that if at least
one token is present in pc and one token is present in ps, then the system can fire
t1, t3 and t5 in sequence reaching a configuration having one token in pw.

ps

p1 p2

t1

t2

p3

t4

pc

t5

pw

p4

t3

pv

Fig. 1. Net underlying
the P/T system for the 0-
test

t5
pw

pc=3

t12

t32

ps p2 p4
t1 t3

t4

p3

p1

pc=0

pc=1

pc=2
t22

pv

Fig. 2. Net underlying the Petri net for the 0-test

216 P. Frisco

t4

{pv, pc=i−1}

{ps}

{p1, p2}

{p1, p4}

{pw}

t5

t3

t1

(a)

t1 t1

t4
t3

t3 ti
2

ti
2

{p1, p2, pc=i}

{p1, p4, pc=i} {p2, p3, pc=i−1}

{p3, p4, pc=i−1}

{ps, pc=i}

{p3, p4, pc=i−1}

{p1, p2, pc=i}

{pv, pc=i−1}

{t2, t3}

{ps, pc=i}(c)(b)

Fig. 3. (a), (b) SCG for the 0-test with priorities, (a), (b) CG for the 0-test with
maximal parallelism, i ∈ N

{ps, pc=0}(b)

{pw, pc=0} {pv , pc=i−1}

{ps, pc=i}(c){ps}

{pw}

(a)

Fig. 4. ‘Reduced’ (S)CGs, i ∈ N

As in the net underlying the P/T system in Figure 1 the place pc can contain
arbitrarily many tokens, then in the net underlying the Petri net in Figure 2 the
number of transitions ti2 and of places pc=i, i ∈ N, is infinite.

The CGMC and the SCG (in case of priorities) for all the permitted ini-
tial configurations of the net underlying the Petri net depicted in Figure 2 are
represented in Figure 3.

The graphs depicted in Figure 3 are such that, once in the root, the system can
only evolve toward the configuration at the bottom. So we can write a ‘reduced’
graph. This is done in Figure 4.a and Figure 4.c.

As in each configuration of a program machine a counter can have only
one value, a Petri net simulating it would have

∑∞
i=1 pc=i = 1 as p-invariant

(where pc=i are the places in the net depicted in Figure 2). If in the same net
we consider the dashed place pc=0 and the dashed edge incoming this place,
then its ‘behaviour’ is not changed, but it is actually enlarged to model a
program machine also when a counter c is empty. The configuration graphs
are changed adding the place pc=0 to every configuration in Figure 3.a. This
means that its ‘reduced’ configuration graph changes into the one depicted in
Figure 4.b.

If we now consider the ‘reduced’ configuration graphs depicted in Figure 4.b
and Figure 4.c, then we can create another net underlying a Petri net imple-
menting the 0-test. This is depicted in Figure 5. Because of the edges from p′c=0
to t

′0
2 and vice versa, what is depicted in Figure 5 is not a net underlying a

P Systems, Petri Nets, and Program Machines 217

p′
s

p′
c=0 p′

c=1 p′
c=2 p′

c=3

t
′3
2t

′2
2

p′
v

p′
w

t
′0
2 t

′1
2

Fig. 5. Net underlying the ‘reduced’ Petri net for the 0-test

Petri net as defined in Definition 1 (as point 4 is not satisfied). We can overcome
this by simply removing the edge from t

′0
2 to p′c=0 and adding the dashed place,

transition and edges.
The net underlying the Petri net depicted in Figure 5 can be regarded as a

rewriting of the one depicted in Figure 2. Such a rewriting implements the 0-test
without maximal concurrency and priorities but with an infinity of places and
transitions.

Recalling (from Section 2.3) that a Petri net can be regarded as a specific
kind of a P/T system we can say that:

Theorem 1. For a P/T system,

1. finite number of places + unbounded number of tokens in a place + maximal
concurrency,

2. finite number of places + unbounded number of tokens in a place + priorities,
3. infinite number of places and transitions (that is, indication of emptiness)

are similar ways to perform the 0-test.

It is important to notice that the net underlying the Petri net depicted in Figure
5 performs more than just the 0-test, it performs the i-test for i ∈ N0.

4 0-Test and 0-Gamble

In this section we will show that two ways to simulate the 0-rule are equivalent.
The proof uses nets and building blocks.

The 0-test can be performed by nets different from the one depicted in Figure 1.
Several papers on variants of P systems using symbol objects use another mapping
(from P systems to program machines) to simulate the 0-rule (s, l−, v, w).

This procedure, addressed by us as the 0-gamble, can be represented by the
net underlying the P/T system depicted in Figure 6 where maximal concurrency
or priorities (transition t4 has priority on transition t6) are present.

Let us say that once in state ps the system ‘gambles’ one of two cases: either
the counter is empty or it is not. If the gamble is correct, then the system will

218 P. Frisco

ps

pc

pv

p2

p3

pw

t>0 t=0

t3

t5

t6

p>0 p=0

t2

pc̄

t4

pwrong

Fig. 6. Net underlying the P/T system for the 0-gamble

evolve in state pw or pv respectively, in case of wrong gamble it will go into the
state pwrong or it will block, respectively.

It is interesting to notice what happens when the system gambles that the
counter in not empty. In this case the places pc̄ and p2 get a token and then
either pwrong or ps0 will get a token.

The presence of the place pc̄ is of interest for our discussion. Following what
indicated in [8] we can name this place ‘conflicting counter’. A similar concept
has been used also in [5]. Even if explicitly defined in the just mentioned papers,
the concept of ‘conflicting counter’ was already implicitly present in all the proofs
of P systems using symbol objects generating N·RE and using the 0-gamble ([18],
for instance).

Some of these proofs were so made that once in pw the computation could
still enter the pwrong place (for instance, Theorem 1 in [7]).

At this point we can wonder on the relation between the 0-test (Figure 1) and
the 0-gamble (Figure 6).

Before studying this further, let us introduce the nets depicted in Figure 7.
We call these nets building blocks.

Both the 0-test and the 0-gamble are implemented by a combination of the
building blocks. In the net underlying the P/T system for the 0-test (Figure 1)
{pc, p1, p3}, {p3, p4, pv} and {p1, p4, pv} are building blocks of type b; {ps, p1, p2}
is a building block of type c and {p2, p4} is a building block of type d. In
the net underlying the P/T system for the 0-gamble (Figure 6) {ps, p>0, p=0}
is a building block of type a; {p>0, pc, pv}, {pc, pc̄, pwrong} and {pc̄, p3, pw} are

P Systems, Petri Nets, and Program Machines 219

(d)(b)(a) (c)

Fig. 7. Building blocks: (a) nondeterminism, (b) join, (c) fork, (d) determinism

building blocks of type b; {p=0, pc̄, p2} is a building block of type c and {p2, p3} is
a building block of type d. In this figure we also see that the relative arrangement
of pairs of building blocks is the one indicated in Table 1.

At this point we can say that:

Theorem 2. A necessary condition such that a system S with maximal par-
allelism or priorities using symbol objects can implement the 0-test (or the 0-
gamble) is that there is a mapping from S to a net underlying a P/T system such
that it is possible to have a sequence of sets of configurations in S associated with
the subsequent firing of transitions present in the pairs of building blocks listed
above.

The previous theorem does not give a sufficient condition as the system could
have features (limits in the number of tokens present in a place, limits on the
firing of transitions, etc.) not allowing it to perform the 0-test even if its process
can be described by the building blocks and that pairs of building blocks can be
combined in the ways listed in Table 1.

As the relative arrangements of the pairs of building blocks present in the
0-test are part of the relative arrangements of building blocks present in the
0-gamble, then we can say that:

Corollary 1. If a system with maximal parallelism or priorities using symbol
objects can implement the 0-gamble, then it can implement the 0-test.

Table 1. Pairs of building blocks for the 0-test and the 0-gamble (with d)

0-test c-b, c-d, b-b, d-b
0-gamble a-b, a-c, b-b, c-b, c-d, d-b

Table 2. Pairs of building blocks for the 0-test and the 0-gamble (without d)

0-test c-b, b-b
0-gamble a-b, a-c, b-b, c-b

220 P. Frisco

Both in the 0-test (Figure 1) and the 0-gamble (Figure 6) the building block
d can be substituted by the building block c followed by the building block
b without affecting the behaviour of the P/T system. If we consider this, the
relative arrangements of pairs of building blocks indicated in Table 1 changes
into the one indicated in Table 2.

5 Unifying Results

In this section we generalise the result obtained in Section 3 showing that max-
imal parallelism, priorities and indication of emptiness are equivalent concepts
for systems using symbol objects. To do so we use the same technique used in
Section 4.

The capability to simulate the 0-rule is only one of the operations needed for
a system using symbol objects to simulate a program machine. The system has
also to simulate the rule (s, l+, v, w) (adding 1 to a counter) and to simulate
nondeterminism (see Section 2.4). These two operations can be simulated by
the building blocks c and a respectively. The operations of simulating a 0-rule,
addition of 1 and simulating nondeterminism, can be performed by the system
in any order. If we consider that the simulation of the 0-test can be followed by
the simulation of nondeterminism, then it has to be possible that the building
block b (as in Figure 1 both pv and pw are in such building block) is followed by
the building block a. Reasoning in a similar way we obtain the pairs of building
blocks listed in Table 3.

Table 3. Pairs of building blocks for 0-test (0-gamble), fork and nondeterminism

0-test, non det. b-a 0-gamble, non det. b-a
non det., 0-test a-c non det., 0-gamble a-c
fork, 0-test c-b, c-c fork, 0-gamble c-b, c-a
0-test, fork b-c 0-gamble, fork b-c
fork, non det. c-a fork, non det. c-a
non det., fork a-c non det., fork a-c

This implies that:

Corollary 2. A necessary condition such that a system S with maximal par-
allelism or priorities using symbol objects can simulate a program machine is
that there is a mapping from S to a net underlying a P/T system such that it
is possible to have a sequence of sets of configurations in S associated with any
subsequent firing of transitions present in the pairs of building blocks listed in
Table 1 and Table 3.

Reasoning in a similar way we can say that

Corollary 3. A necessary condition such that a system S using symbol objects
can simulate a P/T system with indication of emptiness is that there is a mapping

P Systems, Petri Nets, and Program Machines 221

Table 4. Pairs of building blocks for indication of emptiness, fork and nondeterminism

inside ind. empty b-c
ind. empty., non det. c-a
non det., ind. empty. a-b
fork, ind. empty. c-b
ind. empty, fork c-c
fork, non det. c-a
non det., fork a-c

from S to a net underlying a P/T system such that it is possible to have a
sequence of sets of configurations in S associated with any subsequent firing of
transitions present in the pairs of building blocks listed in Table 4.

Now we are ready to state the main result of this paper.

Theorem 3. Let X={maximal parallelism, indication of emptiness, priorities}
and let D provided with x ∈ X be a device using symbol objects which is compu-
tationally complete. Let D′ be similar to D but with x′ ∈ X,x′ �= x.

1. If x = ‘maximal parallelism’ and x′ = ‘priorities’, then D′ with x′ is also
computationally complete (similarly if x = ‘priorities’ and x′ = ‘maximal
parallelism’);

2. If x = ‘maximal parallelism’ and x′ = ‘indication of emptiness’, then a
necessary condition for D′ with x′ to be computationally complete is the
presence of a mapping from D′ to the net underlying a P/T system such
that it is possible to have a sequence of sets of configurations in D′ associated
with the subsequent firing of the transitions present in the pair of building
blocks c-c (similarly if x = ‘priorities’);

3. If x = ‘indication of emptiness’ and x′ = ‘maximal parallelism’, then a
necessary condition for D′ with x′ to be computationally complete is the
presence of a mapping from D′ to the net underlying a P/T system such
that it is possible to have a sequence of sets of configurations in D′ associated
with the subsequent firing of the transitions present in the pairs of building
blocks b-b and b-a (similarly if x′ = ‘priorities’).

In the previous theorem, if x′ = ‘indication of emptiness’ then, more than being
able to arrange the building blocks as indicated, D′ needs a finite way to address
the infinite number of places that are created.

6 Final Remarks

How can the results obtained in the previous sections be of any use in the study
of the computational power of a system using symbol objects?

Given a computability system S using symbol objects one can prove that it
is computationally complete using Theorem 3, and not trying the simulation

222 P. Frisco

of a computationally complete device. As Theorem 3 states only a necessary
condition it has also to be proved that there are no limitations affecting the
work of S.

More relevant consequences are present in case a system S using symbol
objects cannot fulfil what stated in Theorem 3. Not verifying the necessary
condition present in that theorem S cannot be computationally complete.

At the present time we do not know if the building blocks a, b and c represent
a base for nets underlying a P/T systems generating N·RE. For sure they do not
represent a base for a general net.

Our intention is to go further on the line of this research trying to give an
answer to the following questions:

How computationally powerful is a P/T system having an underlying net com-
posed by proper subsets of the building blocks depicted in Figure 7? (in this
respect the computational differences between program machine and par-
tially blind program machine [9] and the infinite hierarchy described in [17]
are going to be of help)

How the computational power is affected if we limit the kind of relative ar-
rangements of pairs of building blocks?

What happens if we allow the P/T system having as underlying net the one
depicted in Figure 2 to have as p-invariant

∑∞
i=1 pc=i = n, n ∈ N0? (this

means that more than one place of the kind pc=i can have a token or that
some of them have more than one token).

Is it possible to extend these results to systems not using symbol objects?

Our ultimate question on this subject is: is it possible to create an hierarchy
of computational power based on building blocks, their combinations and the
functions W and K (see Definition 2)?

Acknowledgements

This work has been supported by the research grant NAL/01143/G of The
Nuffield Foundation.

References

1. A. Alhazov, C. Mart́ın-Vide, Gh. Păun, eds.: Preproceedings of the Workshop on
Membrane Computing, WMC-2003. Rovira i Virgili University, Tarragona, 2003.

2. F. Bernardini, M. Gheorghe: On the power of minimal symport/antiport. In [1],
72–83.

3. H.-D. Burkhard: Ordered firing in Petri nets. Journal of Information Processing
and Cybernetics, 17, 2–3 (1981), 71–86.

4. R. Freund: Asynchronous P systems and P systems working in the sequential mode.
In [14], 12–28.

5. R. Freund, M. Oswald: P systems with activated/prohibited membrane channels.
In [21], 261–269.

P Systems, Petri Nets, and Program Machines 223

6. P. Frisco: The conformon-P system: A molecular and cell biology-inspired com-
putability model. Theoretical Computer Science, 312, 2-3 (2004), 295–319.

7. P. Frisco: About P systems with symport/antiport. Soft Computing, 9, 9 (2005),
664–672.

8. P. Frisco, H.J. Hoogeboom: Simulating counter automata by P systems with sym-
port/antiport. In [21], 288–301.

9. S.A. Greibach: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7 (1978), 311–324.

10. J.E. Hopcroft, D.Ullman: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

11. O.H. Ibarra, Z. Dang, O. Egecioglu: Catalytic P systems, semilinear sets, and vector
addition systems. Theoretical Computer Science, 312, 1-2 (2004), 379–399.

12. J. Kleijn, M. Koutny, G. Rozenberg: Towards a Petri net semantics for membrane
systems. In this volume.

13. C. Mart́ın-Vide, A. Păun, G. Păun: On the power of P systems with symport rules.
The Journal of Universal Computer Science, 8 (2002), 317–331.

14. G. Mauri, G. Păun, C. Zandron, eds.: Preproceedings of the Fifth Workshop on
Membrane Computing, WMC-2004. Universitá degli studi di Milano Bicocca, 2004.

15. M.L. Minsky: Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines. Annals of Mathematics, 74, 3 (1961), 437–455.

16. M.L. Minsky: Computation: Finite and Infinite Machines. Automatic computation.
Prentice-Hall, 1967.

17. B. Monien: Two-way multihead automata over a one-letter alphabet. Informatique
Thèorique et Applications, 14, 1 (1980), 67–82.

18. A. Păun, Gh. Păun: The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20, 3 (2002), 295–306.

19. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61 (2000), 108–143.

20. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
21. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.: Membrane Computing:

International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania, August
19-23, 2002. Revised Papers. LNCS 2597, Springer, Berlin, 2002.

22. Z. Qi, J. You: P systems and Petri nets. In [1], 387–403.
23. W. Reisig, G. Rozenberg, eds.: Lectures on Petri Nets I: Basic Models. LNCS 1491,

Springer, Berlin, 1998.
24. P. Sośık: The power of catalysts and priorities in membrane systems. Grammars,

6, 1 (2003), 13–24.
25. G. Vaszil: On the size of P systems with minimal symport/antiport. In [14], 422–

431.
26. C. Zandron: P-systems web page: http://psystems.disco.unimib.it.
27. S. Dal Zilio, E. Formenti: On the dynamics of PB systems. In [1], 197–208.

On the Power of Dissolution in
P Systems with Active Membranes

Miguel A. Gutiérrez–Naranjo, Mario J. Pérez–Jiménez, Agust́ın Riscos–Núñez,
and Francisco J. Romero–Campero

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{magutier, marper, ariscosn, fran}@us.es

Abstract. In this paper we study membrane dissolution rules in the
framework of P systems with active membranes but without using elec-
trical charges. More precisely, we prove that the polynomial computa-
tional complexity class associated with the class of recognizer P systems
with active membranes, without polarizations and without dissolution
coincides with the standard complexity class P. Furthermore, we demon-
strate that if we consider dissolution rules, then the resulting complexity
class contains the class NP.

1 Introduction

Membrane Computing is inspired by the structure and functioning of living cells,
and it provides a new non–deterministic model of computation which starts from
the assumption that the processes taking place in the compartmental structure
of a living cell can be interpreted as computations. The devices of this model
are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non–deterministic maximally parallel manner.

In this paper we work with P systems with active membranes. This model was
introduced in [7], abstracting the way of obtaining new membranes through the
process of mitosis (membrane division) and providing a tool able to construct an
exponential workspace in linear time. In these devices membranes are considered
to have polarizations, one of the “electrical charges” 0,−,+, and several times
the problem was formulated whether or not these polarizations are necessary in
order to obtain polynomial time solutions to NP–complete problems. The last
result is that from [1], where it is proved that two polarizations suffice.

In the literature, P systems with active membranes have been successfully
used to design (uniform) solutions to well-known NP–complete problems, such
as SAT [12], Subset Sum [9], Knapsack [10], Bin Packing [11], Partition [3], and
the Common Algorithmic Problem [13].

The present paper can be considered as a contribution to the interesting
problem of characterizing the tractability in terms of descriptional resources
required in membrane systems.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 224–240, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Power of Dissolution in P Systems with Active Membranes 225

Specifically, in the framework of recognizer P systems with membrane division
but not using polarizations, we prove the following: (a) the class of problems
which can be solved in a polynomial time by a family of such P systems without
dissolution is equal to class P, and (b) the class of problems which can be solved
in a polynomial time by a family of such P systems with dissolution contains
the class NP. Hence, we show a surprising role of the –apparently “innocent”–
operation of membrane dissolution, as it makes the difference between efficiency
and non–efficiency for polarizationless P systems with membrane division.

The paper is organized as follows. In the next section some preliminary ideas
about recognizer membrane systems and polynomial complexity classes are in-
troduced. In Section 3 we present a characterization of the class P through the
polynomial complexity class associated with recognizer P systems with active
membranes, without polarization and without dissolution. In Section 4 we show
that every NP–complete problem can be solved in a semi–uniform way by fam-
ilies of recognizer P systems using membrane dissolution rules and division for
elementary and non–elementary membranes. Conclusions and some final remarks
are given in Section 5.

2 Preliminaries

2.1 Recognizer P Systems

In the structure and functioning of a cell, biological membranes play an essential
role. The cell is separated from its environment by means of a skin membrane,
and it is internally compartmentalized by means of internal membranes.

The main syntactic ingredients of a cell–like membrane system (P system) are
the membrane structure, the multisets, and the evolution rules.

– A membrane structure consists of several membranes arranged hierarchically
inside a main membrane (the skin), and delimiting regions (the space in–
between a membrane and the immediately inner membranes, if any). When
a membrane has no membrane inside, it is called elementary. A membrane
structure can be considered as a rooted tree, where the nodes are called
membranes, the root is called skin, and the leaves are called elementary
membranes.

– Regions defined by a membrane structure can contain objects, corresponding
to chemical substances present in the compartments of a cell. These objects
can be described by symbols or by strings of symbols, in such a way that
multisets of objects are placed in the regions of the membrane structure.

– The objects can evolve according to given evolution rules, associated with
the regions (hence, with the membranes).

The semantics of the cell–like membrane systems is defined through a non–
deterministic and synchronous model (a global clock is assumed) as follows:

– A configuration of a cell–like membrane system consists of a membrane struc-
ture and a family of multisets of objects associated with each region of the

226 M.A. Gutiérrez–Naranjo et al.

structure. At the beginning, there is a configuration called the initial config-
uration of the system.

– In each time unit a given configuration is transformed in another configura-
tion by applying the evolution rules to the objects placed inside the regions
of the configurations, in a non–deterministic, maximally parallel manner (the
rules are chosen in a non–deterministic way, and in each region all objects
that can evolve must do it). In this way, we get transitions from one config-
uration of the system to the next one.

– A computation of the system is a (finite or infinite) sequence of configurations
such that each configuration –except the initial one– is obtained from the
previous one by a transition.

– A computation which reaches a configuration where no more rules can be ap-
plied to the existing objects and membranes, is called a halting computation.

– The result of a halting computation is usually defined through the multiset
associated with a specific output membrane (or the environment) in the final
configuration.

In this paper we use membrane computing as a framework to address the reso-
lution of decision problems. In order to solve this kind of problems and having
in mind that solving them is equivalent to recognizing the language associated
with them, we consider P systems as language recognizer devices.

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system with working alphabet Γ , with p membranes labelled with 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ and the initial multisets are over Γ − Σ; (c) iΠ is the
label of a distinguished (input) membrane.

The computations of a P system with input in the form of a multiset over Σ are
defined in a natural way, but the initial configuration of (Π,Σ, iΠ) must be the
initial configuration of the system Π to which we add the input multiset. More
formally,

Definition 2. Let (Π,Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, μ the membrane structure, and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with
input m is (μ,M1, . . . ,MiΠ ∪m, . . . ,Mp).

Let (Π,Σ, iΠ) be a P system with input. Let Γ be the working alphabet of Π ,
μ the membrane structure, and M1, . . . ,Mp the initial multisets of Π . Let m
be a multiset over Σ. Then we denote M∗

j = {(a, j) : a ∈ Mj}, for 1 ≤ j ≤ p,
and m∗ = {(a, iΠ) : a ∈ m}.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a
language over a finite alphabet (its elements are called instances) and θX is a
predicate (a total boolean function) over IX .

Definition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of P systems with input. A polynomial encoding from X to Π is a
pair (cod, s) of polynomial time computable functions over IX such that for each

On the Power of Dissolution in P Systems with Active Membranes 227

instance w ∈ IX , s(w) is a natural number and cod(w) is an input multiset for
the system Π(s(w)).

Polynomial encodings are stable under polynomial time reductions [12]. More
precisely, the following proposition holds.

Proposition 1. Let X1, X2 be decision problems. Let r be a polynomial time
reduction from X1 to X2. Let (cod, s) be a polynomial encoding from X2 to Π.
Then (cod ◦ r, s ◦ r) is a polynomial encoding from X1 to Π.

Definition 4. A recognizer P system is a P system with input and external
output such that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either the object yes or the object

no (but not both) must have been released into the environment, and only in
the last step of the computation.

In recognizer P systems, we say that a computation is an accepting computation
(respectively, rejecting computation) if the object yes (respectively, no) appears
in the environment associated with the corresponding halting configuration.

2.2 Recognizer P Systems with Active Membranes and Without
Polarizations

A particularly interesting class of membrane systems are the systems with active
membranes, where the membrane division can be used in order to solve com-
putationally hard problems in polynomial or even linear time, by a space–time
trade-off.

In this paper we work with a variant of P systems with active membranes
that does not use polarizations.

Definition 5. A P system with active membranes and without polarizations is
a P system with Γ as working alphabet, with H as the finite set of labels for
membranes, and where the rules are of the following forms:

(a) [a → u]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule,
associated with a membrane labelled with h: an object a ∈ Γ belonging to
that membrane evolves to a string u ∈ Γ ∗.

(b) a []h → [b]h for h ∈ H, a, b ∈ Γ . An object from the region immediately
outside a membrane labelled with h is introduced in this membrane, possibly
transformed into another object.

(c) [a]h → b []h for h ∈ H, a, b ∈ Γ . An object is sent out from membrane
labelled with h to the region immediately outside, possibly transformed into
another object.

(d) [a]h → b for h ∈ H, a, b ∈ Γ : A membrane labelled with h is dissolved in
reaction with an object. The skin is never dissolved.

228 M.A. Gutiérrez–Naranjo et al.

(e) [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ . An elementary membrane can be
divided into two membranes with the same label, possibly transforming some
objects.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If at the same time a membrane labelled with h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labelled with h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b)-(e).

Let us note that in this framework we shall work without cooperation, with-
out priorities, with cell division rules for elementary membranes, and without
changing the labels of membranes. But we shall explicitly mention in each case
whether we use dissolution or not.

We denote by AM0
−d (respectively, AM0

+d) the class of all recognizer P sys-
tems with active membranes without polarizations and without using dissolution
(respectively, using dissolution).

2.3 Polynomial Complexity Classes in Recognizer P Systems

Definition 6. Let X = (IX , θX) be a decision problem. Let Π = (Π(w))w∈IX

be a family of recognizer membrane systems without input.

– Π is sound with regard to X if for each instance of the problem w ∈ IX , if
there exists an accepting computation of Π(w), then θX(w) = 1.

– Π is complete with regard to X if for each instance of the problem w ∈ IX ,
if θX(w) = 1, then every computation of Π(w) is an accepting computation.

These concepts can be extended to families of recognizer P systems with input
membrane.

Definition 7. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer P systems with input. Let (cod, s) be a polynomial encoding
from X to Π.

– We say that the family Π is sound with regard to (X, cod, s) if the following
holds: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(s(w)) with input cod(w), then θX(w) = 1.

On the Power of Dissolution in P Systems with Active Membranes 229

– We say that the family Π is complete with regard to (X, cod, s) if the following
holds: for each instance of the problem w ∈ IX , if θX(w) = 1, then every
computation of Π(s(w)) with input cod(w) is an accepting computation.

The first results about solvability of NP–complete problems in polynomial
time (even linear) by membrane systems were given by Gh. Păun [6], C. Zandron,
C. Ferretti and G. Mauri [14], S.N. Krishna and R. Rama [4], and A. Obtulowicz
[5] in the framework of P systems that lack an input membrane. Thus, the
constructive proofs of such results need to design one system for each instance
of the problem.

This method for solving problems provides a specific purpose algorithmic so-
lution in the following sense: if we wanted to follow this approach for solving
some decision problem in a laboratory, then the system constructed to solve a
concrete instance would be useless when trying to solve another instance.

Now, we formalize these ideas in the following definition.

Definition 8. Let R be a class of recognizer P systems without input membrane.
A decision problem X = (IX , θX) is solvable in polynomial time by a family,
Π = (Π(w))w∈IX , of P systems from R, and we denote this by X ∈ PMC∗

R, if:

– Π is polynomially uniform by Turing machines, that is, there exists a deter-
ministic Turing machine working in polynomial time which constructs the
system Π(w) from the instance w ∈ IX .

– Π is polynomially bounded, that is, there exists a polynomial function p(n)
such that for each w ∈ IX , all computations of Π(w) halt in at most p(|w|)
steps.

– Π is sound and complete with regard to X.

Next, we propose to solve a decision problem through a family of P systems
constructed in polynomial time by a Turing machine, and verifying that each
element of the family processes, in a specified sense, all the instances of equivalent
size. We say that these solutions are uniform solutions.

Definition 9. Let R be a class of recognizer P systems with input membrane.
A decision problem X = (IX , θX) is solvable in polynomial time by a family
Π = (Π(n))n∈N, of P systems from R, and we denote this by X ∈ PMCR, if
the following holds:

– The family Π is polynomially uniform by Turing machines.
– There exists a polynomial encoding (cod, s) from IX to Π such that

• The family Π is polynomially bounded with regard to (X, cod, s); that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps.

• The family Π is sound and complete with regard to (X, cod, s).

It is easy to see that the classes PMC∗
R and PMCR are closed under polynomial–

time reduction and complement (see [8] for details).

230 M.A. Gutiérrez–Naranjo et al.

3 Characterizing the Tractability by Recognizer
P Systems with Active Membranes

Let Π be a recognizer P system with active membranes without polarizations
and without dissolution. Let R be the set of rules associated with Π .

Each rule can be considered, in a certain sense, as a dependency between the
object triggering the rule and the object or objects produced by its application.

We can consider a general pattern (a, h) → (a1, h
′)(a2, h

′) . . . (as, h
′), for rules

of types (a), (b), (c), (e), where:

– The rules of type (a) correspond to the case h = h′ and s ≥ 1.
– The rules of type (b) correspond to the case h = f(h′) and s = 1.
– The rules of type (c) correspond to the case h′ = f(h) and s = 1.
– The rules of type (e) correspond to the case h = h′ and s = 2.

If h is the label of a membrane, then f(h) denotes the label of the father of
the membrane labelled with h. We adopt the convention that the father of the
skin membrane is the environment (and we denote by environment the label
associated with the environment of the system).

For example, let us consider a general rule (a, h) → (a1, h
′) . . . (as, h

′). Then
we can interpret that from the object a in membrane labelled with h we can
reach the objects a1, . . . , as in membrane labelled with h′.

Next, we formalize these ideas in the following definition.

Definition 10. Let Π be a recognizer P system with active membranes without
polarizations and without dissolution. Let R be the set of rules associated with Π.
The dependency graph associated with Π is the directed graph GΠ = (VΠ , EΠ)
defined as follows:

VΠ = V LΠ ∪ V RΠ ,

V LΠ = {(a, h) ∈ Γ ×H : ∃u ∈ Γ ∗ ([a → u]h ∈ R) ∨

∃b ∈ Γ ([a]h → []hb ∈ R) ∨

∃b ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ a[]h′ → [b]h′ ∈ R) ∨

∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

V RΠ = {(b, h) ∈ Γ ×H : ∃a ∈ Γ ∃u ∈ Γ ∗ ([a → u]h ∈ R ∧ b ∈ alph(u)) ∨

∃a ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ [a]h′ → []h′b ∈ R) ∨

∃a ∈ Γ (a[]h → [b]h ∈ R) ∨

∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

On the Power of Dissolution in P Systems with Active Membranes 231

EΠ = {((a, h), (b, h′)) : ∃u ∈ Γ ∗ ([a → u]h ∈ R ∧ b ∈ alph(u) ∧ h = h′) ∨

([a]h → []hb ∈ R ∧ h′ = f(h)) ∨

(a[]h′ → [b]h′ ∈ R ∧ h = f(h′)) ∨

∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Proposition 2. Let Π be a recognizer P system with active membranes without
polarizations and without dissolution. Let R be the set of rules associated with Π.
There exists a Turing machine that constructs the dependency graph associated
with Π, GΠ , in polynomial time (that is, in a time bounded by a polynomial
function depending on the total number of rules and the maximum length of the
rules).

Proof. A deterministic algorithm that, given a P system Π with the set R of
rules, constructs the corresponding dependency graph, is the following:

Input: Π (with R as its set of rules)

VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = [a → u]h ∧ alph(u) = {a1, . . . , as} then

VΠ ← VΠ ∪
s⋃

j=1

{(a, h), (aj , h)}; EΠ ← EΠ ∪
s⋃

j=1

{((a, h), (aj , h))}

if r = [a]h → []hb then

VΠ ← VΠ ∪ {(a, h), (b, f(h))};
EΠ ← EΠ ∪ {((a, h), (b, f(h)))}

if r = a[]h → [b]h then

VΠ ← VΠ ∪ {(a, f(h)), (b, h)};
EΠ ← EΠ ∪ {((a, f(h)), (b, h))}

if r = [a]h → [b]h[c]h then

VΠ ← VΠ ∪ {(a, h), (b, h), (c, h)};
EΠ ← EΠ ∪ {((a, h), (b, h)), ((a, h), (c, h))}

The running time of this algorithm is bounded by O(|R| ·q), where q is the value
max{length(r) : r ∈ R}.

Proposition 3. Let Π = (Γ,Σ,H,M1, . . . ,Mp, R1, . . . , Rp, iΠ) be a recognizer
P system with active membranes without polarizations and without dissolution.
Let ΔΠ be defined as follows:

ΔΠ = {(a, h) ∈ Γ ×H : there exists a path (within the dependency graph)
from (a, h) to (yes, environment)}.

232 M.A. Gutiérrez–Naranjo et al.

Then, there exists a Turing machine that constructs the set ΔΠ in polynomial
time (that is, in a time bounded by a polynomial function depending on the total
number of rules and the maximum length of the rules).

Proof. We can construct the set ΔΠ from Π as follows:

– We construct the dependency graph GΠ associated with Π .
– Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
ΔΠ ← ∅
for each (a, h) ∈ VΠ do

if reachability (GΠ , (a, h), (yes, environment)) = yes then

ΔΠ ← ΔΠ ∪ {(a, h)}

The running time of this algorithm is of the order O(|VΠ | · |VΠ |2), hence1 it is
of the order O(|Γ |3 · |H |3).

Next, given a family of recognizer P systems solving a decision problem, we
will characterize the acceptance of an instance of the problem, w, using the set
ΔΠ(s(w)) associated with the system Π(s(w)), that processes the given instance
w. More precisely, the instance is accepted by the system if and only if there is
an object in the initial configuration of the system Π(s(w)) with input cod(w)
such that there exists a path in the associated dependency graph starting from
that object and reaching the object yes in the environment.

Proposition 4. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of recognizer P systems with input membrane solving X, according
to Definition 9. Let (cod, s) be the polynomial encoding associated with that so-
lution. Then, for each instance w of the problem X the following assertions are
equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ΔΠ(s(w)) ∩ ((cod(w))∗ ∪
p⋃

j=1

M∗
j) �= ∅, where M1, . . . ,Mp are the initial

multisets of the system Π(s(w)).

1 The Reachability Problem is the following: given a (directed or undirected) graph,
G, and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design
an algorithm running in polynomial time solving this problem. For example, given
a (directed or undirected) graph, G, and two nodes a, b, we consider a depth–first–
search with source a, and we check if b is in the tree of the computation forest whose
root is a. The total running time of this algorithm is O(|V | + |E|), that is, in the
worst case is quadratic in the number of nodes. Morover, this algorithm needs to
store a linear number of items (it can be proved that there exists another polynomial
time algorithm which uses O(log2(|V |)) space).

On the Power of Dissolution in P Systems with Active Membranes 233

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) with input multiset cod(w). But this condi-
tion is equivalent to the following: in the initial configuration of Π(s(w)) with
input multiset cod(w) there exists at least one object a ∈ Γ in a membrane
labelled with h such that in the dependency graph the node (yes, environment)
is reachable from (a, h).

Hence, θX(w) = 1 if and only if ΔΠ(s(w)) ∩M∗
j �= ∅ for some j ∈ {1, . . . , p},

or ΔΠ(s(w)) ∩ (cod(w))∗ �= ∅.

Theorem 1. P = PMCAM0
−d

.

Proof. We have P ⊆ PMCAM0
−d

because the class PMCAM0
−d

is closed un-
der polynomial time reduction. Next, we show that PMCAM0

−d
⊆ P. Let

X ∈ PMCAM0
−d

and let Π = (Π(n))n∈N be a family of recognizer P sys-
tems with input membrane solving X , according to Definition 9. Let (cod, s) be
the polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).
- Construct the set ΔΠ(s(w)) as indicated in Proposition 3

answer ← no; j ← 1
while j ≤ p ∧ answer = no do

if ΔΠ(s(w)) ∩M∗
j �= ∅ then

answer ← yes

j ← j + 1
endwhile

if ΔΠ(s(w)) ∩ (cod(w))∗ �= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there ex-
ists a pair (a, h) belonging to ΔΠ(s(w)) such that the symbol a appears in the
membrane labelled with h in the initial configuration (with input the multiset
cod(w)).

On the other hand, a pair (a, h) belongs to ΔΠ(s(w)) if and only if there exists
a path from (a, h) to (yes, environment), that is, if and only if we can obtain
an accepting computation of Π(s(w)) with input cod(w). Hence, the algorithm
above described solves the problem X .

The cost to determine whether or not ΔΠ(s(w)) ∩ M∗
j �= ∅ (or ΔΠ(s(w)) ∩

(cod(w))∗ �= ∅) is of the order O(|Γ |2 · |H |2).
Hence, the running time of this algorithm can be bounded by f(|w|)+O(|R| ·

q) +O(p · |Γ |2 · |H |2), where f is the (total) cost of a polynomial encoding from
X to Π, R is the set of rules of Π(s(w)), H is the set of labels for membranes

234 M.A. Gutiérrez–Naranjo et al.

of Π(s(w)), p is the number of (initial) membranes of Π(s(w)), and q = max
{length(r) : r ∈ R}. But from Definition 9 we have that all involved parameters
are polynomials in |w|. That is, the algorithm is polynomial in the size |w| of
the input.

Now, we consider division rules for non–elementary membranes, that is, rules of
the following form [[]h1 []h2]h0 → [[]h1]h0 [[]h2]h0 , where h0, h1, h2 are labels:
if the membrane with label h0 contains other membranes than those with labels
h1, h2, then such membranes and their contents are duplicated and placed in
both new copies of the membrane h0; all membranes and objects placed inside
membranes h1, h2, as well as the objects from membrane h0 placed outside
membranes h1 and h2, are reproduced in the new copies of membrane h0. We
denote by AM0

−d,+ne the class of all recognizer P systems with active membranes
without polarization, without membrane dissolution rules, and using division
rules for elementary and non–elementary membranes.

If Π ∈ AM0
−d,+ne, then we define the dependency graph associated with

Π as the directed graph GΠ from Definition 10, that is, the division rules for
non–elementary membranes do not add any node or edge to the dependency
graph.

Then, the proof of Theorem 1 provides the following result:

Theorem 2. P = PMCAM0
−d,+ne

.

Now, we study similar characterizations of P dealing with semi–uniform solu-
tions in the framework of recognizer P systems with active membranes without
polarizations and without dissolution.

Proposition 5. Let X = (IX , θX) be a decision problem. Let Π = (Π(w))w∈IX

be a family of recognizer P systems without input membrane solving X, accord-
ing to Definition 8. Then, for each instance w of the problem X the following
assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ΔΠ(w) ∩ (
p⋃

j=1

M∗
j) �= ∅, where M1, . . . ,Mp are the initial multisets of the

system Π(w).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting com-
putation of the system Π(w). But this condition is equivalent to the following:
in the initial configuration of Π(w) there exists an object a ∈ Γ in a membrane
labelled with h such that in the dependency graph the node (yes, environment)
is reachable from (a, h).

Hence, θX(w) = 1 if and only if ΔΠ(w) ∩M∗
j �= ∅ for some j ∈ {1, . . . , p}.

Theorem 3. P = PMC∗
AM0

−d
.

Proof. The proof of this result is analogous to the proof of Theorem 1, taking
into account that in this case we are dealing with a semi-uniform solution. That
is, in the previous theorem an instance w ∈ IX was processed by the P system
Π(s(w)) with input cod(w), and now such instance is processed by Π(w).

On the Power of Dissolution in P Systems with Active Membranes 235

Bearing in mind that division rules for non–elementary membranes do not influ-
ence the construction of the dependency graph, we have:

Theorem 4. P = PMC∗
AM0

−d,+ne
.

We can consider a three dimensional representation of the above theorems,
where +u (respectively, −u) stands for uniform (respectively, semi–uniform)
solutions.

(−d,−ne,+u)(−d,−ne,−u)

(−d,+ne,−u) (−d,+ne,+u)

(+d,−ne,−u) (+d,−ne,+u)

(+d,+ne,−u) (+d,+ne,+u)

P P

PP

(without dissolution)

Tractable

(with dissolution)
??

Fig. 1. Characterizations of P by P systems

What happens if we consider dissolution rules in the framework of recognizer
P systems with active membranes and without polarizations? Will it be possible
to solve NP–complete problems in that framework? In the next section we will
affirmatively answer to this question.

4 Computational Efficiency Using Dissolution Rules

In this section we show that the class of decision problems solvable in poly-
nomial time in a semi–uniform way by families of recognizer P systems with
active membranes, without polarization, and using membrane dissolution rules
and division rules for elementary and non–elementary membranes, contains the
standard complexity class NP.

236 M.A. Gutiérrez–Naranjo et al.

For that, we describe a family of such recognizer membrane systems which
solves the Subset Sum problem in linear time and in a semi–uniform way.

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there
exists a subset B ⊆ A such that w(B) = k.

Proposition 6. The Subset Sum problem belongs to the class PMC∗
AM0

+d,+ne
.

Sketch of the Proof. We will use a tuple u = (n, (w1, . . . , wn), k) to represent
an instance of the problem, where n stands for the size of A = {a1, . . . , an},
wi = w(ai), and k is the constant given as input for the problem.

We propose here a solution to this problem based on a brute force algo-
rithm implemented in the framework of P systems with active membranes, with-
out polarizations, with dissolution, and using division for elementary and non–
elementary membranes.

The idea of the design is better understood if we divide the solution to the
problem into several stages:

– Generation stage: for every subset of A, a membrane is generated via mem-
brane division.

– Weight calculation stage: in each membrane the weight of the associated
subset is calculated. This stage will take place in parallel with the previous
one.

– Checking stage: for each membrane it is checked whether or not the weight of
its associated subset is exactly k. This stage cannot start before the previous
ones are over.

– Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

For each instance u = (n, (w1, . . . , wn), k) of the Subset Sum problem we con-
sider the P system with active membranes, without polarization, without input
membrane

Π(u) = (Γ (u), H(u), μ,M0,M1, . . . ,Mk+3, R(u))
defined as follows:
• Working alphabet:

Γ (u)={d0, . . . , d2n+1, a1, . . . , an, e1, . . . , en}∪{b, s, c, c, z0, . . . , z2n+k+5, yes, no}.
• H(u) = {0, 1, 2, 3, . . . , k + 3}.
• Initial membrane structure: μ = [[[[. . . [[]0]1 . . .]k]k+1]k+2]k+3.
• Initial multisets:

M0 = d0, Mk+2 = z0 and Mi = ∅, for every i ∈ {1, . . . , k, k + 1, k + 3}.
• The set of evolution rules, R(u), consists of the following rules:

(a) [d2i → ai+1d2i+1]0 for i ∈ {0, . . . , n},
[d2i+1 → d2i+2]0 for i ∈ {0, . . . , n− 1}.

The goal of the counter di is to control the apparition of an object aj only
in the odd steps. The importance of these objects will be explained in the
next set of rules.

On the Power of Dissolution in P Systems with Active Membranes 237

(b) [ai]0 → [ei]0 [b]0
[ei → swi]0

}
for i ∈ {1, . . . , n}.

The object ai triggers the rule for division of elementary membranes. After
the division, in one membrane is placed an object ei and in the other one
an object b. The object b remains inactive whereas the object ei evolves in
the next step to as many copies of object s as the weight wi.

(c) [[]i []i]i+1 → [[]i]i+1 [[]i]i+1 for i ∈ {1, . . . , k}.
This is the set of rules for the division of non-elementary membranes. These
three first set of rules produce a membrane structure with 2n branches. On
each of the leaves of the tree we have a membrane with as many objects s
as the weight of a possible subset, S, of A.

(d) [d2n+1]0 → b,
[s]i → c for i ∈ {1, . . . , k + 1}.

When the generation stage has finished, the object d2n+1 dissolves the
membrane with label 0. At this point, the elements s start to dissolve mem-
branes. If there are enough objects s, all the membranes of the branch with
labels 1, . . . , k + 1 are dissolved. Otherwise, the branch remains inactive.

(e) [c → c]k+1.

This is a waiting step and the key of the computation. If in a branch the en-
coded weight of the subset, wS , is less than k, the branch becomes inactive.
Otherwise all the membranes of the branch are dissolved until reaching the
membrane with label k + 1. If wS = k then in this membrane there are no
objects s that dissolve it and the object c remains in the membrane. On the
contrary, ifwS > k, then the membrane is dissolved in the same step in which
c is produced and c goes to the membrane with label k + 2.

(f) [zi → zi+1]k+2 for i ∈ {0, . . . , 2n+ k + 4},
[c]k+1 → yes,

[yes]k+2 → yes,

[z2n+k+5]k+2 → no.

If one of the subsets ofAhas weightk, then an object c appears in a membrane
with label k+1. This object dissolves the membrane and sends an object yes
to the membrane with label k + 2. In this membrane we keep a counter zi

along the computation. If at some step an object c has sent an object yes
to this membrane, this object will dissolve the membrane in the next step
preventing that the object z2n+k+5 appears in the membrane. Otherwise, if
the object c is never produced, then we eventually get an object z2n+k+5 in the
membrane with label k + 2. In the following step this membrane is dissolved
and an element no is sent to the membrane with label k + 3.

(g) [no]k+3 → no []k+3,
[yes]k+3 → yes []k+3.

238 M.A. Gutiérrez–Naranjo et al.

From above, we know that the membrane with label k+ 3 (recall that this
is the skin membrane) is reached by one and only one of the objects yes or
no. The rules in group (g) send that object to the environment in the last
step of the computation. �

Theorem 5. NP ∪ co-NP ⊆ PMC∗
AM0

+d,+ne
.

Proof. It suffices to remark that the Subset Sum problem is NP–complete, be-
longing to the class PMC∗

AM0
+d,+ne

, and this class is stable under polynomial-
time reduction and closed under complement.

Remark 1. A. Alhazov et al. in [2] showed that SAT ∈ PMC∗
AM0

+d,+ne
. Hence

the result in Theorem 5 can also be deduced from this remark.

The following picture illustrates the results obtained in this paper.

(−d,−ne,+u)(−d,−ne,−u)

(−d,+ne,−u)
(−d,+ne,+u)

(+d,−ne,−u) (+d,−ne,+u)

(+d,+ne,−u) (+d,+ne,+u)

P P

PP

(without dissolution)

Tractable

Presumably intractable

(with dissolution)

NP

Fig. 2. A borderline between the tractability and the (presumable) intractability

5 Conclusions

A conjecture known in the membrane computing area under the name of the P–
conjecture asserts that the polynomial–time solvability by deterministic Turing

On the Power of Dissolution in P Systems with Active Membranes 239

machines is equivalent to the polynomial–time solvability by recognizer P sys-
tems with active membranes and without polarizations, that is, that conjecture
can be expressed by the equality P = PMCAM0 , where AM0 is the class of all
recognizer P systems with active membranes and without polarization.

In this paper we provide a partial affirmative answer to the P–conjecture in the
case that the P systems from AM0 do not use dissolution rules. Besides, a partial
negative answer to the P–conjecture is given when we use semi–uniform solutions
and membrane division rules for elementary and non–elementary membranes
(and suppossing that P �= NP).

We have used the concept of dependency graph that initially was defined to
help to design strategies that allow to choose short computations of recognizer
membrane systems. In this paper we work with dependency graphs associated
with a variant of recognizer P systems with active membranes. In this way we
are able to characterize accepting computations of these systems through the
reachability of a distinguished node of the graph from other nodes associated
with the initial configuration.

We have shown that it is possible to solve in polynomial time and in a uniform
way through recognizer P systems with active membranes without polarizations
and without dissolution only problems which are tractable in the standard sense.
Morover, if in this framework we consider membrane dissolution rules, then we
can solve NP–complete problems in polynomial time, in a semi–uniform way
and using division for elementary and non–elementary membranes.

Acknowledgement

The authors wish to acknowledge the support of the project TIC2002-04220-
C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds.

References

1. A. Alhazov, R. Freund, Gh. Păun: P systems with active membranes and two polar-
izations. Proceedings of the Second Brainstorming Week on Membrane Computing
(Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), Re-
port RGNC 01/04, 2004, 20–35.

2. A. Alhazov, L. Pan, Gh. Păun: Trading polarizations for labels in P systems with
active membranes. Acta Informaticae, 41, 2-3 (2004), 111-144.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A fast P system
for finding a balanced 2-partition. Soft Computing, 9, 9(2005), 673–678.

4. S.N. Krishna, R. Rama: A variant of P systems with active membranes: Solving
NP–complete problems. Romanian Journal of Information Science and Technology,
2, 4 (1999), 357–367.

5. A. Obtulowicz: Deterministic P systems for solving SAT problem. Romanian Jour-
nal of Information Science and Technology, 4, 1–2 (2001), 551–558.

6. Gh. Păun: P systems with active membranes: Attacking NP–complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

240 M.A. Gutiérrez–Naranjo et al.

7. Gh. Păun: Computing with membranes: Attacking NP–complete problems. In Un-
conventional Models of Computation, UMC’2K (I. Antoniou, C. Calude, M.J. Din-
neen, eds.), Springer–Verlag, 2000, 94–115.

8. M.J. Pérez–Jiménez: An approach to computational complexity in Membrane Com-
puting. In Membrane Computing, 5th International Workshop, WMC5, Revised
Selected and Invited Papers (G. Mauri, Gh. Păun, M. J. Pérez-Jiménez, Gr. Rozen-
berg, A. Salomaa, eds.), LNCS 3365 (2005), 85-109.

9. M.J. Pérez-Jiménez, A. Riscos-Núñez: Solving the Subset-Sum problem by active
membranes. New Generation Computing, 23, 4(2005), 367–384.

10. M.J. Pérez-Jiménez, A. Riscos-Núñez: A linear–time solution to the Knapsack
problem using P systems with active membranes. In Membrane Computing (C.
Mart́ın-Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2933 (2004),
250–268.

11. M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving the Bin Packing problem by
recognizer P systems with active membranes. Proceedings of the Second Brain-
storming Week on Membrane Computing (Gh. Păun, A. Riscos-Núñez, A. Romero-
Jiménez, F. Sancho-Caparrini, eds.), Report RGNC 01/04, University of Seville,
2004, 414–430.

12. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. Proceedings of the 5th Work-
shop on Descriptional Complexity of Formal Systems, DCFS 2003 (E. Csuhaj-
Varjú, C. Kintala, D. Wotschke, G. Vaszil, eds.), 2003, 284-294.

13. M.J. Pérez-Jiménez, F.J. Romero–Campero: Attacking the Common Algorithmic
Problem by recognizer P systems. In Machines, Computations and Universality,
MCU’2004, Saint Petesburg, Russia, September 2004, Revised Selected Papers (M.
Margenstern, ed.), LNCS 3354 (2005), 304-315.

14. C. Zandron, C. Ferreti, G. Mauri: Solving NP-complete problems using P systems
with active membranes. In Unconventional Models of Computation, UMC’2K (I.
Antoniou, C. Calude, M.J. Dinneen, eds.), Springer–Verlag, 2000, 289–301.

A Linear Solution for QSAT
with Membrane Creation

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez,
and Francisco J. Romero-Campero

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla, Avda. Reina Mercedes s/n 41012, Sevilla, Spain
{magutier, marper, fran}@us.es

Abstract. The usefulness of P systems with membrane creation for
solving NP problems has been previously proved (see [2, 3]), but, up
to now, it was an open problem whether such P systems were able to
solve PSPACE-complete problems in polynomial time. In this paper
we give an answer to this question by presenting a uniform family of
P system with membrane creation which solves the QSAT-problem in
linear time.

1 Introduction

The power of P systems as a tool for efficiently solving NP problems has been
widely proved. Many examples have been proposed in the framework of P sys-
tems with active membranes (with polarizations) and in the framework of P
systems with membrane creation.

The complexity class of NP problems deals with the time needed to solve
a problem, i.e., NP is the class of problems which can be solved by a non-
deterministic one-tape Turing machine program where the number of steps is
polynomially bounded (see [1]). The key of solving such problems in polyno-
mial time by means of P systems is the creation of an exponential amount of
workspace (membranes) in polynomial time.

When we consider the resources needed in a computation, we obviously have to
consider the time, i.e., the number of steps of our device, but in practice, we also
need to consider the amount of memory or storage required by the computation.
If we consider a Turing machine computation, the space is the number of distinct
tape squares visited by the write-read head of the machine. Since the number of
visited squares cannot be greater than the number of steps in the computation,
we have that, if the number of steps is polynomially bounded, then the number
of visited squares is also polynomially bounded. Therefore, any problem solvable
in polynomial time is also solvable in polynomial space.

PSPACE (respectively, NPSPACE) is the class of decision problems that
are solvable by a deterministic (respectively, non–deterministic) Turing machine
using a polynomial amount of space. These complexity classes are closed under

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 241–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

242 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, and F.J. Romero-Campero

polynomial time reduction. Savitch’s theorem says that each non–deterministic
Turing machine using f(n) space can be simulated by a deterministic Turing
machine using only f(n)2 space (for time complexity, such a simulation seems to
require an exponential increase in time). Bearing in mind that a Turing machine
running in f(n) ≥ n time can use at most f(n) space we have P ⊆ PSPACE and
NP ⊆ NPSPACE. So, P ⊆ NP ⊆ NPSPACE = PSPACE. It is unknown
whether any of these containments are strict.

A decision problem in PSPACE such that every problem in PSPACE is
polynomial time reducible to it, is called PSPACE–complete. If a PSPACE–
complete problem belongs to P (respectively, NP), then P = PSPACE (re-
spectively, NP = PSPACE).

In this paper, we present the first polynomial time solution to the QSAT
problem, a well known PSPACE-complete problem (see L.J. Stockmeyer and
A.R. Meyer in [14]) using a family of recognizer P systems with membrane
creation. Taking into account that the class of all decision problems solvable
in polynomial time by a family of such P systems is closed under polynomial–
time reduction, this result shows that all PSPACE problems can be solved in
polynomial time by P systems with membrane creation.

The paper is organized as follows. In the next section, recognizer P systems
are briefly described. In Section 3 the variant of P systems with membrane cre-
ation are recalled with a short discussion about their semantics. A linear–time
solution to the QSAT problem is presented in the following section, with a
short overview of the computation. Finally, some conclusions are given in the
last section.

2 Recognizer P Systems

Recognizer P systems were introduced in [13] and are the natural framework
to study and solve decision problems, since deciding whether an instance of a
problem has an affirmative or negative answer is equivalent to deciding if a string
belongs or not to the language associated with the problem.

In the literature, recognizer P systems are associated with P systems with
input in a natural way. The data related to an instance of the decision prob-
lem has to be provided to the P system in order to compute the appropriate
answer. This is done by codifying each instance as a multiset placed in an in-
put membrane. The output of the computation (yes or no) is sent to the en-
vironment. In this way, P systems with input and external output are devices
which can be seen as black boxes, in which the user provides the data before
the computation starts and the P system sends to the environment the out-
put in the last step of the computation. Another important feature of P sys-
tems is the non-determinism. The design of a family of recognizer P system
has to consider it, because all possibilities in the non-deterministic computa-
tions must produce the same answer. This can be summarized in the following
definitions.

A Linear Solution for QSAT with Membrane Creation 243

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the
label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input
m is (μ,w1, . . . , wiΠ ∪m, . . . , wp).

Definition 2. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All computations halt.
3. If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

We say that C is an accepting computation (respectively, rejecting computation)
if the object yes (respectively, no) appears in the environment associated with
the corresponding halting configuration of C.

Definition 3. Let F be a class of recognizer P systems. We say that a decision
problem X = (IX , θX) is solvable in polynomial time by a family Π = (Π(n))n∈N,
of F , and we denote this by X ∈ PMCF , if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N in
polynomial time.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input must
always give the same answer.

It can be proved that PMCF is closed under polynomial–time reduction and
complement (see [13]). In this paper we will deal with the class MC of recognizer
P systems with membrane creation.

244 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, and F.J. Romero-Campero

3 P Systems with Membrane Creation

In this section we recall the description of cellular devices (P systems) with
membrane creation.

Basically, a P system1 consists of a hierarchical membrane structure where
each membrane has associated a multiset of objects and a set of rules express-
ing how these objects can evolve. The membrane structure of a P system is a
hierarchical arrangement of membranes embedded in a skin membrane, which
separates the system from its environment. A membrane without any membrane
inside is called elementary. Each membrane determines a region (the space en-
closed between the membrane and the membranes immediately inside it), which
can contain a multiset of objects. Associated with the regions there are rules that
can transform and move those objects.

There are two ways of producing new membranes in living cells: mitosis (mem-
brane division) and autopoiesis (membrane creation, see [5]). Both ways of gener-
ating new membranes have given rise to different variants of P systems: P systems
with active membranes, where the new workspace is generated by membrane di-
vision, and P systems with membrane creation, where the new membranes are
created from objects. Both models have been proved to be universal, but up
to now there is no theoretical result proving that these models simulate each
other in polynomial time. P systems with active membranes have been success-
fully used to design solutions to NP-complete problems, as SAT [13], Subset
Sum [10], Knapsack [11], Bin Packing [12], and Partition [4], but as Gh. Păun
pointed out in [9] “membrane division was much more carefully investigated than
membrane creation as a way to obtain tractable solutions to hard problems”. The
first results in this way have recently appeared, showing that NP problems can
also be solved in this framework (see [2, 3]).

Recall that a P system with membrane creation is a construct of the form
Π = (O,H, μ,w1, . . . , wm, R), where:

1. m ≥ 1 is the initial degree of the system; O is the alphabet of objects and H
is a finite set of labels for membranes;

2. μ is a membrane structure consisting of m membranes labelled (not necessar-
ily in a one-to-one manner) with elements of H and w1, . . . , wm are strings
over O, describing the multisets of objects placed in the m regions of μ;

3. R is a finite set of rules, of the following forms:
(a) [a → v]h where h ∈ H , a ∈ O, and v is a string over O describing

a multiset of objects. These are object evolution rules associated with
membranes and depending only on the label of the membrane.

(b) a[]h → [b]h where h ∈ H , a, b ∈ O. These are send-in communication
rules. An object is introduced in the membrane, possibly modified.

(c) [a]h → []h b where h ∈ H , a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane, possibly modified.

1 A layman-oriented introduction can be found in [8], a comprehensive monograph in
[7], and the latest information about P systems is available at [15].

A Linear Solution for QSAT with Membrane Creation 245

(d) [a]h → b where h ∈ H , a, b ∈ O. These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in
the rule can be modified.

(e) [a → [v]h2]h1 where h1, h2 ∈ H , a ∈ O, and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

Rules are applied according to the following principles:

– Rules from (a) to (d) are used as usual in the framework of membrane
computing, that is, in a maximally parallel way. In one step, each object in a
membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can evolve by a rule of
any form must do it (with the restrictions indicated below).

– Rules of type (e) are used also in a maximally parallel way. Each object a
in a membrane labelled with h1 produces a new membrane with label h2
placing in it the multiset of objects described by the string v.

– If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

– Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the rules of type (d) since a membrane can
be dissolved only once.

We denote by MC the class of recognizer P systems with membrane creation.

4 Solving QSAT in Linear Time

In this section we design a family of recognizer P systems with membrane cre-
ation (and using dissolution rules) which solves the QSAT problem (the quan-
tified satisfiability problem).

Given a Boolean formula ϕ(x1, . . . , xn) in conjunctive normal form, with
Boolean variables x1, . . . , xn, the sentence ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn)
(where Qn is ∃ if n is odd, and Qn is ∀, otherwise) is said to be the (existential)
fully quantified formula associated with ϕ(x1, . . . , xn).

We say that ϕ∗ is satisfiable if there exists a truth assignment, σ, over {i |
1 ≤ i ≤ n ∧ i odd} such that each extension, σ∗, of σ over {1, . . . , n} verify
σ∗(ϕ(x1, . . . , xn)) = 1.

246 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, and F.J. Romero-Campero

The QSAT problem is the following one: Given a Boolean formula
ϕ(x1, . . . , xn) in conjunctive normal form, determine whether or not the (ex-
istential) fully quantified formula ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn) is satisfi-
able.

It is well known that QSAT is a PSPACE–complete problem [6].
Next, we provide a polynomial time solution of QSAT by a family of recog-

nizer P systems with membrane creation and using dissolution rules, according
to Definition 3. We will address the resolution via a brute force algorithm, in
the framework of recognizer P systems with membrane creation, which consists
in the following phases:

– Generation and Evaluation Stage: Using membrane creation we will generate
all possible truth assignments associated with the formula and evaluate it on
each one. Specifically, we construct a binary complete tree where the leaves
encode all possible truth assignment associated with the formula, and the
nodes whose level is even (respectively, odd) are codified by an OR gate (re-
spectively, AND gate). In this stage, the values of the formula corresponding
to each truth assignment is obtained in the leaves.

– Checking Stage: In each membrane we check whether or not the formula
evaluates true on the truth assignment associated with it. Specifically, we
proceed to compute the output of that Boolean circuit (that only have gates
AND, OR) from the inputs obtained in the leaves by propagating values
along the wires and computing the respective gates until the output gate
(the root of the tree) has assigned a value.

– Output Stage: The system sends out to the environment the right answer
according to the result of the previous stage.

Let us consider the pair function 〈 , 〉 defined by 〈n,m〉 = ((n +m)(n+m+
1)/2)+n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given Boolean formula, ϕ(x1, . . . , xn) =
C1 ∧ · · · ∧ Cm, in conjunctive normal form, with n variables and m clauses,
we construct a P system Π(〈n,m〉) processing the (existential) fully quantified
formula ϕ∗ associated with ϕ (when an appropriate input is supplied). The family
presented here is:

Π = {(Π(〈n,m〉), Σ(〈n,m〉), i(〈n,m〉)) | (n,m) ∈ N2}.

For each element of the family, the input alphabet is

Σ(〈n,m〉) = {xi,j , xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input membrane is i(〈n,m〉) = t, and the P system

Π(〈n,m〉) = (Γ (〈n,m〉), H(〈n,m〉), μ, ws, w<t,∨>, R(〈n,m〉))

is defined as follows:

A Linear Solution for QSAT with Membrane Creation 247

• Working alphabet:

Γ (〈n,m〉) = Σ(〈n,m〉)
∪ {zj,c | j ∈ {0, . . . n}, c ∈ {∧,∨} }
∪ {zj,c,l | j ∈ {0, . . . , n− 1}, c ∈ {∧,∨} l ∈ {t, f}}
∪ {xi,j,l, xi,j,l | j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, l ∈ {t, f}}
∪ {xi,j | j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}}
∪ {ri, ri,t, ri,f | i ∈ {1, . . . ,m}}
∪ {d1, . . . , dm, q, t0, . . . , t4, ans0, . . . , ans5, yes, no}
∪ {yes∨, yes∗, no∨, no∨, yes∧, no∧, no∗, yes∧, yes∧, no∨, no∧}
∪ {Y ES,NO}.

• The set of labels, H(〈n,m〉), is

{< l, c >| l ∈ {t, f}, c ∈ {∧,∨}} ∪ {a, s, 1, . . . ,m}.

• Initial membrane structure: μ = [[]<t,∨>]s.
• Initial multiset: ws = ∅, w<t,∨> = {z0,∧,t z0,∧,f}.
• Input membrane: i(〈n,m〉 =< t,∨ >.
• The set of evolution rules, R(〈n,m〉), consists of the following rules (recall that
λ denotes the empty string and if c is ∧ then c is ∨ and if c is ∨ then c is ∧):

1. [zj,c → zj,c,t, zj,c,f]<l,c>

[zj,c,l → [zj+1,c]<l,c>]<l′,c>

}
for l, l′ ∈ {t, f}, c ∈ {∨,∧},

j ∈ {0, . . . , n− 1}.

The goal of these rules is to create one membrane for each truth assignment
to the variables of the formula. Firstly, the object zj,c evolves to two objects, one
for the assignment true (the object zj,c,t), and a second one for the assignment
false (the object zj,c,f). In a second step these objects will create two membranes.
The new membrane with t in its label represents the assignment xj+1 = true; on
the other hand, the new membrane with f in its label represents the assignment
xj+1 = false.

2. [xi,j → xi,j,txi,j,f]<l,c>

[xi,j → xi,j,txi,j,f]<l,c>

[ri → ri,tri,f]<l,c>

⎫⎪⎬⎪⎭ for l ∈ {t, f} i ∈ {1, . . . ,m},
c ∈ {∨,∧} j ∈ {1, . . . , n}.

These rules duplicate the objects representing the formula so it can be eval-
uated on the two possible assignments, xj = true (xi,j,t, xi,j,t) and xj = false
(xi,j,f , xi,j,f). The objects ri are also duplicated (ri,t, ri,f) in order to keep track
of the clauses that evaluate true on the previous assignments to the variables.

3. xi,1,t[]<t,c> → [ri]<t,c>

xi,1,t[]<t,c> → [λ]<t,c>

xi,1,f []<f,c> → [λ]<f,c>

xi,1,f []<f,c> → [ri]<f,c>

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for
i ∈ {1, . . . ,m},
c ∈ {∨,∧}.

248 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, and F.J. Romero-Campero

According to these rules the formula is evaluated in the two possible truth
assignments for the variable that is being analyzed. The objects xi,1,t (resp.
xi,1,f) get into the membrane with t in its label (resp. f) being transformed
into the objects ri representing that the clause number i evaluates true on the
assignment xj+1 = true (resp. xj+1 = false). On the other hand, the objects
xi,1,t (resp. xi,1,t) get into the membrane with f in its label (resp. t) producing
no objects. This represents that these objects do not make the clause true in the
assignment xj+1 = true (resp. xj+1 = false).

4. xi,j,l[]<l,c> → [xi,j−1]<l,c>

xi,j,t[]<l,c> → [xi,j−1]<l,c>

ri,t[]<l,c> → [ri]<l,c>

⎫⎪⎬⎪⎭ for
l ∈ {t, f}, i ∈ {1, . . . ,m},
c ∈ {∨,∧}, j ∈ {2, . . . , n}.

In order to analyze the next variable the second subscript of the objectsxi,j,l and
xi,j,l are decreased when they are sent into the corresponding membrane labelled
with l.Moreover, following the last rule, the objects ri,l get into the newmembranes
to keep track of the clauses that evaluate true on the previous truth assignments.

5. [zn,c → d1 . . . dmq]<l,c>

}
for l ∈ {t, f} and c ∈ {∨,∧}.

At the end of the generation stage the object zn will produce the objects
d1, . . . , dm and yes0, which will take part in the checking stage.

6. [di → [t0]i]<l,c>

ri,t[]i → [ri]i [ri]i → λ

[ts → ts+1]i [t2]i → t3

⎫⎪⎬⎪⎭ for i ∈ {1, . . . ,m},
s ∈ {0, 1}, c ∈ {∨,∧}.

Following these rules each object di creates a new membrane with label i
where the object t0 is placed; this object will act as a counter. The object ri gets
into the membrane labelled with i and dissolves it preventing the counter, ti,
from reaching the object t2. The fact that the object t2 appears in a membrane
with label i means that there is no object ri, that is, the clause number i does not
evaluate true on the truth assignment associated with the membrane; therefore
neither does the formula evaluate true on the associated truth assignment.

7. [q → [ans0]a]<l,c>

t3[]a → [t4]a [t4]a → λ

[ansh → ansh+1]a, [ans5]a → yes

[ans5 → no]<l,c>

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for l ∈ {t, f} c ∈ {∨,∧},
h = 0, . . . , 4.

The object q creates a membrane with label a where the object ans0 is placed.
The object ansh evolves to the object ansh+1; at the same time the objects t3
can get into the membrane labelled with a and dissolve it preventing the object
yes from being sent out from this membrane.

A Linear Solution for QSAT with Membrane Creation 249

8. [yes]<l,c> → yesc [no]<l,c> → noc

[yes∨]<l,∨> → yes∗ [no∨ → no∨]<l,∨>

[yes∗ → yes∧]<l,∧> [no∨]<l,∨> → no∧
[no∨ → λ]<l,∧> [yes∨ → λ]<l,∧>

[no∧]<l,∧> → no∗ [yes∧ → yes∧]<l,∧>

[no∗ → no∨]<l,∨> [yes∧]<l,∧> → yes∨
[no∧ → λ]<l,∨> [yes∧ → λ]<l,∨>

[yes∗]s → yes []s [no∧]s → no []s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for l ∈ {t, f}.

This set of rules controls the output stage. After the evaluation stage, from
each working membrane we obtain an object yes or no depending on whether
the truth assignment associated with this membrane satisfies or not the formula.
On the contrary to the SAT problem, in QSAT it is not enough that one truth
assignment satisfies the formula, but the final answer is YES if an appropri-
ate combination of truth assignments according to the quantifiers ∃ and ∀ are
founded.

4.1 An Overview of the Computation

First of all we define a polynomial encoding of the QSAT problem in the family
Π constructed in the previous section. Given a Boolean formula in conjunctive
normal form, ϕ = C1 ∧ · · · ∧Cm such that V ar(ϕ) = {x1, . . . , xn}, and being ϕ∗

the (existential) fully quantified formula associated with it, we define s(ϕ∗) =
〈n,m〉 (recall the bijection mentioned in the previous section) and cod(ϕ∗) =
{xi,j | xj ∈ Ci} ∪ {xi,j | ¬xi,j ∈ Ci}.

Next we describe informally how the recognizer P system with membrane
creation Π(s(ϕ∗)) with input cod(ϕ∗) works.

In the initial configuration we have the input multiset cod(ϕ) and the ob-
jects z0,∧,t and z0,∧,f placed in the input membrane (membrane labelled with
< t,∨ >). In the first step of the computation the object z0,∧,t creates a new
membrane with label < t,∨ > which represents the assignment x1 = true and
the object z0,∧,f creates a new membrane with label < f,∨ > which represents
the assignment x1 = false. The second component of the labels, i.e., ∧ and ∨
will be used in the output stage.

In these two new membranes the object z1,∨ is placed. At the same time the
input multiset representing the formula ϕ is duplicated following the two first
rules in group 2. In the next step, according to the rules in group 3, the formula
is evaluated on the two possible truth assignments for x1. In the same step the
rules in group 4 decrease the second subscript of the objects representing the
formula (xi,j,l, xi,j,l with j ≥ 2) in order to analyze the next variable. Moreover,
at the same time, the object z1,c produces the object z1,c,t and z1,c,f (c ∈ {∧,∨})
and the system is ready to analyze the next variable. In this way, the generation
and evaluation stages go until all the possible assignments to the variables are
generated and the formula is evaluated on each one of them. Observe that it takes

250 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, and F.J. Romero-Campero

two steps to generate the possible assignments for a variable and to evaluate the
formula on them; therefore the generation and evaluation stages take 2n steps.

The checking stage starts when the object zn,c produces the objects d1, . . . , dm

and the object q. In the first step of the checking stage each object di, for i =
1, . . . ,m, creates a new membrane labelled with i where the object t0 is placed,
and the object q creates a new membrane with label a placing the object yes0 in it.

The objects ri,t, which indicate that the clause number i evaluates true on the
truth assignment associated with the membrane, are sent into the membranes by
the last rule in group 4 so the system keeps track of the clauses that are true. The
objects ri,t get into the membrane with label i and dissolves it in the following two
steps preventing the counter t2 from dissolving the membrane and producing the
object t3 according to the last rule in group 6. If for some i there is no object ri (this
means that the clause i does not evaluate true on the associated assignment) the
object t2 will dissolve the membrane labelled with i producing the object t3 that
will get into the membrane with label a where the object ansh evolves following
the rules in 7. The object t4 dissolves the membrane with label a preventing the
production of the object ans5. Therefore the checking stage takes 6 steps.

Finally the output stage takes place according to the rules in group 8. If some
object ans5 is present in anymembrane with label< l, c >, (l ∈ {t, f}, c ∈ {∧,∨}),
this means that there exists at least one clauses not satisfied by the truth assign-
ment associated with the membrane, and by the last rule in group 7, we obtain no
in this membrane. Otherwise, the object ans5 will be inside the membrane with
label a, it will dissolve the membrane, and send yes to the working membrane.

At this point, in each of the 2n working membranes we have an object yes or
no depending on if the associated truth assignment satisfies or not the formula
ϕ. In the last steps we control the flow of the objects yes and no from the
working membranes to the environment. Basically, the process is the following.
If there are one object yes inside a membrane with ∨ in its label, this object
dissolves the membrane and sends out another yes. If this does not happen, i.e.,
if two objects no are inside a membrane with label ∨, the membrane is dissolved
and no is sent out. Analogously, if there are one object no inside a membrane
with ∧ in its label, this object dissolves the membrane and sends out another no.
Otherwise, if two objects yes are inside a membrane with label ∨, the membrane
is dissolved and yes is sent out.

Consequently, the family Π of recognizer P systems with membrane creation
using dissolution rules solves in polynomial time QSAT according to Definition
3. Hence, we have:

Theorem 1. QSAT ∈ PMCMC

From this theorem we deduce the following result:

Corollary 1. PSPACE ⊆ PMCMC

Proof. It suffices to make the following remarks: the QSAT problem is
PSPACE–complete, QSAT ∈ PMCMC , and the complexity class PMCMC
is closed under polynomial time reduction. ��

A Linear Solution for QSAT with Membrane Creation 251

5 Conclusions and Future Work

P systems are computational devices whose power has to be studied in a deeper
extent. In the last time, several paper have explored this power, both in the
framework of P systems with active membranes and P systems with membrane
creation. These papers have shown that NP-complete problems are solvable (in
polynomial time) by families of recognizer of P systems of these types, according
to Definition 3. In this paper we have shown that PSPACE–complete problems
can also be solved (in polynomial time) by families of recognizer P systems with
membrane creation, in a uniform way.

Both models (active membranes and membrane creation) have been proved to
be universal, but up to now there is no theoretical result proving that these mod-
els simulate each other in polynomial time. The specific techniques for designing
solutions to concrete problems (generation, evaluation, checking, and output
stages) are quite different, so the simulation of one model in the other one is not
a trivial question. This seems an interesting open problem to be considered in
the future.

Acknowledgement

This work is supported by Ministerio de Ciencia y Tecnoloǵıa of Spain, by
Plan Nacional de I+D+I (2000–2003) (TIC2002-04220-C03-01), cofinanced by
FEDER funds. F.J. Romero-Campero also acknowledges a FPU fellowship from
the same Ministerio.

References

1. M.R. Garey, D.S. Johnson: Computers and Intractability A Guide to the theory of
NP-Completeness. W.H. Freeman and Company, 1979.

2. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear so-
lution of Subset Sum Problem by using Mmmbrane creation. In Mechanisms, Sym-
bols and Models Underlying Using Cognition, First International Work-Conference
on the Interplay Between Natural and Artificial Computation, IWINAC 2005 (J.
Mira, J.R. Alvarez, eds.). LNCS 3561, Springer, Berlin, 2005, 258–267.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving SAT
with Membrane Creation. In Computability in Europe 2005, CiE 2005: New Com-
putational Paradigms (S. Barry Cooper, B. Lowe, L. Torenvliet, eds.), Report ILLC
X-2005-01, University of Amsterdam, 82–91.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A fast P system
for finding a balanced 2-partition. Soft Computing, 9, 9 (2005), 673–678.

5. P.L. Luisi: The chemical implementation of autopoiesis, Self-Production of
Supramolecular Structures (G.R. Fleishaker et al., eds.), Kluwer, Dordrecht, 1994.

6. C.H. Papadimitriou: Computational Complexity. Addison-Wesley, Reading, Mass.,
1994.

7. Gh. Păun: Membrane Computing. An Introduction, Springer, Berlin, 2002.
8. Gh. Păun, M.J. Pérez-Jiménez: Recent computing models inspired from biology:

DNA and membrane computing, Theoria, 18, 46 (2003), 72–84.

252 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, and F.J. Romero-Campero

9. Gh. Păun: Further open problems in membrane computing. Proceedings of the
Second Brainstorming Week on Membrane Computing (Gh. Păun, A. Riscos-núñez,
A. Romero-Jiménez, F. Sancho-Caparrini, eds.), Report RGNC 01/04, University
of Seville, 2004, 354–365.

10. M.J. Pérez-Jiménez, A. Riscos-Núñez: Solving the Subset-Sum problem by active
membranes. New Generation Computing, 23, 4 (2005), 367–384.

11. M.J. Pérez-Jiménez, A. Riscos-Núñez: A linear solution for the Knapsack prob-
lem using active membranes. Membrane Computing. International Workshop,
WMC2003, Tarragona, Spain, July 2003, Revised Papers (C. Mart́ın-Vide, G.
Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2933, Springer, Berlin,
2004, 250–268.

12. M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving the BIN PACKING problem
by recognizer P systems with active membranes. In Proceedings of the Second
Brainstorming Week on Membrane Computing (Gh. Păun, A. Riscos-Núñez, A.
Romero-Jiménez, F. Sancho-Caparrini, eds.), Report RGNC 01/04, University of
Seville, 2004, 414–430.

13. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. In Proceedings of the 5th Work-
shop on Descriptional Complexity of Formal Systems, DCFS 2003 (E. Csuhaj-
Varjú, C. Kintala, D. Wotschke, Gy. Vaszyl, eds.), 2003, 284–294.

14. L.J. Stockmeyer, A.R. Meyer: Word problems requiring exponential time. Proc.
5th ACM Symp. on the Theory of Computing, 1973, 1–9.

15. P systems web page http://psystems.disco.unimib.it/

On Symport/Antiport P Systems
and Semilinear Sets

Oscar H. Ibarra1, Sara Woodworth1, Hsu-Chun Yen2, and Zhe Dang3

1 Department of Computer Science,
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan 106, R.O.C
3 School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA 99164, USA

Abstract. We introduce some restricted models of symport/antiport P
systems that are used as acceptors (respectively, generators) of sets of
tuples of non-negative integers and show that they characterize precisely
the semilinear sets. Specifically, we prove that a set R ⊆ Nk is accepted
(respectively, generated) by a restricted system if and only if R is a
semilinear set. We also show that “slight” extensions of the models will
allow them to accept (respectively, generate) non-semilinear sets. In fact,
for these extensions, the emptiness problem is undecidable.

1 Introduction

A general problem of clear interest in the area of membrane computing or P
systems is to find classes of non-universal P systems that correspond to (i.e.,
characterize) known families of languages or subsets of Nk (where N is the set
of non-negative integers, and k is a positive integer), and to investigate their
closure and decidability properties. For example, P system characterizations of
Parikh images or of length sets of ET0L languages, bounded languages accepted
by multihead finite automata, and context-sensitive languages are known (see,
e.g., [6, 8, 5, 1]). Here, we give characterizations of semilinear sets in terms of
restricted models of symport/antiport systems.

A popular model in membrane computing is the symport/antiport P system
first introduced in [9]. It is a system whose rules closely resemble the way mem-
branes transport objects between themselves in a purely communicating manner.
Symport/antiport systems (SA systems) have rules of the form (u, out), (v, in),
and (u, out; v, in) where u, v are multisets that are represented as strings (the
order in which the symbols are written is not important, since we are only in-
terested in the multiplicities of each symbol). A rule of the form (u, out) in
membrane i sends the elements of u from membrane i out to the membrane
(directly) containing i. A rule of the form (v, in) in membrane i transports the
elements of v into membrane i from the membrane enclosing i. Hence this rule
can only be used when the elements of v exist in the outer membrane. A rule

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 253–271, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

254 O.H. Ibarra et al.

of the form (u, out; v, in) simultaneously sends u out of the membrane i while
transporting v into membrane i. Hence this rule cannot be applied unless mem-
brane i contains the elements in u and the membrane surrounding i contains the
elements in v. The rules are applied in a non-deterministic maximally parallel
manner. In general, the number of times a particular rule is applied at anyone
step can be unbounded. We require that the application of the rules is maximal:
all objects, from all membranes, which can be the subject of local evolution rules
have to evolve simultaneously. Note that there may be several maximal multisets
of rules applicable in a step, but we non-deterministically select only one such
multiset to apply.

Formally, an SA system is defined as

Π = (V,H, μ, w1, . . . , w|H|, E,R1, . . . , R|H|, io),

where V is the set of objects (symbols) the system uses. H is the set of membrane
labels. The membrane structure of the system is defined in μ. The initial multiset
of objects within membrane i is represented by wi, and the rules are given in the
set Ri. E is the set of objects which can be found within the environment, and io
is the designated output membrane. (When the system is used as a recognizer or
acceptor, there is no need to specify io.) A large number of papers have been writ-
ten concerning symport/antiport systems. For example, it has been shown that
“minimal” such systems (with respect to the number of membranes, the num-
ber of objects, the maximum “size” of the rules) are universal in the sense that
they can simulate the computation of Turing machines or, equivalently, counter
machines. See the P system website at http://psystems.disco.unimib.it for
papers about symport/antiport systems and in the general area of membrane
computing, and in particular the monograph [10]. In this paper, we introduce
restricted models of symport/antiport systems that are used as acceptors or gen-
erators of sets of tuples of non-negative integers and show that they characterize
exactly the semilinear sets.

First, we look at systems that are acceptors. One model is called simple SA.
The system consists of k + 1 membranes, arranged in a 2-level structure: mem-
branes m1, m2, . . . ,mk (the input membranes) are at the same level and enclosed
in membranemk+1 (the skin membrane). The set of objects is V = F∪{o}, where
F is a finite set of objects not containing the distinguished symbol o. The restric-
tion is that in the rules of the forms (v, in) and (u, out; v, in), v does not contain
o’s. Thus, the number of o’s in each membrane can only be decreased. The en-
vironment initially contains a fixed (finite) multiset over F . The system accepts
a k-tuple (n1, . . . , nk) of non-negative integers if, when the k input membranes
are given on1 , . . . , onk and no o’s in membrane mk+1 (with some fixed strings
w1, . . . , wk+1 ∈ F ∗ in membranes m1, . . . ,mk+1, respectively), the system halts
(i.e., no rule in any of the membranes is applicable). We show that a set R ⊆ Nk

is accepted by a simple SA if and only if it is a semilinear set. (This result
generalizes to the case when there is an infinite supply of o’s in the environ-
ment, and the v’s can contain o’s in the rules in the skin membrane mk+1.) As
a consequence, the class of sets of tuples accepted by these SAs are closed under

On Symport/Antiport P Systems and Semilinear Sets 255

union, intersection, and complementation. Moreover, the emptiness, disjointness,
containment, and equivalence problems for simple SAs are decidable. When the
model is generalized to a multi-level structure, the set of tuples accepted need
no longer be semilinear. In particular, suppose we have a k-membrane SA, where
membrane mi is enclosed in membrane mi+1 for 1 ≤ i ≤ k − 1. Membrane m1
is the only input membrane and membrane mk is the skin membrane. Again, in
the rules (v, in) and (u, out; v, in), v does not contain o’s. We call this model a
k-membrane cascade SA. Note that the system accepts a subset of N. We show
that 3-membrane cascade SAs can accept non-semilinear subsets of N. We also
prove that their emptiness problem is undecidable by showing that they can
simulate the computations of two-counter machines.

The k-membrane cascade SA’s can be generalized. A k-membrane extended
cascade SA has a set of objects V = F ∪ Σr, where now the input alphabet is
Σr = {a1, . . . , ar} (r ≥ 1). Again the rules are restricted in that in the rules
of the forms (v, in) and (u, out; v, in), v does not contain any symbol in Σr.
The environment initially contains only a fixed multiset over F . Also, there are
fixed strings w1, . . . , wk ∈ F ∗ such that the system starts with w1a

n1
1 . . . anr

r in
membrane m1 (the input membrane) and wi in membrane mi for 2 ≤ i ≤ k. If
the system halts, then we say that the r-tuple (n1, . . . , nr) is accepted. We show
that a set R ⊆ Nr is accepted by a 1-membrane extended cascade SA if and
only if it is semilinear. However, 2-membrane extended cascade SAs can accept
non-semilinear sets, and their emptiness problem is undecidable, even for r = 2
(i.e., there are two symbols in the input alphabet). Note that for the case r = 1
(i.e., Σ contains only a single symbol), the set of unary numbers is semilinear
(since this is a special case of the result above for 2-level simple SA).

We then consider symport/antiport models that are used as generators. One
such model is a 2-level symport/antiport system with membranes m1, . . . ,mk,
mk+1, where membranes m1, . . . ,mk are at the same level, and they are enclosed
in the skin membrane mk+1. There is an infinite supply of o’s in the environment
(but the initial multiplicities of symbols in F in the environment are fixed). We
require that for membranes m1, . . . ,mk, in the rules of the forms (u, out) and
(u, out, v, in), u does not contain o’s. Note that there is no restriction on the rules
in the skin membrane. We say that (n1, . . . , nk) is generated if, when started with
no o’s in the system and fixed wi ∈ F ∗ in membrane mi (1 ≤ i ≤ k + 1), the
system halts with on1 , . . . , onk in membranes m1, . . . ,mk. We call this system a
simple SA generator. We show that a set R ⊆ Nk is generated by a simple SA
generator if and only if R is a semilinear set. Again, generalizing the model to
have at least 3 levels would allow it to generate a non-semilinear set. In fact, for
any recursively enumerable (RE) set R, the set {2n | n ∈ R} can be accepted by
a 3-level system, while R can be accepted by a 4-level system.

We also look at a 1-membrane symport/antiport system with a set of objects
V = F ∪Σr, where Σr = {a1, . . . , ar}, and whose rules are restricted so that in
the rules of the forms (u, out) and (u, out; v, in), u does not contain any symbol in
Σr. Thus symbols in Σr can only be transported from the environment into the
membrane (note that, by the restriction, once these symbols enter the membrane,

256 O.H. Ibarra et al.

they remain in the membrane). The system starts with a fixed string w ∈ F ∗. The
environment initially contains a fixed multiset over F and an infinite supply of
each ai (1 ≤ i ≤ r). We show that the sets of r-tuples generated by these systems
are exactly the semilinear sets over Nr. However, when there are 2 membranes,
where again, the second (i.e., innermost) membrane cannot transport symbols in
Σr into the first (skin) membrane, the set of tuples generated by such a system
need not be semilinear. In fact, for any RE set R, the set {(2n, 0) | n ∈ R}
can be generated by a 2-membrane system with input alphabet Σ2, while the
set {(n, 0, 0) | n ∈ R} can be generated by a 2-membrane system with input
alphabet Σ3.

2 Restricted SA Acceptors and Semilinear Sets

We first introduce a restricted model of a symport/antiport system [9] which is
used as an acceptor of tuples of non-negative integers. A simple SA Π is defined
as follows:

1. The alphabet of objects is V = F ∪ {o}, where F is a finite set and o is a
distinguished object.

2. There are k + 1 membranes (k ≥ 1) arranged in a 2-level structure: mem-
branes m1,m2, . . . ,mk (the input membranes) are at the same level and
enclosed in membrane mk+1 (the skin membrane).

3. At the start of the computation the k input membranes are given on1 ,. . ., onk ,
respectively, for some non-negative integers n1, . . . , nk (the skin membrane
initially does not contain any o).

4. Also, at the start of the computation, there are fixed strings, i.e., multisets
w1, . . . , wk+1 ∈ F ∗, in membranes m1, . . . , mk+1, respectively. Thus, the
wi’s do not contain any o.

5. The environment initially only contains a fixed (finite) multiset over F . Of
course, symbols that are exported to the environment from the skin mem-
brane during the computation can be retrieved from the environment.

6. Each membrane has a set Ri of rules (some may be empty) The rules are of
the forms:
(a) (u, out),
(b) (v, in),
(c) (u, out; v, in),
where u, v ∈ V +. A rule of type (a) transports multiset u from the mem-
brane containing the rule into the surrounding membrane (if the mem-
brane contains u). A rule of type (b) imports multiset v from the sur-
rounding membrane into the membrane containing the rule (if the sur-
rounding membrane contains v). A rule of type (c) simultaneously trans-
ports u to the surrounding membrane and imports v from the surround-
ing membrane (if the membrane contains u and the surrounding membrane
contains v).

On Symport/Antiport P Systems and Semilinear Sets 257

The restriction is:

In the rules of types (b) and (c), v does not contain o’s. This just means
that the number of o’s in any membrane can only be decreased and cannot
be increased.

7. As usual in a P system, the rules are applied in a non-deterministic maxi-
mally parallel manner.

Notice that the fixed multisets over F given initially in the membranes as well
as in the environment are part of the specification of the simple SA Π (which
we do not always explicitly state). We say that a tuple (n1, . . . , nk) is accepted
by Π if, when the k input membranes are given on1 , . . . , onk respectively, the
system halts (i.e., none of the rules is applicable). The set of all such tuples is
denoted by R(Π).

Simple SAs are intimately related to counter machines. Let M be a non-
deterministic multicounter machine all of whose counters are reversal-bounded.
A counter is reversal-bounded if the number of alternations between non-decrea-
sing mode and non-increasing mode during any computation is at most a fixed
number. The first k counters are input counters. We say that M accepts (n1,
. . . , nk) if, when started in its start state with counter i set to ni (1 ≤ i ≤ k)
and the other counters to zero, M halts in an accepting state with all counters
zero. The set of all such tuples accepted by M is denoted by R(M). We call M
a reversal-bounded (multi) counter machine.

A special case is a counter machine with only k counters (the input coun-
ters) each of whose counters can only be decremented. Moreover, at every step,
the machine decrements exactly one counter. We call this machine a decreasing
counter machine.

We can augment a reversal-bounded multicounter machine with an unre-
stricted counter, i.e., a free counter. This counter can make an unbounded num-
ber of reversals. We call such a machine reversal-bounded counter machine with
a free-counter.

Convention: In our definition of counter machines above, acceptance is by
“accepting state”. Clearly, given a counter machine M , we can easily construct
an equivalent machine M ′ which accepts if and only if it eventually halts in some
state (accepting or not). M ′ simulates M faithfully. If M enters an accepting
state, then M ′ halts. If M halts in a rejecting state, say s, then M ′ goes into an
infinite loop by executing the following (where c is some counter of the machine):

s : If counter c is non-zero, then decrement c and go to state s, else go to
state s

The reason we need the second mode of acceptance is that in our constructions
characterizing the different SA systems by counter machines, the equivalences
are of the form: The SA halts (i.e., accepts) if and only if the machine halts. All
the machines discussed in the paper can easily be converted to ones whose mode
of acceptance is by halting.

258 O.H. Ibarra et al.

Next we recall the definition of a semilinear set [3]. Let N be the set of non-
negative integers and k be a positive integer. A subset R of Nk is a linear set if
there exist vectors v0, v1, . . . , vt in Nk such that

R = {v | v = v0 +m1v1 + . . .+mtvt, mi ∈ N}.

The vectors v0 (referred to as the constant vector) and v1, v2, . . . , vt (referred to
as the periods) are called the generators of the linear set R. The set R ⊆ Nk

is semilinear if it is a finite union of linear sets. The empty set is a trivial
(semi)linear set, where the set of generators is empty. Every finite subset of Nk

is semilinear – it is a finite union of linear sets whose generators are constant
vectors. It is also clear that the semilinear sets are closed under (finite) union.
It is also known that they are closed under complementation and intersection.

Theorem 1. Let R ⊆ Nk. Then the following statements are equivalent:

1. R is a semilinear set.
2. R is accepted by a reversal-bounded counter machine with a free counter.
3. R is accepted by a reversal-bounded counter machine.
4. R is accepted by a decreasing counter machine.

Proof. It is obvious that (4) implies (3) and (3) implies (2). From the defi-
nition of a semilinear set, it is easy to construct, given a semilinear set R, a
decreasing counter machine M accepting R. Since M is non-deterministic, it is
sufficient to describe the construction of M when R is a linear set. So suppose,
R = {v | v = v0 + m1v1 + . . . + mtvt, mi ∈ N} ⊆ Nk, with vi = (vi1, . . . , vik)
for 0 ≤ i ≤ t. M , when given (n1, . . . , nk) in its counters, applies the con-
stant vector v0 to decrement the counters simultaneously by v01, . . . , v0k, re-
spectively. Then M non-deterministically guesses the number of times mi to
apply vi to the counters (again, decreasing the counters simultaneously by the
amounts mivi1, . . . ,mivik, respectively for 1 ≤ i ≤ t. If all the counters become
zero at the same time, M accepts. Thus, (1) implies (4). That (2) implies (1)
is a trivial consequence of a result in [4], which showed that if a bounded lan-
guage L ⊆ a∗1 . . . a

∗
k (where a1, . . . , ak are distinct symbols and n1, . . . , nk are

non-negative integers) is accepted by a non-deterministic finite automaton aug-
mented with reversal-bounded counters and one unrestricted counter, then the
set {(n1, . . . , nk) | an1

1 . . . ank

k ∈ L} is semilinear.

Lemma 1. Let Π be a simple SA. Then R(Π) can be accepted by a reversal-
bounded counter machine with a free counter M .

Proof. We construct a counter machine M with k + 1 counters to simulate Π .
The intuitive idea behind the simulation is the following. The first k counters are
reversal-bounded (the input counters) and the last is the free counter. Initially,
the input counters are set to n1, . . . , nk, respectively. The free counter will keep
track of the current number of o’s in the skin membrane (at the start, there is
none). The initial configuration (w1, . . . , wk, wk+1) and the rules (R1, . . . , Rk+1)
are stored in the finite-state control of M . The finite-state control keeps track

On Symport/Antiport P Systems and Semilinear Sets 259

of the numbers of non-o symbols and their distributions within the membranes
and the environment (this can be done since their total multiplicities remain the
same (as ones initially given as fixed constants in the definition of Π) at any
time, independent of the ni’s). M simulates each non-deterministic maximally
parallel step of Π by several moves. Clearly, because of the restrictions on the
rules, the counters keeping track of the multiplicities of o’s in the input mem-
branes are only decremented. Special care has to be taken when simulating a
rule of type either (u, out) or (u, out; v, in) when u contains multiple copies of
o’s. In order to tell whether such a rule is applicable or not, for each membrane
we associate a finite buffer of size d (where d is the maximum number of o’s
that can be thrown out by a single rule in the membrane) to the finite control
of M to keep track of the first d o’s in the membrane while using the counter of
M associated with the membrane to hold the number of the remaining o’s. By
doing so, checking whether the above rule is applicable can be done by examin-
ing the contents of the finite buffer associated with the membrane in which the
rule resides.

Now in a maximally parallel step, some (possibly all) of the input membranes
can transport o’s to the skin membrane and the skin membrane itself can also
transport some o’s to the environment. However, the total number of o’s trans-
ferred from the input membranes to the skin membrane and the total number
of o’s transferred from the skin membrane to the environment may have no rela-
tionship, so the free counter may be decremented and incremented an unbounded
number of times during the computation. This is the reason why we need a free
counter. It follows from the description that M can simulate the computation
of Π .

We now prove the converse of Lemma 1.

Lemma 2. Let M be a reversal-bounded counter machine with a free counter.
Then R(M) can be accepted by a simple SA Π.

Proof. By the proof of Theorem 1, we may assume thatM is a decreasing counter
machine with k counters accepting R(M) ⊆ Nk. Thus M , when started in its ini-
tial state with n1, . . . , nk in the counters halts in an accepting state if (n1, . . . , nk)
is in R(M). Moreover, at each step of the computation, before it halts, M decre-
ments exactly one counter (there are no increments).

We will construct a simple SA Π simulating M . As defined, Π will have a 2-
level structure with k input membranes m1, . . . ,mk (at the same level) enclosed
by the skin membrane mk+1. The k input membranes will keep track of the
values of the counters. The construction of Π follows the construction in [11]
where a two-level SA system is shown to simulate a multicounter machine. In
the construction, each of the inner membranes represents a counter and the
multiplicity of the distinguished symbol o within each membrane represents the
value of that counter. The rules associated with each subtract instruction in the
construction adhere to the restrictions required by a simple SA system. Since M
has no increment instructions, the associated Π , by the construction in [11], is
a simple SA. We omit the details.

260 O.H. Ibarra et al.

From Theorem 1 and Lemmas 1 and 2, we have:

Theorem 2. Let R ⊆ Nk. Then the following statements are equivalent:

1. R is a semilinear set.
2. R is accepted by a reversal-bounded counter machine with a free counter.
3. R is accepted by a reversal-bounded counter machine.
4. R is accepted by a decreasing counter machine.
5. R is accepted by a simple SA.

Note that in a simple SA, the number of o’s in the membranes cannot be in-
creased, since in the rules of the form (v, in) and (u, out; v, in) we do not allow
v to contain o’s. We can generalize the model. The environment can have an
infinite supply of o’s, and in the rules of the forms (v, in) and (u, out; v, in) in
the skin membrane, v is in F+o∗. Thus v can contain o’s but must contain at
least one symbol in F . (We do not allow v to only contain o’s since, otherwise,
the system will not halt because there is an infinite supply of o’s in the envi-
ronment.) Thus the number of o’s in the skin membrane can increase during
the computation by importing o’s from the environment. Call this model simple
SA+. Clearly the construction in Lemma 1 still works when Π is a simple SA+.
The only modification is that in the simulation of a maximally parallel step of
Π by M , we also need to consider the o’s that may be brought into the skin
membrane from the environment by the (v, in) and (u, out; v, in) rules. Thus,
we have:

Corollary 1. Let R ⊆ Nk. Then the following statements are equivalent: items
(1), (2), (3), (4), (5) of Theorem 2, and (6): R is accepted by a simple SA+.

The following corollary follows from known results concerning semilinear sets.

Corollary 2. Let k be any positive integer. Then:

1. The class of subsets of Nk accepted by simple SAs is closed under union,
intersection, and complementation.

2. The membership, disjointness, containment, and equivalence problems for
simple SAs accepting subsets of Nk are decidable.

3 Cascade Counter Machines and Cascade SAs

In this section, we will show that Theorem 2 does not generalize to the case
when the simple SA has a 3-level structure. In particular, consider a simple SA
with only three membranes m1,m2,m3, where membrane m1 is enclosed in m2,
and m2 is enclosed in m3 (the skin membrane). Initially, membrane m1 contains
the input on. The same restriction (i.e., in the rules of the forms (v, in) and
(u, out; v, in), v does contain o’s) applies. We will show that such a system can
accept a non-semilinear set. In fact, the emptiness problem for such systems is
undecidable. To facilitate the proofs, we first introduce the notion of cascade
counter machines.

On Symport/Antiport P Systems and Semilinear Sets 261

3.1 Cascade Counter Machines

A k-counter cascade machine M is a finite-state machine with k counters, c1,
. . . , ck. The instructions of M are of the following forms:

s → (s′, ci := ci − 1; ci+1 := ci+1 + 1) (decrement ci then increment ci+1)
s → (s′ if ci is zero else s′′) (test if ci = 0)
s → (s′, ck := ck − 1) (counter ck can be independently decremented)

Notice that in the above, it is implicit that M cannot increment c1 (there is no
such instruction). We say that a non-negative integer n is accepted if M , when
started in its initial state with counter values (n, 0, . . . , 0) eventually enters an
accepting state.

We first show that the emptiness problem for deterministic 3-counter cas-
cade machines is undecidable by showing how a 3-counter cascade machine with
initial counter values (n, 0, 0) can simulate the computation of a deterministic
(unrestricted) 2-counter machine with initial counter values (0, 0). The former
accepts some n if and only if the latter halts. The result then follows from the
undecidability of the halting problem for 2-counter machines [7].

So suppose that M is a deterministic (unrestricted) 2-counter machine. We
show that M can be simulated by a deterministic 3-counter cascade machine M ′

with counters c1, c2, c3. The two counters x1 and x2 of M are simulated by c2
and c3 of M ′, respectively. Clearly, testing if counter xi is zero for i = 1, 2 can
be directly simulated in M ′. Incrementing/decrementing counters x1 and x2 of
M can also be simulated in M ′:

1. When M increments x1, M ′ performs the following: Decrement c1, increment
c2.

2. When M increments x2, M ′ performs the following: Decrement c1, increment
c2, decrement c2, increment c3.

3. WhenM decrements x1,M ′ performs the following: Decrement c2, increment
c3, decrement c3.

4. When M decrements x2, M ′ also decrements c3.

During the simulation, if c1 is zero when an instruction being simulated calls for
decrementing c1, M ′ rejects. Note that all state transitions in M are simulated
faithfully byM ′. It follows that we can constructM ′ so that it accepts the input n
(initially given in c1) if and only if n is “big” enough to allow the simulation ofM to
completion. IfM does not halt orn is not big enough to carry out the simulation (at
some point), M ′ goes into an infinite loop or rejects. It follows that the emptiness
problem for deterministic 3-counter cascade machines is undecidable.

Example. We now give an example of a deterministic 3-counter cascade machine
M accepting a non-semilinear set. Starting with c1 = n, c2 = 0, c3 = 0,

1. If c1 is zero, M rejects.
2. M configures the counters to contain: c1 = n− 1, c2 = 0, c3 = 1.
3. If c1 is zero, M accepts.

262 O.H. Ibarra et al.

4. Set k = 1.
5. Starting with values: c1 = n− (1 + 3 + . . .+ (2k− 1)), c2 = 0, c3 = (2k− 1),

(*) M iteratively decrements c3 by 1 while decrementing c1 by 1 and incre-
menting c2 by 1 until c3 = 0. Then M decrements c1 by 2 and increments
c2 by 2 (this is done in two steps). After that, M iteratively decrements c2
by 1 while incrementing c3 by 1 until c2 = 0.
– If c1 becomes zero before the completion of (*), M rejects.
– If c1 = 0 after the completion of (*), M accepts, else M sets k := k + 1
and goes back to (*).

Clearly, the values of the counters when k becomes k + 1 are: c1 = n− (1 + 3 +
. . .+ (2k− 1) + (2k+ 1)) = n− (k+ 1)2, c2 = 0, c3 = (2k+ 1). It follows that M
can be constructed to accept the set {n2 | n ≥ 1}, which is not semilinear.

From the above discussion and example, we have:

Theorem 3. Deterministic 3-counter cascade machines can accept non-semi-
linear sets. Moreover, their emptiness problem is undecidable.

Remark 1. The construction of the deterministic 3-counter cascade machine
in the example above can be modified to accept the set R1 = {2n2 | n ≥ 1}.
Now define for each k ≥ 1, the set Rk = {2n2k | n ≥ 1}. One can show by
essentially iterating the construction in the example that Rk can be accepted by
a deterministic (2 + k)-counter cascade machine. We believe (but have no proof
at this time), that the Rk’s form an infinite hierarchy: Rk+1 can be accepted by
a deterministic (2 + k)-counter cascade machine but cannot be accepted by any
deterministic or non-deterministic (2 + (k − 1))-counter cascade machine. Note
that 1- and 2- counter cascade machines are equivalent — both accept exactly
the semilinear sets.

It is interesting to observe that for a k-counter cascade machine M , if counter c1
cannot be tested for zero, then either R(M) = ∅ (if M never enters an accepting
state regardless of the input initially given in c1) or there exists an m ∈ N
such that R(M) = {n | n ≥ m,n ∈ N} (m is the smallest input for which M
accepts). Hence, for cascade counter machines lacking the capability of testing
counter c1 for zero, they accept only semilinear sets. The emptiness problem,
nevertheless, remains undecidable for such a restricted class of cascade counter
machines, implying that the semilinear sets associated with such machines are
not effective.

We conclude this section by noting that Theorem 3 is not true for (deter-
ministic or non-deterministic) 2-counter cascade machines. In fact, consider a
non-deterministic machine M which has k + 1 counters, where the first k coun-
ters are initially set to input values n1, . . . , nk, respectively, and the last counter
set to zero. The computation is restricted in that the first k counters can only
be decremented, but the last counter can be decremented/incremented inde-
pendently. It follows from Theorem 1 that these machines accept exactly the
semiliner sets.

On Symport/Antiport P Systems and Semilinear Sets 263

3.2 Cascade SAs

A cascade SA has k membranes m1, . . . ,mk (for some k) that are nested: For
1 ≤ i ≤ k−1, membranemi is enclosed in membranemi+1. The input membrane,
m1, initially contains on for some n. Again, in the rules of the forms (v, in)
and (u, out; v, in), v does not contain o’s. There are fixed multisets w1, . . . , wk

not containing o’s in membranes m1, . . . ,mk initially. The environment initially
contains a fixed multiset of symbols.

The connection between cascade counter machines and cascade SAs is given
by the following theorem.

Theorem 4. Let k ≥ 1 be a positive integer. A set Q ⊆ N is accepted by a
k-membrane cascade SA if and only if it can be accepted by a k-counter cascade
machine.

Proof. Let Π be a k-membrane cascade SA. We construct an equivalent k-
counter cascade machine M . We associate a counter ci for every membrane
mi to keep track of the number of o’s in membrane mi during the computation.
The construction of M simulating Π is straightforward, following the strategy
in the proof of Lemma 1.

We now prove the converse. Let M be a k-counter cascade machine. For no-
tational convenience we will assume the program instructions for M are labelled
l0, l1, . . . , ln and begin with instruction l0. We also assume they are written in the
form li: (SUB(r), ls, lt) meaning that when instruction li is executed, counter
r is decremented. If counter r was initially positive (meaning it was able to be
decremented), the machine will next execute the instruction ls, otherwise it will
execute the instruction lt. Also, since M is a cascade counter machine, each
decrement from counter r where r < k must be followed by an instruction which
increments the counter r+1. Hence, we can incorporate each increment instruc-
tion into its preceding decrement instruction. (In the case where we decrement
counter r and r = k, no increment instruction follows since the decremented
value is thrown out of the system.) In this way we can consider the program for
M to consist entirely of decrement instructions. We now construct an equivalent
k-membrane cascade SA Π which simulates each decrement instruction of M .
The membrane structure of Π is a set of nested membranes which each cor-
responds to a counter in M . The skin membrane also acts as program control
membrane. Formally, the simulation occurs by creating the following cascade SA
membrane system from a given cascade counter machine:

Π = (V,H, μ, wm1 , . . . , wmk
, E,Rm1 , . . . , Rmk

)

where
V = {li1, li2, li3, li4, dij | li is an instruction label of the form li:

(SUB(r), ls, lt) where r �= k and 0 ≤ j ≤ 2(k − r) + 1} ∪
{li1, li2, li3 | li is an instruction label of the form li : (SUB(r), lj , ls)
where r = k} ∪ {d0, d1} ∪ {c, c′, c1, . . . , cm} ∪ {o},

H = {m1,m2, . . . ,mk},

264 O.H. Ibarra et al.

μ = [mk
[mk−1 . . . [m1]m1 . . .]mk−1]mk

,
wm1 = c1o

n,
wmi = ci for all 1 < i < k,
wmk

= l01ck (since l0 is the first instruction to execute),
E = one copy of each element in V except o and l01.

The rule sets (Rm1 , . . . , Rmk
) are created based on the cascade machine’s pro-

gram. Initially we create the rule (d0, out; d1, in) within Rmk
. For each rule of

the form li : (SUB(r), ls, lt) where r �= k we add the following rules:

1. Rmk
contains:

(a) (li1, out; li2cd0di0, in),
(b) (dij , out; di(j+1), in) where 0 ≤ j ≤ 2(k − r),
(c) (d1di[2(k−r)+1], out; li4c′, in),
(d) (li2d1, out; li3, in),
(e) (li3cdi[2(k−r)+1], out; ls1, in),
(f) (li2li4, out; lt1, in),
(g) (cc′, out);

2. Rmn where k ≥ n > r contains:
(a) (li2c, in),
(b) (li2cr, out),
(c) (li3cr, in),
(d) (li3c, out),
(e) (li4c′, in),
(f) (li2li4, out),
(g) (cc′, out);

3. Rmr contains:
(a) (cr, out; li2c, in),
(b) (li2o, out),
(c) (li3cr, in),
(d) (li3c, out),
(e) (li2, out; crc′, in),
(f) (cc′, out).

For a rule of the form li : (SUB(r), ls, lt) where r = k we create the follow-
ing rules:

4. Rmr = Rmk
contains:

(a) (li1, out; li2d0, in),
(b) (li2o, out; li3, in),
(c) (li3d1, out; ls1, in),
(d) (li2d1, out; lt1, in).

Informally, the above simulation operates as follows. The process of simu-
lating a single subtract instruction li : (SUB(r), ls, lt) if r �= k begins by the
presence of the object li1 within the outermost membrane (mk). This object is
used to bring in the necessary execution objects li2, c, d0, and di0 using rule 1a.
The objects li2 and c are used cooperatively and are drawn deeper through the

On Symport/Antiport P Systems and Semilinear Sets 265

membrane hierarchy until they have reached the membrane mr+1. Here they are
drawn into membrane mr while the object cr is thrown out.

If membrane mr contains an o object (meaning counter r is not empty) the
objects li2 and o are thrown out into membrane mr+1. This simulates both the
current subtract instruction along with the add instruction we know must follow.
Now, the objects li2 and cr are used cooperatively and are thrown out of each
membrane until they located in the skin membrane.

While this has been occurring, the delay objects in the skin membrane have
been being incremented. The d objects are delay objects and are used to de-
lay certain execution steps. During each step of computation, their subscripts
are incremented by one. The object d0 only changes to d1 to delay an action
for a single step while the object di0 increments to di[2(k−r)+1]. This number
(2(k − r) + 1) corresponds to the number of steps plus one that li2 will take to
travel to membrane r and back if membrane r contains a o. This allows us to
determine whether the object li2 is stuck in membrane r.

If the membrane mr contains an o (meaning counter r is not zero), objects
li2 and cr will return to the skin membrane in 2(k − r) steps and rule 1d is
applicable before di[2(k−r)+1] has been brought into the membrane. So, li2 and
d2 are thrown out into the environment and object li3 is brought into the sys-
tem. Now the objects c and cr must be swapped to their original positions. This
occurs by having objects li3 and cr work cooperatively to move deeper through
the membranes to membrane r and then objects li3 and c work cooperatively
to be thrown out of each membrane until they return to the skin membrane. At
this point, everything is completed and all objects are in the correct location. So
objects li3, c, and di[2(k−r)+1] are thrown out into the environment while object
ls1 is brought in. At this point, instruction li is complete and instruction ls will
execute next.

If the objects li2 and cr have not returned to the skin membrane after 2(k −
r) + 1 steps, then the membrane r must not have contained an o. At this point,
the objects d1 and di[2(k−r)+1] are thrown out of the skin membrane and ob-
jects li4 and c′ are brought in. Now, objects li4 and c′ work cooperatively to
move deeper through the membranes to membrane mr+1. Object c′ is drawn
into membrane mr while object li2 is thrown out. At this point, membrane mr

contains the objects c and c′ while membrane mr+1 contains the objects li2 and
li4. These pairs of objects work cooperatively to be thrown out of each mem-
brane. The pair li2li4 will get to the skin membrane a step ahead of the pair
cc′. The objects li2 and li4 are thrown out into the environment while bring-
ing in the object lt1. During the next step the pair cc′ will be thrown out into
the environment. At this point, instruction li is complete and instruction lt will
execute next.

If the instruction to be simulated is of the form li : (SUB(r), ls, lt) where
r = k, the simulation is much simpler. In this case, since the instruction is
immediately placed within the counter membrane, only a single delay object
is needed along with the instruction object li2. If membrane k contains an
o, it is thrown out during the next step along with the object li2 and the

266 O.H. Ibarra et al.

object li3 is brought in allowing the final step to clean up and bring in the
instruction object ls1. If li2 is still in membrane m after one step, the de-
lay object can cooperate with object li2 to bring in the next instruction
object lt1.

Consequently, these cascade SA rules simulate the operation of M .

From Theorems 3 and 4, we have,

Corollary 3. 3-membrane cascade SAs can accept non-semilinear sets. More-
over, their emptiness problem is undecidable.

A careful examination of the proof of Theorem 4 reveals that the degree of
maximal parallelism for the constructed SA is finite (i.e., at every step of the
computation, the size of the multiset of applicable rules is bounded by some fixed
integer). Hence, Corollary 3 holds even if the 3-membrane cascade SAs have a
bounded degree of maximal parallelism.

4 Another SA Acceptor Characterizing the Semilinear
Sets

The k-membrane cascade SA of the previous section can be generalized. A k-
membrane extended cascade SA has a set of objects V = F ∪Σr, where now the
input alphabet is Σr = {a1, . . . , ar} (r ≥ 1). Again the rules are restricted in
that in the rules of the forms (v, in) and (u, out; v, in), v does not contain any
symbol in Σr. The environment initially contains only F . There are fixed strings
wi ∈ F ∗ such that the system starts with w1a

n1
1 . . . anr

r in membrane m1 (the
input membrane) and wi in membrane mi for 2 ≤ i ≤ k. If the system halts,
then we say that the r-tuple (n1, . . . , nr) is accepted.

Next consider a finite-state device M with a finite-state control and a “bag”
that can hold a multiset of symbols. M starts in its initial state with the bag
containing a multiset an1

1 . . . anr
r . The instructions of M are of the following form:

q → (q′ delete ai from the bag if it is in the bag else q′′)

Thus, from state q, M removes ai from the bag if it is in the bag and goes to
state q′; otherwise, M goes to state q′′. The initial multiset in the bag is accepted
if M enters an accepting state. We call this device a 1-bag automaton. A 1-bag
automaton is like a multiset automaton studied in [2]. Although the notion is
not the same, the idea is quite similar.

We can generalize the 1-bag automaton to a k-bag automaton, where now, a
symbol is deleted from bag i if and only if it is exported into bag i+1. A symbol
can be deleted from the k-th bag independently.

Lemma 3. A set R ⊆ Nr is accepted by a 1-bag automaton if and only if it is
accepted by a decreasing r-counter machine.

Proof. Clearly, deleting ai from the bag corresponds to decrementing counter i
(1 ≤ i ≤ r).

On Symport/Antiport P Systems and Semilinear Sets 267

Theorem 5. Let k ≥ 1. A set of tuples R is accepted by a k-membrane extended
cascade SA if and only if R is accepted by a k-bag automaton.

Proof. The proof for the “only if” part is a straightforward generalization of the
proof of the first part of Theorem 1 (which was for k + 1). For the second part,
let M be a k-bag automaton. We construct a k-membrane extended cascade SA
Π equivalent to M , in the same manner as the construction of Theorem 4 where
each membrane corresponds to a bag. The rules can be created by mapping
each subtraction rule of the form li : (SUB(r), ls, lt) to the bag rule of the
form q → (q′ delete ai from the bag if it is in the bag else q′′) as follows. The
instruction labels of a counter machine can also be viewed as states so we can
say li corresponds to q, ls corresponds to q′, and lt corresponds to q′′. The bag
associated with q corresponds to the counter r. The additional difference is that
the bag also specifies the object (ai) in Σ which should be thrown out of the
bag. Hence, we can create Π to simulate M using the techniques in Theorem 4
and the above mapping along with the following changes. The set V will now
additionally contain the set of objects {a1, . . . , ar} rather than the single object
{o}. Then the multiset wm1 = c1a

n1
1 . . . anr

r replaces the multiset c1on. Also, the
rules 3b: (li2o, out) and 4b: (li2o, out; li3, in) will be changed to (q2ai, out) and
(q2ai, out; s3, in), respectively. Clearly, this k-membrane extended cascade SA
now simulates a k-bag automaton.

Theorem 6. A set R ⊆ Nr is accepted by a 1-membrane extended cascade SA
if and only if it is a semilinear set.

Proof. Let Π be a 1-membrane extended cascade SA with input alphabetΣr. We
can easily construct a decreasing r-counter machine M which, when the counters
are initially given n1, . . . , nr, simulates the computation of Π on wan1

1 . . . anr
r .

The simulation is straightforward, as in Lemma 1. It follows from Theorem 1
that R(Π) is a semilinear set.

For the converse, by Lemma 3 we need only show that a 1-bag automaton
can be simulated by a 1-membrane extended cascade SA. This follows from
Theorem 5.

Let Σ2 = {a1, a2}. Using the ideas in the example of the previous section,
we can easily construct a 2-bag automaton accepting the non-semilinear set
{(n1, n2) | n1, n2 ≥ 0, n1 +n2 = m2 for some m ≥ 1}. It is also easy to construct
a 2-bag automaton with input alphabet Σ2 that simulates the computations of
a 2-counter automaton. The values of the counters are represented in the second
bag. The number of a1’s (resp., a2’s) in that bag denotes the value of the first
(resp., second) counter. The a1’s and the a2’s in the first bag are the suppliers
(sources) of the “increments” for the two counters in the second bag.

From the above discussion and Theorem 5, we have,

Theorem 7. 2-bag automata (and, hence, 2-membrane extended cascade SAs)
can accept non-semilinear sets. Moreover, their emptiness problem is
undecidable.

268 O.H. Ibarra et al.

5 Restricted Symport/Antiport Systems as Generators

In this section, we look at symport/antiport systems used as generators of tuples.
We only state the results; the proofs will be given in the full paper.

In the definition of a k-membrane cascade SA, the input on is initially given
in m1 (the innermost membrane) with no o’s in the other membranes. The
computation is such that the o’s can only be exported from membrane mi to
membrane mi+1 (or to the environment in the case of mk).

Now consider a system Π which is a generator of tuples and the cascading
(flow of o’s) is from the environment to the innermost membrane. More precisely,
let m1, . . . ,mk be the membranes of Π , where mi is enclosed in mi+1 for 1 ≤
i ≤ k − 1 (m1 is the innermost membrane and mk is the skin membrane).
Initially, there are no o’s in the membranes, but there is an infinite supply of
o’s in the environment. There may also be a finite supply of other symbols in
the environment initially. The rules of the forms (u, out) and (u, out; v, in) are
restricted in that u cannot contain o’s. Thus the o’s can only be moved from the
environment to membrane mk and from mi+1 to mi for 1 ≤ i ≤ k−1. (Note that
once o’s reach membrane m1, they remain there.) The set of numbers generated
by Π is G(Π) = {n | Π halts with on in the skin membrane mk}. It is important
to point out that the skin membrane is the output membrane. We call this new
model a k-membrane reverse-cascade SA.

Theorem 8. 1. 1-membrane and 2-membrane reverse-cascade SAs are equiv-
alent, and they generate exactly the semilinear sets over N.

2. 3-membrane reverse-cascade SAs can generate non-semilinear sets. In fact,
for any recursively enumerable (RE) set R ⊆ N, the set {2n | n ∈ R} can
be generated by a 3-membrane reverse-cascade SA. (Hence, their emptiness
problem is undecidable.)

3. Any RE set R can be generated by a 4-membrane reverse-cascade SA.

The proof of Theorem 8 involves the use of a counter machine similar to the
k-counter cascade machine in Section 3. Define a k-counter reverse-cascade ma-
chine M as a non-deterministic machine with k counters c1, . . . , ck. M starts
in its initial state with all counters zero. As usual, the counters can be incre-
mented/decremented and tested for zero but with the following restrictions:

1. If counter ci+1 is decremented, it must be followed by an increment of counter
ci for 1 ≤ i ≤ k− 1, and this is the only way counter ci can be incremented.

2. Counter ck can be incremented independently.
3. Counter c1 cannot be decremented. (Thus, c1 is non-decreasing, hence, es-

sentially useless. The reason is that once it becomes positive, it will remain
positive, and can no longer affect the computation. We include this counter
for convenience.)

We say that M generates a non-negative integer n if it halts with value n in
counter ck, and the set of all such numbers generated is the set generated by M .

On Symport/Antiport P Systems and Semilinear Sets 269

It can be shown that for any k ≥ 1, a set R ⊆ N is generated by a k-
membrane reverse-cascade SA if and only if it can be generated by a k-counter
reverse-cascade machine. Then to prove items (1), (2), and (3) of Theorem 8, we
need only show that they hold for 1-counter/2-counter, 3-counter, and 4-counter
reverse-cascade machines, respectively.

Remark 2. We believe that the 4 membranes in Theorem 8, item (3) is best pos-
sible. We think that there are RE sets (even recursive sets) that cannot be gener-
ated by 3-counter reverse-cascade machines based on the following
discussion.

By definition, in a 3-counter reverse-cascade machine M , with three coun-
ters, c1, c2, c3, counter c1 cannot be decremented. So, in fact, the computation
of M can be simulated by a machine M ′ with only two counters, d1, d2. Again,
the only restriction is that if d2 is decremented, it must be followed by an in-
crement of d1, and this is the only way d1 can be incremented. But now, we
allow d1 to be decremented independently and, as before, d2 can be incremented
independently.

We conjecture that there is an RE set (even a recursive set) that cannot be
generated by a 2-counter machine M ′ as defined above. (Note that by definition,
the generated number is in counter d2 when the machine halts.) However, we
have no formal proof at this time.

We can generalize the reverse-cascade SA by using, instead of only one input
symbol o, a set of symbols Σr = {a1, . . . , ar} as input symbols, again with
the restriction that these symbols can only be moved from the environment to
membrane mk and from mi+1 to mi for 1 ≤ i ≤ k−1. Now the system generates
a set of r-tuples of non-negative integers in the skin membrane when it halts.
We can prove:

Theorem 9. 1. 1-membrane reverse-cascade SAs with input alphabet Σr =
{a1, . . . , ar} generate exactly the semilinear sets over Nr.

2. 2-membrane reverse-cascade SAs with input alphabet Σ2 = {a1, a2} can
generate non-semilinear sets over N2. In fact, for any RE set R, the set
{(2n, 0) | n ∈ R} can be generated by a 2-membrane reverse-cascade SA with
input alphabet Σ2.

3. For any RE set R, the set {(n, 0) | n ∈ R} can be generated by a 3-membrane
reverse-cascade SA with input alphabet Σ2.

4. For any RE set R, the set {(n, 0, 0) | n ∈ R} can be generated by a 2-
membrane reverse-cascade SA with input alphabet Σ3.

Remark 3. Again, as in Remark 2, we believe that Theorem 9, item (3), does
not hold for 2-membrane reverse-cascade SAs with input alphabet Σ2.

In the definition of a reverse-cascade SA, the skin membrane is the output mem-
brane. We now consider the model where the output membrane is the innermost
membrane m1 (and not the skin membrane). Similar to Theorem 8, we can prove
the following (but item (3) is weaker):

270 O.H. Ibarra et al.

Theorem 10. Under the assumption that the output membrane is the innermost
membrane m1 (and not the skin membrane), we have:

1. 1-membrane and 2-membrane reverse-cascade SAs are equivalent, and they
generate exactly the semilinear sets over N.

2. 3-membrane reverse-cascade SAs can generate non-semilinear sets (e.g., the
set {n2 | n ≥ 1}). Moreover, their emptiness problem is undecidable.

3. Any RE set R can be generated by a 5-membrane reverse-cascade SA.

Remark 4. It does not seem that item (3) of the above theorem holds for a
4-membrane reverse-cascade SA, but we have no proof at this time.

Finally, consider a 2-level symport/antiport systemΠ hasmembranesm1,m1, . . . ,
mk+1, where m1, . . . ,mk are at the same level, and they are enclosed in the skin
membranemk+1. The environment containsF initially and an infinite supply ofo’s.
We require that for membranes m1, . . . ,mk, in the rules of the forms (u, out) and
(u, out, v, in),u does not contain o’s. Note that there is no restriction on the rules in
the skin membrane. For this system, we say that (n1, . . . , nk) is generated if, when
Π is started with no o’s in the system and fixed wi ∈ F ∗ in mi (1 ≤ i ≤ k + 1), Π
halts with on1 , . . . , onk in membranes m1, . . . ,mk. Call the system just described
a simple SA generator. We can show the following:

Theorem 11. A set R ⊆ Nk is generated by a simple SA generator if and only
if R is a semilinear set.

The theorem above no longer holds when the simple SA generator is extended
to a 3-level structure, as Theorem 10, item (2) shows.

6 Conclusion

In this paper, we introduced restricted models of symport/antiport P systems
and proved that they characterize precisely the semilinear sets. We also showed
that “slight” generalizations of the models allowed them to accept non-semilinear
sets, and made their emptiness problem undecidable. We also looked at related
models that are used as generators of sets of tuples. Some models generate
exactly the semilinear sets; others generate the recursively enumerable sets. We
mentioned some interesting open questions in Remarks 1–4.

Acknowledgements

The work of Oscar H. Ibarra and Sara Woodworth was supported in part by
NSF Grants CCR-0208595 and CCF-0430945. The work of Hsu-Chun Yen was
supported in part by NSC Grant 93-2213-E-002-003, Taiwan. The work of Zhe
Dang was supported in part by NSF Grant CCF-0430531.

On Symport/Antiport P Systems and Semilinear Sets 271

References

1. E. Csuhaj-Varjú, O.H. Ibarra, G. Vaszil: On the computational complexity of P
automata. Proc DNA10, Milano, 2004 (C. Ferretti, G. Mauri, C. Zandron, eds.),
LNCS 3384, Springer, Berlin, 2005, 76–89.

2. E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana: Multiset automata. In Multiset Pro-
cessing. Mathematical, Computer Science, Molecular Computing Points of View
(C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2235, Springer,
Berlin, 2001 69–84.

3. S. Ginsburg: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
New York, 1966.

4. O.H. Ibarra: Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25 (1978), 116–133.

5. O.H. Ibarra: On membrane hierarchy in P systems. Theoretical Computer Science,
334 (2005), 115–129.

6. M. Ito, C. Mart́ın-Vide, Gh. Păun: A characterization of Parikh sets of ETOL
languages in terms of P systems. In Words, Semigroups, and Transductions (M.
Ito, Gh. Păun, and S. Yu, eds.), World Scientific, Singapore, 2001, 239–253.

7. M. Minsky: Recursive unsolvability of Post’s problem of Tag and other topics in
the theory of Turing machines. Ann. of Math., 74 (1961), 437–455.

8. C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón: Tissue P systems. The-
oretical Computer Science, 296 (2003), 295–326.

9. A. Păun, Gh. Păun: The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20, 3 (2002), 295–306.

10. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
11. Gh. Păun, J. Pazos, M. Pérez-Jiménez, A. Rodŕıguez-Patón: Symport/antiport P

systems with three objects are universal. Fundamenta Informaticae, 64, 1-4 (2005),
353–367.

Boolean Circuits and a DNA Algorithm in
Membrane Computing

Mihai Ionescu and Tseren-Onolt Ishdorj

Research Group on Mathematical Linguistics,
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

armandmihai.ionescu@urv.net, itsot@yahoo.com

Abstract. In the present paper we propose a way to simulate Boolean
gates and circuits in the framework of P systems with active membranes
using inhibiting/de-inhibiting rules. This new approach on the simulation
of Boolean gates has the advantage of a self-embedded synchronization,
an extra system to solve this problem not being needed. Moreover, the
number of membranes and objects we use for the simulation of Boolean
gates is only two. NP-complete problems, particularly CIRCUIT-SAT, are
also considered here. In addition, we simulate a ‘DNA-like’ way of (ex-
perimentally) solving SAT problem using the tools given by polarization,
merging, and separation in P systems.

1 Introduction

P systems are a class of distributed parallel computing devices of a biochemical
type, which can be seen as a general computing architecture where various types
of objects can be processed by various operations.

In membrane computing, P systems with active membranes have a special
place, because they provide biologically inspired tools to solve computationally
hard problems. In [6] the computational power of a class of P systems using
catalytic and non-cooperative inhibiting/de-inhibiting rules was explored, and
in [7] such a controlling mechanism was investigated in the framework of P
systems with active membranes.

Boolean circuits are well-known classical computing devices, which incorpo-
rate features of parallelism. Various possibilities to simulate Boolean circuits by
P systems with promoters/inhibitors, mobile catalysts, and weak priorities for
rules were considered in [8].

In this paper, we propose a model to simulate Boolean circuits by inhibiting/
de-inhibiting P systems with active membranes (AID P Systems). The idea be-
hind the simulation of such a circuit is to construct a global AID P system for the
whole circuit having distributed sub-AID P systems for each gate. The sub-AID
P systems work in a parallel manner producing a unique output as the result of
the computation of the whole system. One can see a correspondence between the
concept of inhibition (which means blocking the execution of a rule in a mem-
brane) and the term switch-off frequently used in the theory of circuits, and
conversely, between de-inhibition and switching on some parts of the circuits.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 272–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Boolean Circuits and a DNA Algorithm in Membrane Computing 273

Using this model to simulate Boolean circuits, we do not need an extra system
to coordinate the entrance of the two inputs in an AND or an OR gate as
presented in [8]. Here, the inputs wait for each other and produce the right
result when the circuit is simulated. We say that the system has a self-embedded
synchronization. As a consequence of the ability of AID P systems to simulate
specific Boolean circuits, we also consider the Boolean CIRCUIT-SAT problem
(which is NP-complete).

The second proposal of this paper is the construction of a ‘DNA-like’ system
for solving SAT problem, following the original idea of Lipton presented in [13],
this time, using the properties of merging and separation operations from mem-
brane computing. The motivation behind this proposal is to create a model as
close as possible to the experimental results on solving the problem mentioned
above by using DNA strands (see [4], [24]). We only say here that the main
idea in such a simulation is to consider the test tubes used in the experiments
as being membranes, and, of course, the DNA-strands contained in such a test
tube as being the objects inside membranes. For a detailed presentation of this
concept we refer the reader to Section 6.

In the following section we will recall some of the notions regarding P systems
with active membranes, Boolean gates, circuits, and the DNA way of solving
SAT we will use in the next sections.

2 Preliminaries

We assume the reader to be familiar with the fundamentals of formal language
theory and complexity theory (e.g., from [17, 25, 23]), as well as with the basics
of membrane computing (e.g., from [20]).

2.1 P Systems with Active Membranes

Informally speaking, in P systems with polarizations and active membranes the
following types of rules are used:

(a) multiset rewriting rules,
(b) rules for introducing objects into membranes,
(c) rules for sending objects out of membranes,
(d) rules for dissolving membranes,
(e) rules for dividing elementary membranes, and
(h) rules for separating membranes, see [2, 19, 22, 15, 16].

The rules of type (a) are applied in a parallel way (all objects which can
evolve by such rules have to evolve), while the rules of types (b), (c), (d), (e),
(g), (h) are used sequentially, in the sense that one membrane can be used by
at most one rule of these types at a time. In total, the rules are used in the non-
deterministic maximally parallel manner: all objects and all membranes which
can evolve, should evolve. Only halting computations give a result, in the form
of the number (or the vector) of objects expelled into the environment during
the computation.

274 M. Ionescu and T.-O. Ishdorj

In this paper we will make use only of some of the mentioned active membranes
rules, so we define P systems with active membranes using only such rules.

A P system with active membranes (and electrical charges) is a construct

Π = (O,H, μ,w1, . . . , wm, R) (1)

where:

– m ≥ 1 (the initial degree of the system);
– O is the alphabet of objects ;
– H is a finite set of labels for membranes;
– μ is a membrane structure, consisting of m membranes, labeled (not neces-

sarily in a one-to-one manner) with elements of H ;
– w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of μ;
– R is a finite set of developmental rules, of the following forms:

(a) [a → v]eh,
for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes, but not directly involving
the membranes, in the sense that the membranes are neither taking part
in the application of these rules nor are they modified by them);

(c) [a]e1
h → []e2

h b,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly
modified during this process; also the polarization of the membrane can
be modified, but not its label);

(g) []e1
h []e2

h → []e3
h ,

for h ∈ H , e1, e2, e3 ∈ {+,−, 0}
(merging rules for elementary membranes; in reaction of two membranes,
they are merged into a single membrane; the objects of the former mem-
branes are put together in the new membrane);

(h) []e1
h → [K]e2

h [¬K]e3
h ,

for h ∈ H , e1, e2, e3 ∈ {+,−, 0}, K ⊆ O
(separation rules for elementary membranes; the contents of membrane
h is split into two membranes, the first one containing all objects from
K and the second one containing all objects which are not in K).

The set H of labels has been specified because it is also possible to allow the
change of membrane labels. For instance, a separation rule can be of the more
general form

(h′) []e1
h1

→ [K]e2
h2

[¬K]e3
h3

,
for h1, h2, h3 ∈ H , e1, e2, e3 ∈ {+,−, 0}.

Boolean Circuits and a DNA Algorithm in Membrane Computing 275

The change of labels can also be considered for other types of rules.
P systems with active membranes without electrical charges were also consid-

ered and investigated (see [2, 3, 1, 12]). Let us consider now some rules of types
without polarizations. They are of the following forms (“no electrical charges”
means “neutral polarization”; as above, O is the alphabet of objects and H is
the set of labels of membranes):

(a0) [a → v]h, where a ∈ O, v ∈ O∗, and h ∈ H ,
(b0) a[]h → [b]h, where a, b ∈ O and h ∈ H ,
(c0) [a]h → []hb, where a, b ∈ O and h ∈ H ,
(g0) []h[]h → []h, where h ∈ H ,
(h0) []h → [K]h[¬K]h, where K ⊆ O and h ∈ H ,
(i0) [[O]h]h → []hO, where h ∈ H .

We recommend the reader unfamiliar with these rules to consult the references
mentioned above for a better understanding of their functionality.

The subscript 0 indicates the fact that we do not use polarization for mem-
branes. When the rules of a given type (α0) are able to change the label(s) of
the involved membranes, we denote that type of rules by (α′

0). For example, the
primed versions of merging and separation rules are of the following forms:

(g′0) []h1 []h2 → []h3 , for h1, h2, h3 ∈ H .
(h′0) []h1 → [K]h2 [¬K]h3 , for h1, h2, h3 ∈ H .

To understand the difference of uniform construction and semi-uniform con-
struction of P systems, we recall some notions about solving decidability prob-
lems in the membrane computing framework.

Given a decision question X , we say that it can be solved in polynomial
(linear) time by recognizing P systems in a uniform way, if, informally speaking,
we can construct in polynomial time a family of recognizing P systemsΠn, n ∈ N,
associated with the sizes n of instancesX(n) of the problem, such that the system
Πn, starting from the code of some Πn, will always stop in a polynomial (linear,
respectively) number of steps, sending out the object yes if the instance X(n)
has a positive answer and the object no if the instance X(n) has a negative
answer.

In [19], the complexity classes related to P systems are defined in the semi-
uniform way: P systems are constructed – in polynomial time – starting not from
the size n, but from an instance X(n). For a clearer description of the difference
between uniform and semi-uniform constructions, the reader is referred to [22].

2.2 Inhibiting/De-inhibiting (AID) P Systems with Active
Membranes

The basic idea of the AID P systems is that, when a rule (acting on the mem-
branes or on the objects) is inhibited, then it cannot be applied until another rule
de-inhibits it. The application of a rule can inhibit other rules (and in particular
may inhibit itself).

276 M. Ionescu and T.-O. Ishdorj

A P system with active membranes and inhibiting/de-inhibiting mechanism, in
short, an AID P system, without electrical charges and without using catalysts,
is a construct

Π = (O,H, I, μ, w1, . . . , wm, R), (2)

where:

– m ≥ 1 is the initial degree of the system;
– O is the alphabet of objects ;
– H is a finite set of labels for membranes;
– I is a finite set of labels for rules;
– μ is a membrane structure, consisting of m membranes, labeled with elements

of H ;
– w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of μ;
– R is a finite set of developmental rules. Here are some examples:
(b0) r : a[]h → [b]h〈S〉, for r ∈ I, h ∈ H, a, b ∈ O,S ⊆ I(communication

rules; an object is introduced in the membrane during this process);
(c0) r : [a]h → []hb〈S〉, for r ∈ I, h ∈ H, a, b ∈ O,S ⊆ I(communication

rules; an object is sent out of the membrane during this process).

The rules in R are written as rj : ¬r 〈S〉 or as rj : r 〈S〉, where rj ∈ I and
r is a rule of types (a0) − (l0) ((k0) indicates replicative-distribution rules, of
the form r : a[]h1 []h2 → [u]h1 [v]h2 , for h1, h2 ∈ H, a ∈ O, u, v ∈ O∗, with
h1, h2 sibling membranes and (l0) indicates rules r : [a[]h1]h2 → [[u]h1]h2v,
for h1, h2 ∈ H, a ∈ O, u, v ∈ O∗ – for nested membranes) from [1, 2, 6]; S is a
string that represents a subset of I.

The AID P systems work like general P systems with active membranes. The
only difference consists in the fact that, in each step, only the non-inhibited
rules can be used. When a rule rj : r 〈S〉 is applied, the rules whose labels
are specified in S are inhibited (if they were de-inhibited) or de-inhibited (if
they were inhibited). Now, starting from an initial configuration, the system
evolves according to the rules and objects present in the membranes, in a non-
deterministic maximally parallel manner, and according to a universal clock.
The system will make a successful computation if and only if it halts, meaning
there is no applicable rule to the objects present in the halting configuration.

The result of a successful computation is the number of objects present in the
output membrane (or in the environment) in a halting configuration of Π . If the
computation never halts, then we will have no output.

2.3 Boolean Functions and Circuits

An n-ary Boolean function is a function

f : {true, false}n → {true, false}; (3)

¬ (negation) is a unary Boolean function (the other unary functions are the con-
stant functions and the identity function). We say that the Boolean expression

Boolean Circuits and a DNA Algorithm in Membrane Computing 277

ϕ with variables x1, . . . , xn expresses the n-ary Boolean function f if, for any
n-tuple of truth values t = (t1, . . . , tn), f(t) is true if T � ϕ, and f(t) is false if
T � ϕ, where T (x) = ti for i = 1, . . . , n.

There are three primary Boolean functions that are widely used:

(1) the NOT function, which takes only one input, and the output is true when
the input is false, and vice-versa.
(2) the AND function – the output of an AND function is true only if all its
inputs are true.
(3) the OR function – the output of an OR function is true if at least one of its
inputs is true.

Both AND and OR can have any number of inputs, with a minimum of two.
Any n-ary Boolean function f can be expressed as a Boolean expression ϕf

involving variables x1, . . . , xn.
There is a potentially more economical way than these expressions for repre-

senting Boolean functions, namely Boolean circuits. A Boolean circuit is a graph
C = (V,E), where the nodes in V = {1, . . . , n} are called the gates of C. The
graph C has a rather special structure. First, there are no cycles in the graph, so
we can assume that all edges are of the form (i, j), where i < j. All nodes in the
graph have in-degree (number of incoming edges) equal to 0, 1, or 2. Moreover,
each gate i ∈ V has a sort s(i) associated with it, where

s(i) ∈ {true, false,∨,∧,¬} ∪ {x1, x2, . . . }.
If s(i) ∈ {true, false}∪ {x1, x2, . . . }, then the in-degree of i is 0, that is, i must
not have any incoming edges. Gates with no incoming edges are called the inputs
of C. If s(i) = ¬, then i has in-degree one. If s(i) ∈ {∨,∧}, then the in-degree of
i must be two. Finally, node n (the largest numbered gate in the circuit, which
necessarily has no outgoing edges) is called the output gate of the circuit.

This concludes our definition of the syntax of circuits. The semantics of
circuits specifies a truth value for each appropriate truth assignment. We let
X(C) be the set of all Boolean variables that appear in the circuit C (that is,
X(C) = {x ∈ X | s(i) = x for some gate i of C}). We say that a truth assign-
ment T is appropriate for C if it is defined for all variables in X(C). Given such
a T , the truth value of gate i ∈ V , T (i), is defined, by induction on i, as follows:

If s(i) = true, then T (i) = true, and similarly if s(i) = false. If s(i) ∈ X , then
T (i) = T (s(i)). If now s(i) = ¬, there is a unique gate j < i such that (j, i) ∈ E.
By induction, we know T (j), and then T (i) is true if T (j) = false, and vice-versa.

If s(i) = ∨, then there are two edges (j, i) and (j′, i) entering i. T (i) is then
true if only if at least one of T (j), T (j′) is true. If s(i) = ∧, then T (i) is true
if only if both T (j) and T (j′) are true, where (j, i) and (j′, i) are the incoming
edges. Finally, the value of the circuit, T (C), is T (n), where n is the output gate.

2.4 Brief Description of Solving SAT in DNA Computing

Lipton’s DNA-based solution of the satisfiability problem [13] uses some of the
basic operations in DNA Computing:

278 M. Ionescu and T.-O. Ishdorj

�
�
��

�
�
�� �

�
��

�
�
�� �

�
��

�
�
�� �

�
��

�
�
�� �

�
��

�
�
�� �

�
��

�
�
��

�
�
��

�
�
���

�
��

�
�
��

�
� �

�

�

�
�

�

�
�

�

�

�

�
�v0 v1 v2 vk−1 vk

a0
1 a0

2 a0
3 a0

k−1 a0
k

a1
1 a1

2 a1
3 a1

k−1 a1
k

Fig. 1. A graph associated with a truth assignment

– merge (given test tubes N1 and N2, we consider their union, understood as
a multiset),

– separate (givenatesttubeN andawordw over thealphabetA,C,T,G,produce
two test tubes +(N,w) and −(N,w), where +(N,w) consists of all strands in N
which containw as a (consecutive substring), while −(N,w) is its negation), and

– detect (given a tube N , return true if N contains at least one DNA strand,
otherwise return false).

We begin with a graphical description of truth assignments. Assume that we
are dealing with a propositional formula containing k variables. Consider the
directed graph depicted in Fig. 1:

There are 2k paths from v0 to vk, none of the paths being Hamiltonian. One can
observe that in each of the vi nodes (i �= k) there are two independent choices (0 or
1). The construction of the graph prevents the (unwanted) possibility of choosing
for the samevariable both 0 and 1 values. Moreover, the paths and the truth assign-
ments for the variables x1, x2, . . . , xk have a natural one-to-one correspondence.

Each vertex of the graph is encoded by a random oligonucleotide of length
20 and an arc between two vertices will be the Watson-Crick complementation
of the last half and the first half of the start and end nodes, respectively. More
precisely, consider the encodings si and sj of two vertices such that there is
an edge ei,j from the former to the latter. If si = s′is

′′
i , where s′i and s′′i have

equal length, and similarly, sj = s′js
′′
j , then the edge ei,j is encoded by the

Watson-Crick complement of s′′i s
′
j .

Now, having encoded all the possible truth assignments with the help of the
operations mentioned above and strictly depending on the clauses given in the
SAT problem, an algorithm (based on separation, merging, and, only in the end,
detection) will select the right solution(s) of the given problem. An example is
presented in Section 6 where we compare the two (DNA and P-based) ways of
solving a particular, simple SAT problem.

3 Simulating Logical Gates

In this section we present AID P systems which simulate logical gates. We will
consider that the input for a gate is given in the inner membrane, while the
output will be computed and sent out to the outer region.

Boolean Circuits and a DNA Algorithm in Membrane Computing 279

3.1 Simulation of AND Gate

Lemma 1. Boolean AND gate can be simulated by AID P systems with rules of
types (b′0) and (c′0), using two membranes and two objects (only the input), in at
most four steps.

Proof. We construct the AID P system

ΠAND = ({0, 1}, {0, 1, s}, {ri | 0 ≤ i ≤ 9}, [[]0]s, λ, λ,R),

with the set R consisting of the following rules:

r1 : [0]0 → []10,
r2 : [0]1 → []0λ〈r2r8〉,
r3 : [1]0 → []11〈r2r4r5r6〉,
r4 : [1]1 → []0λ〈r2r8〉,
r5 : ¬[0]1 → []10〈r5r7〉,
r6 : ¬[1]1 → []1λ〈r4r6r9〉,
r7 : ¬1[]1 → [λ]0〈r4r6r7r8〉,
r8 : ¬[0]s → []s0〈r2r8〉,
r9 : ¬[1]s → []s1〈r2r5r9〉.

Initially, we place the input values x1 and x2 in the membrane with label 0
from the membrane structure. Depending on the value of the initial variables x1
and x2, the rules we apply for each of the four cases are: r1, r2, r8 for 00, r1, r4, r8
for 01, r3, r5, r7, r8 for 10, and r3, r6, r9 for 11.

More precisely, if two symbols 1 are in membrane 0, in the first step, rule r3
is applied, a symbol 1 is expelled and the membrane label is changed to 1. At
the same time, according to the inhibition/de-inhibition concept, rules r2 and
r4 are inhibited, while rules r5 and r6 are de-inhibited and ready to be used.
In the second step we notice that only rule r6 can be applied, thus, object 1,
placed inside membrane labeled 1 is transformed, on its way out, into λ. One
may notice that rule r6, after having been applied, restores the original status of
rules r4 and itself, and also de-inhibits rule r9. In the third step, rule r9 performs
and the right answer 1 is sent out the skin membrane, while rules r2, r5, and r9
come back to their original status.

In other words, after these three steps, our system has sent out of the skin
membrane the right answer (given the input 11) and comes back to its initial
configuration, thus being ready for a new input.

In the case when the input is 01 or 10, we can start by using r1 or r3. Let us
examine the second case. Rule r3 sends 1 out of membrane 0 and changes its la-
bel to 1. At the same time, rules r2 and r4 are inhibited, while rules r5 and r6 are
de-inhibited. The only rule we can use in the second step is r5 which expels 0 out
of membrane 1, inhibits itself and de-inhibits rule r7. In this moment we have the

280 M. Ionescu and T.-O. Ishdorj

following configuration of our system: [[]101]s. We now apply rule r7 which trans-
forms object 1 to λ on its way in the inner membrane and changes its label from 1
to 0. Rule r7 de-inhibits the inhibited rule r4, inhibits r6 and itself, and de-inhibits
rule r8. The fourth step is the one in which the right answer 0 is sent out of the skin
membrane, while the system gets back to its initial configuration.

Thus, our system gives the right answer, in four steps, when we have input
01. In the other two cases (when we have the input 01 and start by using first
the rule r1, or the input is 00) our system performs the rules mentioned above;
the details being left to the reader. �

3.2 Simulation of OR Gate

Lemma 2. A Boolean OR gate with fan-in at most 2 can be simulated by AID P
systems with rules of types (b′0) and (c′0), using two membranes and two objects
(only the input), at most four steps.

Proof. We construct the AID P system

ΠOR = ({0, 1}, {o, 1, s}, {ri | 0 ≤ i ≤ 9}, [[]0]s, λ, λ,R),

with the following set of R of rules:

r1 : [1]0 → []11,
r2 : [1]1 → []0λ〈r2r8〉,
r3 : [0]0 → []10〈r2r4r5r6〉,
r4 : [0]1 → []0λ〈r2r8〉,
r5 : ¬[1]1 → []11〈r5r7〉,
r6 : ¬[0]1 → []1λ〈r4r6r9〉,
r7 : ¬0[]1 → [λ]0〈r4r6r7r8〉,
r8 : ¬[1]s → []s1〈r2r8〉,
r9 : ¬[0]s → []s0〈r2r5r9〉.

As in the case of the AND gate, we place initial values x1 and x2 in the
membrane labeled 0 from the membrane structure. The succession of rules we
apply for each case is (as expected due to the duality of the system) the following:
r3, r6, r9 for 00, r3, r5, r7, r8 for 01, r1, r4, r8 for 10, and r1, r2, r8 for 11.

We only give here the details of the case when x1 and x2 are both 1. Our system
has the following initial configuration: [[11]0]s. As mentioned above, the only
rule we can apply is r1, and our system evolves to the following configuration:
[[1]11]s. The next rule we can apply is r2 through which the object in membrane
1 is transformed into λ and the membrane label changes to 0, the system evolving
to [[]01]s. After having applied rule r2, rule r8 is de-inhibited while rule r2
is inhibited. We now can apply r8, which sends out of the skin membrane the
answer 1 and restores the initial configuration of the system inhibiting rule r8
and de-inhibiting rule r2.

Boolean Circuits and a DNA Algorithm in Membrane Computing 281

We have shown how our systems expels, in three steps, the right answer, given
the input 11.

The details of the behavior of the system in the other three cases are left to
the reader. �

3.3 Simulation of NOT Gate

Lemma 3. A Boolean (unary) NOT gate can be simulated by AID P systems
with rules of type (b0) in one step.

Proof. We construct the AID P system

ΠNOT = ({0, 1}, {s}, {r0, r1}, []s, λ, {r0 : [0]s → []s1, r1 : [1]s → []s0}).

The correct simulation of the NOT gate is obvious. �

4 Simulating Circuits

We give now an example of how to construct a global AID P system which
simulates a Boolean circuit, designed for evaluating a Boolean function, using
the distributed sub-AID P systems in it, namely including ΠAND, ΠOR, and
ΠNOT constructed in the previous section.

4.1 An Example

We take into consideration the same example used in [8], namely we consider
the function f : {0, 1}4 → {0, 1} given by the formula

f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ ¬(x3 ∧ x4).

The corresponding circuit is depicted in Fig. 2 and its assigned membrane
structure in Fig 3; one can see that the circuit has a tree as its underlying
graph, with the leaves as input gates and the root as output gate.

We simulate this circuit with the P system

ΠC = (Π(1)
AND, Π

(2)
AND, Π

(3)
NOT , Π

(4)
OR)

constructed from the distributed sub-AID P systems which work in parallel in
the global P system, and we obtain a unique result in the following way:

1. for every gate of the circuit with inputs from input gates, we have an appro-
priate P system simulating it, with the innermost membrane containing the
input values;

2. for every gate which has at least one input coming as an output of a previous
gate, we construct an appropriate P system to simulate it by embedding in
a membrane the “environments” of the P systems which compute the gates
at the previous level.

282 M. Ionescu and T.-O. Ishdorj

For the particular formula

(x1 ∧ x2) ∨ ¬(x3 ∧ x4)

and the circuit depicted in Figure 2 we will have:

- Π
(1)
AND computes the first AND1 gate (x1 ∧ x2) with inputs x1 and x2.

- Π
(2)
AND computes the second AND2 gate (x3 ∧ x4) with inputs x3 and x4;

these two P systems, Π(1)
AND and Π

(2)
AND, act in parallel.

- Π
(3)
NOT computes the NOT gate ¬(x3∧x4) with input (x3∧x4); while Π(3)

NOT

is working, the output value of the first AND1 gate performs the rules that
can be applied (in Π

(4)
OR) and at a point waits for the second input (namely,

the output of Π(3)
NOT) to come.

- after the second input has entered the inner membrane of the OR gate, the P
system Π

(4)
OR will be able to complete its task; the result of the computation

for the OR gate (which is the result of the global P system), is sent into the
environment of the whole system.

The idea we want to stress here is that, as noticed from the explanations given
above, our system has a self-embedded synchronization. By this we mean that
if either of the gates AND or OR receives only one (part of the) input from an
upper level of the tree, the gate will wait for the other part of the input to come
in order to expel the output. In that way, an extra synchronization system, as
considered in [8], is not needed in AID P Systems.

Based on the previous explanations the following result holds:

Theorem 1. Every Boolean circuit α whose underlying graph structure is a
rooted tree, can be simulated by a P system, Πα, in linear time. Πα is con-
structed from AID P systems of type ΠAND, ΠOR and ΠNOT , by reproducing
the structure of the tree associated to the circuit in the architecture of the mem-
brane structure.

�
�

x1 x2 x3 x4

c1 c2

c4

c3

Fig. 2. Boolean Circuit

Boolean Circuits and a DNA Algorithm in Membrane Computing 283

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

	

�

�

�

�0
s

0

s

s

0

s

�� ��

�

�

�

� �

�

1 0
0

0
1
0

1 1

1 1
0

1
1

0
0 0

�
�
��

�
�
��

� �

�
��

�

�0

s

s

0

s

0

s

Fig. 3. Membrane structure associated with circuit from Fig. 2

Property 1. Any Boolean circuit α, with n gates, can be simulated using at most
2n membranes.

Proof. Let us consider the worst case in which our circuit contains only OR and
AND gates. Then it is obvious that for the individual simulation of these gates
we use 2n membranes (every gate is simulated by using two membranes). In fact,
this coincides exactly with the upper bound stated in the property due to the
embedded synchronization and the fact we do not need additional membranes
in order to simulate it. �

5 CIRCUIT-SAT Efficiency

There is an interesting computational problem related to circuits, CIRCUIT-SAT.
Given a circuit C, is there a truth assignment T appropriate to C such that
T (C) = true? It is easy to show that CIRCUIT-SAT is computationally equivalent
to SAT, and thus presumably very hard.

We can now appeal to a well-known construction to reduce a CIRCUIT-SAT in-
stance to a CNF formula. Given a circuit C, we will construct a CNF formula ϕC

such that there is an assignment to the inputs of C producing an output 1 if and
only if the formula ϕC is satisfiable. The formula ϕC will have n + |C| variables,
where |C| denotes the number of gates inC; ifC acts on inputs x1, . . . , xn and con-
tains gates g1, . . . , g|C|, then ϕC will have variable set {x1, . . . , xn, g1, . . . , g|C|}.
For each gate g ∈ C, we define a set of clauses as follows:

284 M. Ionescu and T.-O. Ishdorj

1. if c = AND(a, b), then add (¬c ∨ a), (¬c ∨ b), (c ∨ ¬a ∨ ¬b);
2. if c = OR(a, b), then add (c ∨ ¬a), (c ∨ ¬b), (¬c ∨ a ∨ b);
3. if c = NOT(a), then add (c ∨ a), (¬c ∨ ¬a).

The formula ϕC is simply the conjunction of all the clauses over all the gates
of C.

We assume below that C consists of gates from a standard complete basis
such as AND, OR, NOT and that each gate has fan-in at most 2. Our results
can easily be generalized to allow other gates (e.g., with a larger fan-in); the
final bounds are interesting as long as the number of clauses per gate and the
maximum fan-in in the circuit have constant upper bounds. Recall that a circuit
C is a directed acyclic graph (DAG).

We define the underlying undirected graph as GC :

Definition 1. Given a circuit C with inputs X = {x1, . . . , xn} and gates S =
{g1, . . . , gs}, let GC = (V,E) be the undirected and unweighted graph with V =
X ∪ S and E = {{x, y} | x is an input to gate y or vice versa}.

Theorem 2. For a circuit C containing gates from {AND, OR, NOT}, the
CIRCUIT-SAT instance for C can be solved by an AID P system.

Proof. We only give a sketch of the proof.
We know that a propositional formula ϕC in CNF is simply the conjunction of

all the clauses over all the gates of C. In our previous example, for the Boolean
circuit considered in Section 4, ϕC is:

ϕC = (¬c1 ∨ x1) ∧ (¬c1 ∨ x2) ∧ (c1 ∨ ¬x1 ∨ ¬x2) ∧
(¬c2 ∨ x3) ∧ (¬c2 ∨ x4) ∧ (c2 ∨ ¬x3 ∨ ¬x4) ∧
(c2 ∨ c3) ∧ (¬c2 ∨ ¬c3) ∧
(¬c1 ∨ c4) ∧ (¬c3 ∨ c4) ∧ (¬c4 ∨ c1 ∨ c3).

There are already known algorithms which solve SAT (written as Boolean
propositional formula in CNF) with P systems with active membranes (see [1,
2, 7, 14, 15, 19]). Then our ϕC can be solved easily following the proof ideas from
these papers.

We have left the technical details of the proof to the reader. �

6 A DNA-Like Proposal to Solve SAT

For a better understanding of the proposed system we start with an example
and then we give the general details.

Let us begin with the example promised in Subsection 2.4, which was first
considered in [13] and later mentioned in [21]. Starting from this example we
will make a connection between the classical DNA way of solving satisfiability
and the ‘DNA-like’ way of solving it with P systems using the tools of merging
and separation of the membranes, and polarizations.

Boolean Circuits and a DNA Algorithm in Membrane Computing 285

�
�
��

�
�
�� �

�
��

�
�
�� �

�
��

�
�
�� �

�
��

�
�
��

�
� �

�

�

�
�vin v1 vout

a0
1 a0

2

a1
1 a1

2

Fig. 4. The graph associated with formula α

Consider the propositional formula
α = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

Thus, we have two variables with the corresponding graph as depicted in Fig. 4.
As mentioned in Section 2.4, each of the four paths through this graph cor-

responds to one of the four truth assignments for the variables x1 and x2. The
core of the procedure of solving SAT with DNA strands is the operation of sep-
aration. Let us denote by N0 the initial test tube which contains all four paths
(strands) from the initial to the final vertex of the graph. If we apply the oper-
ation separate, forming the test tube +(N0, a

1
1), we get those truth assignments

where x1 assumes the value 1 (true).
A truth assignment is denoted by a two-bit sequence in the natural way.

Thus, 01 stands for the assignment x1 = 0, x2 = 1. A similar notation is also
used if there are more than two variables. This simple notation of bit sequences is
extended to the DNA strands resulting from our basic graphs. Thus, the strand
vina

0
1v1a

1
2vout is simply denoted by 01.

Following the idea in [21], by S(N, i, j) we denote the test tube of such strands
in N where the i-th bit equals j, j = 0, 1. Thus, as we observed above, S(N, i, j)
results from N by the operation separate:

S(N, i, j) = +(N, aj
i).

The tube of such strands in N , where the i-th bit equals the complement of j is
also considered:

S−(N, i, j) = −(N, aj
i).

Here is the algorithm of solving SAT for the propositional formula α:

(1) input(N0),
(2) N1 = S(N0, 1, 1),
(3) N ′

1 = S−(N0, 1, 1),
(4) N2 = S(N ′

1, 2, 1),
(5) merge(N1, N2) = N3,

(6) N4 = S(N3, 1, 0),
(7) N ′

4 = S−(N3, 1, 0),
(8) N5 = S(N ′

4, 2, 0),
(9) merge(N4, N5) = N6,

(10) detect(N6).

286 M. Ionescu and T.-O. Ishdorj

The program is based on exhaustive search. The initial tube at step (1) con-
tains all possible truth-assignments. The test tube at step (5) contains the as-
signments satisfying the first clause of the propositional formula α. (Either x1
or x2 must assume the value 1. At step (2) we have those assignments for which
x1 is 1. Of the remaining ones we still take, at step (4), those for which x2 is 1.)
The assignments in this tube, N3, are filtered further to yield at step (9) those
assignments that also satisfy the second clause of the propositional formula α.

Let us now consider the same propositional formula α and solve it using
the new technique we propose here, namely P systems, using polarizations and
separation/merging rules following closely the principle of separation/merging
as above.

We start our computation having in one membrane, labeled (1, 1), all truth
assignments plus the instances of the given problem (α) encoded as follows:

– truth assignments
00 – a0

1,1, a
0
1,2, 01 – a0

2,1, a
1
2,2

10 – a1
3,1, a

0
3,2, 11 – a1

4,1, a
1
4,2

More precisely, a0
1,2 says that first position – (1) in the subscript indicates

the truth-assignment, the second position – (2) indicates the place in the
assignment of the value indicated by the superscript - (0).

– clauses
• (x1 ∨ x2) – x1

1,1, x
1
1,2,

• (¬x1 ∨ ¬x2) – x0
2,1, x

0
2,2.

Here, by x1
1,2 we understand that in the first instance of the formula – (1),

variable x2 (2) is not negated (1).

In the given example, one can imagine 12 objects (given by the sum of the
4 truth assignments (8 objects) and 4 variables of the propositional formula)
of two types, a and x, floating in the membrane labeled (1, 1), but, at any
time, picking any of these objects we can precisely state which is its value and
position/value in the set of string of truth assignments/clauses. In other words,
a more clear image is that of some “strings” of two types floating inside that cell
(membrane), an image very close to the one of the initial test tube N0 having
all truth assignments encoded as we previously saw.

This last image is also very close to the biological image of DNA in an eu-
karyotic cell enclosed in the nuclear envelope through inner nuclear membrane
and outer nuclear membrane.

Coming back to our example, we now want to separate the membrane labeled
(1, 1) having the polarization 1 into two membranes – one containing the truth
assignments which have 1 on the first position (10 and 11, encoded as a1

3,1, a
0
3,2,

and a1
4,1, a

1
4,2, respectively), the variable which is on the first position on the

first clause (namely x1
1,1) and the variables from the other clause (x0

2,1, and
x0

2,2), while the second contains the rest of the truth assignments (00 and 01)
plus the second variable of the first clause (x1

1,2). This step simulates the steps
(2) and (3) from the DNA variant of the example. (Fig. 5 shows how the example
is processed by the two techniques in parallel.)

Boolean Circuits and a DNA Algorithm in Membrane Computing 287

(1) input(N0)
(1P) input membrane labeled 1, 1

(2) N1 = S(N0, 1, 1)
(3) N ′

1 = S−(N0, 1, 1)
(2P) separation of membrane labeled 1, 1

(4) N2 = S(N ′
1, 2, 1)

(3P) separation of membrane labeled 1, 2
(5) merge(N1, N2) = N3

(4P) merge between membranes 1, 1 and 1, 2 to membrane 2, 1
(6) N4 = S(N3, 1, 0)
(7) N ′

4 = S−(N3, 1, 0)
(5P) separation of membrane 2, 1

(8) N5 = S(N ′
4, 2, 0)

(6P) separation of membrane 2, 2
(9) merge(N4, N5) = N6

(7P) merge between membranes 2, 1 and 2, 2 to membrane 3, 1
(10) detect(N6)

(8P) detect if there is at least one solution

Fig. 5. Simulation of DNA (rules (1)-(10)) and DNA-like (rules (1P)-(8P)) models in
parallel

This is done by applying rule r1:

r1 : []11,1 → [X1,1]01,1[X1,2]11,2, where
X1,1 = {11, 10,¬x1,¬x2, x1},
X1,2 = ¬X1,1 = {x2}.

(We remind the reader that in showing our procedure we start from an exam-
ple and only after it we define the general framework).

We continue the computation by separating the membrane labeled (1, 2) with
polarization 1 into two membranes labeled (1, 2) and (1, 3) with polarizations 0
and 1, respectively. The first membrane will contain the truth assignments that
have 0 on the first position and 1 on the second position (so, only 01) plus the
variable x2 from the first clause. The second membrane is the negation of the
above one, thus containing only the truth assignment 00.

A schematic way of solving the problem (by r1 we mean the application of
the general rule r1, etc.) is depicted in Fig. 6.

In the next step, membranes labeled (1, 1) and (1, 2) will merge and form
membrane (2, 1). The rule of merging is given below:

[]01,1[]01,2 → []12,1.

The membrane labeled (2, 1) contains strings 10, 11, 01 plus variables x1, x2,
¬x1, and ¬x2.

288 M. Ionescu and T.-O. Ishdorj

01

x1

00
10

x2

¬x2

11

¬x1

�

�

�

�

10

11
x1
¬x2¬x1

00
01
x2 00

�
��

�
���

�
�

�
��

�
�
�
�� ���� ��
01 x2

�

�

�

�
10

11
01

x1 x2¬x1¬x2

�
�

�
��

�
�
�

x2 ¬x1
01x1

¬x2
11

10 �� �
�� � 10¬x2

11

!
"

#
$x2

10
x1 ¬x1

01

¬x2

�

�
�
���

���
���

���
���

!

"

1,1

1

1,2

1,1

0

1

1,2

1,3

2,10

1

1

2,2

2,1

0

1

2,3

1
2,2

0 3,1

1

r1

r1

r1

r1

r3

r3

Fig. 6. Schematic representation of solving α

In this phase of the computation, our procedure has computed the first clause
of the formula and continues with the second one.

From the membrane labeled (2, 1) we separate, using the rule r1 (applicable
to membrane (2, 1)), those truth assignments which begin with 0 from those
that do not begin with 0. Thus, the membrane labeled 2, 1 (with polarization
0) will contain the truth assignment 01 and the variables x1, x2, and ¬x1, while
membrane labeled (2, 2) will contain the rest of the objects (namely, the truth
assignments 10 and 11 plus the variable ¬x2).

In this step we separate the second membrane produced in the previous step
into two membranes, one (with polarization 0) containing the truth assignments
that have 0 on the second position (so only 10) and variable ¬x2, and the other
one containing only the string 11. We now merge the two last membranes hav-
ing polarization 0 ((2, 1), and (2, 2)), thus completing the seventh step of the
computation.

One can notice that the answer to our particular problem floats into the
membrane labeled (3, 1) (produced by the union of membranes labeled (2, 1)
and (2, 2)). So, now, we are in the stage of detecting the result of our problem.

For detection, we will use the following rules:

r4 : [ak
i,j]

1
3,1 → []13,11

(where ak
i,j ∈ {a0

2,1, a
1
2,2, a

1
3,1, a

0
3,2} is non-deterministically chosen),

r5 : []11,4[]12,4 → []12,4,

r6 : [1]00,0 → []10,0yes.

In the last step of the computation, which is done through rule r6, the correct
answer yes is sent to the environment, meaning that our problem has at least
one solution.

The example we considered here has, as we have seen, at least one solution
to the given problem. In the general case, if there is no solution to the given
problem, the system will expel to the environment the answer no.

The problem with this solution is that we first have to produce 2n truth as-
signments for variables. In membrane computing, this can be done in various
ways – see, e.g., [16], [1], [15] – by using membrane division, separation, etc.

Boolean Circuits and a DNA Algorithm in Membrane Computing 289

However, the respective truth assignments are obtained in 2n separate mem-
branes. By merging operations, we could put together these truth assignments
in a single membrane, but, in order not to “mix” them, we have to encode them
separately. This, however, assumes using an exponential number of objects, and
thus the system itself has exponential size. For the moment, we do not know
how to overcome this difficulty.

7 Final Remarks

In this paper we have introduced a new way of simulating Boolean gates and cir-
cuits, as an answer to a question formulated in [6]: simulate Boolean circuits with
P systems using the inhibiting/de-inhibiting controlling mechanism of computa-
tion, as introduced and investigated in [6, 7]. This idea is very attractive because
apart from using less biological resources (only two objects and two types of
rules for the simulation of Boolean gates) than the previous simulations, we also
proposed a system which has a self-embedded synchronization of the objects in
the circuit without having to coordinate the computation like in other systems.

We have also proposed an approach to solving the SAT problem simulating, in
P systems with active membranes, the way this problem is effectively solved in
laboratories using DNA strands. Technical details of this proposal still remain
to be fixed, but we hope that this is a step ahead in our way to the labora-
tory. In addressing the problem mentioned above we have used polarized/non-
polarized P systems, while membranes are capable of merge/separate, changing
or not-changing their labels. We found very natural to compare (and study the
computational bridge between the) two notions from Natural Computing both
having the tools of merging/separation already defined. Actually, such an at-
tempt was already done in [11], but using different protocols of DNA computing
and different operations with membranes in P systems.

In the end we invite the reader to investigate, using the new tools (uniformly
way of solving SAT, but following Lipton’s algorithm) presented above, other
NP-hard problems, or to try to solve the proposed problem using P systems
with different features.

Acknowledgments. The work of first author was supported by the fellowship
“Formación de Profesorado Universitario” from the Spanish Ministry of Educa-
tion, Culture and Sport. The work of the second author was supported by the
grant 2002CAJAL-BURV4 from Rovira i Virgili University, Spain.

References

1. A. Alhazov, T.-O. Ishdorj: Membrane operations in P systems with active mem-
branes. In Second Brainstorming Week on Membrane Computing (Gh. Păun, A.
Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), Technical report of
Research Group on Natural Computing, University of Seville, TR 01/2004, 37–44.

2. A. Alhazov, L. Pan, Gh. Păun: Trading polarizations for labels in P systems with
active membranes. Acta Informatica, 41, 2-3 (2004), 111–144.

290 M. Ionescu and T.-O. Ishdorj

3. A. Alhazov, L. Pan: Polarizationless P systems with active membranes. Grammars,
7 (2004), 141–159.

4. R.S. Braich, N. Chelyapov, C. Johnson, R.W.K. Rothemund, L. Adleman: Solution
to a 20-variable 3-SAT problem on a DNA computer. Science, 296, 5567 (2002),
499–502

5. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing. Math-
ematical, Computer Science, Molecular Computing Points of View. LNCS 2235,
Springer, Berlin, 2001.

6. M. Cavaliere, M. Ionescu, T.-O. Ishdorj: Inhibiting/de-inhibiting rules in P sys-
tems. In Membrane Computing, International Workshop, WMC5, Milano, Italy,
2004, Selected Papers (G. Mauri, Gh. Păun, M.J. Pérez-Jiḿenez, G. Rozenberg,
A. Salomaa, eds.), LNCS 3365, Springer, Berlin, 2005 224–238

7. M. Cavaliere, M. Ionescu, T.-O. Ishdorj: Inhibiting/de-inhibiting P systems with
active membranes. In Cellular Computing (Complexity Aspects), ESP PESC Ex-
ploratory Workshop, Sevilla, 2005, 117–130

8. R. Ceterchi, D. Sburlan: Simulating Boolean circuits with P systems. Membrane
Computing, International Workshop, WMC 2003, Tarragona, July 2003, Selected
Papers (C. Martin-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds.),
LNCS 2933, Springer, Berlin, 2004 104–122

9. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
Berlin, 1989.

10. M.R. Garey, D.J. Johnson: Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman WH, San Francisco, 1979.

11. T. Head: Aqueous simulations of membrane computations. Romanian Journal of
Information Science and Technology, 5 (2002).

12. M. Ionescu, T.-O. Ishdorj: Replicative–distributed rules in P systems with active
membranes. Proceedings of First International Colloquium on Theoretical Aspects
of Computing, Guiyang, China, September 20-24, 2004 UNU/IIST Report No. 310,
263–278, and LNCS 4705, Springer, Berlin, 2005, 69–84.

13. R.J. Lipton: Using DNA to solve NP-complete problems.Science, 268 (1995), 542–
545.

14. L. Pan, A. Alhazov, T.-O. Ishdorj: Further remarks on P systems with active
membranes, separation, merging and release rules. Soft Computing, 9, 9 (2005),
686–690.

15. L. Pan, T.-O. Ishdorj: P systems with active membranes and separation rules.
Journal of Universal Computer Science, 10, 5 (2004), 630–649.

16. L. Pan, A. Alhazov: Solving HPP and SAT by P systems with active membranes
and separation rules. Submitted, 2005.

17. C.P. Papadimitriou: Computational Complexity. Addison-Wesley, Reading, MA,
1994.

18. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61,1 (2000), 108–143, and TUCS Research Report 208, 1998.

19. Gh. Păun: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

20. Gh. Păun: Membrane Computing: An Introduction. Springer, Berlin, 2002.
21. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing

Paradigms. Springer-Verlag, Berlin, 1998.

Boolean Circuits and a DNA Algorithm in Membrane Computing 291

22. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: Complexity classes
in models of cellular computation with membranes. Natural Computing, 2, 3 (2003),
265–285.

23. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

24. K. Sakamoto, H. Gounzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, M.
Hagiya: Molecular computation by DNA hairpin formation. Science, 288 (2000),
1223–1226.

25. A. Salomaa: Formal Languages. Academic Press, New York, 1973.

Towards a Petri Net Semantics for
Membrane Systems

Jetty H.C.M. Kleijn1, Maciej Koutny2, and Grzegorz Rozenberg1,3

1 LIACS, Leiden University,
P.O. Box 9512, NL-2300 RA Leiden, The Netherlands

{kleijn, rozenber}@liacs.nl
2 School of Computing Science, University of Newcastle,

Newcastle upon Tyne, NE1 7RU, United Kingdom
Maciej.Koutny@ncl.ac.uk

3 Department of Computer Science,
University of Colorado at Boulder, Boulder, CO 80309-0347, USA

Abstract. We consider the modelling of the behaviour of membrane
systems using Petri nets. First, a systematic, structural link is established
between a basic class of membrane systems and Petri nets. To capture
the compartmentisation of membrane systems, localities are proposed as
an extension of Petri nets. This leads to a locally maximal concurrency
semantics for Petri nets. We indicate how processes for these nets could
be defined which should be of use in order to describe what is actually
going on during a computation of a membrane system.

1 Introduction

In the past 7 years membrane systems, also known as P systems, have received
a lot of attention and in the process became a prominent new computational
model [18, 17, 19, 1]. They are inspired by the compartmentisation of living cells
and its effect on their functioning. A key structural notion is that of a mem-
brane by which a system is divided into compartments where chemical reactions
can take place. These reactions transform multisets of objects present in the
compartments into new objects, possibly transferring objects to neighbouring
compartments, including the environment. Consequently, the behavioural as-
pects of membrane systems are based on sets of reaction rules defined for each
compartment. A distinguishing feature of membrane systems is that the system
is assumed to evolve in a synchronous fashion, meaning that there is a global
clock common for all the compartments. Within each time unit, the system is
transformed by the rules which are applied in a maximally concurrent fashion
(this means that no further rules in any compartment could have been applied
in the same time unit). These transformations are applied starting from an ini-
tial distribution of objects. Depending on the exact formalisation of the model,
the notion of a successful (or halting) computation is defined together with its
output, e.g., the number of objects sent to the environment.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 292–309, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards a Petri Net Semantics for Membrane Systems 293

The above describes the functionality of the basic membrane system model,
according to [18, 19]. In addition, many different extensions and modifications of
that basic model have been proposed and studied, such as priorities and cata-
lysts. Moreover, those studies have been mostly focussed on the computational
power of the models considered, including various aspects of complexity.

Given the existing body of results on the possible outcomes of computations
of membrane systems, we feel that we are now in a position to also investigate
and describe what is actually going on during a computation. The situation may
be compared to that in the field of the semantics of programming languages
based on input-output relations where the operational semantics was added to
deal with the correctness of potentially non-terminating and concurrent pro-
grams. In this paper we propose to undertake this endeavour using the Petri
net model (see, e.g., [21]). The reason is that they have local transformation
rules and support the modelling of causality and concurrency in a direct and
explicit way. In a nutshell, a Petri net is a bipartite directed graph consist-
ing of two kinds of nodes, called places and transitions. Places together with
their markings indicate the local availability of resources and thus can be used
to represent objects in specific compartments, whereas transitions are actions
which can occur depending on local conditions related to the availability of re-
sources and thus can be used to represent reaction rules associated with specific
compartments. When a transition occurs it consumes resources from its input
places and produces items in its output places thus mimicking the effect of a
reaction rule.

�

�

�

�

�

�

�

�

m2

m1

a a b b

r : {a, b} → {b, cout}

b b c

r′ : {c, b} → {c, c}

(a) (b)

(a, 1) (b, 1) (c, 1)

(a, 2) (b, 2) (c, 2)

1tr1

2tr
′

2
2

Fig. 1. A membrane system (a), and the corresponding Petri net (b)

The basic idea of modelling a membrane system using a Petri net can be
explained through an example shown in Figure 1(a). The system depicted there
consists of two nested membranes (the inner membrane m1 and the outer mem-
brane m2), two rules (rule r associated with the compartment c1 inside the inner
membrane, and rule r′ associated with the compartment c2 surrounded by m2,

294 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

i.e., in-between the two membranes), and three symbols denoting molecules (a,
b, and c). Initially, the compartment c1 contains two copies of both a and b,
and c2 contains two copies of b and a single copy of c. To model this membrane
system using a Petri net, we introduce a separate place (x, j) for each kind of
molecule x and compartment cj . As usual, places are drawn as circles with the
number of the currently associated resources represented as tokens (small black
dots). For each rule r associated with a compartment ci we introduce a sepa-
rate transition tri , drawn as a rectangle. Transitions are connected to places by
weighted directed arcs, and if no weight is shown it is by default equal to 1. If
the transformation described by a rule r of compartment ci consumes k copies
of molecule x from compartment cj , then we introduce a k weighted arc from
place (x, j) to transition tri , and similarly for molecules produced by transfor-
mations. Finally, assuming that initially compartment cj contained n copies of
molecule x, we introduce n tokens into place (x, j). The resulting Petri net is
depicted in Figure 1(b). As argued later on, Petri nets derived in this way can
be used to describe issues related to concurrency in the behaviour of the original
membrane systems.

Applying Petri nets to model membrane systems is by no means an original
idea. Since multiset calculus is basic for membrane systems and also for comput-
ing the token distribution in Petri nets [3], some connections have already been
established. Some authors have in fact already proposed to interpret reaction
rules of membrane systems using Petri net transitions, e.g., [5, 20]. Our aim is
to demonstrate that a relationship between Petri nets and membrane systems
can be established at the system level. We achieve this by defining a class of
Petri nets suitable for the study of behavioural aspects of membrane systems
and other systems exhibiting a mix of synchronous and asynchronous execution
rules. This latter feature is motivated by the observation that the assumed strict
global synchronicity of the membrane systems is not always reasonable from
the biological point of view as already observed in [18]. In fact, [8] proposes to
drop this assumption completely and considers fully asynchronous and sequen-
tial membrane systems; also the membrane systems of [5] are sequential, whereas
[4] advocates that reactions are assigned their own execution times and uses a
form of local synchronicity.

We intend to demonstrate that Petri nets obtained from membrane systems
in the way described above provide a suitable model to capture and investi-
gate the behavioural properties of membrane systems. In this sense the paper
is more directed towards the computations taking place in membrane systems.
After recalling the definition of membrane systems, we introduce a general class
of Petri nets which can be used to define their formal concurrency semantics.
This concurrency semantics will be built upon a well established technique of
unfolding Petri nets, leading to processes which formalise concurrent execution
histories. The paper deliberately avoids going into full technical details of the
formal presentation, aiming instead at conveying the basic ideas of our proposal.
Most of the formalities and proofs are delegated to the companion paper [14].

Towards a Petri Net Semantics for Membrane Systems 295

In this paper, a multiset (over a set X) is a function m : X → N. By NX

we denote the set of multisets over X . For two multisets m and m′ over X ,
we denote m ≤ m′ if m(x) ≤ m′(x) for all x ∈ X . Moreover, a subset of X
may be viewed through its characteristic function as a multiset over X , and
for a multiset m we denote x ∈ m if m(x) ≥ 1. The sum of two multisets
m and m′ over X is given by (m + m′)(x) df= m(x) + m′(x), the difference by
(m−m′)(x) df= max{0,m(x)−m′(x)}, as a total function extending set difference.
The multiplication of m by a natural number n is given by (n ·m)(x) df= n ·m(x).
Moreover, any finite sum m1 + · · · + mk will also be denoted as

∑
i∈{1,...,k} mi.

2 Basic Membrane Systems

For the purposes of this paper, it suffices to consider the most basic definition
of membrane systems [17, 19]. Throughout the paper a membrane system (of
degree m ≥ 1) is a construct

Π
df= (V, μ, w0

1 , . . . , w
0
m, R1, . . . , Rm),

where:

– V is a finite alphabet consisting of (names of) objects;
– μ is a membrane structure given by a rooted tree with m nodes, representing

the membranes, as illustrated in Figure 2 – without loss of generality, we
assume that the nodes are given as the integers 1, . . . ,m, and (i, j) ∈ μ will
mean that there is an edge from i (parent) to j (child) in the tree of μ;

– each w0
i is a multiset of objects initially associated with membrane i;

– each Ri is a finite set of evolution rules r associated with membrane i, of
the form

lhsr → rhsr,

where lhsr — the left hand side of r – is a non-empty multiset over V , and
rhsr — the right hand side of r – is a non-empty multiset over

V ∪ {aout | a ∈ V } ∪ {ainj
| a ∈ V and (i, j) ∈ μ}.

Symbols ainj
represent objects a that will be sent to a child node j and aout

stands for an a that will be sent out to the parent node. Without loss of gener-
ality,1 we additionally assume that no evolution rule r associated with the root
of the membrane structure uses any aout in rhsr.

A membrane system Π as above evolves from configuration to configuration
as a consequence of the application of (multisets of) evolution rules in each
membrane. Formally, a configuration is a tuple C

df= (w1, . . . , wm) where each
wi is a multiset of object names; we define a vector multi-rule R as an element
of NR1 × · · · × NRm . Given a vector multi-rule R = (R̂1, . . . , R̂m), we use as
1 Since the environment can always be modelled by adding a new root to the membrane

structure.

296 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

(a)

1

2 3 4

5 6

�

�

�

�

�
�

�
��

�
�
�

�

�

�

�

�
�

�
	�

�
�
	

1
2

4

3

5

6

(b)

Fig. 2. A membrane structure (a); and the corresponding compartments (b)

additional notation lhsi =
∑

r∈Ri
R̂i(r) · lhsr for the multiset of all objects in

the left hand sides of the rules in R̂i and, similarly, rhsi =
∑

r∈Ri
R̂i(r) · rhsr is

the multiset of all — possibly indexed — objects in the right hand sides.
Given two configurations, C = (w1, . . . , wm) and C′ = (w′

1, . . . , w
′
m), C can

evolve into C′ if there exists a vector multi-rule R = (R̂1, . . . , R̂m) such that for
every 1 ≤ i ≤ m, the following hold

(i) lhsi ≤ wi;
(ii) there is no rule r in Ri such that lhsr + lhsi ≤ wi; and
(iii) for each object a ∈ V ,

w′
i(a) = wi(a) − lhsi(a) + rhsi(a) + rhsparent(i)(aini

) +
∑

(i,j)∈μ

rhsj(aout),

where parent(i) is the father membrane of i unless i is the root in which
case parent(i) is undefined and rhsparent(i)(aini

) is omitted. Note that any
j in the last term must be a child membrane of i.

By (i), the configuration C has in each membrane i enough occurrences of objects
for the application of the multiset of evolution rules R̂i. Maximal concurrency
is captured by (ii) according to which in none of the membranes an additional
evolution rule can be applied. Observe that some of the R̂i’s in R may be empty
i.e., no evolution rules associated with the corresponding membranes i can be
used. Finally, (iii) describes the effect of the application of the rules in R.

By C
R=⇒ C′ we denote that C evolves into C′ due to the application of R.

Note that the evolution of C is non-deterministic in the sense that there may
be different vector multi-rules applicable to C as described above. A (finite)
computation of Π is now a (finite) sequence of evolutions starting from the
initial configuration C0

df= (w0
1 , . . . , w

0
m).

Towards a Petri Net Semantics for Membrane Systems 297

3 Petri Nets

We first recall the key notions of the standard Petri net model. A PT-net is
a tuple N df= (P, T,W,M0) such that P and T are finite disjoint sets; W :
(T ×P)∪(P×T) → N is a multiset; and M0 is a multiset of places. The elements
of P and T are respectively the places and transitions, W is the weight function
of N , and M0 is the initial marking. In diagrams, places are drawn as circles,
and transitions as rectangles. If W (x, y) ≥ 1 for some (x, y) ∈ (T ×P)∪ (P ×T),
then (x, y) is an arc leading from x to y. As usual, arcs are annotated with their
weight if this is 2 or more. We assume that, for every t ∈ T , there are places p
and q such that W (p, t) ≥ 1 and W (t, q) ≥ 1.

Places represent local states, while markings are global states of systems
represented by PT-nets. Transitions represent actions which may occur at a
given marking and then lead to a new marking (the weight function speci-
fies what resources are consumed and produced during the execution of such
actions).

Figure 3 shows a PT-net model of a simple one-producer / two-consumers
concurrent system, where the producer is represented by the initial token in
place p and the consumers by the two tokens in place r. Using transition a,
the producer repeatedly produces new items (tokens) and adds them to place q
(intuitively, a buffer between the producer and the two consumers) from where
they can be taken by one of the two consumers, and then used by executing
transition u. Rather than producing a new item, the producer may at any time
cancel the production cycle by executing transition c.

v p r

s

q
c a t u

Fig. 3. PT-net of the one-producer / two-consumers system

The pre- and post-multiset of a transition t ∈ T are multisets of places given,
for all p ∈ P , by:

preN (t)(p) df= W (p, t) and postN (t)(p) df= W (t, p).

Both notations extend to multisets of transitions U :

preN (U) df=
∑
t∈U

U(t) · preN (t) and postN (U) df=
∑
t∈U

U(t) · postN (t).

A step is a multiset of transitions, U : T → N. It is enabled at a marking M
if M ≥ preN (U). We denote this by M [U〉. Thus, in order for U to be enabled
at M , for each place p, the number of tokens in p under M should at least be

298 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

equal to the total number of tokens that are needed as an input to U , respecting
the weights of the input arcs. Moreover, U is a maximal step at M if M [U〉 and
there is no transition t such that M [U + {t}〉.

If U is enabled at M , then it can be executed leading to the marking M ′ df=
M−preN (U)+postN (U). This means that the execution of U ‘consumes’ from
each place p exactly W (p, t) tokens for each occurrence of a transition t ∈ U that
has p as an input place, and ‘produces’ in each place p exactly W (t, p) tokens for
each occurrence of a transition t ∈ U with p as an output place. If the execution
of U leads from M to M ′ we write M [U〉M ′. Whenever U is a maximal step
at M , we will also write M [U〉maxM

′.
A finite sequence σ = U1 . . . Un of non-empty steps is a step sequence from the

initial marking M0 if there are markings M1 . . .Mn of N satisfying Mi−1[Ui〉Mi

for every i ≤ n. Such a σ is also called a step sequence from M0 to Mn, and Mn

itself is called a reachable marking.
In the same way, we can define step sequences consisting of maximal steps,

and markings reachable through such step sequences. Together, they define the
maximal concurrency semantics of the PT-net N as considered, for instance,
in [11].

The example PT-net in Figure 3 admits an infinite number of step sequences.
For example, σ = {a}{t, a}{u, t} models the following scenario: (i) the pro-
ducer produces an item which is then deposited into the buffer; (ii) the producer
produces another item and, at the same time, one of the consumers takes the pre-
viously produced item from the buffer; and (iii) the consumer who retrieved the
first item produced uses it and, at the same time, the second consumer removes
the second item produced from the buffer. In Figure 4 we show how this scenario
changes the current marking (global state) of the PT-net. As far as the maximal
concurrency semantics is concerned, σ = {a}{t, a}{u, t} is not allowed: though
the first two steps executed are maximal, {u, t} is not since, for instance, the step
{a, u, t} is enabled after the execution of {a}{t, a}, and σ′ = {a}{t, a}{a, u, t}
rather than σ is part of the maximal concurrency semantics of the PT-net in
Figure 3.

3.1 Petri Nets with Localities

In order to represent the compartmentisation of membrane systems we now in-
troduce a novel extension of the basic net model of PT-nets, by adding the notion
of located transitions and locally maximally concurrent executions of co-located
transitions. In the proposed way of specifying locality for the transitions in a
PT-net, each transition belongs to a fixed unique locality. The exact mechanism
for achieving this is to introduce a partition of the set of all transitions, using
a locality mapping L. Intuitively, two transitions for which L returns the same
value will be co-located.

A PT-net with localities (or PTL-net) is a tuple NL df= (P, T,W,M0,L), where
und(NL) df= (P, T,W,M0) is the underlying PT-net and L : T → N is a location
mapping for the transition set T . In the diagrams of PTL-nets, transitions are

Towards a Petri Net Semantics for Membrane Systems 299

i
n
i
t
i
a
l

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v p r

s

q
c a t u

a
f
t
e
r
{a}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v p r

s

q
c a t u

a
f
t
e
r
{a}{t, a}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v p r

s

q
c a t u

a
f
t
e
r
{a}{t, a}{u, t}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v p r

s

q
c a t u

Fig. 4. Executing the PT-net according to {a}{t, a}{u, t}

shaded rectangles with the locality being shown in the middle. Note that L is
merely a labelling of transitions, it is not meant as a renaming (as used later for
occurrence nets).

The two execution semantics already defined for PT-nets carry over to PTL-
nets, after assuming that all the notations concerning the places and transitions
of a PTL-net are as in the underlying PT-net, together with the notions of
marking, (maximal) step and the result of executing a step.

3.2 Membrane Systems as Petri Nets

In this section, we make our proposal on how membrane systems can be inter-
preted by Petri nets more precise. Given the definitions of membrane systems
and Petri nets with localities, the construction sketched in the introduction can
be implemented as follows.

300 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

Let Π = (V, μ, w0
1 , . . . , w

0
m, R1, . . . , Rm) be a membrane system of degree m.

Then the corresponding PTL-net is NLΠ
df= (P, T,W,M0,L) where the various

components are defined thus:

– P
df= V × {1, . . . ,m};

– T
df= T1 ∪ . . . ∪ Tm where each Ti contains a distinct transition tri for every

evolution rule r ∈ Ri;
– for every place p = (a, j) ∈ P and every transition t = tri ∈ T ,

W (p, t) df=
{
lhsr(a) if i = j,
0 otherwise,

W (t, p) df=

⎧⎪⎪⎨⎪⎪⎩
rhsr(a) if i = j,
rhsr(aout) if (j, i) ∈ μ,
rhsr(ainj

) if (i, j) ∈ μ,
0 otherwise;

– for every place p = (a, j) ∈ P , its initial marking is M0(p)
df= wj(a);.

– for every transition t = tri ∈ T , its locality is L(t) df= i.

To capture the very tight correspondence between the membrane system Π
and the PTL-net NLΠ , we introduce a straightforward bijection between con-
figurations of Π and markings of NLΠ , based on the correspondence of object
locations and places.

Let C = (w1, . . . , wm) be a configuration of Π . Then the corresponding mark-
ing φ(C) of NLΠ is given by φ(C)(a, i) df= wi(a), for every place (a, i) of NLΠ .
Similarly, for any vector multi-rule R = (R̂1, . . . , R̂m) of Π , we define a multiset
ψ(R) of transitions of NLΠ such that ψ(R)(tri)

df= R̂i(r) for every tri ∈ T . It is
clear that φ is a bijection from the configurations of Π to the markings of NLΠ ,
and that ψ is a bijection from vector multi-rules of Π to steps of NLΠ .

It should be clear that not every PTL-net can be obtained from a membrane
system using the transformation described above. For example, in any net NLΠ ,
two transitions sharing an input place will always have the same locality assigned
by L.

We now can formulate a fundamental property concerning the relationship
between the dynamics of the membrane system Π and that of the corresponding
PTL-net:

C
R=⇒ C′ if and only if φ(C) [ψ(R)〉max φ(C′).

Since the initial configuration of Π corresponds through φ to the initial mark-
ing of NLΠ , the above immediately implies that the computations of Π coincide
with the maximal concurrency semantics of the PTL net NLΠ .

The reader might by now have observed that the membrane structure of Π is
used in the definitions of the static structure of the PTL-net NLΠ (i.e., in the
definitions of places, transitions and the weight function), but as far as maximal

Towards a Petri Net Semantics for Membrane Systems 301

concurrency semantics is concerned, the locality information for transitions in
the form of the mapping L of NLΠ is not relevant (the structure of Petri nets
explicitly supports the locality aspects of the resources consumed and produced
by transitions). However, it allows us to define local synchronicity presented
next.

3.3 Locally Maximal Concurrency Semantics of PTL-Nets

Consider the PTL-model of the producer/consumer example as depicted in
Figure 5. It conveys, in particular, the information that transitions a and c
are assigned one locality, whereas transitions t and u are assigned another lo-
cality. This reflects the view that the producer operates away from the two
consumers.

To define a right semantical model reflecting this distribution of computing
agents, we need to change the enabling condition for steps. Now, intuitively,
only those steps are allowed to occur which are maximally concurrent within the
localities given by L.

In a PTL-net NL = (P, T,W,M0,L), a step U : T → N is locally max-
enabled at a marking M if it is enabled at M in und(NL) and, in addition,
there is no transition t such that L(t) ∈ L(U) and U+{t} is still enabled at
M in und(NL). Thus a step which is locally max-enabled at a marking is not
necessarily a maximal step at that marking. The induced notions of a locally
maximal step sequence and marking reachability are then defined as usual using
the just defined notion of enabledness.

We now can look at the impact the various definitions of enabledness have
on the set of legal behaviours of a Petri net. Looking at the PT-net N in Fig-
ure 3 and PTL-net NL in Figure 5, we can observe the following. First of all,
the step sequence {a}{t, a}{u, t}, which was possible for N , is a legal behaviour
of NL under the locally maximal concurrency semantics as are many others,
like {a}{a}{a} and {a}{a}{t, t}. (Recall here that {a}{t, a}{u, t} was disal-
lowed by the maximal concurrency semantics.) However, there are also step
sequences of N which are not part of the locally maximal concurrency semantics
of NL; e.g., σ = {a}{t, a}{t} since after executing {a}{t, a} it is possible to
execute step {u, t} which is strictly greater than {t} and transitions t and u are
co-located.

Coming back to the example shown in Figure 1(b), we have the following
step sequences in the maximal concurrency semantics: the empty sequence,

v p r

s

q
1

c
1a 2 t 2 u

Fig. 5. PTL-net of the one-producer / two-consumers system

302 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

{tr1, tr1, tr
′

2 } and {tr1, tr1, tr
′

2 }{tr′
2 }. The locally maximal concurrency semantics, on

the other hand, yields several additional step sequences, like {tr1, tr1}{tr
′

2 , t
r′
2 } and

{tr′
2 }{tr1, tr1}{tr

′
2 }. Note further that it does not allow {tr1, tr1}{tr

′
2 } which, in turn,

is allowed by the standard step sequence semantics.
To summarise, PT-nets admit both standard and maximal concurrency se-

mantics, while for PTL-nets we have in addition locally maximal concurrency
semantics. In particular, this means that we cannot identify the exact semanti-
cal model just by looking at a net’s structure; we always need to specify which
execution semantics is being used.

4 Causality and Concurrency

All three variants of step sequence semantics of a Petri net considered in this
paper provide important insights into the concurrency aspects of the underlying
systems. They are, however, still sequential in nature in the sense that steps occur
ordered thus obscuring the true causal relationships between the occurrences of
transitions. On the other hand, information on causal relationship is often of
high importance for system analysis and/or design. Petri nets can easily support
a formal approach where this information is readily available as was recognised a
long time ago, see [16] where it was proposed to unfold behaviours into structures
allowing an explicit representation of causality, conflict and concurrency. A well-
established way of developing such a semantics for the standard PT-nets is based
on a class of acyclic Petri nets, called occurrence nets [22]. What one essentially
tries to achieve is to trace the changes of markings due to transitions being
executed along some legal behaviour of the original PT-net, and in doing so
record which resources were consumed and produced.

In this section, we first explain the main ideas behind the causality semantics
based on standard step sequences of PT-nets. After that, we show how this ap-
proach could be adapted to work for the locally maximal concurrency semantics
of PTL-nets. Note that the maximal concurrency semantics of a PT-net coincides
with the locally maximal concurrency semantics of this PT-net after extending
it to a PTL-net with all transitions mapped to the same locality; hence we will
only consider explicitly the locally maximal concurrency semantics.

4.1 Causal Behaviours of PT-Nets

Looking at the sequence σ = {a}{t, a}{u, t} of executions in Figure 4, it is not
immediate that transition u could have occurred before the second occurrence
of transition a or, in other words, that the former is not causally dependent on
the latter.

Figure 6 illustrates the idea in which we unfold the scenario represented by σ.
The initial stage shows just the initial marking which includes two separate
(labelled) conditions (this is how places are called in occurrence nets) to rep-
resent the two initial tokens in place r. Executing step {a} consumes the p-
condition, creates an a-event (this is how transitions are called in occurrence

Towards a Petri Net Semantics for Membrane Systems 303

i
n
i
t
i
a
l

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r

p

r

a
f
t
e
r
{a}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r

p

r

q

p
a

a
f
t
e
r
{a}{t, a}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r

p

r

q

p

s

p

q
a

t

a

a
f
t
e
r
{a}{t, a}{u, t}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r

p

r

q

p

s

p

q

r

s
a

t

a

u

t

Fig. 6. Constructing an occurrence net corresponding to {a}{t, a}{u, t}

nets), as well as two new conditions: a p-condition and a q-condition. An im-
portant point is to notice that we create a fresh p-condition rather than a loop
back to the initial one since we want to distinguish between different occurrences
of the same token; as a result the occurrence net being constructed will be an
acyclic graph. Another important point is that the environment of the gener-
ated a-event corresponds exactly to the environment of transition a; namely, it
consumes a p-token and creates a p-token and a q-token. After that, executing
step {t, a} consists in consuming three conditions and creating two events and
three fresh conditions, and similarly for the last step {u, t}. And, as a final re-
sult, we obtain an acyclic net labelled with places and transitions of the original
PT-net; it is called a process of the original PT-net. The process net has a de-
fault initial marking consisting of a token in each of the conditions without an
incoming arc.

304 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

It is now possible to look both at the structure of the process net and the
executions which are possible from its default initial marking, making some
important observations relating to:

– Causality. The causality relationships among the executed transitions can
be read-off by following directed paths between the events; for example in
Figure 6, the lower t-event is caused by both a-events, while the upper one
is caused only by the leftmost a-event.

– Concurrency. Events for which there is no directed path from one to another
can be thought of as concurrent.

– Reachability. Any maximal set of conditions for which there is no directed
path from one condition to another corresponds to a reachable marking of
the original PT-net.

– Representation. The step sequence on the basis of which the process was
created can be executed from the initial default marking in the occurrence
net. So the original behaviour has been retained. In Figure 6, there are
13 different step sequences generated by the process net defined by σ =
{a}{t, a}{u, t}, including σ itself.

– Soundness. Any step sequence which can be executed from the default initial
marking to the default final marking (consisting of tokens placed in each of
the conditions without an outgoing arc) of the process net is also a legal
step sequence of the original PT-net. Processes provide a highly compressed
representation of step sequence behaviours of the original PT-net (this fea-
ture has been exploited to a significant degree in the development of efficient
model checking algorithms for PT-nets).

The above observations on the process nets of the standard PT-nets lead us
to consider a similar treatment for the PTL-net model and their locally maximal
concurrency semantics.

4.2 Causal Behaviours of PTL-Nets

As a first attempt, we simply adopt the unfolding strategy as in the PT-net
case. We only ensure that the step sequence consists of (locally) maximal steps.
Moreover, we preserve the localities of the transitions in the events created while
constructing the occurrence net. Figure 7 shows the result for the PTL-net of
Figure 5 and the step sequence {a}{t, a} which is allowed in the maximal and
thus also in the locally maximal concurrency semantics (both the occurrence net
and its default initial marking are depicted). Although this is straightforward,
we still need an argument that the resulting process is what one would want to
take for further analyses. In particular, one would want to retain the soundness
of the previous construction. In the case of our example, we can execute the
occurrence net and conclude that under the maximal rule it admits the original
sequence, whereas under the locally maximal rule it admits two more step se-
quences, {a}{t}{a} and {a}{a}{t}. Clearly {a}{t}{a} is a legal step sequence
of the original PTL-net in the locally maximal concurrency semantics. However
{a}{a}{t} is not, since after {a}{a}, two occurrences of t are enabled (due to

Towards a Petri Net Semantics for Membrane Systems 305

(a)

r

p

r

q

p

s

p

q

1

a

2

t

1

a

(b)

1

a

2

t

1

a

Fig. 7. Process net corresponding to the step sequence {a}{t, a} (a); and its default
initial marking (b)

(a)

1

t

2

u

2

v

2

w

2

x

2

z
(b)

1

t

2

u

2

v

2

w

2

z
(c)

1

t

2

u

2

v

2

w

2

2

z

Fig. 8. PTL-net (a); an occurrence net constructed from step sequence {t, u, v}{w, z}
(b); and a barbed process (c)

auto-concurrency). Thus, in general it would be too hasty to accept the standard
unfolding routine as satisfactory since information on (additional) enabledness
may be lost.

Consider, for example, the PTL-net in Figure 8(a) and its step sequence
{t, u, v}{w, z} consisting of locally maximal steps. Proceeding as in the previous
case, we obtain an occurrence net shown in Figure 8(b). Now the problem is that
it has an execution from the default initial marking (using only locally maximal
steps) which corresponds to {u, v}{t, z}{w}. This step sequence, however, is not
a locally maximal step sequence of the original PTL-net as in the second step it
is possible to add transition x which is co-located with transition z.

An intuitive reason why the standard construction fails to work for the PTL-
net in Figure 8(a) is that such an unfolding ‘forgets’ that transition x was enabled
at a stage where transition w was selected. Then, delaying the execution of the
w-event, creates a situation where the executed step (though locally maximal
within the occurrence net since the knowledge of the enabledness of x is lost)
does not correspond to a locally maximal step within the PTL-net.

Our approach to cope with these problems in [14] is to equip occurrence
nets generated by PTL-nets with additional barb-events, represented by darkly
shaded rectangles. Barb-events are not labelled with transition names and are
not meant to be executed; rather, they are used in the calculation of the enabled
sets of events. Such occurrence nets are called barbed processes. Rather than

306 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

providing a full formal definition of how barb-events are added during the un-
folding procedure, which we give in the companion paper [14], we only mention
here that it is based on checking for the existence of locally newly enabled tran-
sitions not (yet) included in the executed scenario, e.g., since another co-located
transition was selected. Figure 8(c) illustrates the modified construction for the
net in Figure 8(a,b).

After executing {u, v}, it is now impossible to select {t, z} since there is a
record in the form of the barb-event that such a step would not be maximal in the
locality to which transition {z} belongs. The only way of continuing is to execute
{t} and after that {z, w}, generating a legal step sequence {u, v}{t}{z, w}.

Finally, we return to the example shown in figure 7. Recall that for this
occurrence net we can execute under the maximal rule {a}{a}{t}, which is not
a legal step sequence of the original PTL-net in the locally maximal concurrency
semantics. Using barb-events this is no longer the case as the barbed process will
contain a barb-event with locality 2 and two inputs: the bottom r-condition and
the bottom q-condition. As a result, one cannot execute a single t after {a}{a}
under the locally maximal rule.

5 Summary and Conclusions

In this paper we have proposed an approach to the modelling of the behaviour
of membrane systems through a class of Petri nets with localities (PTL-nets).

We gave first a formal translation for a basic class of membrane systems, and
argued that the structure of the (maximally concurrent) computations of such
membrane systems is faithfully reflected by the maximal concurrency semantics
of the corresponding PTL-nets. This corresponds to the situation whereby all
the rules are governed by a single global clock which corresponds to the case of
maximally concurrent executions, as investigated in [11]. Hence the results on the
reachability of certain markings (or, equivalently, configurations in membrane
systems) developed there could form the basis of an investigation, e.g., whether
a particular combination of molecules in certain compartments can happen in
the legal evolutions of a membrane system.

After that we moved to a less centralised view of concurrent executions, as
already advocated e.g., in [8], and defined a locally maximal concurrency seman-
tics for PTL-nets. However, in case of individual localities for all transitions, we
are not exactly dealing with the asynchronous or sequential systems, proposed
by [8]. Since we maintain the requirement of locally maximal concurrency exe-
cutions, the resulting systems exhibit maximal autoconcurrency.

In the model of PTL-nets there are no additional requirements on the relation-
ship between transitions and their localities; in particular, as already mentioned,
transitions with shared input places do not have to be co-located. Moreover,
the flow of resources among the localities does not necessarily follow a tree-like
structure. In fact, PTL-nets with their locally maximal concurrency semantics
constitute a very general framework in which membrane systems and even con-
glomerates of membrane systems (organisms) can be expressed and studied.

Towards a Petri Net Semantics for Membrane Systems 307

An important feature characterising the proposed basic PTL-net model is its
robustness, in the sense of being easily extendable to handle salient features
of more sophisticated membrane systems. Examples of such features are: (i)
priorities among rules which can be dealt with using Petri nets with priorities,
e.g., as in [2]; (ii) catalysts governing the enabling of the reaction rules purely by
their presence which can be dealt with using Petri nets with read arcs, e.g., as
in [24]; (iii) substances forbidding certain reactions which can be dealt with using
Petri nets with inhibitor arcs, e.g., as in [13]; and (iv) dissolution of membranes
which can be dealt with using Petri nets with transfer arcs; e.g., as in [23, 6].
We could also consider membrane systems with rules having variable discrete
durations, by suitably exploiting the locally maximal concurrency semantics of
PTL-nets. Further investigation is also needed into the relationship between
various P systems and a wide variety of restricted/extended Petri nets, such
as [9, 10].

We finally outlined how a causality based semantics of PTL-nets could be
defined and used to analyse the intricate details of concurrent computations of
membrane systems. The proposed semantics is based on the unfolding of PTL-
nets with the novel feature of barb-events needed to reflect choices in the locally
maximal executions. Among the potential benefits of the proposed unfolding-
based semantics is the efficient model checking approach to the verification of
properties of concurrent systems modelled as Petri nets [7, 15, 12].

Summarising, we have developed a new systematic link between Petri nets
and membrane systems which (hopefully) is useful for both areas. We see this
formalisation only as a beginning of the research into the representation of the
behaviour of membrane systems through concurrent processes.

Clearly, one could simply use the basic model of PT-nets and simulate by
‘brute force’ the behaviour of membrane systems. In general, however, a biolo-
gist’s interest will be in how a system functions and not just in what is delivered
at the end. From the modelling point of view it is therefore more convenient to
include localities as a direct interpretation of ‘where is what’. This also provides
the possibility to introduce a notion of local synchronicity as opposed to a global
clock governing the evolution of a system. The process semantics of PT-nets pro-
vides an additional formal tool to study how a system functions rather than what
it computes. Whereas step sequences can be viewed as ordered by a clock, pro-
cesses can be used to represent causalities. Moreover using (infinite) processes,
also ongoing (potentially infinite) system behaviour can be investigated, which
is also interesting from a biological point of view.

For PT-nets the notion of locality inspired by membrane systems is a new
interesting feature. The process semantics for PTL-nets working under the (lo-
cally) maximal concurrency semantics still has to be developed. In this paper we
have briefly indicated how the technical problems could be solved. In addition, a
proper notion of causality (order relation) based on processes (see the semantical
scheme of [13]) and relevant for the biologically motivated membrane systems
has to be identified as well.

308 J.H.C.M. Kleijn, M. Koutny, and G. Rozenberg

Acknowledgments. The authors are grateful to Hendrik Jan Hoogeboom for
his comments on an earlier version of this paper. We would also like to thank
the anonymous referees for their constructive comments. This research was sup-
ported by the Epsrc project Casino.

References

1. Membrane systems web page: http://psystems.disco.unimib.it/
2. E. Best, M. Koutny: Petri net semantics of priority systems. Theoretical Computer

Science, 96 (1992), 175–215.
3. C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing.

Mathematical, Computer Science, and Molecular Computing Points of View. LNCS
2235, Springer, Berlin, 2001.

4. M. Cavaliere, D. Sburlan: Time-independent P systems. In Membrane Computing,
International Workshop, WMC5, Milano, Italy, 2004, Selected Papers (G. Mauri
et al., eds.), LNCS 3365, Springer, Berlin, 2005, 239–258.

5. DS. al Zilio, E. Formenti: On the dynamics of PB systems: a Petri net view. In Mem-
brane Computing, International Workshop, WMC 2003, Tarragona, July 2003, Se-
lected Papers (C. Martin-Vide et al., eds.) , LNCS 2933, Springer-Verlag, Berlin,
2004, 153–167.

6. C. Dufourd: Réseaux de Petri avec Reset/Transfert: Décidabilité et Indécidabilité.
PhD Thesis, ENS Cachan, 1998.

7. J. Esparza, S. Römer, W. Vogler: An improvement of McMillan’s unfolding algo-
rithm. Formal Methods in System Design, 20 (2002), 285–310.

8. R. Freund: Asynchronous P systems and P systems working in the sequential mode.
In Membrane Computing, International Workshop, WMC5, Milano, Italy, 2004,
Selected Papers (G. Mauri et al., eds.), LNCS 3365, Springer, Berlin, 2005, 36–62.

9. O.H. Ibarra, Z. Dang, O. Egecioglu: Catalytic P systems, semilinear sets, and vector
addition systems. Theoretical Computer Science, 312 (2004), 379–399.

10. O.H. Ibarra, H.C. Yen, Z. Dang: The power of maximal parallelism in P systems.
Proceedings of DLT 2004, Auckland (C.S. Calude, E. Calude, M.J. Dinneed, eds.),
LNCS 3340, Springer, Berlin, 2004, 212–224.

11. R. Janicki, P.E. Lauer, M. Koutny, R. Devillers: Concurrent and maximally concur-
rent evolution of nonsequential systems. Theoretical Computer Science, 43 (1986),
213–238.

12. V. Khomenko, M. Koutny, W. Vogler: Canonical prefixes of Petri net unfoldings.
Acta Informatica, 40 (2003), 95–118.

13. H.C.M. Kleijn, M. Koutny: Process semantics of general inhibitor nets. Information
and Computation, 190 (2004), 18–69.

14. H.C.M. Kleijn, M. Koutny, G. Rozenberg: Processes of Petri nets with localities.
Manuscript, 2005.

15. K.L. McMillan: Using unfoldings to avoid state explosion problem in the Verifica-
tion of Asynchronous Circuits. In Proceedings CAV 1992 (G. von Bochmann, D.K.
Probst, eds.), LNCS 663, Springer, Berlin, 1992.

16. M. Nielsen, G. Plotkin, G. Winskel: Petri nets, event structures and domains, Part
I. Theoretical Computer Science, 13 (1980), 85–108.

17. Gh. Păun: Computing with membranes. An introduction. Bulletin of the EATCS,
67 (1999), 139–152.

18. Gh. Păun: Membrane Computing, An Introduction. Springer, Berlin, 2002.

Towards a Petri Net Semantics for Membrane Systems 309

19. Gh. Păun, G. Rozenberg: A guide to membrane computing. Theoretical Computer
Science, 287 (2002), 73–100.

20. Z. Qi, J. You, H. Mao: P systems and Petri nets. In Membrane Computing, Interna-
tional Workshop, WMC 2003, Tarragona, July 2003, Selected Papers (C. Martin-
Vide et al., eds.), LNCS 2933, Springer, Berlin, 2004, 286–303.

21. W. Reisig, G. Rozenberg, eds.: Lectures on Petri Nets. LNCS 1491 and 1492,
Springer, Berlin, 1998.

22. G. Rozenberg, J. Engelfriet: Elementary net systems. In [21]
23. R. Valk: Self-modifying nets, a natural extension of Petri nets. In Proceedings of

ICALP 1978 (G. Ausiello, C. Böhm, eds.) LNCS 62, Springer, Berlin, 1978.
24. W. Vogler: Partial order semantics and read arcs. Theoretical Computer Science,

286 (2002), 33–63.

Quantum Sequential P Systems with Unit Rules
and Energy Assigned to Membranes

Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano – Bicocca,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{leporati, mauri, zandron}@disco.unimib.it

Abstract. We propose a quantum version of P systems with unit rules
and energy assigned to membranes. Differently from the classical version,
the new quantum P systems do not need to use priorities over rules to be
computationally complete. We also propose a quantum version of register
machines as a tool to study the computational power of quantum models
of computation.

1 Introduction

P systems (also called membrane systems) have been introduced in [21] as a new
class of distributed and parallel computing devices, inspired by the structure and
functioning of living cells. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the
skin. Membranes divide the Euclidean space into regions, that contain some
objects (represented by symbols of an alphabet) and evolution rules. Using these
rules, the objects may evolve and/or move from a region to a neighboring one.
A computation starts from an initial configuration of the system and terminates
when no evolution rule can be applied. Usually, the result of a computation is
the multiset of objects contained in an output membrane or emitted from the
skin of the system.

In this paper, starting from the ideas exposed in [17], we propose a quantum
version of P systems with unit rules and energy assigned to membranes, which
have recently appeared in [10]. The proposed quantum P systems are sequential;
moreover, at every computation step only one rule can be applied, and hence they
are in some sense deterministic. Differently from the classical version, the amount
of energy assigned to a membrane is not a property of the membrane itself, but is
instead represented by the energy level of a quantum harmonic oscillator which
is contained in the region enclosed by the membrane. Another notable difference
between the classical and the quantum version of our P systems is that in the
quantum version only one rule is assigned to each membrane. As a consequence,
we obtain computational completeness without the need to assign priorities to
rules, as it is done in the classical case.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 310–325, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Quantum Sequential P Systems with Unit Rules and Energy 311

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For a systematic introduction, we
refer the reader to [22]. The latest information about P systems can be found
in [25].

This is by no means the first time that energy is considered in P systems. We
recall in particular [1, 9, 24, 14, 18, 19, 17].

The paper is organized as follows. In section 2 some preliminaries are given: in
particular, we recall register machines (section 2.1), classical P systems with unit
rules and energy assigned to membranes [10], together with their computational
capabilities (section 2.2), and some notions of quantum computing (section 2.3).
In section 3 we define the quantum version of such P systems, and in section
4 we establish their computational completeness. In section 5 we introduce a
quantum version of register machines, as a tool to study present and future
quantum computational models. Conclusions are given in section 6.

2 Preliminaries

2.1 Register Machines

A deterministic n–register machine is a construct M = (n, P, l0, lh), where n is
the number of registers, P is a finite set of instructions injectively labelled with
a given set lab(M), l0 is the label of the first instruction to be executed, and lh
is the label of the last instruction of P . Registers contain non-negative integer
values. Without loss of generality, we can assume lab(M) = {1, 2, . . . ,m}, l0 = 1
and lh = m. The instructions of P have the following forms:

– j : (INC(r), k), with j, k ∈ lab(M).
This instruction increments the value contained in register r, and then jumps
to instruction k.

– j : (DEC(r), k, l), with j, k, l ∈ lab(M).
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

– m : Halt.
Stop the machine. Note that this instruction can only be assigned to the
final label m.

Register machines provide a simple universal computational model. Indeed,
the results proved in [11] (based on the results established in [20]) as well as in
[12] and [13] immediately lead to the following proposition.

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label lh with registers 1 to β
containing r1 to rβ, and all other registers being empty; if the final label cannot
be reached, then f(n1, . . . , nα) remains undefined.

312 A. Leporati, G. Mauri, and C. Zandron

2.2 P Systems with Unit Rules and Energy Assigned to Membranes

A P system with unit rules and energy assigned to membranes [10] of degree
d+ 1 is a construct Π of the form

Π = (A, μ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd) ,

where:

– A is an alphabet of objects ;
– μ is a membrane structure, with the membranes labelled by numbers 0, . . . , d

in a one-to-one manner;
– e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d.

In what follows we assume that e0, . . . , ed are non-negative integers;
– w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of μ;
– R0,. . ., Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule has the form (α : a,Δe, b), where α ∈ {in, out}, a, b ∈ A, and |Δe|
is the amount of energy that — for Δe ≥ 0 — is added to or — for Δe < 0 —
is subtracted from ei (the energy assigned to membrane i) by the application
of the rule.

By writing (αi : a,Δe, b) instead of (α : a,Δe, b) ∈ Ri, we can specify only
one set of rules R with

R = {(αi : a,Δe, b) | (α : a,Δe, b) ∈ Ri, 0 ≤ i ≤ d} .

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The tran-
sition from a configuration to another one is performed by non-deterministically
choosing one rule from some Ri and applying it (observe that here we consider a
sequential model of applying the rules instead of choosing rules in a maximally
parallel way, as it is often required in P systems). Applying (ini : a,Δe, b) means
that an object a (being in the membrane immediately outside of i) is changed
into b while entering membrane i, thereby changing the energy value ei of mem-
brane i by Δe. On the other hand, the application of a rule (outi : a,Δe, b)
changes object a into b while leaving membrane i, and changes the energy value
ei by Δe. The rules can be applied only if the amount ei of energy assigned to
membrane i fulfills the requirement ei + Δe ≥ 0. Moreover, we use some sort
of local priorities: if there are two or more applicable rules in membrane i, then
one of the rules with max |Δe| has to be used.

A sequence of transitions is called a computation; it is successful if and only
if it halts. The result of a successful computation is considered to be the dis-
tribution of energies among the membranes (a non-halting computation does
not produce a result). If we consider the energy distribution of the membrane
structure as the input to be analysed, we obtain a model for accepting sets of
(vectors of) non-negative integers.

The following result, proved in [10], establishes computational completeness
for this model of P systems.

Quantum Sequential P Systems with Unit Rules and Energy 313

Proposition 2. Every partial recursive function f : Nα → Nβ can be computed
by a P system with unit rules and energy assigned to membranes with (at most)
max{α, β} + 3 membranes.

It is interesting to note that the proof of this proposition is obtained by simulat-
ing register machines. In the simulation, a P system is defined which contains one
subsystem for each register of the simulated machine. The contents of the regis-
ter is expressed as the energy value ei assigned to the i-th subsystem. A single
object is present in the system at every computation step, which stores the label
of the instruction of P currently simulated. Increment instructions are simulated
in two steps by using the rules (ini : pj, 1, p̃j) and (outi : p̃j , 0, pk). Decrement
instructions are also simulated in two steps, by using the rules (ini : pj, 0, p̃j)
and (outi : p̃j ,−1, pk) or (outi : p̃j , 0, pl). The use of priorities associated to these
last rules is crucial to correctly simulate a decrement instruction. For the details
of the proof we refer the reader to [10].

On the other hand, by omitting the priority feature we do not get systems
with universal computational power. Precisely, in [10] it is proved that P systems
with unit rules and energy assigned to membranes without priorities and with
an arbitrary number of membranes characterize the family PsMAT λ of Parikh
sets generated by context–free matrix grammars (with λ-rules).

2.3 Quantum Computers

From an abstract point of view, a quantum computer can be considered as
made up of interacting parts. The elementary units (memory cells) that compose
these parts are two–levels quantum systems called qubits. A qubit is typically
implemented using the energy levels of a two–levels atom, or the two spin states of
a spin– 1

2 atomic nucleus, or a polarization photon. The mathematical description
— independent of the practical realization — of a single qubit is based on the
two–dimensional complex Hilbert space C2. The boolean truth values 0 and 1 are
represented in this framework by the unit vectors of the canonical orthonormal
basis, called the computational basis of C2:

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
.

Qubits are thus the quantum extension of the classical notion of bit, but whereas
bits can only take two different values, 0 and 1, qubits are not confined to their
two basis (also pure) states, |0〉 and |1〉, but can also exist in states which are
coherent superpositions such as ψ = c0 |0〉+ c1 |1〉, where c0 and c1 are complex
numbers satisfying the condition |c0|2 + |c1|2 = 1. Performing a measurement of
the state alters it. Indeed, performing a measurement on a qubit in the above
superposition will return 0 with probability |c0|2 and 1 with probability |c1|2;
the state of the qubit after the measurement (post–measurement state) will be
|0〉 or |1〉, depending on the outcome.

A quantum register of size n (also called an n–register) is mathematically
described by the Hilbert space ⊗nC2 = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

n times

, representing a set of n

314 A. Leporati, G. Mauri, and C. Zandron

qubits labelled by the index i ∈ {1, . . . , n}. An n–configuration (also pattern) is
a vector |x1〉 ⊗ . . .⊗ |xn〉 ∈ ⊗nC2, usually written as |x1, . . . , xn〉, considered as
a quantum realization of the boolean tuple (x1, . . . , xn). Let us recall that the
dimension of ⊗nC2 is 2n and that {|x1, . . . , xn〉 | xi ∈ {0, 1}} is an orthonormal
basis of this space, called the n–register computational basis.

Computations are performed as follows. Each qubit of a given n–register is
prepared in some particular pure state (|0〉 or |1〉) in order to realize the required
n–configuration |x1, . . . , xn〉, quantum realization of an input boolean tuple of
length n. Then, a linear operator G : ⊗nC2 → ⊗nC2 is applied to the n–
register. The application of G has the effect of transforming the n–configuration
|x1, . . . , xn〉 into a new n–configuration G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which
is the quantum realization of the output tuple of the computer. We interpret
such modification as a computation step performed by the quantum computer.
The action of the operator G on a superposition Φ =

∑
ci1...in |xi1 , . . . , xin〉,

expressed as a linear combination of the elements of the n–register basis, is
obtained by linearity: G(Φ) =

∑
ci1...inG(|xi1 , . . . , xin〉). We recall that lin-

ear operators which act on n–registers can be represented as order 2n square
matrices of complex entries. Usually (but not in this paper) such operators,
as well as the corresponding matrices, are required to be unitary. In particu-
lar, this implies that the implemented operations are logically reversible (an
operation is logically reversible if its inputs can always be deduced from its
outputs).

All these notions can be easily extended to quantum systems which have
d > 2 pure states. In this setting, the d–valued versions of qubits are usu-
ally called qudits [15]. As it happens with qubits, a qudit is typically imple-
mented using the energy levels of an atom or a nuclear spin. The mathemat-
ical description — independent of the practical realization — of a single qu-
dit is based on the d–dimensional complex Hilbert space Cd. In particular,
the pure states |0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉 are represented by the unit

vectors of the canonical orthonormal basis, called the computational basis
of Cd:

|0〉 =

⎡⎢⎢⎢⎢⎢⎣
1
0
...
0
0

⎤⎥⎥⎥⎥⎥⎦ ,
∣∣∣∣ 1
d− 1

〉
=

⎡⎢⎢⎢⎢⎢⎣
0
1
...
0
0

⎤⎥⎥⎥⎥⎥⎦ , · · · ,
∣∣∣∣d− 2
d− 1

〉
=

⎡⎢⎢⎢⎢⎢⎣
0
0
...
1
0

⎤⎥⎥⎥⎥⎥⎦ , |1〉 =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ .

As before, a quantum register of size n can be defined as a collection of
n qudits. It is mathematically described by the Hilbert space ⊗nCd. An n–
configuration is now a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗nCd, simply written as
|x1,. . ., xn〉, for xi running on Ld =

{
0, 1

d−1 ,
2

d−1 , . . . ,
d−2
d−1 , 1

}
. An n–configuration

can be viewed as the quantum realization of the “classical” tuple (x1, . . . , xn) ∈
Ln

d . The dimension of ⊗nCd is dn and the set {|x1, . . . , xn〉 | xi ∈ Ld} of all
n–configurations is an orthonormal basis of this space, called the n–register com-

Quantum Sequential P Systems with Unit Rules and Energy 315

putational basis. Notice that the set Ld can also be interpreted as a set of truth
values, where 0 denotes falsity, 1 denotes truth and the other elements indicate
different degrees of indefiniteness.

Let us now consider the set Ed =
{
ε0, ε 1

d−1
, ε 2

d−1
, . . . , ε d−2

d−1
, ε1

}
⊆ R of real

values; we can think to such quantities as energy values. To each element v ∈ Ld

(and hence to each object |v〉 ∈ A) we associate the energy level εv; moreover,
let us assume that the values of Ed are all positive, equispaced, and ordered
according to the corresponding objects: 0 < ε0 < ε 1

d−1
< · · · < ε d−2

d−1
< ε1. If

we denote by Δε the gap between two adjacent energy levels then the following
linear relation holds:

εk = ε0 +Δε (d− 1) k ∀ k ∈ Ld. (1)

Notice that it is not required that ε0 = Δε. As explained in [17], the values εk

can be thought of as the energy eigenvalues of the infinite dimensional quantum
harmonic oscillator truncated at the (d− 1)-th excited level (see Fig. 1), whose

0

ε

ε

ε

ε

ε

0

0

0

0

0

+

+

+

+

Δ

2

ε

Δ ε

3 Δ ε

n Δ ε

εΔ

0

ε

ε

ε

0

0

0

+

+

Δ

2

ε

Δ ε

εΔ

Fig. 1. Energy levels of the infinite dimensional (on the left) and of the truncated (on
the right) quantum harmonic oscillator

Hamiltonian on Cd is

H =

⎡⎢⎢⎢⎣
ε0 0 . . . 0
0 ε0 +Δε . . . 0
...

...
. . .

...
0 0 . . . ε0 + (d− 1)Δε

⎤⎥⎥⎥⎦ . (2)

The unit vector |H = εk〉 =
∣∣∣ k
d−1

〉
, for k ∈ {0, 1, . . . , d−1}, is the eigenvector

of the state of energy ε0 + kΔε. To modify the state of a qudit we can use the

316 A. Leporati, G. Mauri, and C. Zandron

creation and annihilation operators on the Hilbert space Cd, which are defined
respectively as

a† =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0
1 0 · · · 0 0
0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · ·
√
d− 1 0

⎤⎥⎥⎥⎥⎥⎦ , a =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0

√
2 · · · 0

...
...

...
. . .

...
0 0 0 · · ·

√
d− 1

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ .

It is easily verified that the action of a† on the vectors of the canonical or-
thonormal basis of Cd is

a†
∣∣∣∣ k

d− 1

〉
=

√
k + 1

∣∣∣∣k + 1
d− 1

〉
for k ∈ {0, 1, . . . , d− 2},

a† |1〉 = 0,

whereas the action of a is

a

∣∣∣∣ k

d− 1

〉
=

√
k

∣∣∣∣k − 1
d− 1

〉
for k ∈ {1, 2, . . . , d− 1},

a |0〉 = 0.

Using a† and a we can also introduce the following operators:

N = a†a =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · d− 1

⎤⎥⎥⎥⎥⎥⎦ , aa† =

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · d− 1 0
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ .

The eigenvalues of the self–adjoint operator N are 0, 1, 2, . . . , d − 1, and the
eigenvector corresponding to the generic eigenvalue k is |N = k〉 =

∣∣∣ k
d−1

〉
. This

corresponds to the notation adopted in [15], where the qudit base states are
denoted by |0〉 , |1〉 , . . . , |d− 1〉, and it is assumed that a qudit can exist in a
superposition

c0 |0〉 + c1 |1〉 + . . .+ cd−1 |d− 1〉
of the d base states, with ci ∈ C for i ∈ {0, 1, . . . , d− 1} and |c0|2 + |c1|2 + . . .+
|cd−1|2 = 1.

One possible physical interpretation of N is that it describes the number of
particles of physical systems consisting of a maximum number of d−1 particles.
In order to add a particle to the k particles state |N = k〉 (thus making it switch
to the “next” state |N = k + 1〉) we apply the creation operator a†, while to
remove a particle from this system (thus making it switch to the “previous” state
|N = k − 1〉) we apply the annihilation operator a. Since the maximum number
of particles that can be simultaneously in the system is d− 1, the application of

Quantum Sequential P Systems with Unit Rules and Energy 317

the creation operator to a full d− 1 particles system does not have any effect on
the system, and returns as a result the null vector. Analogously, the application
of the annihilation operator to an empty particle system does not affect the
system and returns the null vector as a result.

Another physical interpretation of operators a† and a, by operator N , follows
from the possibility of expressing the Hamiltonian (2) as

H = ε0 Id + ΔεN = ε0 Id + Δε a†a.

In this case a† (resp., a) realizes the transition from the eigenstate of energy
εk = ε0 + kΔε to the “next” (resp., “previous”) eigenstate of energy εk+1 =
ε0 + (k + 1)Δε (resp., εk−1 = ε0 + (k − 1)Δε) for any 0 ≤ k < d − 1 (resp.,
0 < k ≤ d− 1), while it collapses the last excited (resp., ground) state of energy
ε0 + (d− 1)Δε (resp., ε0) to the null vector.

The collection of all linear operators on Cd is a d2–dimensional linear space
whose canonical basis is

{Ex,y = |y〉 〈x| | x, y ∈ Ld} .

Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z �= x, this
operator transforms the unit vector |x〉 into the unit vector |y〉, collapsing all
the other vectors of the canonical orthonormal basis of Cd to the null vector.
Each of the operators Ex,y can be expressed, using the whole algebraic structure
of the associative algebra of operators, as a suitable composition of creation and
annihilation operators, as explained in [17].

3 Quantum P Systems with Unit Rules and Energy
Assigned to Membranes

Let us now define a quantum version of P systems with unit rules and energy
assigned to membranes. All the elements of the model (multisets, the membrane
hierarchy, configurations, and computations) are defined just like the correspond-
ing elements of the classical P systems, but for objects and rules.

The objects of A are represented as pure states of a quantum system. If
the alphabet contains d ≥ 2 elements, then without loss of generality we can
put A =

{
|0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

}
, that is, A = {|a〉 | a ∈ Ld}. As

stated above, the quantum system will also be able to assume as a state any
superposition of the kind

c0 |0〉 + c 1
d−1

∣∣∣∣ 1
d− 1

〉
+ . . .+ c d−2

d−1

∣∣∣∣d− 2
d− 1

〉
+ c1 |1〉 ,

with c0, c 1
d−1

, . . . , c d−2
d−1

, c1 ∈ C such that
∑d−1

i=0

∣∣c i
d−1

∣∣2 = 1. A multiset is simply
a collection of quantum systems, each in its own state.

The membrane structure is defined just like in the classical case. In order to rep-
resent the energy values assigned to membranes we must use quantum systems

318 A. Leporati, G. Mauri, and C. Zandron

which can exist in an infinite (countable) number of states. Hence we assume that
every membrane of the quantum P system has an associated infinite dimensional
quantum harmonic oscillator whose state represents the energy value assigned to
the membrane. To modify the state of such harmonic oscillator we can use the in-
finite dimensional version of the creation (a†) and annihilation (a) operators de-
scribed above, which are commonly used in quantum mechanics. The actions of
a† and a on the state of an infinite dimensional harmonic oscillator are analogous
to the actions on the states of truncated harmonic oscillators; the only difference
is that in the former case there is no state with maximum energy, and hence the
creation operator never produces the null vector. Also in this case it is possible to
express operators Ex,y = |y〉 〈x| as appropriate compositions of a† and a.

The initial configuration of a quantum P system with unit rules and energy
assigned to membranes of degree d+1 consists of e0, . . . , ed, the initial energy val-
ues assigned to the membranes, and w0, . . . , wd, the multisets of objects initially
present in the regions 0, . . . , d determined by the membrane structure.

Rules are defined as (n, d)–functions, that is, functions of the kind f : An →
An. Such functions are not necessarily bijections on An: they can be arbitrary
mappings. This means that the linear operators which realize such functions are
not necessarily unitary. To write these linear operators we use an extension of
the Conditional Quantum Control technique introduced in [2]. Such operators
are sums of “local” operators, each being a tensor product of suitable compo-
sitions of the operators a† and a. An equivalent formulation is possible, using
spin–rising (J+) and spin–lowering (J−) operators, following the lines illustrated
in [17].

The quantum realization of a “controlled behavior” can be obtained by making
use of the operators EX,X = |X〉 〈X |, for X ∈ Ld. For simplicity, let us first con-
sider the case of a (2, 2)–function, that is, a two–input/two–output boolean func-
tion. For a reason that will be clear in a moment, we call control qubit and target
qubit the first and the second input, respectively. If we want to realize a linear op-
erator performing the condition: “if the control qubit is |1〉 then the operatorO1 is
applied to the target qubit (and the control qubit is left unchanged)”, then we can
build the operator E1,1 ⊗ O1, where E1,1 = |1〉 〈1| checks for the condition “the
control qubit is |1〉” and O1 is the operator which acts on the target qubit |x2〉.
Note that if the control qubit is |0〉 then the operator E1,1 ⊗O1 produces the null
vector of C2 ⊗ C2. Similarly, E0,0 ⊗O0, with E0,0 = |0〉 〈0|, realizes the condition
“if the control qubit is |0〉 then the operator O0 is applied to the target qubit |x2〉
(and the control qubit is left unchanged)”.

The same applies to (n, d)–functions, where the first k qudits are used as
control qudits and the remaining n − k are used as target qudits. We can thus
realize any controlled behavior of the kind: “if the control qudits are in the
(basis) states X = |x1, x2, . . . , xk〉, then apply the operator OX to target qudits”
(and leave the control qudits unaltered). The global operator that describes the
behavior of the (n, d)–function has thus the form

|0〉 〈0| ⊗O0 + |1〉 〈1| ⊗O1 + . . .+ |dk − 1〉〈dk − 1| ⊗Odk−1 =
dk−1∑
X=0

|X〉 〈X | ⊗OX ,

Quantum Sequential P Systems with Unit Rules and Energy 319

where EX,X = |X〉 〈X | is the orthogonal projection of the Hilbert space ⊗kCd

which selects the X-th control configuration, and collapses to the null vector all
the other configurations.

We can now precisely describe how rules are defined in our model of quantum
P systems. As in the classical case, rules are associated to membranes rather
than to the regions enclosed by them. Each rule of Ri is an operator of the form

|y〉 〈x| ⊗O, with x, y ∈ Ld, (3)

where O is a linear operator which can be expressed by an appropriate compo-
sition of operators a† and a. The part |y〉 〈x| is the guard of the rule: it makes
the rule “active” (that is, the rule produces an effect) if and only if a quantum
system in the basis state |x〉 is present. The semantics of rule (3) is the following:
If an object in state |x〉 is present in the region immediately outside membrane
i, then the state of the object is changed to |y〉 and the operator O is applied
to the state of the infinite dimensional harmonic oscillator associated with the
membrane. Notice that the application of O can result in the null vector, so that
the rule has no effect even if its guard is satisfied; this fact is equivalent to the
condition ei +Δe ≥ 0 on the energy of membrane i required in the classical case.
Differently from the classical case, no local priorities are assigned to the rules.
If two or more rules are associated to membrane i, then they are summed. This
means that, indeed, we can think to each membrane as having only one rule with
many guards. When an object is present, the inactive parts of the rule (those
for which the guard is not satisfied) produce the null operator as a result. If
the region in which the object occurs contains two or more membranes, then all
their rules are applied to the object. Observe that the object which activates the
rules never crosses the membranes. This means that the objects specified in the
initial configuration can change their state but never move to a different region.
Notwithstanding, transmission of information between different membranes is
possible, since different objects may modify in different ways the energy state of
the harmonic oscillators associated with the membranes.

The application of one or more rules determines a transition between two
configurations. A halting configuration is a configuration in which no rule can be
applied. A sequence of transitions is a computation. A computation is successful
if and only if it halts, that is, reaches a halting configuration. The result of a
successful computation is considered to be the distribution of energies among
the membranes in the halting configuration. A non-halting computation does
not produce a result. Just like in the classical case, if we consider the energy
distribution of the membrane structure as the input to be analyzed, we obtain
a model for accepting sets of (vectors of) non-negative integers.

4 Computational Completeness

In this section we prove that quantum P systems with unit rules and energy as-
signed to membranes are computationally complete, that is, they are able to com-
pute any partial recursive function f : Nα → Nβ . As in the classical case, the
proof is obtained by simulating register machines.

320 A. Leporati, G. Mauri, and C. Zandron

Theorem 1. Every partial recursive function f : Nα → Nβ can be computed
by a quantum P system with unit rules and energy assigned to membranes with
(at most) max{α, β} + 3 membranes.

Proof. Let M = (n, P, 1,m) be a deterministic n–register machine that computes
f . Let m be the number of instructions of P . The initial instruction of P has
the label 1, and the halting instruction has the label m. Observe that, according
to Proposition 1, n = max{α, β} + 2 is enough.

The input values x1, . . . , xα are expected to be in the first α registers, and the
output values are expected to be in registers 1 to β at the end of a successful
computation. Moreover, without loss of generality, we may assume that at the
beginning of a computation all the registers except (eventually) the registers 1
to α contain zero.

We construct the quantum P system

Π = (A, μ, e0, . . . , en, w0, . . . , wn, R0, . . . , Rn),

where:

– A = {|j〉 | j ∈ Lm} ,
– μ = [0[1]1 · · · [α]α · · · [n]n]0,

– ei =

⎧⎪⎨⎪⎩
|εxi〉 for 1 ≤ i ≤ α,

|ε0〉 for α+ 1 ≤ i ≤ n,

0 (the null vector) for i = 0,
– w0 = |0〉,
– wi = ∅ for 1 ≤ i ≤ n,
– R0 = ∅,
– Ri =

∑m
j=1 Oij for 1 ≤ i ≤ n,

where the Oij ’s are local operators which simulate instructions of the kind
j : (INC(i), k) and j : (DEC(i), k, l) (one local operator for each increment
or decrement operation which affects register i). The details on how the Oij ’s
are defined are given below.

The value contained in register i, 1 ≤ i ≤ n, is represented by the energy value
ei = |εxi〉 of the infinite dimensional quantum harmonic oscillator associated
with membrane i. Figure 2 depicts a typical configuration ofΠ . The skin contains
one object of the kind |j〉, j ∈ Lm, which mimics the program counter of machine
M . Precisely, if the program counter of M has the value k ∈ {1, 2, . . . ,m} then
the object present in region 0 is

∣∣∣ k−1
m−1

〉
. In order to avoid cumbersome notation,

in what follows we denote by |pk〉 the state
∣∣∣ k−1
m−1

〉
of the quantum system which

mimics the program counter.
The sets of rules Ri depend upon the instructions of P . Precisely, the simu-

lation works as follows.

1. Increment instructions j : (INC(i), k) are simulated by a guarded rule of
the kind |pk〉 〈pj | ⊗ a† ∈ Ri.

Quantum Sequential P Systems with Unit Rules and Energy 321

R 1

|ε x1 >

1

R 2

|ε x2 >

2

R n

n

0

|ε x >n

| j >

Fig. 2. A configuration of the simulating P system

If the object |pj〉 is present in region 0, then the rule transforms it into object
|pk〉 and increments the energy level of the harmonic oscillator contained in
membrane i.

2. Decrement instructions j : (DEC(i), k, l) are simulated by a guarded rule of
the kind

|pl〉 〈pj | ⊗ |ε0〉 〈ε0| + |pk〉 〈pj | ⊗ a ∈ Ri.

In fact, let us assume that the object |pj〉 is present in region 0 (if |pj〉 is not
present then the above rule produces the null operator), and let us denote
by O the above rule. The harmonic oscillator may be in the base state |ε0〉
or in a base state |εx〉 with x a positive integer.
If the state of the harmonic oscillator is |ε0〉, then the rule produces

O(|pj〉 ⊗ |ε0〉) =
= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |ε0〉) + (|pk〉 〈pj| ⊗ a)(|pj〉 ⊗ |ε0〉) =
= |pl〉 ⊗ |ε0〉 + |pk〉 ⊗ 0 = |pl〉 ⊗ |ε0〉 ,

that is, the state of the oscillator is unaltered and the program counter is
set to |pl〉.
If the state of the harmonic oscillator is |εx〉, for a positive integer x, then
the rule produces

O(|pj〉 ⊗ |εx〉) =
= (|pl〉 〈pj| ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |εx〉) + (|pk〉 〈pj| ⊗ a)(|pj〉 ⊗ |εx〉) =
= |pl〉 ⊗ 0 + |pk〉 ⊗ a |εx〉 = |pk〉 ⊗ |εx−1〉 ,

that is, the energy level of the harmonic oscillator is decremented and the
program counter is set to |pk〉.

The set Ri of rules is obtained by summing all the operators which affect (in-
crement or decrement) register i. The Halt instruction is simply simulated by
doing nothing with the object |pm〉 when it appears in region 0.

It is apparent from the description given above that after the simulation of
each instruction every energy value ei equals the value contained in register i,

322 A. Leporati, G. Mauri, and C. Zandron

with 1 ≤ i ≤ m. Hence, when the halting symbol |pm〉 appears in region 0, the
energy values e1, . . . , eβ equal the output of the program P . ��
Let us conclude this section by observing that, in order to obtain computational
completeness, it is not necessary that the objects cross the membranes. This fact
avoids one of the problems raised in [17]: the existence of a “magic” quantum
transportation mechanism which is able to move objects according to the target
contained in the rule (and working against the so called “tunnel effect”). In
quantum P systems with unit rules and energy assigned to membranes, the only
problem is to keep the object |pj〉 localised in region 0, so that it never enters into
the other regions. In other words, the major problem of this kind of quantum P
systems is to oppose the tunnel effect.

5 Quantum Register Machines

The P system illustrated in Fig. 2, which has been used to prove Theorem 1,
suggests to define also a quantum version of register machines.

A quantum n–register machine is defined exactly as in the classical case, as
a four–tuple M = (n, P, l0, lh). For simplicity, also the instructions of P are
denoted in the usual way:

j : (INC(i), k) and j : (DEC(i), k, l).

This time, however, these instructions are appropriate linear operators acting on
the Hilbert space whose vectors describe the (global) state of M .

The structure of the machine resembles the P system which has been used to
prove Theorem 1. Each register of the machine is an infinite dimensional quan-
tum harmonic oscillator, capable to assume the base states |ε0〉 , |ε1〉 , |ε2〉 , . . .,
corresponding to its energy levels. The program counter of the machine is instead
realized through a quantum system capable to assume m different base states,
from the set {|x〉 | x ∈ Lm}.

A configuration of M is given by the value of the program counter and the
values contained in the registers. From a mathematical point of view, a con-
figuration of M is a (base) vector of the Hilbert space Cm ⊗ (⊗nH), where H
is the Hilbert space associated with every quantum harmonic oscillator. Notice
that here we are just interested in simulating a classical machine behavior, and
hence we do not care about superpositions of states. A transition between two
configurations is obtained by executing one instruction of P (the one pointed at
by the program counter).

The instruction j : (INC(r), k) is defined as the operator

OINC
j,r,k = |pk〉 〈pj | ⊗

(
⊗r−1I

)
⊗ a† ⊗

(
⊗n−rI

)
,

with I the identity operator on H, whereas the instruction j : (DEC(r), k, l) is
defined as the operator

ODEC
j,r,k,l = |pl〉 〈pj | ⊗

(
⊗r−1I

)
⊗ |ε0〉 〈ε0| ⊗

(
⊗n−rI

)
+

|pk〉 〈pj| ⊗
(
⊗r−1I

)
⊗ a⊗

(
⊗n−rI

)
.

Quantum Sequential P Systems with Unit Rules and Energy 323

Hence the program P can be formally defined as the sum OP of all these
operators:

OP =
∑
j,r,k

OINC
j,r,k +

∑
j,r,k,l

ODEC
j,r,k,l.

Thus OP is the global operator which describes a computation step of M . The
Halt instruction is simply executed by doing nothing when the program counter
assumes the value |pm〉. For such value, the application of OP results in the null
operator.

From the definition of the system, it is apparent that any classical deter-
ministic n–register machine can be simulated by a corresponding quantum n–
register machine: the simulation proceeds exactly as described in the proof of
Theorem 1. As a consequence, also quantum n–register machines are computa-
tionally complete.

It should also be evident that the proof of Theorem 1 can be modified to
show that quantum P systems are able to simulate quantum register machines.
Indeed, the notable difference between the quantum P systems described above
and quantum register machines is that in the latter model we modify the values
contained in registers using global operators (if a given register need not be
modified then the identity operator is applied to its state) whereas in the former
model we operate locally, on a smaller Hilbert space. Hence, as it happens in
classical P systems, membranes are used to divide the site where the computation
occurs into independent local areas. The effect of each rule is local, in the sense
that the rule affects only the state of one subsystem. Due to the simulations
mentioned above, we can order these computational models with respect to their
computational power, as follows:

deterministic
register
machines

≤
quantum
register
machines

≤
quantum P systems
with unit rules and
energy assigned to
membranes

Quantum register machines can thus be used as a tool to study the compu-
tational power of other quantum models of computation, just like it happens in
the classical case.

6 Conclusions and Directions for Future Research

In this paper we have introduced a quantum version of P systems with unit rules
and energy assigned to membranes. Objects are represented as pure states in a
finite Hilbert space, whereas rules are defined as generic functions which map the
alphabet into itself. Such functions are implemented using a generalization of the
Conditional Quantum Control technique, and may yield non-unitary operators.
Energy values are associated to membranes by incorporating an infinite dimen-
sional quantum harmonic oscillator in every membrane. For the application of
rules leading from one configuration of the system to the next configuration we
consider a sequential model, instead of the usual model of maximal parallelism.

324 A. Leporati, G. Mauri, and C. Zandron

The input of a computation is given by the distribution of energy values carried
by the membranes. Analogously, the result of a successful computation is the
distribution of energy values at the end of the computation.

In this paper we have proved that such quantum model of computation is
computationally complete, that is, it is able to compute any partial recursive
function f : Nα → Nβ . This result has been obtained by simulating classical de-
terministic register machines. We have also proposed quantum register machines
as a tool to study the computational power of present and future quantum com-
putational models.

It is currently an open problem, as well as an interesting direction for future
research, to precisely assess the computational power of quantum P systems and
quantum register machines. Concerning the power of quantum P systems we note
that, in analogy with other models of quantum computers, there is the possibility
to initialize the system with a multiset of objects whose state is a superposition
of classical (pure) states. As a result, the computation will transform such input
multiset to an output multiset which is obtained by linearity as a superposition
of the results of the computation on every single classical state. As usual, when
we measure the state of the systems which occur into the output multiset we will
obtain a pure state as a result, according to the probability distribution which
is induced by the coefficients of the superposition. An interesting question, not
afforded in this paper, is whether the measurement of the state of an object into a
region should have only local effects, or instead make the global configuration of
the P system collapse to a classical state. Another interesting aspect of quantum
P systems to be investigated is their behavior when some quantum systems in
the initial configuration are in an entangled state.

References

1. G. Alford: Membrane systems with heat control. In Pre-Proceedings of Workshop
on Membrane Computing, WMC-CdeA2002, Curtea de Argeş, Romania (Gh. Păun,
C. Zandron, eds.), 2002. Electronic version available in [25].

2. A. Barenco, D. Deutsch, A. Ekert, R. Jozsa: Conditional quantum control and logic
gates. Physical Review Letters, 74 (1995), 4083–4086.

3. P. Benioff: Quantum mechanical hamiltonian models of discrete processes. Journal
of Mathematical Physics, 22 (1981), 495–507.

4. P. Benioff: Quantum mechanical hamiltonian models of computers. Annals of the
New York Academy of Science, 480 (1986), 475–486.

5. D. Deutsch: Quantum theory, the Church–Turing principle, and the universal quan-
tum computer. Proceedings of the Royal Society of London, A 400 (1985), 97–117.

6. R.P. Feynman R P: Simulating physics with computers. International Journal of
Theoretical Physics, 21, 6–7 (1982), 467–488.

7. R.P. Feynman: Quantum mechanical computers. Optics News, 11 (1985), 11–20.
8. R. Freund: Sequential P-systems. Romanian Journal of Information Science and

Technology, 4, 1–2 (2001), 77–88.
9. R. Freund: Energy-controlled P systems. In Membrane Computing. International

Workshop, WMC 2002, Curtea de Argeş, Romania, August 2002. Revised Papers
(Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer,
Berlin, 2003, 247–260.

Quantum Sequential P Systems with Unit Rules and Energy 325

10. R. Freund, A. Leporati, M. Oswald, C. Zandron: Sequential P systems with unit
rules and energy assigned to membranes. In Machines, Computations and Uni-
versality, MCU 2004 (M. Margenstern, ed.), LNCS 3354, Springer, Berlin, 2005,
200–210.

11. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Infor-
maticae, 49, 1–3 (2002), 81–102.

12. R. Freund, Gh. Păun: On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars. In Machines, Computations and Universality,
MCU 2001 (M. Margenstern, Y. Rogozhin, eds.), LNCS 2055, Springer, Berlin,
2001, 82–101.

13. R. Freund, Gh. Păun: From regulated rewriting to computing with membranes:
collapsing hierarchies. Theoretical Computer Science, 312 (2004), 143–188.

14. P. Frisco: The conformon–P system: a molecular and cell biology–inspired com-
putability model. Theoretical Computer Science, 312 (2004), 295–319.

15. D. Gottesman: Fault-tolerant quantum computation with higher-dimensional sys-
tems. Chaos, Solitons, and Fractals, 10 (1999), 1749–1758.

16. J. Gruska: Quantum computing. McGraw–Hill, New York, 1999.
17. A. Leporati, D. Pescini, C. Zandron: Quantum energy–based P systems. In Proceed-

ings of the First Brainstorming Workshop on Uncertainty in Membrane Computing,
Palma de Mallorca, Spain, 2004, 145–168.

18. A. Leporati, C. Zandron, G. Mauri: Simulating the Fredkin gate with energy–based
P systems. Journal of Universal Computer Science, 10, 5 (2004), 600–619.

19. A. Leporati, C. Zandron, G. Mauri: Universal families of reversible P systems.
In Machines, Computations and Universality, MCU 2004 (M. Margenstern, ed.),
LNCS 3354, Springer, Berlin, 2005, 257–268.

20. M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

21. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences,
1, 61 (2000), 108–143. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

22. Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.
23. Gh. Păun, A. Riscos-Nuñez, A. Romero-Jiménez, F. Sancho Caparrini, eds.: Proc.

Second Brainstorming Week on Membrane Computing, Seville, Spain. Department
of Computer Sciences and Artificial Intelligence, University of Seville TR 01/2004.

24. Gh. Păun, Y. Suzuki, H. Tanaka: P systems with energy accounting. International
Journal Computer Math., 78, 3 (2001), 343–364.

25. The P systems Web page: http://psystems.disco.unimib.it/

Editing Distances Between
Membrane Structures

Damián López and José M. Sempere

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia, 46071 Valencia, Spain

{dlopez, jsempere}@dsic.upv.es

Abstract. In this work we propose an efficient solution to calculate the
minimum editing distance between membrane structures of arbitrary P
systems. We use a new model of tree automata based on multisets of
states and symbols linked to the finite control. This new model accepts
a set of trees with symmetries between their internal nodes (mirrored
trees). Once we have calculated the editing distance between an arbi-
trary tree and an arbitrary multiset tree automaton, we can translate
the classical operations of insertion, deletion and substitution into rule
applications of membrane dissolving and membrane creation.

1 Introduction

One of the main components of P systems is the membrane structure. This
structure evolves during the computation time due to the application of rules
associated to the membranes. The membrane structure can be represented by a
tree in which the internal nodes denote regions which have inner regions inside.
The root of the tree is always associated to the skin membrane of the P system.

The relation between regions and trees has been recently strengthened by
Freund et al. [7]. These authors have established that any recursively enumerable
set of trees can be generated by a P system with active membranes and string
objects. So, P systems can be viewed as tree generators.

In this work we use multiset tree automata to accept and handle the tree
structures defined by P systems [16]. This model is an extension of classical tree
automata [8] in which the states and symbols of the finite control form multisets.
Multiset theory has been linked to parallel processing as showed in [2].

The main aspect we will solve in this work is the one related to editing struc-
tural configurations of P systems. Recently, Csuhaj-Varjú et al. [4] have proposed
editing distances between configurations of P systems. Here, we restrict our so-
lution only to the structural configuration of P systems, that is, the membrane
structure underlying any P system configuration. The multiset tree automata
model that we propose in this work will be useful to calculate the trees associ-
ated with membrane structures. Here we can take advantage of a previous work
on editing distances between trees and tree automata [10].

The structure of this work is as follows. First we introduce basic definitions and
notation about multisets, tree languages and automata and P systems. In section

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 326–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Editing Distances Between Membrane Structures 327

3, we introduce the model of multiset tree automata, we define the relation of
mirroring between trees and we establish some results between tree automata,
multiset tree automata, and mirroring trees. In section 4, we use previous results
about editing distances between trees and tree automata in order to solve the
minimum editing distance between membrane structures. Finally, we state some
conclusions and give some guidelines for future works.

2 Notation and Definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane computing, and multiset processing. Further details can be found in the
books [15], [12], and [2].

Multisets

First, we will provide some definitions from multiset theory as exposed in [17].

Definition 1. Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function.

Definition 2. Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. The
removal of multiset B from A, denoted by A & B, is the multiset C = 〈D,h〉
where for all a ∈ D h(a) = max(f(a) − g(a), 0).

Definition 3. Let A = 〈D, f〉 be a multiset; we will say that A is empty if for
all a ∈ D, f(a) = 0.

Definition 4. Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. Their sum,
denoted by A ⊕ B, is the multiset C = 〈D,h〉, where for all a ∈ D h(a) =
f(a) + g(a).

Definition 5. Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. We will say
that A = B if for all a ∈ D f(a) = g(a).

The number of elements that a multiset contains can be finite. In such case,
the multiset will be finite too. The size of any multiset M , denoted by |M |
will be the number of elements that it contains. We are specially interested in
the class of multisets that we call bounded multisets. They are multisets that
hold the property that the sum of all the elements is bounded by a constant
n. Formally, we will denote by Mn(D) the set of all multisets 〈D, f〉 such that∑

a∈D f(a) = n.
A concept that is quite useful to work with sets and multisets is the Parikh

mapping. Formally, a Parikh mapping can be viewed as the application Ψ : D∗ →
Nn where D = {d1, d2, . . . , dn} and D∗ is the set of strings defined by D. Given
an element x ∈ D∗ we define Ψ(x) = (#d1(x), . . . ,#dn(x)) where #dj (x) denotes
the number of occurrences of dj in x.

Later, we will use tuples of symbols and states as strings and we will apply
the Parikh mapping as defined above.

328 D. López and J.M. Sempere

Tree Automata and Tree Languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3, 8]. First, a ranked alphabet is the pair (V, r) where V is an alphabet
and r is a finite relation in V × N. We denote by Vn the subset {σ ∈ V |
(σ, n) ∈ r}. Given (V, r) we define maxarity(V) as the maximum integer n such
that(σ, n) ∈ r.

For every ranked alphabet (V, r), the set of trees over V , is denoted by V T

and defined inductively as follows:

a ∈ V T for every a ∈ V0,
σ(t1, . . . , tn) ∈ V T whenever σ ∈ Vn and t1, . . . , tn ∈ V T , n > 0,

and let a tree language over V be defined as a subset of V T .
Given the tuple l = 〈1, 2, . . . , k〉 we will denote the set of permutations of l by

perm(l). Let t = σ(t1, . . . , tn) be a tree over V T , we will denote the set of per-
mutations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , . . . , tin) |
〈i1, i2, . . . , in〉 ∈ perm(〈1, 2, . . . , n〉)}.

Let N∗ be the set of finite strings of natural numbers, separated by dots,
formed using the product as the composition rule and the empty word λ as the
identity. Let the prefix relation ≤ in N∗ be defined by the condition that u ≤ v
if and only if u · w = v for some w ∈ N∗ (u, v ∈ N∗). A finite subset D of N∗ is
called a tree domain if:

u ≤ v, where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j).

Each tree domain D could be seen as an unlabelled tree whose nodes cor-
respond to the elements of D where the hierarchy relation is the prefix order.
Thus, each tree t over V can be seen as an application t : D → V . The set D is
called the domain of the tree t, and denoted by dom(t). The elements of the tree
domain dom(t) are called positions or nodes of the tree t. We denote by t(x) the
label of a given node x in dom(t).

Let the level of x ∈ dom(t) be denoted by level(x). Intuitively, the level of a
node measures its distance from the root of the tree. Then, we can define the
depth of a tree t as depth(t) = max{level(x) | x ∈ dom(t)}. In the same way,
for any tree t, we denote the size of the tree by |t| and the set of subtrees of t
(denoted with Sub(t)) as follows:

Sub(a) = {a} for all a ∈ V0,

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, . . . , tn) (n > 0).

For any set of trees T , Sub(T) =
⋃

t∈T Sub(t). Given a tree t = σ(t1, . . . , tn),
the root of t will be denoted as root(t) and defined as root(t) = σ. If t = a,
then root(t) = a. The successors of a tree t = σ(t1, . . . , tn) will be defined as
Ht = 〈root(t1), . . . , root(tn)〉.

Editing Distances Between Membrane Structures 329

Definition 6. A finite deterministic tree automaton is defined by the tuple A =
(Q, V, δ, F), where Q is a finite set of states, V is a ranked alphabet, Q∩ V = ∅,
F ⊆ Q is a set of final states, and δ =

⋃
i:Vi
=∅ δi is a set of transition functions

defined as follows:

δn : (Vn × (Q ∪ V0)n) → Q n > 0,
δ0(a) = a ∀a ∈ V0.

Given the state q ∈ Q, we define the ancestors of the state q, denoted by Anc(q),
as the set of strings

Anc(q) = {p1 . . . pn | pi ∈ Q ∪ V0 ∧ δn(σ, p1, . . . , pn) = q ∈ δ}.
From now on, we will refer to finite deterministic tree automata simply as tree

automata. We suggest [3, 8] for other definitions on tree automata.
The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees

as follows:

δ(a) = a for any a ∈ V0,

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0).

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
one can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q, V, δ, F), where:

Q = Sub(T),
F = T,

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q,

δ0(a) = a a ∈ V0.

P Systems

Finally, we will introduce some basic concepts from the theory of membrane
systems taken from [12]. A general P system of degree m is a construct

Π = (V, T, C, μ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), i0),

where:

– V is an alphabet (the objects),
– T ⊆ V (the output alphabet),
– C ⊆ V , C ∩ T = ∅ (the catalysts),
– μ is a membrane structure consisting of m membranes,
– wi, 1 ≤ i ≤ m is a string representing a multiset over V associated with the

region i,

330 D. López and J.M. Sempere

– Ri, 1 ≤ i ≤ m is a finite set of evolution rules over V associated with the
ith region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u→ v), where u is a string over V and
v = v′ or v = v′δ, where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m},

and δ is an special symbol not in V (it defines the membrane dissolving
action),

– i0 is a number between 1 and m and it specifies the output membrane of Π ,
or i0 = ∞ and in this case the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging them in the leaving order (if several objects
leave the system at the same time, then all permutations are allowed). The set
of numbers that represent the objects in the output membrane i0 will be denote
by N(Π). Obviously, both sets L(Π) and N(Π) are defined only for halting
computations.

Some kinds of P systems which have been proposed focus on the creation, di-
vision, and modification of membrane structures. There have been several works
in which these operations have been proposed (see, for example, [1, 11, 12, 13]).

In the following, we enumerate some kinds of rules which are able to modify
the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′ ,
2. Creation: a → [hb]h,
3. Dissolving: [ha]h → b.

The power of P systems with the previous operations and other ones (e.g.,
exocytosis, endocytosis, etc.) has been widely studied in the literature.

3 Multiset Tree Automata and Mirrored Trees

We will extend some definitions of tree automata and tree languages over mul-
tisets. We will introduce the concept of multiset tree automata and then we will
characterize the set of trees that they accept, as exposed in [16]. Observe that
our approach is different from Csuhaj-Varjú et al. [5] and from Kudlek et al.
[9] where the authors consider the case that bags of objects are analyzed by an
abstract machine. Here, we do not consider bags of (sub)trees but we introduce
bags of states and symbols in the finite control of the automata.

Given any tree automaton A = (Q, V, δ, F) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1)⊕MΨ (p2)⊕ · · · ⊕MΨ (pn) where
MΨ (pi) ∈ M1(Q∪V0) for all 1 ≤ i ≤ n. Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ, and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

Editing Distances Between Membrane Structures 331

the same set of states and symbols but in different order (that is, the multiset
induced by 〈p1p2 . . . pn〉 equals the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up
parsing as in the tree automaton case.

Definition 7. A multiset tree automaton is defined by the tuple MA = (Q, V, δ,
F), where Q is a finite set of states, V is a ranked alphabet with maxarity(V) =
n, Q∩V = ∅, F ⊆ Q is a set of final states, and δ is a set of transition functions
defined as follows:

δ =
⋃

1 ≤ i ≤ n

Vi
= ∅

δi,

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n,
δ0(a) = MΨ (a) ∈ M1(Q ∪ V0) ∀a ∈ V0.

We can take notice that every tree automaton A defines a multiset tree au-
tomaton MA as follows

Definition 8. LetA = (Q, V, δ, F) be a tree automaton. The multiset tree automa-
ton induced by A is defined by the tupleMA = (Q, V, δ′, F) where each δ′ is defined
as follows: MΨ (r) ∈ δ′n(σ,M) if δn(σ, p1, p2, . . . , pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A is
non-deterministic.

As in the case of tree automata, δ′ could also be extended to operate on
trees. Here, the automaton carries out a bottom-up parsing where the tuples
of states and/or symbols are transformed by using the Parikh mapping Ψ to
obtain the multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns
a multiset with at least one final state, then the input tree is accepted. So, δ′

can be extended as follows:

δ′(a) = MΨ (a) for any a ∈ V0,
δ′(t) = {M ∈ δ′n(σ,M1 ⊕ · · · ⊕Mn) | Mi ∈ δ′(ti) 1 ≤ i ≤ n},

for t = σ(t1, . . . , tn) (n > 0).

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T | MΨ (q) ∈ δ′(t), q ∈ F}.

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AncΨ (q) = {M | MΨ (q) ∈ δn(σ,M)}. The following
two results characterize the relation between the languages accepted by tree
automata and the multiset tree automata induced by them.

Theorem 1. (Sempere and López, [16]) Let A = (Q, V, δ, F) be a tree au-
tomaton, MA = (Q, V, δ′, F) be the multiset tree automaton induced by A and
t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q, then MΨ (q) ∈ δ′(t).

332 D. López and J.M. Sempere

Corollary 1. (Sempere and López, [16]) Let A = (Q, V, δ, F) be a tree automa-
ton and MA = (Q, V, δ′, F) be the multiset tree automaton induced by A. If
t ∈ L(A), then t ∈ L(MA).

Mirrored Equivalent Trees

We will introduce the concept of mirroring in tree structures as it was exposed
in [16]. Informally speaking, two trees will be related by mirroring if some per-
mutations at the structural level make the difference among them. For example,
the trees of Figure 1 have identical subtrees except that some internal nodes
have changed their order.

C

F

A

C

F

A

B

E D

B

D E

G H GH

Fig. 1. Two mirrored trees

We propose a definition that relates all the trees with this mirroring property.
For any other concepts used in this section, we refer to the previous section 2
on tree automata.

Definition 9. Let (V, r) be a ranked alphabet and t and s be two trees from
V T . We say that t and s are mirror equivalent, denoted by t �� s, if one of the
following conditions holds:

1. t = s = a ∈ V0,
2. t ∈ perm1(s),
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists 〈s1, s2, . . . , sk〉 ∈

perm(〈s1, s2, . . . , sn〉) such that ti �� si for all 1 ≤ i ≤ n.

The following results characterize the set of trees accepted by a multiset tree
automaton induced by a tree automaton.

Theorem 2. (Sempere and López, [16]) Let A = (Q, V, δ, F) be a tree automa-
ton, t = σ(t1, . . . , tn) ∈ V T , and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F)
be the multiset tree automaton induced by A. If t �� s, then δ′(t) = δ′(s).

Note that the converse result of this theorem is not generally true. For instance,
consider the trees t = σ(a) and s = σ(a, σ(a)) and the tree automaton with the
following transition function:

δ1(σ, a) = q1 ∈ F, δ2(σ, a, q1) = q1 ∈ F.

It is easy to see that δ′(t) = δ′(s) but t is not mirror equivalent to s.

Editing Distances Between Membrane Structures 333

Corollary 2. (Sempere and López, [16]) Let A = (Q, V, δ, F) be a tree automa-
ton, MA = (Q, V, δ′, F) the multiset tree automaton induced by A and t ∈ V T .
If t ∈ L(MA), then s ∈ L(MA) for any s ∈ V T such that t �� s.

The last results were useful to propose an algorithm to determine whether two
trees are mirror equivalent or not [16]: given two trees s and t, we can establish
in time O((min{|t|, |s|})2) if t �� s.

4 Solving the Membrane Structure Recognition Problem

Recently, in [7], a way to generate trees by membrane systems has been proposed.
Initially, any membrane structure can be represented by a tree taking the mem-
brane structure as a hierarchical order between regions. Freund et al. [7] have
taken advantage of a variant of P systems with active membranes and string ob-
jects. Active membranes have an electrical charge (polarization) together with
a set of rules that allow the membrane to change polarizations, move objects
(strings), dissolving the membrane, 2-dividing the membrane, etc. They have
proved that any recursively enumerable tree language can be generated by a
P system.

A way to recognize two identical membrane structures by taking advantage
of tree representations was proposed in [16]. For example, let us see Figure 2, in
which we represent a membrane structure with different trees.

A

C

F

B

D E

B

D E

C

F

A

C

F

A

A
B C

D

E F

B

E D

Fig. 2. A membrane structure together with different representations by trees

Obviously, the initial order of a membrane structure can be fixed. Anyway,
whenever the system evolves (by membrane dissolving, division, creation, etc.)
this order can be somehow ambiguous. Furthermore, the initial order of a P
system is only a naming convention given that the membrane structure of any

334 D. López and J.M. Sempere

P system can be renamed without changing its behavior due to the parallelism
(observe that if this mechanism were sequential, then the ordering could be
important for the final output).

The representation by trees could be essential for the analysis of the dynamic
behavior of P systems. Whenever we work with trees to represent the membrane
structure of a given P system, we can find a mirroring effect. Again, look at
Figure 2: the three different trees proposed for the membrane structure have a
mirroring property, that is, some subtrees at a given level of the tree have been
permuted.

The method that we propose to establish if two membrane structures μ and
μ′ are identical is based on the algorithm proposed in [16]. First, we represent μ
and μ′ by t and s respectively. Then, we apply the proposed algorithm and, if
t �� s we can affirm that μ and μ′ are identical.

5 Editing Distances Between Membrane Structures

The study of relations between membrane structures is proposed in the sequel.
The main problem we address is the following:

Let μ and μ′ be two membrane structures corresponding to arbitrary P systems.
What is the minimum set of membrane rule applications needed to transform one
into the other?

The solution to the last problem can be approached by using multiset tree
automata and editing distances between trees and tree automata. A previous
work [10], considered the case of tree automata. Here, we will extend the previous
results to multiset tree automata as described in previous sections.

First, we will describe the method employed in [10], in order to give the main
components of the editing distance calculation.

Given a tree automaton A = (Q, V, δ, F) and a tree t, the distance between
t and A can be established as the minimum in the set {D(t, q) | q ∈ F},
where D(t, q) is the minimum distance of the tree t to the state q. The dis-
tance D(t, q) evaluates the number of operations needed to reduce the tree t
to the state q according to the function δ in automata A. Some operations in-
volved in the distance refer to operations for trees as Insertion, Deletion and
Substitution. We consider the costs for these operations as exposed in [10].
Observe that these costs are usually defined by taking into account the sizes
of the trees. So, the bigger tree involved in the operation, the bigger cost to
handle it:

– Insertion
∀a ∈ V I(a) = 1
I(σ(t1, t2, . . . , tk)) = 1 +

∑
∀j I(tj),

– Deletion
∀a ∈ V B(a) = 1
B(σ(t1, t2, . . . , tk)) = 1 +

∑
∀j B(tj),

Editing Distances Between Membrane Structures 335

– Substitution
∀a ∈ V S(a, a) = 0
∀a, b ∈ V S(a, b) = 1
S(σ(t1, t2, . . . , tk), a) = B(σ(t1, t2, . . . , tk)) + I(a)
S(a, σ(t1, t2, . . . , tk)) = B(a) + I(σ(t1, t2, . . . , tk)).

So, the distance of every (sub)tree to a tree automaton will involve every
ancestor of each state of the automata together with the substructures of the
tree. If we have to reduce the structure σ(s1, s2, . . . , sn) to the state q such that
Anc(q) contains 〈p1, . . . , pm〉, we will have to modify substructures si or we will
have to insert states pj at the minimum cost.

The edition cost of every tree to every state of the automaton can be calculated
by considering the set of ancestors of the state and the set of successors of the
tree. Then we can apply a dynamic programming scheme that takes into account
previous calculations which can be stored in a distance matrix. For additional
details of this method we refer the reader to [10].

The main components used to calculate the distance of a tree t to a multiset
tree automaton MA are the same as in the tree automata case with the following
remarks:

1. The successors of any node in the tree are considered as a multiset instead
of a sequence.

2. The ancestors of every state in the automaton form a multiset.
3. The editing costs for trees and states are the same as in the tree automata.
4. The calculation of the edit distance is performed by using a edition matrix

which can be obtained by using a dynamic programming strategy with some
differences which will be explained later.

We propose Algorithm 1 which obtains the distance from a tree t to a
multiset tree automaton MA. Note that the target of the algorithm is to force
the automaton to accept the tree. Therefore the set of edit operations is not
fully needed. The algorithm use edit operations for substitution (reduction) of
a tree to a state of the automaton, deletion of a (sub)tree and insertion of a
state. Intuitively, the substitution of a tree by a state of the automaton could be
seen as the substitution of the tree by the nearest tree that could be reduced to
the state.

The error-correcting analysis method is shown in Algorithm 1. First the cost
of the basic operations are obtained (i.e., insertion cost of a state and deletion of
a subtree). Each of the calculations carried out are stored in a distance matrix
indexed by the set of subtrees and the set of states of the automaton. This
matrix is first initialized and the basic distances are stored. Distances between
symbols in V0 and between any symbol and any state of the automaton are also
considered.

Note that the key problem of the algorithm is to find, for any subtree t′ =
σ(t1, . . . , tn) of t and any transition δ(σ,M) = MΨ (p), with M ∈ AncΨ (p),
the matching of minimum cost between each ti and the states and symbols in
M . This problem can be reduced to the minimum cost maximum matching or

336 D. López and J.M. Sempere

Algorithm 1. Algorithm to obtain the minimum distance from a tree
t to the nearest tree in L(MA).
Input:

A multiset tree automaton A = (Q,V, δ, F).
A tree t.

Output:
Edit distance from t to the automaton A.

Method:
/* initialization */
∀t′ ∈ Sub(t) B[t′] = |t′| end∀
∀a ∈ V0 I [a] = 1 end∀
∀q ∈ Q

I [q] = min{|t′| : δ(t′) = q}
∀t′ ∈ Sub(t)

D[t′, q] = ∞
end∀

end∀
∀a, b ∈ V0

D[a, b] =
1 if a
= b

0 otherwise
D[a, q] = 1 + I [q] : q ∈ Q

end∀
/* iteration */
∀t′ = σ(t′

1, . . . , t
′
n) ∈ Sub(t) /* postorder traverse */

∀δ(σ, M) = MΨ (p)
D[t′, p] = min(D[t′, p], MMC(t′, δ(σ, M)))

end∀
end∀
Return(min{D[t′, q] : q ∈ F})

EndMethod:

maximum bipartite matching problem [14]. It is known that this problem can be
solved in polinomial time by reducing it to the minimum cost maximum flow
(MCMF) problem (see also [14]). This scheme is similar to the one proposed in
[18] where the author considers distances between unordered trees.

Briefly, MCMF looks for obtaining, for a given graph G = (V,E) in which
functions capacity and cost are defined among the edges, the best way (with
lower cost) to send the maximum flow between two nodes of the graph. The flow
has to take into account the capacity constraint. The cost function measures the
penalization of each unit of flow. Several solutions have been implemented to
solve this problem and their complexities depend on the number of nodes n and
the number of edges of the graph m. A proper algorithm for our purposes could
be the one by Edmons and Karp [6] because its complexity depends only on the
number of nodes of the graph (O(n3)).

Given a tree t = σ(t1, . . . , tn) and a transition MΨ (p) ∈ δ(σ,M), the minimum
cost matching between ti and the states in M can be obtained by the subroutine

Editing Distances Between Membrane Structures 337

MMC. First, this subroutine builds the directed graph from the parameters and
set the proper capacities and costs functions among the edges. Then, a general
solution could be run in order to solve the matching. The subroutine is shown
in Algorithm 2.

Intuitively, each successor tree and each state (namely nodes ti and qj respec-
tively) have their own nodes in the graph. Each node in one set is connected
with all the nodes in the other. These connections model the reduction (substi-
tution) of each tree to each state. Therefore, the capacity of these edges is set to
1 (these edges can be used only once) and the cost is set to the distance between
each tree and each state. Note that this distance is always available due to the
postorder traverse of the tree.

Algorithm 2. MMC Subroutine to obtain the Maximum Matching
of Minimum Cost.
Input:

A multiset tree automaton transition δ(σ, M) = MΨ (p).
A tree t = σ(t1, . . . , tn).

Output:
Minimum cost of the maximum match between {t1, . . . , tn}
and M .

Method:
/* construction of the graph */
Let G = (V, E) where:

V = {t1, . . . , tn} ∪ M ∪ {s, ss, iq, dt}
(ti, qj) ∈ E, ∀qj ∈ M ; i : 1..n
(ti, dt) ∈ E, i : 1..n
(iq, qj) ∈ E, ∀qj ∈ M
(s, ti) ∈ E, i : 1..n
(qj , ss) ∈ E, ∀qj ∈ M
(s, iq), (dt, ss) ∈ E

/* set capacities of each edge */
c(ti, qj) = 1, ∀qj ∈ M ; i : 1..n
c(ti, dt) = 1, i : 1..n
c(iq, qj) = #qj (M), i : 1..n
c(s, ti) = 1, i : 1..n
c(qj , ss) = #qj (M), ∀qj ∈ M
c(s, iq) = |M |, c(dt, ss) = n

/* set cost of each edge */
d(ti, qj) = D[ti, qj], ∀qj ∈ M ; i : 1..n
d(ti, dt) = B[ti], i : 1..n
d(iq, qj) = I [qj], ∀qj ∈ M
d(s, ti) = 0, i : 1..n
d(qj , ss) = 0, ∀qj ∈ M
d(s, iq) = 0
d(dt, ss) = 0

Return(MinCostMaxF low(G))
EndMethod:

338 D. López and J.M. Sempere

The set of edit operations we consider also takes into account the insertion of
a state. The node iq and the connections between this node and the nodes qj

model the insertion operation. Thus, the cost of these edges is set to the insertion
cost of the state. Note that the number of insertions of each state is bounded by
the number of occurrences of the state in M , therefore, the capacities of these
edges is set to this value.

In the same way, in order to model the deletion of trees, the node dt and the
connections with the successor trees are considered in the graph. Each tree can
be deleted only once, therefore the capacity of these edges is set to 1. Obviously,
the cost of these edges is set to the cost of deleting the corresponding tree.

The construction of the graph also considers a source node s. This node is
connected to the tree nodes, with connectivity 1 and cost 0 (these edges must
be selected without cost). The node s is also connected to the node iq and the
cost of this edge is set to 0. Note that the number of state insertions is bounded
by the number of states, therefore, the capacity of this edge is set to |M |. The
cost of this connection is set to 0.

Finally, the graph construction considers a sink node ss. This node is connected
with the state nodes qj with cost 0. Note that the edition process aims to fit the set
of successors with the multiset of ancestors, thus, the capacity of the edges must
be set to the number of occurrences of each state. The node dt is also connected
with the node ss with cost 0. This edge models the tree deletions, therefore, the
capacity of the connection must be set to the number of trees that can be deleted.

Example 1. Let us consider the tree t = σ(σ(b, σ(a, σ(a, b), a)), σ(a, σ(a, a))) and
the automaton defined by the following transition functions with q3 ∈ F :

δ(σ, aq1a) = q1, δ(σ, bq2) = q2, δ(σ, aa) = q1,
δ(σ, b) = q2, δ(σ, q1q2) = q3.

First, the insertion and deletion costs are obtained. They are shown in the fol-
lowing tables

t1 t2 t3 t4 t5 t6
3 6 8 3 5 14

q1 q2 q3
3 2 6

Deletion costs Insertion costs

Then, the editing process considers the first postorder subtree σ(a, b) and the
first transition δ(σ, aq1a) = q1. The process starts with the construction of the
graph shown in Figure 3.

Solid lines inFigure 3 show theminimumcostmatching.Thedistance is stored in
thematrixofdistances.Notethatthiscost is improvedwhenthetransitionδ(σ, aa)=
q1 is considered. The following table shows an intermediate state of the matrix.

DA t1 t2 t3 t4 t5 t6

q1 1 1
q2 1 3
q3 7

Editing Distances Between Membrane Structures 339

dtiq

a 1/D[a ,q]=41

ss

2/0

2/0

1/0

a

bs
1/0

3/0

1/0

1/D[a,a]=0

1/1 q1

1/1

1/4

1/1

2/I[a]=1

1/I[q]=31

Fig. 3. Underlying graph to obtain the distance of the first postorder subtree to the
first transition of the automaton. Edge labels show the capacity/cost. Solid lines show
the best matching.

q1

q2

dt

iq

1/D[a ,q]=32

as

1/0

1/0

1/0
ss

1/0

a

2/0
3/0

1/0

1/1

1/1

t 1

Fig. 4. Underlying graph to obtain the distance of the second postorder subtree to the
transition of the automaton δ(σ, q1q2) = q3. Solid lines show the best matching.

We now compute the distance of the second postorder subtree, σ(a, σ(a, b), a),
to the state q3. The underlying graph is shown in Figure 4. The best matching
is indicated in solid lines.

Observe that the minimum editing distance that we have calculated can be
established in terms of operations which have a translation into membrane rules.
Let us consider that μ is the membrane structure which is accepted by the
multiset tree automaton MA and μ′ is represented by a tree t. We have the
following correspondences between edition operations and membrane rules:

1. Insertion of state q
Let us suppose that the insertion is produced to match the ancestors of a
state p. The minimum tree that can be reduced to q is tj . The operations
needed to achieve this goal in the membrane structure are membrane creation
at region p in order to obtain membrane structure tj .

2. Reduction of tree ti to state q
Let us suppose that the tree which can be reduced to q with a minimal
cost is tj , according with the δ function of the automaton. The operations
needed to make this reduction are the ones involved to transform ti to tj at a

340 D. López and J.M. Sempere

region k. These operations consider again membrane creation and dissolving
depending on the operations involved in the minimum distance from ti to tj .

3. Substitution of a by b
The region a is dissolved and created with a new label.

4. Deletion of tree ti
Let us suppose that ti is a membrane structure at region k. The deletion
consists of several membrane dissolving of structure ti.

6 Conclusions and Future Work

We have proposed a method to calculate the minimum number of membrane
rules needed to transform a membrane structure into a different one. The number
of rules needed, if so, establishes an editing distance between P systems by
taking into account only membrane modifications. This measure can provide new
definitions about structural confluence in P systems, that is, structural agreement
during evolution.

Observe that we have worked with a simplified version of P systems. That
is, the objects inside any region do not influence the editing distance. A future
research will consider how the objects can be taken into account to calculate the
editing distance.

Acknowledgements

Work supported by the Spanish CICYT under contract TIC2003-09319-C03-02.
The authors are grateful to the anonymous referees which have made several
sharp remarks on the first version of this work. Special thanks are given to
Mario Pérez-Jiménez for useful discussions during the 3rd Brainstorming Week
on Membrane Computing which was held in Sevilla from 31st January to 4th
February 2005.

References

1. A. Alhazov, T.O. Ishdorj: Membrane operations in P systems with active mem-
branes. In Proceedings of the Second Brainstorming Week on Membrane Computing
(Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho Caparrini, eds.). TR
01/04 of RGNC. Sevilla University, 2004, 37–844.

2. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa: Multiset Processing. Mathemati-
cal, Computer Science, Molecular Computing Points of View. LNCS 2235, Springer,
Berlin, 2001.

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, M. Tommasi: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (1997).

4. E. Csuhaj-Varjú, A. Di Nola, Gh. Păun, M. Pérez-Jiménez, G. Vaszil: Editing
configurations of P systems. Proc. Third Brainstorming Week on Membrane Com-
puting, Sevilla, 2005, RGNC Report 01/2005, 131–155.

Editing Distances Between Membrane Structures 341

5. E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana: Multiset automata. In [2], 69–83.
6. J. Edmonds, R.M. Karp: Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of the ACM, 19, 2 (1972), 248–264.
7. R. Freund, M. Oswald, A. Păun: P systems generating trees. In Pre-proceedings of

Fifth Workshop on Membrane Computing, WMC5, Milano, June 2004 (G. Mauri,
Gh. Păun, C. Zandron, eds.), MolCoNet project IST-2001-32008, 2004, 221–232.

8. F. Gécseg, M. Steinby: Tree languages. In vol. 3 of [15], 1–69.
9. M. Kudlek, C. Mart́ın-Vide, Gh. Păun: Towards a formal macroset theory. In [2],

123–133.
10. D. López, J.M. Sempere, P. Garćıa: Error correcting analysis for tree languages. In-

ternational Journal of Pattern Recognition and Artificial Intelligence, 14, 3 (2000),
357–368.

11. A. Păun: On P systems with active membranes. In: Proceedings of Conference on
Unconventionals Models of Computation, Brussels, 2000, 187-201.

12. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
13. Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori: On the power of membrane division

in P systems. Theoretical Computer Sci., 324, 1 (2004), 61–85.
14. R.L. Rivest T.H. Cormen, C.E. Leiserson, C. Stein: Introduction to Algorithms.

MIT Press and McGraw-Hill, second edition, 2001.
15. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin,

1997.
16. J.M. Sempere, D. López: Recognizing membrane structures with tree automata. In

Proceedings of the 3rd Brainstorming Week on Membrane Computing 2005 (M.A.
Gutirrez Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, eds.),
RGNC Report 01/2005 Research Group on Natural Computing, Sevilla Univer-
sity, Fénix Editora, 2005, 305–316.

17. A. Syropoulos: Mathematics of multisets. In [2], 347–358.
18. K. Zhang: A constrained edit distance between unordered labelled trees. Algorith-

mica, 15 (1996), 205–222.

Relational Membrane Systems

Adam Obtu�lowicz

Institute of Mathematics,
Polish Academy of Sciences,

Śniadeckich 8, P.O. Box 21 00-956 Warsaw, Poland
adamo@impan.gov.pl

Abstract. The notion of a relational membrane system is introduced
as a generalization of the notion of a membrane system defined in [8]. A
representation of certain relational membrane systems by some heredi-
tary finite sets is given. Evolutive transformations of relational membrane
systems with mobile membranes according to simultaneous application
of some evolution rules are described by using the representation.

1 Introduction

We continue the discussion initiated in [7], concerning the interconnections be-
tween membrane computing, cf. [8], and Gandy’s mechanisms, cf. [5].

We propose in the paper an approach to evolution processes of membrane
systems with active membranes, where membrane systems are represented by
certain hereditary finite sets in a way different from the representations of mem-
brane systems given in [7].

The approach is restricted to some narrow class of evolution rules related to
some development evolution rules discussed in [6] and to process the capabilities
“can enter in an ambient”, “can exit out of an ambient”, “can open an ambient”,
introduced in [3]. We focus more on membrane mobility than on transformations
of membrane contents with respect to the objects contained in the regions of
membranes during an evolution process.

We expect that the methods contained in this approach can be extended
and modified to introduce mathematical models (by means of denotational se-
mantics) of formal systems like Ambient Calculus [3] and Brane Calculi [1], [4],
where these models, based on hereditary finite sets, may have also an immediate
physical or biochemical interpretation.

We introduce in Section 2 a notion of a relational membrane system which
comprises a wide class of membrane systems, including fuzzy membrane systems,
and other structures related to membrane systems. The relational membrane sys-
tems belonging to a certain class have a simple representation by some hereditary
finite sets which we use in Section 3 to discuss in detail the possible transforma-
tions of membrane systems according to simultaneous applications of evolution
rules as mentioned above. The transformations are described simply in terms
of union, intersection, difference of sets, and an operation assigning to a set x

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 342–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Relational Membrane Systems 343

the one element set {x}. The description is possible due to the representation of
relational membrane systems by hereditary finite sets given in Section 2.

2 Relational Membrane Systems and Their
Representation by Hereditary Finite Sets

Both membrane computing approach and Gandy’s mechanism approach to com-
puting devices concern hierarchically organized systems, where the hierarchical
organization of a given system is determined by the nesting relation of the less
complex parts of the system in the more complex parts of the system.

In membrane computing approach the nesting relation which determines the
hierarchical organization of a given membrane system is modelled by the tree
whose nodes are membranes of the system, where membranes correspond to the
parts of the system and for all two different membranes of the system there is
no common membrane which is nested immediately in both of them.

In Gandy’s mechanism approach the nesting relation which determines the
hierarchical organization of a given system is modelled by the restriction of the
membership relation ∈ to the union WTC(x)∪L for that hereditary finite set x
which is a model of the whole system, where WTC(x) is the weak transitive
closure of x and L is a set of urelements (see the Appendix). In this case ure-
lements are elementary (indecomposable) parts and the elements of WTC(x)
are composite parts, where for two different composite parts there may exist a
common composite part which is nested in both of them.

Thus the considered approaches are different because of the shape of models
used in them.

We introduce and discuss a notion of a relational membrane system which is
a generalization of models used in these approaches and which includes the case
of a fuzzy nesting relation appearing in practice.

Let D = {N, [0, 1]}, where N is the set of natural numbers with 0 and [0, 1]
is the closed unit interval.

For a setD ∈ D we define a [finite]D-relational membrane system S to be given
by a function ES : US ×US → D, a distinguished proper subset OS of [a finite] US ,
and a distinguished element rS ∈ US −OS such that the following conditions hold:

i) ES(m, a) = 0 for all m ∈ US and a ∈ OS ,
ii) the underlying graph GS of S with the set VS of vertices given by

VS = US − OS ,

and the set ES of edges given by

ES = {(m,m′) ∈ VS × VS | ES(m′,m) > 0}

is a rooted graph with the root rS , i.e., GS is an acyclic graph and for every
m ∈ VS there exists a natural number n > 0 and a route m1 . . .mn in GS

whose first elementm1 is rS and the last elementmn ism (a route in a directed
graphG is meant to be a finite string v1 . . . vn with n > 0 of vertices ofG such
that, if n > 1, then (vi, vi+1) is an edge of G for all i with 1 ≤ i < n).

344 A. Obtu�lowicz

The sets US ,OS ,US −OS are called the universe of S, the set of objects of S,
the set of membranes of S, respectively, the function ES is called the immediate
nesting relation of S, and rS is called the root or the skin of S.

The immediate nesting relation ES of a D-relational membrane system S is
interpreted in the following way:

— for D = N the value ES(x, y) means that exactly ES(x, y) copies of part x
are immediately nested in part y,

— for D = [0, 1] the value ES(x, y) means that with the certainty degree ES(x, y)
part x is immediately nested in part y.

Thus [0, 1]-relational membrane systems are fuzzy relational membrane sys-
tems.

If S is a finite N -relational membrane system whose underlying graph GS is a
tree, i.e., for every m ∈ VS there exist a unique route in GS whose first element
is rS and the last element is m, and the following condition holds:

iii) ES(m,m′) ≤ 1 for all m,m′ ∈ US − OS ,

then S is a usual membrane system whose set of membranes is US −OS, the set
of objects is OS, GS is the membrane structure of S in Păun’s sense, and for
all m ∈ US − OS and a ∈ OS the value ES(a,m) means that exactly ES(a,m)
copies of a are contained in the region of m.

For every hereditary finite set x with urelements in L the characteristic
function of the restriction of the membership relation ∈ to the set
WTC(x) ∪ L is the immediate nesting relation of that N -relational membrane
system whose universe is WTC(x) ∪ L and the set of objects is L.

We introduce a notion of homomorphism of relational membrane systems to
describe certain relationships between relational membrane systems in mathe-
matical way.

For D ∈ D and two D-relational membrane systems with OS = OS′ we define
a homomorphism of S into S′ to be a mapping h : US → US′ , written h : S → S′,
such that the following two conditions hold:

H1) h(a) = a for every a ∈ OS ,
H2) ES(x1, x2) ≤ ES′

(
h(x1), h(x2)

)
for all x1, x2 ∈ US .

A homomorphism h of a relational membrane system S into a relational mem-
brane system S′ is called an isomorphism of S into S′ if there exists a homo-
morphism h− : S′ → S, called the inverse of h, such that

h−(h(x)) = x for all x ∈ US and h(h−(x′)) = x′ for all x′ ∈ US′ .

We say that two D-relational membrane systems S and S′ with OS = OS′

are isomorphic or that S is isomorphic to S′ if there exists an isomorphism of S
into S′.

The relationship of two relational membrane systems such that they are iso-
morphic is a kind of structural equivalence of these systems in the sense that

Relational Membrane Systems 345

they differ only in the mathematical presentation or physical interpretation
of membranes themselves.

We give below a useful representation of certain N -relational membrane sys-
tems by hereditary finite sets.

We say that an N -relational membrane system S is a Boolean relational mem-
brane system if S satisfies the condition

iv) ES(x, y) ≤ 1 for all x, y ∈ US .

For a finite Boolean relational membrane system S one constructs a hereditary
finite set hf(S) over US which is defined inductively by

hf(S) = {a ∈ OS | ES(a, rS) > 0} ∪ {rS}
∪ {hf(S(m)) | ES(m, rS) > 0 and m ∈ US − OS},

where S(m) is that subsystem of S whose immediate nesting relation ES(m) is
the restriction of ES to the set

US(m) = {m′ ∈ US − OS | there exists a route in GS

with the first element m and the last element m′} ∪ OS

and m is the root of S(m).

Theorem 1. Let S be a finite Boolean relational membrane system. Then S
is isomorphic to that N -relational membrane system S′ whose universe is
WTC(hf(S)) ∪ OS and the immediate nesting relation ES′ of S′ is the
characteristic function of the restriction of the membership relation ∈ to
WTC(hf(S)) ∪ OS.

Proof. A mapping h : US → WTC(hf(S)) ∪ OS given by h(a) = a for every
a ∈ OS and h(m) = hf(S(m)) for every m ∈ US − OS is an isomorphism of S
into S′, where for the inverse h− of h the value h−(y) is that unique m ∈ US−OS

which belongs to y for every y ∈ WTC(hf(S)). ��

We shall use the following notions in Section 3.
Let M be a family of pairwise disjoint non-empty sets of urelements in L and

let x be a hereditary finite set over L. We say that x is determined by M if the
following conditions hold:

M1) {y ∩
⋃

M |y ∈ WTC(x)} = M,
M2) y ∩

⋃
M = y′ ∩

⋃
M implies y = y′ for all y, y′ in WTC(x).

Corollary 1. Let S be an N -relational membrane system which is Boolean.
Then hf(S) is a hereditary finite set determined by M =

{
{m} |m ∈ US −OS

}
.

Proof. It is a consequence of Theorem 1. ��

We say that a hereditary finite set x is a tree-like hereditary finite set if the
graph Gx = (Vx, Ex) with the set Vx = WTC(x) of vertices and the set Ex =
{(y, z) | z ∈ y and {y, z} ⊆ WTC(x)} of edges is a tree with the root x.

346 A. Obtu�lowicz

Corollary 2. If the underlying graph GS of a Boolean N -relational membrane
system is a tree, then hf(S) is a tree-like hereditary finite set.

Proof. It is a consequence of Theorem 1. ��

The representation of S by hf(S) appears useful for a discussion of certain evo-
lutive transformations of N -relational membrane systems which are determined
by simultaneous applications of different evolution rules. Namely, these evolutive
transformations can be described in terms of hereditary finite sets hf(S) by us-
ing set theoretical operations of union, intersection, difference of sets, and that
unary operation {?} whose value is {x} for a hereditary finite set x. We present
a description of evolutive transformations of hereditary finite sets in Section 3.

3 Evolutive Transformations of Hereditary Finite Sets

We consider those evolutive transformations of hereditary finite set into heredi-
tary finite sets which are determined by evolution rules written in Păun’s manner
as the parentheses expressions:

R1) [a] → b (dissolution rule),
R2) [a][b] → [c[d]] (in-rule),
R3) [[a]b] → [c][d] (out-rule),

where a, b, c, d are urelements, but their occurrence in the above expressions is
not obligatory.

We adopt the following notation for evolution rules. For a rule R of the form
given in R1)

left(R) = {a} and right(R) = {b},
eventually right(R) = ∅ for R of the form [a] → .

For a rule R of the form given in R2) or R3)

left1(R) = {a}, left2(R) = {b}, right1(R) = {c}, and right2(R) = {d},

if a, b, c, d occur in the rules, otherwise lefti(R) and righti(R) are empty for
i ∈ {1, 2}.

The single applications from the top of the above rules to hereditary finite
sets are described in the following way:

— if a ∈ y ∈ x ∈ HF, then the dissolution rule [a] → b can be applied to x and
the result of its application is a new hereditary finite set of the form

(x − {y}) ∪ (y − {a}) ∪ {b},

— if a ∈ y ∈ x ∈ HF, b ∈ z ∈ x, and z �= y, then the in-rule [a][b] → [b[a]] can
be applied to x and the result of its application is a new hereditary finite
set of the form

(x − {y, z})∪ {z ∪ {y}},

Relational Membrane Systems 347

— if a ∈ z ∈ y ∈ x ∈ HF and y − {z} �= ∅, then the out-rule [[a]] → [a][] can
be applied to x and the result of its application is a new hereditary finite
set of the form

(x− {y}) ∪ {y − {z}, z}.
The results of application are similar for arbitrary objects occurring in the rules.

The above described single applications of evolution rules R1), R2), R3) from
the top determine evolutive transformations of hereditary finite sets into the
new hereditary finite sets from the top. One sees that these rules are related
to some development evolution rules discussed in [6] and to process capabilities
“can enter in an ambient”, “can exit out of an ambient”, “can open an ambient”,
introduced in [3]. We describe by using ∪, −, and {?} a more complicated case of
evolutive transformations of hereditary finite sets, where these transformations
are determined by simultaneous applications of many different rules to many
different elements of WTC(x) for a hereditary finite set x to be transformed.

The evolutive transformations of hereditary finite sets considered above can
be “transferred” to N -relational membrane systems by using the construction
of hf(S) (see Theorem 1 and Corollary 1) to define evolutive transformations of
N -relational membrane systems themselves.

We restrict our considerations to tree-like hereditary finite sets which are closely
related to the usual membrane systems of [8] (see Corollary 2 in this paper).

Let x be a tree-like hereditary finite set determined by a family M of pairwise
disjoint non-empty sets and let x belong to the set HF of hereditary finite sets
over the set L = O ∪

⋃
M of urelements with O ∩

⋃
M �= ∅ for O meant as a

set of objects. By a local action over x we mean an ordered pair a = (P a, Ra),
where P a is a bijection from dom(a) into scope(a) with scope(a) ⊂ WTC(x) and
Ra is an evolution rule such that

a1) if Ra is a dissolution rule of the form [a] → b, then dom(a) = {0, 1}, P a(1) ∈
P a(0), and a ∈ P a(1),

a2) if Ra is an in-rule [a][b] → [c[d]], then dom(a) = {0, 1, 2}, {P a(1), P a(2)} ⊂
P a(0), a ∈ P a(1), and b ∈ P a(2),

a3) if Ra is an out-rule [a[b]] → [c][d], then dom(a) = {0, 1, 2}, b ∈ P a(2) ∈
P a(1) ∈ P a(0), and a ∈ P a(1).

For a local action a over x the bijection P a is meant as a place of application
of the rule Ra, where it will be seen later than one can interpret scope(a) as the
scope of the local transformation of x according to the rule Ra.

Let A be a set of local actions over x. For a set y ∈ WTC(x) and a set
z ⊆ y we write A � (y − z) to denote the set of local actions a over y − z such
that a ∈ A or P a(0) = y − z with a∗ = (P a∗

, Ra) ∈ A for P a∗
: dom(a) →

(scope(a)−{y−z})∪{y} with P a∗
(i) = P a(i) for all i ∈ dom(a)−{0}. If z = ∅,

then A � (y − z) = A � y is simply the set of those local actions over y which
belong to A. If z = y, then A � (y − z) = A � ∅ = ∅.

For a set A of local actions over x we adopt the following notation

Aα = {a ∈ A|Ra is an α-rule} for α ∈ {in, out},
Adiss = {a ∈ A|Ra is a dissolution rule}.

348 A. Obtu�lowicz

We define now a property of sets A of local actions over tree-like hereditary
finite sets x such that if A has this property, then one can construct the result of
transformation of x with respect to A in a consistent (unambigous) way, where
x is transformed according to simultaneous application of the rules Ra in places
P a, respectively for all a ∈ A.

A set A of local actions over x is called a proper set of local actions over x if
the following conditions hold:

(C0) for all local actions a, a′ in A if P a = P a′
, then Ra = Ra′

,
(C1) for all local actions a, a′ in A if a �= a′, then scope(a) ∩ scope(a′) = ∅ or

the disjunction of the following conditions holds:
(C1,1) P a(0) = P a′

(0) and (scope(a) − {P a(0)}) ∩ (scope(a′) − {P a′
(0)}) = ∅,

(C1,2) if {a, a′} ⊆ Adiss, then P a(0) = P a′
(1),

(C1,3) if {a, a′} ⊆ Ain, then P a(1) = P a′
(1) or P a′

(0) ∈ {P a(1), P a(2)},
(C1,4) if {a, a′} ⊆ Aout, then P a(0) = P a′

(2)
or {P a(1), P a(2)} ∩ {P a′

(0), P a′
(1)} = {P a(1)},

(C1,5) if a ∈ Adiss and a′ ∈ Ain, then P a(1) = P a′
(0)

or P a(0) ∈ {P a′
(1), P a′

(2)},
(C1,6) if a ∈ Adiss and a′ ∈ Aout, then P a(1) = P a′

(0) or {P a(0), P a(1)} ∩
{P a′

(1), P a′
(2)} = {P a(0)},

(C1,7) if a ∈ Ain and a′ ∈ Aout, then P a(1) = P a′
(1) or P a′

(0) ∈ {P a(1), P a(2)}
or scope(a) ∩ {P a′

(1), P a′
(2)} = {P a(0)}.

We adopt the following conventions to explain and illustrate the notion of a
proper set of local actions.

For a tree-like non-empty hereditary finite set x whose content is not specified
(or is not important for considerations) we illustrate x by a drawing given by
the triangle below whose bottom vertex is labelled by x.

#
#
#
#
#$

$
$
$
$�

x

For a tree-like non-empty hereditary finite set x whose content is not specified
we illustrate one-element set {x} by a drawing given by a triangle with an arrow
glued to the bottom vertex of the triangle as below

•

•

x

{x}

..

where the bottom vertex of the drawing is that vertex which is labelled by {x}.

Relational Membrane Systems 349

If a tree-like hereditary finite set x is such that x = u∪w for hereditary finite
sets u,w with (HF ∩ u) ∩ (HF ∩ w) = ∅ such that there are given the draw-
ings used for illustrations of u and w, respectively, then we illustrate x by the
drawing below

• x

wu

..

where the meta-triangles labelled by u and w contain the drawing used to illus-
trate u and the drawing used to illustrate w, respectively. In the above drawing
which illustrates x = u∪w the bottom vertex labelled by x is the result of gluing
of the bottom vertex of the drawing used to illustrate u and the bottom vertex
of the drawing used to illustrate w. Here the intersection of the set of vertices of
the drawing for u and the set of vertices of the drawing for w is the one-element
set containing the result of gluing described above, which is the vertex labelled
by x.

Thus for tree-like hereditary finite sets x, y, z such that z ∈ y ∈ x one can
illustrate x by the drawing

x − {y}
y − {z}

•

•

• x

y

z

.

.

.

where the contents of x− {y}, y − {z}, and z are not specified.
We explain and illustrate the conditions (C1,1)–(C1,7), where, to simplify the

considerations, we assume that the objects do not occur in the evolution rules.
Ad (C1,1). For two different local actions a ∈ Adiss and a′ ∈ Aout satisfying

(C1,1) the places P a and P a′
are illustrated in Fig. 1(a). The result of simulta-

neous application of the rules Ra and Ra′
in places P a and P a′

, respectively, is
illustrated in Fig. 1(b), where P a(1) is “dissolved” in P a(0) and P a′

(2) is “sent
out” of P a′

(1) into P a(0) = P a′
(0). The remaining cases of a and a′ satisfying

(C1,1) are explained and illustrated in a similar way.
Ad (C1,2). For two different local actions a, a′ belonging to Adiss with P a(0) =

P a′
(1) the places P a and P a′

are illustrated in Fig. 2(a). The result of simulta-
neous application of the rules Ra and Ra′

in places P a and P a′
, respectively, is

illustrated in Fig. 2(b), where both P a(1) and P a′
(1)− {P a(1)} are “dissolved”

simultaneously in P a′
(0).

350 A. Obtu�lowicz

.

.

•

• •

•

(a)
P a(0) = P a′

(0)

r

s

P a(1) P a′
(1)

P a′
(2)

•

••

r P a(1)

.

P a′
(2) s

r ∪ P a(1) ∪ {P a′
(2), s}

(b)

where r = P a(0) − {P a(1), P a′
(1)} and s = P a′

(1) − {P a′
(2)}

Fig. 1

•

•

•

.

.

r

s

P a′
(0)

P a(0) = P a′
(1)

P a(1)

(a)

r P a(1) s

r ∪ P a(1) ∪ s
(b)

where r = P a′
(0) − {P a(0)} and s = P a(0) − {P a(1)}

Fig. 2

Ad (C1,3). For two different local actions a, a′ belonging to Ain with P a(1) =
P a′

(1) the places P a and P a′
are illustrated in Fig. 3(a). The result of simul-

taneous application of the rules Ra and Ra′
in these places P a and P a′

, re-
spectively, is illustrated in Fig. 3(b), where both P a(2) and P a′

(2) are “sent
into” P a(1) = P a′

(1) simultaneously. We point out that for all two different
local actions a and a′ with scope(a)∩ scope(a′) �= ∅ the condition (C1,3) implies
P a(1) �= P a′

(2), which excludes the case where simultaneous application of Ra

and Ra′
in places P a and P a′

is ambiguous. The remaining cases of a and a′

satisfying (C1,3) are explained and illustrated in a similar way.
Ad (C1,4). For two different local actions a, a′ belonging to Aout we explain

the case of {P a(1), P a(2)} ∩ {P a′
(0), P a′

(1)} = {P a(1)} which is equivalent to
the disjunction of the following two conditions:

i) P a′
(0) = P a(1) and P a′

(1) �= P a(2),
ii) P a(1) = P a′

(1).

Relational Membrane Systems 351

.
• • •

•

.
r

(a)
P a(0) = P a′

(0)

P a(1) = P a′
(1) P a(2) P a′

(2)

•

•

• •

r

P a(1)

(b)
r ∪ {P a(1) ∪ {P a(2), P a′

(2)}}

P a(1) ∪ {P a(2), P a′
(2)}

P a(2) P a′
(2)

where r = P a(0) − {P a(1), P a(2), P a′
(2)}

.

Fig. 3

The places P a and P a′
for the case i) are illustrated in Fig. 4(a). The result of

simultaneous application of Ra and Ra′
in these places P a and P a′

, respectively,
is illustrated in Fig. 4(b), where P a(2) and P a′

(2) are simultaneously “sent
out” of P a(1) into P a(0) and of P a′

(2) into P a′
(0) = P a(1), respectively. The

condition P a′
(1) �= P a(2) in i) excludes the case where simultaneous application

of Ra and Ra′
in places P a and P a′

is ambiguous. The case ii) and the remaining
cases in (C1,4) are explained and illustrated in a similar way.

Ad (C1,5). One explains and illustrates this condition in a way similar to
(C1,1) and (C1,3).

Ad (C1,6). One explains and illustrates this condition in a way similar
to (C1,4). We point out here that for two different local actions a ∈ Adiss and
a′ ∈ Aout with scope(a) ∩ scope(a′) �= ∅ the condition

{P a(0), P a(1)} ∩ {P a′
(1), P a′

(2} = {P a(0)}

is equivalent to the disjunction of the following two conditions:

iii) P a(0) = P a′
(1) and P a(1) �= P a′

(2),
iv) P a(0) = P a′

(2).

The condition P a(1) �= P a′
(2) in iii) excludes the case where simultaneous ap-

plication of Ra and Ra′
in the places P a and P a′

is ambiguous.
Ad (C1,7). For two different local actions a ∈ Ain and a′ ∈ Aout we explain

the case of scope(a) ∩ {P a′
(1), P a′

(2)} = {P a(0)} which is equivalent to the
disjunction of the following two conditions:

v) P a(0) = P a′
(1) and P a′

(2) /∈ {P a(1), P a(2)},
vi) P a(0) = P a′

(2).

The places P a and P a′
in the case v) are illustrated in Fig. 5(a). The result of

simultaneous application of Ra and Ra′
in these places P a and P a′

, respectively,
is illustrated in Fig. 5(b), where P a(2) is “sent into” P a(1) and P a′

(2) is “sent

352 A. Obtu�lowicz

.

.

r

s

t

(a)
P a(0)

P a(1) = P a′
(0)

P a(2) P a′
(1)

P a′
(2)

•

•

• •

•

r

s

r ∪ {P a(2), s ∪ {t, P a′
(2)}}

(b)

P a(2) s ∪ {t, P a′
(2)}

t P a′
(2)

where r = P a(0) − {P a(1)}, s = P a(1) − {P a(2), P a′
(1)}

and t = P a′
(1) − {P a′

(2)}

•

• •

• •

Fig. 4

out” of P a′
(1) = P a(0) into P a′

(0) simultaneously. The condition P a′
(2) /∈

{P a(1), P a(2)} in v) excludes the case where simultaneous application of Ra

and Ra′
in the places P a and P a′

is ambiguous. The case vi) and the remaining
cases in (C1,7) are explained and illustrated in a similar way.

Let A be a proper set of local actions over a tree-like hereditary finite set x
determined by a family M for x belonging to the set HF of hereditary finite sets
over the set L = O∪

⋃
M of urelements with O∩

⋃
M = ∅ for O meant as a set

of objects. By the result of evolutive transformation of x with respect to A we
mean a set, denoted by Ap(A, x), which is defined inductively (with respect to
the number of elements of A and the depth of x) by the following equations:

1) Ap(∅, x) = x and Ap(∅,∅) = ∅,
2) if A �= ∅, then Ap(A, x) = (L ∩ x) ∪ Ap•(A, x) for

Ap•(A, x) =
⋃

1≤i≤4

Api(A, x),

where
• Ap1(A, x) = {Ap(A � y, y) |y ∈ x ∩ HF and y /∈

⋃
{scope(a) |a ∈ A},

• Ap2(A, x) =
⋃
{Ap•(A � P a(1), P a(1)) ∪ Za

diss |P a(0) = x and a ∈ Adiss}
for

Za
diss =

(
(P a(1) ∩ O) − left(Ra)

)
∪ right(Ra),

• Ap3(A, x) = {Ap•(A � P a(2), P a(2)) ∪ Za,2
out |P a(0) = x and a ∈ Aout}

for
Za,2

out =
(
(P a(2) ∩ L) − left2(Ra)

)
∪ right2(R

a),

Relational Membrane Systems 353

.

r

s

P a′
(0)

P a(0) = P a′
(1)

P a(1) P a(2) P a′
(2)

(a)
•

•

• • •

•

•

•

•

•

r

s

P a(1)

.

(b)
r ∪ {s ∪ {P a(1) ∪ {P a(2)}}, P a′

(2)}

s ∪ {P a(1) ∪ {P a(2)}}

P a(1) ∪ {P a(2)}

P a(2)

P a′
(2)

where r = P a′
(0) − {P a′

(1)} and s = P a(0) − {P a(1), P a(2), P a′
(2)}

Fig. 5

• Ap4(A, x) = {Ap•(A � (y − P y), y − P y) ∪Qy ∪ Zy |y ∈ INOUTx
A} for

INOUTx
A = {P a(1) |P a(0) = x and a ∈ Ain ∪ Aout},

P y = {P a(2) |P a(1) = y and A ∈ Aout},
Qy = {Ap•(A � P a(2), P a(2)) ∪ Za,2

in |P a(1) = y and a ∈ Ain}
with
Za,2

in =
(
(P a(2) ∩ L) − left2(Ra)

)
∪ right2(R

a),

Zy =
(
(y ∩ L) −

⋃
{left1(Ra) |y = P a(1) and a ∈ Ain ∪ Aout}

)
∪
⋃

{right1(R
a) |y = P a(1) and a ∈ Ain ∪ Aout}.

The result Ap(A, x) of evolutive transformation of x with respect to A is the
result of simultaneous application of the rules Ra in places P a, respectively for
a ∈ A, such that Ap(A, x) inherits some basic properties of x which are described
in the following theorem.

Theorem 2. Let x be a tree-like hereditary finite set determined by a family
M of pairwise disjoint non-empty sets and let A be a proper set of local action
over x. Then Ap(A, x) is a tree-like hereditary finite set determined by M′ =
M − {P a(1) ∩

⋃
M |a ∈ Adiss}.

Proof. One proves the theorem by induction on the number of elements of A
and the depth of x. ��

354 A. Obtu�lowicz

4 Concluding Remarks

We point out here those aspects and features of methods introduced in the
paper which may determine some future investigations in the area of membrane
computing.

• One can see that the class of proper sets A of local actions over tree-like
hereditary finite sets x is maximal with respect to the definition of Ap(A, x),
in the sense that for any class of sets A of local actions properly containing the
class of proper sets of local actions the definition of Ap(A, x) is not correct
and may require some modifications. The investigations of those classes of
sets of local actions which properly contain the class of proper sets of local
actions may shed more light on massively parallel processes of evolution of
membrane systems with mobile membranes.

• If we define a P system to be an ordered pairΠ = (x0,R) with x0 being a tree-
like hereditary finite set determined by some family of sets and R being a set of
evolution rules of the form R1)–R3), then the definition of a proper set of local
actions and the definition of Ap(A, x) provide a simple uniform treatment
of processes generated by Π . Namely, the processes generated by Π can be
defined simply in a uniform way as sequences x0, . . . , xn, . . ., maybe infinite, of
tree-like hereditary finite sets such that xn+1 = Ap(An, xn) (see Theorem 2),
where An is a maximal proper set of local actions over xn with {Ra |a ∈
An} ⊆ R. A uniform treatment means, among others, that the “next state”
relation is given simply by the equation Ap(A, x) = y, where a treatment of x
and y up to some structural equivalence (isomorphism) of membrane systems
is not required. The treatment “up to structural equivalence” is required
for some other presentations of membrane systems, different from that by
hereditary finite sets; for instance, a syntactical presentation of membrane
systems by expressions requires the treatment “up to structural equivalence”.

• The notion of a hereditary finite set, the concept of a proper set of local
actions defined for wider classes of evolution rules than those of the forms
R1)–R3), and appropriate modifications of the definition of Ap(A, x) may give
rise to mathematical models (by means of denotational semantics) of formal
systems like Ambient Calculus [3], [2] and Brane Calculi [1], [4], where the
models may have some immediate physical or biochemical interpretation. We
have already some partial results in this respect.

References

1. L. Cardelli: Brane calculi. Interactions of biological membranes. In Proc. Compu-
tational Methods in System Biology (CMSB 2004), Paris, France, May 2004. LNCS
3082, Springer, Berlin, 2004, 257–280.

2. L. Cardelli, A.D. Gordon: Mobile ambients. In Foundations of Software Science and
Computation Structures, LNCS 1378, Springer, Berlin, 1998, 140–155.

3. L. Cardelli, A.D. Gordon: Mobile ambients. Coordination. Theoret. Comput. Sci.,
240 (2000), 177–213.

Relational Membrane Systems 355

4. L. Cardelli, Gh. Păun: An universality result for (mem)brane calculus based on
mate/drip operations. In Proc. Cellular Computing (Complexity Aspects) (M.A.
Gutiérrez-Naranjo et al., eds.), ESF PESC Exploratory Workshop, January 31–
February 2, 2005, Fenix Editora, Sevilla, 2005, 75–94.

5. R. Gandy: Church’s thesis and principles for mechanisms. In The Kleene Symposium
(J. Barwise et al., eds.), North-Holland, Amsterdam, 1980, 123–148.

6. S.N. Krishna: On the efficiency of a variant of P systems with mobile membranes.
In Proc. Cellular Computing (Complexity Aspects) (M.A. Gutiérrez-Naranjo et al.,
eds.), ESF PESC Exploratory Workshop, January 31–February 2, 2005, Fenix Edi-
tora, Sevilla, 2005, 237–245.

7. A. Obtu�lowicz: Gandy’s principles for mechanisms and membrane computing. In
Proc. Cellular Computing (Complexity Aspects) (M.A. Gutiérrez-Naranjo et al.,
eds.), ESF PESC Exploratory Workshop, January 31–February 2, 2005, Fenix Edi-
tora, Sevilla, 2005, 267–276.

8. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

Appendix

For a potentially infinite set L of labels or names which are urelements , i.e., they
are not (treated as) sets themselves, we define inductively a family of sets HFi

for natural numbers i ≥ 0 such that

HF0 = ∅,

HFi+1 = the set of nonempty finite subsets of L ∪ HFi.

The elements of the union HF =
⋃
{HFi | i ≥ 0}∪{∅} are called hereditary finite

sets over L or hereditary finite sets with urelements in L, or simply hereditary
finite sets if there is no risk of confusion.

For x ∈ HF we define its weak transitive closure WTC(x) by

WTC(x) =
⋃{

WTC(y) |y ∈ x and y ∈ HF
}
∪ {x}

and the depth of x to be the smallest natural number i for which x ∈ HFi.

On the Rule Complexity
of Universal Tissue P Systems

Yurii Rogozhin1 and Sergey Verlan2

1 Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,

Str. Academiei 5, Chişinău, Moldova
rogozhin@math.md

2 LACL, Université Paris XII, France
verlan@univ-paris12.fr

Abstract. In the last time several attempts to decrease different com-
plexity parameters (number of membranes, size of rules, number of ob-
jects etc.) of universal P systems were done. In this article we consider
another parameter which was not investigated yet: the number of rules.
We show that 8 rules suffice to recognise any recursively enumerable
language if splicing tissue P systems are considered.

1 Introduction

P systems were introduced by Gh. Păun in [5] as distributed parallel computing
devices of biochemical inspiration, specifically, starting from the structure and
the functioning of a living cell. The cell is considered as a set of compartments
(membranes) nested one in another and which contain objects and evolution
rules. The basic model does not specify neither the nature of these objects,
nor the nature of rules. Numerous variants specify these two parameters by
obtaining a lot of different models of computing (see [11] for a comprehensive
bibliography).

The inspiration for tissue P systems comes from two sides. On one hand, P
systems previously introduced may be viewed as transformations of labels associ-
ated to nodes of a tree. Therefore, it is natural to consider same transformations
on a graph. On the other hand, they may be obtained by following the same
reflections as for P systems, but starting from a tissue of cells and not from a
single cell.

Tissue P systems were first considered by Gh. Păun and T. Yokomori in [8]
and [9]. They have richer possibilities and the advantages of new topology have
to be investigated.

There are many results dealing with the descriptional complexity of (tissue)
P systems. In most of the cases, the main complexity parameter of such systems
– the number of membranes/cells is investigated. Recently, other parameters
such as the size of rules or the number of objects started to be investigated. For
example, in [6, 1] systems having a minimal number of objects are investigated.

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 356–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Rule Complexity of Universal Tissue P Systems 357

In this article we consider another complexity parameter, the number of rules,
which has not been investigated yet. We take a particular class of tissue
P systems, splicing tissue P systems, which is a mixture of tissue P systems
and splicing Head systems and which were introduced by Gh. Păun in [5]. In
this case, we show that systems having 8 rules are universal and that they can
recognise any recursively enumerable language modulo a suitable codification.

2 Definitions

We do not present here definitions concerning concepts of the theory of formal
languages. We refer to [3] and [10] for more details. We only remark that we
denote the empty word by ε.

A tag system of degree m > 0, see [2] and [4], is a triplet T = (m,V, P),
where V = {a1, . . . , an+1} is an alphabet and P is a set of productions of form
ai → Pi, 1 ≤ i ≤ n, Pi ∈ V ∗. The symbol an+1 is called the halting symbol.
A configuration of the system T is a word w. We pass from the configuration
w = ai1 . . . aimw

′ to the next configuration z by erasing the first m symbols of
w and by adding Pi1 to the end of the word: w ⇒ z, if z = w′Pi1 .

The computation of T over the word x ∈ V ∗ is a sequence of configurations
x⇒ . . . ⇒ y, where either y = an+1ai1 . . . aim−1y

′, or y′ = y and |y′| < m, where
|w| is the length of word w. In this case we say that T halts on x and that y′ is
the result of the computation of T over x. We say that T recognises the language
L if for all x ∈ L, T halts on x, and T halts only on words from L.

We note that tag systems of degree 2 are able to recognise the family of
recursively enumerable languages, see [2] and [4]. Moreover, systems constructed
in [2] have non-empty productions and halt only by reaching the symbol an+1
in first position.

2.1 Splicing Operation

By an (abstract) molecule we understand a word over an alphabet.
A splicing rule (over an alphabet V) is a 4-tuple (u1, u2, u3, u4) where

u1, u2, u3, u4 ∈ V ∗. It is frequently written as u1#u2$u3#u4, {$,#} �∈ V , or

in two dimensions as
u1 u2

u3 u4
. Strings u1u2 and u3u4 are called splicing sites. The

diameter of splicing rule u1#u2$u3#u4 is the vector (|w1|, |w2|, |w3|, |w4|).
We say that a word x matches rule r if x contains an occurrence of one of the

two sites of r. We also say that x and y are complementary with respect to a rule
r if x contains one site of r and y contains the other one. In this case we also say
that x or y may enter rule r. When x and y can enter a rule r = u1#u2$u3#u4,
i.e., we have x = x1u1u2x2 and y = y1u3u4y2, it is possible to define the ap-
plication of r to couple x, y. The result of this application is w and z where
w = x1u1u4y2 and z = y1u3u2x2. We also say that x and y are spliced and w
and z are the result of this splicing. We write this as follows: (x, y) �r (w, z) or

x1u1 u2x2

y1u3 u4y2
�r

x1u1u4y2

y1u3u2x2
.

358 Y. Rogozhin and S. Verlan

The pair σ = (V,R) where V is an alphabet and R is a set of splicing rules is
called a splicing scheme or an H-scheme.

For a splicing scheme σ = (V,R) and for a language L ⊆ V ∗ we define:

σ(L) def= {w, z ∈ V ∗ | ∃x, y ∈ L,∃r ∈ R : (x, y) �r (w, z)}.
Now we can introduce the iteration of the splicing operation.

σ0(L) = L,

σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0,

σ∗(L) = ∪i≥0σ
i(L).

The iterated splicing preserves the regularity of a language:

Theorem 1. [7] Let L ⊆ T ∗ be a regular language and let σ = (T,R) be a
splicing scheme. Then language σ∗(L) is regular.

2.2 Splicing Tissue P Systems

A splicing tissue P system of degree m ≥ 1 is a construct

Π = (V, T,G,A1, . . . , Am, R1, . . . , Rm),

where V is a finite alphabet, T ⊆ V is the terminal alphabet, and G is the under-
lying directed labeled graph of the system. The graphG has m nodes (cells) num-
bered from 1 tom. Each node has a label that contains a set of strings (a language)
over V . The symbols A1, . . . , Am are finite sets of strings over V that give initial
labels of nodes of G. Symbols Ri, 1 ≤ i ≤ m, are finite sets of rules (associated to
regions) of the form (r; tar1, tar2), where r is a splicing rule: r = u1#u2$u3#u4
and tar1, tar2 ∈ {here, goj, out}, 1 ≤ j ≤ m, are target indicators.

A configuration of Π is anm-tuple (N1, . . . , Nm), whereNi ⊆ V ∗. A transition
between two configurations (N1, . . . , Nm) ⇒ (N ′

1, . . . , N
′
m) is defined as follows.

In order to pass from one configuration to another, splicing rules of each node
are applied in parallel to all possible words that belong to the label of that node.
After that, the result of each splicing is distributed according to target indicators.
More exactly, if there are x, y in Ni and r = (u1#u2$u3#u4; tar1; tar2) in Ri,
such that (x, y) �r (w, z), then words w and z are sent to nodes indicated by
tar1, respectively tar2. We write this as follows (x, y) �r (w, z)(tar1, tar2). If
tark = here, k = 1, 2, then the word remains in node i; if tark = goj , then the
word is sent to node j (it is clear that there must be an edge (i, j) in G); if
tark = out, the word is sent outside of the system.

Since the words are present in an arbitrary number of copies, after the appli-
cation of rule r in node i, words x and y are still present in the same node.

A computation in a splicing tissue P system Π is a sequence of transitions be-
tween configurations ofΠ which starts from the initial configuration (A1,. . .,Am).
The result of the computation consists of all words over terminal alphabet T
which are sent outside the system at some moment of the computation. We
denote by L(Π) the language generated by system Π .

On the Rule Complexity of Universal Tissue P Systems 359

We also define the notion of an input for the system above. An input word
for a system Π is simply a word w over the non-terminal alphabet of Π . The
computation of Π on input w is obtained by adding w to the axioms of A1 and
after that by evolving Π as usual.

We denote by ELStPm(spl, go) the family of languages generated by tissue
splicing P systems having a degree at most m.

We shall consider a restriction of splicing tissue P systems. A restricted splicing
tissue P system is a splicing tissue P systems which has the property that for any
rule (r; tar1, tar2) either tar1 = tar2 = goj, or tar1 = tar2 = out. This means
that both resulting strings are moved over the same connection. In this case, we
may associate splicing rules to corresponding edges. If both targets are out, then
we associate the splicing rule with an edge going to a special node called out. A
restricted splicing tissue P system will be denoted as (V, T,G,A1, . . . , Am, R),
where V , T , G, and Ai, 1 ≤ i ≤ m, have the same meaning as before and R is a
set of splicing rules associated to edges.

3 Main Results

Let V = {a1, . . . , an} be an alphabet. Consider coding functions c and c̄ defined
as follows: c(ai) = αiβ and c̄(ai) = βαi. We extend these functions to words and
put c(w) = c(b1) . . . c(bm) if w = b1 . . . bm.

Theorem 2. Let TS = (2, V, P) be a tag system and w ∈ V ∗. Then, there is a
restricted splicing tissue P system Π = (V ′, T,G,A1, . . . , Am, R), having 8 rules,
which given the word Xc(w)Y as input simulates TS on input w, i.e. such that:

1. for any word w on which TS halts producing the result w′, the system Π
produce an unique result Xc(w′)Y .

2. for any word w on which TS does not halt, the system Π computes infinitely
without producing a result.

Proof. Firstly we give the definition ofΠ and after that we show thatΠ correctly
simulates TS.

We construct the system Π as follows.
Let |V | = n. Then we consider

V ′ = {α, β,X, Y, Z}, T = {X,Y, α, β}.
The graph G and rules from R are given in Figure 1.
The initial languages Aj are given as follows.

A1 = {Zc(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XZ},
A2 = {ZY },
A3 = A4 = A5 = {XZ}.

The main idea of the construction is the following. The word Xαjβc(bw)Y
in node 1 encodes the current configuration of TS. Using rule 1 one attaches

360 Y. Rogozhin and S. Verlan

��
��

1 ��
��

2 ��
��

3

��
��

5 ��
��

4

�

�

�

�

�

%

out

��
��

��
��%

1 :
β Y

Z α

2 :
ε αY

Z Y

3 :
Xα ε

X Z
4 :

ε βY

Z Y

5 :
Xβ ε

X Z
6 :

Xα α

X Z

7 :
Xβ α

X Z

8 :
X c(an+1)
X Z

Fig. 1. The graph and the rules of out system

a production Pi and a symbol ai, 1 ≤ i ≤ n, at the end of the word (in this
way a guess is made about the first symbol of the word). As a result, the words
Xαjβc(bwPi)βαiY are generated. After that, the indices of the first and the last
symbol are decreased simultaneously by taking off one α (since all symbols are
coded in the unary alphabet, this decreases the index of the symbol). This work
is done by rules 2 and 3. When the same number of α is present at both ends of a
string, i.e., both indices coincide, the system removes one more symbol and the
string returns to node 1 where it may be processed again. The check for equality
is made by rules 4 and 5. Since rule 4 (resp. 5) checks presence of β at the end
(resp. beginning) of the string, the test is successful if and only if both ends of
the string contain β (Xβc(bwPj)βY). Now the second symbol (b) is eliminated
by rules 6 and 7. Rule 6 eliminates α’s from c(b) and when β is reached, i.e., b
is erased, the resulting string Xc(wPj)Y is passed to node 1. It is quite obvious
that the system simulates in this way the productions of the tag system.

When a symbol an+1 begins the string, rule 8 is used and the resulting string
is sent outside of the system. Hence, Π simulates TS.

Conversely, it is clear that a successful computation in TS may be recon-
structed from a successful computation in Π . For this it is enough to look at
strings of the form Xc(w)Y in node 1. �

Remark 1. It is clear that the alphabet V ′ may be reduced to two elements by
reencoding letters X,Y, Z, α, β in the binary alphabet.

Therefore the system constructed above needs 8 rules, 2 symbols, and n + 5
initial axioms. The diameter is given in the following table:

On the Rule Complexity of Universal Tissue P Systems 361

Rule(s) Diameter
1 (1, 1, 1, 1)
2, 4 (0, 2, 1, 1)
3, 5 (2, 0, 1, 1)
6, 7 (2, 1, 1, 1)
8 (1, n + 2, 1, 1)

It is easy to observe that if we put c(an+1) = ββ, then the last diameter
becomes (1, 2, 1, 1), hence the diameter of the whole system is (2, 2, 1, 1).

4 Conclusions

In this work we investigated a new complexity parameter for (tissue) P systems
– the number of rules – which was not investigated before. We showed that it is
possible to construct a universal system having only 8 rules. In order to achieve
this, we used a particular class of splicing tissue P systems. An open problem
raised by this result is if the above number is minimal. Other open problems
concern the minimal number of rules in the case of ordinary P systems or P
systems with symbol-objects.

Acknowledgements

Thefirst author acknowledge theU.S.CivilianResearchandDevelopmentFounda-
tion (CRDF) and the Moldovan Research and Development Association (MRDA),
Award No. MM2-3034 for providing a challenging and fruitful framework
for cooperation.

References

1. A. Alhazov, R. Freund, M. Oswald: Tissue P systems with antiport rules and small
numbers of symbols and cells. In Proceedings of the ESF Exploratory Workshop on
Cellular Computing (Complexity Aspects), Sevilla (Spain), January 31st - February
2nd, 2005, 7–22.

2. J. Cocke, M. Minsky: Universality of tag systems with p=2. Journal of the ACM,
11 (1964), 15–20.

3. J. Hopcroft, R. Motwani, J. Ullman: Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, Mass., 2nd edition, 2001.

4. M. Minsky: Computations: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffts, NJ, 1967.

5. G. Păun: Computing with membranes. Journal of Computer and System Sciences,
1 (2000), 108–143. Also TUCS Report No. 208, 1998.

6. G. Păun, J. Pazos, M. J. Pérez-Jiménez, A. Rodriguez-Patón: Symport/antiport
P Systems with three objects are universal. Fundamenta Informaticae, 64 (2005),
345–358.

7. G. Păun, G. Rozenberg, A. Salomaa: DNA Computing: New Computing Paradigms.
Springer-Verlag, Berlin, 1998.

362 Y. Rogozhin and S. Verlan

8. G. Păun, Y. Sakakibara, T. Yokomori: P systems on graphs of restricted forms.
Publicationes Mathematicae Debrecen, 60 (2002), 635–660.

9. G. Păun, T. Yokomori: Membrane computing based on splicing. In DNA Based
Computers V (E. Winfree, D.K. Gifford, eds.), volume 54 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, American Mathematical
Society, 1999, 217–232.

10. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes.
Springer Verlag, Berlin, 1997.

11. The P systems web page: http://psystems.disco.unimib.it/.

Non-cooperative P Systems with Priorities
Characterize PsET0L

Dragoş Sburlan1,2

1 Department of Computer Science and Artificial Intelligence,
University of Sevilla,

Avda Reina Mercedes s/n 41012, Sevilla, Spain
2 Department of Informatics and Numerical Methods,

Ovidius University of Constantza,
124 Mamaia Bd., Constantza, Romania

dsburlan@univ-ovidius.ro

Abstract. The paper answers an open problem from [4], proving that
transition P systems with non-cooperative rules using priorities generate
exactly the Parikh images of ET0L languages.

1 Introduction

The classical model of P systems with priorities has been introduced in [3] and
since then the field of membrane computing has grown considerably, nowadays
becoming more and more a framework for modeling various phenomena occurring
in cells.

The model of P systems with priorities was initially used to describe the bio-
chemical reactions occurring in the cell. There, priority relations (in the form
of a partial order relation) among the rules from each region expressed the fol-
lowing phenomenon: if a biochemical reaction r1 is more active than a reaction
r2 and it consumes a given resource (energy, for example) from the region, then
the reaction r2 cannot take place despite the availability of all necessary input
objects.

In the attempt to make use of these features to design new bio-inspired com-
putational devices, the current trend was to decrease as much as possible the
level of cooperation between the objects participating into the rules while main-
taining the currently obtained results. The mathematical interest was also the
opposite problem, namely to see which is the upper bound of cooperation such
that the systems are not anymore universal, knowing that almost for all variants
of P systems universality results were obtained.

This bring us to the topic of the paper – it determines the computational
power of the classical P system model with strong priorities when only non-
cooperative rules are used: such systems generate exactly the Parikh images of
ET0L languages.

We assume the reader familiar with basic notions of P systems with priorities
among rules and P systems with promoters/inhibitors at the level of rules. For

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 363–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

364 D. Sburlan

more details regarding these topics we refer to [1], [2] and [7]. In addition, we
assume known the basic notions and results about Lindenmayer systems (see [5]
and [6] for details).

We denote by PsPm(ncoo, α), α ∈ {pri, inh}, the family of sets of vectors
of numbers, computed by P systems of degree at most m, m ≥ 1, using non-
cooperative rules (ncoo) and priorities among rules (α = pri) or inhibitors at
the level of rules (α = inh).

2 Some Known Results

In [7] it was proved that P systems with non-cooperative rules and inhibitors
at the level of rules generates exactly the PsET 0L, the family of Parikh im-
ages of ET0L languages. For the sake of clarity, we sketch the proof of the
inclusion PsET 0L ⊇ PsP (ncoo, inh), pointing out some relevant details for the
present work.

Here are the outlines of the proof:

– First we have shown the equivalence between P systems with non-cooperative
inhibited rules using m membranes, and P systems with non-cooperative
inhibited rules and only one membrane with a similar construction as it will
be presented in the proof of Lemma 1.

– We have shown that any P system with non-cooperative inhibited rules is
equivalent with a P system with non-cooperative inhibited rules, one region,
and having the alphabet made out of two disjoint sets, the set of terminals
and of non-terminals; in addition, all the rules have a non-terminal on their
left-hand side; moreover, the set is complete, i.e., for each symbol in the
nonterminal alphabet there exists at least one rule having it on the left-
hand side.

– For a given set of inhibited rules, we have defined saturated classes of rules,
i.e., we have found the sets containing rules that does not mutually forbids
each other.
Let V be an alphabet and R = {r1, r2, . . . , rk} be a set of rules over V , of
the form ri : (Ai → αi|¬Bi), Ai, Bi ∈ V , Ai �= Bi, αi ∈ V ∗, 1 ≤ i ≤ k. For a
rule r : (A → α|¬B) ∈ R let us denote left(r) = A and inh(r) = B.
Two rules ri, rj ∈ R are said to be in the non-excluding inhibiting relation,
and we denote this by ri ≡nei rj , iff left(ri) �= inh(rj) and left(rj) �=
inh(ri).
A subset W ⊆ R is said to be saturated (or complete) with respect to non-
excluding inhibiting relation ≡nei iff (∀) ri, rj ∈ W , ri ≡nei rj , and (∀) ri ∈
R \W, (∃) rj ∈ W such that ri �≡nei rj .

– We have constructed an ET0L system H = (V, T, ω,Δ), with the set T =
{T1, T2, . . . , Tk}, having as tables all the saturated sets {T1, T1, . . . , Tk} (but
with rules without inhibiting conditions and, in addition, with some other
rules as will be explained later). Remark that from the way we have defined
the saturated subsets, the conditions on the rules can be omitted (observe
that two rules r1 : (a1 → α1|¬b1 and r2 : (a2 → α2|¬b2) can simultaneously

Non-cooperative P Systems with Priorities Characterize PsET0L 365

rewrite symbols a1 and a2 iff b1 �= a2 and a1 �= b2) in case we divide them
in different tables. In addition, we have added to each table all context-free
rules of the P system that does not violate the saturation relation considered
for the table. We also have added rules of the type b → # if rules {a → α |
a → α|¬b ∈ Ti} ∈ Ti and # → #; in this way we have assured that if we
have chosen the “wrong” table, the computation will never stop since the #
is produced (and therefore # → # will always be executed no matter which
table is chosen).

In [4] it was shown in a straightforward manner that PsP1(ncoo, pri) ⊇
PsET 0L by simulating the computation of an arbitrary two table ET0L sys-
tem H with a P system with non-cooperative rules and priorities. In addition,
catalytic P systems with priorities proved to be universal when only one cat-
alyst is used. The remaining open problem (Q2 in [4]) was whether or not
non-cooperative systems with priorities are universal. Here we deal with this
problem.

3 P Systems with Priorities – New Results

P systems with priorities characterize PsET 0L, the family of Parikh images of
ET0L languages. In the proof of this result we will need the notions of P systems
with inhibitors (see [1] for the introductory paper on this topic).

The following lemma shows that P systems with non-cooperative rules and
priorities, having only one membrane, equal in computational power the ones
having the same features, but with m > 1 membranes.

Lemma 1. PsPm(ncoo, pri) = PsP1(ncoo, pri),m ≥ 1.

Proof. The inclusion PsPm(ncoo, pri) ⊇ PsP1(ncoo, pri) is trivial. For the proof
of the inclusion PsPm(ncoo, pri) ⊆ PsP1(ncoo, pri), we construct a P system
Π1 = (V,C, μ, w,R, ϑ) that simulates the computation of P system Πm =
(V ,C, μ, w1, . . . , wm, R1, . . . , Rm, ϑ) in the following way.

First, denote by L = {1, 2, . . . ,m} the set of labels of the regions in Πm.
Then, we define:

• V = {ai | a ∈ V , i ∈ L},
• C = C = ∅.
Let h : V

∗ × L → V ∗ be a mapping such that
1) h(a, i) = ai, a ∈ V , i ∈ L,
2) h(λ, j) = λ, j ∈ L,
3) h(x1x2, j) = h(x1, j)h(x2, j), x1, x2 ∈ V

∗
, j ∈ L.

• Denote w = h(w1)h(w2) . . . h(wm), where wi is the multiset present in region
i ∈ L of Πm at the beginning of the computation.
• R is defined as follows. For each rule a → α ∈ Ri, a ∈ V , α ∈ {c, cout, cin |
c ∈ V }∗, i ∈ L, we add to R the rule h(a, i) → α′ where α′ is the corresponding
string over {h(c, i), h(c, j), h(c, k) | c ∈ V , i, j, k ∈ L}, j being the label of the

366 D. Sburlan

outer region of i, and k being the label of an inner region of i. In addition, we
inherit the existing priority relations among the rules.
• ϑ = 1.

In other words, for the P system with a single region that simulates a P
system with m regions, we have encoded the regions labels into objects (the
subscript associated to an object indicates the region where the corresponding
object belongs) and we have expressed the rules of regions by the corresponding
encoded objects. In this way we ensured that, when simulating Πm with Π1,
both the parallelism at the level of regions and at the level of whole system Πm

is respected. In addition, one can remark that whenever Πm halts, Π1 halts as
well. Moreover, when Π1 halts, we will have in the output region of Π1 all the
objects corresponding to the multisets present in all regions of Πm.

However, in the output multiset wΠ1 of Π1 we can distinguish the output
multiset wΠm

of Πm because we know which are the objects corresponding to
the output region of Πm (they are the objects that have as index ϑ). Therefore,
we have to delete the unnecessary objects that remain in the output region of
Π1 in a halting configuration since we want to show that Π1 and Πm generate
exactly the same set of vectors of numbers. We will modify the rules presented
above in the following manner.

We add to the vocabulary V a new symbol D (the object D stands for the
“deletion command”) and we replace each rule ai → α′ ∈ R by

ai → α′D ∈ R,

of course, maintaining the priority relations among the rules. In addition, we
add the following rules (with the corresponding priority relation)

D → λ > ai → λ , for all ai ∈ V , i �= ϑ.

One can remark that in this way we produce at each computational step
at least one object D and also, in the same time, we delete the already exist-
ing object(s) D. If there exist rules that can be executed (i.e., there will be
objects D) rules of type ai → λ cannot be applied because they are locked
according to the priority relations. When the computation halts, objects D
are not produced anymore, and so, the deletion rules can start and erase the
remaining unnecessary objects. Consequently, we have shown that both sys-
tems generate the same family of vectors of natural numbers, hence we have
PsPm(ncoo, pri) ⊆ PsP1(ncoo, pri).

Consequently, we have that PsPm(ncoo, pri) = PsP1(ncoo, pri). �

Now, we can prove the following result that shows the equality between the class
of sets of vectors generated by P systems with non-cooperative rules and prior-
ities, and the class of Parikh images of languages generated by ET0L systems.

Theorem 1. PsPm(ncoo, pri) = PsPm(ncoo, inh) = PsET 0L.

Proof. In [4] it was shown that PsP (ncoo, pri) ⊇ PsET 0L. In [7] was shown that
PsP (ncoo, inh) = PsET 0L following a procedure as the one roughly described

Non-cooperative P Systems with Priorities Characterize PsET0L 367

in Section 1. Here we will show that PsP (ncoo, inh) ⊇ PsP (ncoo, pri) and
hence, PsP (ncoo, pri) = PsET 0L. Here is how we proceed.

Let us consider an arbitrary P system Π̃ with m membranes, non-cooperative
rules, and with a priority relations among rules. According to Lemma 1 we know
that we can construct an equivalent P system Π = (V ,C, μ, w,R, ϑ) where:

• V = {X1, X2, . . . , Xr},
• C = ∅,
• μ = []1,
• w ∈ V

∗
.

• The set R is defined by the sequences of rules:

X(1,1) → α(1,1) > X(1,2) → α(1,2) > · · · > X(1,k1) → α(1,k1)

· · ·

X(p,1) → α(p,1) > X(p,2) → α(p,2) > · · · > X(p,kp) → α(p,kp)

with X(i,j) ∈ V , such that X(i,j1) �= X(i,j2), for all j1 �= j2, 1 ≤ i ≤ p, and
αi,j ∈ V

∗
, 1 ≤ i ≤ p, 1 ≤ j ≤ ki. In addition, without loosing the generality, we

will assume that k1 ≥ k2 ≥ . . . ≥ kp.
Recall that we assumed that X(i,j1) �= X(i,j2), for all j1 �= j2, 1 ≤ i ≤ p,

because in case X(i,j1) = X(i,j2), the rule X(i,j2) → α(i,j2) will never be applied
since the rule X(i,j1) → α(i,j1), having a grater priority, is applied first (of course,
if it fulfills all required conditions).

We construct a P systemΠ = (V,C, μ, w,R, ϑ) with non-cooperative inhibited
rules that simulates the moves of Π and which is defined as follows.

• V = V ∪ {X | X ∈ V } ∪ {A(i,j), U(i,j) | 1 ≤ i ≤ p, 1 ≤ j ≤ ki}
∪ {S, T,H,#} ∪ {Wi | 1 ≤ i ≤ k1 + 1},

• C = ∅,
• μ = []1,
• w = STHw.

• The set of rules R is defined as follows.
� We add to R the rules:
Xi → XiTA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp), 1 ≤ i ≤ k,
S → U(1,0)U(2,0) . . . U(p,0)WTHA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp),

W → W1THA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp),
W1 → W2THA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp),
· · ·
Wk1 → Wk1+1THA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp),
Wk1+1 → SH ,
T → λ,
A(i,j) → λ, 1 ≤ i ≤ p, 1 ≤ j ≤ ki.

368 D. Sburlan

� For each sequence of rules belonging to R:

X(i,1) → α(i,1) > X(i,2) → α(i,2) > · · · > X(i,ki) → α(i,ki)

we add to R the rules:

U(i,0) → U(i,1)|¬X(1,1)
,

U(i,1) → U(i,2)|¬X(1,2)
,

· · ·
U(i,ki) → U(i,ki+1)|¬X(1,k1)

,

U(i,0) → A(i,2)A(i,3) . . . A(i,r)|¬T ,
U(i,1) → A(i,1) A(i,3)A(i,4) . . . A(i,r)|¬T ,
· · ·
U(i,ki) → A(i,1) . . . A(i,k1) A(i,k1+2) . . . A(i,r)|¬T ,
U(i,ki+1) → A(i,1) . . . A(i,r)|¬T ,

X(i,j) → α(i,j)|¬A(i,j) , 1 ≤ j ≤ ki.

� Also, we add the rules:

S → λ,
Xi → #|¬H iff there exits a rule Xi → αi ∈ R,
→ #,
H → λ,
X(i,j) → X(i,j)|¬H .

Let us see how the simulation works. First, observe that (as a general tech-
nique) when we want to execute a certain non-cooperative rule r at a certain
moment during the computation, then we might activate it using an inhibitor;
however, this means that all the time during the computation we have to gen-
erate the symbol representing the inhibitor, to delete at each step all previously
created inhibitors, and only when we actually want to execute r we omit its
generation.

We start the computation by executing the rule

Xi → XiTA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp), 1 ≤ i ≤ k.

This rule is responsible for “painting” all objectsXi that correspond to objects
in V . In the same time we create the objects:

A(1,1), A(1,2), . . . , A(1,k1), , A(p,1), . . . , A(p,kp),

1 ≤ i ≤ k, that will be used as “flags”, indicating which rules cannot be applied
(here the simulation of any rule from Π is forbidden – all objects are present).
In addition, we create the object T that represents as well a flag, its role being
to indicate when the selected rules will be effectively applied.

In the same time, the rule

S → U(1,0)U(2,0) . . . U(k,0)WTHA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp)

Non-cooperative P Systems with Priorities Characterize PsET0L 369

is executed. All objects U(i,0), 1 ≤ i ≤ p, represent the starting points for the
sequences of rules of type:

U(i,0) → U(i,1)|¬X(1,1)
,

U(i,1) → U(i,2)|¬X(1,2)
,

· · ·
U(i,ki) → U(i,ki+1)|¬X(1,k1)

.

Such a sequence (that corresponds to X(i,1) → α(i,1) > · · · > X(i,ki) → α(i,ki)∈
R is used to check which rules from R can be applied. Depending where this
sequence stops we will know what rules we have to apply. This information will
be stored in the objects U(i,j).

Remark that along with objects U(i,0), 1 ≤ i ≤ p, the object W is produced.
This object will be used by the cycle (let us call it the “waiting” cycle):

W → W1THA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp),
W1 → W2THA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp),
· · ·
Wk1 → Wk1+1THA(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp),
Wk1+1 → SH ,

which produces “enough” time (more than the maximum length of the sequences
of rules in R) objects A(1,1)A(1,2) . . . A(1,k1) A(p,1) . . . A(p,kp) which forbids
the application of any rule that corresponds to a rule in R. In the last step of
the cycle we omit the creation of object T . The absence of object T means that
we can apply one of the rules:

U(i,0) → A(i,2)A(i,3) . . . A(i,r)|¬T ,
U(i,1) → A(i,1) A(i,3)A(i,4) . . . A(i,r)|¬T ,
· · ·
U(i,ki) → A(i,1) . . . A(i,k1) A(i,k1+2) . . . A(i,r)|¬T ,
U(i,ki+1) → A(i,1) . . . A(i,r)|¬T .

In this way we are able to select which are the rules (that corresponds to rules
in R) that can be applied, namely:

X(i,j) → α(i,j)|¬A(i,j) , 1 ≤ j ≤ ki.

Now, observe that all the time the “waiting” cycle is active (that is, we intend
to make a simulation of a step in Π) the object H is created. Also, the already
existing objects H are deleted by the rule H → λ. This object will help us to
finish the simulation. Here are the details.

Non-deterministically, object S might also be deleted by the rule S → λ.
If this happen, then the object H is not produced anymore and so, the rules
X(i,j) → X(i,j)|¬H and X(i,j) → #|¬H are executed. So, basically, if symbol #
appears, then the computation will not stop because the rule # → # will be
always executed.

370 D. Sburlan

In case the symbol # is not produced then the computation eventually stops
if the computation of Π stops. This is due to the fact that the cycle involving
object S might be always executed. However, the system Π will generate in a
non-deterministic manner (if object S is deleted and there is no symbol #) the
same set of vectors as Π .

Therefore, we have that PsPm(ncoo, pri) = PsPm(ncoo, inh) = PsET 0L. �

4 Concluding Remarks

Here we have proved that P systems with strong priorities characterize PsET 0L,
the Parikh images of ET0L languages. Recall now that in the sequential case,
forbidden random context grammars equals in computational power ordered
grammars. From this perspective, the result PsP (ncoo, pri) = PsP (ncoo, inh) =
PsET 0L surprises also because here the maximal parallelism proved not to
influence the equality between the classes of sets of vectors generated by P
systems with priorities and with inhibitors.

In addition, the equality with the class of Parikh images of ET0L languages
gives us “for free” all decidability results known for the family of ET0L languages.
For example, it is of a mathematical interest (but not only) to mention that
reachability and membership problems for ET0L systems are decidable.

Acknowledgements. I would like to thank to all members of the Research
Group on Natural Computing from University of Seville, for the friendly and
stimulating scientific environment provided.

References

1. P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg: Membrane systems with pro-
moters/inhibitors. Acta Informatica, 38 (2002), 695–720.

2. M. Ionescu, D. Sburlan: On P systems with promoters/inhibitors. Journal of Uni-
versal Computer Science, 10 (2004), 581–599.

3. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, (2000), 108–143.

4. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
5. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic Press,

New York, 1980.
6. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin,

1997.
7. D. Sburlan: Further results on P systems with promoters/inhibitors. Intern. J.

Found. Computer Sci., to appear.

Author Index

Alhazov, Artiom 1, 79, 96
Andrei, Oana 31

Bernardini, Francesco 114
Bianco, Luca 134, 199
Busi, Nadia 144

Casiraghi, Guido 159
Cazzaniga, Paolo 165
Ciobanu, Gabriel 31, 181

Dang, Zhe 253

Ferretti, Claudio 159
Fontana, Federico 199
Freund, Rudolf 1, 96
Frisco, Pierluigi 209

Gallini, Alberto 159
Gheorghe, Marian 114
Gontineac, Viorel Mihai 181
Gutiérrez–Naranjo, Miguel A. 224, 241

Ibarra, Oscar H. 49, 253
Ionescu, Mihai 272
Ishdorj, Tseren-Onolt 272

Kleijn, Jetty H.C.M. 292
Koutny, Maciej 292
Krasnogor, Natalio 114

Leporati, Alberto 165, 310
López, Damián 326
Lucanu, Dorel 31

Manca, Vincenzo 134, 199
Mauri, Giancarlo 159, 165, 310
Muniyandi, Ravie C. 114

Nishida, Taishin Y. 55

Obtu�lowicz, Adam 342
Oswald, Marion 96

Pérez-J́ımenez, Mario J. 114, 224, 241

Riscos–Núñez, Agust́ın 224
Rogozhin, Yurii 1, 356
Romero-Campero, Francisco José 114,

224, 241
Rozenberg, Grzegorz 292

Sburlan, Dragoş 363
Sempere, José M. 326
Sośık, Petr 67

Vaĺık, Ondřej 67
Verlan, Sergey 356

Woodworth, Sara 253

Yen, Hsu-Chun 253

Zandron, Claudio 165, 310

	Frontmatter
	Invited Lectures
	Computational Power of Symport/Antiport: History, Advances, and Open Problems
	Structural Operational Semantics of P Systems
	Some Recent Results Concerning Deterministic P Systems
	Membrane Algorithms
	On Evolutionary Lineages of Membrane Systems

	Regular Presentations
	Number of Protons/Bi-stable Catalysts and Membranes in P Systems. Time-Freeness
	Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules
	On P Systems as a Modelling Tool for Biological Systems
	Encoding-Decoding Transitional Systems for Classes of P Systems
	On the Computational Power of the Mate/Bud/Drip Brane Calculus: Interleaving vs. Maximal Parallelism
	A Membrane Computing System Mapped on an Asynchronous, Distributed Computational Environment
	P Systems with Memory
	Algebraic and Coalgebraic Aspects of Membrane Computing
	P Systems and the Modeling of Biochemical Oscillations
	P Systems, Petri Nets, and Program Machines
	On the Power of Dissolution in P Systems with Active Membranes
	A Linear Solution for QSAT with Membrane Creation
	On Symport/Antiport P Systems and Semilinear Sets
	Boolean Circuits and a DNA Algorithm in Membrane Computing
	Towards a Petri Net Semantics for Membrane Systems
	Quantum Sequential P Systems with Unit Rules and Energy Assigned to Membranes
	Editing Distances Between Membrane Structures
	Relational Membrane Systems
	On the Rule Complexity of Universal Tissue P Systems
	Non-cooperative P Systems with Priorities Characterize PsET0L

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

