

Lecture Notes in Computer Science 4361
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hendrik Jan Hoogeboom Gheorghe Păun
Grzegorz Rozenberg Arto Salomaa (Eds.)

Membrane
Computing

7th International Workshop, WMC 2006
Leiden, The Netherlands, July 17-21, 2006
Revised, Selected, and Invited Papers

13

Volume Editors

Hendrik Jan Hoogeboom
Leiden Center of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: hoogeboom@liacs.nl

Gheorghe Păun
Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania, and
Research Group on Natural Computing
Department of Computer Science and AI
Seville University, 41012 Seville, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Grzegorz Rozenberg
Leiden Center of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rozenberg@liacs.nl

Arto Salomaa
Turku Centre for Computer Science (TUCS)
Leminkäisenkatu 14, 20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi

Library of Congress Control Number: 2006939014

CR Subject Classification (1998): F.1, F.4, I.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69088-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69088-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11963516 06/3142 5 4 3 2 1 0

Preface

The present volume contains a selection of papers presented at the Seventh
Workshop on Membrane Computing, WMC7, which took place in Leiden, The
Netherlands, during July 17–21, 2006. The first three workshops on membrane
computing were organized in Curtea de Argeş, Romania – they took place in
August 2000 (with the proceedings published in Lecture Notes in Computer
Science, volume 2235), in August 2001 (with a selection of papers published as a
special issue of Fundamenta Informaticae, volume 49, numbers 1–3, 2002), and
in August 2002 (with the proceedings published in Lecture Notes in Computer
Science, volume 2597). The next three workshops were organized in Tarragona,
Spain, in July 2003, in Milan, Italy, in June 2004, and in Vienna, Austria, in
July 2005, with the proceedings published as volumes 2933, 3365, and 3850,
respectively, of Lecture Notes in Computer Science.

The 2006 edition of WMC was organized (and supported) by Lorentz Center,
Leiden, under the auspices of the European Molecular Computing Consortium
(EMCC). Special attention was paid to the interaction of membrane computing
with biology, focusing both on the biological roots of membrane computing and
on applications of membrane computing in biology and medicine. Furthermore,
the meeting was planned also as an event promoting the interaction and coop-
eration between the participants (e.g., the workshop was one day longer than
usually, with afternoons devoted mainly to joint work).

The pre-proceedings of WMC7 were published by the Institute of Advanced
Computer Science (LIACS) of Leiden University, and they were available during
the workshop. Each paper was refereed by two members of the Program Commit-
tee. As an indication of the healthy state of this research area, it is worth noting
that both the number of submitted papers and the total number of contribut-
ing authors were bigger this year than last year, while the number, the variety,
and the intricacy of applications (mainly in biology and medicine) also increased
substantially. These observations are confirmed by the present volume. Most of
the included papers were significantly modified according to the discussions that
took place during the workshop.

The volume includes all the invited talks (seven this time) – more than for any
proceedings of previous editions of WMC; moreover, this time the invited talks
were chosen in such a way as to reflect the relationships of membrane computing
to biology and medicine. Consequently, this volume is a faithful illustration of
the current state of research in membrane computing (a comprehensive source
of information about this fast-emerging area of natural computing is the Web
page http://psystems.disco.unimib.it).

The Program Committee consisted of Matteo Cavaliere (Trento, Italy),
Erzsébeth Csuhaj-Varjú (Budapest, Hungary), Marian Gheorghe (Sheffield, UK),
Hendrik Jan Hoogeboom (Leiden, Netherlands) – Co-chair, Oscar H. Ibarra

Administrator
高亮

VI Preface

(Santa Barbara, USA), Natasha Jonoska (Tampa, Florida), Shanhara Narayanan
Krishna (Bombay, India), Gheorghe Păun (Bucharest, Romania, and Seville,
Spain) – Co-chair, Mario J. Pérez-Jiménez (Seville, Spain), and Claudio Zandron
(Milan, Italy).

The editors are indebted to the members of the Program Committee, to all
participants in WMC7, and in particular to the contributors to this volume.
Special thanks go to Lorentz Center, Leiden, for the perfect organization of the
workshop, and to Springer for the efficient cooperation in the timely production
of the present volume.

November 2006 Hendrik Jan Hoogeboom
Gheorghe Păun

Grzegorz Rozenberg
Arto Salomaa

Table of Contents

Invited Lectures

Biological Roots and Applications of P Systems: Further Suggestions . . . 1
Ioan I. Ardelean

Formalizing Spherical Membrane Structures and Membrane Proteins
Populations . 18

Daniela Besozzi and Grzegorz Rozenberg

Quorum Sensing: A Cell-Cell Signalling Mechanism Used to Coordinate
Behavioral Changes in Bacterial Populations . 42

Miguel Cámara

A Modeling Approach Based on P Systems with Bounded
Parallelism . 49

Francesco Bernardini, Francisco J. Romero-Campero,
Marian Gheorghe, and Mario J. Pérez-Jiménez

Synchrony and Asynchrony in Membrane Systems . 66
Jetty Kleijn and Maciej Koutny

MP Systems Approaches to Biochemical Dynamics: Biological Rhythms
and Oscillations . 86

Vincenzo Manca

Modeling Signal Transduction Using P Systems . 100
Andrei Păun, Mario J. Pérez-Jiménez, and
Francisco J. Romero-Campero

Regular Papers

Extended Spiking Neural P Systems . 123
Artiom Alhazov, Rudolf Freund, Marion Oswald, and
Marija Slavkovik

Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes . 135

Artiom Alhazov and Yurii Rogozhin

Expressing Control Mechanisms of Membranes by Rewriting
Strategies . 154

Oana Andrei, Gabriel Ciobanu, and Dorel Lucanu

VIII Table of Contents

Tissue P Systems with Communication Modes . 170
Francesco Bernardini and Rudolf Freund

Towards a Hybrid Metabolic Algorithm . 183
Luca Bianco and Federico Fontana

Towards a P Systems Pseudomonas Quorum Sensing Model 197
Luca Bianco, Dario Pescini, Peter Siepmann, Natalio Krasnogor,
Francisco J. Romero-Campero, and Marian Gheorghe

Membrane Systems with External Control . 215
Robert Brijder, Matteo Cavaliere, Agust́ın Riscos-Núñez,
Grzegorz Rozenberg, and Dragoş Sburlan

A Case Study in (Mem)Brane Computation: Generating Squares
of Natural Numbers . 233

Nadia Busi and Miguel A. Gutiérrez-Naranjo

Computing with Genetic Gates, Proteins, and Membranes 250
Nadia Busi and Claudio Zandron

Classifying States of a Finite Markov Chain with Membrane
Computing . 266

Mónica Cardona, M. Angels Colomer, Mario J. Pérez-Jiménez, and
Alba Zaragoza

Partial Knowledge in Membrane Systems: A Logical Approach 279
Matteo Cavaliere and Radu Mardare

Tau Leaping Stochastic Simulation Method in P Systems 298
Paolo Cazzaniga, Dario Pescini, Daniela Besozzi, and
Giancarlo Mauri

P Machines: An Automata Approach to Membrane Computing 314
Gabriel Ciobanu and Mihai Gontineac

Modeling Dynamical Parallelism in Bio-systems . 330
Erzsébet Csuhaj-Varjú, Rudolf Freund, and Dragoş Sburlan

P Colonies with a Bounded Number of Cells and Programs 352
Erzsébet Csuhaj-Varjú, Maurice Margenstern, and György Vaszil

P Finite Automata and Regular Languages over Countably Infinite
Alphabets . 367

Jürgen Dassow and György Vaszil

Mitotic Oscillators as MP Graphs . 382
Giuditta Franco, Pietro Hiram Guzzi, Vincenzo Manca, and
Tommaso Mazza

Table of Contents IX

Infinite Hierarchies of Conformon-P Systems . 395
Pierluigi Frisco

A Protein Substructure Based P System for Description and Analysis
of Cell Signalling Networks . 409

Thomas Hinze, Thorsten Lenser, and Peter Dittrich

Characterizations of Some Restricted Spiking Neural P Systems 424
Oscar H. Ibarra and Sara Woodworth

A Membrane Algorithm for the Min Storage Problem 443
Alberto Leporati and Dario Pagani

P Systems with Symport/Antiport and Time . 463
Hitesh Nagda, Andrei Păun, and Alfonso Rodŕıguez-Patón

Towards Probabilistic Model Checking on P Systems Using PRISM 477
Francisco J. Romero-Campero, Marian Gheorghe, Luca Bianco,
Dario Pescini, Mario J. Pérez-Jiménez, and Rodica Ceterchi

Graphical Modeling of Higher Plants Using P Systems 496
Alvaro Romero-Jiménez, Miguel A. Gutiérrez-Naranjo, and
Mario J. Pérez-Jiménez

Identifying P Rules from Membrane Structures with an Error-Correcting
Approach . 507

José M. Sempere and Damián López

Computational Completeness of Tissue P Systems with Conditional
Uniport . 521

Sergey Verlan, Francesco Bernardini, Marian Gheorghe, and
Maurice Margenstern

Distributed Evolutionary Algorithms Inspired by Membranes in Solving
Continuous Optimization Problems . 536

Daniela Zaharie and Gabriel Ciobanu

Author Index . 555

Biological Roots and Applications of P Systems:
Further Suggestions

Ioan I. Ardelean

Institute of Biology, Romanian Academy
Centre of Microbiology, Splaiul Independentei 296

P.O. Box 56-53, Bucharest 060031, Romania
ioan.ardelean@ibiol.ro

Abstract. P systems offer the possibility to appropriately describe dis-
crete processes performed by: i) single objects: catalytic molecules (=
enzymes), supramolecular structures (MscL, porins, ionic channels etc.),
single cells, and ii) a small number of objects occurring in the sam-
ple, e.g., several mechanosensitive channels occurring within a membrane
patch. Thus P systems could offer the possibility to capture and model
the plethora of experimental data obtained in the emerging and rapidly
growing field of single cell or single molecule or atom studies.

Furthermore, it is suggested that in vitro implementation of P sys-
tems could be done by the use of artificial membranes, a step forward
computations with artificial membranes.

1 Introduction

In the framework of the dialog between P systems and (Micro)Biology the aim of
this paper is to add further arguments that i) biological roots of P systems are the
computations performed by living cells when they carry out chemical reactions
and physical processes, and ii) that discrete mathematics is very appropriate to
describe discontinuous biological processes.

Furthermore, I claim that P systems are very appropriate to model the func-
tion of single objects (cell, channel, enzyme, etc.) and suggest that in vitro im-
plementation of P systems could be done by the use of artificial membranes, and
this can be a step forward computations with artificial membranes.

2 Biological Roots

At the beginning of experimental research in biology the dominant opinion was
that inside living cells there is no chemical reaction or physical processes (Mayer,
1998). When the experimental biology significantly developed (in the first part
of XIXth century), it became evident for all scientists that chemistry and physics
can be used to study living organisms because: i) cells are composed of (different)
chemicals, and ii) within the cells the chemicals follow chemical reactions and
physical transformations which should obey the laws of chemistry and physics.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 I.I. Ardelean

The use of Chemistry and Physics to study Biology was not an easy and
smooth approach; for example, a historical debate concerned the usefulness of
thermodynamics in the study of biology. Thermodynamics introduced, in the first
half of XIXth century, the key concept of energy, as the quantitative expression
of the capacity of any system for doing work and overcome resistance (for more
details see Ciures and Mărgineanu, 1970, Morowitz, 1972; Mărgineanu, 2001).

There were authoritative voices claiming that living matter does not obey the
second law of thermodynamics, whose usefulness for biology was under question
until the emergence of so called non-equilibrium thermodynamics, or thermody-
namics of irreversible processes (Glandsdorff and I. Prigogine, 1971).

Non-equilibrium thermodynamics can scientifically explain why it is physi-
cally possible the occurrence of irreversible processes such as those within living
organisms which consume chemical energy in the form of nutrients, perform
work, and excrete waste as well as give off heat to the surroundings (for more
discussions, see Glandsdorff and Prigogine, 1971, Morowitz, 1972; Mărgineanu,
2001).

In the framework of P systems it seems appropriately to recall that Prigogine
who won the Nobel Prize in Chemistry in 1977 for his contributions to non-
equilibrium thermodynamics, stressed on the important contribution of Alan M.
Turing to the background of non-equilibrium thermodynamics. Working on a
new mathematical theory of morphogenesis based on showing the consequences
of non-linear equations for chemical reactions and diffusions, Turing (1952) was
the first to notice the possibility of bifurcations in chemical reactions, (“Turing
bifurcation"), which are essential for non-equilibrium thermodynamics (Glands-
dorff and Prigogine, 1971).

So far, mathematical tools used in Biology via Physics and Chemistry are
differential equations. However the emergence of P systems in 1998-2000 (Păun,
2000; 2001; 2002) opened a new era in the use of Mathematics in Biology because:
a) It was for the first time the biological realities (occurring mainly across biolog-
ical membrane), were used as raw material to abstract a calculus; b) it was a fur-
ther incentive for using the discrete Mathematics for the description/modelling
of discontinuous processes occurring within living cells.

The ontological fundament of P systems (apart from the inspiration of its
initiator, the chance etc.) seems to me to be the fact that the processes occurring
across biological membranes are genuine natural calculi performed by living cells.

Thus the claim is that chemical reactions and physical processes (e.g., trans-
port) within a cell are computing processes.

The emergence and flourishing of cell biology with special emphasis on mem-
brane biophysics, biochemistry, and molecular biology, generated knowledge con-
cerning discontinuous processes occurring across, within, and at biomembranes
(Alberts et al., 1994), knowledge that sustained the emergence of membrane
computing (P systems).

The introduction of chemistry and physics into biology mainly in the XXth
century produced a wealth of knowledge concerning the fluxes of mater and en-
ergy within a living cell. Thus it becomes evident that any biological system,

Biological Roots and Applications of P Systems: Further Suggestions 3

for instance, a living bacterium, is an open system which exchanges mater, en-
ergy, and information with its surroundings medium. These fluxes are possible
because some functional proteins are involved not only in processing matter and
energy but also in the flow of information within a cell (Bray, 1995). The flux
of information is illustrated, rather metaphorically than mathematically, by the
flux of genetic information from DNA to polypeptide during protein biosynthe-
sis, the function of axons and signal transduction, including chemotaxis (Mayer
1998; Bray 2002; Szurmant and Ordal, 2004; Martinez-Antonio et al., 2006).

Interesting for our topic, the biological community accepted that the function
of a neuron, including the generation and propagation of action potentials (AP),
is a computation performed by the cell (Segev and Schneidman, 1999; Alle and
Geiger, 2006).

The basic equations (see bellow) and quantitative description of the genera-
tion and propagation of action potentials (spike) is due to Hodgkin and Huxley
who won Nobel Prize in 1963. The authors supposed that in the nerve cell mem-
brane there are distinct ionic channels which allow the selective passage of either
sodium or potassium ions (see bellow). The experimental proof of the occurrence
of these channels came later on. Beyond its interest per se, this first quantita-
tive description of a major biological event, with a consistency which previously
seemed reserved to physics, has the merit of showing how a proper metaphor
can evolve into a truly mechanistic description (Mărgineanu, 2001).

This opinion is important for our topic, because:

– the so far work in P systems pushes the metaphor (cell computer, cell com-
puting, membrane computing) toward a mechanistic description;

– in the framework of P systems ions movement across biological membrane
(either via ionic channels or symport/antiport) is largely studied, while the
biochemical background of neuron function is the fact that axons typically
possess a high density of voltage-dependent, fast activated Na+ channels, as
well as more slowly activated K+ channels;

– moreover, recently neuron function started to be copiously studied by the
specific tools and concepts of P systems (Ibarra et al., 2006; Ionescu et al.,
2006; Chen et al., 2006a, b, c, d).

The computation performed by the neuron concerns (Alle and Geiger, 2006):
i) the ability to control the number of APs, ii) the ability of at least some neurons
to control the timing of the spikes (Carr and Konishi, 1988), iii) subthreshold
membrane potentials (those potentials which per se do not generate an AP),
which have a role in the regulation of synaptic transmission (Alle and Geiger,
2006).

The occurrence of this analogue coding and AP coding (number and timing
of AP) is likely to enhance information capacity of synapses and may increase
the computational power of a network of neurons (Alle and Geiger, 2006). These
three ways to increase the computational power of (a network of) neurons could
receive more attention from P systems, for the benefits of both parts, I believe.

Another important aspect for P systems is the type of mathematics used
so far to model AP. As reviewed by Segev and Schneidman, (1999), following

4 I.I. Ardelean

the theoretical study of Hodgkin and Huxley most of the models of axon have
treated the generation and propagation of the AP using deterministic partial
differential equations although it is known that the underlying mechanism for
AP generation is the opening and closing of thousands of individual ion channels,
each of which is stochastic rather than deterministic (Segev and Schneidman,
1999). So far, based on partial differential equations of Hodgkin and Huxley, the
scientists developed a deterministic H&H model and a stochastic H&H model
(for more details see Segev and Schneidman, 1999) for spike generation.

For a very large number of channels (12,000 and 3,600 for sodium and potas-
sium, respectively) both deterministic and stochastic models give similar esti-
mations, whereas for, e.g., 12,000 and 3,600 for sodium and potassium channels
per patch, respectively, some differences started to appear. With the interest of
P systems to develop a hybrid metabolic algorithm capable of mixing the deter-
ministic and stochastic paradigms together (Bianco and Fontana, 2006) it seems
rational to expect contribution from P systems to also model the AP generation.

Important for P systems is the question whether or not the discrete formalism
would describe more accurately the process of spike generation, by one neuron or
by a limited number of neurons. Can the metaphoric membrane computing evolve
into a scientific truth, towards a mechanistic description? Based on the work in
the field of P systems, it seems appropriate to conclude that this metaphor is
actively evolving, as it seems natural to assume that discontinuous processes can
be appropriately described/modelled by discrete mathematics.

In the following I will briefly present two membrane-based biological processes
which I believe could be described in the (near) future as membrane comput-
ing processes: transport of ions and molecules across biological membranes and
chemotaxis (Ardelean, 2002).

The transport of ions and molecules across biological membranes is funda-
mental for cell structure and function. There are several ways to carry out this
transport (Saier, 1999). Here we will briefly focus on symport/antiport, because
1) this type of transport received significant attention in P systems (Păun, 2002),
symport and antiport being nice examples of how bacterial cells manage the de-
velopmental rules; 2) the P system tools used to describe symport and antiport
are appropriate to describe the function of, e.g., sodium and potassium channels
which sustain the function of neuron, the computing device recognized by biolo-
gists; 3) the proteins involved in symport and antiport (as well as other proteins
– see below) after extraction from natural membranes can be incorporated in ar-
tificial lipid membranes, while retaining the activity; this is a way for a possible
in vitro implementation of P systems (see below).

Symport is characterized by the fact that both ions are transported in the
same direction, whereas by antiport one ion is transported inside the cell while
the other ion is simultaneously transported in the opposite direction, outside
the cell. Both systems of transport, symport and antiport, are used by bacteria;
the symport of protons with different substances needed for bacterial growth
are very well documented (Jung, 2001). For example, Escherichia coli uses the
symport of protons with lactose, arabinose or galactose.

Biological Roots and Applications of P Systems: Further Suggestions 5

However, the proton is not the only type of ions used with antiport systems;
sodium ions are also used for the symport of substances such as melobiose and
proline. When it comes to antiport, one classical example is the proton/sodium
antiporters found in many bacteria, their major function being in maintaining
a rather constant concentration of both protons and sodium ions inside the cell
(Padan et al., 2001).

With the development of the mutual interplay between P systems and biol-
ogy, probably, the future is not so far when the image of a single (bacterial)
cell counting/computing the input and the output of ions and molecules via
symport/antiport proteins will be no more a metaphor but a truly mechanistic
description.

Chemotaxis, the movement of a bacterium (or other types of cells) toward
a needed chemical factor/item (called attractant) or away from a dangerous
chemical (called repellent) is one example of cell behavior involving fluxes of
matter, energy, and information. This behavior is essential for bacterial survival.

Chemotaxis allows the bacterium to actively move towards the needed sub-
stance (or more precisely, towards the increase in the gradient concentration of
that substance); for example, oxygen respiring bacteria move towards (optimal)
oxygen concentrations (= aero taxis).

Chemotaxis also allows the bacterium to try to escape from a substance that
is toxic for it (a poison, for example). In a living bacterium (cell, in general) the
movement towards a factor (e.g., molecular oxygen) is related to the orientation
toward that factor. For example, magnetotactic bacteria contain inside the cell
specific particles/structures called magnetosome which consist of magnetic iron
mineral particles enclosed within a membrane. The specific functional character-
istic of magnetotactic bacteria is magnetotaxis, the orientation along the Earth
geomagnetic field lines (Blakemore, 1975). Magnetotaxis is determined by the
presence of magnetosomes; dead cells containing magnetosomes also align along
the geomagnetic field lines whereas living MTB with no magnetosomes, do not
align.

Chemotaxis is important for P systems (and natural computing in general)
because the coordinated movement and binding of molecules within and chemical
reactions across the cell membrane sustain the emergence of macroscopic (at the
level of several centimeters) information-oriented behavior. The claim is that
a taxi is a membrane-computing process whose study would be significantly
improved by adding P systems to the plethora of methods and concepts which
are contributing to the blossom of this topic.

The overall process of chemotaxis involves the following four integrated stages,
very shortly presented here (for more biochemical essential details, see Armitage,
Backer et al., 2006; Szurmant and Ordal, 2004; Ardelean and Besozzi, 2006).

1. Signal recognition and transduction is performed by receptor proteins. Re-
ceptor proteins are usually transmembrane, multidomain proteins, which
contain a sensing domain that interact with the environmental signal (oxygen
concentration, for example) and, through series of chemo-physical changes
induce further changes in the signalling domain, changes which further enter

6 I.I. Ardelean

the second stage, excitation. Interestingly, in E. coli as in other cells where
the receptors have an extra-membrane domain, the localization of the recep-
tors is around the poles of the cells, and not uniformly over the whole cells
surface (see below)

2. Excitation. The main protein of this stage is an intracellular sensor kinase
called CheA kinase (CheA), which autophosphorylates, and the phosphoryl
group is subsequently transferred from CheA to CheY. In the phosphorylated
form, as CheY-P, this protein binds to an assembly of proteins called the
“switch", at the base of the flagellar motor, thus controlling the direction of
the flagellar rotation.

3. Adaptation. This is very important for bacterial taxis because requires the
ability to recognize when the bacterium is moving in the wrong direction,
i.e., away from the higher attractant concentration (Szurmant and Ordal,
2004). To do that, a “memory" is required that is able to indicate whether
higher or lower concentration are being reached.

4. Signal removal means the biochemical removing of phosphate from CheY-P;
the resulting dephosphorylated form (CheY) binds no more on the flagellum.

In my opinion, adaptation and signal removal could offer fruitful space for
cross talk between biology and P systems.

3 Applications of P Systems

So far, the main applications of P systems are in biology, computer sciences,
linguistics, and membrane software (Ciobanu et al., 2006). Here, I will shortly
present those application in biology to which I had the chance to work on together
with P system scientists and other computer scientists.

3.1 Membrane Proteins: Terminal Respiratory Enzymes and
Photosystem II

We tried to compare the probabilistic mathematical model with the biological
reality, indicating how one can use the P systems framework to simulate the
process of respiration in Escherichia coli and Synechocystis PCC 6803, the cor-
responding proton pumping by cytochrome c oxydase in Anacystis nidulans, the
interplay between oxygen consumption and oxygen production by photosystem
II (PSII) in Synechocystis PCC 6803 even in the presence of a specific synthetic
inhibitor of PSII. We also showed how to interpret the obtained results in a way
to infer useful results for biologists (Ardelean and Cavaliere, 2006; Cavaliere and
Ardelean, 2006).

This work has been done in the framework of P systems because we believe
that the emergence of P systems together with its cross talk with biologists could
be for biology as important and fruitful as it was, and still it is, the introduction
of physics and chemistry in biology, almost two centuries ago.

We have presented a comparison between the mathematical model (and the
software realized) and the real world, trying to establish a link between the math-
ematical framework, the simulator realized (Cavaliere, 2003), and the biological

Biological Roots and Applications of P Systems: Further Suggestions 7

reality. We introduced new concepts in the P system area such as the availability
of a chemical reaction, the activity rate of a catalyst, and the possibility for a
catalyst to be at same time active or not active.

I will briefly recall some more important achievements concerning respiration
(for more details and modeling of proton pumping and the interplay between
oxygen consumption and oxygen production by PSII in cyanobacteria, please
see Cavaliere and Ardelean, 2006).

Respiration is the biological process that allows the cells (from bacteria to
humans) to obtain energy. In short, respiration promotes a flux of electrons
from electron donors to a final electron acceptor, which in most cases is the
molecular oxygen.

In Escherichia coli, as well as in other bacteria, the cell ability to consume
molecular oxygen during the respiration is determined by the presence of two dif-
ferent enzymes that catalyze the final step of respiration: the reduction of molec-
ular oxygen with protons and electrons. In Escherichia coli, these two terminal
oxydases (enzymes) – called terminal because they are the last components of
the respiratory electron transport pathways – are cytochrome bd and cytochrome
bo.

For example, it is know that at low oxygen concentration in the growing
medium (lower than about 40% of oxygen saturation) the cytochrome bd oxydase
is responsible for the entire respiratory activity of the cells; in other words, the
flux of electrons to molecular oxygen proceeds 100% through the cytochrome
bd oxydase. At high oxygen concentration in the growing medium (this means
in between 90% and 100% of oxygen saturation), the cytochrome bo oxydase is
responsible for almost the entire respiratory activity of the cells. Furthermore,
in between 40% and 90%, the two types of terminal oxidases contribute together
to the respiration of the cell.

We used the probabilistic P systems software to model the respiratory oxygen
consumption when only cytochrome bd oxydase or only cytochrome bo oxydase
or both terminal oxydases are active in intact cells. These simulations are in
agreement with experimental results sustaining our claim that the software could
be used to perform in silico experiments in order to estimate, based on new
experimental results on E. coli, the contribution of each terminal oxidase to the
overall respiratory oxygen consumption in given environmental conditions. We
also believe that the software can be used to model the respiration in other
bacteria having two terminal oxiadses, even if they have different affinities for
oxygen than the terminal oxidases in E. coli.

In the near future, we plan to model other biological processes with more
biological details considering the concept of affinity introduced in our simula-
tor by the so-called probability to win and the concept of availability of a rule,
modeled in the software by the probability of a rule to be available; in partic-
ular it would be very useful to add to the simulator the ability to change, in
run-time, the values of some of the biological parameters considered (like the
affinity of an enzyme, that, for example in Escherichia coli, changes according
to the concentration of molecular oxygen in the substrate); in this way, we can

8 I.I. Ardelean

improve at the same time the simulator and the mathematical model presented,
as well as making possible new applications in microbiology. In this respect, the
requirement/ability of the P system software to pay attention to every single
occurrence of each molecule of either cytochrome bd oxydase and cytochrome bo
oxydase, opens the question concerning the usefulness of this software for mod-
eling the activity of a single molecule, a single cell, etc., which is a major trend
in nowadays science (see further prospects below).

3.2 Membrane Proteins: Mechanosensitive Channels

The activity of mechanosensitive channels of large conductance (MscL, in short)
in cellular membranes was modeled within the framework of P systems (Arde-
lean et al, 2006), based on the opinion (Ardelean, 2003) that discrete math-
ematics could be more appropriate than continuous mathematics to describe
non-continuous molecular events (such as channels opening and closure).

Mechanosensitive channels are protein-based channels gated by mechanical
forces. In Gram-positive and Gram-negative bacteria, MscL is located in the
cell membrane. This location in bacteria can be correlated to its physiological
function, the protection against severe osmotic downshifts. The major role of
Msc under osmotic downshift is to allow the rapid exit of different chemicals
(ions and rather small molecules), and hence the sudden decrease of the osmotic
pressure inside the cell. Thus, by the opening of MscL the osmotic pressure
inside the cell approaches the osmotic values of the extracellular medium. This
event is fundamental for bacterial cell because, when the difference between
osmotic pressure inside the cell and osmotic pressure outside the cell is too
large, the integrity of the cell can be damaged by disruption of cell wall and
plasma membrane, followed by cell death.

In the paper (Ardelean et al., 2006) we defined in vitro and in vivo distinct
models that consist of some basic components: an environment, a region, and
a membrane tension, which naturally correspond to essential aspects of MscL
activity. We also introduced probabilities associated to evolution rules in order to
achieve a closer resemblance to biological reality. Moreover, we defined evolution
rules according to in vitro and in vivo different environmental events. With in
vitro model we focused on a single mechanosensitive channel (MscL) thus arguing
that P systems are appropriate to describe single items, single events. The study
of a single molecule, cell, etc. is a major trend in nowadays science, including
microbiology and P systems could be the mathematical formalism of this growing
trend (see further prospects below). We claimed that in vitro model can be easily
extended to describe and simultaneously analyze multiple occurrences of MscL.
We gave some notes about in silico simulations of the in vitro model, using
EdnaCo, a complex systems simulator that can be used as a distributed discrete-
event simulation environment (Garzon et al., 2000), and showed some results,
such as the emergent behavior over time of membrane tension, conductance, and
current of channels.

In vitro and in vivo P models might propose a platform for the integration of
the data obtained on MscL in prokaryotes. Thus, we are actively expecting that

Biological Roots and Applications of P Systems: Further Suggestions 9

the further refinement of our models (also by means of the software environment
used to run simulations), would accelerate the integration between in vitro and in
vivo results. Moreover, with the explosion of molecular biology and the increase
in the quantity and quality of data obtained by high throughput technologies,
there is a trend in nowadays biology to pass from a reductionistic approach to
an integrative approach (Palsson, 2000), either at supermolecular level (Hartwell
et al., 1999) or at systemic level (Palsson, 2000; Kitano, 2002). Indeed, the
reductionistic approach and the systemic, integrative approach, are today on
the same side of the barricade, a totally different position than four-five decades
ago when both approaches started to flourish in biology (Mayer, 1998). In this
perspective, the correlation between in vitro and in vivo results represents one of
the most important trends in the biological research, and the models mentioned
in this chapter could give an important contribution to it.

Moreover, I put forward the claim that P systems could be the framework
to develop the appropriate mathematical formalism for a cross talk between
the reductionistic approach and the systemic, integrative approach (the further
contribution from continuous mathematics is not excluded at all!).

4 Further Suggestions for P Systems

The basic suggestion concerns the need to continue the use of P systems to model
discrete, discontinuous processes in the living world.

So far, the scientist used differential and integral calculus to describe continu-
ous processes as well as discrete, discontinuous processes in biology (or in other
sciences). A common strategy to figure out such equations consists in writing
down equilibrium conditions for infinitely small physical units such as time units,
dt, and spatial volume units, ds (Bianco et al., 2006); the scientist claim for the
validity of this approach takes into account the assumption that the system is
composed of a great number of undistinguishable particles (for more discussions
see Mărgineanu, 2001).

In my opinion, the success of differential and integral calculus in modeling
discrete processes (e.g., the kinetic of enzymatic reactions, ionic processes at the
neuron plasma membrane, etc.) was based – apart from the above argument
– on the fact that no discrete mathematical approach has been used to model
biological processes. Fortunately, since the birth of P systems several interesting
approaches have been already published on the use of discrete mathematics to
model discrete biological processes.

Manca introduced the P metabolic algorithm (PMA) whose (main) princi-
ples are the followings (for more details, see Manca, 2006): i) rules compete for
object populations; ii) objects are allocated to rules according to a mass par-
tition principle; iii) partition factors are determined by reaction maps, and iv)
a “metabolic rule" r consumes/produces integer multiples of a reaction unit ur

which generalizes the notion of molar unit. (Manca, 2006).
Metabolic P systems have several computational advantages with respect to

differential models, but their most important aspect is their direct biological

10 I.I. Ardelean

meaning and their structure where the reaction level and the regulation level are
clearly interconnected, but separated (Manca, 2006). PMA were successfully used
in simulations concerning the evolution of several relevant biological processes
such as Prey-predator Lotka-Voltera dynamics, leukocyte selective recruitment
in immune response, protein kinase C activation, circadian rhythms, mitotic
cycle, etc. (for more details, see Manca, 2006, and the references herein).

In turn, Pérez-Jiménez (2006) proposed a mesoscopic approach which is more
tractable than the microscopic chemistry, but it provides a finer and better un-
derstanding than macroscopic chemistry modeled by ordinary differential equa-
tions. A deterministic waiting times algorithm has been introduced, based on
the fact that in vivo chemical reactions take place in parallel in an asynchronous
manner. The strategy has been illustrated with the simulation of two important
biological phenomena: the epidermal growth factor receptor signalling cascade
(Pérez-Jiménez and Romero- Campero, 2005) and FAS-induced apoptosis. The
simulations performed by the authors show good correlations with both the data
reported in the literature and simulations based on ordinary differential equa-
tions (more details, in Pérez-Jiménez, 2006).

All these results show that P systems can successfully compete with ordinary
differential equations in producing good simulation of biological processes; and
probably this is only the beginning.

However, even these approaches were done assuming a great number of (al-
most) undistinguishable particles/objects (e.g., enzymatic molecules, etc.), a
ground where the competition with continuous mathematics appears to be hard.

In my opinion, P systems should “attack" (just to use o common concept
in military art, or in the game of GO) on the territory where differential and
integral calculus are not valid at all: the space of a single event, single occurrence
of a catalyst (enzyme, mechanosensitive channel etc.).

The chance is that in nowadays science there is a strong trend toward the study
of single events or objects (molecule, cell, etc.). To argue that, I will briefly focus
on microbiology. Single cell microbiology (SCM) is a trend in microbiological
sciences which allows the study of an individual cell from a population (Brehm-
Stecher and Johnson, 2004). The development of SCM roots in the technical
advances in other sciences (mainly physics and biochemistry) where special tools
were developed. The advances in SCM are already copious and already a first
authoritative review has been written on this topic (Brehm-Stecher and Johnson,
2004). It is beyond the scope of this contribution to present the state of the art
of SCM; I will mention only a few achievements in SCM, which, in my opinion,
are very appropriate to be further modelled by P systems.

a) SCM allows the observation of discontinuous and dynamical processes within
living (bacterial, yeast, etc.) cells with high spatial and/or temporal resolu-
tion. An example is the specific distribution at the cell surface of some recep-
tors (receptor clustering) involved in chemataxis. More precisely, it started
to be shown that the protein acting as receptors in bacterial chemotaxis are
not distributed uniformly at the surface of the E. coli cell, the main local-
ization being at one pole of the cell (Bray, 2002) – it should be reminded

Biological Roots and Applications of P Systems: Further Suggestions 11

that E. coli is an almost cylindrical cell. This polarized distribution of pro-
tein receptors in space is an on growing topic in microbiology and it could
be interesting for P systems at least as a new type of communication rules,
in which the position, the density of the interacting “letters" (symbols) is
essential for the rule to occur.

The interest and the power of P systems for the exploration of space is
illustrated by the proposal of extended P systems able to perform a global
description of membrane proteins populations, in order to take care of the
synergic work of many membrane proteins and the related effect for cell’s
life (Besozzi and Rozenberg, 2006). These developments could be a further
challenge for P systems to develop their applications in those domains where
spatial distribution of objects is very important: collective sports (football
etc.), military strategy, and games such as chess, GO, etc.

b) SCM allows the interplay between microscopic (in the sense of biology),
mesoscopic, and macroscopic properties of microbial population, with em-
phasis on the cellular origins of mesoscopic and macroscopic properties.
For example, coordinated movement of cells (e.g., traveling waves, whirls,
and jets) within population of myxobacteria or Bacillus subtilis have been
studied at cellular level integrated in the population level (more details, see
Brehm-Stecher and Johnson, 2004). Similar movements have been described
in magnetotactic bacteria whose study of movement of each individual cell
still waits. So far, classical microbiology has traditionally been concerned
with and focussed on the studies at the population level. Nowadays, with
the emergence of SCM, microbiology faced the same problem: the connec-
tion between macroscopic (= population) level behavior with microscopic
(= cellular, in biology) level. Long time ago, thermodynamics solved this
problem by differential and integral calculus. The nowadays answer of mi-
crobiology can be based on the use of P system to describe discrete processes
based either on single, small or huge (statistically relevant) numbers of cells.
Furthermore, with the development of appropriate tools and techniques to
study discrete realities such as a single individual microbial cell, there is the
need for discrete models whose appropriate description seems naturally to
be founded on discrete mathematics, P systems appearing as a very powerful
candidate for this task.

c) The analytic progress of microbiology towards the study of single individual
cells raised new theoretical problems. Because of the fact that the experi-
ment and its control cannot be carried out on the same individual cell, it
is impossible to be sure that the observation/measurements itself does not
affect the cell. This statement is the biological equivalent of Heisenberg’s
“uncertainty principle" (for more details, see Brehm-Stecher and Johnson,
2004).

d) SCM has a large significance not only in basic science but also in applied
science, mainly with respect to microbial heterogeneity related to antibi-
otic and biocide resistance, productivity and stability of industrial microbial
based biotechnologies or the potential of pathogens to cause disease (see
more details in Brehm-Stecher and Johnson, 2004, and references therein).

12 I.I. Ardelean

e) Single molecule kinetics, a growing topic in biochemistry (Shi et al., 2006)
could be performed not only in vitro but also in vivo, in a single cell ap-
proach, and P systems could be more appropriate in modeling the single
molecule kinetics than Michaelis-Menten differential equations, whose basic
assumption that enzyme-substrate concentration are continuous variables
seems not to be valid at the microscopic level.

Thus, it seems rational to conclude (and expect for the near future)
that P systems, could offer the appropriate software for the description of
discrete biological processes (such as those related to SCM), and that mem-
brane computing will be used to model the experimental data obtained on
single cells (molecules, etc.) not only in basic science (e.g., mechanosensitive
channel behavior, enzymes, enzymatic cascade, etc.), but also in applied sci-
ence such as the contribution of the sensibility of each individual cell from
a population against a given substance, for the design of biocides.

In conclusion, I suggest that:

1. P systems are invaluable to describe discrete processes performed by: i) single
objects: catalytic molecules (= enzymes); supramolecular structures (MscL,
porins, ionic channels, etc.), single cells, and ii) a small number of objects
occurring in the sample, e.g., several mechanosensitive channels occurring
within a membrane patch. Furthermore, P systems could be valuable tools
to describe discrete processes performed by a statistically significant number
of undistinguishable particles.

2. The use of P system to write a software able to manage the wealth of infor-
mation obtained from different types of arrays: DNA- arrays, protein-arrays,
enzymes. One requirement with these arrays is the rapid and correct process
of information produced by them. Again, a reading tip leaded/controlled by a
discrete programme based on discrete mathematics would be more successful
to monitor a discrete process (arrays function) than a classical programme.

3. The already started interplay between P systems and ordinary differen-
tial equations (Pérez-Jiménez, 2006; Manca, 2006) supports the proposal
to develop a discrete formalism for discrete processes performed by sin-
gle molecules/structures as shown for mechanosensitive channel in bacteria
(Ardelean et al., 2006).

4. Towards an in vitro implementation of P systems. The progresses made in the
last four decades in incorporating different biological molecules into artificial
membranes(e.g., black lipid membrane – BLM) has lead to major progresses
in understanding their in vivo function (Ottowa and Tien, 2002). In the
next table there are presented some reconstituted systems within artificial
membranes, with emphasis on original application for a possible in vitro
implementation of P systems.

The incorporation of different active (mainly) protein molecules in artificial
membranes opens the possibility to move objects across these membranes, and
to perform a calculus. In Figure 1 sodium/proton antiporters (a) incorporated
in BLM are used to selectively transport, object by object, the sodium ions

Biological Roots and Applications of P Systems: Further Suggestions 13

Table 1. The main results on artificial membrane research (from Ottowa and Tien,
2002) with suggestion on their usefulness for the in vitro implementation of P systems

from the first compartment to the third one. The initial (A) and the final (B)
configurations are different, a sequence of transitions occurring in between these
two states.

This kind of experiments could lead to the construction of P systems-based
computers. In my opinion, these experiments (with antiporters or any other ac-
tive molecule biologically produced or chemically synthesized, but arranged in
an appropriate way within the artificial membrane) could be for P systems what
are DNA experiments for DNA computing: in vitro use of molecules to calculate.
Moreover, there are the following advantages of in vitro membrane computing
as compared with DNA computing: i) The speed of these processes occurring at
membranes (both artificial and natural (seconds, minutes) is much higher as com-
pared with DNA computing experiments, thus leading to a faster computation.
ii) The process will occur at a membrane which can function as a microdevice.
Furthermore, planar BLMs can now be formed on various substrates with long-
term stability, thereby opening the way for basic research and developments

14 I.I. Ardelean

Fig. 1. Schematic representation of an imaginary BLM experiment used to move across
an artificial membrane sodium ions from compartment 1 to compartment 3. If the
activity of each single antiporter (a) or of a small number of antiporters could be
appropriately controlled, the device thus obtained should be useful for the in vitro
implementation of P systems.

work in biotechnology (Ottowa and Tien, 2002). iii) In many in vitro recon-
stituted systems at/within artificial membranes the output is an electric signal,
either current or potential. That could facilitate the transfer of information from
one in vitro structure to another one, as well as the building up of complex hier-
archical structures, using the already acquired knowledge and skills used in the
construction of to day computers.

Furthermore, in artificial membranes one could incorporate molecules which
function as molecular logic gates such as those active in respiration (Ardelean
et al., 2004). Moreover, very recent results show that it is possible to improve
the structure of artificial vesicle membranes by coating hollow polyelectrolyte
capsules with biological interfaces such as phospholipids membrane and pro-
teins (Moya and Toca-Herrera, 2006), a step toward an artificial cell assembly
(Noireaux and Libchaber, 2004). The results in artificial membrane research
support the hope that they are appropriate tools for in vitro P systems-based
experiments.

In conclusion, I claim that P systems are very appropriate to model the func-
tion of single objects (cell, channel, enzyme, etc.) and suggest that in vitro im-
plementation of P systems could be done by the use of artificial membranes, a
step towards computations with artificial membranes.

Biological Roots and Applications of P Systems: Further Suggestions 15

Acknowledgements

Thanks are due to my main two co-authors, Daniela Besozzi and Matteo Cava-
liere, to all the co-authors, S. Aguzzoli, M.H. Garzon, M. Gheorghe, B. Gherla,
G. Mauri, C. Manara, V. Mitrana, D. Sburlan, S. Roy, and to all P scientists
I had the chance to exchange ideas within a fruitful framework. Special thanks
are due to D.G. Mărgineanu and to S. Szedlacseck for helpful discussions and
suggestions on thermodynamics in biology and single enzyme activities, respec-
tively. Lorentz Center and PNCDI-CERES (contract 84/2004) are acknowledged
for financial support to attend the workshop, and Lucia Dumitru (Head, Centre
of Microbiology) for interest in this topic.

References

1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson: Molecular Biology
of the Cell. 3rd ed., Garland Publishing, New York, 1994.

2. H. Alle, J.R.P. Geiger: Combined analogue and actin potential coding in hippocam-
pus mossy fibres. Science, 311 (2006), 1290–1293.

3. I.I Ardelean: The relevance of biomembranes for P systems – general aspects.
Fundamenta Informaticae, 49, 1-3 (2002), 35–43.

4. I.I. Ardelean: Molecular biology of bacteria and its relevance for P systems. In
Membrane Computing, LNCS 2597 (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zan-
dron, eds.), Springer-Verlag, Berlin, 2003, 1–19.

5. I.I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy: P system models for
mechanosensitive channels. In Applications of Membrane Computing (G. Ciobanu,
Gh. Păun, M.J. Pérez-Jiménez, eds.), Springer-Verlag, Berlin, 2006, 43–81.

6. I.I. Ardelean, D. Besozzi, C. Manara: Aerobic respirations a bio-logic circuit con-
taining molecular logic gates. Pre-Proc. of Fifth Workshop on Membrane Comput-
ing, WMC5 (G. Mauri, Gh. Paŭn, C. Zandron, eds.), Universita’ di Milano-Bicocca,
June 14-16, 2004, 119–125.

7. I.I. Ardelean, M. Cavaliere: Modelling biological processes by using probabilistic P
system software. Natural Computing, 2 (2003), 173–197.

8. J.P. Armitage: Bacterial tactic responses. Adv. Microb. Physiol., 41 (1999), 229–
289.

9. M.D. Baker, M. Peter, P.M. Wolanin, J.B. Stock: Systems biology of bacterial
chemotaxis. Current Opinion in Microbiology, 9 (2006), 1–6.

10. D. Besozzi, G. Rozenberg: Extended P systems for the analysis of (trans)membrane
protein populations. In Pre-Proceedings of 7th Workshop on Membrane Computing
(H.J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), 17-21 July 2006, Leiden Center,
8–10.

11. L. Bianco, F. Fontana, G. Franco, V. Manca: P systems for biological dynamics. In
Applications of Membrane Computing (G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez,
eds.), Springer-Verlag, Berlin, 2006, 81–126.

12. L. Bianco, F. Fontana: Towards a hibrid metabolic algorithm. In Pre-Proceedings
of 7th Workshop on Membrane Computing (H.J. Hoogeboom, Gh. Păun, G. Rozen-
berg, eds.), 17-21 July 2006, Leiden Center, 145-158

13. R.P. Blakemore: Magnetotactic bacteria. Science, 190 (1975), 377–379.
14. D. Bray: Protein molecules as computational elements in living cells. Nature, 376

(1995), 307–312.

16 I.I. Ardelean

15. D. Bray: Bacterial chemotaxis and the question of gain. PNAS, 99 (2002), 7–9.
16. B.F. Brehm-Stecher, E.A. Johnson: Single-cell microbiology: tools, technologies,

and applications. Microbiol. Mol. Biol. Rev., 68 (2004), 538–559.
17. C.E. Carr, M. Konishi: Axonal delay lines for time measurement in the owl’s brain-

stem. Proc. Natl. Acad. Sci., 85 (1988), 8311–8315.
18. M. Cavaliere: Evolution-communication P systems. In Membrane Computing (Gh.

Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag,
Berlin, 2003, 134–145.

19. M. Cavaliere I.I. Ardelean: Modelling respiration in bacteria and respira-
tion/photosynthesis interaction in cyanobacteria. In Applications of Membrane
Computing (G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.), Springer-Verlag,
Berlin, 2006, 129–159.

20. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In RGNC Raport 02/2006, Fenix
Editora, Sevillia, 2006, 169–195.

21. H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems.
In RGNC Raport 02/2006, Fenix Editora, Sevillia, 2006, 195–207.

22. H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace languages generated
by spiking neural P systems. In RGNC Raport 02/2006, Fenix Editora, Sevillia,
2006, 207–225.

23. H. Chen, T.-O. Ishdorj, Gh. Păun: Computing along the axon. In RGNC Raport
02/2006, Fenix Editora, Sevillia, 2006, 225–241.

24. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In RGNC Raport 02/2006, Fenix Editora, Sevillia, 2006, 241–
267.

25. G. Ciobanu, M. Pérez-Jiménez, Gh. Păun, eds.: Applications of Membrane Com-
puting. Springer-Verlag, Berlin, 2006.

26. A. Ciures, D. Mărgineanu: Thermodynamics in biology: an intruder? J. Theor.
Biol., 28, 1 (1970), 147–150.

27. M.H. Garzon, E. Drumwright, R.J. Deaton, D. Renault: Virtual test tubes: A new
methodology for computing. In Proc. 7th Int. Symposium on String Processing and
Information Retrieval, A Corunna, Spain, IEEE Computer Society Press, 2000,
116–121.

28. P. Glandsdorff, I. Prigogine: Thermodynamics of Structure, Stability and Fluctua-
tions. Wiley-Interscience, New York, 1971.

29. L.H. Hartwell, J.L. Hopfield, S. Leibler, A.W. Murray: From molecular to modular
cell biology. Nature, 402 (1999), C47–C52.

30. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodriguez-Paton, P. Sosik, S. Woodworth:
Normal forms for spiking neural P systems. In RGNC Raport 03/2006, Fenix Edi-
tora, Sevillia, 2006, 105–137.

31. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

32. H. Jung: Towards the molecular mechanism of Na/solute symport in prokaryotes.
Biochem. Biophys. Acta, 1505 (2001), 131–143.

33. H. Kitano: Systems biology – A brief overview. Science, 295 (2002), 1662–1664.
34. V. Manca: MP systems approaches to biochemical dynamics: biological rhythms

and oscillations. In Pre-Proc. of Workshop on Membrane Computing (H.J. Hooge-
boom, Gh. Păun, G. Rozenberg, eds.), 17-21 July 2006, Lorentz Center, Leiden,
40–53.

35. V. Manca: Topics and problems in metabolic P systems. In RGNC Raport 03/2006,
Fenix Editora, Sevillia, 2006, 173–184.

Biological Roots and Applications of P Systems: Further Suggestions 17

36. A. Martinez-Antonio, J.S. Chandra, H. Salgado, J. Collado-Vides: Internal-sensing
machinery directs the activity of the regulatory network in Escherichia coli. Trends
in Microbiology, 1 (2006), 22–27.

37. E. Mayer: This is Biology. The Belknap Press of Harvard University Press, 1998.
38. D.G. Mărgineanu: From metaphor to mechanism in membrane biophysics. Rev.

Quest. Scient., 172 (2001), 277–292.
39. H.J. Morowitza: Entropy for Biologists. An Introduction to Thermodynamics. Aca-

demic Press, New York, 1972.
40. S.E. Moya, J.L. Toca-Herrera: From hollow shells to artificial cells: biointerface

engineering on polyelectrolyte capsules. J. Nanosci. Nanotechnol., 6 (2006), 1–9.
41. V. Noireaux, A. Libchaber: A vesicle bioreactor as a step toward an artificial cell

assembly. PNAS, 101 (2004), 17669–17674.
42. A. Ottova, H.T. Tien: The 40th anniversary of bilayer lipid membrane research.

Bioelectrochemistry, 56 (2002), 171–173.
43. E. Padan, M. Venturi, Y. Gercham, N. Dover: Na/H antiporters. Biochem. Biophys.

Acta, 1505 (2001), 144–157.
44. B. Palsson: The challenges of in silico biology. Nature Biotechnology, 18 (2000),

1147–1150.
45. A. Păun, Gh. Păun: Small universal spiking neural P systems. In RGNC Raport

03/2006, Fenix Editora, Sevillia, 2006, 213–235.
46. Gh. Păun: Computing with membranes. Journal of Computer and Systems Sci-

ences, 61 (2000), 108–143.
47. Gh. Păun: From cells to computers using membrane (P systems). BioSystems, 59

(2001), 139–158.
48. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
49. M.J. Pérez-Jiménez: P systems based modelling of cellular signalling pathways.

Pre-Proc. of Workshop on Membrane Computing (H.J. Hoogeboom, Gh. Păun, G.
Rozenberg, eds.), 17-21 July 2006, Lorentz Center, Leiden, 54-74.

50. M.J. Pérez-Jiménez, F.J. Romero-Campero: A study of the robustness of the EGFR
signalling cascade using continuous membrane systems. LNCS 3651, Springer-
Verlag, Berlin, 2005, 268–278.

51. M.H. Saier: Genome archaeology leading to the characterization and classification
of transport proteins. Curr. Op. Microbiol, 2 (1999), 555–561.

52. I. Segev, E. Schneidman: Axons as computing devices: Basic insights gained from
models. J. Physiol., 93 (1999), 263–270.

53. J. Shi, J. Dertouzos, A. Gafni, D. Steel, B.A. Palfey: Single-molecule kinetics re-
veals signatures of half-sites reactivity in dihydroorotate dehydrogenase A catalysis.
PNAS, 103 (2006), 5775–5780.

54. H. Szurmant, G.W. Ordal: Diversity in chemotaxis mechanisms among the bacteria
and Archaea. Microbiol. Mol. Biol. Rev., 68 (2004), 301–319.

55. A.M. Turing: The chemical basis of morphogenesis. Phil. Trans. R. Soc. London,
B, 237 (1952), 37–72.

Formalizing Spherical Membrane Structures and
Membrane Proteins Populations

Daniela Besozzi1 and Grzegorz Rozenberg2

1 Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione

Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it

2 Leiden Institute of Advanced Computer Science, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rozenber@liacs.nl

Abstract. We present a formalization of membrane structure by using
a parametric 2-dimensional spherical surface, where membrane proteins
reside and can move, according to prescribed operations. A more de-
tailed formalization of membrane proteins acting as transporters is also
given, thus possibly allowing a global scale analysis of ion flows across
a membrane. Several other applications, both biology and computation
oriented, are proposed.

1 Introduction

Membrane proteins have many different structures, and perform a whole variety
of tasks: they help in regulating the selective permeability of the membrane, the
cell signaling and membrane trafficking. Membrane proteins are called periph-
eral, when they are anchored to the internal or external layer of the membrane,
and integral (or transmembrane), when they span the bilayer and face both sides
of the membrane. Several important cellular processes, such as the muscle con-
traction, the transmission of electric impulses in neurons, the response to envi-
ronmental nutrients, etc., are regulated by different solutes concentrations inside
and outside the cell, or by the activation and amplification of specific molecules
(called the second messengers) inside the cell. Both phenomena are mediated by
transmembrane proteins which, in the case of transporters (involved in the ac-
tive or passive transport of solutes) allow the selective passage of ions (or other
small molecules) inwards or outwards, while in the case of membrane receptors
transduce an external signal towards a downhill chain of reactions inside the cell.

Some basic features of different types of transmembrane proteins were already
formalized in the framework of membrane computing ([28,30]), taking into ac-
count well known biological notions and the established mechanistic model about
the functioning of (single) membrane proteins. For instance, a membrane system
model for describing and simulating the activity of mechanosensitive channels
of large conductance is given in [6] - these channels are transmembrane proteins
gated by mechanical forces exerted on the membrane, and their role is the pro-
tection against severe osmotic downshifts in the cell. A similar approach was

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 18–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Formalizing Spherical Membrane Structures and MP Populations 19

considered in [9], where a P system model is proposed for the functioning of the
sodium-potassium pump, and in [14,26], where the activity of calcium channels
and transporters was modelled and stochastically simulated using P systems.

In this paper, we propose to move from the approach of modeling single mem-
brane protein to a more global approach of modeling membrane proteins popula-
tions (MP populations), in order to account for the functioning synergy of many
membrane proteins (and its effects on the cell life processes). We hope that this
modeling will contribute to a global scale analysis of MP populations.

To this aim, we present an extension of the standard notion of membrane
in P systems – this extension relies on the use of a 2-dimensional parametric
spherical surface instead of a 1-dimensional border. This new approach enables
one to consider the spatial distribution of MP populations over the membrane
surface. In particular, one can describe such populations using finite sets of cir-
cular words which can be naturally associated to the chosen parametrization.
Then, the operations over circular words such as insertion and deletion, commu-
tation and shift, formalize various movements of proteins upon the membrane
surface, yielding in this way a global dynamic view of the MP populations. In
particular, we focus our attention on populations of transporters, by formaliz-
ing some biological properties characterizing various types of transport, such as
the selectivity, the direction of crossing, and the flux rates. We envisage that
this approach may lead to a number of possible applications such as: global ion
fluxes ([4]) through the plasma membrane, the dynamical representation of pro-
tein movements and clustering, the description of interaction effects between the
membrane and the proteins residing in it that may affect the curvature.

The paper is structured as follows. In Section 2 we review the structure of
biological membranes, the different types of membrane proteins and their func-
tioning, as well as the classical conceptualization of the membrane architecture
(the Singer-Nicholson fluid mosaic model), related to the movements of proteins
upon the membrane. In Section 3 we give the definition of the parametric spher-
ical surface and of the set of circular words representing the MP population.
In Section 4 we define the operations over circular words that characterize the
movements of membrane proteins upon the surface. Then, in Section 5, we reduce
the level of abstraction in the description of MP populations, by giving a more
detailed representation of transport proteins. Finally, in Section 6 we present in
some detail some possible applications of the extended membrane framework for
the analysis of both biological and computationally oriented topics.

2 Biological Membranes and Membrane Proteins

In this section we revise some notions concerning cellular membranes, such as its
lipid and protein constituents, and the standard conceptualizations of the mem-
brane structure and fluidity. Then, we describe three major classes of membrane
proteins that are involved in the transport of solutes across the membrane. For
more details and examples we refer the reader to standard books in Molecular
Cell Biology such as [23,3].

20 D. Besozzi and G. Rozenberg

Cell’s shape. For some types of cells (e.g. neural or vegetal cells), the shape
is a nonvariable characteristic. Other cells (e.g. migrating blood cells) are subject
to shape variation which, besides possibly depending also on the cytoskeleton,
is mostly due to environmental actions of mechanistic type (the pressure ex-
erted by neighboring cells, or by the surrounding biological liquid) and to their
functionality in the tissue or organism. Whenever the cells that do not possess
a specific structured shape are artificially isolated from the tissue they belong
to, they gradually resume a spherical form, according to physical laws of sur-
face tension. Similarly, when spherical shaped cells are put close to each other,
they assume a polyhedral shape with the number of faces corresponding to the
number of cells in mutual contact.

Constituents of biological membranes. The primary constituents of cel-
lular membranes (whether they are plasma or internal membranes) are amphi-
pathic molecules (i.e., molecules with one hydrophobic and one hydrophilic part)
called phospholipids. There are several classes of phospholipids, such as phospho-
glycerides, sphyngolipids, cholesterol, steroids, glycolipids, . . . – they differ with
respect to the molecular composition of the hydro-phobic/philic parts. Due to
the amphipatic property of phospholipids, biological membranes are composed
of sheetlike bilayers (with two external hydrophilic polar parts and and internal
hydrophobic apolar part) that spontaneously form closed structures that sep-
arate two aqueous compartments. Globular proteins are also associated to the
bilayer in different ways. Peripheral proteins are (more or less weakly) bound to
the hydrophilic part of phospholipids, or dipped into the bilayer – but not inter-
acting with its hydrophobic core – on both sides of the membrane, facing either
the cytoplasm or the environment ([13]). Integral (or transmembrane) proteins
have one or more domains (α helices or multiple β strands)1 that span the whole
depth of the bilayer. Integral proteins have a very specific orientation (i.e., an
asymmetric structure) with respect to the two sides of the membrane, conferring
different properties on the two faces; this fact is also reflected by the different
molecular compositions in the two compartments separated by the membrane.
The orientation of an integral protein is established during its biosynthesis and
its insertion into the endoplasmic reticulum membrane, by means of complex
structures called translocons (see, e.g., [23]).

The fluid mosaic model. The fluidity and dynamic mobility of a cellular
membrane are determined by its specific lipid and protein composition, which
can differ from one layer to another in a membrane, from membrane to membrane
(with different membranes surrounding different organelles in a cell), and from
cell to cell. Due to thermal motions, phospholipids and glycolipids can freely
rotate around their longitudinal axis, and also diffuse laterally within the layer
where they reside. Only occasionally, they can flip-flop from one layer to the other
one (a motion that needs to be catalyzed by proteins called flippases). Many
integral proteins are also freely mobile; immobile proteins are those that are

1 We emphasize that here we are not concerned with a molecular-scale description of
the aminoacidic composition or the conformations of proteins, but only with their
functioning mechanisms and activation conditions (see also Sections 5 and 6.1).

Formalizing Spherical Membrane Structures and MP Populations 21

permanently attached to the cytoskeletal elements inside the cytoplasm. The first
conceptualization of the membrane structure, known as the fluid mosaic model,
was proposed in the seventies by Singer and Nicholson ([35,34]). According to
this model, the cellular membrane is a 2-dimensional “sea of lipids” where lipid
molecules, as well as (monomeric and low abundant) integral proteins, freely
float unencumbered. Criticisms of this model, and new insights for a (plausibly
more) realistic paradigm of membrane architecture and mobility, will be further
discussed in Section 6.4.

Transport proteins. The plasma membrane delimits the cell, and acts as a
selective permeable barrier between the cytoplasm and the exoplasm, allowing
a bidirectional passage of molecules. Its functions include the inflow of nutrients
and the outflow of waste solutes, the maintenance of proper ionic composition
and pH, the transduction of external signals, the exchange of metabolites be-
tween adjacent cells in a tissue, the interactions with the extracellular matrix.
Most of these functions are carried out by specific transmembrane proteins. Here,
we focus on the activity of the integral proteins involved in the selective transport
of ions and solutes – refereeing to them as the transport proteins. In different cell
types, the transport proteins residing within the plasma membrane, or within
various organelle membranes, can vary considerably, both in types and concen-
trations, thus allowing only certain ions or molecules to cross the membrane.

Transport proteins create the (pH, ions concentration, potential) gradients
across the membrane by moving ions and solutes inwards and outwards. At the
same time, these gradients are the primary “forms of energy” which can then
be used by other transport proteins for the accumulation or the exclusion of
other solutes. In this paper, we will consider three major classes of transport
proteins: ATP-powered pumps, cotransporters and channels. This classification
will be used to distinguish between different transport mechanisms. However
some transport proteins may utilize more than one transport mechanism - such
cases will not be considered in this paper. Also, we will not explicitly discuss the
functioning of other classes of transport proteins, such as, e.g., ABC superfamily
proteins ([16]) and porin families.

All transport proteins belonging to the three classes listed above exhibit a
high specificity for the transported substances, while they differ with respect to
the rate of transport, which is due to different mechanisms of action. Specificity
or selectivity means that each transport protein type is able to bind and move
a single species, or a single group of closely related molecules with which it has
a high (chemical) affinity ([19]).

ATP-powered pumps, or simply pumps, use the energy released by ATP hy-
drolysis to move ions or small molecules against (or “uphill”) an electrochemical
gradient (the process is also known as active transport). The coupling between
the uphill transport and the hydrolysis of ATP is then energetically favorable.
Anyway, the overall mechanism of action consistently slows down the transport
rate of pumps to only about 1-103 molecules per second.

Cotransporters simultaneously bind only one or few solutes – then a change
in the protein conformation allows the transport of bound molecules across the

22 D. Besozzi and G. Rozenberg

membrane. Due to the necessary conformational change, cotransporters move
about 102-104 molecules per second. Among cotransporters, uniporters move one
molecule at a time down its concentration gradient (this process is also known
as facilitated transport), while symporters and antiporters couple the passage
of one type of molecule against its concentration gradient with the passage of a
different type of molecule down its concentration gradient.

In contrast to the other two classes, channels simultaneously transport mul-
tiple water molecules or specific types of ions, in a single file, down their con-
centration or electric potential gradients at a very rapid rate (about 107-108

molecules per second). Some channels are usually open within the membrane,
e.g. the potassium-specific channel, others are usually closed, opening only in
response to specific signals.

All symporters and some antiporters move ions together with small molecules,
whereas ion pumps and ion channels transport only ions. The rate of ions move-
ment across a membrane is influenced by the external and internal concentra-
tions, as well as by the electric potential existing across the membrane. The ionic
gradients of the principal cellular ions (Na+, K+, Ca2+) are generated and main-
tained by ATP-powered pumps. In animal cells these gradients, together with
the selective transport of ions through channels, determine an electrochemical
potential of around -70mV – with the cytosolic face of the plasma membrane
always negative with respect to the exoplasmic face. We refer to Section 6.1 for
a description and a formalization of concentration and potential gradients.

3 The Parametric Spherical Membrane and Membrane
Proteins Populations

The concept of membrane in P systems ([28]) consists of a (1-dimensional) border
– implicitly assumed to correspond to a closed surface in a 3-dimensional space
– which identifies and separates two regions. Objects occurring in one region can
cross the membrane, by the application of appropriate rules, and thus be placed
in the outer region or inside an inner region, if any. Membranes can also be used
to represent the lipid bilayer, where objects can reside ([9]), or where specific
operations can occur ([27]). Labels attached to the membrane can have various
meanings: numeric identifiers, electric charges ([29]), multisets of objects, etc.
In the last case, the objects placed on the membrane are usually interpreted as
proteins associated with the membrane itself, allowing several operations acting
directly upon the membrane ([12]).

However, when attempting to describe MP populations, one has to face some
limitations of the above concept of membrane. For instance, there is no obvious
or easy method to represent a spatial distribution of objects within/upon the
membrane. Indeed, one could associate with the membrane a string instead of
a multiset; in this way, it would be possible to characterize, for each symbol in
the string, which are its left and right adjacent symbols. Anyway, the fact that
the membrane is represented by a 1-dimensional border only allows for a planar
representation of a cellular membrane (like cutting a section in the cell surface).

Formalizing Spherical Membrane Structures and MP Populations 23

But the implicit concept of surface would be lost: even by associating a string to
the membrane, it still would not be possible to define a notion of neighborhood
along every directions on the membrane surface.

For a formal description of a MP population – where the spatial distribution
of proteins is important – it is thus more appropriate to consider a 2-dimensional
surface which is topologically equivalent (homeomorphic) to the sphere S2 ⊆ R3,
see [21]. As a first approximation we choose to use the shape of the sphere, though
cells can have very different forms, ranging from the biconcave round shape of
red blood cells to the highly branched structure of multipolar neurons.

Let Σ be the spherical surface, and consider the canonical discrete parameter-
ization of Σ given by two ordered sets, P = (p1, . . . , pr) and M = (m1, . . . ,ms),
whose elements are called parallels and meridians, respectively. This param-
eterization gives rise to the set P of rs intersection points of parallels with
meridians, plus two additional, north and south, “polar points” pN , pS , which
correspond to the sites where all meridians intersect. We distinguish one merid-
ian, viz., m1 ∈ M , as the “Greenwich” meridian, and starting from m1 we move
counterclockwise on the sphere; similarly, we distinguish one parallel, viz., p1,
as the “northern” parallel which is adjacent (closest to) the north polar point.
The meridian m1 will be used to identify the first symbol in the circular strings
corresponding to the parallels, as explained below.

We assume that the canonical parametrization of Σ is regular, meaning that,
for any pair of adjacent meridians mi,mi+1, i = 1, . . . , s, their mutual distance
– taken along any common fixed parallel – is the same (equal to dM), and,
similarly, for any pair of adjacent parallels pj , pj+1, j = 1, . . . , r, their mutual
distance is the same (equal to dP). This is illustrated in Fig. 1. In this way the
values of r, s determine the granularity of the parametrization – obviously, for
r, s → ∞, we obtain a continuous surface. In the following, we will also refer to
this spherical parametric surface as the (P ,M)-membrane.

The parametrization of the spherical surface allows us to formalize MP pop-
ulations residing in membranes. The resulting notion of a configuration of MP
population over Σ has to satisfy two assumptions:

1. placement points: the intersection points of meridians with parallels are the
only locations where any membrane protein can reside upon Σ;

2. self-avoidance sharing: any intersection point can be occupied by at most
one membrane protein.

A way to achieve such a formalization is to use circular words.
First of all we formalize the spherical grid of intersection points. To this aim

we consider a finite and ordered set of circular words π1, . . . , πr each of length
s, and two words π0, πr+1 of length 1. Each πi, 1 ≤ i ≤ r, corresponds to the
intersection points of meridians with the parallel pi, while π0, πr+1 correspond
to polar points pN and pS , respectively (in fact π0 = pN and πr+1 = pS).

Each circular word πi, i = 1, . . . , r, will be written in the standard form

πi = π1
i π

2
i · · ·πs

i ,

where πj
i ∈ P .

24 D. Besozzi and G. Rozenberg

Fig. 1. The parametric regular spherical membrane

The ordered set of circular words (π0, π1, . . . , πr, πr+1), called the scaffold, rep-
resents the spherical grid of intersection points and hence formalizes the structure
of the parametric spherical membrane.

Since each πi, 1 ≤ i ≤ r, is a circular word, the counting while moving (along
a parallel) to the right or to the left is done modulo s. Thus, s + 1 = 1 and
1 − 1 = s and so, moving from πs

i to the right leads to π1
i , and moving from π1

i

to the left leads to πs
i . This yields the following definition of neighborhood.

Definition 1. Let σ = (π0, π1, . . . , πr, πr+1) be the scaffold.

(1) Let 2 ≤ i ≤ r − 1 and consider πj
i , 1 ≤ j ≤ s. The direct neighborhood of πj

i

(in σ) is the set Nσ(πj
i) = {πj−1

i−1 , π
j
i−1, π

j+1
i−1 , π

j−1
i , πj+1

i , πj−1
i+1 , π

j
i+1, π

j+1
i+1 }.

(2) Let i = 1 and consider πj
1, 1 ≤ j ≤ s. The direct neighborhood of πj

1 (in σ)
is the set Nσ(πj

1) = {pN , πj−1
1 , πj+1

1 , πj−1
2 , πj

2, π
j+1
2 }.

(3) Let i = r and consider πj
r , 1 ≤ j ≤ s. The direct neighborhood of πj

r (in σ)
is the set Nσ(πj

r) = {πj−1
r−1, π

j
r−1, π

j+1
r−1, π

j−1
r , πj+1

r , pS}.
(4) The direct neighborhood of the north polar point pN (in σ) is the set Nσ(pN)

= {π1
1 , . . . , π

s
1}.

(5) The direct neighborhood of the south polar point pS (in σ) is the set Nσ(pS)
= {π1

r , . . . , π
s
r}.

In cases (1), (2), and (3) we refer to πj−1
i as the left neighbor (in σ) of πj

i , and
to πj+1

i as the right neighbor (in σ) of πj
i .

Now we move to formalize the placement of proteins in the intersection points
of the spherical grid (scaffold).

Let V = {A1, . . . , An} be the alphabet of n different types of membrane
proteins, V∗ = V ∪{∗} where ∗ is a special symbol, ∗ /∈ V , and let I = {1, . . . , r}
and J = {1, . . . , s}. We will consider an ordered set of circular words w1, . . . , wr –

Formalizing Spherical Membrane Structures and MP Populations 25

each of length s, and two words w0, wr+1 of length 1. Each wi, i ∈ I, corresponds
to a placement of proteins along the parallel pi, while w0, wr+1 correspond to a
placement of proteins on the polar points pN and pS , respectively.

Each circular word wi, i ∈ I, will be written in the standard form

wi = A1
iA

2
i · · ·As

i ,

where Aj
i ∈ V∗, j ∈ J . The interpretation for (the intuition behind) the occur-

rences of symbols Aj
i in wi is as follows:

1. the superscript j identifies the intersection point of pi with mj ,
2. Aj

i = Ak, for some 1 ≤ k ≤ n, indicates that a protein of type Ak is located
at the intersection of pi with mj ,

3. Aj
i = ∗ indicates that no protein is located at the intersection of pi with mj .

We will also use the notation w0 = B0 and wr+1 = Br+1, where B0, Br+1 ∈ V∗.

We are now ready to define a central notion of a configuration.

Definition 2. Let Σ be a (P ,M)-membrane. A configuration γ of Σ is a se-
quence γ = (w0, w1, . . . , wr , wr+1) of circular words over V∗, where each of
w1, . . . , wr is of length s and w0, wr+1 are of length 1.

The intuition behind a configuration γ is as follows: the sequence (w0, w1, . . . ,
wr, wr+1) describes the placement of proteins on all the intersection points of the
scaffold (π0, π1, . . . , πr, πr+1), where ∗ indicates that there is no protein placed at
a given intersection point. Note that this definition of a configuration naturally
satisfies the requirements of placement points and self-avoidance sharing (stated
in the initial part of this section).

4 Operations

In this section we define operations over circular words which are used to simulate
various movements of membrane proteins upon the membrane surface. In what
follows, let γ = (w0, w1, . . . , wr, wr+1) be a configuration of Σ.

Definition 3. A commutation (in γ) is a function comγ : I × J → V s
∗ such

that comγ(i, j) is defined if Aj
i , A

j+1
i 	= ∗, and when defined comγ(i, j) =

(A1
i)

′ · · · (As
i)

′, where (Aj
i)

′ = Aj+1
i , (Aj+1

i)′ = Aj
i and (Ah

i)′ = Ah
i for all

h ∈ J − {j, j + 1}.

Thus comγ(i, j) exchanges the positions of two adjacent proteins (Aj
i and Aj+1

i)
residing on the parallel pi.

Definition 4. A left shift (in γ) is a function lshγ : I × J → V s
∗ such that

lshγ(i, j) is defined if Aj
i 	= ∗ and Aj−1

i = ∗, and when defined lshγ(i, j) =
(A1

i)
′ · · · (As

i)
′, where (Aj−1

i)′ = Aj
i , (Aj

i)
′ = ∗ and (Ah

i)′ = Ah
i for all h ∈

J − {j, j − 1}.

26 D. Besozzi and G. Rozenberg

Thus lshγ(i, j) moves protein Aj
i to its free left neighbor position.

Definition 5. A right shift (in γ) is a function rshγ : I × J → V s∗ such that
rshγ(i, j) is defined if Aj

i 	= ∗ and Aj+1
i = ∗, and when defined rshγ(i, j) =

(A1
i)

′ · · · (As
i)

′, where (Aj
i)

′ = ∗, (Aj+1
i)′ = Aj

i and (Ah
i)′ = Ah

i for all h ∈
J − {j, j + 1}.

Analogously to the left shift, rshγ(i, j) moves protein Aj
i to its free right neighbor

position.

Definition 6. A downwards exchange (in γ) is a function dchγ : (I∪{0})×J →
(V s

∗ × V s
∗) ∪ (V s

∗ × V∗) ∪ (V∗ × V s
∗) such that dchγ(i, j) is defined if Aj

i 	= ∗, and
when defined then:

1. for 1 ≤ i < r, dchγ(i, j) = ((A1
i)

′ · · · (As
i)

′, (A1
i+1)

′ · · · (As
i+1)

′), where for
some h ∈ {j − 1, j, j + 1}, (Aj

i)
′ = Ah

i+1, (Ah
i+1)

′ = Aj
i , (At

i+1)
′ = At

i+1 for
all t 	= h, and (At

i)
′ = At

i for all t 	= j;
2. dchγ(r, j) = ((A1

r)
′ · · · (As

r)
′, (Br+1)′), where (Aj

i)
′ = Br+1, and (Br+1)′ =

Aj
i ;

3. dchγ(0, j) = ((B0)′, (A1
1)′ · · · (As

1)′), where (B0)′ = Aj
1, and (Aj

1)
′ = B0.

Thus dchγ(i, j) for 1 ≤ i < r exchanges Aj
i with one of Aj−1

i+1 , A
j
i+1, A

j+1
i+1 . For

i = r, dchγ(r, j) exchanges Aj
r with Br+1. For i = 0, dchγ(0, j) exchanges B0

with Aj
1.

Definition 7. An upwards exchange (in γ) is a function uchγ : (I ∪ {r + 1})×
J → (V s∗ ×V s∗)∪ (V s∗ ×V∗)∪ (V∗ × V s∗). Analogous to the downwards exchange,
uchγ(i, j) is defined if Aj

i 	= ∗, and when defined then:

1. for 1 < i ≤ r, uchγ(i, j) = ((A1
i)

′ · · · (As
i)

′, (A1
i−1)

′ · · · (As
i−1)

′), where for
some h ∈ {j − 1, j, j + 1}, (Aj

i)
′ = Ah

i−1, (Ah
i−1)

′ = Aj
i , (At

i−1)
′ = At

i−1 for
all t 	= h, and (At

i)
′ = At

i for all t 	= j;
2. uchγ(1, j) = ((A1

1)
′ · · · (As

1)
′, (B0)′), where (Aj

1)
′ = B0, and (B0)′ = Aj

1;
3. uchγ(r + 1, j) = ((Br+1)′, (A1

r)
′ · · · (As

r)
′), where (Br+1)′ = Aj

r and (Aj
r)

′ =
Br+1.

Thus, analogously to downwards exchange, uchγ(i, j), for 1 < i ≤ r, exchanges
Aj

i with one of Aj−1
i−1 , A

j
i−1, A

j+1
i−1 . For i = 1, uchγ(1, j) exchanges Aj

1 with B0.
For i = r + 1, dchγ(r + 1, j) exchanges Br+1 with Aj

r.
In Figure 2 we graphically represent the set of direct neighbors of protein Aj

i

placed on pi, for some 1 < i < r. The direct neighbors are the only intersection
points to which protein Aj

i can move to by the application of one commutation,
one shift or one exchange operation.

Besides the operations that describe the possible movements of proteins within
a (P ,M)-membrane, we also define two operations which allow one to add or
remove proteins from Σ.

Formalizing Spherical Membrane Structures and MP Populations 27

��

� �

���

�

πj−1
i−1

πj+1
i+1πj−1

i+1

πj−1
i πj+1

i

πj+1
i−1πj

i−1

pi

pi−1

pi+1

mj−1 mj mj+1

πj
i+1

Aj
i

Fig. 2. The set of direct neighbors (circle intersection points) of protein Aj
i (square

intersection point)

Definition 8. A deletion (in γ) is a function delγ : (I∪{0, r+1})×J → V s
∗ such

that delγ(i, j) is defined if Aj
i 	= ∗, and when defined delγ(i, j) = (A1

i)
′ · · · (As

i)
′,

where (Aj
i)

′ = ∗ and (Ah
i)′ = Ah

i for all h ∈ J − {j}.

Thus delγ(i, j) removes the protein Aj
i from configuration γ.

Definition 9. An insertion (in γ) is a function insγ : (I ∪{0, r+1})×J×V →
V s∗ such that insγ(i, j, A) is defined if Aj

i = ∗, and when defined insγ(i, j, A) =
(A1

i)
′ · · · (As

i)
′, where (Aj

i)
′ = A and (Ah

i)′ = Ah
i for all h ∈ J − {j}.

Thus insγ(i, j, A) inserts protein A into the vacant position Aj
i in configuration

γ.
Note that the application of commutation, shift and exchange operations pro-

duces a different placement over Σ of the proteins already residing in it. On
the other hand, insertion and deletion operations cause the current MP popula-
tion (namely, the number and possibly the types of proteins over the surface) to
change. Indeed, the molecular composition of a cellular membrane is not fixed
during all cell’s life, but it is a dynamic constituent which changes according to
proteins lifetime and vesicular trafficking.

For a configuration γ, we will use OPγ to denote the set of operations that
we have defined above, viz., commutation, left and right shift, downwards and
upwards exchange, insertion and deletion.

Two assumptions can be done concerning the MP population initially present
upon the parametric spherical surface. On the one hand, we can assume that the
proteins are randomly placed over the membrane, provided the obtained config-
uration satisfies the requirements of placement point and self-avoidance sharing.
On the other hand, we can require that the placement of proteins correspond to

28 D. Besozzi and G. Rozenberg

some biological restriction, e.g., the clustering of specific types of proteins, the
presence of lipid rafts, the description of membrane patchiness (see Section 6 for
a discussion of these topics).

In both cases, starting from an initial configuration γ over Σ, it is possible to
describe the evolution of the MP population. For instance, for the analysis of the
real processes discussed in Section 6 – such as the mechanisms generating the
curvature of the membrane, the movement of proteins according to membrane
“fence” models, etc. – specific constants can also be associated to each operation
in OPγ . This will allow, e.g., to follow the dynamics of the MP population in a
stochastic manner.

To this aim, in Section 5 we will associate the notion of functionality to the
transmembrane proteins acting as transporters. Then, in Section 6.1 we will
describe how to use this feature for the global analysis of the ion flows across a
membrane.

5 A Formal Description of Transport Proteins

In this section we formalize the functionality of transmembrane proteins involved
in the passage of solutes across the cellular membrane.

Let Σ be a (P ,M)-membrane as defined in Section 3 and O an alphabet of
objects. Let us denote by Pout and Pin the multisets over O occurring, respec-
tively, in the region outside Σ (the external region) and in the region delimited
by Σ (the internal region).

Definition 10. For each A ∈ V , the functionality of A, denoted by f(A), is a
subset of the cartesian product O × {↑, ↓, �} × N+ such that, for all (x, y, z) ∈
f(A), if (x, y′, z′) ∈ f(A) then y′ = y and z′ = z.

The intuition behind this definition is as follows: (x, y, n) ∈ f(A) means that A is
selective for object x ∈ O and simultaneously transports n copies of x according
to direction y: for y = ↑, x is transported to the external region, for y = ↓, x is
transported to the internal region, and for y = �, x may be transported to either
external or to internal regions.

Example 1. Let V = {A,B,C} and O = {a, b, c, d, e}. Let the functionality of
proteins A, B and C be defined as follows:

f(A) = (a, �, 1)
f(B) = {(b, ↓, 3), (c, ↑, 2)}
f(C) = {(b, ↓, 1), (d, ↓, 1), (e, ↑, 1)}

This means that:

– any protein of type A is selective for object a ∈ O only, it moves exactly 1
copy of a either from the external to the internal region, or the other way
around;

Formalizing Spherical Membrane Structures and MP Populations 29

– any protein of type B is selective for objects b, c ∈ O, it simultaneously moves
exactly 3 copies of b from the external to the internal region and exactly 2
copies of c from the internal to the external region;

– any protein of type C is selective for objects b, d, e ∈ O, it simultaneously
moves exactly 1 copy of b and 1 copy of d from the external to the internal
region, and exactly 1 copy of e from the internal to the external region.

Remark 1. Consider the abstract protein types described in Example 1, and let
a, b, c, d, e correspond to glucose, Na+, K+, HCO+

3 , Cl−, respectively. Then, pro-
tein A could correspond to GLUT1 uniporter in mammalian cells, which trans-
ports one molecule of glucose either from the external to the internal region, or
the other way around, according to the glucose concentration gradient across
the membrane (it always performs a “downhill” transport). Protein B could cor-
respond to Na+-K+ pump, which exchanges three extracellular Na+ ions with
two intracellular K+ ions (by consuming one ATP molecule). Protein C could
correspond to Na+-HCO+

3 /Cl− antiporter, which exploits the downhill concen-
tration gradient of Na+ to simultaneously move one Na+ and one HCO+

3 from
the external to the internal region, and one Cl− in the opposite direction, against
its concentration gradient. See, e.g., [23] for more details about the mentioned
transport proteins.

Remark 2. If A ∈ V is a protein type corresponding to a channel, then the
meaning of the value n in the definition of the functionality f(A) has to be
relaxed. Indeed, protein channels do not transport a fixed number of molecules
– that is, they are not characterized by a very specific stoichiometry. To the
contrary, many molecules can simultaneously cross a channel whenever it is open:
a current, or flow, can be experimentally determined for the functioning of (a
single occurrence of) each channel type ([36]). We explain here how to associate
an appropriate value n to protein channel types. Let I be the known current of
channel A, let Z be the electric charge of each transported molecule, and q =
1.6021773 · 10−19 C the value of the elementary charge (see, e.g., [7]). Then, the
average number of molecules that are simultaneously transported by a channel
A in one second is given by the formula n = I/(Zq). As an example, we derive
the average number of Ca2+ ions which are transported in one second by the
ryanodin receptor channel (RyR) ([18]). Since IRyR = 0.3 pA and ZCa2+ = 2,
then nRyR 9.4 · 105 ions/sec (see also [26]).

We emphasize that up to now we have only considered the functioning of trans-
port proteins. In Section 6.1 we propose a formal description of some biological
conditions, e.g. energy consumption, concentration and potential gradients, that
trigger the activation of such proteins.

We are ready now to formulate a method of object transport based on MP pop-
ulations. A membrane population transport scheme, abbreviated MPT scheme,
is a four tuple S = (V,Σ, FV ,O) such that:

– V is an alphabet of protein types;
– Σ is a (P ,M)-membrane over V ;

30 D. Besozzi and G. Rozenberg

– FV = {f(A) | A ∈ V } is the set of functionalities for protein types in V ;
– O is an alphabet of objects.

A MPT scheme S defines a scheme of transporting molecules (objects) through
a (P ,M)-membrane. It provides the specification (FV) of how molecules (ob-
jects from O) are transported by various protein types (from V) through any
distribution of proteins within the given (P ,M)-membrane Σ. A distribution
of proteins within Σ is given by a configuration of Σ. For a given configuration
γ one can determine both the transport of molecules through Σ in this config-
uration γ, as well as the dynamic change of γ through the operations in OPγ

defined in Section 4.
The behavior of S, hence the transport of objects through Σ together with

the dynamic changes of Σ, can be as usual formalized through transitions be-
tween the instantaneous descriptions of S. Such a formalization could proceed
as follows.

An instantaneous description of S is a triplet C = (γ, Pin, Pout) where γ is a
configuration of Σ and Pin, Pout are multisets over O. The underlying intuition
is that γ represents the distribution of proteins within Σ, and Pin, Pout represent
multisets of objects present in the inside and outside regions of Σ at a moment
of time captured (formalized) by C.

Then the transition from C to C′ = (γ′, P ′
in, P

′
out) in S, denoted C �S C′,

can take place if:

1. γ′ is obtained from γ by the parallel application of operations from OPγ ,
with the assumption that each coordinate Aj

i ∈ V∗ in Σ is the subject of at
most one operation in OPγ ;

2. P ′
in, P

′
out are obtained by the parallel transport of objects from Pin and Pout

according to the functionality of proteins in γ.

The evolution of S beginning with C is a sequence C0, C1, . . . , Cn, n ≥ 1,
of instantaneous descriptions such that C0 = C and, for each 0 ≤ i ≤ n − 1,
Ci �S Ci+1.

Then, by fixing the initial multisets of objects in the inside and the outside
regions of Σ, one obtains a membrane population transport system.

Thus a membrane population transport system, abbreviated MTP system, is
a triplet T = (S,Qin, Qout) such that S is a MTP scheme and Qin, Qout are
multisets over the alphabet of objects of S, called the internal and external
multisets of T , respectively. An evolution of T is an evolution of S beginning
with an instantaneous description C = (γ, Pin, Pout) such that Pin = Qin and
Pout = Qout.

6 Discussion

In this section we discuss some possible applications of the parametric spherical
membrane and MP populations. Biological and formal aspects of possible re-
search lines are explained; detailed description and specific analysis concerning
the presented topics will be further presented in forthcoming papers.

Formalizing Spherical Membrane Structures and MP Populations 31

We begin by discussing biologically oriented topics such as global ions flows
at the whole plasma membrane, new conceptualizations of the membrane archi-
tecture, the presence of membrane microdomains and protein clusters, and some
membrane curvature generating mechanisms.

Then, we propose some applications of our framework for the analysis of
computation oriented topics.

6.1 Ion Flows

In Section 5 we have defined the functionality f(A) of a protein type A ∈ V
which determines the selective transport of objects across the membrane, their
multiplicity and crossing direction. In order to achieve a complete characteriza-
tion of protein transport (e.g., for the purpose of analysis of the ion flows across
a membrane) it is also important to know which proteins – in any evolution step
– can be actually functioning, according to the current environmental condi-
tions. To this aim, we formalize the notions related to some biological conditions
that can trigger the activation of a transport protein. By activation we mean
the (conformation) change of an individual transport protein into its functional
state. The biological conditions that we consider here are the concentration gra-
dient and potential gradient across the membrane, as well as the availability of
energy molecules. Unless otherwise specified, we assume that the distribution of
ions – inside and outside the membrane – is homogeneous. Moreover, we will
only consider the contribution to membrane gradients given by the transported
ions and molecules, viz., the objects from the alphabet O.

We begin by the evaluation of the concentration and potential gradients across
a membrane. Let C = (γ, Pin, Pout) be an instantaneous description of S. Let
Pin(a), Pout(a) denote the occurrences of object a ∈ O in the multisets Pin and
Pout, respectively2.

Definition 11. The concentration gradient across a membrane – with respect
to object a ∈ O – is defined by ΔConca = Pout(a) − Pin(a).

The activation of a transport protein A can be influenced by the concentration
gradients corresponding to the objects that are selectively transported by A.
Hence, given the functionality f(A) of protein A, for ion flux analysis one should
account for the set ΔConcf(A) = {ΔConcx | (x, y, n) ∈ f(A)} ⊆ Nα, where α is
the number of distinct symbols x ∈ O such that (x, y, n) ∈ f(A).

To define the potential (or voltage) gradient across a membrane, we first need
to associate a charge to each object a ∈ O. We use the notation akaca to say that
the charged object a has ka units of (positive or negative) charge ca, for some
ka ∈ N+ and for ca ∈ {+,−}.

Example 2. Let a, b ∈ O correspond to ions Ca2+ and Cl−, respectively. Then,
ca = +, ka = 2 and cb = −, kb = 1.

2 Discrete multiplicities of ions can be derived from real (molar) concentration values
by considering also the volume values of the involved regions.

32 D. Besozzi and G. Rozenberg

Definition 12. The voltage gradient across a membrane is defined by ΔV olt =∑
a∈O kaca ·ΔConca.

Thus, the voltage gradient is evaluated by considering the difference between
the sum of all external charges and the sum of all internal charges. In fact,
ΔV olt =

∑
a∈O kaca ·ΔConca =

∑
a∈O kaca · (Pout(a)−Pin(a)) =

∑
a∈O(kaca ·

Pout(a)) −
∑

a∈O(kaca · Pin(a)).
The factor ca in the definition of ΔV olta is used to comply with the conven-

tion that, for positively charged ions, the membrane potential is the difference
between the potential on the external face and the potential on the internal face,
while for negatively charged ions it is the difference between the potential on the
internal face and the potential on the external face of the membrane.

We are ready now to introduce the formal notion of triggering conditions that
allow the activation of transport proteins.

Definition 13. For each A ∈ V , the triggering condition of A, denoted by
tr(A), is a 3-tuple τ = (n1, n2, n3) ∈ (Nα ∪ {†})× (N ∪ {†})× N.

The intuition behind this definition is as follows:

– n1 is called the concentration gradient triggering condition: it represents the
threshold values of the concentration gradients ΔConcf(A) below (or above)
which protein A is active. If n1 = †, then the concentration gradient does
not influence the activation of A;

– n2 is called the potential gradient triggering condition: it represents the
threshold value of the potential gradient ΔV olt below (or above) which pro-
tein A is active. If n2 = †, then the potential gradient does not influence the
activation of A;

– n3 is called the energy consumption triggering condition: it represents the
number of energy units (which correspond to ATP molecules in the cell) that
are needed for protein A to be active. If n3 = 0, then the protein does not
use the energy derived from ATP hydrolysis.

In some cases, the numeric threshold values of concentration or voltage gra-
dients could be replaced by intervals, which determine the range within which
the protein is, or isn’t, active.

The maximum transport rate of the transport proteins population, which is
achieved when each protein is active and functioning at its maximal rate, can be
then derived according to (1) the number of transport proteins residing in the
membrane at any evolution time, and (2) the concentration or voltage gradients
across the membrane, or the number of available energy units.

Example 3. The sodium-calcium exchanger E in excitable cells can work either
in a direct or in a reverse form, according to the current conditions. In the
direct form, its functionality is fd(E) = {(Ca2+, ↑, 1), (Na+, ↓, 3)} and its trig-
gering condition depends on the intracellular regulatory calcium concentration,
which has to be higher than 0.1 μM. In the reverse form, its functionality is

Formalizing Spherical Membrane Structures and MP Populations 33

fr(E) = {(Ca2+, ↓, 1), (Na+, ↑, 3)}, and its triggering condition depends on the
intracellular sodium concentration, which has to be higher than 100mM, and on
the membrane potential, which has to be around -40mV ([32,14]).

Remark 3. In some physiological conditions of living cells, it might be more re-
alistic to consider non-homogeneous distribution of ions across and along the
membrane. In this case, the previous definitions of membrane gradients have to
be modified, in order to describe the local values of these parameters. Accord-
ingly, the positions of each transport protein over the membrane surface and
the knowledge of its local surrounding conditions, determine the activation of
the protein at each evolution time. However, an important role is also played by
the effective distance between the membrane and the ions on its internal and
external sides. A possible formalization of these situations, deserving further in-
vestigation, was proposed in [2] by means of “virtual membranes”; also, fuzzy
control methods for the functioning of transport proteins were sketched in [1].

6.2 Membrane Microdomains and Protein Clustering

Microdomains are small areas in cellular membranes where either the lipid and
protein composition, or the structure and curvature, are different with respect
to the rest of the membrane. At microdomains, complex phase behaviors of the
membrane can be seen, such as transient separations between the fluid (liquid-
crystalline) normal phase of the membrane, and a liquid-ordered phase. This
is the case for lipid rafts ([3,10]), small and dynamic microdomains where sph-
ingolipids and cholesterol concentrate. Due to their molecular structure, these
lipids transiently get tightly packed and ordered by attractive forces (not nor-
mally acting on other types of lipids). Since the bilayer is thicker in the rafts,
some transmembrane proteins (having long enough spanning segments) can bet-
ter accommodate there. In this way, lipid rafts can help to organize these proteins
by clustering them together, thus allowing functions such as signaling transduc-
tion, secretory and endocytic sorting and trafficking.

Besides the presence of rafts, protein clustering is an important mechanism
occurring in cells, by which several synergic phenomena can take place. For in-
stance, the “calcium-induced-calcium-release” process in muscle cells happens
because of cooperation between clusters of RyR channels (at the sarcoplasmic
reticulum membrane) and clusters of dihydropyridine receptors (at the tranverse
tubules in the plasma membrane) ([33]). Also the bacterial chemotactic response
to attractants or repellents is mediated by clustered proteins, involved in a com-
plex signal transduction pathway between protein receptors and the flagellar
motors ([5,20]).

Membrane microdomains of a different type are represented by caveolae, which
are small and specialized invaginations of the plasma membrane, implicated in
endocytosis, signal transduction and lipid trafficking ([10]). Caveolae are dy-
namic structures whose formation seems to be ruled by caveolin, a protein that
is also assumed to play a role in vesicle formation. Experimental evidence sug-
gest that, similarly to lipid rafts, a variety of cell-surface signaling pathways are
concentrated in caveolae.

34 D. Besozzi and G. Rozenberg

The presence of membrane microdomains could be described in the frame-
work of the parametric spherical membranes by defining a set D of (free or
occupied) adjacent intersection points, spanning a portion of some parallels and
some meridians. In the local area given by D, the operations defining the move-
ment of proteins could then be applied in a different way: for instance, reduced
application rates can be used to characterize lipid rafts, or even no application
at all can be considered to represent the trapping of integral proteins in specific
positions. On the other hand, the formation of a microdomain, such as rafts or
caveolae, should result as an emergent property of the movements and interac-
tions of membrane proteins, possibly by considering the local lipidic composition
of the membrane as well.

The occurrence of proteins of the same – or chemically affine – type in a set D,
due to either random or preferential movements and interactions of the proteins,
can describe the presence or the formation of protein clusters. In this case,
the effective functioning of the clustered proteins can be different with respect
to their functioning in isolated positions, due to their synergic and feedback
interactions.

6.3 Membrane Curvature

The cell shape is the result of many physical forces operating on the membrane.
In some cases, the shape is stabilized and permanent, for example in microvilli or
in the dendritic tree; in other cases, the conformation of cellular membranes can
change considerably, for instance during processes such as movement, division,
vesicular trafficking, etc. Membrane curvature is generated by a complex inter-
play between lipids, membrane proteins, the tensional forces that are applied
to the membrane surface, and cell’s sensors that feed back to the production of
specific curvature-related molecules.

There are several curvature generating mechanisms, possibly working in syn-
ergy at the cell membranes. Besides the lipid composition and the role played by
the cytoskeleton elements, many remodeling actions are induced by membrane
proteins. This is the case in the formation of highly curved vesicles, where the
membrane curvature is the effect of polymerized peripheral proteins, called coat
proteins (e.g., clathrin), sometimes linked to membranes through other adaptor
proteins. Coat proteins form a sort of exoskeleton around the vesicle, and they
induce and regulate the membrane traffic for intracellular transport of molecules.
Experimental studies of clathrin-coated invaginations revealed that actually sev-
eral different proteins work together to promote membrane bending and vesicle
formation ([25]).

Other scaffolding mechanisms ([38]) due to membrane proteins are the results
of banana-shaped protein domains (e.g., BAR domain) found in a wide variety
of proteins (see, e.g., [31]). These domains bind to membrane lipids through
their intrinsic concave surface, thus remodeling and stabilizing the membrane
curvature. Another way to increase the positive membrane curvature is by the
insertion of amphipathic protein helices into the bilayer.

Formalizing Spherical Membrane Structures and MP Populations 35

The selective binding of proteins to membrane, depending on its curvature,
and the partitioning of lipids into curvature-changing regions, also gives the
possibility of creating local microenvironments on the membrane (see also Sec-
tion 6.2). For instance, specific membrane curvature values could help either in
the segregation of transmembrane proteins to incorporate them in vesicles or
in membrane tubules, or even in the preferential localization of ion channels in
membrane protrusions.

The formal description of curvature-generating mechanisms is not a trivial
task. Indeed, many physical and biological aspects of the interactions between
proteins and the membrane should be considered. For instance, the structure and
elasticity properties of the cellular membrane, and the electrostatic interactions
and chemical bonds among proteins, play an important role in the formation
of local (sometimes transient) areas with differential curvature. Hence, these
properties should be incorporated into the parametric 2-dimensional membrane
framework, in order to characterize the changes in the surface curvature as a con-
sequence of membrane and proteins interactions. A possible way to do this is to
associate to specific neighbor proteins a coefficient that describes the “strength”
of their bond; then, assume that, when this force is strong enough (is above
some threshold), a positive or negative curvature modification (invagination or
extroversion) takes place at the local area where these proteins reside upon the
membrane surface.

An example of highly modified curvature occurring in small local areas of
the surface membrane is given by the creation of budding vesicles, involved in
endocytosis or exocytosis processes. When this is due to coat proteins (hence to
the clustering and binding of many peripheral proteins of the same type), then
this can be formalized with the parametric membrane surface. For instance, one
might define the additional operation of encapsulation: it should involve the
occurrence of many membrane proteins of the same type residing in adjacent
intersection points (e.g., occupying a predefined set D). Whenever such a lo-
cal condition is satisfied, then the portion of the surface corresponding to D is
“removed” from the membrane, thus simulating the budding of a vesicle. When
considering also communication features, and the presence of internal and exter-
nal multisets, then the vesicles can be used to transport objects from a membrane
to an adjacent (internal or external) one.

Finally, we remark that in the study of curvature generating mechanisms, the
formation of cell shape due to cytoskeletal elements can be more challenging
to formalize – most probably this would require an additional extension of the
framework presented in this paper.

6.4 New Conceptualizations of Membrane Architecture

The seminal “fluid mosaic model” ([35]) was based on the principle of Brownian
motion, which explains molecular diffusion as the macroscopic effect of thermal
agitation processes, by which molecules are always moving around and collid-
ing with each other. Recent experimental evidence indicated that the lateral

36 D. Besozzi and G. Rozenberg

movements of membrane components is not so free, but constrained by various
mechanisms and phenomena, such as the presence of membrane microdomains
or interactions with cytoskeleton elements. Indeed, several aspects of membrane
dynamics cannot be explained by the Singer-Nicolson model: e.g., (1) the consid-
erably smaller (by factors of 5 to 50) diffusion coefficients of plasma membrane
with respect to those in artificial membranes, or (2) the reduced diffusion or im-
mobilization (after the formation) of oligomers or other big molecular complexes.

Therefore, new models for membrane organization have been recently pro-
posed in [22,24] suggesting that the membrane is “more mosaic than fluid” ([17])
and it can be seen as a compartmentalized fluid where proteins have differential
interactions in a crowded environment, the membrane thickness is variable and
diffusion is not due to a pure Brownian motion. Light microscopy methodologies
are currently used for studying such dynamic processes in living cells. In particu-
lar, high-speed single-molecule tracking methods (with nanometer-level precision
and smallest time resolution) helped in observing actual movements of lipids and
proteins upon the plasma membranes of many types of cells ([22]). The entire
plasma membrane – except for clathrin-coated pits, microvilli, cell-cell and cell-
substrate junctions – is partitioned into many submicron-sized compartments
where molecules undergo short-term confined diffusion (within a compartment),
and long-term hop diffusion between adjacent compartments (where molecules
become again temporarily trapped)3. Moreover, the fact the it takes time to
hop from a compartment to an adjacent one, can explain the high disparity be-
tween diffusion coefficients in the plasma membrane and diffusion coefficients in
reconstituted membranes.

Rafts and cytoskeleton are the two main compartmentalizing forces at work
in the plasma membrane. In [22], the membrane-skeleton fence model and the
anchored-transmembrane protein pickets model are introduced to discuss the role
of cytoskeleton in membrane compartmentalization. According to these models,
the cytoskeleton actin elements form the “fences”, and the transmembrane pro-
teins anchored to the cytoskeleton form the “pickets”. The fluctuating lattice
formed by transmembrane proteins and actin-based skeleton elements creates
the barriers which restrict the lateral diffusion of membrane molecules. The
hopping movement between compartments happens when, due to thermal fluc-
tuations, a transient gap is formed between the membrane and the cytoskeleton
thus allowing the passage of the cytoplasmic domain of moving transmembrane
proteins.

The two models can also give reason of the reduced diffusion rate, or immo-
bilization, of membrane molecules upon oligomerization or complex formation.
Indeed, monomers can hop across the fence barriers with relative ease, but the
complexes as a whole have to hop all at once and hence they are character-
ized by a much slower rate of hopping between the compartments. It is also
suggested that this oligomerization-induced trapping might be important in sig-
naling transduction, by temporary confining cytoplasmic signals to the place

3 The fluid mosaic model agrees with this new paradigms when limited to the events
occurring in membrane areas of 10 nm × 10 nm dimension.

Formalizing Spherical Membrane Structures and MP Populations 37

where the extracellular signal was received. We refer to reviews [22] and [24] for
further details concerning new conceptualizations of membrane architecture.

The fence and pickets models can be formalized within the framework of the
parametric surface membrane, even without considering a formal description of
the cytoskeleton. Indeed, its role in the formation of fences can be simulated by
singling out the “borders” of the compartmentalized lattice over the membrane
surface (by identifying them with sub-portions of parallels and meridians). The
proteins residing upon the intersection points characterizing the lattice consti-
tute the pickets.

Lattice and protein pickets positions could also be considered as varying in
time, but on a slower time scale with respect to the movement of proteins upon
the membrane surface due to the application of the operations defined in Section
4. Moreover, the movement of proteins inside a fenced compartment should be
characterized by a rate different from the one corresponding to the hop move-
ments between adjacent compartments.

Finally, to have a formal description of the oligomers formation, the assump-
tion of self-avoidance sharing at intersection points has to be dropped. In this
case, the monomers are to be treated in a different way, allowing their co-presence
at an intersection point. As before, the rate of movement of an oligomer can then
be modified to take into account the fact that it is more difficult for an oligomer
to change its position on the surface.

6.5 Computational Aspects of the Parametric Membrane Surface

The structure and functioning of membranes is central both for membrane com-
puting (see, e.g., [28] and [30]) and brane calculi (see, e.g., [11]). In membrane
computing (which was developed much earlier) the objects (molecules) are pro-
cessed in regions which are delimited by membranes, while in brane calculi the
objects are processed on membranes.

A number of recent papers, beginning with [12], consider a merger of the
two approaches. In [12], P systems based on brane operations were considered:
objects are now placed on the membrane, as a natural correspondence to mem-
brane proteins. Then, in [15] the projective version of brane calculi was pro-
posed, where proteins are placed and active, or visible, only on one side of the
membrane. A similar perspective, taking inspiration from the distinction be-
tween integral and peripheral proteins, was considered also in [8]. Several other
papers associating protein objects to the membranes recently appeared; an up-
to-date bibliography of these topics can be found at the P Systems Web Page:
http://psystems.disco.unimib.it.

In (mem)brane systems, usually multisets of objects representing proteins are
associated with the membranes. Moreover, as indicated several times in the pre-
vious sections, in most of cellular processes occurring on membranes the position
of proteins is important. To account for this, a (circular) string of protein objects
– rather than a multiset – can be associated with each membrane, providing in
this way a formal structure where the position of each object is known and fixed
with respect to all other objects appearing in the string. Then, the parametric

38 D. Besozzi and G. Rozenberg

membrane surface can be seen as a 2-dimensional extension of this formal rep-
resentation where, given any object residing on a parallel (the circular string),
one knows not only its left and right neighbors, but also its upper and lower (as
well as diagonal) neighbors.

The use of circular words and operations for protein movement, either on 1-
dimensional or on 2-dimensional membranes, provides an alternative approach to
(mem)brane systems for the formal expression of symbolic membrane proteins,
and thus for the analysis of the computational properties of the corresponding
systems.

Another suggestion for the analysis of computational topics comes from the
definition of functionality of transport proteins. Usually, in the area of membrane
computing, the communication of objects across membrane occurs in a non-
selective way (any object type can be moved from one region to an adjacent
one, unless some restrictions are imposed). Also one allows the passage of an
unbounded number of objects at each step (due to the maximal parallelism at
the level of rule application). But, as we have seen in Section 5, each transport
protein allows only a prescribed number of objects to cross the membrane, and
moreover this movement happens in a specific direction and for specific types of
objects. Hence, new communication rules could be defined in membrane systems,
taking care of the number and the types of the transport proteins that are present
on each membrane (and this number can be modified by allowing also insertion
or deletion operations). An immediate consequence would be the “bounded and
selective” communication of objects.

This approach can be considered both for the 1-dimensional concept of mem-
brane and for the 2-dimensional surface. Formal language generative power or
decidability properties, as well as other computational aspects, can then be an-
alyzed in membrane systems with these additional features.

7 Final Remarks

Several aspects of cellular membranes as well as possible applications to biolog-
ical systems or computational models motivated this paper.

First of all, we have pointed out why the notion of membrane in P systems can-
not account for the concept of spatial neighborhood upon a real membrane. At
the same time, we have explained why this concept is important when considering
“objects” placed within/upon the membrane, such as MP populations. Therefore,
we have proposed to extend the notion of membrane to a 2-dimensional spherical
surface, whose parametrization defines a scaffolding grid for protein placements.
Then, operations acting on proteins can allow either their movement upon the
spherical membrane, or their insertion or removal from the membrane.

As a first step, we have proposed to use a spherical surface, parameterized
by means of parallels and meridians. However, it is known that living cells can
have very different shapes, thus other geometrical surfaces can be utilized for a
better description of processes occurring upon the plasma membrane of real cells.
Moreover, also different parameterizations, giving rise to specific tessellations of

Formalizing Spherical Membrane Structures and MP Populations 39

the surface, can be used as well. An interesting application would be to derive,
starting from the spherical surface, other distinct shapes emerging from local
and global dynamics (of proteins) on the membrane surface.

The formalization of the spherical membrane has been given for one mem-
brane only, but it could also be implemented as a part of a “modified” membrane
system. In this case, the (extended) notion of membrane structure would then
consists of a collection of spherical parametric membranes, contained inside a
unique external spherical membrane – the plasma membrane. In an extended
membrane structure, the concept of mutual position between spherical mem-
branes, together with their orientation in the 3-dimensional space, would have
to be defined as well.

Possible applications of the spherical membrane and MP populations have
been discussed for both biological and computational oriented analysis. In par-
ticular, the feasibility of this framework in biology also highlights the coexistence
of both a systemic approach and a (supra)molecular description of basic system
components (e.g., in the investigation of the ion flows occurring at the whole
plasma membrane – the systemic analysis, together with the characterization
of functioning and activation of single transport proteins – the basic elements
description).

Throughout the paper we have mostly referred to transmembrane proteins,
and focused the attention on the description of transport proteins. As a matter
of fact, the parametric membrane could be used to represent also the placement
(or the induced movements) of peripheral membrane proteins populations. This
can be easily done, without an essential change of the formal structure, just
by removing the self-avoidance sharing requirement. This extension would allow
the formalization of complex formation between integral and peripheral proteins,
possibly also considering the electrostatic interactions or other physical forces
depending on local membrane composition and density, as already discussed in
Section 6.

Acknowledgment. This work has been supported by the European Research
Training Network “Segravis”. We are indebted to Prof. H. Spaink for useful dis-
cussions at the beginning phase of this research paper.

References

1. S. Aguzzoli, I.I. Ardelean, D. Besozzi, B. Gerla, C. Manara, P systems under
uncertainty: the case of transmembrane proteins, Proceedings of Brainstorming
Workshop on Uncertainty in Membrane Computing, Palma de Mallorca, 8-10
November 2004, 107–117.

2. S. Aguzzoli, D. Besozzi, B. Gerla, C. Manara, P systems with vague boundaries:
the t-norm approach, Proceedings of Brainstorming Workshop on Uncertainty in
Membrane Computing, Palma de Mallorca, 8-10 November 2004, 97–105.

3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell., 4th edition, Garland Science, New York, 2002.

40 D. Besozzi and G. Rozenberg

4. I.I. Ardelean, D. Besozzi, On modeling ion fluxes across biological membranes with
P systems, Proceedings of the Third Brainstorming Week on Membrane Comput-
ing (M.A. Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan
eds.), RGNC Report 01/2005, Sevilla, January 31 - February 4, 2005, 35–42.

5. I.I. Ardelean, D. Besozzi, Some notes on the interplay between P systems and
chemotaxis in Bacteria, Fourth Brainstorming Week on Membrane Computing,
Sevilla, January 30 - February 3, 2006, Volume I (M.A. Gutiérrez-Naranjo, G.
Păun, A. Riscos-Núñez, F.J. Romero-Campero eds.), RGNC REPORT 02/2006,
Fénix Editora, Sevilla (2006), 41–48.

6. I.I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy, P system models for
mechanosensitive channels. In: G. Ciobanu, G. Păun, M.J. Pérez-Jiménez eds.,
Applications of Membrane Computing, Springer–Verlag, Berlin, 2005.

7. P.W. Atkins, L.L. Jones, Chemistry: molecules, matter, and change. Third Edition,
W.H. Freeman and Co., New York, 1997.

8. D. Besozzi, N. Busi, G. Franco, R. Freund, G. Păun, Two universality results
for (mem)brane systems, Fourth Brainstorming Week on Membrane Computing,
Sevilla, January 30 - February 3, 2006, Volume I (M.A. Gutiérrez-Naranjo, G.
Păun, A. Riscos-Núñez, F.J. Romero-Campero eds.), RGNC REPORT 02/2006,
Fénix Editora, Sevilla (2006), 49–62.

9. D. Besozzi, G. Ciobanu, A P system description of the sodium-potassium pump,
Membrane Computing, 5th International Workshop - WMC 2004 (G. Mauri, G.
Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa eds.), LNCS 3365, Springer-
Verlag, Berlin, 2005, 210–223.

10. D.A. Brown, E. London, Functions of lipid rafts in biological membranes, Annu.
Rev. Cell Dev. Biol., 14, 1998, 111–136.

11. L. Cardelli, Brane calculi. Interactions of biological membranes, Computational
Methods in Systems Biology. International Conference CMSB 2004, Paris, France,
May 2004, Revised Selected Papers (V. Danos, V. Schachter, eds.), LNCS 3082,
Springer-Verlag, Berlin, 2005, 257–280.

12. L. Cardelli, G. Păun, An universality result for (mem)brane calculus based on
mate/drip operations, International Journal of Foundations of Computer Science,
17, 1, 2006, 49–68.

13. W. Cho, R.V. Stahelin, Membrane-protein interactions in cell signaling and mem-
brane trafficking, Annu. Rev. Biophys. Biomol. Struct., 34, 2005, 119–151.

14. F. Cossu, Modelli discreti per il trasporto del calcio attraverso la membrana plas-
matica, Graduation Thesis, University of Milano, Italy, 2005.

15. V. Danos, S. Pradalier, Projective brane calculus, Computational Methods in
Systems Biology: International Conference CMSB 2004, Paris, France, May 26-
28, 2004, Revised Selected Papers, (V. Danos, V. Schachter, eds.), LNCS 3082,
Springer-Verlag, Berlin, 2005, 134–148.

16. M. Dean, The Human ATP-Binding Cassette (ABC) Transporter Superfamily, Na-
tional Library of Medicine (US), NCBI, 2002 (http://www.ncbi.nlm.nih.gov/).

17. D.M. Engelman, Membranes are more mosaic than fluid, Nature, 438, 2005, 578–
580.

18. M. Fill, J.A. Copello, Ryanodine receptors calcium release channels, Physiol. Rev.,
82, 2002, 893–922.

19. E. Gouaux, R. MacKinnon, Principles of selective ion transport in channels and
pumps, Science, 310, 2005, 1461–1465.

20. M.S. Jurica, B.L. Stoddard, Mind your B’s and R’s: bacterial chemotaxis, signal
transduction and protein recognition, Current Biology, 6, 1998, 809–813.

Formalizing Spherical Membrane Structures and MP Populations 41

21. C. Kosniowski, A First Course in Algebraic Topology, Cambridge University Press,
1980.

22. A. Kusumi, C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R.S.
Kasai, J. Kondo, T. Fujiwara, Paradigm shift of the plasma membrane concept from
the two-dimensional continuum fluid to the partitioned fluid: high-speed single-
molecule tracking of membrane molecules, Annu. Rev. Biophys. Biomol. Struct.,
34, 2005, 351–378.

23. H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J.E. Darnell,
Molecular Cell Biology. 4th Ed., W.H. Freeman and Co., New York, 2000.

24. D. Marguet, P.F. Lenne, H. Rigneault, H.T. He, Dynamics in the plasma mem-
brane: how to combine fluidity and order, The EMBO Journal, 25, 2006, 3446–3457.

25. H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell
membrane remodelling, Nature, 438, 2005, 590–596.

26. N. Palmieri, Un approccio stocastico alla modellazione del canale RyR, Graduation
Thesis, University of Milano, Italy, 2006.

27. M.J. Pérez-Jiménez, F.J. Romero-Campero, Modelling EGFR signalling cascade
using continuous membrane systems. Proceedings of CMSB2005 (G. Plotkin, ed.),
Edinburgh, 3-5 April 2005, 118–129.

28. G. Păun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

29. G. Păun, Computing with membranes – A variant: P systems with polarized mem-
branes, International Journal of Foundations of Computer Science, 11, 1, 2000,
167–182.

30. G. Păun, Membrane Computing. An introduction, Springer–Verlag, Berlin, 2002.
31. G.A. Petsko, D. Ringe, Protein Structure and Function, New Science Press Ltd.,

2004.
32. K.D. Philipson, D.A. Nicoll, Sodium-calcium exchange: a molecular perspective,

Annual Review of Physiology, 62, 2000, 111–133.
33. I.I. Serysheva, Structural insights into excitation-contraction coupling by electron

cryomicroscopy, Biochemistry (Moscow), 69, 11, 2004, 1226–1232.
34. S.J. Singer, Some early history of membrane molecular biology, Annual Review of

Physiology, 66, 2004, 1–27.
35. S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell mem-

branes, Science, 175, 1972, 720–731.
36. J.M. Ward, Patch-clamping and other molecular approaches for the study of plasma

membrane transporters demystified, Plant Physiology, 114 (1997), 1151–1159.
37. W. Wickner, R. Schekman, Protein translocation across biological membranes,

Science, 310, 2005, 1452–1456.
38. J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature,

Nature Reviews Molecular Cell Biology, 7, 2006, 9–19.

Quorum Sensing: A Cell-Cell Signalling
Mechanism Used to Coordinate Behavioral

Changes in Bacterial Populations

Miguel Cámara

Institute of Infection, Immunity and Inflammation
Centre for Biomolecular Sciences

University of Nottingham, Nottingham NG7 2RD, UK
miguel.camara@nottingham.ac.uk

1 The Quorum Sensing Concept

One of the most important mechanisms for bacterial cell-to-cell communication
and behavior coordination under changing environments is often referred to as
“quorum sensing” (QS). QS relies on the activation of a sensor kinase or re-
sponse regulator protein by, in many cases, a diffusible, low molecular weight
signal molecule (a “pheromone” or “autoinducer”) (Cámara et al., 2002). Con-
sequently, in QS, the concentration of the signal molecule reflects the number
of bacterial cells in a particular niche and perception of a threshold concen-
tration of that signal molecule indicates that the population is “quorated”, i.e.
ready to make a behavioral decision. Bacteria cell-to-cell communication is per-
haps the most important tool in the battle for survival; they employ commu-
nication to trigger transcriptional regulation resulting in sexual exchange and
niche protection in some cases, to battle host’ defences and coordinate popula-
tion migration. Ultimately, bacteria cell-to-cell communication is used to effect
phenotypic change. The importance of coordinated gene-expression (and hence
phenotypic change) in bacteria can be understood if one realizes that only by
pooling together the activity of a quorum of cells can a bacterium be successful.
It is increasingly apparent that, in nature, bacteria function less as individuals
and more as coherent groups that are able to inhabit multiple ecological niches
(Lazdunski et al., 2004). Within quorum sensing process several key elements
must be considered: (i) the gene(s) involved in signal synthesis, (ii) the gene(s)
involved in signal transduction, and (iii) the QS signal molecule(s).

In Gram-negative bacteria, some of the most studied signal molecules are the
N-acylhomoserine lactones (AHLs) (Fig. 1A). During the growth of a bacterial
population, signal molecules either diffuse or are exported out of the cell into
the surrounding environment; their concentration increases and they then act
on neighboring bacterial cells. Achievement of a critical threshold concentration
results in: (i) activation of a sensor/response regulator, responsible for signal
transduction (T), which in turn triggers the expression of multiple genes and (ii)
activation positive autoinductive feedback loop to amplify QS signal molecule
generation (Figure 1B).

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 42–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Quorum Sensing: A Cell-Cell Signalling Mechanism 43

Fig. 1. A: Chemical structures of N-acylhomoserine lactones and PQS. B: Generic
quorum sensing signal generation and transduction circuit.

Hence the term “autoinducer” is sometimes used to describe the QS signal
molecule. Important in governing the size of the “quorum” is ‘compartment
sensing’ (Winzer et al., 2002). The concentration of a given QS signal molecule
may be a reflection of bacterial cell number, or at least the minimal number
of cells (quorum) in a particular physiological state. To achieve the accumula-
tion of a QS signal there is a need for a diffusion barrier, which ensures that
more molecules are produced than lost from a given microhabitat. This ‘com-
partment sensing’ enables the QS signal molecule to be both a measure of the
degree of compartmentalization and the means to distribute this information
through the entire population. Likewise, the diffusion of QS signal molecules
between detached subpopulations may convey information about their numbers,
physiological state and the specific environmental conditions encountered.

2 Quorum Sensing in P. aeruginosa: A Complex
Regulatory Network Resulting in Fine Signal Tuning

Pseudomonas aeruginosa is a very versatile organism that can adapt to many
different environments and can cause diseases in plants, animals, and humans
(Rahme et al., 1995). It possesses a large 6.3MB genome encoding 5,570 pre-
dicted genes including 521 putative regulatory genes suggesting the existence
of a highly complex gene regulation which enables it to adapt quickly to envi-
ronmental changes (Stover et al., 2000). This organism produces a broad range
of exoproducts, which are regulated in a population density-dependent man-
ner via cell-to-cell communication or “quorum sensing” (Cámara et al., 2002).
Two intertwined QS systems (the las and the rhl systems) have been shown to
be involved in virulence, biofilm development, and many other processes in P.
aeruginosa (Gambello and Iglewski, 1991; Latifi et al., 1995; Ochsner and Reiser,
1995; Passador et al., 1993). These QS systems produce and respond to specific
AHL signal molecules (Pearson et al., 1994; Winson et al., 1995). In addition,

44 M. Cámara

each system modulates a regulon comprising an overlapping set of genes. How-
ever, the las and the rhl systems are not independent of each other, but form
a regulatory hierarchy where LasR-C12-HSL activates the transcription of rhlR
(Latifi et al., 1996; Pesci et al., 1997) (Figure 2). Transcriptome analysis of P.
aeruginosa has revealed that N-acylhomoserine lactone (AHL)-dependent QS
regulates up to 10% of the genes in the genome of this organism (Schuster et al.,
2003; Whiteley et al., 1999).

Fig. 2. Interactions between the different regulators of QS in P. aeruginosa (→ indi-
cates positive regulation and � negative regulation)

In addition to AHLs, P. aeruginosa releases a 4-quinolone signal molecule
into the extra-cellular milieu, the synthesis and bioactivity of which has been re-
ported to be mediated via the las and rhl systems respectively. This molecule has
been chemically identified as 2-heptyl-3-hydroxy-4(1H)-quinolone and termed
the Pseudomonas Quinolone Signal (PQS) (Fig. 1) (Pesci et al., 1999). LasR has
been shown to regulate PQS production and the provision of exogenous PQS
induces expression of lasB (coding for elastase), rhlI and rhlR (McKnight et al.,
2000; Pesci et al., 1999) suggesting that PQS activity constitutes a regulatory
link between the las and rhl QS systems. The QS-dependent production of ex-
oproducts in P. aeruginosa is tightly regulated with respect to growth phase
and growth environment. In contrast to the AHL-dependent induction of biolu-
minescence in Vibrio fischeri (Eberhard et al., 1981) and carbapenem antibiotic

Quorum Sensing: A Cell-Cell Signalling Mechanism 45

production in Erwinia carotovora (Williams et al., 1992), the provision of ex-
ogenous AHLs does not advance the expression of several QS dependent genes
in wild type P. aeruginosa PAO1 such as lecA, lasB or rhlR expression (Dig-
gle et al., 2002; Pearson, 2002). This is due to the contribution of additional
regulatory factors in addition to LasR and RhlR. Figure 2 shows a simplified
diagram of how the different regulators have so far been shown to interact with
the QS regulatory cascade at both the transcriptional and posttranscriptional
level. This shows an example of the intricate control of QS-mediated responses
by a network of regulators which results in a fine tuning of adaptive responses
to environmental changes.

3 Potential Approaches for Systems Biology-Based Study
of Regulatory Networks in P. aeruginosa

To gain a better understanding on how regulatory networks in P. aeruginosa,
or any other organisms using quorum sensing-mediated signalling mechanisms,
work, there are a number of key questions that need to be address: (i) what are
the key parameters governing the relationship between QS master switches? (ii)
how do cellular regulatory networks fine tune into the QS regulatory cascade?
(iii) for genes directly regulated by more than one regulatory system what are
the rules that determine the establishment of the hierarchical control? To answer
these questions two possible systematic approaches could be used. On one hand,
the regulatory networks could be analyzed using a “zoom in” model, starting by
studying phenotypic changes and eventually identifying their tuning with key
cellular regulators (Figure 3). In this particular model a bacterial population
could be subjected to certain inputs determined by changes in environmental
conditions. This would result in phenotypic changes which could be measured.
If the biology of the organism is reasonably known, these changes could be
linked to transcriptional alterations of previously characterized target genes.
Subsequently, using a number of genetic tools such as those described by Diggle
et al for P. aeruginosa (Diggle et al., 2002), novel regulators for those target genes
could be identified. The validation of this model could be done by testing whether
changes in environmental conditions, identical to those used before, would result
in the same alteration on the activity of the transcriptional regulators identified,
their target genes and the corresponding phenotypes.

Alternatively, a “zoom out” model going from the understanding of the rela-
tionship between core regulators to the way they influence phenotypic changes in
a bacterium. This approach, shown in Figure 4 would start by investigating the
relationship between known core regulators such us the rhl, las or PQS systems
in P. aeruginosa, and their supraregulators. The next step up would require
moving out one layer and investigating the effect alterations in these regulators
would have on the expression of their target genes resulting in specific pheno-
typic changes which could be measured. Validation of this model could be done
by verifying that specific alteration to the activity of the regulators results in

46 M. Cámara

Fig. 3. Systems-biology based “Zoom in” approach to study regulatory networks in
P. aeruginosa

Fig. 4. Systems-biology based “Zoom out” approach to study regulatory networks in
P. aeruginosa

Quorum Sensing: A Cell-Cell Signalling Mechanism 47

the predicted phenotypic changes. This type of approach could be simplified by
using constant environmental conditions.

Although other systematic models could be used to study the complexity of
P. aeruginosa QS regulatory networks, these two approaches are perhaps the
most straight forward ones.

References

1. Cámara, M., Williams, P., and Hardman, A. (2002) Controlling infection by tuning
in and turning down the volume of bacterial small-talk. Lancet Infectious Diseases
2: 667–676.

2. Diggle, S.P., Winzer, K., Lazdunski, A., Williams, P., and Cámara, M. (2002)
Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of
N-acylhomoserine lactone production and virulence gene expression. Journal of
Bacteriology 184: 2576–2586.

3. Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H.,
and Oppenheimer, N.J. (1981) Structural identification of autoinducer of
Photobacterium-Fischeri luciferase. Biochemistry 20: 2444–2449.

4. Gambello, M.J., and Iglewski, B.H. (1991) Cloning and characterization of the
Pseudomonas aeruginosa LasR gene, a transcriptional activator of elastase expres-
sion. Journal of Bacteriology 173: 3000–3009.

5. Latifi, A., Foglino, M., Tanaka, K., Williams, P., and Lazdunski, A. (1996) A
hierarchical quorum sensing cascade in Pseudomonas aeruginosa links the tran-
scriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase
sigma factor RpoS. Molecular Microbiology 21: 1137–1146.

6. Latifi, A., Winson, M.K., Foglino, M., Bycroft, B.W., Stewart, G., Lazdunski, A.,
and Williams, P. (1995) Multiple homologs of LuxR and Luxl control expression
of virulence determinants and secondary metabolites through quorum sensing in
Pseudomonas aeruginosa PAO1. Molecular Microbiology 17: 333–343.

7. Lazdunski, A.M., Ventre, I., and Sturgis, J.N. (2004) Regulatory circuits and com-
munication in gram-negative bacteria. Nature Reviews Microbiology 2: 581–592.

8. McKnight, S.L., Iglewski, B.H., and Pesci, E.C. (2000) The Pseudomonas quinolone
signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of
Bacteriology 182: 2702–2708.

9. Ochsner, U.A., and Reiser, J. (1995) Autoinducer-mediated regulation of rham-
nolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the
National Academy of Sciences of the United States of America 92: 6424–6428.

10. Passador, L., Cook, J.M., Gambello, M.J., Rust, L., and Iglewski, B.H. (1993)
Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell com-
munication. Science 260: 1127–1130.

11. Pearson, J.P. (2002) Early activation of quorum sensing. Journal of Bacteriology
184: 2569–2571.

12. Pearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., Eberhard, A., Iglewski, B.H.,
and Greenberg, E.P. (1994) Structure of the autoinducer required for expression of
Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of
Sciences of the United States of America 91: 197–201.

13. Pesci, E.C., Milbank, J.B.J., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg,
E.P., and Iglewski, B.H. (1999) Quinolone signaling in the cell-to-cell communication
system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences
of the United States of America 96: 11229–11234.

48 M. Cámara

14. Pesci, E.C., Pearson, J.P., Seed, P.C., and Iglewski, B.H. (1997) Regulation of las
and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179:
3127–3132.

15. Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel,
F.M. (1995) Common virulence factors for bacterial pathogenicity in plants and
animals. Science 268: 1899–1902.

16. Schuster, M., Lostroh, C.P., Ogi, T., and Greenberg, E.P. (2003) Identification,
timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes:
a transcriptome analysis. Journal of Bacteriology 185: 2066–2079.

17. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey,
M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L.,
Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter,
S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong,
G.K.S., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S.,
and Olson, M.V. (2000) Complete genome sequence of Pseudomonas aeruginosa
PAO1, an opportunistic pathogen. Nature 406: 959–964.

18. Whiteley, M., Lee, K.M., and Greenberg, E.P. (1999) Identification of genes con-
trolled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National
Academy of Sciences of the United States of America 96: 13904–13909.

19. Williams, P., Bainton, N.J., Swift, S., Chhabra, S.R., Winson, M.K., Stewart,
G., Salmond, G.P.C., and Bycroft, B.W. (1992) Small molecule-mediated density-
dependent control of gene-expression in prokaryotes - Bioluminescence and the
biosynthesis of carbapenem antibiotics. Fems Microbiology Letters 100: 161–167.

20. Winson, M.K., Cámara, M., Latifi, A., Foglino, M., Chhabra, S.R., Daykin, M.,
Bally, M., Chapon, V., Salmond, G.P.C., Bycroft, B.W., Lazdunski, A., Stewart,
G., and Williams, P. (1995) Multiple N-acyl-L-homoserine lactone signal molecules
regulate production of virulence determinants and secondary metabolites in Pseu-
domonas aeruginosa. Proceedings of the National Academy of Sciences of the
United States of America 92: 9427–9431.

21. Winzer, K., Hardie, K.R., and Williams, P. (2002) Bacterial cell-to-cell communi-
cation: Sorry, can’t talk now - gone to lunch! Current Opinion in Microbiology 5:
216–222.

A Modeling Approach Based on P Systems with
Bounded Parallelism

Francesco Bernardini1, Francisco J. Romero-Campero2, Marian Gheorghe3,
and Mario J. Pérez-Jiménez2

1 Leiden Institute of Advanced Computer Science
University of Leiden

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Seville, Avda. Reina Mercedes, 41012 Sevilla, Spain
{fran,marper}@cs.us.es

3 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

M.Gheorghe@dcs.shef.ac.uk

Abstract. This paper presents a general framework for modelling with
membrane systems that is based on a computational paradigm where
rules have associated a finite set of attributes and a corresponding func-
tion. Attributes and functions are meant to provide those extra features
that allow to define different strategies to run a P system. Such a strat-
egy relying on a bounded parallelism is presented using an operational
approach and applying it for a case study presenting the basic model of
quorum sensing for Vibrio fischeri bacteria.

1 Introduction

In 1998, Gheorghe Păun initiated the field of research called membrane com-
puting with a paper firstly available on the web and later published in [19].
Membrane computing aims at defining computational models which abstract
from the functioning and structure of the cell. In particular, membrane comput-
ing starts from the observation that compartmentalization through membranes
is one of the essential features of (eucaryotic) cells. Unlike bacterium, which
generally consists of a single intracellular compartment, a(n) (eucaryotic) cell is
sub-divided into functionally distinct compartments. Thus, a class of computing
devices called membrane systems, or P systems, are defined [19], which have
three essential features: a membrane structure consisting of a hierarchical ar-
rangement of several compartments defined as regions delimited by membranes;
objects assigned to regions; and rules assigned to the regions of the membrane
structure, acting upon the objects inside. In particular, each region is supposed
to contain a finite set of rules and a finite multiset (or set) of objects. Rules en-
code generic processes for producing/consuming objects and for moving objects
from one region to the other. Objects are described either as symbols from a

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 49–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 F. Bernardini et al.

given alphabet or as strings over a given alphabet. The application of the rules
is performed in a non-deterministic maximally parallel manner: all the applica-
ble rules that should be used to modify existing objects must be applied, and
this is done in parallel for all membranes.

Since this model was introduced for the first time in 1998, many variants of
membrane systems have been proposed and studied – a comprehensive bibliog-
raphy of P systems can be found at the P systems web page [29]. The most
investigated membrane system topics are related to the computational power
of different variants, their capabilities to solve hard problems, like NP-complete
problems, decidability, complexity aspects and hierarchies of classes of languages
produced by these devices.

Membrane computing represents nowadays a research area of a larger inter-
disciplinary field called natural computing, that involves scientists studying the
emergence of new computational paradigms inspired from the behavior of vari-
ous natural phenomena. In the same time there is a growing interest in apply-
ing mathematical and computational paradigms to model real natural systems.
Computational biology is such a field, where mathematical and computational
models of biological systems are designed for the analysis and simulation of the
behavior of these systems. Biological modeling has involved standard continuous
and stochastic mathematical approaches, as well as discrete models. Standard
mathematical models with their simulation techniques have proved to be pow-
erful tools for understanding the dynamics of biological systems (e.g., see [25],
[26]). Discrete modeling instead advocates the use of different formalisms taken
from various areas of computer science (e.g., formal grammars [6], Petri nets [16],
X machines [9], [27], process algebra [24], [3], statecharts [15], etc.) to develop
computational models of biological systems.

This paper presents a general framework for modeling with membrane systems
that is based on a model of P systems where rules have associated a finite set
of attributes and a corresponding function. Attributes and functions are meant
to provide those extra features which are necessary to close the “gap” between
the abstractness of more standard P system models and the “reality” of the
phenomenon to be modeled (Section 2). The behavior of such P systems is defined
in Section 3 in terms of bounded parallelism, which precisely formalizes the idea
of a membrane system as a system where a certain number of components evolve
in parallel at the same time by means of a certain number of rules applied inside
each one of these components. Then, in Section 4, as a particular instance of the
general model, we consider P systems where rules have associated a real constant
as an attribute and the corresponding function is used to compute a value of
a probability depending on this constant and on certain multisets of objects
defining the context where the rule is applied; for this particular variant of P
systems, we also define a strategy for the application of the rules which, in each
step, selects the next rule to be applied depending on the aforementioned values
of probabilities. Finally, in Section 5, as a case study, we present a P system
model for the quorum sensing mechanism of bacterial cell-to-cell communication.

A Modeling Approach Based on P Systems with Bounded Parallelism 51

2 The Model

Usually a P system is defined as a hierarchical arrangement of a number of
membranes identifying a corresponding number of regions inside the system, and
with these regions having associated a finite multiset of objects and a finite set of
rules. Moreover, one can also consider membrane systems where the underlying
structure is defined as an arbitrary graph like in tissue P systems [20], and in
population P systems [1]. In this paper, we only focus on membrane systems
of the former type where the underlying structure is defined as being a tree of
nested membranes.

Rules of many different forms have been considered for membrane systems in
order to encode the operation of modifying the objects inside the membranes
and the operation of moving objects from one place to the other. In particu-
lar, for communicating objects, one can use either the targets here, in, out, or
symport/antiport rules, or boundary rules [20].

Here, in order to capture the features of most of these rules, we consider rules
of the form:

u [v] → u′ [v′] (1)

with u, v, u′, v′ some finite multisets. These rules are generalized boundary rules
operating as multiset rewriting rules which simultaneously replace a multiset of
objects placed outside the membrane and a multiset of objects placed inside the
membrane with two new multisets placed in the same places. In this way, we
are able to capture in a concise way the essential features of transformation and
communication of objects usually considered in the area of membrane computing.
Moreover, from a modeling point of view, rules like (1) allow us to express
any sort of interactions occurring at the membrane level, like, for instance, the
binding of a signal molecule to a specific receptor which occurs at cell-surface
level (e.g., see [21]).

We associate to each rule a finite set of attributes in order to be able to
capture specific quantitative aspects of the phenomenon to be modeled. Specifi-
cally, these attributes are used by rules as different reaction rates and/or different
probabilities which overall affects the strategy of the application of the rules.

Definition 1 (program). Let V,K be alphabets, let D be a set (possibly infi-
nite), and let A be a finite subset of D. The set D is called the set of values and
the set A is called the set of attributes. Let F = {f1, f2, . . . , fp} be a finite set
of functions such that, for all 1 ≤ t ≤ n, ft : P(D)× V ∗ × V ∗ × V ∗ × V ∗ −→ D
with P(D) the family of all subsets of D. A program (over V,K,D,A,F) is a
construct 〈u [v] → u′ [v′], σ, fi〉l where: u, v, u′, v′ ∈ O∗, σ ⊆ A, fi ∈ F , for
some 1 ≤ i ≤ p, and l ∈ K.

Thus, a program consists of a rule, a finite set of attributes and a function
which, given this set of attributes and four multisets, returns a value from a
certain chosen set. In particular, the first two multisets are usually considered
as being the two multisets placed on the left side of the rule; the two remaining
multisets are instead supposed to be the multisets placed respectively inside

52 F. Bernardini et al.

and outside a given membrane. That is, each function is expected to compute a
particular value depending on the rule and on the contents of the outside and
the inside regions that define the “context” where the rule is applied.

Here our main focus is in modeling systems consisting of many different bio-
chemical reactions distributed across different compartments. Therefore, the
following interpretation for programs will be predominantly used throughout
the paper. Objects represent chemicals and multisets of objects are interpreted
as “bags” or “soup” of chemicals. Rules model transformations involving these
chemicals. Each rule has associated a finite set of attributes and a corresponding
function defining particular properties that affect the behavior of the rule itself;
these properties are usually said to define the reactivity of the rule (e.g., see [2],
[21]). Moreover, since we want to have systems consisting of many different com-
partments, we assign to each program a label to differentiate the set of programs
from one compartment to the other.

Remark 1. Although the aforementioned interpretation will be mainly used in
this paper, it is not the unique possible and that is why we introduce the notions
of set of values and set of attributes in a more generic fashion. For instance, one
may use attributes to model properties inherent to the membranes and may
use the corresponding function to update these attributes every time a rule is
applied. Alternatively, one may consider hybrid models where the attributes
represent continuous variables which are updated through the use of certain
functions (e.g., see [9] for hybrid X machines, and [16] for hybrid Petri nets).

Next, we introduce the notion of P specification which makes explicit the basic
components necessary to define a particular P system model.

Definition 2 (P specification). A P specification is a construct

S = (V,K,D,A,F , P)

where:

1. V is an alphabet; its elements are called objects;
2. K is an alphabet; its elements are called labels;
3. D is a set of values;
4. A ⊆ D is a finite set of attributes;
5. F = {f1, f2, . . . , fp} is a finite set of functions as in Definition 1.
6. P is a finite set of programs over V,K,D,A,F of the form specified in Def-

inition 1.

Thus, a P specification provides a “scheme” for the definition of P systems
with programs defined over the sets V , K, D, A, and F . In particular, from
a modeling point of view, we can say that the alphabet V of objects specifies
different “sorts” for the chemicals present inside a certain system, the alphabet
K of labels specifies different “types” for the membranes possibly present inside
a certain system, and the set D specifies the domain of interpretations for the
attributes and the corresponding functions.

A Modeling Approach Based on P Systems with Bounded Parallelism 53

A P system is then obtained by augmenting a certain P specification with an
initial configuration. In particular, we recall that the structure of a P system
is given by a hierarchical arrangement of some n ≥ 1 membranes labeled in an
one-to-one manner with values in {1, 2, . . . , n} [20]. However, since here we use
labels from a given alphabet to identify the “type” of a membrane, the value
from {1, 2, . . . , n} assigned to a membrane is called the index of the membrane;
the membrane structure is then said to be indexed by the values 1, 2, . . . , n.

Definition 3 (P system). A P system of degree n ≥ 1 is a construct:

Π = (S, μ,M1,M2, . . . ,Mn)

where S = (V,K,D,A,F , P) is a P specification with V,K,D,A,F , P as in
Definition 2, μ a membrane structure containing n membranes indexed by the
values 1, 2, . . . , n, and, for all 1 ≤ i ≤ n, Mi = (wi, li), with wi ∈ V ∗ the content
of membrane i and li ∈ K the label of membrane i.

As usual, a P system of degree n ≥ 1 is defined as consisting of a membrane
structure containing n membranes. Each membrane contains a multiset of objects
and gets assigned a label from the set K. This latter symbol is particularly useful
for retrieving from the given specification the set of programs which can be used
inside each membrane in the system. In other words, this label precisely identifies
the “type” of the membrane in terms of the rules which can be applied inside.

Most of the P system variants utilize a maximal parallel rewriting manner
[20]. This means, in each step, in each membrane, all the objects that can evolve
by means of some rules must evolve in parallel, with the only restriction that
the same occurrence of the same object cannot be used by more than one rule
at a time. That is, in each step, for each membrane, a maximal set of rules to
be applied is non-deterministically selected by making sure that no further rules
can be applied to the objects left inside the membranes. In this paper we will
introduce a mechanism to bound the number of applications of the rules and the
number of membranes that will evolve in a step. In this respect, the key issues
that need to be addressed in order to define a strategy for the application of the
rules in a P system are: a) how to select the next rule to be applied inside a given
membrane, b) how many different rules can be applied in parallel at the same
time inside the membrane, and c) how many different membranes can evolve in
parallel at the same time.

3 Parallelism of Type (k, q)

We formalize here the notion of a transition step in P systems evolving in a
(k, q)−parallel manner: in each step, at most k membranes evolve in parallel at
the same time and, inside each membrane, at most q rules are applied in parallel
at the same time. Moreover, in a given step, if k membranes can evolve by means
of some rules, then exactly k membranes must evolve in parallel in that step;
inside each membrane, if q rules can be applied, then exactly q rules are applied

54 F. Bernardini et al.

in parallel inside that membrane. In other words, parallelism of type (k, q) is
assumed to be maximal and exhaustive with respect to k and q.

Our formalization makes use of some concepts of the operational semantics
for P systems introduced in [5] and it is based on the explicit assignment of the
rules contained to the programs to the respective membranes; this is obtained
by assigning the index of a membrane to each object possibly present inside the
system.

Let Π = (S, μ,M1,M2, . . . ,Mn) with S = (V,K,D,A,F , P) and Mi =
(wi, li), for all 1 ≤ i ≤ n, be a P system as specified in Definition 3. The
following extra notions are associated to the P system Π :

– the indexed alphabet (of Π) denoted by V̄ is the set V̄ = { ai | a ∈ V, 1 ≤
i ≤ n };

– for all 1 ≤ i ≤ n, and for all u ∈ V ∗, the i-version of u is the multiset denoted
by ui ∈ V̄ such that, for all a ∈ V , for all 1 ≤ j 	= i ≤ n, |ui|ai = |u|a and
|uaj | = 0;

– the set of membrane rules (of Π) is the set of programs denoted by MR
and such that: MR = { uj vi → u′

j v
′
i | 〈u [v] → u′ [v′], σ, f〉li ∈ P, j =

upper(μ, i) }, where upper(μ, i) is a function returning for a given membrane
structure μ, the membrane containing the region i.

Thus, the indexed alphabet of Π is the alphabet of symbols from V with attached
indexes of the membranes in the system. The i-version of a multiset u, with
1 ≤ i ≤ n and u ∈ V ∗, is the multiset obtained by assigning the index i to all
the objects in u. The set MR explicitly identifies, for each membrane, the set of
rules which can be used inside that membrane by replacing the multisets in the
rules with the corresponding indexed versions. In particular, for all 1 ≤ i ≤ n,
the set of rules which can be used inside membrane i are the rules contained in
programs labeled by li.

Moreover, for all 1 ≤ i ≤ n, a multiset of rules for membrane i, is a collection
of membrane rules r1, r2, . . . , rki , with ki ≥ 0 and with these rules not necessarily
distinct, such that, for all 1 ≤ h ≤ ki, rh is a membrane rule in MR of the form
uj vi → u′

j v
′
i with vi 	= λ. The size of Ri, denoted by |Ri|, is the number of rules

in Ri.
A multiset of rules in Π is a collection of membranes rules of the form R1,

R2, . . . , Rn such that, for all 1 ≤ i ≤ n, Ri is a multiset of rules for membrane i.
Then, a configuration of a P system is defined as being a multiset over the

indexed alphabet.

Definition 4 (Configuration). Let Π = (S, μ,M1,M2, . . . ,Mn) be a P system
as in Definition 3 where S = (V,K,D,A,F , P) and Mi = (wi, li), for all 1 ≤
i ≤ n. A configuration (of Π) is a multiset C ∈ V̄ . The initial configuration (of
Π), denoted by C0, is the multiset u1 u2 . . . un such that, for all 1 ≤ i ≤ n, ui is
the i-version of wi.

Notice that, with the notions introduced in this section so far, we have essentially
reduced a P system of degree n ≥ 1 to an equivalent one of degree 1 where the
objects have an index specifying the membrane which they are assigned to in

A Modeling Approach Based on P Systems with Bounded Parallelism 55

the original system. Thus, the behavior of such a system can be defined as being
a multiset rewriting system where the rules are selected according to a certain
strategy depending on the indexes assigned to the objects. In fact, according to
Definition 4, a configuration of a P system is just a multiset of objects and the
membrane rules are usual multiset rewriting rules.

To this aim, we need first to introduce the concepts of i-irreducibility and the
concept of (C, k, q)-consistency.

Definition 5 (i-irreducibility). Let Π = (S, μ,M1,M2, . . . ,Mn) be a P sys-
tem as in Definition 3 where S = (V,K,D,A,F , P), and let β be a finite multiset
over V̄ . Let MR be the set of membrane rules in Π. Given 1 ≤ i ≤ n, we say that
β is i-irreducible if, for all uj vi → u′

j v
′
i ∈ MP with vi 	= λ, we have β 	� uj vi.

Thus, given a P system of degree n ≥ 1, for all 1 ≤ i ≤ n, a multiset over the
indexed alphabet is i-irreducible if there are no more rules which can be applied
to the objects with index i. In other words, if we interpret these objects as being
the content of membrane i, this means that there are no more rules that can be
applied to the objects placed inside membrane i.

Definition 6 ((C, k, q)-consistency). Let Π = (S, μ,M1,M2, . . . ,Mn) be a P
system as in Definition 3 where S = (V,K,D,A,F , P), and let R be a multiset
of rules in Π. Let C ∈ V̄ ∗ be a configuration of Π, and let k, q 	= 0 be pos-
itive integers with k ≤ n. We say that R is (C, k, q)-consistent if there exists
{i1, i2, . . . , ig} ⊆ {1, 2, . . . , n} with g ≤ k such that R can be written as a col-
lection of rules Ri1 , Ri2 , . . . , Rig with Rih

a multiset of rules for membrane ih,
and

1. if g < k, then, for all i ∈ ({1, 2, . . . , n} \ {i1, i2, . . . , ig}), C is i-irreducible;
2. for all i ∈ {i1, i2, . . . , ik}, if Ri = u1

j v
1
i → z1

j w1
i , . . . , u

p
j vp

i → zp
j wp

i , then we
have C = xu1

j v1
i . . . up

j vp
i , for some x ∈ V̄ ∗;

3. for all i ∈ {i1, i2, . . . , ik}, |Ri| ≤ q, and if Ri = u1
j v

1
i → z1

j w1
i , . . . , u

p
j vp

i →
zp

j wp
i with p < q, then C = xu1

j v1
i . . . up

j vp
i , for some i-irreducible x ∈ V̄ ∗.

The notion of (C, k, q)-consistency precisely characterizes the multisets of rules
which can be applied to a given configuration C in accordance to the parallelism
of type (k, q). In fact, such a multiset of rules must contain a multiset of rules for
at most k distinct membranes; if there are not k membranes that can evolve by
means of some rules, then a smaller but maximal number of membranes must be
selected (Condition 1 of Definition 6). The rules contained in the selected multiset
must be applicable to the objects currently contained inside each membrane
(Condition 2 of Definition 6). Moreover, for each membrane, at most q rules
must be selected; if inside some membrane there are less than q rules that can
be applied, then all of them must be applied (Condition 3 of Definition 6).

Therefore, in order to perform a (k, q)-parallel step in a given P system, it
is necessary to first select a multiset of rules R to be applied to the current
configuration C such that R is (C, k, q)-consistent. In this respect, we assume
to have defined an algorithm to select programs and membranes Ak,q such that,

56 F. Bernardini et al.

given a configuration of a P system Π and its set of programs, returns a multiset
of rules which is (C, k, q) consistent. In all the previous sections, this selection
has been defined as being non-deterministic but, in general, one may identify
other strategies which, in particular, should take into account the attributes
associated with the rules. Approaches in this direction are considered in [2], [21],
[22] where strategies for the selection of the rules are defined which depend on a
notion of rate of application of the rules, or on certain probabilities associated
with the rules. In the next section, we present one such strategy where the rules
to be applied in the next step are selected depending on a particular distribution
of probabilities computed step by step.

Here, we define the notion of a (k, q)-parallel step of computation by assuming
a generic algorithm for the selection of the rules.

Definition 7 ((k, q)-parallel step). Let Π = (S, μ,M1,M2,. . . , Mn) be a P
system as in Definition 3 where S = (V,K,D,A,F , P), and let C1, C2 be con-
figurations of Π. Let Ak,q be an algorithm for the selection of the rules which is
able to return a (C1, k, q)-consistent multiset of rules in Π. We say that C2 can
be obtained from C1 in a (k, q)-parallel step, denoted by C1 ⇒(k,q)

Π C2, if there
exists a multiset R of rules in Π such that:

1. Ak,q(C1, P) = R;
2. R = uj1 vi1 → zj1 wi1 , . . . , ujp vip → zjp wip , for some p > 0;
3. C1 = xuj1 vi1 . . . ujp vip and C2 = x zj1 wi1 . . . zjp wip , for some x ∈ V̄ ∗.

If that is the case, then we write C1 ⇒(k,q)
Π C2.

Thus, a (k, q)-parallel step in a P system consists in the parallel application of a
(C, k, q)-consistent multiset of rules to a certain configuration C. The multiset of
rules to be applied is supposed to be returned by a particular algorithm to select
membranes and programs, and this has to be done before every step depending
on the current configuration of the system.

Then, we introduce the notion of sequence of (k, q)-parallel steps and (k, q)-
parallel execution of a P system.

Definition 8 (sequence of (k, q)-parallel steps). Let Π = (S, μ,M1,M2,. . . ,
Mn) be a P system as in Definition 3. A sequence of (k, q)-parallel steps in Π
is a sequence σ such that

σ = C1, C2, . . . , Ch

where, for all 1 ≤ i ≤ h, Ci is a configuration of Π, and, if i 	= h, then Ci ⇒(k,q)
Π

Ci+1. If that is the case, we say that σ is a sequence of (k, q)-parallel steps in
Π that starts from C1 and that Ch is obtained from C1 in h− 1 steps; we also
write C1 ⇒(k,q),h

Π Ch.

Definition 9 ((k, q)-parallel execution). Let Π = (S, μ,M1,M2, . . . ,Mn) be
a P system as in Definition 3. A (k, q)-parallel execution of Π is a sequence of
(k, q)-parallel steps in Π which starts from the initial configuration of Π.

A Modeling Approach Based on P Systems with Bounded Parallelism 57

Thus, we have characterized the behavior of P systems operating according to a
bounded parallelism where the number of membranes and the number of rules
which can be used in every step are overall bounded by some given constants.

Remark 2. From a computational point of view, the introduction of bounded
parallelism in membrane systems does not affect the fundamental universality
results concerning the computational power of different variants of P systems,
such as P systems with catalysts, with symport/antiport, with boundary rules,
etc. In fact, it is easy to see that, in all those cases, the simulation of counter
machines is achieved by means of P systems where the number of rules applied
in parallel in each step is actually overall bounded (e.g., see [7]). On the other
hand, it is shown in [8], [10] that P systems with catalysts operating in sequential
mode and P systems with symport/antiport operating in sequential mode (i.e.,
with parallelism of type (1, 1)) are strictly less powerful than their corresponding
parallel versions. Moreover, one can also notice that, whenever k is equal to the
number of membranes in the system, our notion of parallelism of type (k, q)
coincides with the notion of q-Max-Parallelism introduced in [7].

4 An Algorithm to Select Membranes and Programs

We present an algorithm to select membranes and programs for P systems op-
erating with parallelism of type (1, 1) (i.e., in sequential mode) where the next
membrane to evolve and the next rule to be applied inside this membrane is
randomly selected according to a certain distribution of probabilities. However,
with respect to Definition 3, the algorithm is here defined only for a restricted
model of P systems where rules are all of the forms:

u [] → [v], [v] → u[], [v] → [v′] (2)

that is, there is a distinction between transformation rules and communication
rules, communication is only unidirectional, and there is no interaction between
the inside and the outside of a membrane.

Our strategy for selecting membranes and programs is based on Gillespie’s
algorithm [12]. This algorithm [12] provides an exact method for the stochastic
simulation of systems of bio-chemical reactions; the validity of the method is
rigorously proved and it has been already successfully used to simulate various
biochemical processes [17]. As well as this, Gillespie’s algorithm is used in the
implementation of stochastic π-calculus [4] and in its application to the modeling
of biological systems [23].

We follow a similar approach to associate a stochastic behavior to membrane
systems by considering P systems where each rule has associated a real constant
which defines its rate of application and which is used to compute the probability
of the rule to be applied in the next step in the same way as in Gillespie’s
algorithm. More precisely, we consider a class of P systems where, with respect
to Definition 3, the set of values is the set of non-negative real numbers denoted
by R+

0 , each programs contains a rule like (2), a real constant as an attribute,

58 F. Bernardini et al.

and a function to compute a probability depending on the value of this constant.
For short, such a P system is called PPR (i.e., a P systems with Probabilities
associated with the Rules).

In order to compute the probability values, we use, for all the programs, the
function φ such that φ : R+

0 × V ∗ × V ∗ −→ R+
0 with:

φ(k, u, α) = k ·
∏

a∈alph(u)

|α|a!
|u|a! · (|α|a − |u|a)!

(3)

for all k ≥ 0, u, α ∈ V ∗ and u � α; φ(k, u, α) = 0 for all k ≥ 0, u, α ∈ V ∗ and
u 	� α.

That is, given a rule [v] → u[], or a rule [v] → [v′] with an associated
attribute k, and given a multiset α � v, expression (3) returns the number of
different ways of choosing |v|a occurrences of a from the multiset α, for all a
such that |a| ≥ 0. In particular, the multiset α is supposed to be the multiset
of objects placed inside the membrane where the rule is going to be used. In a
similar way, given a rule u [] → [v] with attribute k, expression (3) is used to
compute a probability value for this rule by considering the multiset u and the
multiset of objects placed in the outside region.

Remark 3. The function given by expression (3) is already used in [22] to com-
pute probability values for rules. However, this is done in the context of a different
algorithm to select rules and programs which is not directly related to Gillespie’s
algorithm.

Next, we provide a formal definition for the notion of a PPR.

Definition 10 (PPR). A PPR of degree n ≥ 1 is a construct

Π = (V,K,R+
0 , A, φ, P, μ,M1,M2, . . . ,Mn)

where:

– (V,K,R+
0 , A, φ, P) is a P specification with φ the function given by expres-

sion (3), and all the programs in P having the form 〈 r, k, φ〉l for r a rule
like (2), and k ∈ A;

– μ, and M1,M2, . . . ,Mn are as in Definition 3.

Remark 4. The function φ is used to compute the probabilities associated with
the rules in a slightly different form with respect to the type of functions consid-
ered in Definition 1: only two multisets instead of four are used by the function
φ. This is because we are restricted to rules of the forms u [] → [v], [v] → u[],
[v] → [v′] containing only one multiset on the left side. However, our approach
could be easily generalized to the case of rules of the form u [v] → u′ [v′] with
u, v 	= λ by considering a function φ′ such that

φ′(k, u, v, wout, win) = φ(k, u, wout) · φ(1, v, win)

where wout, win denote the multisets of objects placed respectively inside and
outside the membrane where the rule is going to be applied.

A Modeling Approach Based on P Systems with Bounded Parallelism 59

Let Π be a PPR, and let C be a configuration of Π . For all 1 ≤ i ≤ n, we define
the multiset Oi ∈ V ∗ as being the multiset of objects such that |Oi|a = |C|ai ,
for all a ∈ V (i.e., Oi is the multiset of objects contained inside membrane i in
the configuration C).

We associate to membrane i, with 1 ≤ i ≤ n, a set TRi containing all the
triples:

– (t, vi → uj , pt), with 〈 [v] → u[], k, φ〉li , li the label of membrane i, j =
upper(μ, i), and pt = φ(k, v,Oi);

– (t′, vi → v′i, pt′), with 〈 [v] → [v′], k, φ〉li , li the label of membrane i, and
pt′ = φ(k, v,Oi);

– (t′′, ui → vj , pt′′), with 〈u [] → [v], kh, φ〉lj , i = upper(μ, j), lj the label of
membrane j, and pt′′ = φ(k, u,Oi).

Thus, for each membrane i, the set TRi is supposed to contain all the rules that
can be used inside membrane i with these rules having associated a correspond-
ing value of probability. In particular, if a certain rule is not applicable inside
membrane i, then the probability of this rule to be applied turns to be equal to
0. Moreover, notice that rules which send a multiset inside a certain membrane
are considered as rules to be used inside the surrounding region.

The following algorithm is then defined to select membranes and programs
for P systems with parallelism of type (1, 1).

First, for each membrane i, we compute the index of the next program to be
used inside membrane i and its waiting time by using the classical Gillespie’s
algorithm:

1. calculate a0 =
∑

pj , for all (j, r, pj) ∈ TRi;
2. generate two random numbers r1 and r2 uniformly distributed over the unit

interval (0, 1);

3. calculate the waiting time for the next reaction as τi =
1
a0

ln(
1
r1

);

4. take the index j, of the program such that
j−1∑
k=1

pk < r2a0 ≤
j∑

k=1

pk;

5. return the triple (τi, j, i).

Notice that the larger the real constant associated with a rule and the number of
occurrences of the objects placed on the left-side of the rule inside a membrane
are, the greater the chance that the rule will be applied in the next step of
the simulation. There is no constant time-step in the simulation. The time-step
is determined in every iteration and it takes different values depending on the
configuration of the system.

Next, a step of application of the rules is simulated by using the following
procedure:

• Initialization
◦ set time of the simulation t = 0;
◦ for each membrane i in μ compute a triple (τi, j, i) by using the procedure

described above; construct a list containing all such triples;
◦ sort the list of triple (τi, j, i) according to τi;

60 F. Bernardini et al.

• Iteration
◦ extract the first triple, (τm, j,m) from the list;
◦ set time of the simulation t = t + τm;
◦ update the waiting time for the rest of the triples in the list by subtract-

ing τm;
◦ apply the rule contained in the program j only once changing the number

of objects in the membranes affected by the application of the rule;
◦ for each membrane m′ affected by the application of the rule remove the

corresponding triple (τ ′m′ , j′,m′) from the list;
◦ for each membrane m′ affected by the application of the rule j re-run the

Gillespie algorithm for the new context in m′ to obtain (τ ′′m′ , j′′,m′), the
next program j′′, to be used inside membrane m′ and its waiting time
τ ′′m′ ;

◦ add the new triples (τ ′′m′ , r′′,m′) to the list and sort this list according
to each waiting time and iterate the process.

• Termination
◦ Terminate simulation when time of the simulation t reaches or exceeds

a preset maximal time of simulation, or no more rules can be applied to
the objects left inside the membranes.

Therefore, in this approach, it is the waiting time computed by the Gillespie’s
algorithm to be used to select the membrane which is allowed to evolve in the
next step of computation. Specifically, in each step, the membrane associated to
the rule with the same minimal waiting time is selected to evolve by means of
this rule. If there are more than one rule with the same waiting time, then we
assume one of them to be randomly selected to be used in the next step.

Moreover, since the application of a rule can affect more than one membrane
at the same time (e.g., some objects may be moved from one place to another),
we need to reconsider a new rule for each one of these membranes by taking into
account the new distribution of objects inside them.

Remark 5. The use of a variable time-unit for each step does not affect the
semantics of our model; in each step, a single rule at a time is applied inside a
specific membrane. This means the behavior of the systems is still synchronous
although each application of a rule has associated a different time-unit. In fact,
the waiting time is mainly used as a parameter necessary to determine the rule
to be applied in the next step of computation.

Remark 6. The current algorithm brings some improvements with respect to the
notion of step introduced in Definition 7. In fact, in the iteration phase, we need
not to recompute all the probabilities associated with each program applicable
inside each membrane, but we can do that only for those membranes which are
actually affected by the last application of a program. That is so because the
value of the probabilities associated with the other rules remain unchanged.

Remark 7. The use of the waiting time parameters leads to selecting a membrane
using the minimum waiting time principle. Getting rid of this parameter will lead

A Modeling Approach Based on P Systems with Bounded Parallelism 61

to a variant of this algorithm that is associated to an (n, 1)−parallel behavior of
the system, where n is the total number of membranes. Indeed, in this case there
is no way to distinguish between membranes and all of them will be selected.

5 A Case-Study: Bacterial Quorum Sensing

We present an application of membrane systems to the modeling of quorum
sensing in bacteria (QS, for short).

The QS mechanism is a communication strategy based on diffusible signals
which kick-in under high cellular density. Bacteria use this mechanism to obtain
a population-wide coordination of infection, invasion, and evasion of a host’s
defence. We refer to [13], [14], [28] for further details about the biology of QS.
Moreover, a comprehensive bibliography of QS-related research can be found at
the web page [30] maintained by the Nottingham Quorum Sensing Group.

QS bacteria produce and release chemical signal molecules, called autoin-
ducers, whose external concentration increases as a function of increasing cell-
population density. Bacteria detect the accumulation of a minimal threshold
stimulatory concentration of these autoinducers and alter their gene expression,
and therefore their behavior in response to the variation of the concentration
of autoinducers. Using these signal-response systems, bacteria synchronize par-
ticular behaviors on a population-wide scale and thus function as multicellular
organisms.

The first described quorum-sensing system is that of the bioluminescent ma-
rine bacterium Vibrio fischeri, and it is considered the basic paradigm for quorum
sensing in most (gram-negative) bacteria [18]. Vibrio fischeri colonize the light
organ of the Hawaiian squid Euprymna scolopes. In this organ, the bacteria grow
to high cell density and induce the expression of genes for bioluminescence. The
squid uses the light provided by the bacteria for counter-illumination to mask its
shadow and avoid predation. The bacteria benefit because the light organ is rich
in nutrients and allow proliferation in numbers unachievable in seawater. Two
proteins, named LuxI and LuxR, control the expression of the luciferase operon
(luxICDABE) required for light production. LuxI is the autoinducer synthase,
which produces the autoinducer 3OC6-homoserine lactone (OHHL, for short),
and LuxR acts as a receptor for these autoinducers. OHHL freely diffuses in
and out of the cell and increases in concentration in correspondence of the in-
creasing of the cell density. When this concentration reaches a critical threshold,
OHHL binds to LuxR and this complex activates the transcription of the operon
encoding luciferase. As well as this, the LuxR-OHHL complex also induces the
expression of luxI because it is encoded in the luciferase operon. This regulatory
configuration floods the environment with the signal. This creates a positive
feedback loop that causes the entire population to switch into “quorum-sensing
mode”, and produce light; in this case, it is also said that the population is
quorated.

QS systems have then been identified in other bacterial populations, for in-
stance, Pseudomonas aeruginosa, Vibrio harveyi, and Bacillus subtillis, where

62 F. Bernardini et al.

the existence of quorum-sensing networks relying on multiple signalling circuits
acting synergistically has also been observed.

5.1 A P System Model of QS

A P system model for the QS system of Vibrio fischeri is here defined where
a colony of such bacteria is represented by means of a membrane structure
consisting of a number of elementary membranes, each one of them representing
a bacterium, included in an unique membrane (the skin) representing a common
shared environment. In particular, each membrane will contain a set of programs
modeling the QS regulatory circuits responsible for the production of light.

To this aim, we use: the symbol OHHL to denote the autoinducer, the
symbol LuxR to denote the receptor for the autoinducer OHHL, the symbol
LuxR-OHHL to denote the complex formed by the binding of the autoinducer
OHHL to the receptor LuxR, the symbol LuxBox to denote the luciferase
operon in its down-regulated state (i.e., when it is not active for the production
of light), and the symbol LuxBox-LuxR-OHHL to denote the luciferase operon
in its up-regulated state (i.e., when it is active for the production of light). Then,
we define the following P signature for QS in Vibrio fischeri.

BS(A) = (V,K,R+
0 , φ, A, P)

where A = {k1, k2, k4, k3, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14} is a set of real
constants, V = {OHHL,LuxR,LuxR-OHHL,LuxBox, LuxBox-LuxR-OH
HL}, K = {e, b}, φ is the function given by expression 2, and P is finite set
containing all the following programs:

– 〈 [LuxBox] → [LuxBoxLuxR], k1, φ〉b,
〈 [LuxBox] → [LuxBoxOHHL], k2, φ〉b
(at low cell density the autoinducer OHHL and the receptor LuxR are
produced at a basal rate);

– 〈 [OHHLLuxR] → [LuxR-OHHL], k3, φ〉b,
〈 [LuxR-OHHL] → [OHHLLuxR], k4, φ〉b
(the autoinducer OHHL and the receptor LuxR bind together to form the
complex LuxR-OHHL which, in turn, dissociates in its components);

– 〈 [LuxR-OHHL LuxBox] → [LuxBox-LuxR-OHHL], k5, φ〉b,
〈 [LuxBox-LuxR-OHHL] → [LuxR-OHHL LuxBox], k6, φ〉b
(the complex LuxR-OHHL binds to the region of DNA responsible for the
production of light; such a complex can also dissociate from that region by
returning the luciferase operon to a down-regulated state);

– 〈 [LuxBox-LuxR-OHHL] → [LuxBox-LuxR-OHHL OHHL], k7, φ〉b,
〈 [LuxBox-LuxR-OHHL] → [LuxBox-LuxR-OHHL LuxR], k8, φ〉b

(the binding of the complex to the corresponding region of DNA produces an
increase in the production of the autoinducer OHHL and in the production
of the receptor LuxR);

A Modeling Approach Based on P Systems with Bounded Parallelism 63

– 〈 [OHHL] → OHHL [], k9, φ〉b
(the autoinducer OHHL freely diffuses outside the bacterium and accumu-
lates in the environment);

– 〈 [OHHL] → [], k10, φ〉b,
〈 [LuxR] → [], k11, φ〉b,
〈 [LuxR-OHHL] → [], k11, φ〉b
(the autoinducer OHHL, the receptor LuxR and the complex LuxR-OHHL
undergo a process of degradation inside the bacterium);

– 〈OHHL [] → [OHHL], k12, φ〉b
(the autoinducer OHHL diffuse back from the environment into the bac-
terium);

– 〈 [OHHL] → [], k13, φ〉e
(the autoinducer OHHL is degraded in the environment).

Thus, we have identified 14 rules which model the main transformations in-
volved in the QS system of Vibrio fischeri. Notice that the signature BS is
parametric with respect to the particular constants associated with the rules.

Next, we define a parametric PPR system Π(n,A) to represent a colony of
n ≥ 1 bacteria interacting by means of the QS system described by the afore-
mentioned rules. Specifically, we have

Π(n,A) = (BS(A), μ(n),M1, . . . ,Mn,Mn+1)

where:

– A = {k1, k2, k4, k3, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14};
– μ(n) = [n+1 [1]1 . . . [n]n]n+1;
– Mi = (LuxBox, b), for all 1 ≤ i ≤ n;
– Mn+1 = (λ, e).

Thus, in the initial configuration, we assume all the bacteria in the colony to
contain only one occurrence of the object LuxBox representing the portion of
DNA responsible for the production of the autoinducer OHHL and the recep-
tor LuxR; the environment is instead supposed to be initially empty. Moreover,
notice that, by having the notion of P specification, we can represent an arbi-
trary large colony in a very compact way by avoiding repeating the same set of
programs for every membrane in the system.

Simulation results have been presented under different formalisms and show
the same behavior of the colony.

6 Discussion

As we have seen, there is a growing interest in using P systems for modeling bio-
logical systems. This often requires the introduction into the membrane system
model of some extra features especially when the quantitative aspects character-
izing the “reality” of the biological phenomenon to be modeled are considered.

64 F. Bernardini et al.

Here we have addressed these issues by specifically introducing the notion of
a program consisting of a rule with a finite set of attributes and a function from
a given set (Definition 1). We have shown how attributes and functions can be
used to define P system models for bio-chemical systems consisting of a number
of bio-chemical reactions distributed across various compartments of the system.
A precise strategy for the application of the rules has also been defined for this
class of P systems which makes possible to associate a stochastic behavior to
such P systems. Our approach is based on the well-known Gillespie’s algorithm
and it is developed alongside the work done in [2], [21], [22] where alternative
strategies for the application of the rules are defined.

Acknowledgements

The first author’s research is supported by NWO, Organisation for Scientific
Research of The Netherlands, project 635.100.006 “VIEWS”.

The second and fourth authors are supported by Ministerio de Ciencia y
Tecnoloǵıa of Spain, by Plan Nacional de I+D+I (TIN2005-09345-C04-01), cofi-
nanced by FEDER funds, by Junta de Andalućıa, by project of Excellence TIC
581, and by a FPU fellowship from the Ministerio de Ciencia y Tecnoloǵıa of
Spain.

References

1. Bernardini, F., Gheorghe, M. (2004). Population P Systems. J. UCS 10,(5), 509–
539.

2. Bianco, L., Fontana, F., Manca, V. (2006). P Systems with Reaction Maps. Inter-
national Journal of Foundations of Computer Science, 17, (1), 27–48.

3. Calder, M., Vyshemirsky, V., Gilbert, D, Orton, R (2006). Analysis of Signalling
Pathways using Continuous Time Markov Chains. Transactions on Computational
Systems Biology, to appear.

4. Cardelli, L., Philips, A.(2004). A Correct Abstract Machine for the Stochastic
Pi-calculus. Electronical Notes in Theoretical Computer Science, to appear.

5. Ciobanu G., Andrei, O., Lucanu D. (2006). Structural Operational Semantics of P
Systems, WMC6, LNCS 3850, 31–48.

6. Collado-Vides, J. (1992). Grammatical Models of the Regulation of Gene Expres-
sion, Proc. of National Academy of Science, 89, 9405–9409.

7. Dang, Z., Ibarra, O.H., Li, C., Gaoyan, X. (2006). Decidability of Model-Checking
P Systems. Journal of Automata, Languages and Combinatorics,, to appear.

8. Dang, Z., Ibarra, O.H. (2005). On One-membrane P systems Operating in Sequen-
tial Mode. Int. J. Found. Comput. Sci. 16, (5), 867–881.

9. Duan, Z., Holcombe, M., Bell, A. (2000). A Logic for Biological System, Biosystems,
53, 93–155.

10. Freund, R. (2004). Asynchronous P systems and P systems working in Sequential
Mode, WMC5, LNCS 3365, 36–62.

11. Gillespie, D.T. (1976). A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions. J Comput Physics,
22, 403–434.

A Modeling Approach Based on P Systems with Bounded Parallelism 65

12. Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reac-
tions. The Journal of Physical Chemistry, 81, (25), 2340–2361.

13. Hardie, K.R., Williams, P., Winzer, K.(2002). Bacterial cell-to-cell communication:
sorry, can’t talk now, gone to lunch. Current Opinion in Microbiology, 5, 216–222.

14. Fargerströn, T., James, G., James, S., Kjelleberg, S., Nilsson, P. (2000). Lumines-
cence Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics
of lux Regulation. J. Mol. Biol. 296, 1127–1137.

15. Kam, N., Cohen, I.R., Harel, D. (2001). The Immune System as a Reactive Systems:
Modelling T Cell Activation with Statecharts, The Weizmann Institute of Science,
Israel.

16. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S. Hybrid (2000). Petri Net Repre-
sentation of Gene Regulatory Network, Pacific Symposium on Biocompting, World
Scientific, 338–349.

17. Meng, T.C., Somani S., Dhar, P. (2004). Modelling and Simulation of Biological
Systems with Stochasticity. In Silico Biology, 4, (0024), 137–158.

18. Nealson, K.H., Hastings, J.W. (1979). Bacterial Bioluminescence: Its Control and
Ecological Significance, Microbiology Review, 43, 496–518.

19. Păun, Gh. (2000). Computing with Membranes, Journal of Computer and System
Sciences, 61, (1), 108 – 143.

20. Păun, Gh. (2002). Membrane Computing. An Introduction, Springer, Berlin.
21. Pérez-Jiménez, M.J., Romero-Campero, F.J. (2006). P Systems, a New Computa-

tionl Modelling Tool for Systems Biology, Transactions on Computational Systems
Biology VI, LNBI, 4220, 176-197.

22. Pescini, D., Besozzi, D., Mauri, G., Zandron, C. (2006). Dynamical probabilistic
P systems, International Journal of Foundations of Computer Science, 17, (1),
183–195.

23. Priami, C., Regev, A., Shapiro, E., Silverman, W. (2001). Application of a Stochas-
tic Name-Passing Calculus to Representation and Simulation of Molecular Pro-
cesses, Information Processing Letters 80, 25–31.

24. Regev, A., Shapiro, E. (2004) The π-calculus as an abstraction for biomolecular
systems. In Gabriel Ciobanu and Grzegorz Rozenberg, editors, Modelling in Molec-
ular Biology, Springer, 219–266.

25. Segel, I.H. (1976). Biochemical Calculations: How to Solve Mathematical Problems
in General Biochemistry, John Wiley and Sons, 2nd edition.

26. Till, J.E., McCulloch, F. Siminovitch, L. (1964). A Stochastic Model of Stem Cell
Proliferation based on the Growth of Spleen Colony-Forming Cells, Proc. National
Academy of Science USA, 51, 117–128.

27. Walker, D., Holcombe, M., Southgate, J., McNeil, S., Smalwood, R. (2004). The
Epitheliome: Agent-Based Modelling of The Social Behaviour of Cells, Biosystems,
76, (1–3), 89–100.

28. Waters, C.M., Bassler, B.L. (2005). Quorum Sensing: Cell-to-Cell Communication
in Bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319–346.

29. The P Systems Web Site: http://psystems.disco.unimib.it
30. Nottingham Quorum Sensing Web Site http://www.nottingham.ac.uk/quorum/

Synchrony and Asynchrony
in Membrane Systems

Jetty Kleijn1 and Maciej Koutny2

1 LIACS, Leiden University
P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

kleijn@liacs.nl
2 School of Computing Science, University of Newcastle

Newcastle upon Tyne, NE1 7RU, United Kingdom
maciej.koutny@ncl.ac.uk

Abstract. We consider synchrony and asynchrony in the behavior of
various models of membrane systems, which may differ in the way indi-
vidual reactions are defined as well as in the way multisets of these reac-
tions can be executed in a single computational step. We concentrate on
the properties of ongoing computations, including the unbounded ones.
Our focus is on the properties of system states involved in such com-
putations as well as on concurrency and causality relationships between
executed reactions. This should be contrasted with the approach which
investigates different notions of ‘results’ produced through halting com-
putations of membrane systems. As a formal behavioral model we use
Petri nets and their processes which are very well suited to capture the
notion of an execution in a concurrent context. We continue our earlier
work reported in [15], where a systematic and structural link has been
established between a basic class of membrane systems and Petri nets.
Here, we look at some natural extensions of this basic class of membrane
systems and investigate the ways in which they can be represented within
the behavioral model provided by Petri nets.

1 Introduction

Inspired by the way living cells are divided by membranes into compartments
where biochemical reactions may take place, membrane systems (also known as
P systems) have become a prominent new computational model [1,21,23,24]. In
a nutshell, a reaction transforms multisets of molecules (or objects) present in
the compartment into new molecules, possibly transferring some to neighboring
compartments and the environment. Consequently, all aspects of the dynamic
behavior of membrane systems are determined by the reaction or evolution rules
in each compartment and by the way in which these rules occur. The resulting
transformations (or computation steps) take place starting from an initial con-
figuration (a distribution of objects). Furthermore, a notion of a successful (or
halting) computation with its output is defined [23,24]. Different types of mem-
brane systems have been considered, depending on the form of the rules and how
they are applied, and on input/output definitions. In fact, studies in the field of

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 66–85, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Synchrony and Asynchrony in Membrane Systems 67

membrane systems are often concerned with investigating the possible outcomes
of the computations, i.e., the computational power of the various models. The
aim of our work, however, is different in that we are interested in describing what
is actually going on during an execution of a membrane system; alternatively,
one might say that we are interested in computations rather than computability.
Thus, we focus on possible system states (configurations) occurring in ongoing
computations as well as on the concurrency and causality relationships between
executed reaction rules. This emphasis on possible behaviors (runs) rather than
input/output relations, further implies that all possible computations need to
be considered, including non-successful and still ongoing (even unbounded) ones
(which are also relevant from a biological/cell point of view).

There are basically two distinguishing features of any model of membrane
systems when one is interested in the structural properties of their executions
rather than in successful computations or the results produced. The first is the
definition of individual reactions; in the simplest case, a reaction is supposed only
to consume and produce multisets of molecules, but in more elaborate models,
its execution can, e.g., be conditional or affect the structure of the cell. The
second is the degree of synchrony present in a single computation step; in the
extreme case, commonly considered in the theory of membrane systems, in a
single step the system is transformed by a maximally concurrent execution of
reaction rules (no more rules in whatever compartment could have been applied).
In this paper, we will consider different kinds of synchrony as well as different
types of reaction rules, and we will indicate how Petri nets (see, e.g., [10,28])
can be used to capture the structural properties of the computations of varying
models of membrane systems.

Petri nets are bipartite directed graphs consisting of two kinds of nodes, called
places and transitions. Places indicate the local availability of resources (repre-
sented by so-called tokens) and thus can be used to represent objects in specific
compartments. Transitions are actions which can occur depending on local con-
ditions related to the availability of resources and they can be used to represent
reaction rules associated with compartments. When a transition occurs it con-
sumes resources from its input places and produces items in its output places,
thus mimicking the effect of a reaction rule (see Figure 2). Since multiset calculus
is basic for membrane systems and also for computing the token distribution in
Petri nets [7], some connections between the two models were already established
including interpretations of reaction rules of membrane systems using Petri net
transitions (e.g., [9,27]). Petri nets are a fundamental modeling tool for rela-
tions between occurrences of actions, moreover providing both a language and
a method for behavioral analysis through so-called processes to formalize the
concept of a concurrent run and with a corresponding theory of labeled partial
orders. Note that models such as process algebras do not yield themselves as
easily to the modeling of membrane systems since the structure of the latter is
relatively simple, and the main advantage of the former, viz. compositionality
in system specification and execution, is not needed.

68 J. Kleijn and M. Koutny

This paper builds on previous work [15,16], where it has been demonstrated
that a structural relationship between Petri nets and membrane systems can be
established at the system level. A formal translation has been given from a basic
class of membrane systems into a class of Petri nets. The direct correspondence
of Petri net transitions together with their input and output places to evolu-
tion rules is the key property which makes the translation suitable for dealing
with structural aspects of the behavior of membrane systems. It implies that the
causality and concurrency relations between applications of reaction rules are
preserved in the relationships between occurrences of the corresponding transi-
tions. Thus also the synchrony in computation steps corresponds to potentially
simultaneously occurring transitions. As shown in [15], in case the membrane
system evolves in a synchronous fashion (i.e., with a maximally concurrent exe-
cution of reaction rules in each computation step), its computations are faithfully
reflected in the maximally concurrent step sequence semantics of its Petri net.
In Place/Transition nets with localities (or PTL-nets), the specific class of Petri
nets introduced in [15], each transition moreover belongs to a location, similar
to the distribution of the reaction rules over the compartments in a membrane
system. Since locality aspects of the resources consumed and produced by tran-
sitions is explicitly supported by their underlying graph structure, this locality
information is not relevant for the maximal concurrency semantics of a Petri net.
However, transitions with associated localities can be used to restrict synchrony
to certain locations: in each step, and for each locality actively involved in that
step, as many transitions belonging to this locality as possible are executed. Thus
the PTL-net model and its locally maximal concurrency semantics facilitate the
investigation of membrane systems working under the natural assumption that
synchrony is restricted to individual compartments. Observe that this semantics
leads to a more general model of membrane systems: maximal concurrency can
be studied in the framework of PTL-nets with only one locality. PTL-nets with
the locally maximal concurrency semantics provide a formal framework for the
modeling and analysis of so-called ‘globally asynchronous locally synchronous’,
or GALS, systems. Other examples of such systems occur, e.g., in hardware
design (see [8,30]) when computations take place in synchronous clusters with
asynchronous data exchange.

In general, a step sequence semantics for Petri nets provides important in-
sights into concurrency aspects of a system when executed. Such semantics,
however, are based on ordered sequences of steps which may obscure the true
causal relationships between occurrences of transitions since not all ordering
is a consequence of causality. Still information on causal relationships is often
highly relevant for system design and analysis. As was recognized a long time ago
(see [20]), Petri nets support a formal approach where this information is read-
ily available. Runs (as given, e.g., by step sequences) are unfolded (unraveling
their steps) into structures which explicitly represent causality and concurrency.
For this purpose, labeled occurrence nets, called processes are used (see, e.g.,
[4,5,12,29]). The standard process semantics of Place/Transition nets (based on
arbitrary steps) does not work in the PTL case due to lack of information on

Synchrony and Asynchrony in Membrane Systems 69

potential executability of transitions relevant for the local maximality of exe-
cuted steps. To cope with this problem, in [15] the occurrence nets generated by
PTL-nets are adapted leading to the notion of barb-processes formally defined
and investigated in [16]. In [15,16] however, only a very basic class of membrane
systems is considered with simple evolution rules and evolving in a (locally)
synchronous fashion. In this paper, we will attempt to establish a similar set-
up for other existing, more sophisticated, variants and extensions of membrane
systems. For each of these variants, we intend to define a suitable (extension of
the) PTL-net model with a proper semantics. Obviously, we aim at retaining the
direct correspondence between (occurrences of) transitions and (application of)
evolution rules in order to guarantee that (local) synchrony and asynchrony in
the membrane systems have corresponding interpretations in the PTL-net. Note
that this work is a preliminary investigation, and full technical details are left
to forthcoming papers.

2 Preliminaries

In this paper, a multiset (over a set X) is a function m : X → N. By NX we denote
the set of multisets over X . For two multisets m and m′ over X , we denote m ≤ m′

if m(x) ≤ m′(x) for all x ∈ X . Moreover, a subset of X may be viewed through
its characteristic function as a multiset over X , and for a multiset m we denote
x ∈ m if m(x) ≥ 1. Multiset m over X is finite if there are finitely many x ∈ X

such that m(x) ≥ 1; the cardinality of m is then defined as |m| df=
∑

x∈X m(x).
The sum of two multisets m and m′ over X is given by (m+m′)(x) df= m(x)+m′(x),
and the difference by (m−m′)(x) df= max{0,m(x)−m′(x)}, i.e., as a total function
extending set difference. The multiplication of m by a natural number n is given
by (n · m)(x) df= n · m(x). Moreover, any finite sum m1 + · · · + mk will also be
denoted as

∑
i∈{1,...,k} mi.

2.1 Basic Membrane Systems

We first consider the most basic definition of membrane systems. A (basic) mem-
brane system (of degree m ≥ 1) [21,24] is a construct

Π
df= (V, μ, w0

1 , . . . , w
0
m, R1, . . . , Rm) ,

where:

– V is a finite alphabet consisting of (names of) objects;
– μ is a membrane structure given by a rooted tree with m nodes, represent-

ing the membranes — we assume that the nodes are given as the integers
1, . . . ,m, and (i, j) ∈ μ will mean that there is an edge from i (parent) to j
(child) in the tree of μ;

– each w0
i is a multiset of objects initially associated with membrane i;

70 J. Kleijn and M. Koutny

– each Ri is a finite set of reaction rules (or evolution rules) r associated with
membrane i, of the form lhsr → rhsr, where lhsr — the left hand side of r
— is a non-empty multiset over V , and rhsr — its right hand side — is a
possibly empty multiset over

V ∪ {aout | a ∈ V } ∪ {ainj | a ∈ V ∧ (i, j) ∈ μ} .

The nodes of a membrane structure represent membranes which in their turn
determine the compartments: node j represents membrane mj which defines cj

as the compartment enclosed by mj and in-between mj and its children if any. In
the above, symbols ainj

represent objects a that will be sent to (the compartment
defined by) the child node j and aout stands for an a that will be sent out to the
parent’s compartment. We assume that no evolution rule r associated with the
root of the membrane structure uses any aout in rhsr.

A membrane system Π as above evolves from configuration to configuration
as a consequence of the application of (multisets of) evolution rules in each
compartment. Formally, a configuration is a tuple C

df= (w1, . . . , wm) where each
wi is a multiset of object names; we define a vector multi-rule R as an element
of NR1 × · · · × NRm . Given a vector multi-rule R = (R̂1, . . . , R̂m), we use as
additional notation lhsi =

∑
r∈Ri

R̂i(r) · lhsr for the multiset of all objects in
the left hand sides of the rules in R̂i and, similarly, rhsi =

∑
r∈Ri

R̂i(r) · rhsr is
the multiset of all — possibly indexed — objects in the right hand sides.

We now come to a point where we need to make precise the execution seman-
tics of the basic membrane system model. As we already mentioned, it can be
defined in a number of ways, depending on the balance between synchrony and
asynchrony in the allowed behaviors. We will consider four kinds of execution
semantics that have been investigated in the area of membrane systems, i.e.,
the common maximal parallelism, the locally maximal parallelism from [15,16],
minimal parallelism [11], and free parallelism [25].

First, we consider free parallelism by which any combination of reaction
rules can be executed as a synchronous step provided that enough resources
are available. More precisely, configuration C = (w1, . . . , wm) free-evolves into
configuration C′ = (w′

1, . . . , w
′
m) by a vector multi-rule R = (R̂1, . . . , R̂m), or

C
R=⇒free C′, if for every 1 ≤ i ≤ m, lhsi ≤ wi and, for each object a ∈ V ,

w′
i(a) = wi(a) − lhsi(a) + rhsi(a) + rhsparent(i)(aini

) +
∑

(i,j)∈μ

rhsj(aout) ,

where parent(i) is the father membrane of i unless i is the root in which case
parent(i) is undefined and rhsparent(i)(aini

) is omitted. Note that any j in the
last term must be a child of i. By the first condition, the configuration C has
in each membrane i enough occurrences of objects for the application of the
multiset of evolution rules R̂i, and the second condition describes the effect of
the application of the rules in R.

The other three execution semantics can be seen as restrictions of the free
parallelism paradigm. Given C

R=⇒free C′ as above, we say that C:

Synchrony and Asynchrony in Membrane Systems 71

– min-evolves into C′ (or C
R=⇒min C′) if |R̂1|+ · · · + |R̂m| = 1;

– max-evolves into C′ (or C
R=⇒max C′) if there is no i and rule r in Ri such

that lhsr + lhsi ≤ wi; and
– lmax-evolves into C′ (or C

R=⇒lmax C′) if there is no i and rule r in Ri such
that lhsr + lhsi ≤ wi and |R̂i| ≥ 1.

A free/min/max/lmax-computation of Π is then defined to be a sequence of
free/min/max/lmax-evolutions starting from C0

df= (w0
1 , . . . , w

0
m), the initial con-

figuration of Π .

2.2 Petri Nets with Localities

We now recall the key notions of the standard Petri net model. A PT-net is
a tuple N df= (P, T,W,M0) such that P and T are finite disjoint sets and W :
(T × P) ∪ (P × T) → N and M0 : P → N are multisets. The elements of P
and T are respectively the places and transitions of N , W is the weight function
of N , and M0 is its initial marking. In diagrams, places are drawn as circles,
and transitions as rectangles. If W (x, y) ≥ 1 for some (x, y) ∈ (T × P) ∪ (P ×
T), then (x, y) is an arc leading from x to y. As usual, arcs are annotated
with their weight if this is 2 or more. We assume that, for every t ∈ T , there
is a place p such that W (p, t) ≥ 1. Places represent local states (resources),
while markings are multisets of places (depicted by the corresponding number
of tokens, small black dots, in each place) representing the global states of a
PT-net. Transitions represent actions which may occur at a given marking and
then lead to a new marking (the weight function specifies what resources are
consumed and produced during the execution of such actions).

The pre- and post-multiset of a transition t ∈ T are multisets of places given,
for all p ∈ P , by: preN (t)(p) df= W (p, t) and postN (t)(p) df= W (t, p). Both
notations extend to multisets of transitions U :

preN (U) df=
∑
t∈U

U(t) · preN (t) and postN (U) df=
∑
t∈U

U(t) · postN (t) .

In order to represent the compartmentalization of membrane systems, one
can add the notion of located transitions. In the proposed way of specifying
locality for the transitions in a PT-net, each transition belongs to a fixed unique
locality. The exact mechanism for achieving this is to introduce a partition of
the set of all transitions, using a locality mapping D. Intuitively, two transitions
for which D returns the same value will be co-located. Consider the PTL-net
depicted in Figure 1. Transitions a and c are assigned one locality, whereas
transitions t and u are assigned another locality. This PTL-net is a model of a
producer/consumer system which reflects the view that producers operate away
(at location 1) from consumers (location 2).

A PT-net with localities (or PTL-net) is a tuple NL df= (P, T,W,M0,D), where
und(NL) df= (P, T,W,M0) is the underlying PT-net and D : T → N is a location
mapping for the transition set T . In the diagrams of PTL-nets, transitions are

72 J. Kleijn and M. Koutny

p r

s

qv
1a 2 t 2 u1

c

Fig. 1. PTL-net of the one-producer/two-consumers system

shaded rectangles with the locality being shown in the middle. Note that D is
merely a labeling of transitions, it is not meant as a renaming (as used later for
occurrence nets).

We now can introduce execution semantics for the PTL-net which closely
reflect the different degrees of synchrony in basic membrane systems.

A step is a multiset of transitions, U : T → N. It is free-enabled at a marking
M (or M [U〉free) if M ≥ preN (U). Thus, in order for U to be free-enabled at
M , for each place p, the number of tokens in p under M should at least be equal
to the total number of tokens that are needed as an input to U , respecting the
weights of the input arcs. We further say that U is:

– min-enabled at M (or M [U〉min) if |U | = 1;
– max-enabled at M (or M [U〉max) if there is no transition t such that we have

M [U + {t}〉free; and
– lmax-enabled at M (or M [U〉lmax) if there is no transition t such that we

have M [U+{t}〉free and D(t) ∈ D(U). (Note that localities are only relevant
for lmax-enabledness.)

Let m ∈ {free,min,max, lmax} be a mode of execution. If U is m-enabled at
M , then it can be m-executed leading to the marking M ′ df= M − preN (U) +
postN (U). This means that the execution of U ‘consumes’ from each place p
exactly W (p, t) tokens for each occurrence of a transition t ∈ U that has p as
an input place, and ‘produces’ in each place p exactly W (t, p) tokens for each
occurrence of a transition t ∈ U with p as an output place. If the m-execution of
U leads from M to M ′ we write M [U〉mM ′. A sequence σ = U1 . . . Un of non-
empty steps is an m-step sequence (from the initial marking M0) if there are
markings M1, . . . ,Mn of N satisfying Mi−1[Ui〉mMi for every i ≤ n. Such a σ is
called an m-step sequence from M0 to Mn, and Mn is an m-reachable marking.

2.3 From Basic Membrane Systems to PTL-Nets

We now recall the details of the translation from the basic model of membrane
system to PTL-nets introduced in [15]. Let Π = (V, μ, w0

1 , . . . , w
0
m, R1, . . . , Rm)

be a membrane system of degree m. Then the corresponding PTL-net is NLΠ
df=

(P, T,W,M0,D) where the various components are defined thus:

– P
df= V ×{1, . . . ,m} and T

df= T1∪ . . .∪Tm, where each Ti consists of distinct
transitions tri for every evolution rule r ∈ Ri;

Synchrony and Asynchrony in Membrane Systems 73

�

�

�

�

�

�

�

�

m2

m1

a a b b

r : {a, b} → {b, cout}

b b c

r′ : {c, b} → {c, c}
(a) (b)

(a, 1) (b, 1) (c, 1)

(a, 2) (b, 2) (c, 2)

1tr1

2tr
′

2
2

Fig. 2. A membrane system (a); and the corresponding PTL-net (b)

– for every place p = (a, j) ∈ P and every transition t = tri ∈ T ,

W (p, t) df=
{

lhsr(a) if i = j
0 otherwise W (t, p) df=

⎧⎪⎪⎨⎪⎪⎩
rhsr(a) if i = j
rhsr(aout) if (j, i) ∈ μ
rhsr(ainj

) if (i, j) ∈ μ
0 otherwise

– for every place p = (a, j) ∈ P , its initial marking is M0(p)
df= w0

j (a).
– for every transition t = tri ∈ T , its locality is D(t) df= i.

An example is the membrane system depicted in Figure 2(a). It consists of
two nested membranes (m1 and m2), two rules (rule r associated with m1, and
rule r′ associated with m2; m1 is the child and m2 is the root in the membrane
structure), and three symbols denoting molecules (a, b, and c). Initially, the
compartment c1 inside m1 contains two copies of both a and b, and c2, in-
between the two membranes, contains two copies of b and a single copy of c. To
model this membrane system as a PTL-net, we introduce a place (x, j) for each
kind of molecule x and compartment cj . For each rule r associated with mi we
introduce a separate transition tri with locality i. If the transformation described
by a rule r of membrane mi consumes k copies of molecule x from compartment
cj , then we introduce a k weighted arc from place (x, j) to transition tri , and
similarly for molecules produced by transformations. Finally, assuming that,
initially, compartment cj contained n copies of molecule x, we introduce n tokens
into place (x, j). The resulting PTL-net is depicted in Figure 2(b).

Let C = (w1, . . . , wm) be a configuration of Π . Then the corresponding mark-
ing φ(C) of NLΠ is given by φ(C)(a, i) df= wi(a), for every place (a, i) of NLΠ .
Similarly, for any vector multi-rule R = (R̂1, . . . , R̂m) of Π , we define a multiset
ψ(R) of transitions of NLΠ such that ψ(R)(tri)

df= R̂i(r) for every tri ∈ T . Note
that φ is a bijection from the configurations of Π to the markings of NLΠ , and
ψ is a bijection from vector multi-rules of Π to steps of NLΠ .

We now can formulate a fundamental property concerning the relationship be-
tween the dynamics of the basic membrane system Π and that of the

74 J. Kleijn and M. Koutny

corresponding PTL-net. Let m ∈ {free,min,max, lmax} be a mode of execu-
tion of membrane systems. Then: C R=⇒m C′ if and only if φ(C) [ψ(R)〉m φ(C′).
Since the initial configuration of Π corresponds through φ to the initial marking
of NLΠ , the above immediately implies that the m-computations of Π coincide
with the m-step sequences of the PTL net NLΠ .

2.4 Causality and Concurrency in System Behavior

The step sequences defined by the four different modes of execution of PTL-
nets provide important insights into the concurrency aspects of the thus defined
behavior. They are, however, still sequential in nature in the sense that steps
occur ordered thus obscuring the true causal relationships between the occur-
rences of transitions. Yet Petri nets can easily support a formal approach where
this information is readily available by unfolding behaviors (step sequences) into
structures which allow an explicit representation of causality, conflict, and con-
currency (see [20]). A well-established way of developing such a semantics is
based on a class of acyclic Petri nets, called occurrence nets [29]. What one es-
sentially tries to achieve is to trace the changes of markings due to transitions
being executed along some legal behavior of the original PT-net, and in doing
so record which resources were consumed and produced.

Recall that for free parallelism, localities are not relevant. Looking at the
(free-)step sequence σ = {a}{t, a}{u, t} of the PTL-net in Figure 1, it is not
immediate that transition u could have occurred before the second occurrence
of transition a or, in other words, that the former is not causally dependent on
the latter.

Figure 3 illustrates the idea of how to unfold σ. The initial stage represents
only the initial marking which includes two separate (labeled) conditions (this
is how places are called in occurrence nets), each representing an initial token
in place r. Executing step {a} consumes the p-condition, creates an a-labeled
event (this is how transitions are called in occurrence nets), as well as two new
conditions: a p-condition and a q-condition. An important point is to notice that
we create a fresh p-condition rather than a loop back to the initial one since we
want to distinguish between different occurrences of a token in the same place; as
a result the occurrence net being constructed will be an acyclic graph. Another
important point is that the environment of the generated a-event corresponds
exactly to the environment of transition a; namely, it consumes a p-token and
creates a p-token and a q-token. After that, executing step {t, a} consists in
consuming three conditions and creating two events and three fresh conditions,
and similarly for the last step {u, t}. As a final result, we obtain an acyclic net
labeled with places and transitions of the original PT-net; it is called a process
of the original PT-net. The underlying, unlabeled, net is referred to as an occur-
rence net. Note that in these nets each condition has at most one incoming arc
and at most one outgoing arc (is non-branching) as it is caused by at most one
event and is available as a resource to at most one event. In particular, there
are no choices (conflicts) between events as these have been resolved during the

Synchrony and Asynchrony in Membrane Systems 75

s
t
a
r
t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

p

r

a
f
t
e
r

{a}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

q
p

p

r

a

a
f
t
e
r

{a}{t, a}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

s

q
p

p

r

p

q

t

a a

a
f
t
e
r

{a}{t, a}{u, t}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

s

q
p

p

r

p

q

r

s

t

a a t

u

Fig. 3. Constructing a process corresponding to {a}{t, a}{u, t}

run. The occurrence net has a default initial marking consisting of a token in
each of the conditions without an incoming arc.

It is now possible to look both at the structure of the occurrence net and at the
(labelled) executions which are possible from its default initial marking, mak-
ing some important observations (see, e.g., [13] and the semantical framework
outlined there) relating to:

– Causality. The causality relationships among the executed transitions can
be read-off by following directed paths between the events; for example in
Figure 3, the lower (second) t-event is caused by both a-events, while the
upper (first) one is caused only by the leftmost a-event.

– Concurrency. Events for which there is no directed path from one to another
can be thought of as concurrent; in Figure 3, the second a-event and the u-
event are concurrent (not causally related); and so are the two t-events.

– Reachability. Any maximal set of conditions for which there is no directed
path from one condition to another corresponds to a (free-)reachable marking
of the original PT-net.

– Representation. The step sequence on basis of which the process was created
can be executed from the initial default marking in the occurrence net. So the
original behavior has been retained. In Figure 3, there are several different
(labeled) free-step sequences (e.g., {a}{t}{a, u}{t}) that can be executed
by the occurrence net defined by σ = {a}{t, a}{u, t}, including σ itself.

76 J. Kleijn and M. Koutny

(a)

r s

q
p

p

r

p

q

t

a a

(b)

r s

q
p

p

r

p

q

t

a a

Fig. 4. Process corresponding to {a}{t, a} (a); and its default initial marking (b)

– Executability. Any (labeled) step sequence of the occurrence net (from the de-
fault initial marking to the default final marking (consisting of tokens placed
in each of the conditions without an outgoing arc) is a legal step sequence
of the original PT-net. (The step sequence {a}{t}{a, u}{t} in Figure 3 is a
free-step sequence of the net in Figure 1.)

From the point of view of causality and concurrency, the minimal parallelism
semantics is almost exactly the same as in the case of free parallelism. The only
difference is that executability is formulated with respect to step sequences where
each step is a singleton, rather than a general finite multiset of transitions.

To deal with locally maximal parallelism, as a first attempt, we simply adopt
the unfolding strategy as in the case of free parallelism. We only ensure that
the step sequence consists of lmax-steps. Moreover, we preserve the localities
of the transitions in the events created while constructing the occurrence net.
Figure 4 shows the result for the PTL-net of Figure 1 and the lmax-step sequence
{a}{t, a}. Then we need an argument that the resulting process is what one
would want to take for further analyzes. In particular, one would want to retain
executability as in the previous construction.

In the case of our example, we can execute the occurrence net and conclude
that under the locally maximal parallelism it admits the step sequence {a}{a}{t}
which is not a legal lmax-step sequence of the PTL-net of Figure 1 since af-
ter {a}{a}, two occurrences of t are enabled. Thus, in general it would be too
hasty to accept the standard unfolding routine as satisfactory since information
on (additional) enabledness may be lost. Consider further the PTL-net in Fig-
ure 5(a) and its lmax-step sequence {t, u, v}{w, z}. Proceeding as in the case of
free parallelism, we obtain an occurrence net as shown in Figure 5(b). Now the
problem is that it has an lmax-step sequence from the default initial marking
which through its labels corresponds to {u, v}{t, z}{w}. This, however, is not
an lmax-step sequence of the original PTL-net. An intuitive reason is that the
standard unfolding ‘forgets’ that transition x was enabled at the stage where
transition w was selected. Then, delaying the execution of the w-event, creates a
situation where the executed step (though lmax-enabled within the occurrence
net) does not correspond to an lmax-step in the PTL-net.

To cope with this problem, [16] added to occurrence nets special barb-events,
depicted as darkly shaded rectangles. Barb-events are not labeled with tran-
sition names and are not meant to be executed; rather, they are used in the

Synchrony and Asynchrony in Membrane Systems 77

(a)

1

t
2

u
2

v

2

w
2

x
2

z (b)

1

t
2

u
2

v

2

w

2

z (c)

1

t
2

u
2

v

2

w
2

2

z

Fig. 5. PTL-net (a); an occurrence net constructed from {t, u, v}{w, z} (b); and a
barbed process (c)

calculation of the enabled sets of events. Such modified labeled occurrence nets
are called barbed processes. Rather than providing a full formal definition of
how barb-events are added during the unfolding procedure, which can be found
in [16,17], we only mention here that it is based on checking for the existence
of locally newly enabled transitions not (yet) included in the executed scenario,
e.g., since another co-located transition was selected. Figure 5(c) illustrates the
modified construction for the nets in Figure 5(a,b). After executing {u, v}, it is
now impossible to select {t, z} since there is a record in the form of the barb-
event that such a step would not be maximal in the locality to which transition
{z} belongs. The only way of continuing is to execute {t} and after that {z, w},
generating a legal lmax-step sequence {u, v}{t}{z, w}.

The maximal parallelism semantics of a PTL-net coincides with the locally
maximal parallelism semantics of this PTL-net after changing it so that all tran-
sitions are mapped to the same locality.

3 Extensions Expressible Within PTL-Nets

In the previous section we outlined the way in which the basic membrane sys-
tems can be translated into PTL-nets, and their behavioural properties inves-
tigated using processes of the latter. In the rest of the paper, we will change
focus and investigate what happens if more sophisticated types of reaction rules
are allowed. For the sake of simplicity, we will assume from now on that the
membrane systems and PTL-nets are executed according to the free parallelism
paradigm (notice that the level of synchrony present in executions is orthogonal
to the way individual reaction rules are specified).

We start by considering extensions for which the PTL-net semantics can be
used without any, or with only slight, modifications. These extensions have been
discussed in [23,2] and additional references will be provided throughout the
text. Note that each extension is motivated by some natural phenomenon in the
area of biological systems.

Catalysts. In this variant, a subset Cat of objects, called catalysts, is distin-
guished and each reaction rule r is of the form lhsr → rhsr with either no
catalysts involved at all or with lhsr(c) = rhsr(c) = 1, for exactly one c ∈ Cat,
and lhsr(c′) = rhsr(c′) = 0, for all other catalysts c′. In other words, in certain

78 J. Kleijn and M. Koutny

reaction rules a catalyst has to participate, but it is neither destroyed in the
process nor can be created. Clearly, since catalysts can be seen as resources for
the reaction rules in which they occur (to be returned after application), these
rules can be translated into PTL-transitions in exactly the same way as any
other rule. Thus, the translation from Section 2.3 is fully adequate. Similarly,
other variants of catalysts, such as m-stable catalysts and mobile catalysts, can
also be treated by this basic translation.

Rules creation and consumption. Within the basic model of membrane
systems no assumptions are made with respect to the number of times a reaction
rule is available for application in a single execution step. Now, it is assumed
that reaction rules are finite resources in the same way as the objects located in
compartments [3]. More precisely, each configuration has additional information
for each membrane about the number of locally available copies of reaction rules.
Each rule r is of the form lhsr → rhsr/z, with z a multiset over the set of
rules. Rules are executed in the usual manner with respect to the multisets of
objects consumed and created. Moreover, if r when executed is associated with
membrane i, then a copy of r is consumed from the multiset of rules currently
available in i and the multiset z is added to that pool. Note that we may assume
that each rule occurs associated with each membrane.

In this case the translation proceeds as in Section 2.3 with two key modifi-
cations: (i) for each transition tri corresponding with rule r in association with
membrane i, a unique control place is added which acts as a counter and indicates
the number of copies of r available in the corresponding membrane; (ii) this con-
trol place is an additional input place to tri and if r is of the form lhsr → rhsr/z,
then tri has, for each control place corresponding with a rule r′ ∈ z associated
with i, an additional output place with weight z(r′).

Systems with i/o communication. These systems are defined as in Sec-
tion 2.1, except that in rules r of the form lhsr → rhsr the right hand side
rhsr is a multiset over V ∪ {aout | a ∈ V } ∪ {ain | a ∈ V }. The index in of
ain means that a copy of object a is to be moved into any of the inner mem-
branes of the membrane to which r belongs. Thus every rule represents a set
of rules of the original form, each such rule corresponding to a combination of
non-deterministic choices of inner membranes for all occurrences of an ain. As
a result, the translation has to be lifted to a more abstract level and each reac-
tion rule involving sending objects to inner membranes is translated into a set
of transitions with the same pre-multisets, but possibly different post-multisets.
For example, if 3 and 7 are two inner membranes for the rule ab → cindin, then
this rule is translated into four transitions, with the following post-multisets:
{(c, 3), (d, 3)}, {(c, 3), (d, 7)}, {(c, 7), (d, 3)} and {(c, 7), (d, 7)}.

Symport/antiport. In a symport/antiport membrane system the rules asso-
ciated with a membrane i are of one of the forms (x, in) or (y, out) — symport
rules — or (x, in; y, out) — antiport rules. Here (x, in) means that the multiset
x is moved from the outside of i to its inside and, similarly, (y, out) means that

Synchrony and Asynchrony in Membrane Systems 79

multiset y goes from the inside of i to its outside. Moreover, (x, in; y, out) means
that x and y are moved simultaneously. Note that with the given membrane
structure, it must be the case that x moves from the ‘location’ of the parent of i
to i and y in the opposite direction. Consequently, we can again apply the basic
translation in case of rules of the first two forms. The third one is somewhat dif-
ferent since it consumes objects from two neighboring compartments. However,
its translation is straightforward and what we simply obtain is a transition tak-
ing tokens from places corresponding to different compartments of the original
membrane system.

Tissue membrane systems. In this case objects are transported through
channels rather than membranes. Thus the nested tree-like structure of mem-
branes is replaced by a graph, with its edges representing channels connecting
compartments in a completely arbitrary way. Often it is assumed that at most
one (symport or antiport) rule associated with a channel is executed at any given
moment. Since the actual membrane structure is not relevant for the translation,
the first assumption has no effect, and the translation looks as in the case of sym-
port and antiport rules. The second assumption can be addressed by introducing,
for each communication channel, a special place marked initially with a single
token which is connected by a pair of arcs (pointing in opposite directions) with
every transition representing a reaction rule associated with that channel. In this
way, there can never occur more than one of these transitions at the same time.
As in the case of rules creation and consumption, these additional places are an
example of what might be called a ‘control structure’ which can be used in the
Petri net model to implement a specific behavioral aspect of membrane systems.

4 Other Extensions

Although it is possible to use the basic class of PTL-nets to analyze various
important classes of membrane systems, not all interesting phenomena can be
modeled by using purely the features of PTL-nets.

Promoters. It is now assumed that a reaction rule r can have the form lhsr →
rhsr|c meaning that c is a promoter object which has to be present for the rule
to be executed [6]. It should be stressed that such an object is not a catalyst
since catalysts are actively involved in reactions, whereas a single occurrence of c
in its role of promoter may enable simultaneously two or more executions of the
rule. It turns out that the standard model of PTL-nets is no longer sufficient for
the modelling of promoters because arcs between transitions and places indicate
consumption and production. We need an extension with (weighted) activator
arcs [13], represented by arcs with small black dots at the end. We call the
extended model PTLA-nets. Activator arcs represent ‘tests’ for the presence of
tokens in places. An activator arc of weight n between place p and transition
t implies that the latter can only be executed if the former contains at least n
tokens. The resulting marking is calculated in exactly the same way as before,
i.e., activator arcs have no effect on the result and are simply ignored.

80 J. Kleijn and M. Koutny

p r

s

qv
1a 2 t 2 u1

c

a
f
t
e
r

{a}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

q
p

p

r

a

a
f
t
e
r

{a}{t}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r s

q
p

p

r

ta

a
f
t
e
r

{a}{t}{a}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r s

q
p

p

r

p

q

ta a

Fig. 6. PTLA-net of the one-producer/two-consumers system with a non-eager pro-
ducer, and constructing an ao-process corresponding to {a}{t}{a}

The translation of reaction rule lhsr → rhsr|c associated to membrane i pro-
ceeds as the basic translation for lhsr → rhsr, and after that an activator arc of
weight 1 is added to link the resulting transition with place (c, i). A more elaborate
definition of promoters assumes the format lhsr → rhsr|u where u is a multiset
of objects. The translation then proceeds similarly but now a number of activator
arcs of weights greater or equal to 1 as described by u are added at the end.

The process semantics of the resulting translations can no longer be captured
using the standard process semantics of Petri nets. What we use are activator
processes (or ao-processes) which are occurrence nets with additional (weight 1)
activator arcs between events and conditions to test for the presence of tokens
in the places corresponding to the conditions. With the distinguishing feature
of activator arcs being that they do not consume conditions, there may be sev-
eral activator arcs adjacent to a single condition (in addition, of course, to the
standard directed arcs, and in contrast with the non-branching of conditions
with respect to ordinary arcs). Consider, for instance, the net in Figure 6 which
models a system where the producer only produces items if there is at least
one consumer waiting for them. A possible free-step sequence is {a}{t}{a} and
constructing the corresponding ao-process is illustrated in Figure 6. Notice that
we have here a condition connected by activator arcs to two different events.

The causality semantics of ao-processes is no longer the same as that of the
standard processes. Basically, in the latter causality is based on partial orders

Synchrony and Asynchrony in Membrane Systems 81

whereas in ao-processes another relationship, called weak causality, is needed. It
turns out that the standard partial order treatment of causality can be extended
to cover its weak variant as well, and the main results and properties can be
recovered [13,14].

Inhibitors. Inhibitors are objects the presence of which makes the execution
of certain rules impossible. In this case, a reaction rule r can have the form
lhsr → rhsr |¬c meaning that c is an object which, when present in the com-
partment, inhibits the execution of this rule [6]. Again, and for the same reason
as with promoters, we need to extend PTL-nets, in this case with weighted in-
hibitor arcs [13,26], represented by arcs with small circles at the end. We call
the extended model PTLI-nets. The meaning of an inhibitor arc of weight n ≥ 0
between place p and transition t is that the latter can only be executed if the
former contains at most n tokens (thus, if n = 0 then the place must be empty of
tokens). The resulting marking is calculated in exactly the same way as before,
i.e., inhibitor arcs have no effect on the result and are simply ignored.

The translation of reaction rule lhsr → rhsr |¬c associated to membrane i
proceeds as the basic translation for lhsr → rhsr , and after that an inhibitor
arc of weight 0 is added to link the resulting transition with place (c, i). A more
elaborate definition of inhibitors assumes the format lhsr → rhsr|¬u where u is a
set of object symbols. The translation proceeds then similarly but now inhibitor
arcs of any weights can be added.

The process semantics of the resulting translations can be captured using
the ao-process semantics as in the case of promoters. Consider, for instance,
the net in Figure 7 which models a system where the producer can cancel the
production of items only if there is no consumer waiting for them. A possible
free-step sequence is {a}{a, t}{t}{c} and the construction of the corresponding
ao-process is illustrated in Figure 7. Note that activator arcs rather than inhibitor
arcs are used to test for the holding of conditions. Two activator arcs are used
to represent the test for the presence of two tokens in the place s. This ensures
that place r is empty since in the PTLI-net of Figure 7 the total number of
tokens in places s and r is always equal to 2. In Petri net terminology places like
that are called complementary and the modeling of inhibitor arcs in a process
semantics is then rather straightforward. In case a complement for a place like
r cannot be found, a more elaborate construction can be used to achieve the
desired effect [13,14]. Since the causality semantics of PTLI-nets is based on
ao-processes, it takes into account weak causality, as for PTLA-nets.

Permeable membranes. The new kind of reaction rule allowed here is lhsr →
rhsr /τ . The special symbol τ indicates that rule r, when executed, causes its
associated enclosing membrane to become ‘thick’ (or non-permeable), and no
object can pass through it anymore [22]. To render this feature within the
Petri net model, we introduce a special, initially empty, place permi associated
with the membrane i. A directed arc is added to permi from those transitions
which correspond to rules which make membrane i thick (thus there may be sev-
eral transitions which can put tokens into the control place permi). Then each

82 J. Kleijn and M. Koutny

p r

s

qv
1a 2 t 2 u1

c

a
f
t
e
r

{a}{a, t}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

s

q
p

p

r

p

q

t

a a

a
f
t
e
r

{a}{a, t}{t}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

s

q
p

p

r

p

q
s

t

a a t

a
f
t
e
r

{a}{a, t}{t}{c}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

s

q
p

p

r

p

q

v

s

t

a a t c

Fig. 7. PTLI-net of the one-producer/two-consumers system with considerate pro-
ducer, and constructing an ao-process corresponding to {a}{a, t}{t}{c}

transition t which models a reaction rule r′ transferring objects through mem-
brane i, is connected with permi using a simple inhibitor arc. Hence, as long
as no transition which places a token into the control place permi is executed,
transitions transferring objects through the membrane i are possible. However,
once there is at least one token in permi, transitions corresponding to rules like
r′ can no longer be executed as no transition can remove tokens from permi.
Hence PTLI-nets with the associated ao-processes are sufficient to model the
effect of the non-permeability of membranes.

Dissolving membranes. To dissolve membranes, reaction rules are used of the
form lhsr → rhsr /δ with δ a special symbol indicating that execution of this
rule causes its associated enclosing membrane (which may not be the outermost
membrane) to dissolve [22,21]. Moreover, all objects present in the compartment
are incorporated into the immediately enclosing compartment, and all the rules
associated to membrane i are rendered inapplicable. The dissolving of mem-
branes may be modeled by a combination of activator and inhibitor arcs. Take,
for example, a membrane system with four membranes, arranged into a line-like
tree 1 → 2 → 3 → 4. Assume further that there are three dissolving rules: r′

associated with 2, r′′ associated with 3, and r′′′ associated with 4. Then we add
three control places for keeping information about dissolved membranes: diss2,

Synchrony and Asynchrony in Membrane Systems 83

diss3 and diss4 which are initially empty, and each has an incoming directed arc
from the transitions corresponding respectively to r′, r′′ and r′′′.

Suppose now that we need to translate a rule r : a → aa associated with
membrane 2. To achieve the desired effect, we introduce three transitions with
locality 2: tr2 with pre-multiset {(a, 2)} and post-multiset {(a, 2), (a, 2)}; tr3 with
pre-multiset {(a, 3)} and post-multiset {(a, 3), (a, 3)}; and tr4 with pre-multiset
{(a, 4)} and post-multiset {(a, 4), (a, 4)}. Then we add an inhibitor arc between
diss2 and each of these three transitions, as well as three activator arcs: between
tr3 and diss3, tr4 and diss3, tr4 and diss4. In this way, tr4 can be executed only if
the dissolution rules r′′ and r′′′ have happened, but r′ has not. Note that such
a translation can properly render even a simultaneous application of multiple
instances of the dissolution rules. Process semantics of the resulting Petri net is
a combination of those of PTLA-nets and PTLI-nets.

5 Concluding Remarks

A main advantage of the process semantics of Petri nets is that it provides a very
compact representation of the (step sequence) behavior of a net. This feature has
been exploited in the development of efficient model checking algorithms [19],
where issues relating to reachability of certain configurations and termination
(or deadlock) of a system can be addressed. Given a process notion for mem-
brane systems obtained via a faithful translation into (a specific kind of) Petri
nets, relevant behavioral properties can be efficiently investigated. For example,
one can check for the presence of certain molecules (also in specific compart-
ments), by suitably adapting the notion of reachability in an occurrence net. In
some cases, it might be important to know whether local computations within
compartments (and across the whole system) are independent of each other, and
answering this kind of question could amount to checking for the causal links
between various events present in processes.

The classical process semantics of Petri nets is based on labeled occurrence
which provide a faithful representation of causality and concurrency in the case
of asynchronously operating nets (and the corresponding membrane systems).
As we pointed out, to deal with semantics involving synchrony (such as locally
maximal parallelism) these processes need to be augmented with additional in-
formation, resulting in barbed processes.

In this paper, we discussed a number of extensions of basic membrane systems
and their transformation into equivalent Petri nets. It turned out that some ex-
tensions can be treated with the existing PTL-nets model (perhaps after adding
additional control structures to the existing translation). However, other exten-
sions need more expressive processes, and we proposed to augment (barbed)
processes with so-called activator arcs (which have already been investigated
within the Petri net theory).

There are several possible directions for future work. The first is to complete
the development of the theory of barb-processes making it fit into the seman-
tical framework of [13]. Also the Petri net semantics for extensions of the basic

84 J. Kleijn and M. Koutny

class of membrane systems should be further developed leading to suitable pro-
cess notions and derived causality structures. Another important question is a
complete characterization of the state graphs generated by various models of
PTL-nets allowing, in particular, to answer the question whether a given state
graph could have been generated by a membrane system of a given kind (such
a characterization has so far been provided for the class of safe PTL-nets [18]).
Last but not least, once a sound notion of behavioral characterization of a mem-
brane system has been provided, one can re-introduce the notion of a successful
computation, the result it produces, and the notion of an input-output relation
taking into account both non-successful and ongoing computations.

Acknowledgment. We are grateful to Grzegorz Rozenberg for introducing us
to the area of membrane systems and many inspiring discussions. This research
was supported by the Epsrc project Casino.

References

1. Membrane systems web page: http://psystems.disco.unimib.it/
2. Alhazov, A.: Communication in Membrane Systems with Symbol Objects. PhD

Thesis, Rovira i Virgili University, Tarragona, Spain (2006)
3. Arroyo, F., Baranda, A.V., Castellanos, J., Păun, G.: Membrane Computing: The

Power of (Rule) Creation. Journal of Universal Computer Science 8 (2002) 369–381
4. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory.

Theoretical Computer Science 55 (1988) 87–136
5. Best, E., Fernández, C.: Nonsequential Processes. A Petri Net View. EATCS Mono-

graphs on Theoretical Computer Science. Springer-Verlag, Berlin (1988)
6. Bottoni, P., Mart́ın-Vide, C., Păun, G., Rozenberg, G.: Membrane Systems with

Promoters/Inhibitors. Acta Informatica 38 (2002) 695–720
7. Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing.

Mathematical, Computer Science, and Molecular Computing Points of View. Lec-
ture Notes in Computer Science, Vol. 2235. Springer-Verlag, Berlin (2001)

8. Carloni, L.P., Sangiovanni-Vincentelli, A.L.: A Formal Modelling Framework for
Deploying Synchronous Designs on Distributed Architectures. Proc. of First Inter-
national Workshop on Formal Methods for Globally Asynchronous Locally Syn-
chronous Architectures (2003)

9. Dal Zilio, S., Formenti, E.: On the Dynamics of PB Systems: a Petri Net View.
In: Mart́ın-Vide, C., et al. (eds.): WMC 2003. Lecture Notes in Computer Science,
Vol. 2933. Springer-Verlag, Berlin (2004) 153–167

10. Desel, J., Reisig, W., Rozenberg, G. (eds.): Lectures on Concurrency and Petri
Nets. Lecture Notes in Computer Science, Vol. 3098. Springer-Verlag, Berlin (2004)

11. Freund, R.: Sequential P Systems. Romanian Journal of Information Science and
Technology 4 (2001) 77–88

12. Goltz, U., Reisig, W.: The Non-sequential Behaviour of Petri Nets. Information
and Control 57 (1983) 125–147

13. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Infor-
mation and Computation 190 (2004) 18–69

14. Kleijn, H.C.M., Koutny, M.: Infinite Process Semantics of Inhibitor Nets. In: Do-
natelli, S., Thiagarajan, P.S. (eds.): ICATPN 2006. Lecture Notes in Computer
Science, Vol. 4024. Springer-Verlag, Berlin (2006) 282–301

Synchrony and Asynchrony in Membrane Systems 85

15. Kleijn, H.C.M., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for
Membrane Systems. In: Freund, R., et al. (eds.): WMC 2005. Lecture Notes in
Computer Science, Vol. 3850. Springer-Verlag, Berlin (2006) 292–309

16. Kleijn, H.C.M., Koutny, M., Rozenberg, G.: Process Semantics for Membrane Sys-
tems. To appear in the Journal of Automata, Languages and Combinatorics (2006)

17. Kleijn, H.C.M., Koutny, M., Rozenberg, G.: Processes of Petri Nets with Localities.
Report 941, School of Computing Science, University of Newcastle (2006)

18. Koutny, M., Pietkiewicz-Koutny, M.: Transition Systems of Elementary Net Sys-
tems with Localities. In: Baier, C., Hermanns, H. (eds.): CONCUR 2006. Lecture
Notes in Computer Science, Vol. 4137. Springer-Verlag, Berlin (2006) 173–187

19. McMillan, K.L.: Using Unfoldings to Avoid the State Explosion Problem in the
Verification of Asynchronous Circuits. In: von Bochmann, G., Probst, D.K. (eds.):
CAV 1992. Lecture Notes in Computer Science, Vol. 663. Springer-Verlag, Berlin
(1992) 164–174

20. Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains,
Part I. Theoretical Computer Science 13 (1980) 85–108

21. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences
61 (2000) 108–143

22. Păun, G.: Computing with Membranes – A Variant. International Journal of Foun-
dations of Computer Science 11 (2000) 167–182

23. Păun, G.: Membrane Computing, An Introduction. Springer-Verlag, Berlin (2002)
24. Păun, G., Rozenberg, G.: A Guide to Membrane Computing. Theoretical Computer

Science 287 (2002) 73–100
25. Păun, G., Yu, S.: On Synchronization in P Systems. Fundamenta Informaticae 38

(1999) 397–410
26. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall (1981)
27. Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Mart́ın-Vide, C., et al. (eds.):

WMC 2003. Lecture Notes in Computer Science, Vol. 2933. Springer-Verlag, Berlin
(2004) 286–303

28. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets. Lecture Notes in Com-
puter Science, Vol. 1491 and 1492. Springer-Verlag, Berlin (1998)

29. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: [28] (1998) 12–121
30. Stahl, C., Reisig, W., Krstić, M.: Hazard Detection in a GALS Wrapper: a Case

Study. In: Desel, J., Watanabe, Y. (eds.): ACSD’05, IEEE Computer Society (2005)

MP Systems Approaches to Biochemical
Dynamics: Biological Rhythms and Oscillations

Vincenzo Manca

University of Verona
Department of Computer Science

Strada Le Grazie, 15
37134 Verona, Italy

vincenzo.manca@univr.it

Abstract. Metabolic P systems are a special class of P systems which
seem to be adequate for expressing biological phenomena related to
metabolism and signaling transduction in biological systems. We give
the basic motivation for their introduction and some ideas about their
applicability to some basic biological oscillators.

1 Introduction

P systems were introduced as a new computation model, inspired by biology
[31,32], where multisets and membranes are the two main ingredients. The the-
ory of P systems has grown very fast by studying different kinds of evolution
rules and strategies. Important mathematical results have been established on
the computational power of different kinds of P systems and on their relation-
ships with other computational models [32,39]. The state of a P system is given
by the multisets of objects present inside each membrane. The passage from a
state to another is produced by the application of rules (a set of rules for each
membrane) which act independently in each membrane and, typically, are ap-
plied in a maximally parallel way. This means that a maximal set of rules which
are applicable is chosen and applied in a parallel way.

The P system paradigm has also been used to mathematically model several
biomolecular phenomena acting at the cellular level, such as trans-membrane
transport and communication [29,30], consumption of energy [16,33] and even
more specific biological processes [15,4,36,9].

Early attempts of symbolic descriptions of metabolic processes were initi-
ated by the author, approximately ten years ago [23,24]. In these papers some
primitive notions of membrane systems were considered, but the use of logical
formulae driving metabolite concentrations made them too general for express-
ing biological situations in a significant way. The theory of P systems was crucial
in two important steps toward a new symbolic model of a metabolic system. A
first step was the dynamical perspective in the study of P systems, introduced in
[3], where the dynamical patterns of P systems were the main focus of investiga-
tion. A second step was the introduction of a molar perspective, borrowed from
chemistry, with an abstract notion of “reaction strength” as a parameter able to

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 86–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MP Systems Approaches to Biochemical Dynamics 87

regulate the cooperation/competition among the rules of P systems [25]. In fact,
in a very first approximation, a cell is a membrane system, and its functioning is
determined by all the types of molecules inside it, by the amount of molecules of
these types, and by the cell compartments where they are located [1]. Therefore,
it is of great importance to define a method for computing the evolution of a P
system that is directly meaningful with respect to biochemical reactions.

The Brusselator, which is a differential model of a chemical oscillator, inspired
by the famous Belousov-Zhabotinsky reaction, was modeled in [34,35] by means
of multiset rewriting rules. This model suggested us the idea of defining a general
algorithmic procedure on P systems which could provide results comparable with
the classical differential models, but using different principles. Three main points
emerged in this direction: i) population multiset rewriting rules, instead of object
rewriting rules, ii) observation (discrete) time, instead of (continuous) reaction
time, and iii) a criterion for computing, at each step, the masses of reactants
which the rules need for producing their products.

In this perspective, a transformation AA → BC is better read in chemical
terms, as something which expresses the following prescription: “two moles of
A produce one mole of B and a mole of C”. Here a mole is a conventional
population unit like a battalion, a company, a brigade, which is not conceived
in an absolute way, as it happens in the classical chemical setting (1 mole ≈
6.02 × 1023 molecules), but it is relative to the specific system. If we fix the
number of objects of a mole, then the dimension of a multiset is expressed, in
terms of moles, by a rational number.

When many reactions are working together, a competition among reactions
needing the same kinds of reactants is better expressed by a notion of reaction
unit. For example, a rule such as AA → BC should reasonably say that 2m
objects of type A have to be consumed by the rule, and m objects B plus m
objects C have to be produced by it. The crucial point of this discussion is “how
has the number m to be calculated in order to reproduce adequately a given
biochemical process?” This problem becomes more difficult than it may appear
at a first glance. Such a number depends on the relative strength of a rule with
respect to the other rules which are competing with it for the same reactants.
We call this strength reactivity, and in general, it depends on the current state
of the system.

MP systems [27] formalize these intuitions by considering P systems with a
particular deterministic procedure for computing their evolution. This proce-
dure, called MP Algorithm, shortly MPA [28], aims at capturing the salient
chemical mechanisms that are responsible for the dynamics of a wide class
of biomolecular processes. We have shown that MP systems effectively model
the dynamics of several biochemical processes: the Belousov-Zhabotinsky reac-
tion (Brusselator) [6,8], the Lotka-Volterra dynamics [25,7,6,8,13], a Susceptible-
infected-recovered epidemic [6], the Leukocyte selective recruitment in the im-
mune response [15,6], the Protein Kinase C Activation [8], Circadian rhythms
[12], and Mitotic cycles [28]. Other phenomena under investigation concern

88 V. Manca

Cdc25A degradation in tumor processes, an oscillatory circuit that includes Pro-
tein Kinases ERK2 and PK [22] and the intercellular communication which oc-
curs in Dictyostelium discoideum. This organism is an amoeba very important
in developmental biology, which may switch from unicellular to multicellular
stages (isolated and collective phases) by means of a periodic chemical mecha-
nism, similar to hormonal communications in higher organisms [18]. A project,
of interest in the search for biological energy sources, intends to apply MP sys-
tems to the analysis of specific metabolism occurring in microbial fuel cells. From
a more theoretical point of view, interesting relationships were stated between
MPA and ODE (ordinary differential equations) [14]. In the section 3, we show
the relevance of these theoretical results in relation to an example of biological
modeling [17].

In the analysis of MP systems and of their applications an important role
is played by MP graphs [28], which we will briefly outline, and which yield an
immediate formulation of the structural aspects of MP systems in a style similar
to other graphical representations in signal transduction networks and metabolic
pathways [20,38].

2 Metabolic P Systems

MP systems are deterministic P systems where i) the state of the system, at
each time instant, is given by the amount of matter that is assigned to any
(chemical) substance present in the system, and ii) the transition to the next
state (after some specified interval of time) is calculated according to some mass
partition strategy, that is, the available matter of each substance is partitioned
among all reactions which need to consume it. The policy of matter partition is
regulated at each instant by some real values, called reactivities, which represent
the strength of any reaction.

The definition we give here of MP systems is similar, but different to those
given in our preceding papers on this subject. In the present form it seems
more appropriate to the further theoretical and experimental development of
these systems, especially in the process of providing models from the data of
biological observations.

A discrete multiset over an alphabet T is a function from T to the set N
of natural numbers. A continuous multiset over an alphabet T is a function
from T to the set R of real numbers. As it is customary in P systems, we will
adopt the string notation for discrete multisets. Sometimes it is useful to use the
symbol + for concatenation, in order to stress that in multisets concatenation is
commutative, that is, when a string denotes a multiset, the order of its symbols
is not relevant (see [32] for more details on P systems notations) and, for any
string α, we write X ∈ α for saying that X is a symbol occurring in α. The set
QT of states over an alphabet T consists of the continuous multisets over T . The
passage from discrete to continuous states is motivated by the use of moles for
determining the mass associated to each symbol of T .

MP Systems Approaches to Biochemical Dynamics 89

The notion of MP system we consider here should be better identified by that
of zero level MP system, because only one membrane is considered.

Definition 1 (MP System). An MP system is a construct

M = (T,R, F, ν, μ, τ, q0)

in which

– T is a finite set of symbols;
– R is a finite set of rules, i.e., pairs of discrete multisets over T (represented,

as usual, in the arrow notation);
– F is the set of reaction maps, such that F = {fr | r ∈ R}, where fr : QT →

R. Very often the reactivity fr(q) in the state q depends only on the mass
associated to some of the symbols of T . For this reason, it is convenient
to introduce a real variable x = q(X) to any symbol X ∈ T . We write
fr(x, y, . . .) to explicitate the variables x, y, . . . which fr depends on;

– ν is a natural number which specifies the value of a (conventional) mole of
M ;

– μ is a function which assigns to each X ∈ T , the mass μ(X) of a mole of
X, with respect to some measure unit;

– τ is the temporal interval between two consecutive states;
– q0, the initial state of M , is an element of QT .

The temporal evolution of an MP system M is calculated by means of a metabolic
difference operator Δq, which provides for any state q ∈ QT a function

Δq : QT → R

such that, for every X ∈ T , the state following q in the temporal evolution of
M is given by q(X) + Δq(X).

Two assumptions are fundamental in the definition of reaction rules and re-
action maps used by MPA, which directly relate to the perspective of mass
partition strategy adopted for MP systems evolution.

Principle 1 (Inertia). In any MP system, for every X ∈ T , a rule rX is
present, which is called inertial rule for the substance X, and such that X → X.
The inertia of rX is the reactivity of an inertial rule rX , in a given state, and
indicates the tendency of substance X to remain unchanged.

Principle 2 (Creativity). Any input rule r of type λ → X is assumed to be,
implicitly, transformed into a rule λr → λrX where λr is a new symbol in T ,
called the input symbol of r. This means that a sort of input gate, as a container
of a given capacity of X, is assumed to feed the system from the outside, at a
rate depending on the reactivity of the input rule. This capacity determines the
creativity of the rule λ → X, as the maximum value of elements X that can
enter into the system at each evolution step.

90 V. Manca

The value of inertia of each element of T (possibly extended with input symbols),
and the value of the creativity of input rules are very important parameters for
the evolution of MP systems according to the strategy we are going to define.

In order to define our MP algorithm, which formalizes the intuition given at
beginning of Section 2, we use the following notation from [28], that will be
adopted in the rest of the paper and it will be always related to a metabolic
system M = (T,R, F, ν, μ, τ, q0).

Definition 2 (MP Notation)

– Each r ∈ R is denoted by r : αr → βr; αr identifies the multiset of the
substrates of r and βr identifies the multiset of the products of r;

– hr(X) is the number of occurrences of X in αr;
– gr(X) is the number of occurrences of X in βr;
– Rα(X) = {r ∈ R |X ∈ αr};
– Rβ(X) = {r ∈ R |X ∈ βr};
– R(X) = Rα(X) ∪Rβ(X);
– Π(αr) =

∏
X∈αr

q(X)hr(X) (by definition, Π(αr) = 1 if αr = λ).

We assume that if αr = λ, then βr ∈ T , and if βr = λ then αr ∈ T .

Definition 3 (MPA). The value of the metabolic difference operator Δq of an
MP system, in a state q ∈ QT and on a symbol X ∈ T , is given by:

Δq(X) =
∑

r∈R(X)

(gr(X)− hr(X)) · ur(q)

where
ur(q) = min

{
wY,q(r)

q(Y)
hr(Y)

| Y ∈ αr

}
and, for every Y ∈ T

KY,q =
∑

r∈Rα(Y)

fr(q) and wY,q(r) =
fr(q)
KY,q

where it is assumed that KY,q 	= 0.

3 MP Graphs and Biological Examples

The P metabolic algorithm was proven adequate in many cases of biological mod-
eling we listed at the end of Section 1. Examples of biological models, formalized
in terms of PM systems, will be collected in [5].

In an MP system two parts are clearly distinguishable: the signature and
the quantities. The first part indicates the kinds of objects, the reactions and
their regulation structure. The second part specifies the quantitative aspects
which give meaning to the numbers which describe the evolution of systems. We
represent the signature of metabolic P systems, in a way directly readable in

MP Systems Approaches to Biochemical Dynamics 91

Fig. 1. The model provided by A. Goldbeter, from [17]

terms of PM algorithm, by means of graphs. Similar graphical formalisms were
developed in the context of complex reaction networks (SNA, Stoichiometric
Network Analysis, and MCA, Metabolic Control Analysis [10,11,37]). Formally,
an MP graph is a structure G = (T,R, F,E,C), where:

– T is the set of nodes representing types (we can think of each t ∈ T as a
container holding a certain amount of a peculiar kind of substance). Usually,
we represent such kind of nodes as big circles labeled with the type of objects
contained in it.

– R is the set of nodes representing biochemical reactions between types. We
represent each of the nodes in R as a full bullet and we label it with the
name of the reaction represented by that node.

– F is the set of nodes labeled by reaction maps. We represent this kind of
nodes with full rectangles. These nodes are connected with a, possibly empty,
set of circles (types) but they are also connected with exactly one bullet node.

– E is a set of nodes presenting input or output gates. It contains two different
kind of nodes: input gates and output gates. Both of them have the triangular
shape, where input gates have an arc exiting from a triangle vertex, and
output gates have an arc entering in a triangle edge.

– C is a set of arcs between nodes. Edges are of two different kinds: plain edges
or dashed edges.
i) Plain edges connect types to biochemical reactions, in particular they

specify reactants and products of the reaction. Arcs connecting reac-
tants to reactions are depicted as lines while arcs connecting reactions
to products appear as arrows (oriented arcs).

92 V. Manca

Fig. 2. A model of the mitotic oscillator of Figure 1 represented by a MP graph (from
[28])

ii) Edges which connect types with square nodes (reactivity nodes) are de-
picted as dashed lines, while edges which connect square nodes with
bullets are depicted as dashed arrows (see Figure 2).

The components E,C of an MP graph can be deduced from R and F , therefore
we can omit them when we specify a graph.

Figure 2 shows an MP graph related to the mitotic oscillator in amphibian
embryos, which is an important case study reported in [17]. Mitotic oscillations
are a mechanism exploited by nature to regulate the onset of mitosis, that is,
the process of cell division aimed at producing two identical daughter cells from

MP Systems Approaches to Biochemical Dynamics 93

a single parent cell. More precisely, mitotic oscillations concern the fluctuation
in the activation state of a protein produced by cdc2 gene in fission yeasts or
by homologous genes in other eukaryotes. The model considered here focuses on
the simplest form of this mechanism, as it is found in early amphibian embryos.
Here (see Figure 1) Cyclin is synthesized at a constant rate and triggers the
transformation of inactive (M+) into active (M) cdc2 kinase, by enhancing the
rate of a phoshatase E1. Another kinase reverts this modification. On the other
hand, a kinase E3 elicits the transformation from the inactive (X+) to the active

Fig. 3. A numerical solution of the set of differential equations (1) implementing the
model provided by A. Goldbeter, from [17]

Fig. 4. The mitotic oscillator of Figure 1 computed means of an MP system evolution

94 V. Manca

(X) form of a protease that degrades cyclin, and this activation is reverted by a
phoshatase E4 (E1, E2, E3, E4 are not indicated in the figure, vi, vd, V1, V2, V3, V4
denote rates of the processes). The activation of cdc2 kinase provides the forma-
tion of a complex known as M-phase promoting factor (or MPF). The complex
triggers mitosis and the degradation of cyclin leads to the inactivation of the
cdc2 kinase that brings the cell back to the initial conditions in which a new di-
vision cycle can take place. In yeasts and in somatic cells the cell cycle is subject
to the control of many checkpoints, but the mechanism based on the activation-
inactivation of cdc2 kinase remains the same [1]. The following equations are the
differential model of its dynamics, where c,m, x are the percentages of C,M,X
respectively (1 −m, 1 − x are the percentages of M+, X+ respectively):

dc
dt = vi − vdx

c
Kd+c −Kdc

dm
dt = V1

(1−m)
K1+(1−m) − V2

m
K2+m

dx
dt = V3

(1−x)
K3+(1−x) − V4

x
K4+x

(1)

Figure 3 gives a solutions of these equations obtained by numerical integration
for some value of parameters given in [17]. The MP graph of Figure 2 was deduced
from Goldbeter’s model by means of a procedure given in [14].

Circadian rhythms are biochemical cycles evoked by variations in the expres-
sion level of genes. Such variations give rise to a surprisingly robust biological
clock, synchronized with daylight and performing a complete cycle about every
24 hours. In the model of Drosophila melanogaster, circadian rhythms involve
the oscillation of the Period (PER) and Timeless (TIM) proteins. According to

Fig. 5. Circadian rhythms in Drosophila, from [21]

MP Systems Approaches to Biochemical Dynamics 95

Fig. 6. Circadian rhythms in Drosophila: a numerical solution from [21]

this model the genes coding for PER and TIM proteins are inhibited by the
presence of a PER-TIM protein complex. This complex is constituted by the
two proteins, in the cytosol, under certain conditions, then it migrates inside
the nucleus where becomes a PER and TIM suppressor. Gene expression and
suppression result in a negative feedback network of signal transduction that
has been formalized by a non-trivial system of nonlinear differential equations,
devised by J. Leloup and A. Goldbeter [21,18]. A graphical scheme of the model
is depicted in Figure 5 and a solution of differential model, for suitable values,
is given in Figure 6. Also in this case we obtained similar solutions by using a
suitable MP system deduced from the differential model of [18].

A general relationship between MP graphs and ODE holds. In fact, MP graphs
transform naturally into ODE systems according to the mass principle, on which
differential models are based on. The amount of a product generated by a reac-
tion is proportional to the product of quantities of substrates (considered with
their multiplicity). This idea is formalized by the following definition where the
MP Notation 2 is assumed, x is the real variable q(X), and x′ denotes the deriva-
tive of variable x with respect to time.

Definition 4 (MP-ODE Transformation). Let G = (T,R, F) be an MP
graph. For every X ∈ T , let x be the real variable associated to X. Then the
following is the ODE-transform of G:

x′ =
∑
r∈R

{gr(X)− hr(X)}fr(q)Π(αr).

The following classes of MP systems play an important role in the relationship
between ODE and MP systems.

96 V. Manca

Definition 3 (Non-cooperative MP System). A non-cooperative MP sys-
tem is an MP system whose rules are non-cooperative, i.e., αr ∈ T for every rule
r of the system.

Definition 4 (Uniformly Inertial MP System). For some φ ∈ R, an MP
system is φ-uniformly inertial if the reaction map of any inertial rule of the
system has the same constant value φ in any possible state.

The following results can be proved as generalizations of those proved in [14].

Proposition 5. Given an ODE, we can find (in many possible manners) an
MP graph having the given ODE as its ODE-transform.

Theorem 6. The computation of a non-cooperative φ-uniformly inertial MP
system converges, as φ → ∞, to the solution provided by the ODE system ob-
tained by using MP-ODE transformation.

Theorem 7. For any MP system M , there exists a non-cooperative MP system
M ′ having the same ODE-transform as M .

Corollary 8. Approximate solutions of autonomous ODE which describe meta-
bolic systems can be found by computing the evolution of suitable MP systems.

Figure 4 shows an MP solution, obtained by using the a non-cooperative system
having as ODE-transform just the ODE 1. The similarity with Golbeter’s solu-
tion 3 is really impressive and confirms the validity of the previous theorems, in
a very significant biological model.

4 Conclusions

In many cases we were able to translate classical differential models into MP
systems which provided similar results. Moreover, we showed that, under suitable
hypotheses, this translation can be done in a systematic way [14], based on
general relations on the two principles underlying these dynamical models: the
differential ones assuming a time partition strategy and the MP ones assuming
a mass partition strategy.

Evolutions of MP systems are discrete dynamics where important dynamical
concepts could be investigated in the specific perspective of biomolecular dy-
namics. In fact, the approach developed in [26] could suggest useful criteria in
the classification of dynamical features of biological relevance.

MP systems have several computational advantages with respect to the differ-
ential models, but their most important feature is their direct biological meaning
and their structure where the reaction level and the regulation level are clearly
interconnected but separated.

From the three principles underlying MPA and from Definition 3, it follows
that the reactivities of rules in any state are univocally related to their reaction
units and therefore to the variations of substances (from a state to the next

MP Systems Approaches to Biochemical Dynamics 97

one). It would be interesting to find procedures that, under suitable hypotheses,
could be able to recover from the knowledge of such variations the reaction units
and then the reactivities, and finally, from the reactivities in different states, the
reaction maps of rules.

The search for MP systems where these procedures can be defined, and com-
putationally treated, is the main problem to solve for a systematic application
of MP systems to complex dynamics. Without this possibility the construction
of models is a very difficult task, which can be developed only with specific
strategies depending on the particular cases.

An important aspect for future developments of our approach is the possibility
to build directly a model from the data coming from the observation of biological
phenomena. If we show that this task can be done in a systematic and efficient
way, then MP systems will give a really useful instrument in the modeling of
biological systems. The future development of theory and applications of these
systems will tell us whether, or to which extent, they will satisfy this expectation.

References

1. B. Alberts and M. Raff. Essential Cell Biology. An Introduction to the Molecular
Biology of the Cell. Garland Science, New York, 1997.

2. F. Bernardini and M. Gheorghe. Cell communication in tissue P systems: univer-
sality results. Soft Computing, 9(9):640–649, 2005.

3. F. Bernardini and V. Manca. P systems with boundary rules. In Proc. 3rd Work-
shop on Membrane Computing, LNCS 2597, 107–118, 2002. Springer.

4. D. Besozzi and G. Ciobanu. A P system description of the sodium-potassium
pump. In G. Mauri, G. Păun, M.J. Pérez-Jiménez, G. Rozenberg, and A. Salomaa,
editors, Membrane Computing, 5th International Workshop, WMC 2004, LNCS
3365, 210–223, Springer, 2005.

5. L. Bianco. Membrane Models of Biological Systems, PhD Thesis, University of
Verona, in preparation.

6. L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological dynamics.
In [9], 81–126. 2006.

7. L. Bianco, F. Fontana, and V. Manca. Reaction-driven membrane systems. In
L. Wang, K. Chen, and Y.-S. Ong, editors, Advances in Natural Computation,
First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005,
Proceedings, Part II, LNCS 3611, 1155–1158. Springer, 2005.

8. L. Bianco, F. Fontana, and V. Manca. P systems with reaction maps. International
Journal of Foundations of Computer Science, 17(1):27–48, 2006.

9. G. Ciobanu, G. Pău, and M. J. Pérez-Jiménez, editors. Applications of Membrane
Computing. Springer, Berlin, Germany, 2006.

10. B.L. Clark. Stability of complex reaction networks. Adv. Chem. Phys., 43, 1-216,
1983.

11. D.A. Fell. Metabolic control analysis: a survey of its theoretical and experimental
development. Biochemistry J., 286:313–330, 1992.

12. F. Fontana, L. Bianco, and V. Manca. P systems and the modeling of biochemi-
cal oscillations. In R. Freund, G. Păun, G. Rozenberg, and A. Salomaa, editors,
6th Workshop on Membrane Computing (WMC6), LNCS 3850, 199–208, Springer,
2005.

98 V. Manca

13. F. Fontana and V. Manca. Predator-prey dynamics in P systems ruled by metabolic
algorithm. Submitted.

14. F. Fontana and V. Manca. Discrete solutions of differential equations by metabolic
P systems. Theoretical Computer Science, to appear.

15. G. Franco and V. Manca. A membrane system for the leukocyte selective recruit-
ment. In C. Mart́ın-Vide, G. Mauri, G. Păun, G. Rozenberg, and A. Salomaa,
editors, Proc. Int. Workshop, WMC2003, LNCS 2933, 181–190, Springer, 2004.

16. R. Freund. Energy-controlled P systems. In G. Păun, G. Rozenberg, A. Salomaa,
and C. Zandron, editors, Proc. Int. Workshop WMC-CdeA 2002, LNCS 2597, 247–
260, Springer, 2003.

17. A Goldbeter. A minimal cascade model for the mitotic oscillator involving cyclin
and cdc2 kinase. PNAS, 88(20):9107–9111, 1991.

18. A Goldbeter. Computational approaches to cellular rhythms. Nature, 420:238-245,
2002.

19. A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge Uni-
versity Press, New York, 2004.

20. H. Kitano. Computational systems biology. Nature, 420:206–210, November 2002.
21. J.C. Leloup and A. Goldbeter. A model for circadian rhythms in Drosophila incor-

porating the formation of a complex between the PER and TIM proteins. Journal
of Biological Rhythms, 13:70-87, 1998.

22. M. Maeda, S. Lu, G. Shaulsky, Y. Miyazaki, H. Kuwayama, Y. Tanaka, A. Kuspa,
W. Loomis, Periodic signaling controlled by an oscillatory circuit that includes
krotein Kinases ERK2 and PK. Science, 304, 875-304, 2004.

23. V. Manca. Rewriting and metabolism: A logical perspective. In G. Păun, editor,
Computing with Bio-Molecules, Springer, 1998.

24. V. Manca and D.M. Martino. From string rewriting to logical metabolic systems.
In G. Păun and A. Salomaa, editors, Grammatical Models of Multi-Agent Systems,
Gordon and Breach Science Publishers, 1999.

25. V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:
Applications to biological phenomena. In G. Mauri, G. Păun, M.J. Pérez-Jiménez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, 5th International
Workshop, WMC 2004, LNCS 3365, 63–84, Springer, 2005.

26. V. Manca, G. Franco, and G. Scollo. State transition dynamics: basic concepts
and molecular computing perspectives. In M. Gheorghe, editor, Molecular Compu-
tational Models: Unconventional Approachers, Chapter 2., 32-55, Idea Group Inc.
UK, 2005.

27. V. Manca. Topics and problems in metabolic P systems. In G. Păun and M.J.
Pérez-Jiménez, editors, Proc. of the Fourth Brainstorming Week on Membrane
Computing (BWMC4), Sevilla, Spain, Fenix Editora, 2006.

28. V. Manca, L. Bianco. Biological networks in metabolic P systems. Submitted.
29. C. Martin-Vide, G. Păun, and G. Rozenberg. Membrane systems with carriers.

Theoretical Computer Science, 270:779–796, 2002.
30. A. Păun and G. Păun. The power of communication: P systems with sym-

port/antiport. New Generation Computing, 20(3):295–306, 2002.
31. G. Păun. Computing with membranes. J. Comput. System Sci., 61(1):108–143,

2000.
32. Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
33. G. Păun, Y. Suzuki, and H. Tanaka. P systems with energy accounting.

Int. J. Computer Math., 78(3):343–364, 2001.

MP Systems Approaches to Biochemical Dynamics 99

34. Y. Suzuki, Y. Fujiwara, H. Tanaka, and J. Takabayashi. Artificial life applications
of a class of P systems: Abstract rewriting systems on multisets. In C.S. Calude,
G. Păun, G. Rozenberg, A. Salomaa editors, Multiset Processing, Mathematical,
Computer Science, and Molecular Computing Points of View, LNCS 2235, 299–346.
Springer-Verlag, Berlin, 2001.

35. Y. Suzuki and H. Tanaka. A symbolic chemical system based on an abstract
rewriting system and its behavior pattern. J. of Artificial Life and Robotics,
6:129–132, 2002.

36. Y. Suzuki and H. Tanaka. Modelling p53 signaling pathways by using multiset
processing. In G. Ciobanu, M.J. Pérez-Jiménez, and G. Păun, editors, Applications
of Membrane Computing, 203–214. Springer, Berlin, 2006.

37. L.A. Segel and I.R. Cohen, editors. Design Principles for the Immune System and
Other Distributed Autonomous Systems. Oxford University Press, 2000.

38. E.O. Voit. Computational Analysis of Biochemical Systems. Cambridge University
Press, 2000.

39. The P Systems Web Page. http://psystems.disco.unimib.it

Modeling Signal Transduction Using P Systems

Andrei Păun1, Mario J. Pérez-Jiménez2, and Francisco J. Romero-Campero2

1 Department of Computer Science/IfM, Louisiana Tech University
P.O. Box 10348, Ruston, LA 71272

apaun@latech.edu
2 Department of Computer Science and Artificial Intelligence, University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{marper, fran}@us.es

Abstract. Cellular signalling pathways are fundamental to the control
and regulation of cell behavior. Understanding of biosignalling network
functions is crucial to the study of different diseases and to the design
of effective therapies. In this paper we present P systems as a feasible
computational modeling tool for cellular signalling pathways that takes
into consideration the discrete character of the components of the system
and the key role played by membranes in their functioning. We illustrate
these cellular models simulating the epidermal growth factor receptor
(EGFR) signalling cascade and the FAS–induced apoptosis using a de-
terministic strategy for the evolution of P systems.

1 Introduction

The complexity of biomolecular cell systems is currently the focus of intensive
experimental research, nevertheless the enormous amount of data about the func-
tion, activity, and interactions of such systems makes necessary the development
of models able to provide a better understanding of the dynamics and properties
of the systems.

A model is an abstraction of the real-world onto a mathematical/computa-
tional domain that highlights some key features while ignoring others that are
assumed to be not relevant. A good model should have four properties: relevance,
computability, understandability, and extensibility, [22]. A model must be rel-
evant capturing the essential properties of the phenomenon investigated, and
computable so it can allow the simulation of its dynamic behavior, as well as the
qualitative and quantitative reasoning about its properties. An understandable
model will correspond well to the informal concepts and ideas of molecular biol-
ogy. Finally, a good model should be extensible to higher levels of organizations,
like tissues, organs, organisms, etc., in which molecular systems play a key role.

P systems are an unconventional model of computation inspired by the struc-
ture and functioning of living cells which takes into consideration the discrete
character of the quantity of components of the system by using rewriting rules
on multisets of objects, that represent chemical substances, and strings, that
represent the organization of genes on the genome. The inherent randomness in

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 100–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling Signal Transduction Using P Systems 101

biological phenomena is captured by using stochastic strategies, [20]. We believe
that P systems satisfy the above properties required for a good model.

Cellular signalling pathways are fundamental to the control and regulation
of cell behavior. Understanding of biosignalling network functions is crucial to
the study of different diseases and to the design of effective therapies. The
characterization of properties about whole–cell functions requires mathemati-
cal/computational models that quantitatively describe the relationship between
different cellular components.

Ordinary differential equations (ODEs) have been successfully used to model
kinetics of conventional macroscopic chemical reactions. The approach followed
by ODEs is referred as macroscopic chemistry since they model the average
evolution of the concentration of chemical substances across the whole system.
In this approach the change of chemical concentration over time is described for
each chemical specie, implicitly assuming that the fluctuation around the average
value of concentration is small relatively to the concentration. This assumption
of homogeneity may be reasonable in some circumstances but not in many cases
due to the internal structure and low numbers and non–uniform distributions
of certain key molecules in the cell. While differential equations models may
produce useful results under certain conditions, they provide a rather incomplete
view of what is actually happening in the cell [2].

Due to the complexity of cellular signalling pathways, large number of linked
ODEs are often necessary for a reaction kinetics model and the many interde-
pendent differential equations can be very sensitive to their initial conditions
and constants. Time delays and spatial effects (that play an important role in
pathway behavior) are difficult to include in an ODE model [9], which are also
very difficult to change and extend, because changes of network topology may
require substantial changes in most of the basic equations [3].

Recently, different agent–based approaches are being used to model a wide
variety of biological systems ([10], [12], [26]) and biological processes, including
biochemical pathways [9].

The microscopic approach considers the molecular dynamics for each single
molecule involved in the system taking into account their positions, momenta of
atoms, etc. This approach is computationally intractable because of the number
of atoms involved, the time scale and the uncertainty of initial conditions.

Our approach is referred as mesoscopic chemistry [25]. Like in the microscopic
approach one considers individual molecules like proteins, DNA and mRNA, but
ignores many molecules such as water and non-regulated parts of the cellular
machinery. Besides, the position and momenta of the molecules are not modeled,
instead one deals with the statistics of which reactions occur and how often. This
approach is more tractable than microscopic chemistry but it provides a finer
and better understanding than the macroscopic chemistry.

This paper is organized as follows. In the next section we present P systems
as a framework for the specification of models of biosignalling cascades. A de-
terministic strategy for the evolution of P systems is described in Section 3. In
Sections 4 and 5 a study of epidermal growth factor receptor (EGFR) signalling

102 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

cascade and of FAS–induced apoptotic signalling pathway are given. Finally,
conclusions are presented in the last section.

2 P Systems: A Framework to Specify Biosignalling
Cascades

In this paper we work with a variant of P systems of the form

Π = (O,L, μ,M1,M2, . . . ,Mn, R1, . . . , Rn),

where:

– O is a finite alphabet of symbols representing objects (proteins and com-
plexes of proteins);

– L is a finite alphabet of symbols representing labels for the compartments
(membranes);

– μ is a membrane structure containing n ≥ 1 membranes labeled with ele-
ments from L;

– Mi = (wi, li), 1 ≤ i ≤ n, are pairs which represent the initial configuration
of membrane i: li ∈ L is its label, and wi ∈ O∗ is the initial multiset.

– Ri, 1 ≤ i ≤ n, are finite sets of rules associated with the membrane i which
are of the form u [v]li → u′ [v′]li , where u, v, u′, v′ ∈ O∗ are finite multisets
of objects and li is the label of membrane i.

Next, we discuss in more detail the rules that we will use in this paper, to model
protein–protein interactions taking place in the compartmentalized structure of
the living cell.

(a) Transformation, complex formation and dissociation rules:

[a]l → [b]l

[a, b]l → [c]l

[a]l → [b, c]l

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ where a, b, c ∈ O, and l ∈ L

These rules are used to specify chemical reactions taking place inside a com-
partment of type l ∈ L; more specifically, they represent the transformation
of a into b, the formation of a complex c from the interaction of a and b, and
the dissociation of a complex a into b and c respectively.

(b) Diffusing in and out:

[a]l → a []l

a []l → [a]l

⎫⎬⎭ where a ∈ O, and l ∈ L

We use these types of rules when chemical substances move or diffuse freely
from one compartment to another one.

Modeling Signal Transduction Using P Systems 103

(c) Binding and debinding rules:

a [b]l → [c]l

[a]l → b [c]l

⎫⎬⎭ where a, b, c ∈ O, and l ∈ L

Using rules of the first type we can specify reactions consisting in the bind-
ing of a ligand swimming in one compartment to a receptor placed on the
membrane surface of another compartment. The reverse reaction, debinding
of substance from a receptor, can be described as well using the second rule.

(d) Recruitment and releasing rules:

a [b]l → c []l

c []l → a [b]l

⎫⎬⎭ where a, b, c ∈ O, and l ∈ L

With these rules we represent the interaction between two chemicals in dif-
ferent compartments whereby one of them is recruited from its compartment
by a chemical on the other compartment, and then the new complex remains
in the latter compartment. In a releasing rule a complex, c, located in one
compartment can dissociate into a and b, with remaining a in the same
compartment as c, and b being released into the other compartment.

3 P Systems Using Deterministic Waiting Times
Algorithm

In biological systems with a large number of molecules deterministic approaches
are valid since the interactions between them follows the

√
n law of physics, which

states that randomness or fluctuation level in a system are inversely proportional
to the square root of the number of particles.

Next, we present an exact deterministic strategy providing a semantic to the
P systems defined before, that we will refer to as deterministic waiting times
algorithm. It is based on the fact that in vivo chemical reactions take place in
parallel in an asynchronous manner, i.e., different chemical reactions proceed
at different reaction rates and the same reaction may also have different reac-
tion rates at different times depending on the concentrations of reactants in the
region.

In the deterministic waiting time strategy, the time necessary for a reaction
to take place, called waiting time, is calculated and the rule or rules (chemical
reaction) with the shortest waiting time is/are applied, changing the number of
molecules in the respective compartments. In each step when there is a change in
the number of a molecules in a compartment, the waiting time for the reactions
“using” the changed molecule species has to be recalculated in that compartment.

By an exact deterministic method we mean that infinitesimal intervals of time
are not approximated by Δt as it is the case in ODEs–based model, but we will

104 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

associate a waiting time, computed in a deterministic way, to each reaction and
will use it to determine the order in which the reactions take place.

In our models biochemical reactions are used to describe the molecular inter-
actions, and reversible complex formation reactions are frequent. In what follows
we discuss how to compute mesoscopic rate constants from the macroscopic ones
used in differential equations.

Our rules model reactions of the form:

A + B kd
�ka C

This reversible reaction converges to an equilibrium in which the number of
chemical species A, B and C remains constant. The equilibrium constant, Keq,
expresses the quantities of reactants A and B compared to complexes C once
the equilibrium is reached; that is,

Keq =
[C]

[A] · [B]
(1)

Keq can also be computed using the association ka and dissociation kd rate
constants:

Keq =
ka

kd
(2)

The association constant ka determines the speed of the association reaction.
It measures the number of chemicals A and B that form complexes C per mol
and second. For the case of regulatory proteins the association rate constant ka

can be determined experimentally. Keq can also be determined experimentally
using (1) and therefore kd can be computed using (2).

Alternatively, what it can be determined experimentally is Gibbs free energy
ΔG, a notion from thermodynamics which measures the effort necessary for
decomplexation. Gibbs free energy is related to the equilibrium constant Keq as
follows:

Keq = exp(
−ΔG

R · T) (3)

where R = 1.9872 calmol−1 Kelvin−1 is the universal gas constant and T is the
absolute temperature at which the experiments are performed.

Therefore from (2) and (3) the dissociation constant can be determined.
The rate constants ka and kd we have dealt with up to now are macroscopic,

they do not depend on the actual number of molecules, but on concentration.
Gillespie’s algorithm and thus our approach uses mesoscopic rate constants re-
ferring to the actual number of molecules and they are determined from their
macroscopic counterparts as follows:

ca =
ka

A · V , cd = kd

where A = 6.023 ·1023 is Avogadro’s number and V is the cell volume. Note that
we assume the cell volume to be constant while ignoring cell growth.

Modeling Signal Transduction Using P Systems 105

Given a P system, in this strategy each rule r (representing a chemical reac-
tion) in each membrane m has associated a velocity, vr, obtained by multiplying
the mesoscopic rate constant cr by the multiplicities of the reactants according
to the mass action law. Then we compute the waiting time for the first execution
of the rule r as τr = 1

vr
and return the triple (τr , r,m).

Next, we give a detailed description of the deterministic waiting times algo-
rithm providing the semantic of our P systems–based model:

• Initialization
� set time of the simulation t = 0;
� for every rule r associated with a membrane m in μ compute the triple

(τr, r,m) by using the procedure described before; construct a list con-
taining all such triples;

� sort the list of triple (τr, r,m) according to τr (in an ascendent order);
• Iteration

� extract the first triple, (τr , r,m) from the list (if there are several rules
with the minimum waiting times, then we select all these rules);

� set time of the simulation t = t + τr;
� update the waiting time for the rest of the triples in the list by subtract-

ing τr;
� apply the rule(s) r only once updating the multiplicities of objects in the

membranes affected by the application of the rule;
� for each membrane m′ affected by the application of the rule(s) r, re-

calculate the waiting times of the rules which are in m′;
� for each such rule, compare the new waiting times with the existing ones,

and keep the smallest one among the two;
� sort the list of the new triples according to the waiting time;
� iterate the process.

• Termination
� Repeat the process until the time of the simulation t reaches or exceeds

a preset maximal time of simulation.

Note that in this algorithm every rule in each membrane has a waiting time
computed in a deterministic way that is used to determine the order in which
the rules are executed. It is also worth mentioning that in this method the time
step varies across the evolution of the system and it is computed in each step
depending on the current state of the system.

This strategy has been implemented using Scilab, a scientific software package
for numerical computations providing a powerful open computing environment
for engineering and scientific applications [31]. This tool is available from [32].

4 Modeling EGFR Signalling

The epidermal growth factor receptor (EGFR) is provably the best understood
receptor system, and computational models have played an important role in its
elucidation. It seems clear that cells process the information before passing it to

106 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

the nucleus. The many different control points in the EGFR signalling pathway
make it an excellent system for investigating how cells process contextual in-
formation. Computational models can play a crucial role for understanding this
process [29].

In this section we study the EGFR signalling cascade where the deterministic
waiting times algorithm is suitable for describing its evolution.

The epidermal growth factor receptor (EGFR) was the first found to have
tyrosine–kinase activity and has been used in pioneering studies of biological
processes such as receptor–mediated endocytosis, oncogenesis, mitogen–activat-
ed–protein–kinase (MAPK) signalling pathways, etc. [29].

Binding of the epidermal growth factor (EGF) to the extracellular domain of
EGFR induces receptor dimerization and autophosphorylation of intracellular
domains. Then a multitude of proteins are recruited starting a complex signalling
cascade and the receptor follows a process of internalization, ubiquitination, and
degradation in endosomals.

In our model we consider two marginal pathways and two principal pathways
starting from the phosphorylated receptor.

In the first marginal pathway phospholipase C-γ (PLCγ) binds to the phos-
pholyrated receptor, then it is phosphorylated (PLC∗

γ) and released into the cy-
toplasm where it can be translocated to the cell membrane or desphosphorylated.
In the second marginal pathway the protein PI3K binds to the phospholyrated
receptor, then it is phosphorylated (PI3K∗) and released into the cytoplasm
where it regulates several proteins that we do not include in our model.

Both principal pathways lead to activation of Ras-GTP. The first pathway
does not depend on the concentration of the Src homology and collagen domain
protein (Shc). This pathway consists of a cycle where the proteins growth factor
receptor-binding protein 2 (Grb2) and Son of Sevenless homolog protein (SOS)
bind to the phosphorylated receptor. Later the complex Grb2-SOS is released in
the cytoplasm where it dissociates into Grb2 and SOS.

In the other main pathway Shc plays a key role, it binds to the receptor
and it is phosphorylated. Then either Shc∗ is released in the cytoplasm or the
proteins Grb2 and SOS binds to the receptor yielding a four protein complex
(EGFR-EGF2*-Shc*-Grb2-SOS). Subsequently, this complex dissociates into the
complexes Shc∗-Grb2-SOS, Shc∗-Grb2 and Grb2-SOS which in turn can also
dissociate to produce the proteins Shc∗, Grb2 and SOS.

Finally, Ras-GTP is activated by these two pathways and in turn it stimu-
lates the Mitogen Activated Protein (MAP) kinase cascade by phosphorylating
the proteins Raf, MEK and ERK. Subsequently, phosphorylated ERK regulates
several cellular proteins and nuclear transcription factors that we do not include
in our model.

There exist cross-talks between different parts and cycles of the signalling
cascade which suggests a strong robustness of the system.

In Figure 1 it is shown a detailed graphical representation of the signalling
pathway that we model in this paper.

Modeling Signal Transduction Using P Systems 107

Next, we present a P system–based model of the biosignalling cascade de-
scribed above.

Our model consists of more that 60 proteins and complexes of proteins and
160 chemical reactions. We will not give all the details of the model. A complete
description of ΠEGF with some supplementary information is available from the
web page [32]. In what follows we give an outline of our model.

Let us consider the P system

ΠEGF = (O, {e, s, c}, μ, (w1, e), (w2, s), (w3, c),Re,Rs,Rc),

where:

• Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex
EGF Epidermal Growth Factor

EGFR Epidermal Growth Factor Receptor
EGFR-EGF2 Dimerisated Receptor

EGFR-EGF∗
2-Shc EGFR-EGF∗

2 and Shc complex
...

...
MEK Mitogenic External Regulated Kinase
ERK External Regulated Kinase

• Membrane Structure: In the EGFR signalling cascade there are three rel-
evant regions, namely the environment, the cell surface and the cytoplasm. We
represent them in the membrane structure as the membranes labeled with e for
the environment, s for the cell surface, and c for the cytoplasm. The skin of the
structure is the environment, the cell surface is the son of the environment and
the father of the cytoplasm.
• Initial Multisets: In the initial multisets we represent the initial number of
molecules of the chemical substances in the environment, the cell surface, and
the cytoplasm. These estimations has been obtained from [13,24].

we = {EGF 20000}
ws = {EGFR25000, Ras-GDP 20000}
wc = {Shc25000, PLC15000

γ , P I3K5000, SOS4000, Grb28000, TP 10000
1 , TP 45000

2 ,
TP 45000

3 , TP 12500
4 , Raf8000,MEK40000, ERK40000, P 8000

1 , P 8000
2 , P 30000

3 }

• Rules: Using rules we model the 160 chemical reactions which form the sig-
nalling cascade.

As it can be seen in the initial multisets specified before, in the system of
the EGFR signalling cascade the number of molecules is quite large, hence as a
consequence of the

√
n law important fluctuations and stochastic behavior are

108 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

Fig. 1. EGFR Signalling Cascade

Modeling Signal Transduction Using P Systems 109

not expected in the evolution of the system. Because of this we have chosen the
deterministic waiting times algorithm as the strategy for the evolution of the P
system ΠEGF .

Next, we show two examples of rules of the system.
The set of rules associated with the environment, Re, consists only of one rule

r which models the binding of the signal, EGF , to the receptor EGFR.

EGF [EGFR]s → [EGF -EGFR]s , cr

The meaning of the previous rule is the following: the object EGF in the mem-
brane containing the membrane with label s (the environment), and the object
EGFR inside the membrane with label s (the cell surface) are replaced with the
object EGFR-EGF in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the mesoscopic rate
constant cr, which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

τr =
1

cr · |EGF | · |EGFR|
One example from the set of rules Rs associated with the cell surface is the
rule r′ concerning to the dimerisation of the receptor, that is the formation of a
complex consisting of two receptors:

[EGFR, EGFR]s → [EGFR2]s , cr′

When this rule r′ is executed two objects EGFR representing receptors are
replaced with one object EGFR2, representing a complex formed with two re-
ceptors, in the membrane with label s, the cell surface. The mesoscopic rate
constant cr′ is used to computed the waiting time:

τr′ =
1

cr′ · |EGFR|2

4.1 Results and Discussions

Using Scilab we ran some experiments; in what follows we present some of the
results obtained.

In Figure 2 it is depicted the evolution of the number of autophosphorylated
receptors and in Figure 3 the number of doubly phosphorylated MEK (Mito-
gen External Kinase), one of the target proteins of the signalling cascade that
regulates some nuclear transcription factors involved in the cell division.

Note that the activation of the receptor is very fast reaching its maximum
within the first 5 seconds and then it decays fast to very low levels; on the other
hand the number of doubly phosphorylated MEK is more sustained around 3
nM. These results agree well with empirical observations, see [13,24].

110 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

0 10 20 30 40 50 60
0.00

0.04

0.08

0.12

0.16

0.20

0.24

Receptor Autophosphorylation

time (s)

Molecules (nM)

Fig. 2. Autophosphorylated EGFR evolution

0 40 80 120 160 200 240
0

1

2

3

4

5

MEK phosphorylation

time (s)

Molecules (nM)

Fig. 3. Doubly phosphorylated MEK evolution

In tumors it has been reported an over expression of EGF signals in the
environment and of EGFR receptors on the cell surface of cancerous cells. Here
we investigate the effect of different EGF concentrations and number of receptors
on the signalling cascade.

First, we study the effect on the evolution of the number of autophospho-
rylated receptors and doubly phosphorylated MEK of a range of signals, EGF,
from 100 nM to 2000 nM.

In Figure 4, it can be seen that the receptor autophosphorylation is clearly
concentration dependent showing different peaks for different number of signals
in the environment. According to the variance in the receptor activation it is
intuitive to expect different cell responses to different EGF concentrations. Here
we will see that this is not the case.

Modeling Signal Transduction Using P Systems 111

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

Molecules (nM)

100nM
200nM
300nM

400nM
1000nM
2000nM

Fig. 4. Receptor autophosphorylation for different environmental EGF concentrations

0 40 80 120 160 200 240
0

1

2

3

4

5

time (s)

Molecules (nM)

100nM
200nM
300nM

400nM
1000nM
2000nM

Fig. 5. MEK phosphorylation for different environmental EGF concentrations

From Figure 5 we can observe that the number of doubly phosphorylated
MEK does not depend on the number of signals in the environment. That is, the
perturbation of EGF level in the environment has no impact on MEK activation.
So, the system is not sensitive to increases in EGF level in the environment (Sen-
sitivity analysis is a mathematical technique term associated with the use of a
computational model to predict the effects of the variation of a single component
in the model).

This shows the surprising robustness of the signalling cascade with regard to
the number of signals from outside due to EGF concentration. The signal is either
attenuated or amplified to get the same concentration of one of the most relevant
kinases in the signalling cascade, MEK. Note that after 100 seconds, when the

112 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

response gets sustained, the lines representing the response to different external
EGF concentrations are identical.

Now we analyze the effect on the dynamics of the signalling cascade of different
numbers of receptors on the cell surface.

In Figure 6, it is shown the evolution of the number of doubly phosphorylated
MEK when there is 100 nM and 1000 nM of receptors on the cell surface. Note
that now the response is considerably different; the number of activated MEK
is greater when there is an over expression of receptors on the cell surface. As
a consequence of this high number of activated MEK the cells will undergo an
uncontrolled process of proliferation. Thus, Figure 6 shows the sensitivity of
MEK activation to increases in EGFR level on the cell surface.

0 40 80 120 160 200 240
0

1

2

3

4

5

6

time (s)

Molecules (nM)

100nM
1000nM

Fig. 6. MEK phosphorylation for different number of receptors

The key role played by the over expression of EGFR on the uncontrolled
growth of tumors has been reported before, and, as a consequence of this, EGFR
is one of the main biological targets for the development of novel and successful
therapies against cancer and continue to be a source of discoveries about the cell
signalling mechanisms involved in development, tissue homeostasis, and disease
[28,14].

There are different strategies to inhibit the over expression of EGFR on the cell
surface but the most developed ones are the monoclonal antibodies (that bind
the external domain of the receptor competing against their natural ligands),
and the molecules with low molecular weight (that inhibit the tyrosine–kinase
activity of the receptor at the intracellular level).

Finally, we stress that for this system we have used a deterministic approach
obtaining results that agree well with experimental data. This is not always
the case, for instance in [20] a system is shown (the Quorum Sensing system in
Vibrio Fischeri) where a stochastic approach is necessary to describe properly
its behavior.

Modeling Signal Transduction Using P Systems 113

5 Modelling FAS–Apoptosis

There are basically two mechanisms of cell death, necrosis and apoptosis. Necro-
sis is a form of cell death that usually occurs when cells are damaged by injury.
A disruption of the cell membrane is produced and intracellular materials are
released. In contrast to necrosis, apoptosis is carried out in an ordered sequence
of events that culminates in the suicide of the cell, and without releasing intra-
cellular materials from the dying cells.

The term apoptosis (also known as programmed cell death) was coined by Kerr,
Wyllie and Currie [8] as a means of distinguishing a morphologically distinctive
form of cell death which was associated with normal physiology.

Apoptosis occurs during organ development, it plays an important role in cel-
lular homeostasis [11], and it is a cellular response to a cellular insult that starts a
cascade of apoptotic signals, both intracellular and extracellular, which converge
on the activation of a group of apoptotic–specific proteases called caspases. The
apoptotic mechanism include condensation of cell contents, DNA fragmentation
into nucleosomal fragments, nuclear membrane breakdown, and the formation
of apoptotic bodies that are small membrane–bound vesicles phagocytosed by
neighboring cells [15]. Apoptosis protects the rest of the organism from a poten-
tially harmful agent and disregulation of apoptosis can contribute to the devel-
opment of autoimmune diseases and cancers. Apoptosis can also be induced by
anticancer drugs, group factor deprivation, and irradiation.

The family of proteases that mediates apoptosis is divided into two subgroups.
The first group consists of caspase 8, caspase 9, and caspase 10, and they func-
tion as initiators of the cell death process. The second group contains caspase 3,
caspase 6, and caspase 7, and they work as effectors. The other effector molecule
in apoptosis is Apaf-1, which, together with cytochrome c, stimulates the pro-
cessing of pro-caspase 9 to the mature enzyme.

The other regulators of apoptosis are the Bcl2 family members, divided into
three subgroups based on their structure. Members of the first subgroup, rep-
resented by Bcl2 and Bcl-xL, have an anti-apoptotic function. The second sub-
group, represented by Bax and Bak, and the third subgroup, represented by Bid
and Bad, are pro-apoptotic molecules.

Apoptotic death can be triggered by a wide variety of stimuli. Among the
more studied death stimuli are DNA damage which in many cells leads to apop-
totic death via a pathway dependent on p53, and the signalling pathways for
FAS-induced apoptosis that was shown to be one of the most relevant processes
for understanding and combating many forms of human diseases such as can-
cer, neurodegenerative diseases (Parkinson’s disease, Alzheimer, etc.), AIDS and
ischemic stroke.

Fas (also called CD95 or APO–1) is a cell surface receptor protein with an
extracellular region, one transmembrane domain, and an intracellular region. Fas
belongs to the tumor necrosis factor/nerve growth factor (TNT/NGF) cytokine
receptor family. Activation of Fas through binding to its ligands, induces apop-
tosis in the Fas bearing cell. Fas induced–apoptosis starts from the Fas ligand

114 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

Fig. 7. FAS signalling pathways, from [1]

binding to Fas receptors and ends in the fragmentation of genomic DNA, which
is used as a hallmark of apoptosis.

Fas ligands usually exist as trimers and bind and activate their receptors by
inducing receptor trimerisation. This creates a clustering of Fas that is necessary
for signalling. In its intracellular region, Fas contains a conserved sequence called
a death domain. Activated receptors recruit adaptor molecules (such as FADD,
Fas–associating protein with death domain) which interacts with the death do-
main on the Fas receptor and recruit procaspase 8 to the receptor complex,
where it undergoes autocatalytic activation cleaving and releasing active caspase
8 molecules intracellularly. Activated caspase 8 can activate caspase 3 through
two different pathways that have been identified by Scaffidi et al. [23], and are re-
ferred to as type I (death receptor pathway) and type II (mitochondrial pathway),
where caspases play a crucial role for both the initiation and execution apoptosis.

The pathways diverge after activation of initiator caspases and converge at the
end by activating executor caspases. In the type I pathway, initiator caspase (cas-
pase 8) cleaves procaspase 3 directly and activates executor caspase (caspase 3).

In the type II pathway, a more complicated cascade is activated involving the
disruption of mitochondrial membrane potential and it is mediated by Bcl2 fam-
ily proteins that regulate the passage of small molecules which activate caspase
cascades through the mitochondrial transition pore. More specifically (see Fig-
ure 8), caspase 8 cleaves Bid (Bcl2 interacting protein) and its COOH–terminal
part translocates to mitochondria where it triggers cytochrome c release. The
released cytochrome c bind to Apaf–1 (apoplectic protease activating factor)

Modeling Signal Transduction Using P Systems 115

Fig. 8. Details of FAS signalling pathways, from [15]

togegther with dATP and procaspase 9 and activate caspase 9. The caspase 9
cleaves procaspase 3 and activates caspase 3.

The executor caspase 3 cleaves DFF (DNA fragmentation factor) in a het-
erodimeric factor of DFF40 and DFF45. Cleaved DFF45 dissociates from DFF40,

116 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

inducing oligomerisation of DFF40. The active DFF40 oligomer causes the in-
ternucleosomal DNA fragmentation.

Despite many molecular components of these apoptotic pathways have been
identified, a better understanding of how they work together into a consistent
network is necessary. A way to understand complex biological processes, in gen-
eral, and the complex signalling behaviour of these pathways, in particular, is by
modelling them in a computational framework and simulating them in electronic
computers.

In [6] the two pathways activated by FAS starting with the stimulation of
FASL (FAS ligand) until the activation of the effector caspase 3, have been
modelled using ordinary differential equations in which biochemical reactions
where used to describe molecular interactions.

In this section we present a P system using a deterministic waiting times algo-
rithm for modelling FAS induced apoptosis, implementing all the rules described
in [6] for both pathways.

Our model consists of 53 proteins and complexes of proteins and 99 chemical
reactions. We will not give all the details of the model. A complete description
of ΠFAS with some supplementary information can be found in the web page
[32]. In what follows we give an outline of our model.

Let us consider the P system

ΠFAS = (O, {e, s, c,m}, μ, (w1, e), (w2, s), (w3, c), (w4,m),Re,Rs,Rc,Rm)

where:
• Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex
FAS Fas protein
FASL Fas Ligand
FADD Fas–associating protein with death domain

...
...

Apaf Apoptotic protease activating factor
Smac Second mitochondria–derived activator of caspase
XIAP X–linked inhibitor of apoptosis protein

• Membrane Structure: In the FAS signalling pathways there are four rele-
vant regions, namely the environment, the cell surface, the cytoplasm and the
mitochondria. We represent them in the membrane structure as the membranes
labeled with: e for the environment, s for the cell surface, c for the cytoplasm,
and m for the mitochondria. The skin of the structure is the environment, the
cell surface is the son of the environment, the father of the cytoplasm, and the
grandfather of the mitochondria.

Modeling Signal Transduction Using P Systems 117

• Initial Multisets: In the initial multisets we represent the initial number of
molecules of the chemical substances in the environment, the cell surface, the
cytoplasm, the mitochondria. These estimations has been obtained from [6].

we = {FASL12500}
ws = {FAS6023}
wc = {FADD10040, CASP820074, FLIP 48786, CASP3120460, Bid15057,

Bax50189, XIAP 18069, Apaf60230, CASP912046}
wm = {Smac60230, Cyto.c60230, Bcl245172}

• Rules: Through the rules we model the 99 chemical reactions which form the
signalling pathways. The rules can be found in [5] and they are described in our
model as in the case of the system ΠEGFR (with different rules in the alternative
cases of type II pathway in next subsection).

The set of rules associated with the environment, Re, consists only of one rule
r1 which models the binding of the FAS ligand to the receptor FAS.

FASL [FAS]s → [FASC]s , cr1

The meaning of the previous rule is the following: the object FASL in the
membrane containing the membrane with label s (the environment), and the
object FAS inside the membrane with label s (the cell surface) are replaced
with the object FASC in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the kinetic constant k1,
which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

τr1 =
1

cr1 · |EGF | · |EGFR|

5.1 Results and Discussions

We implemented in Java a preliminary simulator for the P system. It accepts as
input an SBML (Systems Biology Markup Language) file containing the rules
to be simulated and initial concentrations for the molecules in the system.

We compared our results with both the experimental data and with the ODEs
simulation data reported in [6].

One of the major proteins in the pathway, caspase 3 was compared to the
experimental data. In the ODEs simulation, caspase 3 was activated at 4 hours,
and it was considered close to the experimental results where it was obtained
that it activated at 6 hours (see Figure 9).

The same pathway is modeled in the membrane computing framework using
the same reactions and initial conditions. The caspase 3 activation dynamics is
studied when Bcl2 is at baseline value. Caspase 3 is activated in our simulator

118 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

Fig. 9. Comparison between experimental data (top left, from [6]), previous ODE sim-
ulation data (top right, [6]) and the P system simulation data (down)

after about 7 hours which is a very good approximation of the experimental data
and it improves the results obtained in the ODEs simulation [6].

There are cells (as thymocytes and fibroblasts) which are not sensitive to Bcl2
over expression as described in [23]. In these cells caspase 8 directly activates
caspase 3.

Scaffidi et al. has suggested in [23] that the type of pathway activated by
Fas is chosen based on the concentration of caspase 8 generated in active form
following FASL binding. If the concentration of activated caspase 8 is high, then
the caspase 3 is activated directly, on the other hand, if the concentration of
activated caspase 8 is low, the type II pathway is chosen so that the system is
amplifying the death signal through the mitochondria to be able to induce the
cell death.

To check this hypothesis, the active caspase 8 formation is increased by hav-
ing the initial concentration of caspase 8 set to a value 20 times greater than its
baseline value while everything else was kept the same in the system. We per-
formed the same simulation with the increase in caspase 8 initial concentration,
and this resulted in faster caspase 3 activation also in our simulation; this agrees
well with the results obtained in [23].

Modeling Signal Transduction Using P Systems 119

Fig. 10. Left – the P system simulation, right – the ODE simulation, from [6], for the
change in caspase 8 initial concentration

The Bcl2 concentration is also increased 100 times to test the sensitivity of
caspase 3 activation to Bcl2. Figure 10 shows that the caspase 3 activation is not
sensitive to increases in Bcl2 concentration, when pathway of type I is chosen.

Bcl2 is known to block the mitochondrial pathway; however, it is not clear
the mechanism through which Bcl2 can block the pathway of type II. Next, we
analyze the caspase 3 activation kinetics in this type of pathway by considering
different mechanisms to block the mitochondrial pathway suggested in [4], [16]
and [27]: Bcl2 might bind with (a) Bax, (b) Bid, (c) tBid, or (d) bind to both
Bax and tBid.

We design four different P systems having the rules:

– r1, . . . , r95, r96, r97 for modeling the case (a).
– r1, . . . , r95, r

′
96, r

′
97 for modeling the case (b).

– r1, . . . , r95, r
′′
96, r

′′
97 for modeling the case (c).

– r1, . . . , r97, r98, r99 for modeling the case (d).

All the other rules remain the same for all the cases (see [5] for details).
Let us note that this example shows the modularity of P systems–based model:

small behavioral changes in the biosignalling cascade causes small changes in the
designs of the P systems.

The dynamics of caspase 3 activation is studied by varying the Bcl2 concen-
tration 10 times or 100 times the baseline value. It was concluded that Bcl2
binding to both Bax and tBid is the most efficient mechanism for the pathway
in comparison with the results obtained for the cases (a), (b) or (c). The same
conclusions were obtained also after using our simulator for all the previous
changes in the pathway.

Figure 11 shows only the case (d) as a comparison between the ODE simulator
and the P system simulator. It can seen the sensitivity of the caspase 3 activation
to increases in Bcl2 level, when Bcl2 is able to bind to both Bax and tBid, and
when mitochondrial pathway is selected.

Next table presents a summary about the sensitivity analysis of caspase 3
activation to over expression of Bcl2 in function of the pathway selected.

120 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

Fig. 11. Left – the P system simulation, right – the ODE simulation, from [6]

Activation Caspase 3
(with over expression of Bcl2)

Type I (death receptor pathway) Insensitivity
Type II (mitochondrial pathway) Sensitivity

6 Conclusions

In this paper we have presented P systems as a new computational modeling
tool to study the dynamic behavior of integrated signalling systems through a
mesoscopic chemistry approach.

P systems are also a general specification of the biological phenomena that can
be evolved using different strategies/algorithms. A deterministic waiting times
algorithm has been introduced, and it is based on the fact that in vivo chemical
reactions take place in parallel and in an asynchronous manner.

That strategy has been illustrated with the simulation of two relevant biolog-
ical phenomena: the EGFR signalling cascade and the signalling pathways for
FAS–induced apoptosis. In the line of [29] we think that the success of using
P systems–based model for simulating biosignalling cascades can be a guide to
combining models and experiments to understand complex biological processes
as integrated systems.

Our results show a good correlation with the experimental data reported in the
literature and with simulators based on ODEs. So, they support the reliability of
P systems as computational modeling tools to produce postdiction, and perhaps
they will be able to produce plausible predictions.

Acknowledgement

The author wishes to acknowledge the support of the project TIN2005-09345-
C04-01 of the Ministerio de Educación y Ciencia of Spain, co–financed by FEDER
funds, and of the project of Excellence TIC 581 of the Junta de Andalućıa.

Modeling Signal Transduction Using P Systems 121

References

1. Alimonti, J.B., Ball, T.B., Fowke, K.R. Mechanisms of CD4+ T lymphocyte cell
death in human immunodeficiency virus infection and AIDS. Journal of General
Virology, 84 (2003), 1649–1661.

2. Bhalla, U.S., Iyengar, R., Emergent properties of networks of biological signaling
pathways. Science, 283 (1999), 381–387.

3. Blossey, R., Cardelli, L., Phillips, A. A compositional approach to the stochastic
dynamics of gene networks. Transactions on Computational Systems Biology, IV,
Lecture Notes in Computer Science, 3939 (2006), 99–122.

4. Cheng, E.H., Wei, M.C., Weiler, S., Flavell, R.A., Mak, T.W., Lindsten, T., Ko-
rsmeyer, S.J. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing
BAX- and BAK-mediated mitochondrial apoptosis. Molecular Cell, 8 (2001), 705–
711.

5. Cheruku, S., A. Păun, F.J. Romero, M.J. Pérez–Jiménez, O.H. Ibarra. Simulating
FAS–induced apoptosis by using P systems. Proceedings of the First International
Conference on Bio–Inspired Computing: Theory and Applications, Wuhan, China,
September, 18–22, 2006.

6. Hua, F., Cornejo, M., Cardone, M., Stokes, C., Lauffenburger, D. Effects of Bcl-
2 levels on FAS signaling-induced caspase-3 activation: Molecular genetic tests of
computational model predictions. The Journal of Immunology, 175, 2 (2005), 985–
995 and correction 175, 9 (2005), 6235–6237.

7. Ibarra, O.H., Păun, A. Counting time in computing with cells. Proceedings of DNA
Based Computing, DNA11, London, Ontario, 25–36, 2005.

8. Kerr, J.F., Wyllie, A.H., Currie, A.R. Apoptosis: a basic biological phenomenon
with wide-ranging implications in tissue kinetics. British Journal Cancer, 26
(1972), 239.

9. Pogson, M., Smallwood, R., Qwarnstrom, E., Holcombe, Formal agent–based of
intracellular chemical interactions. BioSystems, 85, 1 (2006), 37–45.

10. Holcombe, M., Gheorghe, M., Talbot, N. A hybrid machine model of rice blast
fungus, Magnaphorte Grisea. BioSystems, 68, 2–3 (2003), 223–228.

11. Jaatela, M. Multiple cell death pathways as regulators of tumour initiation and
progression. Oncogene, 23 (2004), 2746–2756.

12. Jackson, D., Holcombe, M., Ratnieks, F. Trail geometry gives polarity to ant for-
aging networks. Nature 432 (2004), 907–909.

13. Moehren G., Markevich, N., Demin, O., Kiyatkin, A., Goryanin, I., Hoek, J.B.,
Kholodenko, B.N. Temperature dependence of the epidermal growth factor receptor
signaling network can be accounted for by a kinetic model, Biochemistry 41 (2002),
306–320.

14. Moghal, N., Sternberg, P.W. Multiple positive and negative regulators of signaling
by the EGFR receptor. Curr. Opin. Cell Biology, 11 (1999), 190–196.

15. Nijhawan, D., Honarpour, N., Wang, X. Apotosis in neural development and dis-
ease. Annual Reviews Neuroscience, 23 (2000), 73–87.

16. Oltavi, Z.N., Milliman, C.L., Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with
a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, 4
(1993), 609–619.

17. Gh. Păun, Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report Nr.
208, 1998.

18. Gh. Păun, Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.

122 A. Păun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

19. Gh. Păun, G. Rozenberg, A guide to membrane computing. Theoretical Computer
Science, 287 (2002), 73–100.

20. Pérez-Jiménez, M.J., Romero-Campero, F.J. P systems, a new computationl mod-
elling tool for systems biology, Transactions on Computational Systems Biology
VI, LNBI 4220, 2006, 176–197.

21. Pérez-Jiménez, M.J., Romero-Campero, F.J. A study of the robustness of the
EGFR signalling cascade using continuous membrane systems. Lecture Notes in
Computer Science, 3561 (2005), 268 – 278.

22. Regev, A., Shapiro, E. (2004) The π-calculus as an abstraction for biomolecular
systems. In G. Ciobanu and G. Rozenberg, editors, Modelling in Molecular Biology,
Springer Berlin.

23. Scaffidi, C., Fulda. S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin,
K.M., Krammer, P.H., Peter, M.E. Two CD95 (APO-1/Fas) signaling pathways.
The Embo Journal, 17 (1998), 1675–1687.

24. Schoeberl, B., Eichler–Jonsson, C., Gilles, E.D., Muller, G. Computational model-
ing of the dynamics of the MAP kinase cascade activated by surface and internal-
ized EGF receptors, Nature Biotechnology, 20, 4 (2002), 370–375.

25. Van Kampen, N.G. Stochastics Processes in Physics and Chemistry, Elsevier Sci-
ence B.V., Amsterdam, 1992.

26. Walker, D.C., Southgate, J., Hill, G., Holcombe, M., Hose, D.R., Wood S.M., Mac-
Neil, S., Smallwood, R.H. The epitheliome: modelling the social behaviour of cells.
BioSystems, 76, 1–3 (2004), 89–100.

27. Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L., Korsmeyer, S.J. BID: a novel
BH3 domain-only death agonist. Genes & Development, 10 (1996), 2859–2869.

28. Wells, A. EGFR–receptor. Int. Journal Biochem. Cell Biology, 31 (1999), 637–643.
29. Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A. Computational modeling of the

EGFR–receptor system: A paradigm for systems biology. Trends in Cell Biology,
13, 1 (2003), 43–50.

30. ISI web page: http://esi-topics.com/erf/october2003.html
31. SciLab Web Site http://scilabsoft.inria.fr/
32. P Systems Modelling Framework Web Site: http://www.dcs.shef.ac.uk/

∼marian/PSimulatorWeb/P Systems applications.htm

Extended Spiking Neural P Systems

Artiom Alhazov1,2, Rudolf Freund3,
Marion Oswald3, and Marija Slavkovik3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova
artiom@math.md

2 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
artiome.alhazov@estudiants.urv.cat

3 Faculty of Informatics
Vienna University of Technology

Favoritenstr. 9, A-1040 Wien, Austria
{rudi,marion,marija}@emcc.at

Abstract. We consider extended variants of spiking neural P systems
and show how these extensions of the original model allow for easy proofs
of the computational completeness of extended spiking neural P systems
and for the characterization of semilinear sets and regular languages by
finite extended spiking neural P systems (defined by having only finite
checking sets in the rules assigned to the cells) with only a bounded
number of neurons.

1 Introduction

Just recently, a new variant of P systems was introduced based on the biological
background of neurons sending electrical impulses along axons to other neurons.
This biological background had already led to several models in the area of neural
computation, e.g., see [11], [12], and [8]. In the area of P systems, one basic model
considers hierarchical membrane structures, whereas in another important model
cells are placed in the nodes of a graph (which variant was first considered in
[18]; tissue P systems then were further elaborated, for example, in [7] and [13]).
Based on the structure of this model of tissue P systems, in [10] the new model of
spiking neural P systems was introduced. The reader is referred to this seeding
paper for the interesting details of the biological motivation for this kind of P
systems; we will recall just a few of the most important features:

In spiking neural P systems, the contents of a cell (neuron) consists of a num-
ber of so-called spikes. The rules assigned to a cell allow us to send information
to other neurons in the form of electrical impulses (also called spikes) which
are summed up at the target cell; the application of the rules depends on the
contents of the neuron and in the general case is described by regular sets. As
inspired from biology, the cell sending out spikes may be “closed” for a specific

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 123–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

124 A. Alhazov et al.

time period corresponding to the refraction period of a neuron; during this re-
fraction period, the neuron is closed for new input and cannot get excited (“fire”)
for spiking again.

The length of the axon may cause a time delay before a spike arrives at the
target. Moreover, the spikes coming along different axons may cause effects of
different magnitude. We shall include these features in our extended model of
spiking neural P systems considered below. Some other features also motivated
from biology will shortly be discussed in Section 5, e.g., the use of inhibiting
neurons or axons, respectively. From a mathematical point of view, the most
important theoretical feature we shall include in our model of extended spiking
neural P systems is that we allow the neurons to send spikes along the axons
with different magnitudes at different moments of time.

In [10] the output of a spiking neural P system was considered to be the
time between two spikes in a designated output cell. It was shown how spiking
neural P systems in that way can generate any recursively enumerable set of
natural numbers. Moreover, a characterization of semilinear sets was obtained
by spiking neural P system with a bounded number of spikes in the neurons.
These results can also be obtained with even more restricted forms of spiking
neural P systems, e.g., no time delay (refraction period) is needed, as it was
shown in [9]. In [17], the behavior of spiking neural P systems on infinite strings
and the generation of infinite sequences of 0 and 1 (the case when the output
neuron spikes) was investigated. Finally, in [1], the generation of strings (over
the binary alphabet 0 and 1) by spiking neural P systems was investigated; due
to the restrictions of the original model of spiking neural P systems, even specific
finite languages cannot be generated, but on the other hand, regular languages
can be represented as inverse-morphic images of languages generated by finite
spiking neural P systems, and even recursively enumerable languages can be
characterized as projections of inverse-morphic images of languages generated by
spiking neural P systems. The problems occurring in the proofs are also caused
by the quite restricted way the output is obtained from the output neuron as
sequence of symbols 0 and 1. The strings of a regular or recursively enumerable
language could be obtained directly by collecting the spikes sent by specific
output neurons for each symbol.

In the extended model introduced in this paper, we shall use a specific output
neuron for each symbol. Computational completeness can be obtained by sim-
ulating register machines as in the proofs elaborated in the papers mentioned
above, yet in an easier way using only a bounded number of neurons. More-
over, regular languages can be characterized by finite extended spiking neural P
systems; again, only a bounded number of neurons is really needed.

The rest of the paper is organized as follows: In the next section, we recall
some preliminary notions and definitions, especially the definition and some well-
known results for register machines. In section 3 we define our extended model
of spiking neural P systems and explain how it works. The generative power
of extended spiking neural P systems is investigated in section 4. Finally, in
section 5 we give a short summary of the results obtained in this paper and

Extended Spiking Neural P Systems 125

discuss some further variants of extended spiking neural P systems, especially
variants with inhibiting neurons or axons.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [2] and [19]. We just list
a few notions and notations: V ∗ is the free monoid generated by the alphabet
V under the operation of concatenation and the empty string, denoted by λ,
as unit element; for any w ∈ V ∗, |w| denotes the number of symbols in w
(the length of w). N+ denotes the set of positive integers (natural numbers),
N is the set of non-negative integers, i.e., N = N+∪{0}. The interval of non-
negative integers between k and m is denoted by [k..m]. Observe that there is
a one-to-one correspondence between a set M ⊆ N and the one-letter language
L (M) = {an | n ∈ M}; e.g., M is a regular (semilinear) set of non-negative
integers if and only if L (M) is a regular language. By FIN

(
Nk
)
, REG

(
Nk
)
,

and RE
(
Nk
)
, for any k ∈ N, we denote the sets of subsets of Nk that are finite,

regular, and recursively enumerable, respectively.
By REG (REG (V)) and RE (RE (V)) we denote the family of regular and

recursively enumerable languages (over the alphabet V , respectively). By ΨT (L)
we denote the Parikh image of the language L ⊆ T ∗, and by PsFL we denote
the set of Parikh images of languages from a given family FL. In that sense,
PsRE (V) for a k-letter alphabet V corresponds with the family of recursively
enumerable sets of k-dimensional vectors of non-negative integers.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [14]
for original definitions, and to [4] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, P, l0, lh) , where n is the number
of registers, P is a finite set of instructions injectively labeled with elements from
a given set Lab (M), l0 is the initial/start label, and lh is the final label.

The instructions are of the following forms:

– l1 : (A (r) , l2, l3) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labeled with) l2 and l3.

– l1 : (S (r) , l2, l3) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to in-
struction l2, otherwise proceed to instruction l3.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) registermachineM is said to generate a vector (s1, . . . , sβ)
of natural numbers if, starting with the instruction with label l0 and all registers

126 A. Alhazov et al.

containing the number 0, the machine stops (it reaches the instruction lh : halt)
with the first β registers containing the numbers s1, . . . , sβ (and all other registers
being empty).

Without loss of generality, in the succeeding proofs we will assume that in each
ADD instruction l1 : (A (r) , l2, l3) and in each SUB instruction l1 : (S (r) , l2, l3)
the labels l1, l2, l3 are mutually distinct (for a short proof see [7]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of non-negative integers which can be generated by Turing machines,
i.e., the family PsRE.

The results proved in [5] (based on the results established in [14]) and [4], [6]
immediately lead to the following result:

Proposition 1. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to β + 2
being empty, M non-deterministically computes and halts with ni in registers i,
1 ≤ i ≤ β, and registers β+1 and β+2 being empty if and only if (n1, ..., nβ) ∈ L.
Moreover, the registers 1 to β are never decremented.

When considering the generation of languages, we can use the model of a register
machine with output tape, which also uses a tape operation:

– l1 : (write (a) , l2)
Write symbol a on the output tape and go to instruction l2.

We then also specify the output alphabet T in the description of the register
machine with output tape, i.e., we write M = (n, T, P, l0, lh).

The following result is folklore, too (e.g., see [14] and [3]):

Proposition 2. Let L ⊆ T ∗ be a recursively enumerable language. Then L can
be generated by a register machine with output tape with 2 registers. Moreover,
at the beginning and at the end of a successful computation generating a string
w ∈ L both registers are empty, and finally, only successful computations halt.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [15]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it. Moreover, for the motivation
and the biological background of spiking neural P systems we refer the reader
to [10].

An extended spiking neural P system (of degree m ≥ 1) (in the following we
shall simply speak of an ESNP system) is a construct

Π = (m,S,R)

Extended Spiking Neural P Systems 127

where

– m is the number of cells (or neurons); the neurons are uniquely identified
by a number between 1 and m (obviously, we could instead use an alphabet
with m symbols to identify the neurons);

– S describes the initial configuration by assigning an initial value (of spikes)
to each neuron; for the sake of simplicity, we assume that at the beginning
of a computation we have no pending packages along the axons between the
neurons;

– R is a finite set of rules of the form
(
i, E/ak → P ; d

)
such that i ∈ [1..m]

(specifying that this rule is assigned to cell i), E ⊆ REG ({a}) is the checking
set (the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron i performs
this rule), and P is a (possibly empty) set of productions of the form (l, w, t)
where l ∈ [1..m] (thus specifying the target cell), w ∈ {a}∗ is the weight of
the energy sent along the axon from neuron i to neuron l, and t is the time
needed before the information sent from neuron i arrives at neuron l (i.e.,
the delay along the axon). If the checking sets in all rules are finite, then Π
is called a finite ESNP system.

A configuration of the ESNP system is described as follows:

– for each neuron, the actual number of spikes in the neuron is specified;
– in each neuron i, we may find an “activated rule”

(
i, E/ak → P ; d′

)
waiting

to be executed where d′ is the remaining time until the neuron spikes;
– in each axon to a neuron l, we may find pending packages of the form (l, w, t′)

where t′ is the remaining time until |w| spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

– for each neuron i, we first check whether we find an “activated rule”
(
i, E/ak

→ P ; d′) waiting to be executed; if d′ = 0, then neuron i “spikes”, i.e., for
every production (l, w, t) occurring in the set P we put the corresponding
package (l, w, t) on the axon from neuron i to neuron l, and after that, we
eliminate this “activated rule”

(
i, E/ak → P ; d′

)
;

– for each neuron l, we now consider all packages (l, w, t′) on axons leading
to neuron l; provided the neuron is not closed, i.e., if it does not carry an
activated rule

(
i, E/ak → P ; d′

)
with d′ > 0, we then sum up all weights w in

such packages where t′ = 0 and add this sum of spikes to the corresponding
number of spikes in neuron l; in any case, the packages with t′ = 0 are
eliminated from the axons, whereas for all packages with t′ > 0, we decrement
t′ by one;

– for each neuron i, we now again check whether we find an “activated rule”(
i, E/ak → P ; d′

)
(with d′ > 0) or not; if we have not found an “activated

rule”, we now may apply any rule
(
i, E/ak → P ; d

)
from R for which the

128 A. Alhazov et al.

current number of spikes in the neuron is in E and then put a copy of this
rule as “activated rule” for this neuron into the description of the current
configuration; on the other hand, if there still has been an “activated rule”(
i, E/ak → P ; d′

)
in the neuron with d′ > 0, then we replace d′ by d′ − 1

and keep
(
i, E/ak → P ; d′ − 1

)
as the “activated rule” in neuron i in the

description of the configuration for the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence
of configurations starting with the initial configuration given by S. A computa-
tion is called successful if it halts, i.e., if no pending package can be found along
any axon, no neuron contains an activated rule, and for no neuron, a rule can
be activated.

In the original model introduced in [10], in the productions (l, w, t) of a rule(
i, E/ak → {(l, w, t)} ; d

)
, only w = a (for spiking rules) or w = λ (for forgetting

rules) as well as t = 0 was allowed (and for forgetting rules, the checking set E
had to be finite and disjoint from all other sets E in rules assigned to neuron
i). Moreover, reflexive axons, i.e., leading from neuron i to neuron i, were not
allowed, hence, for (l, w, t) being a production in a rule

(
i, E/ak → P ; d

)
for neu-

ron i, l 	= i was required. Yet the most important extension is that different rules
for neuron i may affect different axons leaving from it whereas in the original
model the structure of the axons (called synapses there) was fixed. Finally, we
should like to mention that the sequence of substeps leading from one configu-
ration to the next one together with the interpretation of the rules from R was
taken in such a way that the original model can be interpreted in a consistent
way within the extended model introduced in this paper. From a mathemati-
cal point of view, another interpretation in our opinion would have been more
suitable: whenever a rule

(
i, E/ak → P ; d

)
is activated, the packages induced by

the productions (l, w, t) in the set P of a rule
(
i, E/ak → P ; d

)
activated in a

computation step are immediately put on the axon from neuron i to neuron l,
whereas the delay d only indicates the refraction time for neuron i itself, i.e.,
the time period this neuron will be closed. Yet as in the proofs of computational
completeness given below we shall not need any of the delay features, we shall
not investigate this variant in more details anymore in the rest of the paper.

Depending on the purpose the ESNP system shall be used, some more fea-
tures have to be specified: for generating k-dimensional vectors of non-negative
integers, we have to designate k neurons as output neurons ; the other neurons
then will also be called actor neurons. Without loss of generality, in the follow-
ing we shall assume the output neurons to be the first k neurons of the ESNP
system. Moreover, for the sake of conciseness, we shall also assume that no rules
are assigned to these output neurons (in the original model they correspond to
a sensor in the environment of the system; in some sense, they are not neurons
of the system itself). There are several possibilities to define how the output
values are computed; according to [10], we can take the distance between the
first two spikes in an output neuron to define its value; in this paper, we shall
prefer to take the number of spikes at the end of a successful computation in the

Extended Spiking Neural P Systems 129

neuron as the output value. For generating strings, we do not interpret the spike
train of a single output neuron as done, for example, in [1], but instead consider
the sequence of spikes in the output neurons each of them corresponding to a
specific terminal symbol; if more than one output neuron spikes, we take any
permutation of the corresponding symbols as the next substring of the string to
be generated.

The delay t in productions (l, w, t) can be used to replace the delay in the
neurons themselves in many of the constructions elaborated, for example, in
[10], [16], and [1]; there often a subconstruction is implemented which ensures
that a neuron l3 gets a spike one time step later than a neuron l2, both getting
the impulse from a neuron l1; to accomplish this task in the original model, two
intermediate neurons are needed using the refraction period delay of one neuron,
whereas we can get this effect directly from neuron l1 by using the delay along
the axons using the rule

(
l1, E/ak → {(l2, a, 0) , (l3, a, 1)} ; 0

)
. In that way, only

this feature allows for simpler proofs; on the other hand, taking into account the
other extensions in ESNP systems as defined above, we shall not need any of the
delay features for the proofs of computational completeness given below.

4 ESNP Systems as Generating Devices

We now consider extended spiking neural P systems as generating devices. As
throughout this section we do not use delays in the rules and productions, we
simply omit them to keep the description of the systems concise, i.e., for a
production (i, w, t) we simply write (i, w); for example, instead of

(
2,
{
ai
}
/ai →{

(1, a, 0) ,
(
2, aj , 0

)}
; 0
)

we write
(
2,
{
ai
}
/ai →

{
(1, a) ,

(
2, aj

)})
.

The following example gives a characterization of regular sets of non-negative
integers:

Example 1. Any semilinear set of non-negative integers M can be generated by
a finite ESNP system with only two neurons.

Let M be a semilinear set of non-negative integers and consider a regular
grammar G generating the language L (G) ⊆ {a}∗ with N (L (G)) = M ; with-
out loss of generality we assume the regular grammar to be of the form G =
(N, {a} , A1, P) with the set of non-terminal symbols N , N = {Ai | 1 ≤ i ≤ m},
the start symbol A1, and P the set of regular productions of the form B → aC
with B,C ∈ N and A → λ. We now construct the finite ESNP system Π =
(2, S,R) that generates an element of M by the number of spikes contained in
the output neuron 1 at the end of a halting computation: we start with one
spike in neuron 2 (representing the start symbol A1 and no spike in the out-
put neuron 1, i.e., S = {(1, 0) , (2, 1)}. The production Ai → aAj is simulated
by the rule

(
2, {i} /ai →

{
(1, a) ,

(
2, aj

)})
and Ai → λ is simulated by the rule(

2, {i} /ai → ∅
)
, i.e., in sum we obtain

Π = (2, S,R) ,
S = {(1, 0) , (2, 1)} ,
R =

{(
2, {i} /ai →

{
(1, a) ,

(
2, aj

)})
| 1 ≤ i, j ≤ m,Ai → aAj ∈ P

}
∪
{(

2, {i} /ai → ∅
)
| 1 ≤ i ≤ m,Ai → λ ∈ P

}
.

130 A. Alhazov et al.

Neuron 2 keeps track of the actual non-terminal symbol and stops the derivation
as soon as it simulates a production Ai → λ, because finally neuron 2 is empty.
In order to guarantee that this is the only way how we can obtain a halting
computation in Π , without loss of generality we assume G to be reduced, i.e.,
for every non-terminal symbol A from N there is a regular production with A
on the left-hand side. These observations prove that we have N (L (G)) = M .

We can also generate the numbers in M as the difference between the (first)
two spikes arriving in the output neuron by the following ESNP system Π ′:

Π ′ = (2, S′, R′) ,
S′ = {(1, 0) , (2,m + 1)} ,
R′ =

{(
2, {i} /ai →

{(
2, aj

)})
| 1 ≤ i, j ≤ m,Ai → aAj ∈ P

}
∪
{(

2, {i} /ai → {(1, a)}
)
| 1 ≤ i ≤ m,Ai → λ ∈ P

}
∪
{(

2, {m + 1} /am+1 → {(1, a) , (2, a)}
)}

.

We should like to mention that one reason for the constructions given above
to be that easy is the fact that we allow “reflexive” axons, i.e., we can keep track
of the actual non-terminal symbol without delay. We could avoid this by adding
an additional neuron 3 thus obtaining the following finite ESNP system:

Π ′′ = (3, S′′, R′′) ,
S′′ = {(1, 0) , (2, 0) , (3, 1)} ,
R′′ =

{(
2,
{
ai
}
/ai →

{(
3, aj

)
, (1, a)

})
,
(
3,
{
ai
}
/ai →

{(
2, ai

)})
| 1 ≤ i, j ≤ m,Ai → aAj ∈ P}

∪
{(

2,
{
ai
}
/ai → ∅

)
| 1 ≤ i ≤ m,Ai → λ ∈ P

}
.

Observe that the derivation in the corresponding grammar now is delayed by a
factor of 2 in the computation in Π , because we need one step to propagate the
information from neuron 3 to neuron 2 which then sends the spikes to the out-
put neuron. Hence, an interpretation of the generated number as the difference
between two spikes in the output neuron is not possible anymore.

Lemma 1. For any ESNP system where during a computation only a bounded
number of spikes occurs in the actor neurons, the generated language is regular.

Proof (sketch). Let Π be an ESNP system where during a computation only
a bounded number of spikes occurs in the actor neurons. Then the number of
configurations differing in the actor neurons and the packages along the axons,
but without considering the contents of the output neurons, is finite, hence, we
can assign non-terminal symbols Ak to each of these configurations and take
all right-regular productions Ai → wAj such that w is a permutation of the
string obtained by concatenating the symbols indicated by the number of added
spikes when going from configuration i to configuration j. If we interpret just the
number of spikes in the output neurons as the result of a successful computation,
then we obtain the Parikh set of the language, which then obviously is regular,
i.e., semilinear. �

As we shall see later in this section, ESNP systems are computationally complete,
hence, the question whether in an ESNP system during a computation only a

Extended Spiking Neural P Systems 131

bounded number of spikes occurs in the actor neurons is not decidable, but there
is a simple syntactic feature that allows us to characterize regular sets, namely
the finiteness of an ESNP system. The following theorem is a consequence of the
preceding lemma and the example given above:

Theorem 1. Any regular language L with L ⊆ T ∗ for a terminal alphabet T
with card (T) = n can be generated by a finite ESNP system with n+1 neurons.
On the other hand, every language generated by a finite ESNP system is regular.

Proof. Let G be a regular grammar generating the language L (G) = L ⊆ T ∗,
T = {ak | 1 ≤ k ≤ n}; without loss of generality we assume the regular grammar
to be of the form G = (N,T,A1, P) with the set of non-terminal symbols N ,
N = {Ai | 1 ≤ i ≤ m}, the start symbol A1, and P the set of regular productions
of the form Ai → akAj with Ai, Aj ∈ N , ak ∈ T , and Ai → λ with Ai ∈ N .
We now construct the finite ESNP system Π = (n + 1, S,R) that generates an
element of L by the sequence of spikes in the output neurons 1 to n corresponding
with the desired string during a halting computation: we start with one spike
in neuron n + 1 (representing the start variable A1) and no spike in the output
neurons 1 to n:

Π = (n + 1, S,R) ,
S = {(1, 0) , ..., (n, 0) , (n + 1, 1)} ,
R =

{(
n + 1,

{
ai
}
/ai →

{
(k, a) ,

(
n + 1, aj

)})
,

| 1 ≤ i, j ≤ m, 1 ≤ k ≤ n,Ai → akAj ∈ P}
∪
{(

n + 1,
{
ai
}
/ai → ∅

)
| 1 ≤ i ≤ m,Ai → λ ∈ P

}
.

Obviously, L (G) = L (Π) = L.
On the other hand, let Π = (m,S,R) be a finite ESNP system. Then from Π

we can construct an equivalent finite ESNP system Π ′ = (m,S,R′) such that
Π ′ fulfills the requirements of Lemma 1: let x be the maximal number occurring
in all the checking sets of rules from R and let y be (a number not less than) the
maximal number of spikes that can be added in one computation step to any of
the m neurons of Π (an upper bound for y is the maximal number of weights
in the productions of the rules in R multiplied by the maximal delay in these
productions +1 multiplied by the maximal number of axons ending in a neuron
of Π); then define

R′ = R ∪
{(

i,
{
ax+1+k

}
/ak → ∅

)
| 1 ≤ k < 2y

}
.

Hence, the maximal number of spikes in any of the neurons of Π ′ is x + 2y,
therefore Lemma 1 can be applied (observe that the additional rules in R′ cannot
lead to additional infinite computations, because they only consume spikes, but
let the contents of the neurons stay above x, hence, no other rules become
applicable). �

Corollary 1. Any semilinear set of n-dimensional vectors can be generated by
a finite ESNP system with n + 1 neurons. On the other hand, every set of n-
dimensional vectors generated by a finite ESNP system is semilinear.

132 A. Alhazov et al.

Proof. The result directly follows from Theorem 1 by just taking the number of
spikes in the output neurons, i.e., the corresponding Parikh set of the generated
language (because PsREG ({ai | 1 ≤ i ≤ n}) = REG (Nn)). �
We now show that every recursively enumerable language over an n-letter alpha-
bet can be generated by an ESNP system with a bounded number of neurons:

Theorem 2. Any recursively enumerable language L with L ⊆ T ∗ for a terminal
alphabet T with card (T) = n can be generated by an ESNP system with n + 2
neurons.

Proof. Let M = (d, T, P, l0, lh) be a register machine with output tape generating
L (according to Proposition 2, d = 2 is sufficient), and without loss of generality,
let Lab (M) = [0..m− 1], l0 = 1 (the start label), and lh = 0 (the final label).
Then we construct an ESNP system Π = (n + d, S,R) as follows:

Π = (n + d, S,R) ,
S = {(i, λ) | 1 ≤ i ≤ n + d, i 	= n + 1} ∪ {(n + 1, a)} ,
R =

{(
n + 1,

{
amj+l | j ∈ N

}
/al →

{(
n + 1, am+k

)})
| l : (A (n + 1) , l′, l′′) ∈ P, k ∈ {l′, l′′}}

∪
{(

n + 1,
{
amj+l | j ∈ N

}
/al →

{(
n + 1, ak

)
, (n + i, am)

})
| l : (A (n + i) , l′, l′′) ∈ P, k ∈ {l′, l′′} , 1 < i ≤ d}

∪
{(

n + 1,
{
al
}
/al →

{(
n + 1, al′′

)})
,(

n + 1,
{
amj+l | j ∈ N+

}
/al+m →

{(
n + 1, al′

)})
| l : (S (n + 1) , l′, l′′) ∈ P}

∪
{(

n + 1,
{
amj+l | j ∈ N

}
/al →

{(
n + i, al

)})
,(

n + i,
{
al
}
/al →

{(
n + 1, al′′

)})
,(

n + i,
{
amj+l | j ∈ N+

}
/al+m →

{(
n + 1, al′

)})
,

| l : (S (n + i) , l′, l′′) ∈ P, 1 < i ≤ d}
∪
{(

n + 1,
{
amj+l | j ∈ N

}
/al →

{(
n + 1, al′

)
, (s, a)

})
,

| l : (write (as) , l′) ∈ P, 1 ≤ s ≤ n} .

The neurons 1 to n are the output neurons and the actor neurons n + i,
1 ≤ i ≤ d, represent the d registers of M . The contents ci of register i of M is
stored as mci spikes in neuron n + i.

To simulate the instructions of P , the label l of the current instruction is
also stored in neuron n + 1, which then contains mc1 + l spikes and thus guides
the whole computation. Whenever a SUB instruction on a register i > 1 has to
be simulated, in an intermediate step the control temporarily goes to register i
which then contains mci + l. A tape operation l : (write (ak) , l′) is simulated by
sending a spike to the output neuron representing symbol ak.

Extended Spiking Neural P Systems 133

As at the end of a successful computation all registers are empty and lh = 0,
also the computation in Π stops because the actor neurons n+ i, 1 ≤ i ≤ d, will
not spike anymore. �

Corollary 2. Any recursively enumerable set of n-dimensional vectors can be
generated by an ESNP system with n + 2 neurons.

Proof. The result directly can be proved by using Proposition 1 and a similar con-
struction as that one elaborated in the proof of Theorem 2, yet it also follows from
Theorem 2 by just taking the number of spikes in the output neurons as the value
of the components of the n-dimensional vector, i.e., by taking the correspond-
ing Parikh set of the generated language (because PsRE ({ai | 1 ≤ i ≤ n}) =
RE (Nn)). �

5 Summary and Further Variants

In this paper, we have considered various extensions of the original model of spik-
ing neural P systems, some of them arising from biological motivations, some
others being more of mathematical interest than having a biological interpre-
tation. The extensions considered in more detail here allowed for establishing
computational completeness in an easy way, and moreover, we got a quite nat-
ural characterization of semilinear sets of (vectors of) non-negative integers and
regular languages, respectively, by finite extended spiking neural P systems with
a bounded number of neurons. On the other hand, in the future some other
restrictions should be investigated allowing for the characterization of sets in a
family between the families of regular and recursively enumerable sets (of vectors
of non-negative integers or strings).

A quite natural feature found in biology and also used in the area of neural
computation is that of inhibiting neurons or axons between neurons. We can
include this feature in our extended model of spiking neural P systems considered
above in a variant closely related to the original model of spiking neural P
systems by specifying certain connections from one neuron to another one as
inhibiting ones – the spikes coming along such inhibiting axons then would close
the target neuron for a time period given by the sum of all inhibiting spikes.

Acknowledgements

The first and the second author very much appreciate the interesting discussions
with Gheorghe Păun during the Brainstorming Week on Membrane Computing
2006 in Sevilla on the main features of spiking neural P systems. The work of
Artiom Alhazov is partially supported by the project TIC2003-09319-C03-01
from Rovira i Virgili University. The work of Marion Oswald is supported by
FWF-project T225-N04.

134 A. Alhazov et al.

References

1. Chen H, Freund R, Ionescu M, Păun Gh, Pérez-Jiménez MJ (2006) On String
Languages Generated by Spiking Neural P Systems. In: Gutiérrez-Naranjo MA,
Păun Gh, Riscos-Núñez A, Romero-Campero FJ (eds) Fourth Brainstorming Week
on Membrane Computing, Vol. I RGNC REPORT 02/2006, Research Group on
Natural Computing, Sevilla University, Fénix Editora, 169–194

2. Dassow J, Păun Gh (1989) Regulated Rewriting in Formal Language Theory.
Springer, Berlin

3. Fernau H, Freund R, Oswald M, Reinhardt K (2005) Refining the Nonterminal
Complexity of Graph-controlled Grammars. In: Mereghetti C, Palano B, Pighizzini
G, Wotschke D (eds) Seventh International Workshop on Descriptional Complexity
of Formal Systems, 110–121

4. Freund R, Oswald M (2003) P Systems with activated/prohibited membrane chan-
nels. In: Păun Gh , Rozenberg G, Salomaa A, Zandron C (eds) Membrane Com-
puting. International Workshop WMC 2002, Curtea de Argeş, Romania. Lecture
Notes in Computer Science 2597, Springer, Berlin, 261–268.

5. Freund R, Oswald M (2002) GP Systems with Forbidding Context. Fundamenta
Informaticae 49:81–102

6. Freund R, Păun Gh (2004) From Regulated Rewriting to Computing with Mem-
branes: Collapsing Hierarchies. Theoretical Computer Science 312:143–188

7. Freund R, Păun Gh, Pérez-Jiménez M J (2004) Tissue-like P systems with channel
states. Theoretical Computer Science 330:101–116

8. Gerstner W, Kistler W (2002) Spiking Neuron Models. Single Neurons, Popula-
tions, Plasticity. Cambridge Univ. Press

9. Ibarra OH, Păun A, Păun Gh, Rodŕıguez-Patón A, Sośık P, Woodworth S (2006)
Normal Forms for Spiking Neural P Systems. In: Gutiérrez-Naranjo MA, Păun Gh,
Riscos-Núñez A, Romero-Campero FJ (eds) Fourth Brainstorming Week on Mem-
brane Computing, Vol. II RGNC REPORT 02/2006, Research Group on Natural
Computing, Sevilla University, Fénix Editora, 105–136

10. Ionescu M, Păun Gh, Yokomori T (2006) Spiking neural P systems. Fundamenta
Informaticae 71, 2–3:279–308

11. Maass W (2002) Computing with spikes. Special Issue on Foundations of Informa-
tion Processing of TELEMATIK 8, 1:32–36

12. Maass W, Bishop C (eds) (1999) Pulsed Neural Networks. MIT Press, Cambridge
13. Mart́ın-Vide C, Pazos J, Păun Gh, Rodŕıguez-Patón A (2002) A new class of

symbolic abstract neural nets: Tissue P systems. In: Proceedings of COCOON
2002, Singapore, Lecture Notes in Computer Science 2387, Springer-Verlag, Berlin,
290–299

14. Minsky M L (1967) Computation: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, New Jersey

15. Păun Gh (2002) Computing with Membranes: An Introduction. Springer, Berlin
16. Păun Gh, Pérez-Jiménez MJ, Rozenberg G (2006) Spike trains in spiking neural P

systems, Intern J Found Computer Sci, to appear (also available at [20])
17. Păun Gh, Pérez-Jiménez MJ, Rozenberg G (2006) Infinite spike trains in spiking

neural P systems. Submitted
18. Păun Gh, Sakakibara Y, Yokomori T (2006) P systems on graphs of restricted

forms. Publicationes Mathematicae Debrecen 60:635–660
19. Rozenberg G, Salomaa A (eds) (1997) Handbook of Formal Languages (3 volumes).

Springer, Berlin
20. The P Systems Web Page, http://psystems.disco.unimib.it

Towards a Characterization of P Systems with
Minimal Symport/Antiport and Two

Membranes�

Artiom Alhazov1,2 and Yurii Rogozhin1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

{artiom,rogozhin}@math.md
2 Research Group on Mathematical Linguistics
Rovira i Virgili University, Tarragona, Spain

artiome.alhazov@estudiants.urv.cat

Abstract. We prove that any set of numbers containing zero generated
by symport/antiport P systems with two membranes and minimal co-
operation is finite (for both symport/antiport P systems and for purely
symport P systems). On the other hand, one additional object in the
output membrane allows symport/antiport P systems (purely symport
P systems) with two membranes and minimal cooperation generate any
recursively enumerable sets of natural numbers without zero. Thus we
improve our previous results for symport/antiport P systems with two
membranes and minimal cooperation from three “garbage” objects down
to one object and for purely symport P systems from six objects down
to one object. Thus we show the optimality of these results.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communica-
tion rules assigned to membranes, first were introduced in [19]; symport rules
move objects across a membrane together in one direction, whereas antiport
rules move objects across a membrane in opposite directions. These operations
are very powerful, i.e., P systems with symport/antiport rules have universal
computational power with only one membrane, e.g., see [10], [14], [11].

A comprehensive overview of the most important results obtained in the area
of P systems and tissue P systems with symport/antiport rules (with respect to
the development of computational completeness results improving descriptional
complexity parameters as the number of membranes and cells, respectively, the
weight of the rules and the number of objects) can be found in [1].

In this paper, we first show that if some P system with two membranes and
with minimal cooperation, i.e., a P system with symport/antiport rules of weight
one or a P system with symport rules of weight two, generates a set of numbers
� The authors acknowledge the project 06.411.03.04P from the Supreme Council for

Science and Technological Development of the Academy of Sciences of Moldova.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 135–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

136 A. Alhazov and Y. Rogozhin

containing zero, then this set is finite. After that we prove that P systems with
symport/antiport rules of weight one can generate any recursively enumerable
set of natural numbers without zero (i.e., they are computationally complete
with just one superfluous object remaining in the output membrane at the
end of a halting computation). The same result is true also for purely symport
P systems of weight two. In this way, we improve the results from [1] for sym-
port/antiport P systems with two membranes and minimal cooperation from
three “‘garbage” objects down to one object and for purely symport P systems
with two membranes and minimal cooperation from six objects down to one
object. Thus we show the optimality of these results.

Notice that symport/antiport P systems with three membranes and minimal
cooperation can generate any recursively enumerable sets of natural numbers
without using superfluous objects in the output membrane [3]. The question
about precise characterization of computational power of symport/antiport P
systems (purely symport P systems) with two membranes and minimal cooper-
ation is still open.

2 Basic Notations and Definitions

For the basic elements of formal language theory needed in the following, we
refer to [24]. We just list a few notions and notations: N denotes the set of
natural numbers (i.e., of non-negative integers). V ∗ is the free monoid gener-
ated by the alphabet V under the operation of concatenation and the empty
string, denoted by λ, as unit element; by NRE, NREG, and NFIN we denote
the family of recursively enumerable sets, regular sets, and finite sets of natural
numbers, respectively. For k ≥ 1, by NkRE we denote the family of recursively
enumerable sets of natural numbers excluding the initial segment 0 to k − 1.
Equivalently, NkRE = {k + L | L ∈ NRE}, where k+L = {k + n | n ∈ L}. Par-
ticularly, N1RE = {N ∈ NRE | 0 /∈ N}. We will also use the next notations:
N�0FIN = {N ∈ NFIN | 0 ∈ N}, N�0SEG1 = {{k ∈ N | k < n} | n ≥ 0} and
N�0SEG2 = {{2k | k < n} | n ≥ 0}.

The families of recursively enumerable sets of vectors of natural numbers are
denoted by PsRE.

2.1 Counter Automata

A non-deterministic counter automaton (see [9], [1]) is a construct

M = (d,Q, q0, qf , P) , where

– d is the number of counters, and we denote D = {1, . . . , d};
– Q is a finite set of states, and without loss of generality, we use the notation

Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, . . . , f},
– q0 ∈ Q is the initial state,
– qf ∈ Q is the final state, and
– P is a finite set of instructions of the following form:

Towards a Characterization of P Systems 137

1. (qi → ql, k+), with i, l ∈ F, i 	= f, k ∈ D (“ increment” instruction). This
instruction increments counter k by one and changes the state of the system
from qi to ql.

2. (qi → ql, k−), with i, l ∈ F, i 	= f, k ∈ D (“ decrement” instruction). If the
value of counter k is greater than zero, then this instruction decrements it
by 1 and changes the state of the system from qi to ql. Otherwise (when the
value of counter k is zero) the computation is blocked in state qi.

3. (qi → ql, k = 0), with i, l ∈ F, i 	= f, k ∈ D (“ test for zero” instruction).
If the value of counter k is zero, then this instruction changes the state of
the system from qi to ql. Otherwise (the value stored in counter k is greater
than zero) the computation is blocked in state qi.

4. halt. This instruction stops the computation of the counter automaton, and
it can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state q0
with all counters being equal to zero. The result of the computation of a counter
automaton is the value of the first k counters when the automaton halts in state
qf ∈ Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of k-vectors of natural numbers.

It is known that any set of k-vectors of natural numbers from PsRE can be
generated by a counter automaton with k + 2 counters where only “increment”
instructions are needed for the first k counters. We will use this in our proofs.

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [21]; comprehensive information can be found in the P systems
web page, [28].

A P system with symport/antiport rules is a construct

Π = (O,μ,w1, . . . , wk, E,R1, . . . , Rk, i0), where

1. O is a finite alphabet of symbols called objects;
2. μ is a membrane structure consisting of k membranes that are labeled in a

one-to-one manner by 1, 2, . . . , k;
3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated with

the region i (delimited by membrane i);
4. E ⊆ O is the set of objects that appear in the environment in an infinite

number of copies;
5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated

with membrane i; these rules are of the forms (x, in) and (y, out) (symport
rules) and (y, out;x, in) (antiport rules), respectively, where x, y ∈ O+;

6. i0 is the label of an elementary membrane of μ that identifies the correspond-
ing output region.

138 A. Alhazov and Y. Rogozhin

A P system with symport/antiport rules is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure μ), where to each membrane i there are assigned
a multiset of objects wi and a finite set of symport/antiport rules Ri, 1 ≤ i ≤ k.
A rule (x, in) ∈ Ri permits the objects specified by x to be moved into region i
from the immediately outer region. Notice that for P systems with symport rules
the rules in the skin membrane of the form (x, in), where x ∈ E∗, are forbidden.
A rule (x, out) ∈ Ri permits the multiset x to be moved from region i into
the outer region. A rule (y, out;x, in) permits the multisets y and x, which are
situated in region i and the outer region of i, respectively, to be exchanged. It is
clear that a rule can be applied if and only if the multisets involved by this rule
are present in the corresponding regions. The weight of a symport rule (x, in)
or (x, out) is given by |x|, while the weight of an antiport rule (y, out;x, in) is
given by max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules is obtained
by applying the rules in a non-deterministic maximally parallel manner. Specif-
ically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport rules do not allow the system to modify
the objects placed inside the regions. Initially, each region i contains the corre-
sponding finite multiset wi, whereas the environment contains only objects from
E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P
system reaches a configuration where no rule can be applied anymore. The result
of a successful computation is a natural number that is obtained by counting all
objects (only the terminal objects as it is done in [2], if in addition we specify
a subset of O as the set of terminal symbols) present in region i0. Given a P
system Π , the set of natural numbers computed in this way by Π is denoted by
N(Π) (or N(Π)T if the terminal symbols are distinguished). If the multiplicity
of each (terminal) object is counted separately, then a vector of natural numbers
is obtained, denoted by Ps(Π), see [21].

By NOPm(syms, antit) we denote the family of natural number sets generated
by P systems with symport/antiport rules with at most m > 0 membranes,
symport rules of size at most s ≥ 0, and antiport rules of size at most t ≥ 0. By
NkOPm(syms, antit) we denote the corresponding families of natural numbers
without the initial segment {0, 1, . . . , k − 1} generated by such P systems. Any
unbounded parameter m, s, t is replaced by ∗. If t = 0, then we may omit antit.

3 The Garbage Is Unavoidable

Theorem 1. If M ∈ NOP2(sym1, anti1), then 0 ∈ M ⇒ M ∈ NFIN .

Proof. Consider an arbitrary P system Π with two membranes and symport/an-
tiport rules of weight one,

Π = (O, [1 [2]2]1, w1, w2, E,R1, R2, 2).

Towards a Characterization of P Systems 139

For Π , consider some computation C generating 0: C ends in some configuration
C with nothing in membrane 2, u1 ∈ (O − E)∗ and ue ∈ E∗ in membrane 1
and u0 ∈ (O − E)∗ in the environment. Finally, consider an arbitrary halting
computation C′ of Π : C′ ends in some configuration C′ with v2 ∈ (O − E)∗

and vf ∈ E∗ in membrane 2, with v1 ∈ (O − E)∗ and ve ∈ E∗ in membrane 1
and v0 ∈ (O − E)∗ in the environment. We are claiming that |v2vf | + |v1ve| ≤
|w2|+ |w1| (i.e., the total number of objects in the system cannot grow without
starting an infinite computation, and thus Π cannot generate numbers greater
than the initial number of objects inside it).

Let us assume the contrary. Since the number of objects inside the system can
only increase by symport rules, some rule p0 : (s0, in) ∈ R1 had to be applied
at some step of C′ (by definition s0 ∈ O − E). This implies that s0 has been
brought to the environment. We can assume that rules pi : (si, out; si−1, in) ∈ R1,
1 ≤ i < n, have been applied (n ≥ 0), si ∈ O − E, 1 ≤ i ≤ n. Suppose also that
n is maximal (sn was not brought to the environment by antiport with another
object from O − E). Thus R1 contains either a rule p : (sn, out) ∈ R1, or p′ :
(sn, out; a, in) ∈ R1, a ∈ E.

Examine the final configuration C of the computation generating 0. Recall
that since region 2 is empty, we cannot “hide” anything there. If s0 is in u0,
then p0 can be applied, hence C is not final. Therefore (region 2 is empty) s0 is
in u1. For all 1 ≤ i ≤ n, given si−1 ∈ w1, if si is in u0, then pi can be applied,
hence C is not final. Consequently (region 2 is empty), si is in w1 as well. By
induction, we obtain that sn is in w1. However, this implies that either p ∈ R
and p can be applied, or some p′ ∈ R and p′ can be applied, therefore C is not
final.

This implies that if a system may generate 0, then any computation where
the number of objects inside the output membrane is increased cannot halt.
Therefore, Π cannot generate infinite sets containing 0. ��

The corresponding result also holds for systems with symport of weight at most
two, but the proof is more difficult.

Theorem 2. If M ∈ NOP2(sym2), then 0 ∈ M ⇒ M ∈ NFIN .

Proof. Consider an arbitrary P system Π with two membranes and symport
rules of weight at most two, Π = (O, [1 [2]2]1, w1, w2, E,R1, R2, 2); without
restricting generality we may assume that the objects that compose w1 and
w2 are disjoint from the objects in E. For Π , consider some computation C
generating 0: C ends in some configuration C with nothing in membrane 2,
u1 ∈ (O−E)∗ and ue ∈ E∗ in membrane 1 and u0 ∈ (O−E)∗ in the environment.
Finally, consider an arbitrary halting computation C′ of Π : C′ ends in some
configuration C′ with v2 ∈ (O − E)∗ and vf ∈ E∗ in membrane 2, with v1 ∈
(O−E)∗ and ve ∈ E∗ in membrane 1 and v0 ∈ (O−E)∗ in the environment. We
are claiming that |v2vf | + |v1ve| ≤ |w2| + |w1| (i.e., the total number of objects
in the system cannot grow without starting an infinite computation, and thus Π
cannot generate numbers greater than the initial number of objects inside it).

140 A. Alhazov and Y. Rogozhin

Let us assume the contrary. Denote by I0 the set of objects from O − E
that we know must be in the environment in order for Π to halt with region
2 being empty; start with I0 = ∅. Since bringing from the environment some
object a ∈ E ∪ I0 is necessary (though not sufficient) to increase the number
of objects inside the system, some rule (ab, in) ∈ R1 had to be applied at some
step of C′ (if a ∈ E, by definition b ∈ O − E; if a ∈ I0, then also b must be in
O−E, otherwise rule (ab, in) would be applicable in C, which is supposed to be
a halting configuration).

Clearly, object b was originally in region 1, so it has been brought to the
environment by some rule (b, out) ∈ R1 or (bc, out) ∈ R1. In the first case, the
system cannot halt without “hiding” object b in region 2 (contradiction with the
assumption on C). In the second case, we have a few possibilities. If c = a′ ∈ E,
then by application of rules (a′b, out), (ab, in) we have simply exchanged a′ by
a in region 1; since a′ has been brought in the region 1 beforehand, we can
repeat the same reasoning taking a′ instead of a (this may only happen a finite
number of times since we examine the computation C backwards). Finally, if
c = b′ ∈ O−E, then by application of rules (a′b, out), (ab, in) we have exchanged
b′ by a in region 1. This will not increase the number of objects unless b′ does
not stay in the environment. Notice also that in configuration C object b′ has to
be in the environment. Add b′ to I0 and repeat the same reasoning.

The argument above implies that if a system can increase the number of
objects inside it, then it cannot halt without any objects in region 2. Therefore,
Π cannot generate infinite sets containing 0. ��

4 Universality

Theorem 3. NOP2(sym1, anti1) = N1RE ∪ F , where
N�0SEG1 ⊆ F ⊆ N�0FIN .

Proof. While the upper bound of F results from Theorem 1, the lower bound of
F is satisfied even by one-membrane constructions, see [4]. In what follows, we
deal with proving N1OP2(sym1, anti1) = N1RE.

Without loss of generality we simulate a counter automaton M = (d,Q, q0,
qf , P) with the first counter being the output counter. Recall that M starts with
empty counters. Notice, that the output counter may be only “incremented”. We
also suppose that all instructions from P are labeled in a one-to-one manner with
elements of {1, . . . , n} = I, n is a label of the halt instruction and I ′ = I\{n}. We
denote by I+, I−, and I=0 the set of labels for the “increment”, “decrement”,
and “test for zero” instructions, respectively. We use also the next notation:
C = {ck}, k ∈ D.

We construct the P system Π1 as follows:

Π1 = (O, [1 [2]2]1, w1, w2, E,R1, R2, 2),
O = E ∪ {Ic,M, S, T1, T2, T3, J1, J2} ∪ {bj, dj | j ∈ I},
E = Q ∪ C ∪ {aj, ej | j ∈ I} ∪ {a′j | j ∈ I ′} ∪ {J0} ∪ {Fi | 0 ≤ i ≤ 6},

Towards a Characterization of P Systems 141

w1 = IcJ1J2,

w2 = T1T2T3MS
∏
j∈I

bj

∏
j∈I

dj ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i = 1, 2.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a symbol

qi ∈ Q; region 2 will hold the value of all counters, represented by the number
of occurrences of symbols ck ∈ C, k ∈ D, where D = {1, . . . , d}.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system we present is the union of all these
parts. The rules Ri are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

The parts of the computations illustrated in the following describe different
phases of the evolution of the P system. For simplicity, we focus on explaining a
particular phase and omit the objects that do not participate in the evolution at
that time. Each rectangle represents a membrane, each variable represents a copy
of an object in a corresponding membrane (symbols outside of the outermost
rectangle are found in the environment). In each step, the symbols that will
evolve (will be moved) are written in boldface. The labels of the applied rules
are written above the symbol ⇒.

1. START
During the first phase we bring from the environment an arbitrary number of
symbols ck, k ∈ D, into region 1. We suppose that we have enough symbols ck

in region 1 to perform the computation. Otherwise, the computation will never
stop. We also use the following idea: in our system we have a symbol M which
moves from region 2 to region 1 and back in an infinite loop. This loop may be
stopped only if all stages completed correctly.

R1,s = {1s1 : (Ic, in), 1s2 : (Ic, out; ck, in), 1s3 : (S, out; q0, in) | ck ∈ C}
R2,s = {2s1 : (M, out), 2s2 : (M, in), 2s3 : (S, out; Ic, in)}

Symbol Ic brings symbols ck from the environment into region 1 (rules 1s1,
1s2), where they may be used during the simulation of the “increment” instruc-
tion and then moved to region 2.

We illustrate the beginning of the computation as follows:

ck1ck2 . . . cktq0 Ic MS ⇒1s2,2s1 Icck2 . . . cktq0 ck1M S ⇒1s1,2s2

ck2 . . . cktq0 Icck1 MS ⇒1s2,2s1 . . . Icq0 ck1ck2 . . . cktM S ⇒1s1,2s2

142 A. Alhazov and Y. Rogozhin

q0 Icck1ck2 . . . ckt MS ⇒2s1,2s3 q0 Sck1ck2 . . . cktM Ic ⇒1s3,2s2

S q0ck1ck2 . . . ckt MIc

Ic is eventually exchanged with S, which in turn brings q0 into region 1, and
the simulation of the register machine begins. Symbol Ic is then situated in
region 2 and can be used during the second stage as a “trap” symbol, i.e., in
order to organize an infinite computation.

Notice that some rules are never executed during a correct simulation: ap-
plying them would lead to an infinite computation. To help the reader, we will
underline the labels of such rules in the description below.

2. RUN

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}
∪ {1r2 : (qf , out; an, in)}
∪ {1r3 : (bj , out; a′j , in) | j ∈ I ′}
∪ {1r4 : (aj , out; J0, in), 1r5 : (J1, out; bj, in) | j ∈ I}
∪ {1r6 : (J0, out; J1, in)}
∪ {1r7 : (a′j , out; dj, in) | j ∈ I+ ∪ I=0}
∪ {1r8 : (a′j , out; a

′′
j , in), 1r9 : (a′′j , out; dj , in) | j ∈ I−}

∪ {1r10 : (J2, out; dj, in) | j ∈ I+}
∪ {1r11 : (J2, out; J1, in)}
∪ {1r12 : (dj , out; ej , in) | j ∈ I}
∪ {1r13 : (ej , out, ql, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}
∪ {1r14 : (en, out;F0, in), 1r15 : (bn, out)}.

R2,r = {2r1 : (bj , out; aj , in), 2r2 : (aj , out; J2, in), 2r3 : (aj , out; J1, in) | j ∈ I}
∪ {2r4 : (ck, out; a′j , in) | (j : qi → ql, ck = 0) ∈ P}
∪ {2r5 : (ck, out; a′′j , in) | (j : qi → ql, ck−) ∈ P}
∪ {2r6 : (a′j , out; J1, in) | j ∈ I=0 ∪ I+}
∪ {2r7 : (a′′j , out) | j ∈ I−}
∪ {2r8 : (a′j , out; ck, in) | j : qi → ql, ck+) ∈ P}
∪ {2r9 : (dj , out; bj, in) | j ∈ I}
∪ {2r10 : (ej , out; dj , in), 2r11 : (ej , out; J1, in), 2r12 : (ej , in) | j ∈ I+}
∪ {2r13 : (J2, out; dj, in) | j ∈ I=0 ∪ I−}
∪ {2r14 : (J2, out; a′j, in) | j ∈ I+}
∪ {2r15 : (Ic, out; a′′j , in), | j ∈ I−}
∪ {2r16 : (Ic, out; J0, in)}

Towards a Characterization of P Systems 143

First of all, we mention that if during the phase RUN object J2 comes to the
environment (Scenario 0), it remains there forever. Then during the simulation
of the next instruction of the counter automaton, instead of rule 2r2, rule 2r3
will be applied, sending J1 forever to region 2. Then the computation never
halts, see scenario 1 below.

Let us explain the synchronization of aj coming to the environment and bj

leaving the environment: the first one brings J0 into region 1 while the latter
brings J1 into the environment; then rule 1r6 returns J0 and J1 to their original
locations.

If aj comes to the environment without bj leaving it, J1 remains in region 1
(or 2) and J0 comes to region 1 (Scenario 1), so 2r16 is applied, causing an
endless computation since 1s1 and 1s2 are always applicable.

If bj leaves the environment without aj coming there, J0 remains in the envi-
ronment and J1 comes there (Scenario 2), so 1r11 is applied (immediately in
case of simulating an increment instruction or in a few steps in case of simulating
a decrement or a zero-test instruction), sending J2 forever to the environment.
The computation never halts, see scenario 0.

We also mention that applying rule 1r10 causes scenario 0; applying 2r4 leads
to applying 2r6; applying rule 2r6 or 2r11 causes J1 to stay in region 2 forever,
eventually causing scenario 1. Finally, applying rule 2r15 also causes an infinite
computation by 1s1 and 1s2. Therefore, in order for a computation to halt, no
underlined rule should be applied.

We will now consider the “main” line of computation.

“Increment” instruction:
(i) There is some ck in region 1:

qlejaja
′
jJ0 qickJ1J2 bjdj ⇒1r1 qiqleja

′
jJ0 ajckJ1J2 bjdj ⇒2r1

qiqleja′
jJ0 bjckJ1J2 ajdj ⇒1r3,2r2 qiqlejbjJ0 a′

jckJ1aj J2dj ⇒1r4,1r5,2r14

qiqlejajJ1 ckJ0bjJ2 a′
jdj (A)

⇒1r6,2r8,2r9 qiqlejajJ0 a′jJ1djJ2 ckbj ⇒1r12

qiqldjajJ0 a′
jJ1ejJ2 ckbj ⇒1r7,2r12 qiqlaja

′
jJ0 djJ1J2 ejckbj ⇒2r10

qiqlaja
′
jJ0 ejJ1J2 djckbj ⇒1r13 qiejaja

′
jJ0 qlJ1J2 djckbj

In that way, qi is replaced by ql and ck is moved from region 1 into region 2.
Notice that symbols aj , bj, a′j , dj , ej, J2, J1, J0 have returned to their original
positions.

(ii) There is no ck in region 1:
Consider configuration (A) above without object ck in region 1:

qiqlejajJ1 J0bjJ2 a′jdj ⇒1r6,2r9 qiqlejajJ0 J1djJ2 a′
jbj

144 A. Alhazov and Y. Rogozhin

Now rule 2r6 will be applied, causing an infinite computation.

“Decrement” instruction:

(i) There is some ck in region 2:

qlejataja
′
ja

′′
j J0 qiJ1J2 bjckdj ⇒1r1 qiqlejata

′
ja

′′
j J0 ajJ1J2 bjckdj ⇒2r1

qiqlejata′
ja

′′
j J0 bjJ1J2 ajckdj ⇒1r3,2r2 qiqlejata′′

j bjJ0 a′
jJ1aj J2ckdj

⇒1r4,1r5,1r8 qiqlejataja
′
jJ1 J0bja′′

j J2ckdj (B)

⇒1r6,2r5,2r9 qiqlejataja
′
jJ0 J1djck a′′

j bjJ2 ⇒1r12,2r7

qiqldjataja
′
jJ0 a′′

j J1ejck bjJ2 ⇒1r9,1r13 qiejataja
′
ja

′′
j J0 qlJ1djck bjJ2

⇒1r1,2r13 qiqlejaja
′
ja

′′
j J0 atJ1J2ck bjdj

In the way described above, qi is replaced by ql and ck is removed from region 2
to region 1. Notice that symbols aj , a′j , a′′j , bj, dj , ej , J2, J1, J0 have returned
to their original positions. Symbol dj returns to region 2 in the first step of the
simulation of the next instruction (the last step of the illustration).

(ii) There is no ck in region 2:

We start with configuration (B) without ck in region 2.

qiqlejataja
′
jJ1 J0bja′′

j J2djIc

Now rule 2r15 will be applied, leading to an infinite computation.

“Test for zero” instruction:
qi is replaced by ql if there is no ck in region 2, otherwise a′j in region 1

exchanges with ck in region 2 and the computation will never stop.
(i) There is no ck in region 2:

qlejataja
′
jJ0 qiJ1J2 bjdj ⇒1r1 qiqlejata

′
jJ0 ajJ1J2 bjdj

⇒2r1 qiqlejata′
jJ0 bjJ1J2 ajdj

⇒1r3,2r2 qiqlejatbjJ0 a′jJ1aj J2dj (C)

⇒1r4,1r5 qiqlejatajJ1 bja
′
jJ0 J2dj ⇒1r6,2r9 qiqlejatajJ0 J1a

′
jdj J2bj ⇒1r12

qiqlatajdjJ0 J1a′
jej J2bj ⇒1r7,1r13 qiejataja

′
jJ0 J1qldj J2bj ⇒1r1,2r13

qiqlejaja
′
jJ0 atJ1J2 bjdj

Towards a Characterization of P Systems 145

In this case, qi is replaced by ql. Notice that symbols aj , a′j , bj, dj , ej , J2,
J1, J0 have returned to their original positions. Symbol dj returns to region 2
in the first step of the simulation of the next instruction (the last step of the
illustration).

(ii) There is some ck in region 2:
Consider configuration (C) with object ck in region 2:

qiqlejatbjJ0 a′
jJ1aj J2ckdj

Now rule 2r4 will be applied immediately, and then the computation never halts.
Let us consider the symbols from region 2 visiting the environment and going

back: 2 → 1 → 0 → 1 → 2 (bj , dj for all instructions) and the symbols from the
environment visiting region 2 and going back: 0 → 1 → 2 → 1 → 0. The latter
ones are: aj for all instructions, and also {a′j, ej | j ∈ I+} ∪ {a′′j | j ∈ I−}.

Then we have to argue that if they Return to their “home region” (2 → 1 → 2
or 0 → 1 → 0) or Repeat their visit to the “opposite region” before returning
“home” (2 → 1 → 0 → 1 → 0 or 0 → 1 → 2 → 1 → 2), an infinite computation
is unavoidable, or such case is not possible.

aj , j ∈ I. Return: see scenario 1; repeat: impossible without bj .
a′j , j ∈ I+. Return: impossible without dj ; repeat: impossible without J2.
ej , j ∈ I+. Return: since dj does not come to region 2, see repeat for dj , below;

repeat: 2r11.
a′′j , j ∈ I−. Return: impossible without dj ; repeat: in the same step ql is

brought into region 1, which will require J2 in region 1 in three steps. Since dj

stays in region 2 for at least two steps, J2 is unavailable in region 1 for at least
three steps, so 2r3 is applied.

bj , j ∈ I. Return: if aj comes to the environment, scenario 1 takes place. If aj

returns to region 2, rule 2r3 is applied.
dj , j ∈ I+. Return: impossible without ej; repeat: 1r10.
dj , j ∈ I− ∪ I=0. Return: ej stays in the environment, the simulation stops

and the computation never ends due to 2s1, 2s2; repeat: in the same step ak is
brought into region 2, which will require J2 in region 1 in two steps. Since J2 is
unavailable in region 1 for at least two steps, 2r3 is applied.

3. END

R1,f = {1f1 : (T1, out;F1, in)} ∪ {1f2 : (Fi, out;Fi+1, in) | 1 ≤ i ≤ 5}
∪ {1f3 : (T2, out), 1f4 : (M, out;T2, in), 1f5 : (J2, out;T2, in)}
∪ {1f6 : (T3, out), 1f7 : (bj , out;T3, in), 1f8 : (dj , out;T3, in) | j ∈ I}.

R2,f = {2f1 : (F0, out), 2f2 : (J2, out;F0, in), 2f3 : (Ti, out;F0, in) | 1 ≤ i ≤ 3}
∪ {2f4 : (F6, out), 2f5 : (bj , out;F6, in), 2f6 : (dj , out;F6, in),

2f7 : (aj , out;F6, in) | j ∈ I} ∪ {2f8 : (ej , out;F6, in) | j ∈ I+}.

Once the register machine reaches the final state, qf is in region 1 and it
exchanges with object an (rule 1r2). If on the previous steps of simulation of

146 A. Alhazov and Y. Rogozhin

counter automaton M object J1 was moved to region 2 (by rules 2r6, 2r11), rule
2r16 will be applied, and the computation never halts. If during the previous
steps of simulation of counter automaton M object J2 was moved to the envi-
ronment (by rules 1r10, 1r11), rule 2r3 will be applied, leading to an infinite
computation. If not, i.e., if object J2 is present in region 1, it will be moved to
region 2 (rule 2r2), then object F0 will be moved to region 1 in several steps
(rules 1r14).

It takes T1, T2, T3 and J2 to region 1, in either order. The duty of T2 is
to bring J2 and M to the environment (J2 can be brought to the environment
immediately, or after M if the latter immediately goes to the environment; the
object M can oscillate for indefinite time, but we are interested in halting com-
putations). The duty of T3 is to bring bj and dj to the environment. T1 starts a
chain of exchanges of objects Fi, as a result object F6 will be moved to region 1
and then it removes objects bj , dj (and possible objects aj , ej) from region 2.

We illustrate the end of computations as follows:

F1F2F3F4F5F6 F0 MT1T2T3J2bjdj ⇒2f3,2s1

F1F2F3F4F5F6 T1M F0T2T3J2bjdj ⇒1f1,2f1,2s2

F2F3F4F5F6T1 F1F0 MT2T3J2bjdj ⇒1f2,2f3,2s1

F1F3F4F5F6T1 F2T3M F0T2J2bjdj ⇒1f2,2f1,2s2

F1F2F4F5F6T1T3 F3F0 MT2J2bjdj ⇒1f2,2f2,2s1

F1F2F3F5F6T1T3 F4J2M F0T2bjdj ⇒1f2,2f1,2s2

F1F2F3F4F6T1T3 F5J2F0 MT2bjdj ⇒1f2,2f3,2s1

F1 . . . F5T1T3 F6J2T2M F0bjdj ⇒1f3,2f1,2f5,2s2

F1 . . . F5T1T2T3 J2bjF0 MF6dj ⇒1f5,1f7,2f4,2s1

F1 . . . F5bjJ2T1 T2T3F0MF6 dj ⇒1f3,1f6,2f6,2s2

F1 . . . F5bjJ2T1T2T3 djF0 MF6 ⇒1f8,2f4,2s1

F1 . . . F5bjdjJ2T1T2 T3F0MF6 ⇒1f4,1f6

F1 . . . F5bjdjJ2MT1T3 T2F0F6 ⇒1f3

F1 . . . F5bjdjJ2MT1T2T3 F0F6

We continue in this manner until all objects bj , dj (and possible objects aj , ej)
from the elementary membrane 2 have been moved to the environment. Notice
that the result in the elementary membrane 2 (multiset ct

1) cannot be changed

Towards a Characterization of P Systems 147

during phase END, as object J2 now is situated in the environment. Thus, object
a′j cannot enter into region 2 by rule 2r14 and therefore cannot bring object ck

into region 2 by rule 2r8. Recall that the counter automaton can only increment
the first counter c1, so all other computations of P system Π1 cannot change
the number of symbols c1 in the elementary membrane. Thus, at the end of
a terminating computation, in the elementary membrane there are the result
(multiset ct

1) and only the one additional object Ic. ��
Theorem 4. NOP2(sym2) = N1RE ∪ F , where
N�0SEG1 ∪N�0SEG2 ⊆ F ⊆ N�0FIN .

Proof. While the upper bound of F results from Theorem 2, the lower bound of
F is satisfied even by one-membrane constructions, see [4]. In what follows, we
deal with proving N1OP2(sym2) = N1RE.

As in the proof of Theorem 3 we simulate a counter automaton M = (d,Q, q0,
qf , P) that starts with empty counters and we suggest that the output counter
may be only “incremented”. Again we suppose that all instructions from P are
labeled in a one-to-one manner with elements of {1, . . . , n} = I, n is a label of the
halt instruction, I ′ = I \ {n}, and I = I+ ∪ I−∪ I=0, where we denote by I+, I−,
and I=0 the set of labels for the “increment”, “decrement”, and “test for zero”
instructions, respectively. We use also the next notations: C = {ci | 1 ≤ i ≤ d},
Q′ = Q \ {q0}, and Q̂ = {q̂i, 0 ≤ i ≤ f − 1}.

We construct the P system Π2 as follows:

Π2 = (O, [1 [2]2]1, w1, w2, E,R1, R2, 2),

O = E ∪ Q̂ ∪ {ǎj, bj , dj , fj | j ∈ I ′} ∪ {$1, $2, $3, b̌, Ic, t1, t2, t3, t5, t7, t9},
E = C ∪Q′ ∪ {aj , b̌j, ej | j ∈ I ′} ∪ {#, F, t4, t6, t8},
w1 = q0Icb̌$1$3t1t5t7t9

∏
j∈I′

ǎj

∏
j∈I′

fj

∏
0≤i≤f−1

q̂i

w2 = $2t2t3
∏
j∈I′

bj

∏
j∈I′

dj ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i ∈ {1, 2}.

We code the counter automaton as in Theorem 3 above: region 1 will hold
the current state of the automaton, represented by a symbol qi ∈ Q; region 2
will hold the value of all counters, represented by the number of occurrences of
symbols ck ∈ C, k ∈ D, where D = {1, · · · , d}. We also use the following idea
(called “Circle”) realized by phase “START” below: from the environment, we
bring symbols ck into region 1 all the time during the computation. This process
may only be stopped if all phases finish correctly; otherwise, the computation
will never stop.

The rules Ri are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

148 A. Alhazov and Y. Rogozhin

As in Theorem 3 we split our proof into several parts that depend on the
logical separation of the behavior of the system and use the same agreements.

1. START

R1,s = {1s1 : (Ic, out), 1s2 : (Icck, in) | k ∈ D},
R2,s = ∅.

Symbol Ic brings one symbol c ∈ C from the environment into region 1 (rules
1s1, 1s2) where it may be used during the simulation of an “increment” in-
struction and moved to region 2.

2. RUN

R1,r = {1r1 : (qiq̂i, out) | 0 ≤ i ≤ f − 1}
∪ {1r2 : (aj q̂i, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−,= 0}, k ∈ D}
∪ {1r3 : (ajbj , out), 1r4 : (bj b̌j, in) | j ∈ I ′}
∪ {1r5 : ($1$2, out), 1r6 : (#$2, in)}
∪ {1r7 : (b̌jdj , out) | j ∈ I+ ∪ I−}
∪ {1r8 : (djql, in) | (j : qi → ql, k−) ∈ P, k ∈ D}
∪ {1r9 : (ǎj b̌j , out) | j ∈ I=0}
∪ {1r10 : (ǎjql, in) | (j : qi → ql, k = 0) ∈ P, k ∈ D}
∪ {1r11 : (djej, in), 1r12 : (ejfj , out),

1r13 : (fjql, in) | (j : qi → ql, k+) ∈ P, k ∈ D}.
R2,r = {2r1 : (aj ǎj , in), 2r2 : (ajbj , out) | j ∈ I ′}

∪ {2r3 : (ǎjck, out) | (j : qi → ql, k−) ∈ P, k ∈ D}
∪ {2r4 : (ǎj$2, out), 2r5 : (aj$2, out) | j ∈ I−}
∪ {2r6 : (ǎj , out) | j ∈ I+}
∪ {2r7 : (#, in), 2r8 : (#, out)}
∪ {2r9 : (bj b̌j, in) | j ∈ I− ∪ I=0}
∪ {2r10 : (bj b̌, in) | j ∈ I+}
∪ {2r11 : (b̌jdj , out) | j ∈ I+ ∪ I−}
∪ {2r12 : (dj b̌, in) | j ∈ I−}
∪ {2r13 : (b̌, out)}
∪ {2r14 : (b̌jck, in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {2r15 : (djej, in), 2r16 : (dj$3, in), 2r17 : (ej , out),

2r18 : (b̌j$3, in) | j ∈ I+}
∪ {2r19 : ($2$3, out)}
∪ {2r20 : (ǎjck, out) | (j : qi → ql, k = 0) ∈ P, k ∈ D}
∪ {2r21 : (bj$3, in), 2r22 : (ǎj b̌j, out), 2r23 : (b̌j$2, out) | j ∈ I=0}.

Towards a Characterization of P Systems 149

“Increment” instruction:

qlajej# qiq̂iǎjfj b̌$1$3 bjdj$2 ⇒1r1 qlqiq̂iajej# ǎjfj b̌$1$3 bjdj$2 ⇒1r2

qlqiej# q̂iajǎjfj b̌$1$3 bjdj$2 ⇒2r1 qlqiej# q̂ifj b̌$1$3 bjajǎjdj$2 ⇒2r2,2r6

qlqiej# q̂ibjaj ǎjfj b̌$1$3 dj$2 (A)

Now there are two variants of computations (depending on the application of
rule 2r1 or rule 1r3). Consider applying rule 2r1:

qlqib̌jej# q̂ibjajǎjfjb̌$1$3 dj$2 ⇒2r1,2r10 qlqib̌jej# q̂ifj$1$3 bjajǎjb̌dj$2

⇒2r2,2r6,2r13 qlqib̌jej# q̂ibjaj ǎjfj b̌$1$3 dj$2

Thus, we come back to configuration (A) above. As we are interested only in
finite computations, we assume that rule 1r3 will be eventually applied:

qlqib̌jej# q̂ibjajǎjfj b̌$1$3 dj$2 ⇒1r3 qlqiajbjb̌jej# q̂iǎjfj b̌$1$3 dj$2

⇒1r4 qlqiajej# q̂iǎjfj b̌bj b̌j$1$3 dj$2

Now there are two cases: object ck is present or is not present in region 1. The
last case leads to an infinite computation. Indeed, object $3 will be moved to
region 2 by rule 2r18, and it comes back to region 1 with object $2 by rule 2r19.
Notice, that the case then object $2 appears in region 1, eventually leads to an
infinite computation by rules 1r5, 1r6 and 2r7, 2r8. Consider the first case, i.e.
then object ck is present in region 1:

qlqiajej# q̂iǎjfjb̌bjb̌jck$1$3 dj$2 ⇒2r10,2r14

qlqiajej# q̂iǎjfj$1$3 b̌bjb̌jdjck$2 ⇒2r11,2r13

qlqiajej# q̂iǎjfj b̌jdj b̌$1$3 bjck$2

Notice, that now rule 2r14 cannot be applied again, as in this case rule 2r16
will be applied, which leads to an infinite computation (by rules 2r19, 1r5, 1r6
and 2r7, 2r8). Otherwise rule 1r7 will be applied:

qlqiajej# q̂iǎjfjb̌jdjb̌$1$3 bjck$2 ⇒1r7 qlqiaj b̌jdjej# q̂iǎjfj b̌$1$3 bjck$2

⇒1r11 qlqiaj b̌j# q̂iǎjdjejfj b̌$1$3 bjck$2

Notice, that rule 1r12 cannot be applied, as in this case applying of rule 2r16
leads to an infinite computation (see above). So, rule 2r15 will be applied:

150 A. Alhazov and Y. Rogozhin

qlqiaj b̌j# q̂iǎjdjejfj b̌$1$3 bjck$2 ⇒2r15 qlqiaj b̌j# q̂iǎjfj b̌$1$3 bjckdjej$2

⇒2r17 qlqiaj b̌j# q̂iǎjejfjb̌$1$3 bjckdj$2 ⇒1r12

fjqlqiaj b̌jej# q̂iǎj b̌$1$3 bjckdj$2 ⇒1r13 qiaj b̌jej# qlq̂iǎj b̌fj$1$3 bjckdj$2

In that way, qi is replaced by ql and ck is moved from region 1 into region
2. Notice that symbols aj , bj, dj , ej , fj, b̌j , q̂i, b̌ have returned to their original
positions.

“Decrement” instruction:

qlaj b̌j# qiq̂iǎj b̌$1$3 bjdj$2 ⇒1r1 qlqiq̂iajb̌j# ǎj b̌$1$3 bjdj$2 ⇒1r2

qlqib̌j# q̂iajǎjb̌$1$3 bjdj$2 ⇒2r1 qlqib̌j# q̂ib̌$1$3 bjaj ǎjdj$2

Now there are two cases: object ck is present or is not present in region 2. The
last case leads to an infinite computation, as object $2 appears in region 1 by
rule 2r4 (see above). If object ck is present in region 2, then rule 2r3 will be
applied:

qlqib̌j# q̂ib̌$1$3 bjajǎjckdj$2 ⇒2r2,2r3 qlqib̌j# bjaj ǎjckq̂ib̌$1$3 dj$2

Now there are two possibilities: rule 1r3 or 2r1 may be applied. The last case
leads to an infinite computation, as object $2 will be moved to region 1 by rule
2r5 (rule 2r2 cannot be applied, as now object bj is situated in region 1). So,
consider applying rule 1r3:

qlqib̌j# bjajǎjck q̂ib̌$1$3 dj$2 ⇒1r3 qlqiajbjb̌j# ǎjck q̂ib̌$1$3 dj$2 ⇒1r4

qlqiaj# ǎjck q̂ib̌bjb̌j$1$3 dj$2 ⇒2r9 qlqiaj# ǎjck q̂ib̌$1$3 bjb̌jdj$2 ⇒2r11

qlqiaj# ǎjck q̂ib̌jdj b̌$1$3 bj$2

Now there are two possibilities: rule 1r7 or 2r12 may be applied. The last case
leads to an infinite computation by “Circle”, i.e. by rules 1s1, 1s2. So, consider
applying rule 1r7:

qlqiajat# ǎj ǎtckq̂iq̂lb̌jdjb̌$1$3 bj$2 ⇒1r7 djqlqiajatb̌j# ǎj ǎtck q̂iq̂lb̌$1$3 bj$2

⇒1r8 qiajatb̌j# ǎj ǎtck q̂iq̂lqldjb̌$1$3 bj$2

⇒1r1,2r12 qiqlajq̂latb̌j# ǎj ǎtck q̂i$1$3 bjdjb̌$2

In the way described above, qi is replaced by ql and ck is removed from region 2
to region 1. Notice that symbols aj , bj, dj , b̌j , q̂i, b̌ have returned to their original

Towards a Characterization of P Systems 151

positions. Symbol dj returns to region 2 in the first step of the simulation of the
next instruction (the last step of the illustration) and symbol b̌ in the second
step of the simulation of the next instruction.

“Test for zero” instruction:

qlaj b̌j# qiq̂iǎj$1$3 bj$2 ⇒1r1 qlqiq̂iajb̌j# ǎj$1$3 bj$2 ⇒1r2

qlqib̌j# q̂iajǎj$1$3 bj$2 ⇒2r1 qlqib̌j# q̂i$1$3 bjajǎj$2

Now there are two cases: object ck is present or is not present in region 2. The
first case leads to an infinite computation, as object ǎj will be situated in region
1 by rule 2r20, that enforce to applying rule 2r21 or 2r23. So, object $2 will be
moved in region 1, causing an infinite computation. Consider the second case,
i.e., when object ck is not present in region 2:

qlqib̌j# q̂i$1$3 bjajǎj$2 ⇒2r2 qlqib̌j# q̂ibjaj$1$3 ǎj$2 ⇒1r3

qlqib̌jbjaj# q̂i$1$3 ǎj$2 ⇒1r4 qlqiaj# q̂ib̌jbj$1$3 ǎj$2 ⇒2r9

qlqiaj# q̂i$1$3 ǎjb̌jbj$2 ⇒2r22 qlqiaj# q̂iǎjb̌j$1$3 bj$2 ⇒1r9

qlǎjqiaj b̌j# q̂i$1$3 bj$2 ⇒1r10 qiaj b̌j# qlǎj q̂i$1$3 bj$2

In this case, qi is replaced by ql. Notice that symbols aj , bj , b̌j , q̂i have returned
to their original positions.

3. END

R1,f = {1f1 : (qf t3, out), 1f2 : ($1t3, out), 1f3 : ($3t3, out),
1f4 : (b̌t3, out), 1f5 : (t3, in)}

∪ {1f6 : (t1t2, out), 1f7 : (t2t4, in), 1f8 : (t4t5, out), 1f9 : (t5t6, in),
1f10 : (t6t7, out), 1f11 : (t7t8, in), 1f12 : (t8t9, out), 1f13 : (t9F, in)}.

R2,f = {2f1 : (qf t1, in) , 2f2 : (qf t3, out), 2f3 : (t1t2, out),
2f4 : (F, out), 2f5 : (FIc, in)}

∪ {2f6 : (Icbj, out), 2f7 : (Icdj , out) | j ∈ I ′}
∪ {2f8 : (Ic$2, out)}.

At first, objects qf , $1, $3, b̌ will be moved to the environment by rules 1f1 - 1f4,
and after that all objects bj, dj and $2 will be moved from region 2 to region 1.
Hence, in region 2 now there are only the objects c1 (representing the result of
the computation) and only one additional object Ic. ��

5 Conclusions

In this paper we proved that any set of natural numbers containing zero
generated by symport/antiport P systems with two membranes and minimal

152 A. Alhazov and Y. Rogozhin

cooperation is finite (for both symport/antiport P systems and for purely sym-
port P systems), while one additional object in the output membrane allows
symport/antiport P systems as well as for purely symport P systems with two
membranes and minimal cooperation generate any recursively enumerable sets
of natural numbers without zero. Thus we improve the result from [1] for sym-
port/antiport P systems with two membranes and minimal cooperation from
three objects down to one object and for purely symport P systems from six
objects down to one object. Therefore, these results are optimal.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin: Computational Power of Symport/Antiport:
History, Advances, and Open Problems. Membrane Computing, International
Workshop, WMC 2005, Vienna, 2005, Revised Selected and Invited Papers (R.
Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer
Science 3850 (2006) 1–30.

2. A. Alhazov, R. Freund, Yu. Rogozhin: Some Optimal Results on Communica-
tive P Systems with Minimal Cooperation. Cellular Computing (Complexity As-
pects), ESF PESC Exploratory Workshop (M.A. Gutiérrez-Naranjo, Gh. Păun,
M.J. Pérez-Jiménez, Eds.), Fénix Editora, Sevilla, (2005) 23–36.

3. A. Alhazov, M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: Communica-
tive P Systems with Minimal Cooperation. Membrane Computing, International
Workshop, WMC 2004, Milan, 2004, Revised Selected and Invited Papers (G.
Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, Eds.) Lecture
Notes in Computer Science 3365 (2005) 161–177.

4. A. Alhazov, Yu. Rogozhin: Minimal Cooperation in Symport/Antiport P Systems
with One Membrane. Third Brainstorming Week on Membrane Computing (M.A.
Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, Eds.)
RGNC TR 01/2005, University of Seville, Fénix Editora, Sevilla (2005) 29–34.

5. A.Alhazov, Yu.Rogozhin: Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes. In: Pre-proc. of the 7th Workshop on Mem-
braneComputing,WMC7,17–21July, 2006, LorentzCenter,Leiden (2006) 102–117.

6. A. Alhazov, Yu. Rogozhin, S. Verlan: Symport/Antiport Tissue P Systems with
Minimal Cooperation. Cellular Computing (Complexity Aspects), ESF PESC Ex-
ploratory Workshop (M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez,
Eds.), Fénix Editora, Sevilla (2005) 37–52.

7. F. Bernardini, M. Gheorghe: On the Power of Minimal Symport/Antiport. Work-
shop on Membrane Computing, WMC 2003 (A. Alhazov, C. Mart́ın-Vide, Gh.
Păun, Eds.), Tarragona, 2003, TR 28/03, Research Group on Mathematical Lin-
guistics, Universitat Rovira i Virgili, Tarragona (2003) 72–83.

8. F. Bernardini, A. Păun: Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice. Membrane Computing, International Workshop, WMC 2003, Tar-
ragona, Revised Papers (C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A.
Salomaa, Eds.), Lecture Notes in Computer Science 2933 (2004) 43–45.

9. R. Freund, M. Oswald: GP Systems with Forbidding Context. Fundamenta Infor-
maticae 49, 1–3 (2002) 81–102.

10. R. Freund, M. Oswald: P Systems with Activated/Prohibited Membrane Channels.
Membrane Computing International Workshop, WMC-CdeA 02, Curtea de Argeş,
2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, Eds.),
Lecture Notes in Computer Science 2597 (2003) 261–268.

Towards a Characterization of P Systems 153

11. R. Freund, A. Păun: Membrane Systems with Symport/Antiport: Universality Re-
sults. Membrane Computing International Workshop, WMC-CdeA 02, Curtea de
Argeş, 2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
Eds.), Lecture Notes in Computer Science 2597 (2003) 270–287.

12. P. Frisco: About P Systems with Symport/Antiport. Second Brainstorming Week
on Membrane Computing (Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F.
Sancho-Caparrini, Eds), TR 01/2004, Research Group on Natural Computing,
University of Seville (2004) 224–236.

13. P. Frisco, H.J. Hoogeboom: P Systems with Symport/Antiport Simulating Counter
Automata. Acta Informatica 41, 2–3 (2004) 145–170.

14. P. Frisco, H.J. Hoogeboom: Simulating Counter Automata by P Systems with
Symport/Antiport. Membrane Computing International Workshop, WMC-CdeA
02, Curtea de Argeş, 2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa,
C. Zandron, Eds.), Lecture Notes in Computer Science 2597 (2003) 288–301.

15. L. Kari, C. Mart́ın-Vide, A. Păun: On the Universality of P Systems with Minimal
Symport/Antiport Rules. Aspects of Molecular Computing - Essays dedicated to
Tom Head on the occasion of his 70th birthday, Lecture Notes in Computer Science
2950 (2004) 254–265.

16. M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: About P Systems with
Minimal Symport/Antiport Rules and Four Membranes. Fifth Workshop on Mem-
brane Computing (WMC5), (G. Mauri, Gh. Păun, C. Zandron, Eds.), Universitá
di Milano-Bicocca, Milan (2004) 283–294.

17. C. Mart́ın-Vide, A. Păun, Gh. Păun: On the Power of P Systems with Symport
Rules, Journal of Universal Computer Science 8, 2 (2002) 317–331.

18. M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967).

19. A. Păun, Gh. Păun: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20 (2002) 295–305.

20. Gh. Păun: Computing with Membranes. Journal of Computer and Systems Science
61 (2000) 108–143.

21. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin (2002).
22. Gh. Păun: Further Twenty Six Open Problems in Membrane Computing (2005).

Third Brainstorming Week on Membrane Computing (M.A. Gutiérrez-Naranjo,
A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, Eds.) RGNC TR 01/2005,
University of Seville, Fénix Editora, Sevilla (2005) 249–262.

23. Gh. Păun: 2006 Research Topics in Membrane Computing. Fourth Brainstorming
Week on Membrane Computing, vol. 1 (M.A. Gutiérrez-Naranjo, Gh. Păun, A.
Riscos-Núñez, F.J. Romero-Campero, Eds.), Fénix Edit., Sevilla (2006), 235–251.

24. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes).
Springer-Verlag, Berlin (1997).

25. Gy. Vaszil: On the Size of P Systems with Minimal Symport/Antiport. Fifth Work-
shop on Membrane Computing (WMC5) (G. Mauri, Gh. Păun, C. Zandron, Eds.),
Universitá di Milano-Bicocca, Milan (2004) 422–431.

26. S. Verlan: Optimal Results on Tissue P Systems with Minimal Symport/ Antiport.
Presented at EMCC meeting, Lorentz Center, Leiden (2004).

27. S. Verlan: Tissue P Systems with Minimal Symport/Antiport. Developments in
Language Theory, DLT 2004 (C.S. Calude, E. Calude, M.J. Dinneen, Eds), Lecture
Notes in Computer Science 3340, Springer-Verlag, Berlin (2004) 418–430.

28. P Systems Webpage, http://psystems.disco.unimib.it

Expressing Control Mechanisms of Membranes
by Rewriting Strategies�

Oana Andrei1, Gabriel Ciobanu2,3, and Dorel Lucanu2

1 INRIA-LORIA, Nancy, France
Oana.Andrei@loria.fr

2 “A.I.Cuza” University of Iaşi, Faculty of Computer Science
3 Romanian Academy, Institute of Computer Science, Iaşi

{gabriel, dlucanu}@info.uaic.ro

Abstract. In this paper we present a rewriting semantics of membrane
systems based on strategies. We use strategies to describe the control
mechanisms in membranes. We provide strategies for maximally parallel
rewriting, and for maximally parallel rewriting with priorities between
rules. Maximally parallel rewriting with promoters or inhibitors requires
an additional encoding of the rules.

1 Introduction

In this paper we work with membrane systems (called also P systems) defined
in [9]. A membrane consists of a multiset w of objects, a set R of evolution rules,
and a control mechanism C describing the way in which the rules are used to
modify the multiset w in an evolution step. A very simple way to specify such a
membrane is:

membrane M
contents w
evolution rules R
control C

end

An evolution step of a membrane M modifies its contents w using the evolution
rules according to the control mechanism C. We have various control mechanisms
in membrane systems inspired by some biological entities. Here we consider the
control mechanisms given by maximally parallel rewriting, maximally parallel
rewriting with priorities, maximally parallel rewriting with promoters and/or
inhibitors. Maximally parallel rewriting means that as many as possible evolu-
tion rules are applied in parallel. A (strong) priority relation among rules means
that in each region we have a partial order relation on the set of rules, and a rule
can be chosen (to process a multiset of objects) only if no rule of a higher priority
is applicable in the same region. Promoters and inhibitors formalize the reac-
tion enhancing and reaction prohibiting roles of various substances (molecules)

� This work has been supported by the research grant CEEX 47/2005, Romania.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 154–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Expressing Control Mechanisms of Membranes by Rewriting Strategies 155

present in cells. In membrane systems, promoters and inhibitors are represented
as multisets of objects associated with certain sets of rules. A rule from such a
set can be used only if all the promoting objects are present, and none of the
inhibiting objects is present in its membrane.

A rewriting system (Σ,A,R) consists of a signature Σ, a set of axioms A, and
a set of rewriting rules R. The rewriting process defined by (Σ,A,R) is given
by rewriting relation defined by R over Σ-terms modulo the axioms A [8]. A
strategy for (Σ,A,R) controls the rewriting process in the sense that only some
of the rewriting paths are allowed. Several strategy languages are proposed in
the literature [10,7,5].

A membrane M defines a rewriting system (Σ,A,R), where Σ includes the
concatenation operator, A includes axioms for associativity, commutativity, and
identity of the concatenation, and R includes the evolution rules. In this paper
we answer the question whether the control mechanisms in membranes can be
described using strategies. We use the strategy language [11] because it includes a
complete set of strategy operators and it is independent of the rewriting engine.
We also use the Maude implementation presented in [7] to exhibit that the
strategies we define for membrane systems behave as expected.

1.1 Examples of Membranes with Priorities and Promoters

We present some examples of membranes implementing arithmetical operations
defined over the numbers of objects. More details about other arithmetical oper-
ations on numbers represented by using unary and binary compact encodings are
described in [4]. Here we emphasize the use of priorities and promoters as control
mechanisms in membrane computing, presenting membranes with priorities and
promoters for multiplication.

Figure 1 presents a membrane M1 with priorities for multiplication of n (ob-
jects a) by m (objects b), the result being the number of objects d in membrane 0.

membrane M1

contents anbmu
evolution rules

�1 : bv → dev
�2 : av → u
�3 : eu → dbu
�4 : au → v

control
pri(�1 > �2, �3 > �4)

end

Fig. 1. Multiplication with priorities

In this membrane we use the priority relation between rules; for instance bv →
dev has a higher priority than av → u, meaning the second rule is applied only
when the first one cannot be applied anymore. Initially only the rule au → v can
be applied, generating an object v which activates m times the rule bv → dev

156 O. Andrei, G. Ciobanu, and D. Lucanu

(applied in parallel). Then av → u consumes an a, and transform v into u.
Now eu → dbu is applied m times, followed by another change of u into v by
consuming an a (this is done by the rule au → v). The procedure is repeated
until no object a is present within the membrane. Note that each time when one
object a is consumed, then m objects d are generated. This control mechanism
is denoted by pri(�1 > �2, �3 > �4).

Figure 2 presents a membrane M2 with promoters for multiplication of n (ob-
jects a) by m (objects b), the result being the number of objects d in membrane
0. The object a is a promoter in the rule b → bd|a, i.e., this rule can only be
applied in the presence of object a. The available m objects b are used in order
to apply m times the rule b → bd|a in parallel; based on the availability of a
objects, rule au → u is applied in the same time and consumes an a. The pro-
cedure is repeated until no object a is present within the membrane. Note that
each time when one object a is consumed, then m objects d are generated. This
control mechanism is denoted by prom(�1, �2).

membrane M2

contents anbmu
evolution rules

�1 : b → bd|a
�2 : au → u

control
prom(�1, �2)

end

Fig. 2. Multiplication with promoters

2 Strategies in Rewriting Systems

In general terms, a strategy is setting the objective(s) of a computation. In
term rewriting systems, a strategy is an expression s involving rewriting rules
and strategy operators. The objectives of s are strategic transitions t

s−→ t′,
where t and t′ are terms. The tactics indicate how we are supposed to reach the
objectives of a strategy. A tactic of a strategic transition t

s−→ t′ is a rewriting
sequence t = t0 → · · · → tn = t′ denoted shortly by t � t′ which applies the
rewriting rules according to a strategy s. We write t �n t′ when we want to
specify the length of the rewriting sequence.

A rewriting strategy controls the rewriting process in the sense that only
some of the rewriting paths are allowed, namely those given by tactics. For
instance, computation of the arithmetical expressions involving associative and
commutative + and ∗, without parenthesis, could follow several pathways.

2 + 3 ∗ 5 → 2 + 15 → 17

2 + 3 ∗ 5 = 2 + 5 ∗ 3 → 2 + 15 → 17

2 + 3 ∗ 5 → 5 ∗ 5 → 25

2 + 3 ∗ 5 = 2 + 5 ∗ 3 = 5 + 2 ∗ 3 → 5 + 6 → 11

Expressing Control Mechanisms of Membranes by Rewriting Strategies 157

Only some of them are correct according to the usual arithmetical rules (for
the above example, these are the pathways leading to 17). We aim to define
a strategy eval such that 2 + 3 ∗ 5 eval−−−→ 17. In general, a rewriting strategy
language consists of expressions s constructed with rewriting rules (viewed as
basic strategies) and strategy operators such that expr

s−→ expr′. Here we use a
strategy language inspired by [11]. In this language, eval can be expressed as
repeat(multiply←+ add). This means that we apply multiplication repeatedly
until it is not possible anymore, followed by addition. In the sequel we provide
the definition of the strategy language and illustrate it by examples.

Basic strategies. Each evolution rule � : u → v defines a strategy operator
with the operational semantics given by the strategic transition w

�−→ w′, where
w = u, w′ = v, and these equalities are modulo associativity, commutativity, and
identity. The only rewriting tactic corresponding to such a strategic transition
is w �1 w′, i.e., the rewriting of length one defined by the rule. The uniqueness
of the tactic is given by the fact that the evolution rules have not variables.

Identity. We consider a strategy operator id with the operational semantics
given by w

id−→ w, where w is a multiset. The only rewriting tactic corresponding
to such a strategic transition is w �0 w, i.e., the rewriting of length zero.

Congruence. Each operator name (term constructor) defines a strategy operator
whose parameter-strategies are applied to its arguments. Since in membrane
systems we have only one operator, namely the associative and commutative
concatenation, we use a specific strategy operator mset with a variable number
of parameter-strategies. The operational semantics of the operator mset is

w1
s1−→ w′

1 . . . wn
sn−→ w′

n

w1 · · ·wn
mset(s1,...,sn)−−−−−−−−−→ w′

1 · · ·w′
n

Remark 1. The concatenation operator has variable arity due to its asso-
ciativity and identity laws. For instance, aabbb can be written as (aa, bbb),

(a, a, b, b, b), (a, ab, bb), and so on. The notation [assoc comm id: ε] intends
to capture this feature together with commutativity of . In order to avoid any
confusion, we prefer to denote this variadic operator by mset. Therefore we use
mset(s1, . . . , sn) instead of [assoc comm id: ε](s1, . . . , sn). The general case of
congruence provided by operators with attributes is discussed in [3].

If wi � w′
i is a rewriting tactic of wi

si−→ w′
i for i = 1, . . . , n, then w1 · · ·wn �

w′
1 · · ·wn � · · · � w′

1 · · ·w′
n is a tactic of w1 · · ·wn

mset(s1,...,sn)−−−−−−−−−→ w′
1 · · ·w′

n. Since
the concatenation is associative and commutative, the rewriting tactics can be
combined in an arbitrary order.

Example 1. Considering the rules in Figure 1, we have abu
mset(�4,id)−−−−−−−→ bv because

au
�4−→ v, b id−→ b, abu = aub, and vb = bv.

158 O. Andrei, G. Ciobanu, and D. Lucanu

Sequential composition. s1; s2 applies s1 and, if it succeeds, then it applies s2.
The operational semantics of s1; s2 is given by

w
s1−→ w′ w′ s2−→ w′′

w
s1;s2−−−→ w′′

If w � w′ is a rewriting tactic of w
s1−→ w′ and w′ � w′′ is a rewriting tactic of

w′ s2−→ w′′, then w � w′ � w′′ is a rewriting tactic of w
s1;s2−−−→ w′′.

Example 2. Since abu
mset(�4,id)−−−−−−−→ bv and bv

�1−→ dev, we have

abu
mset(�4,id);�1−−−−−−−−→ dev.

Non-deterministic choice. s1 + s2 chooses between the strategies s1 and s2 such
that the chosen strategy succeeds. The operational semantics of s1 + s2 is given
by

w
s1−→ w′

w
s1+s2−−−−→ w′

w
s2−→ w′

w
s1+s2−−−−→ w′

If w � w′ is a rewriting tactic of w
s1−→ w′ or w

s2−→ w′, then w � w′ is a
rewriting tactic of w

s1+s2−−−−→ w′.

Example 3. Considering the evolution rules in Figure 2, we have abu
�1+�2−−−−→ bu

or abu
�1+�2−−−−→ abdu.

Definition 1. We say that a strategy s fails on w iff there is no w′ such that
w

s−→ w′. We write w
s−→↑.

In other words, w
s−→↑ means that for any w′, w

s−→ w′ has no rewriting tactic.
The above definition applies to all the strategies of the language.

Deterministic choice. s1←+s2 chooses the left argument first; the second strategy
is considered if the first strategy fails. The operational semantics of s1 ←+ s2 is
given by

w
s1−→ w′

w
s1←+s2−−−−→ w′

w
s1−→↑ w

s2−→ w′′

w
s1←+s2−−−−→ w′′

If w � w′ is a rewriting tactic of w s1−→ w′, then w � w′ is a rewriting tactic of
w

s1←+s2−−−−→ w′. If w
s1−→ w′ has no rewriting tactic for any w′, then any rewriting

tactic of w
s2−→ w′′ is a rewriting tactic of w

s1←+s2−−−−→ w′′.

Example 4. Using again the evolution rules in Figure 1, we have abv
�1←+�2−−−−→ adev.

We cannot deduce abv
�1←+�2−−−−→ bu because �1 succeeds on abv. On the other hand,

�1 fails on adev and so we have adev
�1←+�2−−−−→ deu.

Expressing Control Mechanisms of Membranes by Rewriting Strategies 159

Strategy definition. A strategy definition is an expression ϕ(z1, . . . , zn) def= s,
where any free variable in s belongs to {z1, . . . , zn}, and ϕ is a strategy identifier.
The operational semantics is given by

w
s[z1:=s1,...,zn:=sn]−−−−−−−−−−−−→ w′

w
ϕ(s1,...,sn)−−−−−−−→ w′

if ϕ(z1, . . . , zn) def= s

where s[z1 := s1, . . . , zn := sn] is the strategy expression obtained from s by
replacing the free occurrences of the variables zi with si. Each rewriting tactic

of w
s[z1:=s1,...,zn:=sn]−−−−−−−−−−−−→ w′ is a rewriting tactic of w

ϕ(s1,...,sn)−−−−−−−→ w′.

Fixpoint operator. The fixpoint operator μz(s) allows to define strategies that
repeatedly apply a certain strategy s. For instance, the strategy repeat, which
applies s as many times as possible, is defined as

repeat(s) def= μz((s; z)←+ id)

The operational semantics of μz(s) is given by

w
s[z:=μz(s)]−−−−−−−→ w′

w
μz(s)−−−→ w′

The fixpoint operator μ binds any occurrence of variable z in strategy s.

Each rewriting tactic of w
s[z:=μz(s)]−−−−−−−→ w′ is a rewriting tactic of w

μz(s)−−−→ w′.

3 Strategy Semantics of Control Mechanisms

In membrane systems, a computation step w � w′ can be presented as a tran-
sition from a contents to another contents according to a control mechanism
involving priorities and/or promoters and/or inhibitors. The computing engine
is represented by the maximal parallel rewriting. When we refer to a sequential
implementation for membrane computing, such a computation is translated in
sequential rewritings. Such a sequential implementation based on rewritings is
presented in [1]. In this paper, we consider the membrane computation steps as
objectives provided by strategies, and their sequential implementations as tactics
of these strategies.

We investigate whether we can find a strategy s such that w � w′ iff w
s−→ w′.

We give a strategic semantics for maximal parallel rewriting, as well as for maxi-
mal parallel rewriting with priorities between rules. However we find that a more
powerful mechanism than strategies is needed to provide semantics for maximal
rewriting with promoters or inhibitors. A useful encoding of the rules can solve
this problem, and finally we can provide the semantics for maximal rewriting of
membrane systems involving promoters/inhibitors. The encoding can be used in
a uniform way to provide the strategy semantics for simple maximal rewriting,
maximal rewriting of membrane systems with priorities, and maximal rewriting
of systems with promoters/inhibitors.

160 O. Andrei, G. Ciobanu, and D. Lucanu

3.1 Strategic Semantics of Maximal Parallel Rewriting

Let R be a set of evolution rules, and w a multiset of objects. If � : u → v is an

evolution rule in R, then w is �-irreducible if w
mset(�,id)−−−−−−→↑. In other words, w is

�-irreducible iff there is no w′ such that w → w′ applying the rule labelled by �.
Moreover, w is R-irreducible if w is �-irreducible for all � : u → v ∈ R. We say
that w is maximally parallel rewritten in w′ iff w = u1 · · ·unz, w′ = v1 · · · vnz,
�i : ui → vi is a rule in R for i = 1, . . . , n, n > 0, and z is R-irreducible. We
write w �R w′.

Given a set R = {�i : ui → vi | 1 ≤ i ≤ n} of evolution rules, we define a
strategy

mpr
def= μx(s1 + · · ·+ sn)

where si = mset(�i, x←+ id), for i = 1, . . . , n.

Since the definition of this strategy mpr depends on R, we prefer to write it in
an equivalent form

mpr(R) def= mset(�1,mpr(R) ←+ id) + · · ·+ mset(�n,mpr(R) ←+ id).

If R = ∅, then w
mpr(∅)−−−−→↑ for any w.

Theorem 1. Given a set R of evolution rules, then

w �R w′ iff w
mpr(R)−−−−−→ w′.

Proof. We first assume that w �R w′. We have w = ui1 · · ·uik
z, w′=vi1 · · · vik

z,
rules �ij : uij → vij from R = {�i : ui → vi | i = 1, . . . , n} for j = 1, . . . , k,

k > 0, and z is R-irreducible. We prove w
mpr(R)−−−−−→ w′ by induction on k.

If k = 1, then the proof is:

z
mpr(R)−−−−−→↑ z

id−→ z

z
mpr(R)←+id−−−−−−−→ z ui

�i−→ vi

uiz
si−→ viz

uiz
s1+···+sn−−−−−−→ viz

uiz
mpr(R)−−−−−→ viz

where i = i1. If k > 1, then uik
z

mpr(R)−−−−−→ vik
z as above, and u1 . . . uik−1

mpr−−−→
v1 . . . vik−1 by the inductive hypothesis. We get w

mpr(R)−−−−−→ w′ by the definition
of the fixpoint operator, and by the fact that the concatenation in the left hand
side does not produce new reducible multisets.

Conversely, if w
mpr(R)−−−−−→ w′ then we prove w �R w′ by induction on the

depth of the proof tree. By the definition of mpr(R), we have rules �i : ui → vi

in R, wi and w′
i such that w = uiwi, w′ = viw

′
i, and wi

mpr(R)−−−−−→ w′
i. By the

inductive hypothesis we have wi �R w′
i, and we get w = uiwi �R viw

′
i = w′ by

the definition of �. ��

Expressing Control Mechanisms of Membranes by Rewriting Strategies 161

Example 5. If R consists of rules �1 : ab → c and �2 : bb → d, then the inference
tree for aabbb

mpr−−−→ cda is:

a
mpr(R)−−−−−→↑ a

id−→ a

a
mpr(R)←+id−−−−−−−→ a bb

�2−→ d

abb
s2−→ da

abb
s1+s2−−−−→ da

abb
mpr(R)−−−−−→ da

abb
mpr(R)←+id−−−−−−−→ da ab

�1−→ c

aabbb
s1−→ cda

aabbb
s1+s2−−−−→ cda

aabbb
mpr(R)−−−−−→ cda

membrane M
contents a a b b b
evolution rules

�1 : a b -> c
�2 : b b -> d

control
mpr(�1, �2)

end

is represented in Maude strategy language [7] as follows:

(mod MM is
including PSCONFIGURATION .
op M : -> Label .
ops a b c d : -> Obj .
vars W W’ W’’ : Soup .
var L : Label .
op contents : -> Membrane .
eq contents = < M | a a b b b > .

rl [l1] : a b => c .
rl [l2] : b b => d .

endm)

(stratdef MM-STRAT is
strat mpr = (matchrew W’ W’’ by W’ using top(l2) ,

W’’ using (mpr orelse idle)) |
(matchrew W’ W’’ by W’ using top(l1) ,

W’’ using (mpr orelse idle)) .
endsd)

The sorts Obj, Soup, Label, Membrane, and the concatenation operator are
defined in the module PSCONFIGURATION. Concatenation is denoted by , and
it is declared with the attributes associativity, commutativity, and identity [6].

162 O. Andrei, G. Ciobanu, and D. Lucanu

The strategy si = mset(�i,mpr(R) ←+ id) is represented by the expression
matchrew W’ W’’ by W’ using top(�i) , W’’ using (mpr orelse idle),

and s1 + s2 is represented by s1 | s2. We use srewall command in order to see
how the contents is modified using mpr strategy. This command performs the all
rewritings supplied by a given strategy.

Maude> (srewall contents using matchrew < L | W > by W using mpr .)
rewrites: 4079 in 27ms cpu (27ms real) (145699 rewrites/second)
rewrite with strategy :
Solution 1 : < M | d a c >
Solution 2 : < M | b c c >
Maude>

3.2 Strategic Semantics of Maximal Parallel Rewriting with
Priorities

Let R be a set of evolution rules together with a partial order �. If � � �′, then
we say that � has a greater priority than �′. An evolution rule is applied in an
evolution step only if no rule of a higher priority can be applied.

Definition 2. Let R be a set of evolution rules together with a priority rela-
tion �. We say that w is maximally parallel rewritten in w′ w.r.t. R, and write
w �R w′, iff w �max(R,w) w′, where max(R,w) represents the highest priority
evolution rules of R which are applicable to w.

Note that max(R,w) is a discrete partial ordered set, and w �max(R,w) w′ is de-
fined as in 3.1. However, we cannot apply the strategy mpr(max(R,w)) because
it depends on multiset w (usually a strategy is independent of the multiset).

Definition 3. Let R be a set of evolution rules together with a priority relation
� such that {�i : ui → vi | i = 1, . . . , n} is the subset of the rules with maximal
priority. Then the strategy pri(R) is defined as follows:

pri(R)
def
= s1 + · · · + sn,

si = mset(�i, pri(filter(R, �i)) ←+ id)←+ pri(R \ {li})
for i = 1, . . . , n,

where filter(R, �i) is obtained from R by removing the rules having lower priority

than �i. If R = ∅, then w
pri(∅)−−−−→↑.

Example 6. Let us suppose that R consists of �1 : ab → c � �2 : bb → d.
We have:

pri(R) def= s1 (�1 is the only maximal element in R)
s1 = mset(�1, pri(�1)←+ id) ←+ pri(�2)

pri(�1)
def= mset(�1, pri(�1) ←+ id)

pri(�2)
def= mset(�2, pri(�2) ←+ id)

The inference tree for aabbb � ccb is:

Expressing Control Mechanisms of Membranes by Rewriting Strategies 163

b
pri(�1)−−−−→↑ b

id−→ b

b
pri(�1)←+id−−−−−−−→ b ab

�1−→ c

abb
mset(�1,pri(�1)←+id)−−−−−−−−−−−−→ cb

abb
pri(�1)−−−−→ cb

abb
pri(�1)←+id−−−−−−−→ cb ab

�1−→ c

aabbb
mset(�1,pri(�1)←+id)−−−−−−−−−−−−→ ccb

aabbb
mset(�1,pri(filter(R,�1))←+id)−−−−−−−−−−−−−−−−−−−→ ccb

aabbb
pri(R)−−−−→ ccb

membrane M
contents a a b b b
evolution rules

�1 : a b -> c
�2 : b b -> d

control
pri(�1 	 �2)

end

is represented in Maude strategy language as follows:
(mod MM is

including PSCONFIGURATION .
op M : -> Label .
ops a b c d : -> Obj .
vars W W’ W’’ : Soup .
var L : Label .
op contents : -> Membrane .
eq contents = < M | a a b b b > .

rl [l1] : a b => c .
rl [l2] : b b => d .

endm)

(stratdef MM-STRAT is
strat pri1 = matchrew W’ W’’ by W’ using top(l1) ,

W’’ using (pri1 orelse idle) .
strat pri2 = matchrew W’ W’’ by W’ using top(l2) ,

W’’ using (pri2 orelse idle) .
strat pri = pri1 orelse pri2 .

endsd)

Even rule l2 matches the contents, it cannot be used because l1 has a higher
priority:
Maude> (srewall contents using xmatchrew < L | W > by W using pri .)
rewrites: 1530 in 10ms cpu (10ms real) (139116 rewrites/second)
rewrite with strategy :
Solution 1 : < M | b c c >
Maude>

164 O. Andrei, G. Ciobanu, and D. Lucanu

Theorem 2. Given a set R of evolution rules together with a priority relation �,

w �R w′ iff w
pri(R)−−−−→ w′.

Proof. (Sketch) The main idea is similar to that in the proof of Theorem 1.
The correct handling of the priorities is assured by the following facts:

– only rules with maximal priority are applied,
– once a rule is applied, all the rules having smaller priorities are removed from

the current set of rules by using filter operator, and
– if a rule with a maximal priority cannot be applied, then it is removed. ��

3.3 Strategic Semantics of Maximal Parallel Rewriting with
Promoters

An evolution rule with promoter is a rewriting rule of the form � : u → v|p, where
the promoter p does not necessarily occur in u. Such a rule can be applied in
an evolution step w � w′ only if w contains both u and p. Note that a single
occurrence of a promoter can be used by more than one rule even the promoter
can be consumed by some other rule. The presence of the promoter makes it
possible to use a rule with promoter as many times as possible, without any
restriction.

Let R consist of the following rules with promoters: �1 : aq → c|p and �2 : bp →
d|q. Consider s a strategy applying the rules R over abpq. If s applies first �1,
then the information that promoter p was present in the initial contents is lost,
and �2 cannot be applied anymore. If s applies first �2, then the information that
promoter q was present in the initial contents is lost, and �1 cannot be applied
anymore. Therefore we claim that there is no strategy expressed in terms of rules
R and the existing strategy operators which can implement the maximal parallel
rewriting with promoters. A more powerful mechanism is needed. We show that
an encoding of the membrane specification together with the strategies defined
over the corresponding encoded rules are enough for implementing the maximal
rewriting with promoters.

Given a set R of evolution rules with or without promoters, we construct a set

R̂ of rewrite rules and a strategy prom(R̂) such that w �R w′ iff w
prom(R̂)−−−−−→ w′.

Let pset(R,w) denote the set of promoters occurring in w w.r.t. the set of rules
R. The set R̂ consists of the following rules:

– compute : w → ε(w, pset(R,w)),
– forget : w′(w, s) → w′w, together with
– a rule �̂ : w′(wu, s) → w′v(w, s) for each rule � : u → v without promoter,

and
– a rule �̂ : w′(wu, ps) → w′v(w, ps) for each rule � : u → v|p with promoter,

where w′, w range over multisets, and s ranges over the sets of promoters.

Expressing Control Mechanisms of Membranes by Rewriting Strategies 165

The rule compute stores the set of promoters occurring in w as the second
component of the pair, and this component remains unchanged during the appli-
cation of the evolution rules. This information is used by the rules with promot-
ers: such a rule is applied only if its promoter is present in the second component.
Note that the processed part w′ lies in the front of the pair (w, s), and it is not
affected by the next evolution rules applied in the current step; the evolution
rules consumes only objects from the first component w of the pair.

Definition 4. We suppose that R = {�i : ui → vi | i = 1, . . . , n}, and let R̂ be
computed as above. Then the strategy prom(R̂) is

prom(R̂)
def
= compute; repeat(�̂1 + · · ·+ �̂n); forget

Example 7. For R given above, R̂ consists of compute, forget, together with
�̂1 : w′(aqw, ps) → w′c(w, ps) and
�̂2 : w′(bpw, qs) → w′d(w, ps).

The inference tree of abpq
prom(R̂)−−−−−→ cd is obtained as follows:

T1:
(abpq, pq)

�̂1−→ c(bp, pq)

(abpq, pq)
�̂1+�̂2−−−−→ c(bp, pq)

T2:

c(bp, pq)
�̂2−→ cd(ε, pq)

c(bp, pq)
�̂1+�̂2−−−−→ cd(ε, pq) cd(ε, pq)

�̂1+�̂2−−−−→↑
c(bp, pq)

repeat(�̂1+�̂2)−−−−−−−−−→ cd(ε, pq)

T3:

abpq
compute−−−−→ (abpq, pq)

T1 T2

(abpq, pq)
(�̂1+�̂2);repeat(�̂1+�̂2)−−−−−−−−−−−−−−→ cd(ε, pq)

(abpq, pq)
repeat(�̂1+�̂2)−−−−−−−−−→ cd(ε, pq)

abpq
compute;repeat(�̂1+�̂2)−−−−−−−−−−−−−→ cd(ε, pq)

Finally,
T3 cd(ε, pq)

forget−−−−→ cd

abpq
prom(R̂)−−−−−−→ cd

We have the following encoding:

membrane M
contents a a b
evolution rules

�1 : a q -> c |p

�2 : b p -> d |q

control
prom(�1, �2)

end

⇒

rewsystem M̂
rewriting rules
compute : W → ε (W, p q)
forget : W ′(W, p q) → W ′ W

�̂1 : W ′(W a q, p W ′′) → W ′ c(W, p W ′′)
�̂2 : W ′(W b p, p W ′′) → W ′ d(W, p W ′′)
strategy
prom(�̂1, �̂2)

end

166 O. Andrei, G. Ciobanu, and D. Lucanu

The encoded membrane M̂ is represented in Maude strategy language as follows:

(mod MM is
including PSCONFIGURATION .
op M : -> Label .
ops a b c d p q : -> Obj .
vars S S’ W W’ X Y : Soup .
var L : Label .
var ES : EncodedSoup .
op contents : -> Membrane .
eq contents = < M | a b p q > .

rl [compute] : W => empty (W , p q) .
rl [forget] : W’ (W , p q) => W’ W .

rl [l1] : W’ (W a q , p W") => (W’ c) (W , p W") .
rl [l2] : W’ (W b p , q W") => (W’ d) (W , q W") .

endm
)

(stratdef MM-STRAT is
strat prom = top(compute) ; (l1 | l2) ! ; top(forget) .

endsd)

The module PSCONFIGURATION additionally includes a sort EncodedSoup and an
operator:

op _‘(_‘,_‘) : Soup Soup Soup -> EncodedSoup .

repeat() is represented in Maude strategy language by !.
The strategy prom works properly:

Maude> (srewall contents using xmatchrew < L | W > by W using prom .)
rewrites: 766 in 8ms cpu (9ms real) (85120 rewrites/second)
rewrite with strategy :
Solution 1 : < M | d c >
Maude>

Theorem 3. Given a set R of evolution rules with promoters, then

w �R w′ iff w
prom(R̂)−−−−−→ w′.

Proof. (Sketch) w �R w′ iff (w, pset(R,w))
repeat(�̂1+···+�̂n)−−−−−−−−−−−→ (w′, pset(R,w)).

If w �R w′, then it follows that w = ui1 · · ·uik
z, w′ = vi1 · · · vik

z, either �ij :
uij → vij or �ij : uij → vij |p is a rule in R = {�i : ui → vi | i = 1, . . . , n} for
j = 1, . . . , k, k > 0, and z is R-irreducible. If �ij : uij → vij |p is a rule involving a
promoter p, then p occurs in w and therefore it belongs to pset(R,w). We prove

that w
prom(R̂)−−−−−→ w′ by induction on k.

Conversely, if (w, pset(w))
repeat(�̂1+···+�̂n)−−−−−−−−−−−→ (w′, pset(R,w)), then we prove

w �R w′ by induction on the depth of the inference tree. ��

Expressing Control Mechanisms of Membranes by Rewriting Strategies 167

3.4 Strategic Semantics of Maximal Parallel Rewriting with
Inhibitors

An evolution rule with inhibitor is a rewriting rule of the form � : u → v|¬p. Such
a rule can be applied in an evolution step w � w′ only if the inhibitor p is not
present in w.

We proceed in a similar way as for promoters. Let A be the set of all the objects
and iset(A,w) be the complement w.r.t. A of the set of inhibitors occurring in
w. The encoding uses iset(A,w) instead of pset(R,w), and rules with inhibitors
instead of rules with promoters. The set R̂ consists of the following rules:

– compute : w → (w, iset(A,w)),
– forget : w′(w, s) → w′w, together with
– a rule �̂ : w′(wu, s) → w′v(w, s) for each rule � : u → v without inhibitor,

and
– a rule �̂ : w′(wu, ps) → w′v(w, ps) for each rule � : u → v|¬p with inhibitor,

where w′, w range over multisets, and s ranges over the sets of inhibitors.

Definition 5. We suppose that R = {�i : ui → vi | i = 1, . . . , n}, and let R̂ be
computed as above. Then the strategy inhib(R̂) is

inhib(R̂) def= compute; repeat(�̂1 + · · · + �̂n); forget

Theorem 4. Given a set R of evolution rules with inhibitors, then

w �R w′ iff w
inhib(R̂)−−−−−→ w′.

3.5 Strategic Semantics of Maximal Parallel Rewriting with
Promoters and Inhibitors

When we have rules involving both promoters and inhibitors, we encode a mul-
tiset by a triple (w, pset(R,w), iset(A,w)) in order to have information about
both promoters and inhibitors. The set R̂ consists of the following rules:

– compute : w → (w, pset(R,w), iset(A,w)),
– forget : w′(w, s, s′) → w′w, together with
– a rule �̂ : w′(wu, s, s′) → w′v(w, s, s′) for each rule � : u → v in R without

promoter or inhibitor,
– a rule �̂ : w′(wu, ps, s′) → w′v(w, ps, s′) for each rule � : u → v|p in R with

promoter, and
– a rule �̂ : w′(wu, s, ps′) → w′v(w, s, ps′) for each rule � : u → v|¬p in R with

inhibitor.

This encoding is general, and it can be used even one or both sets of promoters
and inhibitors are empty.

168 O. Andrei, G. Ciobanu, and D. Lucanu

Definition 6. We suppose that R = {�i : ui → vi | i = 1, . . . , n}, and let R̂ be
computed as above. Then the strategy prominhib(R̂) is

prominhib(R̂)
def
= compute; repeat(�̂1 + · · ·+ �̂n); forget

Theorem 5. Given a set R of evolution rules involving eventually promoters
and inhibitors, then

w �R w′ iff w
prominhib(R̂)−−−−−−−−−→ w′.

4 Conclusion

The main contribution of the paper is given by the use of strategies in defin-
ing a term rewriting semantics of the membrane systems. Comparing with the
operational semantics presented in [2], here we use strategies to describe the
control mechanisms in membranes. We give a strategic semantics for maximal
parallel rewriting, as well as for maximal parallel rewriting with priorities be-
tween rules. However we find that a more powerful mechanism than strategies is
needed to provide semantics for maximal rewriting with promoters or inhibitors.
A useful encoding of the rules can solve this problem, and finally we can provide
the semantics for maximal rewriting of membrane systems involving promoters
and inhibitors. In this way, term rewriting semantics distinguishes between pri-
orities and promoters/inhibitors, namely it is easier to describe priorities than
promoters/inhibitors.

We adapt the strategy language presented in [10], taking into considera-
tion that:

– only a part of the strategy operators defined in [10] is used for describing
the control mechanisms in membranes;

– since the membranes work over multisets of objects, the strategy congruence
operators are extended to handle the associativity and commutativity.

In the paper we consider elementary membranes. The approach can be ex-
tended to more complex membrane systems. Such a membrane system is a hier-
archical structure of membranes which could be specified as follows:

system Π
objects A
membrane M1

contents w1

evolution rules R1

control C1

end
membrane M2

contents w2

evolution rules R2

control C2

end

Expressing Control Mechanisms of Membranes by Rewriting Strategies 169

...
structure [M1[M2 . . .]

end

Usually a global clock is assumed [9]. At each tick of this clock, the current
configuration of the system is transformed into another one in three phases:
evolution - where all the membranes evolve according to their rules and control
mechanisms, communication - where objects are exchanged between adjacent
membranes, and membrane dissolving. The configurations of a membrane sys-
tem Π can be described as terms in an appropriate algebraic specification [2].
Encoding all the membranes as rewriting systems with strategies, we can use
traversal operators like bottomup or topdown [10,7] over configurations in or-
der to extend the evolution of each membrane to the global evolution phase of
a transition step. We may proceed in the same way for the other two phases.
Consequently, a transition step is described by the sequential composition of the
three corresponding strategies.

Acknowledgment. We are grateful to Alberto Verdejo for his useful remarks
regarding our implementation in Maude strategy language.

References

1. O. Andrei, G. Ciobanu, D. Lucanu. Executable Specifications of the P Systems. In
Membrane Computing. WMC5, Lecture Notes in Computer Science 3365, Springer,
127–146, 2005.

2. O. Andrei, G. Ciobanu, D. Lucanu. A Structural Operational Semantics of the P
Systems, In Membrane Computing. WMC6, Lecture Notes in Computer Science
3850, Springer, 32–49, 2006.

3. O. Andrei, G. Ciobanu, D. Lucanu. Strategies and Tactics in Operational Seman-
tics, “A.I.Cuza” University, Faculty of Computer Science Tech. Rep. TR06-01,
2006.

4. C. Bonchiş, G. Ciobanu, C. Izbaşa. Encodings and Arithmetic Operations in Mem-
brane Computing. In Theory and Applications of Models of Computation, Lecture
Notes in Computer Science 3959, Springer, 618–627, 2006.

5. P. Borovansky, C. Kirchner, H. Kirchner, C. Ringeissen. Rewriting with Strate-
gies in ELAN: A Functional Semantics. International Journal of Foundations of
Computer Science, 12(1), 69-95, 2001.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, J.F. Quesada.
Maude: Specification and Programming in Rewriting Logic. Theoretical Computer
Science, 285(2), 187-243, 2002.

7. N. Mart-Oliet, J. Meseguer, A. Verdejo. Towards a Strategy Language for Maude.
Electr. Notes Theor. Comput. Sci., 117, 417–441, 2005

8. J. Meseguer. Conditional Rewriting Logic as Unified Model of Concurrency. The-
oretical Computer Science, 96, 73–155, 1992.

9. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.
10. E. Visser. A Survey of Strategies in Rule-Based Program Transformation Systems.

Journal of Symbolic Computation, 40, 831–873, 2005.
11. E. Visser, Z.-A. Benaissa, A. Tolmach. Building Program Optimizers with Rewrit-

ing Strategies. ACM SIGPLAN Notices, 34, 13–26, 1999.

Tissue P Systems with Communication Modes

Francesco Bernardini1,	 and Rudolf Freund2

1 Leiden Institute of Advanced Computer Science
Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl

2 Faculty of Informatics
Vienna University of Technology

Favoritenstr. 9, A-1040 Wien, Austria
rudi@emcc.at

Abstract. The paper introduces communication modes in tissue P sys-
tems that are based on the applicability of the rules to the objects present
inside the cells. This notion of a communication mode is inspired by
the concept of a derivation mode used in the area of grammar systems.
Three different communication modes are identified depending on both
the way the objects are moved from one cell to another one, altogether as
a multiset or independently from each other, and on the moment when
communication can take place, immediately after a terminal object is
produced inside a cell, immediately after a cell has reached a terminal
configuration or only when the system as a whole has reached a final con-
figuration. The computational power of tissue P systems with different
communication modes is compared with the power of the basic model of
P systems and some classes of L systems.

1 Introduction

P systems represent a class of distributed and parallel computing devices of a
biological type that was introduced in [12]. Several variants of this model have
been investigated and the literature on the subject is still rapidly growing. The
main results in this area show that P systems are a very powerful and efficient
computational model (e.g., see [12], [13] and [17] for a comprehensive bibliogra-
phy). The main ingredient of a P system is the membrane structure defined as
a hierarchical arrangement of different membranes, embedded in a unique skin
membrane, that identify several distinct regions inside the system. Each region
gets assigned a finite multiset of objects and a finite set of rules for modifying
the objects or moving them from one place to another one. The structure of a
P system is usually represented as a tree. Thus, tissue P systems were proposed
as a variant of membrane systems where the structure of the system is defined
as an arbitrary graph [13], and which are somehow inspired by cell behaviour in

� Research supported by NWO, the Netherlands Organisation for Scientific Research,
project 635.100.006 “VIEWS”.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 170–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tissue P Systems with Communication Modes 171

tissues of multi-cellular organisms (e.g., see [1]). Specifically, nodes in the graph
represent cells that are able to communicate objects along the edges of the graph.
The few variants of tissue P systems considered in the literature essentially differ
in the mechanisms used to communicate objects from one cell to another one.
For instance, particular sets of communication rules can be assigned to the edges
in the graph defining the structure of the system in order to model the existence
of communication channels among the cells in the systems [11], [9]; alternatively,
there are evolution-communication tissue P systems, so to adopt the terminol-
ogy introduced in [4], where the objects produced by particular transformations
occurring inside the cells are non-deterministically propagated from one place to
another one [10], [3].

In this paper, we consider a model for tissue P systems where each cell gets
assigned a finite set of transformation rules (i.e., multiset rewriting rules) and,
after each application of these rules, all the objects produced inside the cell
that can be communicated are moved out from the cell and distributed to the
neighbouring cells according to a specific communication mode. Specifically we
identify three communication modes: terminal at the level of objects, terminal at
the level of cells, and terminal at the level of the system. Terminal at the level
of objects means that every object that cannot undergo any transformation
inside a cell is communicated independently from the others immediately after
it has been produced inside that cell. Terminal at the level of cells means that
communication in a cell can only take place when no more transformation rules
can be used inside the cell; the objects associated with that cell are then moved
altogether at the same time and they are bound to reach the same target cell.
Terminal at the level of the system means that no communication is permitted
in the system till a configuration is reached where no more rules can be used
inside any cell of the system; cells can then exchange their respective multisets of
objects with the constraint that objects previously associated with the same cell
must be moved altogether into the same target cell. In all these communication
modes, by target cell or neighbouring cell, we mean a cell that is adjacent in the
underlying graph to the cell where objects are moved from.

This notion of communication modes is inspired by the concept of deriva-
tion modes used in the area of grammar systems [5]. Grammar systems are
systems formed by a number of grammar components that cooperate according
to a given protocol in order to rewrite a common string. In the basic model
of grammar systems, called CD grammar systems, a component at a time is
non-deterministically chosen to rewrite the unique string in the system and,
once activated, this component performs as many derivation steps as necessary
according to the derivation mode chosen – = k, ≤ k, ≥ k derivation steps,
an arbitrary number of derivation steps or as many derivation steps as possi-
ble (t-mode). The common string is then released so that another component
can become active etc. till a string accepted by the system is produced. Here,
in some sense, we are reversing the perspective by considering the objects as
the active elements in the system that are moved from one place to another one;

172 F. Bernardini and R. Freund

specifically, once some objects have entered a cell, they have to remain inside
that cell until a specific condition is met such that a communication can take
place and the objects can leave the cell. Moreover, with respect to the basic
notion of cooperating/distributed grammar systems, different cells can be active
at the same time by operating in parallel on different multisets of objects; as well
as this, the use of multisets allows every object to evolve independently from the
others and to be arbitrarily distributed to the cells in the system. We also note
that similar issues concerning relationships between P systems and grammar
systems were investigated in [2], [6] [8], [14].

The present paper is organised as it follows. Section 2 briefly recalls the no-
tations commonly used in membrane computing and the few notions of formal
language theory that will be used in the rest of the paper; in particular, we re-
port the definition of extended tabled Lindenmayer systems including the case of
systems with random contexts. Section 3 is dedicated to the definition of tissue
P systems with a communication mode in the three cases mentioned above. The
computational power of these classes of tissue P systems is then investigated in
Section 4 in comparison with the power of the basic model of P systems and
the power of extended tabled Lindenmayer systems. Some further remarks and
directions for future research are discussed in the last section of the paper.

2 Preliminaries

We here recall some basic notions concerning the notations commonly used in
membrane computing and the few notions of formal language theory we need in
the rest of the paper. We refer to [13], [16] for further details.

An alphabet is a finite non-empty set of abstract symbols. Given an alpha-
bet V , by V ∗ we denote the set of all possible strings over V , including the
empty string λ. The length of a string x ∈ V ∗ is denoted by |x| and, for each
a ∈ V , |x|a denotes the number of occurrences of the symbol a in x. A multiset
over V is a mapping M : V −→ N such that M(a) defines the multiplicity of
a in the multiset M (N denotes the set of non-negative integers). Such a mul-
tiset can be represented by a string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗ and by all

its permutations, with aj ∈ V , M(aj) 	= 0, 1 ≤ j ≤ n. In other words, we
can say that each string x ∈ V ∗ identifies a finite multiset over V defined by
Mx = { (a, |x|a) | a ∈ V }. Given two multisets x and y, with x, y ∈ V ∗, we
say that the multiset x includes the multiset y, or the multiset y is included in
the multiset x, and we write x � y, or y � x, if and only if |x|a ≥ |y|a, for
every a ∈ V . In P systems, in order to manipulate multisets, we need the notion
of multiset rewriting rules as counterpart of the well-known operation of string
rewriting. Formally, a multiset rewriting rule is a pair (x, y) – we also write
x → y – with x, y being two finite multisets over V . A finite multiset w over
V can be rewritten by a rule x → y if and only if w � x, and we say that the
multiset w can evolve by means of the rule x → y thereby replacing the multiset
x by the multiset y in w, i.e. the result of the application of the rule x → y to the

Tissue P Systems with Communication Modes 173

multiset x is the multiset w′ such that, for every a ∈ V , |w′|a = |w|a−|x|a + |y|a.
Moreover, a multiset rewriting rule x → y is said to be non-cooperative if |x| = 1
whereas it is said to be cooperative if |x| > 1.

An ET0L system is a construct G = (V, T, w, P1, . . . , Pm), m ≥ 1, where V
is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗ is the axiom, and Pi,
1 ≤ i ≤ m, are finite sets of rules (tables) of non-cooperative rules over V of the
form a → x. In a derivation step, all the symbols present in the current sentential
form are rewritten using one table. The language generated by G, denoted by
L(G), consists of all the strings over T which can be generated in this way by
starting from w. An ET0L system with only one table is called an E0L system. By
E0L and ET 0L we denote the families of languages generated by E0L systems
and ET0L systems, respectively. An ET0L system with random contexts [7] is
an ET0L system where each table P is associated with a corresponding finite
subset Q of V and the table P is applicable to a a given string if and only if
this string contains each of the letters in Q. The family of languages generated
by ET0L systems with random contexts is denoted by ET 0L(rc). It is known
from [16] that CF ⊂ E0L ⊂ ET 0L ⊂ CS, with CF being the family of context-
free languages and CS being the family of context-sensitive languages; it is also
proved in [7] that ET 0L ⊂ ET 0L(rc). However, as the paper deals with P
systems with symbol objects, we will consider ET0L systems as devices that
generate sets of non-negative integers; to this aim, given an ET0L system G,
we define the set of non-negative integers generated by G as the length set
N(G) = { |x| |x ∈ L(G) }. The corresponding family of sets of non-negative
integers then are denoted by NCF , NE0L, NET 0L, NET 0L(rc), and NCS,
respectively. Finally, we recall the fact that, according to Theorem 1.3 in [15],
for each language L ∈ ET 0L there is an ET0L system that generates L, contains
only two tables, i.e., G = (V, T, w, P1, P2), and moreover, after having used P1,
we can use any of P1 and P2, but, after having used P2, we always have to
use P1.

3 Tissue P Systems with a Communication Mode

Now we formally introduce the notion of tissue P systems with a communication
mode by giving the following definition.

Definition 1. A tissue P system with a communication mode is a construct

T = (V, γ, C1, C2, . . . , Cn, cO, σ)

where

1. V is a finite alphabet of symbols called objects;
2. γ = ({1, 2, . . . n}, E), with E ⊆ {{i, j} | 1 ≤ i, j ≤ n , i 	= j }, is a finite

connected undirected graph;
3. Ci = (wi, Ri), for each 1 ≤ i ≤ n, such that

(a) wi ∈ V ∗ is a finite multiset of objects;

174 F. Bernardini and R. Freund

(b) Ri is a finite set of multiset rewriting rules of the form a → y for a ∈ V
and y ∈ V ∗; these rules are called the transformation rules associated
with cell i;

4. cO is the output cell;
5. σ ∈ {tObj, tCell, tSys} specifies the communication mode adopted by the

system.

A tissue P system with a communication mode, which, for the sake of simplicity,
in the following will be just called a tissue P system, is defined as a collection of
n ≥ 1 cells that are associated in a one-to-one manner to the nodes of a finite
undirected graph denoted by γ that are labeled by values in {1, 2, . . . , n}. The
edges of the graph γ define the existing links between the cells of the system, and
they are represented as unordered pairs of the form {i, j} with 1 ≤ i, j ≤ n and
i 	= j. Each cell Ci, with i ∈ {1, 2, . . . , n}, represents a basic functional unit of a
tissue P system and it is characterized by a finite multiset of objects wi, which
defines its initial contents, and by a finite set of multiset rewriting rules Ri, called
transformation rules, which allow a cell to modify its contents by consuming some
objects in order to produce some new ones. Throughout the rest of the paper,
each cell Ci, with i ∈ {1, 2, . . . , n}, will be referred to as cell i. Moreover, for
each cell i, we define the set of its neighbouring cells Ni = {j | {i, j} ∈ E} (i.e.,
the set of cells that are directly linked to cell i according to the graph γ) and its
terminal alphabet Ti = {a | there exists no rule a → v ∈ Ri, for any v ∈ V ∗}
(i.e., the set of objects that cannot evolve by means of any rule in Ri).

Communication in a tissue P system T is driven by the communication mode
σ ∈ {tObj, tCell, tSys}, which specifies how objects can be moved from one
cell to another one; specifically, for each cell i, with 1 ≤ i ≤ n, communication
involves only the objects in Ti and it can be done in the following ways:

– tObj (terminal at the level of objects): every time an object a ∈ Ti is pro-
duced inside cell i, it is immediately moved from cell i to a cell j ∈ Ni

non-deterministically chosen; the objects associated with cell cO (the output
one), i.e., the objects from TcO , can never be moved out from cell cO.

– tCell (terminal at the level of cells): communication of objects from cell i to
another one takes place only when all the objects contained in cell i are in Ti

(i.e., when the objects inside cell i cannot evolve anymore by means of any
rule in Ri); the objects in Ti contained in cell i are then moved altogether
at the same time from cell i to the same cell j ∈ Ni non-deterministically
chosen; the objects from TcO can never be moved out from cell cO.

– tSys (terminal at the level of the system): in a way similar to the communi-
cation mode tCell, the objects in Ti contained in cell i are moved altogether
at the same time from cell i to the same cell j ∈ Ni non-deterministically
chosen; however, before any communication can take place, the system must
have reached a configuration where no more transformation rules can be
used inside any cell of the system; the objects from TcO can never be moved
out from cell cO.

Tissue P Systems with Communication Modes 175

Thus, a computation in a tissue P system T consists of a sequence of steps
where, after each application of the transformation rules, all the communications
permitted by the communication mode σ take place and the new distribution
of objects inside the system becomes effective when starting the next step of
computation. As is quite usual in P systems, transformation rules are applied in
a non-deterministic maximally parallel manner. A computation in T is said to be
successful if it reaches a configuration where no more transformation rules can
be used inside any cell of the system and no further communications between
the cells can take place. The result of a successful computation is given by the
number of objects contained in the output cell cO in the final configuration.
The set of non-negative integers generated by all the successful computations
in T is denoted by N(T). Notice that, whatever the communication mode is, a
successful computation always produces a final configuration where all the cells
but the output one are empty, as γ = ({1, 2, .., n}, E) is a connected graph, i.e.,
for each pair (i, j), 1 ≤ i, j ≤ n and i 	= j, it is always possible to reach node j
from node i through a path in the graph γ.

4 The Computational Power of Tissue P Systems with a
Communication Mode

In this section we present some results concerning the generative power of tis-
sue P systems when different communication modes are used. To this aim, we
introduce the families of sets of non-negative integers of the form NOTPn(σ),
with n ≥ 1 and σ ∈ {tObj, tCell, tSys}; they identify the families of sets of non-
negative integers generated by tissue P systems with at most n cells that adopt
the communication mode σ. Moreover, when the number of cells is not specified
but it can assume any value, the corresponding family of sets of non-negative
integers is denoted by NOTP∗(σ), with σ as above.

The first result shows that, in the case tObj, the hierarchy on the number
of membranes collapses at level 1, and this communication mode in fact does
not increase the power of (tissue) P systems with respect to the basic model of
membrane systems.

Theorem 1. NOTP∗(tObj) = NOTPn(tObj) = NCF , for n ≥ 1.

Proof. Let T = (V, γ, (w1, R1), (w2, R2), . . . , (wn, Rn), cO, tObj) be a tissue P
system as specified in Definition 1, with n ≥ 1. For each 1 ≤ i ≤ n and a ∈ V ,
we define the set of possible destinations for the object a that can be reached
from cell i as the set Di(a) such that

– Di(a) = { aj | j ∈ Ni}, if cO 	∈ Ni or a 	∈ TcO , and
– Di(a) = { aj | j ∈ Ni, j 	= cO} ∪ {a}, if cO ∈ Ni and a ∈ TcO .

176 F. Bernardini and R. Freund

Then we construct a tissue P systems T ′ with one cell that is able to simulate
T :

T = (V ′, ({1}, ∅), (w′, R′), 1, tObj)

where V ′ = TcO ∪ { ai | a ∈ V, 1 ≤ i ≤ n}, w′ = h1(w1)h2(w2) . . . hn(wn), for
hi(a) = ai, if i 	= cO or a 	∈ TcO , hi(a) = a, if i = cO and a ∈ TcO , 1 ≤ i ≤ n,
and R′ is a finite set of rules that contains

– for each rule a → b1b2 . . . bk ∈ Ri, with k ≥ 1, b1, b2, . . . , bk ∈ V , i 	= cO, a
finite set of rules R′

i(a → b1b2 . . . bk) such that

R′
i(a → b1b2 . . . bk) = { ai → b′1b

′
2 . . . b′k | b′j = hi(bj) if bj 	∈ Ti and

b′j ∈ Di(bj) if bj ∈ Ti, 1 ≤ j ≤ k };

– for each rule a → v ∈ RcO , with v ∈ V ∗, a rule a → hcO(v);
– for each a ∈ Ti, with i 	= {cO}, a set of rules

R′
i(a) = { ai → b | b ∈ Di(a)};

– for each rule a → λ ∈ Ri, with 1 ≤ i ≤ n, a rule ai → λ.

The simulation of the tissue P system T by means of the tissue P system
T ′ is done in the following way: each rule a → b1b2 . . . bk ∈ Ri, with k ≥ 1,
b1, b2, . . . , bk ∈ V , 1 ≤ i ≤ n, i 	= cO, is mapped to a set of rules R′

i(a →
b1b2 . . . bk); these rules simulate the application of the rule a → b1b2 . . . bk ∈
Ri to the objects contained in cell i and, at the same time, they simulate the
communication of the objects in Ti that appear on the right-hand side of the
rule. This is done by replacing, on the right-hand side of the rule, each object
b 	∈ Ti by an object bi (i.e., the object b remains inside cell i) and each object
b ∈ Ti by an object c ∈ Di(a) (i.e., the object b is moved from cell i to one of the
neighbouring cells). Notice that we have to consider all the possible combinations
for the destinations of the objects because communication in the tissue P system
T is non-deterministic and, as the communication tObj is adopted, each object
is moved independently from the others. In other words, the non-determinism
at the level of communication observed in the tissue P system T is reflected by
the non-determinism at the level of the transformation rules associated with the
unique cell of the tissue P system T ′. The simulation of the application of the
rules inside the output cell cO is considered apart because the objects can never
be moved out from that cell. Specifically, for each rule a → v ∈ RcO , there exists
a corresponding rule a → hcO(v) in T ′ such that all the objects get assigned the
label cO. Finally, each object a ∈ Ti that enters a cell i is immediately moved
out from that cell by using a rule ai → b, with b ∈ Di(a).

Therefore we infer that the tissue P system T ′ correctly simulates the ap-
plications of the rules in T and, in the case of a successful computation in
T ′, the multiset of objects obtained inside the unique cell in T ′ is exactly the
same as the multiset produced inside the output cell cO by the corresponding

Tissue P Systems with Communication Modes 177

successful computation in T . Therefore N(T ′) = N(T), and thus we have proved
NOTP∗(tObj) = NOTPn(tObj), for n ≥ 1.

Then, in order to show that NOTP1(tObj) = NCF , we can use a similar
result as proved in [13] for the basic model of P systems; in [13], a characterisation
of NCF is provided that is based on P systems with one membrane using only
non-cooperative rules. Thus, such a result can be immediately transferred to
tissue P systems with one cell as it is obvious that the two models are equivalent
in the case of systems with only one cell. �

The communication mode tSys can instead be proved to be more powerful than
the communication mode tObj:

Theorem 2. NOTP∗(tSys) = NOTPn(tSys) = NET 0L, for n ≥ 4.

Proof. (i) NET 0L ⊆ NOTP4(tSys). As pointed out in Section 2, for every
language L ∈ ET 0L there exists an ET0L system G with only two tables that
generates L, i.e., G = (V, T, w, P1, P2). Moreover, after having used table P1, we
can use both P1 and P2, but, after having used table P2, we always have to use
table P1. The table used in the first step of a computation is P1. In order to
simulate G, we construct the following tissue P system

TL = (V ′, γ, (w′, R1), (λ,R2), (λ,R3), (λ,R4), 4, tSys)

where

V = {a, a′, a′′ | a ∈ V } ∪ {#},
γ = ({1, 2, 3, 4}, {{1, 2}, {1, 3}, {1, 4}, {2, 4}}),

R1 = { a′ → b′′1b
′′
2 . . . b′′k | a → b1b2 . . . bk ∈ P1, k ≥ 1 }

∪ { a′ → λ | a → λ ∈ P1 },
R2 = { a′′ → b′1b

′
2 . . . b′k | a → b1b2 . . . bk ∈ P2, k ≥ 1 }

∪ { a′′ → λ | a → λ ∈ P2 },
R3 = { a′′ → a′ | a ∈ V },
R4 = { a′ → a, a′′ → a | a ∈ T }

∪ { a′ → #, a′′ → # | a ∈ (V − T) } ∪ {# → # }.

The simulation of the ET0L system G by means of the tissue P system T is done
in the following way.

Cell 1 is used to simulate table P1: the application of rules in P1 produces a
multiset u′′ ∈ { a′′ | a ∈ V }∗ inside cell 1; after that, no more rules can be used
in the system and u′′ is moved from cell 1 either to cell 2 or to cell 3 or to cell
4. If the multiset u′′ reaches cell 2, then we can pass to simulate the application
of P2. If the multiset u′′ instead reaches cell 3, then we return to simulate P1;
this is done by replacing each object a′′ by the object a′ and moving all these
objects back to cell 1. In cell 2, the simulation of table P2 is done in a similar
way by applying corresponding transformation rules that produce a multiset

178 F. Bernardini and R. Freund

u′ ∈ { a′ | a ∈ V }∗; after that, no more rules can be used in the system and u′

is moved from cell 2 either to cell 1, to simulate another application of table
P1, or to cell 4. At any moment, if a multiset u′ ∈ { a′ | a ∈ V }∗ or a multiset
u′′ ∈ { a′′ | a ∈ V }∗ reaches cell 4, then the rules in R4 are used to check whether
this multiset contains only terminal symbols or not. Specifically, every object a′

or a′′, with a ∈ T , is replaced by the corresponding terminal object a, whereas
every object a′ or a′′, with a ∈ (V −T), is replaced by the object #. Thus, if the
multiset u′ or the multiset u′′ contains some non-terminal symbol, an infinite
computation is the consequence; otherwise, the computation halts.

Therefore, the tissue P system TL correctly simulates the ET0L system G and
we conclude N(G) = N(TL).

(ii) NOTPn(tSys) ⊆ NET 0L, for n ≥ 1. Consider a tissue P system T as
specified in Definition 1 such that

T = (V, γ, (w1, R1), (w2, R2), . . . , (wn, Rn), cO, tSys),

with γ = ({1, 2, . . . , n}, E), n ≥ 1.Then, let γ′ = ({1, 2, . . . , n}, E′) be a directed
graph such that, for all {i, j} ∈ E, (i, j) ∈ E and (j, i) ∈ E, and nothing else is
in E′. We construct the following ET0L system that simulates the behaviour of
the tissue P system T :

G = (V ′, V, w,P)

where V ′ = { ai | a ∈ V, 1 ≤ i ≤ n} ∪ V ∪ {#}, w = h1(w1)h2(w2) . . . hn(wn),
with hi(a) = ai, 1 ≤ i ≤ n, a ∈ V, and P is a finite set of tables that contains

– a table

P1 = { ai → hi(v) | a → v ∈ Ri, a ∈ V, v ∈ V ∗, 1 ≤ i ≤ n }
∪ { ai → ai| a ∈ Ti, 1 ≤ i ≤ n }
∪ { a → a | a ∈ V } ∪ {# → #};

this table is used to simulate the application of transformation rules for the
objects currently associated with the cells in the system; these rules must be
applied as many times as possible until a configuration is reached where no
more transformation rules can be used in the system;

– a table

P{(i1,j1),(i2,j2),...,(in−1,jn−1)} = { aih
→ ajh

| a ∈ Tih
, 1 ≤ h ≤ n− 1 }

∪ { ai → # | a 	∈ Ti, 1 ≤ i ≤ n } ∪ {# → #}
∪ { acO → acO | a ∈ TcO }
∪ { a → a | a ∈ V },

for each {(i1, j1), (i2, j2), . . . , (in−1, jn−1)} ⊆ E′, with

{i1, i2, . . . , in−1} = { i | 1 ≤ i ≤ n , i 	= cO };

these tables are used to simulate the communication between the cells in
the system; specifically, for each h, 1 ≤ h ≤ n − 1, we choose a target cell

Tissue P Systems with Communication Modes 179

jh ∈ Nih
(the objects in TcO can never be moved out from cell cO), and the

communication of objects from cell ih to cell jh then is performed by just
changing the label of the objects from ih to jh; moreover, rules of the form
ai → #, with 1 ≤ i ≤ n, ai 	∈ Ti, are considered in order to make sure that
these tables are used only at the right moment when the objects inside the
cells cannot evolve anymore by means of any rule; also notice that, since,
for each edge {i, j} ∈ E, the set E′ contains both (i, j) and (j, i), we have
all the tables necessary to simulate communication between two cells in any
direction;

– a table

Pf = { ai → # | a ∈ V, 1 ≤ i ≤ n, i 	= cO}
∪ { acO → # | a 	∈ TcO }
∪ { acO → a | a ∈ TcO }
∪ { a → a | a ∈ V } ∪ {# → #};

this table is used to finish a successful computation in T ; in fact, as pointed
out in Section 3, a computation in a tissue P system can be successful if and
only if the system reaches a configuration where all the cells except for the
output one are empty and the output cell contains only objects that cannot
evolve anymore by means of any rule associated with that cell.

Therefore, we conclude that the L system G correctly simulates the tissue P
system T , and we have N(G) = N(T). �
Finally, we pass to consider the communication mode tCell. As an immediate
consequence of Theorem 2, we obtain the following result.

Corollary 1. NET 0L ⊆ NOTPn(tCell), for n ≥ 4.

It is in fact easy to see that the behaviour of the tissue P system TL as defined
in the proof of Theorem 2, would not be changed if the communication mode
tCell were adopted instead of the communication mode tSys, because only one
cell at a time is active in TL and, once the application of its own rules has been
finished, the resulting multiset is passed to another cell, which then becomes the
new active one, etc. On the other hand, for the communication mode tCell, we
are not able to prove the opposite inclusion or to prove that the hierarchy on the
number of membrane collapses at a particular level. Nevertheless, we can provide
an upper bound for the generative capacity of this class of tissue P systems by
considering ET0L systems with random contexts:

Lemma 1. NOTP∗(tCell) ⊆ NET 0L(rc).

Proof. We adopt a construction very similar to the one used in point (ii) of the
proof of Theorem 2. Therefore, we do not report all the details of the proof and
leave the task of a complete formalisation to the reader.

180 F. Bernardini and R. Freund

Consider a tissue P system T as specified in Definition 1 such that

T = (V, γ, (w1, R1), (w2, R2), . . . , (wn, Rn), cO, tSys),

with γ = ({1, 2, . . . , n}, E), n ≥ 1.Then, let γ′ = ({1, 2, . . . , n}, E′) be a directed
graph such that, for all {i, j} ∈ E, (i, j) ∈ E and (j, i) ∈ E, and nothing else
is in E′. We construct an ET0L system with random contexts G that simulates
the tissue P system T as follows: first of all, we define the table

P1 = { ai → h′
i(v) | a → v ∈ Ri, 1 ≤ i ≤ n }

∪ { ai → a′i | a ∈ Ti, 1 ≤ i ≤ n }
∪ { a′i → # | a ∈ V, 1 ≤ i ≤ n }
∪ { a → a | a ∈ V } ∪ {# → # },

Q = ∅,

with h′
i(a) = a′i, for each a ∈ V , 1 ≤ i ≤ n. This table is used to simulate

a single application of transformation rules to the objects currently contained
inside the cells; for each 1 ≤ i ≤ n, the objects currently assigned to cell i are
of the form ai, for some a ∈ V , and, after the application of the transformation
rules, all these objects turn to be of the form a′i. This is necessary because, after
each application of the transformation rules, we have to check for the possibility
that some communication can take place inside some cells that have reached
a configuration where no more rules can be used. To this aim, we consider all
the possible partitions I = I1 ∪ I2, with I1 ∩ I2 = ∅, of the set I = { i | 1 ≤ i ≤
n, i 	= cO }, i.e., I1 identifies the set of cells where communication can take place,
whereas I2 identifies the set of cells where no communication is permitted. For
each partition of that kind, we construct all tables of the form

P{(i1,j1),(i2,j2),...,(ik,jk)} = { a′ih
→ ajh

| a ∈ Tih
, 1 ≤ h ≤ k }

∪ { a′ih
→ # | a 	∈ Tih

, 1 ≤ h ≤ k }
∪ { a′pt

→ apt | a ∈ V, 1 ≤ t ≤ m }
∪ { ai → # | a ∈ V, 1 ≤ i ≤ n }
∪ { a′cO

→ acO | a ∈ V }
∪ { a → a | a ∈ V } ∪ {# → # },

Q = {bp1 , bp2 , . . . , bpm},

such that {(i1, j1), (i2, j2), . . . , (ik, jk)} ⊆ E′, I1 = {i1, i2, . . . , ik}, and bp1 	∈ Tp1 ,
bp2 	∈ Tp2 ,..., bpm 	∈ Tpm , with I2 = {p1, p2, . . . , pm}. These tables are neces-
sary to simulate the communication of objects between the cells in the tissue
P system T . Given I1 and I2, the random context makes sure that one of
these table is used if and only if each cell p, with p ∈ I2, contains at least
one object bp 	∈ Tp (i.e., no communication is permitted for any cell in I2). On
the other hand, communication of objects from a cell i, with i ∈ I1, can take
place if and only if cell i does not contain any object a 	∈ Ti; if this is not the

Tissue P Systems with Communication Modes 181

case, then the trap object # is introduced. Finally, after the application of one
of these communication tables, we can either return to apply table P1 or decide
to finish the computation by applying the following final table:

Pf = { a′i → # | a ∈ V, 1 ≤ i ≤ n, i 	= cO}
∪ { ai → # | a ∈ V, 1 ≤ i ≤ n }
∪ { a′cO

→ # | a 	∈ TcO }
∪ { a′cO

→ a | a ∈ TcO }
∪ { a → a | a ∈ V } ∪ {# → #},

Q = ∅.

This table is used to finish a successful computation in T ; in fact, as pointed out
in Section 3, a computation in a tissue P system can be successful if and only if
the system reaches a configuration where all the cells except for the output one
are empty and the output cell contains only objects that cannot evolve anymore
by means of any rule associated with that cell.

Therefore, we conclude that the L system G correctly simulates the tissue P
system T , and we have N(G) = N(T). �

5 Conclusions

Membrane computing and grammar systems are two active areas of theoreti-
cal computer science, with different starting points, but with several similarities
(both areas deal with distributed computing devices, where such notions as par-
allelism, cooperation, decentralisation are crucial). P systems were introduced
with a clear biological motivation by being mainly inspired by the structure and
functioning of living cells [13]. The initial motivation of grammar systems in-
stead was related to artificial intelligence issues, and only later on features from
other areas of parallel and distributed computing were incorporated [5]. The
present work attempts to bridge the areas of P systems and grammar systems
by introducing a notion of a communication mode for tissue P systems that is
inspired by the concept of a derivation mode used in grammar systems. The
notion of a communication mode is mainly related to the t-mode of derivation:
rewrite a string as many times as possible till a terminal string is produced [5].
In particular, the result proved in Theorem 2 is in a sense coherent with the
similar characterisation of ET 0L provided in [5] for grammar systems with the
t-mode of derivation. Future research in this respect may be dedicated to better
characterize the concepts of communication mode, active component, terminal
derivation in the context of P systems. Other investigations may be dedicated to
study P systems with string objects in relationship to the two standard models of
grammar systems: CD grammar systems and PC grammar systems. Approaches
in this direction can already be found in [2], [6].

182 F. Bernardini and R. Freund

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: The Molecular
Biology of the Cell. Fourth Edition. Garland Publ. Inc. London (2002)

2. Bernardini, F., Gheorghe, M.: Population P Systems and Grammar Systems. In:
E. Csuhaj-Varjú, Gy. Vaszil (eds.): Proceedings of Grammar Systems Week 2004,
Budapest, Hungary, July 5-9, 2004. MTA SZTAKI Budapest (2004) 66–77

3. Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems: Univer-
sality Results. Soft Computing 9, 9 (2005) 640–649

4. Cavaliere, M.: Evolution-Communication P Systems. In: Păun, Gh., Rozenberg, G.,
Salomaa, A. and Zandron, C. (eds.): Membrane Computing. International Work-
shop, WMC-CdeA 02, Curtea de Argeş, Romania, August 19-23, 2002. Revised
Papers. Lecture Notes in Computer Science 2597 Springer (2003) 134–145

5. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, Gh.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach London
(1994)

6. Csuhaj-Varjú, E., Păun, Gh., Vaszil, Gy.: Grammar Systems versus Membrane
Computing: The Case of CD Grammar Systems. To appear in Fundamenta Infor-
maticae (2006)

7. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
Berlin (1989)

8. Freund, R., Oswald, M.: Modelling Grammar Systems by Tissue P Systems Work-
ing in the Sequential Mode. In: E. Csuhaj-Varjú, Gy. Vaszil (eds.): Proceedings of
Grammar Systems Week 2004, Budapest, Hungary, July 5-9, 2004. MTA SZTAKI
Budapest (2004) 179–199

9. Freund, R., Păun, Gh., Pérez-Jiménez, M.J.: Tissue-like P systems with channel
states. Theoretical Computer Science 330 (2005) 101–116

10. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A.: Tissue P Systems.
Theoretical Computer Science 296 (2003) 295–326

11. Păun, A., Păun, Gh., Rozenberg, G.: Computing by Communication in Networks of
Membranes. International Journal of Foundations of Computer Science 13 (2002)
779–798

12. Păun, Gh.: Computing with Membranes. Journal of Computer and System Sciences
61 (2000) 108–143

13. Păun, Gh.: Membrane Computing. An Introduction. Springer (2002)
14. Păun, Gh.: Grammar Systems vs. Membrane Computing: A Preliminary Ap-

proach.In: E. Csuhaj-Varjú, Gy. Vaszil (eds.): Proceedings of Grammar Systems
Week 2004, Budapest, Hungary, July 5-9, 2004. MTA SZTAKI Budapest (2004)
255–275

15. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press New York (1980)

16. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. 3 volumes.
Springer (1997)

17. The P Systems Web Page. http://psystems.disco.unimib.it

Towards a Hybrid Metabolic Algorithm

Luca Bianco and Federico Fontana

University of Verona
Department of Computer Science

15 strada Le Grazie – 37134 Verona, Italy
bianco@sci.univr.it, federico.fontana@univr.it

Abstract. During recent years stochastic algorithms have deserved
much attention from the computational biology research communities. In
this paper we derive a hybrid version of the formerly known Metabolic
Algorithm that is enriched with stochastic features, whose impact on
the dynamics of the system is especially prominent when the amount
of metabolite becomes smaller. This hybrid procedure represents a first
attempt to let the Metabolic Algorithm deal with low concentrations of
substances according to a non-deterministic policy.

1 Introduction

The simulation of a metabolic process relies on several, sometimes well-establi-
shed methods and algorithms that either compute its evolution deterministically,
as it happens with methods discretizing a Reaction Rate Equation, or stochas-
tically, as it happens with algorithms solving or approximating the Chemical
Master Equation [6,19]. The latter algorithms are quite accurate but computa-
tionally expensive, given the individual handling they must do of each molecule,
and provided that only several repeated realisations of the same simulation in
principle provide sufficient information about the expected behavior of a system.
For this reason, approximated versions of these algorithms have been proposed
in order to diminish the computational burden of the stochastic approach [4].

Less is known about the possibility to gain efficiency, without loosing too
much in accuracy, by using hybrid algorithms capable of mixing the determinis-
tic and the stochastic paradigms together. Such an approach is inherently hard
to deal with due to the theoretical and technical difficulties that arise when a
system, whose kinetic rates range among different scales, is split into a multiple
observation-level model accounting for different computation strategies depend-
ing on the level of observation [19]. Nevertheless, such an approach has been
already pursued for simulating complex biochemical systems [9,17] and also in
the processing of proteomic data1 [20].

Our work here contributes to this research area, but it is still far from adding
substantial knowledge about this possibility. Despite this we will show how a
hybrid strategy to biochemical system modeling can be implemented within
1 An interesting introduction to the use of hybrid algorithms in computational biology

can be found online at http://www.bioinfo.de/isb/2004/04/0024/main.html.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 183–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

184 L. Bianco and F. Fontana

MP systems, by extending their deterministic evolution mechanism in order to
include randomness that is always present in biochemical systems.

Metabolic P (MP) systems [11,3] are rooted in the theory and formalism of
P systems [13,14], to which they couple a deterministic computational strategy
called P Metabolic (MP) Algorithm [12,1,3]. P systems have been envisioned
to find solutions for several problems [5]. In the meantime they have been a
fertile ground for the birth of stochastic algorithms for the representation of the
evolution of biochemical systems.

The P system community has approached the question of stochastic evolution
in several ways. One strategy is known as Dynamical Probabilistic P systems, and
employs maximal parallelism both at the rule and object level: there, the prob-
ability of tossing a rule is dynamically calculated by starting from the multiset
of objects that are present in the system during a transition, as well as from the
kinetic constant associated to the rule. Another is called Multi-compartmental
Gillespie’s algorithm and its aim is to extend the Gillespie algorithm to a multi-
compartment environment as it happens for P systems having more than one
membrane [6,16,15].

By exploiting the versatility of the MP algorithm, we can straightforwardly
integrate a stochastic strategy for choosing the strength of the rules governing
the system evolution, in a way that the smaller the amount of a substance is,
the stronger the effects of randomness. In practice this is made by altering the
deterministic character of the reaction maps proportionally to their magnitude
[3]. In the end of the paper this hybrid algorithm is tested upon traditional case
studies such as the BZ reaction and the Lotka-Volterra dynamics [7,3,10,2].

In the following of the paper we assume the reader to be friendly enough with
the notation and the formalism of MP systems, whose leading ideas are that:

– the system evolves by allocating to each evolutionary rule object amounts
that play the role of reactants, as well as by obtaining from such rules object
amounts that play the role of products;

– nonlinear functions of the state of the system (that is identified by the
amount of every object), called reaction maps, are computed at the beginning
of each transition for assigning object amounts to the rules.

For further details on MP systems and the MP algorithm (shortly MPA) we
refer the reader to [11,3].

In this paper, after introducing the hybrid formulation of the MP algorithm,
called h-MPA, simulation examples are provided of two versions of the Belousov-
Zhabotinsky (BZ) reaction as well as the Lotka-Volterra dynamics.

2 The Algorithm

The idea of the hybrid algorithm is to switch from a completely deterministic
(MPA) to a completely stochastic approach (s-MPA) depending on the size of
the population dealt with by each rule. A threshold τ is used to control the
switch between the two strategies and in this way the whole system becomes

Towards a Hybrid Metabolic Algorithm 185

a stochastic-deterministic hybrid system (h-MPA). If the population is small
compared to the threshold, the stochastic strategy should be preferred, otherwise
the deterministic strategy is able to provide an acceptable approximation of the
dynamics and is thereby preferable.

In principle, for each rule a deterministic or stochastic strategy has to be
chosen according to the size of the population it deals with. Let us suppose to
have a rule r : XY → ... , and to fix a threshold τ . If

min(q(X), q(Y)) < τ,

then the strategy of application of r is chosen to be stochastic, else it is
deterministic—q(Z) denotes the amount of the species Z present into the system.
Note that this minimum gives the bottleneck of the reaction, but it is different
from the limiter of the standard metabolic algorithm because here we do not
take into account the strength of the rules. A population, then, undergoes a
stochastic dynamics if its size is smaller than the threshold.

Of course, due to cooperation, a population can undergo a stochastic dynamics
even if it is bigger than the threshold, but it is involved in reactions dealing with
at least one reactant whose total amount in the system is below the threshold.

What do we mean by stochastic strategy? The idea is to keep a “population
perspective” of the dynamics, as in the spirit of the metabolic algorithm. Ac-
cordingly, a stochastic strategy for the simulation of a rule r with the system in
state s consists in:

i) evaluating the reaction map Fr(s) as in the deterministic MPA;
ii) picking up a random number from a probability distribution depending on

Fr(s), let us call this number v;
iii) applying the rule as in MPA by using v instead of Fr(s) as a reaction map,

where a generic state s can be thought as a vector of concentrations of all the
elements of the system (that are assumed ordered) and it is denoted as s-MPA(s)
(we denote with MPA(s) the purely deterministic evolution of state s).

This pseudo-algorithm gives an intuitive idea of the process, but it does not
simulate properly the application of rule r (for example, we need to specify
stochastic reaction maps of all reactants of rule r). In Subsection 2.3 a full
description of the hybrid algorithm is given. Before entering the description of
the algorithm, another preliminary question need to be addressed.

How do we quantify the dependency of the probability distribution on Fr?
The idea is to respect somehow the shape of the (deterministic) reaction map
in the random choice of the stochastic reaction map. This is because reaction
maps should take into account the features of the interactions between elements
of the system and with this respect it seems reasonable to consider them as
“independent of the scale” and thereby valid also for small populations of objects.
Nevertheless, the generality of the approach allows the modeler to specify a
different shape for the reaction maps employed in the stochastic part of the
algorithm, but since this is not limiting, here we will not exploit this capability.

One possible implementation of the random step (ii) is to generate a random
number v by using a pseudo random sequence generator (PRSG) with a gaussian

186 L. Bianco and F. Fontana

distribution of mean Fr(s) and a suitable variance, allowing a certain degree of
variability in the dynamics.

2.1 PRSG

Standard Matlab (but not only it) provides a primitive for reckoning a (pseudo)
random number chosen from a normal distribution with mean zero and variance
one. If we denote with vnor such a random number when obtained from a normal
distribution, then

vrnd = m + σ · vnor

is a (pseudo)random number chosen from a gaussian distribution with mean m
and variance σ2.

This expression does not necessarily produce positive values. As reaction maps
cannot assume negative values, our PRSG skips eventual negative values. This
strategy introduces a distortion of the gaussian paradigm, and in the future we
will look for a more coherent random generation of numbers.

In all experiments we have used the PRSG to obtain a stochastic reaction
map by starting from a deterministic one Fr evaluated in a certain configuration
s of the system, thereby we have used m = Fr(s) as mean value and (see two
histograms of random sequences of 100000 numbers depicted in Figure 1) with
σ2 = 0.5 · Fr(s)2 as variance.

Figure 1 suggests that σ2 = 0.5 · Fr(s)2 is a possible choice for the variance,
giving enough variability in the distribution of the random number.

2.2 Deterministic, Stochastic or Both?

A sudden switch from the deterministic strategy (when the algorithm deals with
populations larger than the threshold) to the stochastic one seems to be un-
realistic. For instance, according to Schrödinger, a system’s tendency toward a
random behavior is inversely proportional to the square root of the number of
molecules [18].

Rather, our strategy configures itself as a continuous switch between the two
regimes along various intermediate degrees of determinism. The idea in this case
is to use a sigmoid function, whose input is the threshold and a population
value and whose output is the degree of determinism of the system (i.e., a real
value d in the unitary interval [0, 1] determining the rate of change reckoned by
means of the deterministic algorithm). Of course, the value 1−d is the degree of
stochasticity of the system. Given a threshold τ and an input value x specifying
the population size of the species considered, the value of the determinism degree
d produced by the sigmoid function can be computed as

d =
1

1 + e(10/τ)(τ−x) (1)

and, as previously said, it gives the degree of determinism (or stochasticity) of
the system. Note that the choice of this sigmoid function is empirical: several

Towards a Hybrid Metabolic Algorithm 187

0 100 200 300 400 500
0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2

x 10
5

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5

x 10
5

0

500

1000

1500

2000

2500

Fig. 1. Histograms of random sequences of 100000 samples with: mean 123 and variance
0.5 · 1232 (upper left), mean 123, variance 1232 (upper right), mean 42000, variance
0.5 · 420002 (lower left) and mean 42000, variance 420002 (lower right)

other functions can be employed (for example, the steepness of the sigmoid can
be increased by using b > e, such as 8, instead of the Napier’s base e of the
exponential, or it can be decreased by using b < e, such as 2).

In Figure 2 two examples of the sigmoid function (1) are represented; on the
left the threshold τ is set to 5000, whereas on the right it is set to 450. We can
see that when the population size equals the threshold τ we have a strategy
that is half deterministic and half stochastic, for this reason it may be better to
consider the following sigmoid function:

d =
1

1 + 4
20
τ′ (τ ′−x)

(2)

where τ ′ = 0.9τ , that is, the 90% of τ .
This newly defined threshold function is shown in Figure 3 (right). It is pos-

sible to appreciate that when the population size equals the threshold τ the
strategy is deterministic at more than 95%. Although further investigation on
the threshold function is needed, in the experiments described in the next section
the modified sigmoid has been used.

188 L. Bianco and F. Fontana

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population size (x)

D
et

er
m

in
is

m
 d

eg
re

e
(d

)

X: 5000
Y: 0.5

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

er
m

in
is

m
 d

eg
re

e
(d

)

Population size (x)

X: 450
Y: 0.5

Fig. 2. Sigmoid function (1): population range 0–100000 τ = 5000 (left); population
range 0–900 τ = 450 (right)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

er
m

in
is

m
 d

eg
re

e
(d

)

Population size (x)

X: 5000
Y: 0.9561

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

et
er

m
in

is
m

 d
eg

re
e

(d
)

Population size (x)

X: 450
Y: 0.9561

Fig. 3. Sigmoid function (2): population range 0–100000 τ ′ = 5000 (left); population
range 0–900 τ ′ = 450 (right)

2.3 h-MPA

The idea of the algorithm is to apply each rule in a deterministic way whenever
the population involved in it is bigger than a predetermined threshold; in turn,
a rule is applied in a stochastic way whenever the population it deals with is
below the threshold. For each rule, the total (i.e., not weighted by reaction
maps) amount of the bottleneck is reckoned (the bottleneck of a reaction is the
reactant whose total amount in the system is the lowest one when compared with
the amounts of all other reactants of the rule) and a sigma function is calculated
on it in order to obtain the determinism degree of the rule. Then, according to
this determinism degree, the rule is applied partially in a deterministic way and
partially in a stochastic way.

Let us assume a system specified by means of n rules r1, ..., rn, defined over the
alphabet A, initially in a state s0, and let τ be the deterministic degree threshold
discussed previously. If we denote with d1(si), ..., dn(si) the determinism degrees
of each of the n rules (calculated as we will see in a while), we can express
the dynamics of the system as the sequence s0, s1, ... where a transition from
a generic state si to the next one can be calculated by computing both the

Towards a Hybrid Metabolic Algorithm 189

stochastic and deterministic variation for all the rules and then weighting them
according to the corresponding determinism degree. In particular, given a rule rj

with 1 ≤ j ≤ n, its variation induced on the state si, δrj (si), can be calculated
as:

δrj (si) = dj(si) ·MPAj(si) + (1− dj(si)) · s-MPAj(si)

where MPAj(si) is the deterministic application of rule rj to the state si while
s-MPAj(si) is the stochastic application of rule rj to the state si.

A transition from a state si to the next one si+1 by means of the hybrid
metabolic algorithm can be described by the following meta-code:

Step 0a: Deterministic reaction maps computation. The set of deterministic
reaction maps is calculated in the current state:

FD
rj

(si) ∀j = 1, ..., n .

Let us denote with FD(si) the set of all deterministic reaction maps in the
state si.
Step 0b: Stochastic reaction maps computation. The set of stochastic reac-
tion maps is calculated in the current state:

FS
rj

(si) = RND(FD
rj

(si), 0.5 · (FD
rj

(si))
2
) ∀j = 1, ..., n

where RND(a, b) denotes a gaussian distributed random number, computed
as seen before, with mean a and variance b, for a, b ∈ R. Note that, as similar
to what is made in the τ -leap method, while doing this calculation we have
implicitly assumed constancy of the state [8].

Let us denote with FS(si) the set of all stochastic reaction maps in the
state si.
Step 1: Single rule variations. Deterministic and stochastic variations of
each rule to each object of the system are computed.

For each couple (rj , X) with j = 1, ..., n and X ∈ A, assuming each rule
to have the form rj = αj → βj :
o) If X 	∈ αj AND X 	∈ βj, then set both the deterministic and stochastic

variation induced by rj on X respectively to:

δD
rj ,X(si) = 0

δS
rj ,X(si) = 0

and goto the step o) of the next couple (if any), otherwise goto step i).
i) Calculate the rate dj as:

1. Find the bottleneck2 of reaction rj :

X = min
Y ∈αj

q(Y).

2 Other choices for the bottleneck calculation are also reasonable; as it takes into
account the size of the population involved in each rule instead of the global size of
populations, the choice made here simplifies the algorithm.

190 L. Bianco and F. Fontana

2. The total amount of the bottleneck is calculated

x = q(X).

3. The deterministic rate is computed

dj =
1

1 + 4
20

0.9τ (0.9τ−x)
.

ii) Calculate the deterministic variation induced by rj on X , δD
rj ,X(si) as in

the standard metabolic algorithm with reaction maps taken from FD(si).
iii) Calculate the stochastic variation induced by rj on X , δS

rj ,X(si) as in the
standard metabolic algorithm with reaction maps taken from FS(si).

Step 2: Global variations and system update. The global deterministic ΔD
X

(si) and stochastic ΔS
X(si) variations are calculated by the weighted sum of

all single rules contributions, ∀X ∈ A:

ΔD
X(si) =

n∑
j=1

δD
rj ,X(si) · dj

ΔS
X(si) =

n∑
j=1

δS
rj ,X(si) · (1 − dj)

Xi+1 := Xi + ΔD
X(si) + ΔS

X(si)

where Xi denotes the amount of species X in configuration si.

Note that in the case of systems dealing with populations instead of concentra-
tions a rounding policy has to be devised.

3 Case Studies

The case studies presented in this section have been implemented using Matlab,
and resulted in numerical simulations whose computation typically took some
seconds.

The first case study is the BZ reaction, that is discussed in two distinct vari-
ants, while the second case study is the Lotka-Volterra predator-prey system.

3.1 BZ (Model 1)

The first Brusselator model is composed by the following set of rewriting rules
and deterministic reaction maps:

r1 : λ −→ X Fr1 = 10
r2 : XXY −→ XXX Fr2 = 900 q(X)2q(Y)
r3 : X −→ Y Fr3 = 200 q(X)
r4 : X −→ λ Fr4 = 5 q(X).

Towards a Hybrid Metabolic Algorithm 191

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Y

X
0 50 100 150 200

0

1000

2000

3000

4000

5000

6000

7000

steps

co
nc

X
Y

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Y

X
0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

Y

X

Fig. 4. Two realisations of a hybrid simulation of the Brusselator (τ = 2000, deter-
ministic rate of r1 set to 0.5). Corresponding phase space representations are depicted
on the lower part of the figure.

The initial amount of objects X and Y are set respectively to 50 and 5000
and both procedures deal with integer objects (the contribution of all rules are
floored to the nearest small integer). The deterministic rate that multiplies the
variation obtained by the rule is a real value in general, hence for this reason we
can have real values in the dynamics.

Note that, due to the fact that λ is not a population, we need a strategy to
deal with rule r1, that is, we can decide to have a either a completely deter-
ministic feeding of the system, a completely stochastic one, or every degree of
determinism.

The algorithm can provide several behaviors depending on the value of the
determinism threshold τ . It can show a completely deterministic dynamics if
the threshold of determinism is set to 0, or conversely a completely stochastic
one, in the case of the threshold τ → ∞ (or at least larger than the maximum
population size in the whole simulation) [3,12]. Hybrid solutions are obtained
for intermediate thresholds (see Figure 4, where τ = 2000 and, on the right, we
can observe that the dynamics shows a slight stochasticity in the first instants
and then the oscillation is suppressed).

192 L. Bianco and F. Fontana

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

steps

co
nc

Reactant
Product

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

steps

co
nc

Reactant
Product

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

Reactant

P
ro

du
ct

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

Reactant

P
ro

du
ct

Fig. 5. Two realizations of completely stochastic simulations of the Brusselator (τ =
1099). Corresponding phase plots are shown in the lower figures.

3.2 BZ (Model 2)

The second Brusselator model deals with the following set of rewriting rules and
deterministic reaction maps:

r1 : A −→ AX Fr1 = 10−3

r2 : X −→ Y Fr2 = 50
r3 : Y −→ X Fr3 = 2.5 · 10−5 q(X)2

r4 : X −→ λ Fr4 = 5
r5 : X −→ X Fr5 = 1000
r6 : Y −→ Y Fr6 = 1000
r7 : A −→ A Fr7 = 1000.

The initial amounts for X and Y are respectively set to 1 and 10, while the
constant feeding element A has an amount set to 5 · 106. The rate parameters
have been taken from [7]. Moreover, rounding has not been used.

Two completely stochastic realizations are depicted in Figure 5, where the
phase space is shown in the lower plots. Two hybrid realizations using different
thresholds are depicted in Figure 6.

Towards a Hybrid Metabolic Algorithm 193

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

steps

co
nc

Reactant
Product

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

steps

co
nc

Reactant
Product

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

Reactant

P
ro

du
ct

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

Reactant

P
ro

du
ct

Fig. 6. Two hybrid simulation of the Brusselator (τ = 1000 and τ = 3000 respectively
for the left hand part and right hand part of the figure). Corresponding phase plots
are shown in the lower figures.

3.3 Lotka-Volterra

The Lotka-Volterra metabolic rewriting system is composed by the following set
of rewriting rules and deterministic reaction maps [2]:

r1 : X
k1−→ XX Fr1 = 3 · 10−3

r2 : XY
k2−→ Y Y Fr2 = 4 · 10−6 · max(X(k), Y (k))

r3 : Y
k3−→ λ Fr3 = 3 · 10−3 q(X)

r4 : X −→ X Fr4 = 5
r5 : Y −→ Y Fr5 = 5.

Moreover, the initial populations of both predators (Y) and preys (X) are set to
900 and, for each species, an inertia (i.e., specified by rules of the type X −→ X
accounting for objects that cannot react in the considered instant) equal to 5 is
also considered. Note that no rounding in the population dynamics is performed
in this case. As usual, we can have completely deterministic dynamics [2] as
well as a completely stochastic dynamics (see Figure 7). Hybrid behaviors can
be obtained for intermediate values of τ (see Figure 8). An interesting case has
arisen in a simulation using τ = 800: in this simulation the randomness has led

194 L. Bianco and F. Fontana

0 500 1000 1500 2000
550

600

650

700

750

800

850

900

950

1000

steps

co
nc

Prey
Predator

200 400 600 800 1000 1200 1400 1600
200

400

600

800

1000

1200

1400

1600

Prey

P
re

da
to

r

Fig. 7. Completely stochastic simulation of the LV system (τ = 1020), both evolution
(left) and phase (right)

0 0.5 1 1.5 2

x 10
4

300

400

500

600

700

800

900

1000

1100

1200

1300

steps

co
nc

Prey
Predator

0 0.5 1 1.5 2

x 10
4

400

500

600

700

800

900

1000

1100

steps

co
nc

Prey
Predator

300 400 500 600 700 800 900 1000 1100 1200 1300
300

400

500

600

700

800

900

1000

1100

1200

1300

Prey

P
re

da
to

r

400 500 600 700 800 900 1000
400

500

600

700

800

900

1000

1100

Prey

P
re

da
to

r

Fig. 8. Hybrid simulation of the LV system: τ = 700 (left); τ = 800 (right). Corre-
sponding phase planes are shown in the lower figures.

the system to rapidly fall toward the steady-state. Of course, this behavior is not
directly related to the choice of the threshold but, rather, to the random choices
performed in the simulation. Otherwise, it would be impossible to obtain this
dynamics from a purely deterministic simulation.

Towards a Hybrid Metabolic Algorithm 195

4 Conclusion

Although both deterministic and stochastic models for the simulation of bio-
chemical systems have reached a good maturity, only a few things have been
done in the direction of hybrid algorithms. We have shown here that this issue
potentially leads to interesting dynamic representations, especially if coupled
with the inherently versatile modeling formalism provided by MP systems.

Besides this, much still has to be done to make this strategy really competitive.
Possible improvements in the short run may lead to a more suitable definition
of the sigmoid function, and to a better tuned PRSG. In the medium and long
run, alternative formalization of the h-MPA can be envisioned. In particular, a
procedure accounting for two reaction maps for every rule, the former related
to the deterministic, the latter to the stochastic behavior, may lead to rich
realizations of a system evolution. For instance, it would be desirable to account
for constants which depend on the regime, by using deterministic as well as
stochastic rate constants that can be straightforwardly derived by exploiting the
known relationships existing between the two [6].

References

1. L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological
dynamics. In G. Ciobanu, G. Păun, and M.J. Pérez-Jiménez, editors, Applica-
tions of Membrane Computing, pages 81–126. Springer, 2006.

2. L. Bianco, F. Fontana, and V. Manca. Reaction-driven membrane systems. In
L. Wang, K. Chen, and Y.-S. Ong, editors, Advances in Natural Computation,
First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005,
Proceedings, Part II, volume 3611 of Lecture Notes in Computer Science, pages
1155–1158. Springer, 2005.

3. L. Bianco, F. Fontana, and V. Manca. P systems with reaction maps. International
Journal of Foundations of Computer Science, 17(1):27–48, 2006.

4. Y. Cao, D. Gillespie, and L. Petzold. Avoiding negative populations in explicit
Poisson tau-leaping. J. of Chemical Physics, 2005(123), 2005.

5. G. Ciobanu, G. Păun, and M.J. Pérez-Jiménez, editors. Applications of Membrane
Computing. Springer, Berlin, 2006.

6. D.T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. of Computational Physics, 22:403, 1976.

7. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. of
Physical Chemistry, 81(25):2340–2361, 1977.

8. D.T. Gillespie. Approximate accelerated stochastic simulation of chemically react-
ing systems. J. of Chemical Physics, 115(4):1716–1733, 2001.

9. E.L. Haseltine and J.B. Rawlings. Approximate simulation of coupled fast and slow
reactions for stochastic chemical kinetics. J. of Chemical Physics, 117(15):1357–
1372, 2002.

10. R. Illner, C.S. Bohun, S. McCollum, and T. van Roode. Mathematical Modelling.
American Mathematical Society, Providence, RI, 2005.

11. V. Manca. Topics and problems in metabolic P systems. In G. Păun and M.J.
Pérez-Jiménez, editors, Proc. of the Fourth Brainstorming Week on Membrane
Computing (BWMC4), Sevilla, Spain, February 2006. Fenix Editora.

196 L. Bianco and F. Fontana

12. V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:
Applications to biological phenomena. In G. Mauri, G. Păun, M.J. Pérez-Jiménez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, 5th International
Workshop, WMC 2004, volume 3365 of Lecture Notes in Computer Science, pages
63–84. Springer, 2005.

13. G. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
14. G. Păun and G. Rozenberg. A guide to membrane computing. Theoretical Com-

puter Science, 287:73–100, 2002.
15. M.J. Pérez-Jiménez and F.J. Romero-Campero. P systems: a new computational

modelling tool for systems biology. Transactions in Computational Systems Biol-
ogy, 2006. In press.

16. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17(1):183–
194, 2006.

17. H. Salis and Y. Kaznessis. Accurate hybrid stochastic simulation of a system of
coupled chemical or biochemical reactions. J. of Chemical Physics, 122:1–13, 2005.

18. E. Schrödinger. What is life? With Mind and Matter and Autobiographical sketches.
Cambridge University Press, 1967.

19. T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in
vivo reactions. Computational Biology and Chemistry, 2004(28):165–178, 2004.

20. X. Zhang. A hybrid algorithm for determining protein structure. IEEE Intelligent
Systems, 9(4):66–74, 1994.

Towards a P Systems Pseudomonas Quorum
Sensing Model

Luca Bianco1, Dario Pescini2, Peter Siepmann3, Natalio Krasnogor3,
Francisco J. Romero-Campero4, and Marian Gheorghe5

1 Department of Computer Science, University of Verona
Strada Le Grazie 15, 37134 Verona, Italy

bianco@sci.univr.it
2 Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano-Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

pescini@disco.unimib.it
3 School of Computer Science and Information Technology

University of Nottingham
Jubilee Campus, Nottingham, NG81BB, UK

{Peter.Siepmann, Natalio.Krasnogor}@nottingham.ac.uk
4 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Seville, Avda. Reina Mercedes, 41012 Sevilla, Spain

fran@cs.us.es
5 Department of Computer Science, The University of Sheffield

Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

Abstract. Pseudomonas aeruginosa is an opportunistic bacterium that
exploits quorum sensing communication to synchronize individuals in a
colony and this leads to an increase in the effectiveness of its virulence.
In this paper we derived a mechanistic P systems model to describe the
behavior of a single bacterium and we discuss a possible approach, based
on an evolutionary algorithm, to tune its parameters that will allow a
quantitative simulation of the system.

1 Introduction

The quorum sensing is a particular form of cell-to-cell communication in bacteria
which exploits the concentration of a particular molecule, called signal, to “sense”
the population density of the colony. The quorum sensing regulatory network is
used by the individuals of the colony for collective synchronization and therefore
for a coherent control over the gene expression. In Pseudomonas aeruginosa this
mechanism is responsible for the effectiveness of the virulence of this bacterium
[14,23,10,9]. In fact, a single bacterium starts to express his virulence factors
only when it senses that the bacteria population has reached a certain threshold
level such that the host response will be inadequate.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 197–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

198 L. Bianco et al.

The activation of a complex cellular response is what distinguishes the quorum
sensing as a communication regulatory circuit from other density dependent
responses such as the metabolization or detoxification of small molecules.

The simplest quorum sensing network known in Gram-Negative bacteria is
also the first one ever discovered [25,17]. It has been found in the Vibrio fischeri
bacterium, also known as Photobacterium fischeri and is nowadays considered
as the paradigm of this cell communication process. In this network two proteins
and one signalling molecule are involved. The R protein is a transcriptional regu-
lator, while the I protein is the synthase for the signalling molecule, also referred
to as the autoinducer. An important role is also played by the confinement of
the bacterial colony. The fact that the autoinducer molecule is not dispersed
in the environment allows its diffusion inside the individuals and therefore its
concentration sensing.

At low cell densities the I protein synthesizes the autoinducer at a basal rate
and the signal freely diffuses outside the bacterium. The concentration of the sig-
nal inside each bacterium is increased by the combined effect of the confinement
and the increase of the population. At this point, the binding of the R protein
with the autoinducer becomes more likely. The binding of the signal molecules
activates the R protein transcriptional regulator. Since the I gene is the target
of the R protein, the bacterium starts to produce more and more signal. The
regulation network signal autoinduces its transcription. In this way the high con-
centration of the autoinducer coordinates the transcription of all the genes that
are target of the R protein.

The quorum sensing in Pseudomonas aeruginosa is more complex, nevertheless
intriguing, since this bacterium uses two different quorum sensing systems which
interact with each other.

The aim of this work is to provide a P system model [15,16] of the bacterium
Pseudomonas aeruginosa quorum sensing focusing on the communication mech-
anisms. The parameters of the model will be tuned using an evolutionary al-
gorithm. Our long term aim is to reproduce the characteristic behavior of the
quorum sensing in Pseudomonas aeruginosa, namely, the switch between two
distinct stable steady solutions: the first describing the behavior of the non-
quorated bacterium (i.e., with low levels of autoinducer), the second modeling
its quorated behavior (i.e., the behavior obtained with high concentration of the
autoinducer molecule). Once the model will be entirely defined several simula-
tions with different strategies [6,20,18] will be run.

First of all, we address the modeling of the internal dynamics of one single
bacterium, tuning its kinetic constants in a way ensuring its non-quorated be-
havior. At a later stage, we intend to exploit compartmentalization of P systems
to model a colony of bacteria each of them internally specified according to the
same set of kinetic constants. In this respect we will extend the current model
to a Population P systems approach [3] that has been already used to express
some aspects of quorum sensing in bacterium Pseudomonas aeruginosa [22] and
for self-assembly problems [4].

Towards a P Systems Pseudomonas Quorum Sensing Model 199

2 An Initial Model

The first stage of our investigation is intended to describe the quorum sensing
related network of each bacterium to capture its main features into a mecha-
nistic model. The quorum sensing internal pathway of each bacterium is taken
from models discussed in [11,9] and a graphical representation of all elements
involved in it, as well as some relevant relationships between them, are depicted
in Figure 1.

LasR

LasR

lasR lasI

LasI

3O

Vfr

rsaL

RsaL

Fig. 1. The Pseudomonas quorum sensing model analyzed here (from [9]). Note that
double arrows denote reversible reactions, bold ones the degradation process and the
empty ones the inhibitory process.

According to this model, the quorum sensing pathway comprises two intercon-
nected signalling cascades. The main elements involved in the first one are pro-
teins LasR, RsaL, LasI (as well as the genes involved in their production), the
autoinducer molecule 3-oxo-C12-HSL and the active complex LasR-3-oxo-C12-
HSL. The key elements of the second system are the proteins RhlR and RhlI
(as well as the genes involved in their production), the autoinducer molecule C4-
HSL and the active complex RhlR-C4-HSL. The first one of the two signalling
cascades is called las system because it was shown to regulate the expression
of LasB elastase. This pathway regulates other virulence factors such as LasA
protease, exotoxin A, alkaline protease A as well as the expression of at least two
genes of the xcp secretory pathway. The las pathway is positively controlled by
GacA and Vfr whereas it is inhibited by RsaL that, in turn, is positively regu-
lated by the active complex LasR-3-oxo-C12-HSL and whose role is to repress
the transcription of the lasI gene.

The second signalling system involved in the model is named rhl system be-
cause it controls the expression of rhamnolipid via the production of rhlAB

200 L. Bianco et al.

operon. The autoinducer molecule in this case is C4-HSL and the active com-
plex is RhlR-C4-HSL. It has been shown that this cascade is necessary for the
production of some virulence factors like LasB elastase and LasA protease, as
well as pyocyanin, cyanide and alkaline protease. For this reason this signalling
system is also known as vsm (virulence secondary metabolites).

Although the corresponding autoinducing molecules are highly selective (and
thus not interchangeable at all), several interconnections between the las and
the rhl pathways of the quorum sensing in Pseudomonas aeruginosa are known.
One link between them has been already mentioned and it is constituted by
the LasB elastase, that needs both LasR-3-oxo-C12-HSL and RhlR-C4-HSL
for its production. More interestingly, the las system is at a higher level in the
hierarchical regulatory cascade, in fact LasR-3-oxo-C12-HSL can activate the
expression of the rhlR gene. In addition, the active complex LasR-3-oxo-C12-
HSL can bind to RhlR preventing it to form the complex RhlR-C4-HSL.

2.1 The Differential Equation Model

Many models for the quorum sensing in the Pseudomonas aeruginosa are pre-
sented in literature and usually they approach the phenomenon from two differ-
ent angles. The first one describes the colony behavior by summarizing individual
dynamics as a state change avoiding a precisely detailed representation of each
of the bacterium quorum sensing networks [24,1]. The second one describes in a
more detailed fashion the quorum sensing pathway for each bacterium with the
purpose to model the emergent behavior of the whole colony [11].

We think that the P system framework is particularly suitable for this second
approach. In fact, the modularity, the compartmentalization, the hierarchical
structure and the rewriting rules (all features of P systems [16]) allow a conve-
nient description of this reality.

In [11] a model of the las signalling system has been devised, but no descrip-
tion is given of the rhl system. The graphical description of the quorum sensing
pathway depicted in Figure 1 has been translated into the set of eight differential
equations presented in the next page. The correspondence between differential
equation symbols and elements in the pathway are summarized in Table 1.

The production of the activated complex P by means of the autoinducer and
the LasR protein (whose expression is given by the product of the constitutive
elements concentrations with a rate kRA: kRARA) is an example of how cooper-
ative contributions are obtained in the differential equations approach by means
of the mass action law.

Basal rates productions and degradations are also taken into account, an ex-
ample of the former being the k1r element giving the basal production of LasR
protein (R), while an example of the latter is the degradation of the active com-
plex (P) represented by the element kPP . The production of messenger RNAs
from the corresponding genes is modeled with a Michaelis-Menten-like dynam-
ics depending on the concentration of the promoting factor, as it happens in
the case of the production of lasR and rsaL mRNAs (respectively r and s), the

Towards a P Systems Pseudomonas Quorum Sensing Model 201

first modeled by Vr
P

Kr + P
and the second by Vs

P

Ks + P
. The production of lasI

mRNA (l) is also down-regulated by the presence of RsaL protein (S) and this

is modeled by Vl
P

Kl + P

1
KS + S

, in which the Michaelis-Menten-like dynamics

is attenuated by an inversely proportional function of the RsaL concentration.

dP

dt
= kRARA− kPP

dR

dt
= −kRARA + kPP − kRR + k1r

dA

dt
= −kRARA + kPP + k2L− kAA

dL

dt
= k3l− kLL

dS

dt
= k4s− kSS

ds

dt
= Vs

P

Ks + P
− kss

dr

dt
= Vr

P

Kr + P
− krr + r0

dl

dt
= Vl

P

Kl + P

1
KS + S

− kll + l0

(1)

Unfortunately, no value is known for the 21 kinetic constants present in the set
of differential equations (1). To overcome this problem, in [11] several simplifying
assumptions are considered, that lead to fewer equations and fewer parameters
as well.

In the following we will describe a possible parameter estimation strategy
to tackle this problem (see Section 4). The idea is to relay to this differential
equations system as a “synthetic bio-experiment” used to confront our model to.

2.2 A First P Systems Model

Several attempts to simulate the quorum sensing in bacteria are present in P
systems literature [5,19], but, as far as we know, none of them deals with the
Pseudomonas aeruginosa bacterium.

Here we describe a direct P systems translation of the differential equation
model previously discussed [11]. Formally, the Pseudomonas P system is

Π = (A, μ,w,R)

202 L. Bianco et al.

Table 1. Variable-concentration correspondence between the differential formulation
and the graphical description of the quorum sensing model of Pseudomonas aeruginosa
(from [11])

Variable Concentration
R LasR
A 3-oxo-C12-HSL
P LasR-3-oxo-C12-HSL
L LasI
S RsaL
r lasR mRNA
l lasI mRNA
s rsaL mRNA

where:

– A = {geneR, geneL,R,A, P, L, S, r, l, s} is the alphabet;
– μ = []0 is the membrane structure: since we address the single bacterium

case, it contains the cellular membrane only;
– w = geneR geneL is the initial configuration that comprises only LasR and

LasI genes, thus is represented as the string;
– R = {r1, · · · , r18} is the set of the rules:

r1 : geneR −→ geneR + r
r2 : r −→ λ
r3 : r −→ r + R
r4 : P −→ P + r
r5 : R + A −→ P
r6 : P −→ R + A
r7 : P −→ P + s
r8 : s −→ λ
r9 : S −→ λ
r10 : s −→ s + S
r11 : P −→ P + l
r12 : l −→ l + L
r13 : l −→ λ
r14 : geneL −→ geneL + l
r15 : L −→ λ
r16 : L −→ L + A
r17 : A −→ λ
r18 : R −→ λ

Note that, symbols in A correspond to the variables of the differential equation
and their correspondence to the biological reality is given in Table 1. Two new
elements (i.e., geneR and geneL) are introduced, which account for the genes
involved in the basal production of the LasR and LasI mRNAs.

Towards a P Systems Pseudomonas Quorum Sensing Model 203

Each one of the rules in R is directly obtained from the differential description
of the considered quorum sensing model. For examples, we can see that rule r1
models the basal production of the LasR mRNA, while rule r2 expresses its
degradation, moreover rules r5 and r6 describe the reversible reaction of the
complex P formation by starting from its fundamental constituents R and A.

Due to the different level of abstraction in the representation of different
parts of the model (as in the case of the Michaelis-Menten-like kinetics that
are modelled with a higher level of abstraction than other components of the
system), we cannot directly apply mechanistic algorithms [2] to this model. For
this reason, we will apply to this set of rules only the strategy known as Metabolic
Algorithm (for details refer to [6]), whose simulation results, together with some
numerical solutions of the set of differential equations (1), are shown in Section
2.3 for different choices of parameters.

The metabolic algorithm simulation needs to specify a set of reaction maps,
each one associated in a one-to-one manner to the rules of R. Reaction maps [6]
are functions defined over the state of the system (i.e., multiplicity or concen-
tration of all elements of the system depending on the case), that are used by
the Metabolic algorithm to allocate objects to rules. For example, as we will see
in a while, Fr1 , that is the reaction map of rule r1, is simply the constant rate
of production of LasR mRNA. We can have more complicated reaction maps,
as in the case of rule r4 that takes into account the Michaelis-Menten-like pro-
duction of the LasR mRNA elicited by the LasR-3oxo-C12-HSL complex. As
in the case of the rules, that specify the physical interactions and connections
between the elements of the modeled reality, we can obtain this information from
the differential equation formulation. The set of reaction maps employed in our
simulations are the following:

Fr1 = r0 Fr2 = kr

Fr3 = k1 Fr4 = Vr

Kr+P

Fr5 = kRA Fr6 = kP

Fr7 = Vs

Ks+P Fr8 = ks

Fr9 = k4 Fr10 = kS

Fr11 = Vl

(Kl+P)·(KS+S) Fr12 = k3

Fr13 = kl Fr14 = l0
Fr15 = kL Fr16 = k2
Fr17 = kA Fr18 = kR

(2)

Note that all reaction maps are constant apart from three of them. We have al-
ready discussed the meaning of the reaction map associated to rule r4; analogous
considerations hold for Fr7 as well. More interesting is the reaction map associ-
ated to rule r11 that takes into account the inhibitory effect of RsaL protein on
the production of the lasI mRNA.

Remarkably, the method allows the current description of different parts of
the system at different abstraction levels; moreover it is still applicable if all
reaction maps are constant, a condition required by mechanistic algorithms.

204 L. Bianco et al.

In the following some simulation results are shown, as well as the numerical
solution of the differential equation system, for some chosen parameters.

2.3 Simulation Results

Here we show how the same model-reality can be described with two different
approaches. As mentioned before, we do not have precise values for the model
parameters. For this reason, as a first comparison attempt, we make a completely
fictitious choice for them. As a further work, we plan to adopt some automatic
way for the parameter estimation (see Section 4 for more details). The initial
choice of parameters is here shown, and all the subsequent changes to this initial
parameter set will be explicitly mentioned:

kRA = 10 kP = 2
kR = 5 k1 = 1
k2 = 1 kA = 1
k3 = 1 kL = 1
k4 = 1 kS = 1
Vs = 1 Ks = 1
ks = 0.5 Vr = 1
Kr = 1 kr = 1
r0 = 1 Vl = 1
Kl = 1 kl = 1
l0 = 1 KS = 1

(3)

The lack of biological information makes this choice completely arbitrary and
prevents us to compute the dynamics of the system by means of stochastic
algorithms such as the Gillespie one [12,13], Dynamical Probabilistic P Systems
[20] or the Multi-compartmental Gillespie [18].

In this section we compare the dynamics generated by the metabolic algo-
rithm with the solutions obtained for the corresponding differential equation
system. Figure 2 depicts the case in which parameters are chosen according to
(3). The dynamics of each species reaches a steady state in both approaches,
but the relative position of the species is different and this leads to two distinct
system dynamics. Moreover, the time of the two systems differs; in the solution
of the differential equation system this is measured in arbitrary units (due to
the arbitrary choice of parameters), while in the model based on P systems the
time is measured in steps of system evolution. In Figure 3 the choice of Vl = 0
switches off rule r11 of the P system model and in this case the results of the
two different approaches qualitatively match each other. Finally, the last choice
of parameters is aimed at obtaining a quorum sensing consistent behavior, that
is, in the case of a single bacterium in the environment it should not quorate
and thus the concentration of the complex P should reach the basal rate. Ac-
cordingly, we set KRA to the value 0.1. In this case, depicted in Figure 4, the
dynamics produced by the two approaches is qualitatively similar again.

Towards a P Systems Pseudomonas Quorum Sensing Model 205

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

P
R
A
L
S
s
r
l

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5000 10000 15000 20000 25000 30000

P
R
A
L
S
s
r
l

Fig. 2. Results for the quorum sensing model with parameters showed in (3) using
ODE approach (left) and metabolic algorithm (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30

P
R
A
L
S
s
r
l

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5000 10000 15000 20000 25000 30000

P
R
A
L
S
s
r
l

Fig. 3. Results for the quorum sensing model with Vl = 0 using ODE approach (left)
and metabolic algorithm (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

P
R
A
L
S
s
r
l

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5000 10000 15000 20000 25000 30000

P
R
A
L
S
s
r
l

Fig. 4. Results for the quorum sensing model with parameters kRA = .1 using ODE
approach (left) and metabolic algorithm (right)

3 Towards a Detailed P Systems Model

Although the preliminary P system model described in Subsection 2.2 showed
that we can obtain comparable results with the current models presented so

206 L. Bianco et al.

far, our intention is to refine the model defined above in order to allow the
simulation of its dynamics by means of mechanistic approaches like Gillespie ap-
proach [12,13], Dynamical Probabilistic P Systems algorithm [20] or the Multi-
compartmental Gillespie method [18]. In addition, this model is completely
driven by the set of differential equations and in same cases it is not entirely
biologically accurate. For example, in the case of rsaL mRNA production, when
different from other mRNAs productions, it does not show any basal rate pro-
duction. Moreover, it does not consider the binding of the transcription factor
to the appropriate gene site necessary to start the transcription process of the
DNA into the mRNA.

The formal description of the detailed P system model of Pseudomonas quo-
rum sensing is the following:

Π = (A, μ,w,R)

where:

– A = {Vfr, lasRgene, Vfr.lasRgene,mlasR,LasR, 3OHSL,LasR.3OHSL,
LasR.30HSL.lasRgene, lasIgene, LasR.30HSL.lasIgene,mlasI, LasI,
rsaLgene, LasR.3OHSL.rsaLgene,mrsaL,RsaL,RsaL.lasIgene} is the al-
phabet;

– μ = []0 is the membrane structure: since we address the single bacterium
case, it contains the cellular membrane only;

– w = Vfrn lasRgene lasIgene rsaLgene is the initial configuration that
comprises only the three genes and the protein Vfr that is needed to initiate
the transcription and should be initialized at an high amount n ∈ N;

– R = {r1, · · · , r28} is the set of the rules:

r1 : Vfr + lasRgene
k1−→ Vfr.lasRgene + Vfr

r2 : Vfr.lasRgene
k2−→ lasRgene

r3 : Vfr.lasRgene
k3−→ Vfr.lasRgene + mlasR

r4 : mlasR
k4−→ λ

r5 : mlasR
k5−→ LasR + mlasR

r6 : LasR
k6−→ λ

r7 : LasR + 3OHSL
k7−→ LasR.3OHSL

r8 : LasR.3OHSL
k8−→ LasR + 3OHSL

r9 : 3OHSL
k9−→ λ

r10 : LasR.3OHSL + lasRgene
k10−→ LasR.3OHSL.lasRgene

r11 : LasR.3OHSL.lasRgene
k11−→ LasR.3OHSL + lasRgene

r12 : LasR.3OHSL.lasRgene
k12−→ LasR.3OHSL.lasRgene + mlasR

r13 : LasR.3OHSL + lasIgene
k13−→ LasR.3OHSL.lasIgene

r14 : LasR.3OHSL.lasIgene
k14−→ LasR.3OHSL + lasIgene

Towards a P Systems Pseudomonas Quorum Sensing Model 207

r15 : LasR.3OHSL.lasIgene
k15−→ LasR.3OHSL.lasIgene + mlasI

r16 : mlasI
k16−→ λ

r17 : mlasI
k17−→ LasI + mlsaI

r18 : LasI
k18−→ λ

r19 : LasI
k19−→ LasI + 3OHSL

r20 : LasR.3OHSL + rsaLgene
k20−→ LasR.3OHSL.rsaLgene

r21 : LasR.3OHSL.rsaLgene
k21−→ LasR.3OHSL + rsaLgene

r22 : LasR.3OHSL.rsaLgene
k22−→ LasR.3OHSL.rsaLgene + mrsaL

r23 : mrsaL
k23−→ λ

r24 : mrsaL
k24−→ RsaL + mrsaL

r25 : RsaL
k25−→ λ

r26 : RsaL + lasIgene
k26−→ RsaL.lasIgene

r27 : RsaL.lasIgene
k27−→ RsaL + lasIgene

r28 : RsaL.lasIgene
k28−→ RsaL.lasIgene + mlasI

where ki, for i = 1, · · · , 28, is the rate constant associated to the ith rule.

This system is depicted in Figure 5 where numbers next to arrows refer to
the corresponding rules. Note that arrows with two numbers denote reversible
reactions modeled in the P system description with two distinct rules.

To give some ideas on how the model has been built we explain in details the
process that, starting from the lasIgene, leads to the formation of the complex
LasR.3OHSL, the remaining part of the model follows a similar derivation. The

LasR

LasR

rsaL

mrlasL

RsaL

lasR

mlasR

lasI

LasI

mlasI

3O

Vfr

1

2

3

5

6

4

7

8

9

11
7

8

12

13

14

15

16

18

19

17

20

21

22

2324

25

26

27

28
10

Fig. 5. The Pseudomonas quorum sensing detailed model analyzed here. The number
next to each arrow refers to the corresponding P system rule.

208 L. Bianco et al.

production of LasI mRNA (mlsaI) can be done in two ways depending on the
transcription factor bound to the lasIgene gene. In fact, when LasR.3OHSL
binds to the lasIgene (rule r13), it activates the transcription of lasIgene gene
into mlasI mRNA (rule r15) with a rate k15. The RsaL protein can bind to
the lasIgene gene as well (rule r26), but in this case, the same transcription
(modeled by rule r28) has different rate k28. Since the biology of the process tells
us that RsaL protein inhibits the mRNA production, we add the constraint
that k28 ! k15. The mlasI mRNA can either be degraded (rule r16) either be
translated into the LasI protein (rule r17). The latter can in turn be degraded
(rule r18) or it can produce the autoinducer molecule 3OHSL (rule r19), that
can bind to the LasR protein and form the complex LasR.3OHSL (rule r7) or
be degraded (rule r9).

As far as we know, no value for the kinetic constant necessary for the simu-
lation of this dynamics is known in literature. For this reason we plan to adopt
some automatic tools for exploring the huge parameter space. In the following
section we describe a genetic algorithm (GA) fitting approach.

4 Parameter Estimation

In previous sections we showed two alternative models of quorum sensing and
qualitatively compared them against a differential equations based model. In this
section we show, as a proof of concept, how P system models can be quantita-
tively fitted to observed data. In this proof of concept section we consider the
ODE model as the golden standard against which the P system must be fit-
ted. That is, the ODE is a proxy for a biological experiment from which we
could measure a variety of molecular concentrations. In order to fit the P system
models to the ODE’s observed data we perform parameter optimization using
an evolutionary algorithm (EA). Our EA has been specially developed for opti-
mizing a range of design and manufacturing processes. It has been successfully
tested on a variety of complex systems and nano-particles self-organization sys-
tem [21]. Our evolutionary system is web-server based and can be tailored to
solve a broad range of problems. The number and data types of genes in the
chromosome, along with the parameters for the GA, including the users choice
of selection, replacement, mutation and crossover mechanisms can be specified in
the web-based configuration module. The later builds an XML script as output.
This script, along with a plug-in style problem specification class, which most
importantly includes the fitness function, configures the evolutionary algorithm
to the specific problem at hand. The execution of the evolutionary algorithm
can then be started and observed over the internet through a Java servlet. This
evolutionary engine also caters for cpu-intensive optimization problems, like the
one we investigate here, by distributing the execution of the algorithm on a large
computer cluster. Moreover, the web-server also allows simultaneous executions
of the evolutionary engines on different problems. The web-server can be ac-
cessed (under request) from www.chellnet.org. For a schematic representation
of the evolutionary engine please see Figure 6.

Towards a P Systems Pseudomonas Quorum Sensing Model 209

− no data types
− no problem specific representation
− no parameters

Generic Evolutionary Engine ResultsSpecialised Evolutionary Engine

problem−specific

Web−based execution moduleWeb−based configuration module

− data type representation and bounds
− evaluation module ("plug−in")
− evolutionary engine parameters

Evaluation module

XML Java servlet

Fig. 6. The ChellNet Evolvable Chellware Engine

In what follows we describe the fitness function used to fit our P systems to
the observed time series.

4.1 The Fitness Function

The evolutionary engine is used to adjust the parameters of the P system as to
fit the observed target w ∈ N time series Stgt = {si

tgt}i=1,··· ,w simultaneously,
where each of the w time series corresponds to one of the species concentrations.
In turn, the P system model generates w time series S= {si}i=1,··· ,w. The evo-
lutionary algorithm goal is to minimize the error between Stgt and S. Although
simply put, this error must be done carefully as the sampling of the P system’s
S and that of Stgt are different. If si

tgt ∈ Stgt, with (dropping the super-index
for simplicity) stgt = {y(0), y(ε), y(2 ε), . . . , y(n ε)} and ε the time step precision
for Stgt, and s = {y′(0), . . . , y′(t′j), . . . , y

′(t′m)} there is no direct mapping from
t′j (in s) to kε (in stgt) for some k ≥ 1 as the time interval simulated is not
uniformly sampled under a Gillespie dynamics. In order to compute the error
between a given y′(t′j) and a candidate ŷ interpolated from stgt we need to in-
terpolate the value ŷ(t′j) that stgt would take at t′j . Note that the only point in
time that is guaranteed to match in both time series is t0, so we can obtain the
index

k = "
t′j − t0

ε
#.

With the index k we can interpolate stgt between the time steps tk and tk+1:

q =
y(tk+1)− y(tk)

ε
,

210 L. Bianco et al.

that is, the slope of the segment of line that runs between points (tk, y(tk)) and
(tk+1, y(tk+1)). With q we can interpolate the value of stgt at time t′j with

ŷ(t′j) = y(tk) + q (t′j − tk).

With this provision in mind the parameter learning problem becomes

min
∑

s∈Stgt

∑
∀t′

j∈si,si∈S

|ŷ(t′
j)−y′(t′

j)|
max{ŷ(t′

j),y
′(t′

j)}
||si|| . (4)

Eq. 4 is used by the evolutionary algorithm to fit the P system to the data.
This fitness measure takes into account all the time series to be approximated
and the quality of the sample of each time series.

4.2 A Case Study: The Michaelis-Menten Dynamics

In order to demonstrate the feasibility of automatically tuning a P system with
an evolutionary algorithm we choose a simple case study: we apply the evolution-
ary algorithm to the problem of matching the kinetic constants of a Michaelis-
Menten dynamics (MM). The MM dynamics is numerically obtained through a
set of differential equations that simulate the following enzymatic reactions:

E + S ←−−−−−−→
k1

k2
ES

k3−→ E + P (5)

where E represent the enzyme catalyzing the reaction transforming the substrate
S into the product P . The reaction takes place in two different stages, the former
being the reversible formation of the active complex ES, the latter being the
production of P . All the details regarding the MM dynamics can be found in
[7,8].

As mentioned above these reactions are modeled by means of the following
set of differential equations:

d[S]
dt

= −k1E0[S] + (k1[S] + k2)[ES]

d[ES]
dt

= k1E0[S]− (k1[S] + k2)[ES]

d[P]
dt

= k2[ES]

(6)

where E0 represents the concentration of the total amount of enzyme (i.e., the
free enzyme plus that bounded to the substrate to form the complex ES), while,
as usual in biochemistry, [X] represent the concentration of the species X . The
reactions (5) can be straightforwardly translated into a P system having only
one compartment and three rules (each one referring to exactly one of the bio-
chemical reactions mentioned), whose dynamics can be calculated by means of
the Gillespie algorithm.

Towards a P Systems Pseudomonas Quorum Sensing Model 211

Fig. 7. Fitness progress of the parameter learning process. Best individual and average
error in the population is shown.

Without loss of generality, we arbitrarily fix the three kinetic constants to k1 =
1000, k2 = 1 and k3 = 0.05 and we numerically solve the differential equations.
The initial conditions used are 0.001 M for the initial substrate S and 0.5 ·
10−3 M for the initial concentration of the enzyme E (no product P neither
active complex ES is present at the beginning). We thus obtain three time series
that represent the target behavior the P system must imitate. The evolutionary
algorithm thus must coerce the P system to mimic as close as possible the
MM dynamics (with an imaginary volume fixed to 1.67 · 10−15 liters, needed
to translate concentrations into objects and deterministic rate constant into
stochastic ones).

Figure 7 shows the progress of the evolutionary engine while trying to match
with a P system the time series generated by the Michaelis-Menten process.
Figure 8 shows the actual display of the evolved P system’s concentrations and
the target concentrations.

212 L. Bianco et al.

Fig. 8. The target Michaelis-Menten concentrations and the evolved P systems ones

5 Conclusions and Further Work

We have briefly described a part of the quorum sensing network in the Pseudomo-
nas aeruginosa. Starting from a differential equations based model we have
provided a P systems version of it and we compared the dynamics of the two
approaches. In order to apply different simulation strategies on this intriguing
phenomenon we provided a more detailed, mechanistic model which, we believe,
is closer to the biological reality. The lack of biological information regarding
the dynamics of the system led us to use an automatic way for estimating them
by using an evolutionary algorithm approach that offers a reliable and effective
method in this respect.

An immediate step further, after obtaining all the parameters regulating a
single bacterium dynamics, is to extend the proposed model at a colony level,

Towards a P Systems Pseudomonas Quorum Sensing Model 213

exploiting the compartmentalization offered by P systems and already estab-
lished population P systems models.

Other important developments are related to the use of experimental data
to tune the dynamics of our specifications such as to simulate real biological
processes. In this respect the use of model checking methodologies, already under
consideration in a paper under preparation, will contribute towards validating
certain properties of the systems modeled.

On long term we believe that these steps can represent the first stage toward a
quantitative analysis that will hopefully lead to a successful drug design process.

Acknowledgements. N. Krasnogor and P. Siepmann acknowledge the EPSRC
for funding project EP/D021847/1.

References

1. K. Anguige, J.R. King, J.P. Ward, and P. Williams. Mathematical modelling of
therapies targeted at bacterial quorum sensing. Mathematical Biosciences, 192:39–
83, 2004.

2. A. P. Arkin. Synthetic cell biology. Current Opinion in Biotechnology, 12:638–644,
2001.

3. F. Bernardini and M. Gheorghe. Population P systems. Journal of Universal
Computer Science, 10:509–539, 2004.

4. F. Bernardini, M. Gheorghe, N. Krasnogor, and J.-L. Giavitto. On self-assembly
in population P systems. In C.S. Calude, M.J. Dinneen, G. Pǎun, and M.J. Peŕez-
Jimeńez, editors, Unconventional Computation. 4th International Conference, UC
2005, pages 46–57, 2005.

5. F. Bernardini, M. Gheorghe, N. Krasnogor, R.C. Muniyandi, M.J. Pérez-Jiménez,
and F.J. Romero-Campero. On P Systems as a modelling tool for biological sys-
tems. In R. Freund, G. Lojka, M. Oswald, and Gh. Paŭn, editors, Pre-Proceedings
of the 6Th International Workshop on Membrane Computing (WMC6), pages 193–
213, 2005.

6. L. Bianco, F. Fontana, and V. Manca. P Systems with Reaction Maps. Interna-
tional Journal of Foundations of Computer Science, 17(1):27–48, 2006.

7. G.E. Briggs and J.B.S. Haldane. A note on the kinetics of enzyme action. Biochem.
J., 19:338–339, 1925.

8. K. A. Connors. Chemical Kinetics: The study of Reaction Rates in Solution. VCH,
1990.

9. C.V. Delen and B.H. Iglewski. Cell-to-cell signalling and Pseudomonas aeruginosa
infections. Emerging Infectious Diseases, 4(4):551–560, October-December 1998.

10. S.P. Diggle, K. Winzer, A. Lazdunski, P. Williams, and M. Cámara. Advanc-
ing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-
acylhomoserine lactone production and virulence gene expression. Journal of Bac-
teriology, 184:2576–2586, 2002.

11. J.D. Dockery and J.P. Keener. A mathematical model for quorum qensing in
Pseudomonas aeruginosa. Bulletin of Mathematical Biology, 63:95–116, 2001.

12. D.T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22:403–
434, 1976.

214 L. Bianco et al.

13. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Computational Physics, 81(25):2340–2361, 1977.

14. A.M. Lazdunski, I. Ventre, and J.N. Sturgis. Regulatory circuits and communica-
tion in Gram-negative bacteria. Nature Reviews, Microbiology, 2:581–592, 2004.

15. G. Păun. Computing with membranes. J. Comput. System Sci., 61(1):108–143,
2000.

16. G. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
17. J.P. Pearson. Early activation of quorum sensing. Journal of Bacteriology,

184:2569–2571, 2002.
18. M.J. Peŕez-Jimeńez and F. J. Romero-Campero. P systems – A new computa-

tional modelling tool for systems biology. Transactions in Computational Systems
Biology, 2006 (in press).

19. M.J. Pérez-Jiménez and F.J. Romero-Campero. Modelling Vibrio fischeri’s be-
haviour using P systems. In Systems Biology Workshop, ECAL, 2005.

20. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17(1):183,
2006.

21. P.A. Siepman, G. Terrazas, and N. Krasnogor. Evolutionary Design for the Be-
haviour of Cellular Automaton-Based Complex Systems. In Proceedings of the
Seventh International Conference on Adapting Computing in Design and Manu-
facture.

22. G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bernardini, S. Diggle, and M. Camara.
An environment aware P system model of quorum sensing. In S. Barry Cooper,
B. Löwe, and L. Torenvliet, editors, New Computational Paradigms. First Conf.
on Computability in Europe, CiE2005, pages 479–485, 2005.

23. A.U. Viretta and M. Fussenegger. Modelling the quorum sensing regulatory net-
work of human-pathogenic Pseudomonas aeruginosa. Biotechol. Prog., 20:670–678,
2004.

24. J.P. Ward, J.R. King, A.J. Koerber, P. Williams, J.M. Croft, and R.E. Sockett.
Mathematical modelling of quorum sensing in bacteria. Journal of Mathematics
Applied in Medicine and Biology, 18:263–292, 2001.

25. K. Winzer, K.R. Hardie, and P. Williams. Bacterial cell-to-cell communication:
sorry, can’t talk now – gone to lunch! Current Opinon in Microbiology, 5:216–222,
2002.

Membrane Systems with External Control

Robert Brijder1, Matteo Cavaliere2,3, Agust́ın Riscos-Núñez3,
Grzegorz Rozenberg1, and Dragoş Sburlan3,4

1 Leiden Institute of Advanced Computer Science (LIACS)
Universiteit Leiden, Leiden, The Netherlands
rbrijder@liacs.nl, rozenber@liacs.nl

2 Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Trento, Italy

matteo.cavaliere@msr-unitn.unitn.it
3 Dept. of Computer Science and Artificial Intelligence

University of Seville, Seville, Spain
ariscosn@us.es

4 Faculty of Mathematics and Informatics
Ovidius University, Constantza, Romania

dsburlan@univ-ovidius.ro

Abstract. We consider the idea of controlling the evolution of a mem-
brane system. In particular, we investigate a model of membrane systems
using promoted rules, where a string of promoters (called the control
string) “travels” through the regions, activating the rules of the system.
This control string is present in the skin region at the beginning of the
computation – one can interpret that it has been inserted in the system
before starting the computation – and it is “consumed”, symbol by sym-
bol, while traveling through the system. In this way, the inserted string
drives the computation of the membrane system by controlling the acti-
vation of evolution rules. When the control string is entirely consumed
and no rule can be applied anymore, then the system halts – this cor-
responds to a successful computation. The number of objects present in
the output region is the result of such a computation. In this way, us-
ing a set of control strings (a control program), one generates a set of
numbers. We also consider a more restrictive definition of a successful
computation, and then study the corresponding model.

In this paper we investigate the influence of the structure of con-
trol programs on the generative power. We demonstrate that different
structures yield generative powers ranging from finite to recursively enu-
merable number sets.

In determining the way that the control string moves through the
regions, we consider two possible “strategies of traveling”, and prove
that they are similar as far as the generative power is concerned.

1 Introduction

Membrane systems (also referred to as P systems) were introduced in 1998 by
Gh. Păun as computing devices inspired by the structure and functioning of

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 215–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 R. Brijder et al.

living cells. Since their introduction, several models of P systems have been
investigated, many of them being proved to be computationally complete. The
reader is referred to the monograph [6], and to an up-to-date bibliography of
this research area available at the P systems web-page, [11].

In nature, the behavior of cells can be influenced by the signals (controls) that
they receive from the “outside”. Thus, it may be possible to drive the evolution
of a living cell by providing the cell with a specific control.

With this motivation in mind, we introduce and investigate a model of P sys-
tems, called string-controlled P systems (in short, SC P systems). This model is
based (with some modifications) on membrane systems with promoters, intro-
duced in [1]. There, the presence of promoters is used to activate, during the
computation, certain rules of the system. The biological motivation is the fact
that chemical reactions in living cells can be promoted (or inhibited) by the
presence of various enzymes.

A string of promoters (called the control string), “produced” by the environ-
ment, is present in the skin region of the system at the beginning of a computa-
tion. This string (that acts like an external control) travels through the regions
of the system, possibly promoting (with its leftmost symbol) the rules of the
region where it currently resides. Each time the string moves from one region
to another, its leftmost symbol (used as a promoter) gets consumed. When the
whole string is consumed, and no rule can be applied in any region, then the
system halts, completing a successful computation. The output of such compu-
tation is the number of objects present in the output region when the system
halts.

We shall also consider another sort of successful computation, which addition-
ally has to satisfy a “clean ending condition” (which requires that an a priori
specified “undesirable” object is not present in any region upon the completion
of the computation).

In this way, an SC P system generates the set of numbers composed by the
outputs of all its computations. Also, a membrane system with a collection of
control strings (called the control program) generates a set of numbers, which is
defined as the union of the sets generated for each single string.

In this paper we pay special attention to SC P systems where all evolution
rules of the system are promoted – hence, only the rules defined in the region
where the control string currently resides, and whose promoter matches the
leftmost symbol of the control string, may be active. In particular, we investigate
how the structure of the control program influences the generative power of such
systems, which are called fully-promoted SC P systems.

We show that if the control program is finite, then the generative power
corresponds exactly to the family of finite sets of numbers. On the other hand,
if the family of recursively enumerable languages is used as the control program,
then, not surprisingly, the resulting generative power corresponds to the family
of Turing computable sets of numbers. Several intermediate results are obtained
by balancing the structure of the control program and the power of the evolution
rules used by the system.

Membrane Systems with External Control 217

We consider two different ways (operating modes) for a control string to travel
through the regions of the system: either the string must move at each step (mode
(1)), or it is allowed to remain in the same region for several consecutive steps
until it decides (nondeterministically) to move again (mode (2)). We prove that,
under some natural conditions on the control program, these two modes are
similar as far as the generative power is concerned.

The paper is organized as follows. Section 2 recalls some basic notions of
formal languages theory used throughout the paper. A formal definition of SC
P systems is presented in Section 3. In Section 4 we show that the generative
power of classes of fully-promoted SC P systems with a natural condition on
the control program family are “almost” independent on the chosen operating
mode of the movement of the control string. In Section 5 we consider structures
of control that yield a generative power strictly weaker than RE, and in Section
6 structures that yield the computational completeness.

We conclude the paper by suggesting a number of open problems and research
directions.

2 Preliminaries

Let us briefly recall some notions and results of formal languages to the extent
needed in this paper – in this way we establish the basic notation and terminology
needed later on. For more details the reader can consult standard books, such
as [10], [2], and the handbook [9].

An alphabet V is a finite set of symbols. By V ∗ we denote the set of all strings
over V , the empty string is denoted by λ, and V + = V ∗ − {λ}.

The length of a string w ∈ V ∗ is denoted by |w|, while the number of oc-
currences of a ∈ V in w is denoted by |w|a. For a language L ⊆ V ∗, the set
length(L) = {|w| | w ∈ L} is called the length set of L.

If FL is a family of languages then NFL is the family of length sets of
languages in FL.

We denote by FIN , REG, CF , CS and RE the families of finite, regu-
lar, context-free, context-sensitive and recursively enumerable languages, respec-
tively. Accordingly, for instance, the family of length sets of languages in RE is
denoted by NRE (this is the family of all recursively enumerable sets of natural
numbers).

A multiset over V is a mapping M : V −→ IN0; assigning to each a ∈ V a
multiplicity M(a). Commonly, multisets are represented by strings of symbols.
In this representation the order of symbols does not matter, because the number
of copies of an object in a multiset is given by the number of occurrences of
the corresponding symbol in the string. Hence, e.g., a4b3d denotes the multiset
consisting of 4 occurrences of a, 3 occurrences of b, and one occurrence of d; the
same multiset is also represented by, e.g., da2ba2b2.

An ET0L system is a construct G = (Σ, T,H,w), where Σ is the (total)
alphabet, T ⊆ Σ is the terminal alphabet, H = {h1, h2, . . . , hk} is a finite set
of finite substitutions (tables) over Σ, and w ∈ Σ∗ is the axiom; each hi ∈ H ,

218 R. Brijder et al.

1 ≤ i ≤ k, can be represented by a list of context-free productions A → x, such
that A ∈ Σ and x ∈ Σ∗ (moreover, for each symbol A of Σ and each table hi,
1 ≤ i ≤ k, there is a production in hi with A as the left hand side). Then G
defines, for each 1 ≤ i ≤ k, a derivation relation ⇒hi by x ⇒hi y iff y ∈ hi(x).
We write x ⇒ y if x ⇒hi y for some 1 ≤ i ≤ k. As usual, x =⇒∗ y denotes the
reflexive and transitive closure.

The language generated by G is L(G) = {z ∈ T ∗ | w =⇒∗ z}. We denote
by ET 0L the family of languages generated by ET0L systems, and by T 0L the
family of languages generated by ET0L systems such that Σ = T .

A regularly (context-free, respectively) controlled ET0L system, in short E(rc)
T0L system (E(cfc)T0L system, respectively), is a pair Ω = (G,L) where G =
(Σ, T,H,w) is an ET0L system and L is a regular (context-free, respectively)
language over H .

The language generated by Ω is

L(Ω) = {z ∈ T ∗ | w = w0 ⇒hi1
w1 ⇒hi2

. . . ⇒him
wm = z, hi1 · · ·him ∈ L}.

We denote by E(rc)T 0L the family of languages generated by E(rc)T0L sys-
tems, and by E(cfc)T 0L the family of languages generated by E(cfc)T0L sys-
tems.

The following known inclusions between families of languages will be used in
this paper (see, e.g., [10]):

FIN ⊂ CF ⊂ ET 0L ⊂ CS ⊂ RE.

From [4] we recall the following result.

ET 0L = E(rc)T 0L.

Moreover, it is known that for each L ∈ ET 0L there exists an ET0L system
G, with only 2 tables, such that L = L(G) (see, e.g., [8]).

A regularly controlled grammar with appearance checking is a tuple G =
(N,T, S, P,K, F) where N,T, S, and P are the set of nonterminals, the set of
terminals, the starting symbol and a finite set of context-free productions, re-
spectively. Each production in P has a uniquely associated label, and the set
of all these labels is denoted by lab(P). K is a regular language over lab(P)
and F ⊆ lab(P). Let V = N ∪ T . We say that x ∈ V + derives y ∈ V ∗ in the
appearance checking mode by application of A → w with label p (written as
x ⇒ac

p y) if either x = x1Ax2 and y = x1wx2, or A does not appear in x, p ∈ F ,
and x = y.

The language L(G), generated by G, consists of all strings w ∈ T ∗ such that
there is a derivation S ⇒ac

pi1
w1 ⇒ac

pi2
w2 ⇒ac

pi3
. . . ⇒ac

pin
wn = w, for some n ≥ 1

and pi1pi2 · · · pin ∈ K.
By rCac we denote the family of languages generated by regularly controlled

grammars with appearance checking and erasing productions, and by rC we
denote the family of languages generated by regularly controlled grammars with
erasing productions and without appearance checking (the set F is empty).

Membrane Systems with External Control 219

The following lemma holds (see [2]):

Lemma 1. rCac = RE.

In what follows we assume that the reader is familiar with the membrane com-
puting area, in particular with the class of P systems with rewriting rules and
symbol-objects, and with the notions of P systems using promoters/inhibitors;
for instance as presented in [1,5,7] or in Chapter 3 of [6].

3 String-Controlled P Systems

A string-controlled P system, as informally described in Introduction, is defined
as follows.

Definition 1. A string-controlled P system (in short, SC P system) is a con-
struct

Π = (V,C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0),

where:

– V is the alphabet of Π; its elements are called objects;
– C ⊆ V is the set of catalysts;
– P is the set of promoters; P ∩ V = ∅;
– L ⊆ P ∗ is the control program (each string in L is a control string);
– μ is a membrane structure consisting of m membranes labeled 1, . . . ,m;
– wi, 1 ≤ i ≤ m, are strings that represent the multisets over V initially

associated with the regions 1, 2, . . . ,m of μ;
– Ri, 1 ≤ i ≤ m, are finite sets of evolution rules associated with the regions

1, 2, . . . ,m of μ. Each evolution rule is either of the form u → v or of the
form u → v|p, where u ∈ V +, p ∈ P , and v ∈ V ∗

tar with Vtar = V × TAR,
for TAR = {here, out} ∪ {inj | 1 ≤ j ≤ m};

– i0 ∈ {1, . . . ,m} specifies the output region of Π.

As usual, the membrane structure is a hierarchical arrangement of membranes,
embedded in a skin membrane, which separates the system from the environment.
A membrane without any membrane inside is called elementary. Each membrane
defines a region. For an elementary membrane this is the space enclosed by it,
while for a non-elementary membrane, is the space in-between the membrane
and the membranes directly included in it. As usual, labels 1, . . . ,m identify
both membranes and their corresponding regions.

Evolution rules of the form u → v|p are called promoted, and evolution rules
of the form u → v are called non-promoted. An evolution rule is called non-
cooperative if u ∈ V . Also, an evolution rule is called catalytic if it is either of
the form ca → cv or of the form ca → cv|p, where a ∈ (V −C), c ∈ C, p ∈ P , and
v ∈

(
(V −C)×TAR

)∗. The elements of TAR are called targets. It is convenient
to denote (a, t) ∈ Vtar by a if t = here, and by at otherwise.

A configuration of Π is a description of the membrane structure and of the
contents of all the regions. An initial configuration of Π consists of the membrane

220 R. Brijder et al.

structure μ, the objects initially present in the regions of the system, as described
by w1, . . . , wm, and by one string from L, present in the skin region (this string
is called control string). Notice that Π has a set of initial configurations, one for
each element of L.

As standard, we suppose the existence of a global clock that marks the steps
of the system.

At each step, the control string moves, in a nondeterministic way, across the
regions of Π . We distinguish two possible modes of operation for Π : (1) at each
step the string moves passing from one region to an adjacent one; (2) at each
step the string may move to an adjacent region or remain in the same region.
In both cases the control string cannot move to the environment, and when it
moves from a region to another one, it loses its leftmost symbol. The leftmost
symbol of the control string is called the head.

At each step the head of the current control string is used as a promoter for
the rules present in the region where the string resides. A promoted rule is active
if its promoter is present. The rules that are not promoted are always active.

A transition between two configurations of Π is obtained by applying in one
step the active rules in each region of Π in a maximally parallel nondeterministic
manner. More precisely, if a rule u → v ∈ Ri or u → v|p ∈ Ri is active and the
multiset u is present in region i, then the application of this rule means removing
u from region i and adding the objects specified by v in the regions indicated by
the corresponding target commands.

A sequence of transitions, starting from an initial configuration of Π , is called
computation. A computation halts when there is no applicable rule in any re-
gion of Π and the control string is entirely consumed (Π has reached a halting
configuration).

We shall consider two definitions of successful computation for Π :

– in the standard case, we say that all halting computations of Π are successful,
– in the # case, we consider that a halting computation of Π is successful if

and only if a special a priori designated symbol # ∈ V is not present in the
halting configuration in any region of Π .

The result of a successful computation ω is the number of objects present
in the output region i0 in the halting configuration of ω. Depending on the
definition of successful computation that is considered, we shall say that the
system collects the result in the standard way, or in the # way.

We use the notation Pm(α, FL), where α ∈ {ncoo, coo} ∪ {catk | k ≥ 1} and
FL is a family of languages, to denote the class of SC P systems which use
at most m membranes, use only non-cooperative (ncoo), cooperative (coo), or
catalytic with at most k catalysts (catk) evolution rules (promoted or not), and
use a control program in FL. We call FL the control program family of the class.
In the coo case, there is no restriction on the form of the evolution rules. The
prefix (pro) is added if only promoted rules are used (such systems are called
fully-promoted SC P systems).

We denote by N (i)(Π), i ∈ {1, 2}, the set of results of all successful computa-
tions of Π starting from any possible initial configuration, operating in mode (i),

Membrane Systems with External Control 221

and collecting the result in the standard way. Similarly, we denote by N
(i)
(Π), i ∈

{1, 2}, the set of results of all successful computations of Π operating in mode (i)
and collecting the result in the # way. Moreover, N (i)Pm(α, FL) = {N (i)(Π) |
Π ∈ Pm(α, FL), i ∈ {1, 2}} denotes the family of sets of natural numbers gen-
erated by SC P systems from Pm(α, FL) operating in mode (i), i = 1, 2, and
collecting the result in the standard way. The family N

(i)
Pm(α, FL) is similarly

defined.
The following inclusions follow directly from the definitions.

Lemma 2

(pro)N (i)Pm(α, FL) ⊆ (pro)N (i)
Pm(α, FL),

(pro)N (i)
Pm(α, FL1) ⊆ (pro)N (i)

Pm(α, FL2), if FL1 ⊆ FL2,

(pro)N (i)
Pm(ncoo, FL) ⊆ (pro)N (i)

Pm(catj , FL)

⊆ (pro)N (i)
Pm(catj+1, FL) ⊆ (pro)N (i)

Pm(coo, FL),

for j ≥ 1, i ∈ {1, 2}, α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}, and FL, FL1, FL2
families of languages.

4 Fully-Promoted SC P Systems

In this section we start the investigation of fully-promoted SC P systems. Notice
that for such systems in each time step there is activity in at most one region (the
region where the control string currently resides). First we give an example that
illustrates the functioning of an SC P system. Then we prove the equivalence
(as far as the generative power is concerned) between modes (1) and (2).

The following example shows that a given SC P system Π can produce dif-
ferent results according to its functioning mode.

Example 1. Let Π be the SC P system:

Π = (V,C, P, L, μ, w1, w2, R1, R2, i0),

where:

– V = {A},
– C = ∅,
– P = {a, b},
– L = {ab},
– μ = [1 [2]2]1,
– w1 = λ;w2 = A,
– R1 = ∅,
– R2 = {A → AA|b},
– i0 = 2.

The system collects the result in the standard way.

222 R. Brijder et al.

When Π operates in mode (1), the unique control string of L is initially
present in the skin region and moves, in the next step, to region 2, losing its
head a. Therefore, now the rule A → AA|b is activated. In the following step
the control string exits region 2, entering region 1, and then its last symbol, b,
is consumed. Therefore, there is only one successful computation and we have
N (1)(Π) = {2}.

If Π operates in mode (2), then the unique control string of L is initially
present in the skin region and it may remain there for a certain number of steps;
meanwhile nothing is produced in region 2. At a certain step the string moves
into region 2, losing its head a. Then, the rule A → AA|b is activated in region 2
and it will double the number of objects A at each step, until the string b moves
back to region 1. When this happens the computation halts and the number of
objects produced in region 2 is a power of two, that is, N (2)(Π) = {2n | n ≥ 1}.

Example 1 illustrates that for a given fully-promoted SC P system the generated
sets under operating modes (1) and (2) may differ (even drastically). However,
the family of sets of numbers generated by a class of fully-promoted SC P sys-
tems with a control program family that is closed under non-erasing regular
substitution is “almost” independent on the chosen operating mode. In fact, we
show that any fully-promoted SC P system operating in mode (2) [(1), respec-
tively] can be simulated (in a weak sense) by a fully-promoted SC P system
operating in mode (1) [(2), respectively] using the same type of rules, the same
type of control program, and using a double number of membranes.

Theorem 1. Let Π ∈ (pro)Pm(α, FL), where m ≥ 1, α ∈ {ncoo, coo} ∪ {catk |
k ≥ 1}, and FL is closed under non-erasing regular substitution. There exists
Π ′ ∈ (pro)P2m(α, FL), such that

N
(1)
(Π ′) = {x + 1 | x ∈ N

(2)
(Π)}.

Proof. Let Π = (V,C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0) ∈ (pro)Pm(α, FL),
and let us construct Π ′ = (V ′, C, P ′, L′, μ′, w′

1, . . . , w′
2m, R′

1, . . . , R′
2m, i0) ∈

(pro)P2m(α, FL) as follows.
Let V ′ = V ∪ {Z}, with Z /∈ V and P ′ = P ∪ {d}, with d /∈ P . We consider

the regular substitution φ defined by φ(p) = p(dp)∗ for each p ∈ P ; we define
L′ = φ(L) (notice that the substitution is non-erasing and so every family of
languages in {REG,CF,CS,RE} is closed under this operation). The structure
μ′ has 2m membranes and is obtained from μ by adding, in each region i, 1 ≤
i ≤ m, of μ an (elementary) membrane with label m+ i. Furthermore we define
w′

i = wiZ, for 1 ≤ i ≤ m, and w′
i = Z, for m + 1 ≤ i ≤ 2m.

We define R′
i = Ri∪{Z → #|d}, for 1 ≤ i ≤ m, and R′

i = {Z → #|p | p ∈ P},
for m + 1 ≤ i ≤ 2m.

We shall now show that for every successful computation C of Π with result x
operating in mode (2) there exists a successful computation C′ of Π ′ with result
x + 1 operating in mode (1).

Consider an arbitrary computation of Π and consider one of its configurations.
Now, suppose that in such configuration the current control string w is in region i

Membrane Systems with External Control 223

of Π and has p as its head. Then, there exists a computation in Π ′, starting with
an “appropriate” control string from L′ in the skin, that reaches a configuration
having the control string w′ = p(dp)nx present in region i of Π ′.

Suppose now that w does not move in Π (Π operates in mode (2)) but
remains in the same region for several consecutive steps. This is simulated in Π ′

by moving w′ back and forth between region i and the adjacent dummy region
m+i, consuming for each movement a symbol p and a dummy promoter d. In this
way, an arbitrary computation in Π can be simulated in Π ′ by a computation
starting with an appropriate control string from L′.

On the other hand, Π ′ does not have other successful computations except
those simulating successful computations of Π as described above. In fact, since
there is a rule Z → #|d in every set R′

i, for 1 ≤ i ≤ m, which guarantees that the
dummy symbol d cannot be used to move the control string into non-dummy
regions, otherwise the computation would not be successful. Moreover, if the
promoter present immediately to the right of the head of the current control
string is non-dummy (i.e., the string is of type pqx, with p, q ∈ P , and x ∈ P ∗),
then the string must move in a non-dummy region, because otherwise the rules
R′

i = {Z → #|p | p ∈ P}, for m + 1 ≤ i ≤ 2m, would make the computation
unsuccessful, if applied. From the above discussion it should be clear that the
theorem holds. ��
Conversely, a fully-promoted SC P system operating in mode (1) can be simu-
lated (in a weak sense) by a fully-promoted SC P system operating in mode (2),
using a structure having a double number of membranes.

Theorem 2. Let Π ∈ (pro)Pm(α, FL), where m ≥ 1, α ∈ {ncoo, coo} ∪ {catk |
k ≥ 1}, and FL is closed under non-erasing morphism. There exists Π ′ ∈
(pro)P2m(α, FL), such that

N
(2)
(Π ′) = {x + 2 | x ∈ N

(1)
(Π)}.

Proof. Given Π = (V,C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0) we construct Π ′ =
(V ′, C, P ′, L′, μ′, w′

1, . . . , w
′
2m, R′

1, . . . , R
′
2m, i0) as follows.

Let V ′ = V ∪ {c, c′, Z} and P ′ = P ∪ {d, d′}, with c, c′, Z /∈ V , and d, d′ /∈ P .
We consider the non-erasing morphism φ defined by φ(p) = pdd′, for each
p ∈ P – then we set L′ = φ(L) (notice that every family of languages in
{FIN,REG,CF,CS,RE} is closed under non-erasing morphisms). The mem-
brane structure μ′ has 2m membranes and is obtained from μ in the following
way. In each region i, 1 ≤ i ≤ m, of μ an (elementary) membrane with label
m + i is added.

The initial multisets of Π ′ are w′
i = cZwi, for 1 ≤ i ≤ m, and w′

i = Z, for
m + 1 ≤ i ≤ 2m.

Finally, the evolution rules of Π ′ are defined in the following way: R′
i =

Ri ∪ {c′ → c|d′ , Z → #|d} ∪ {c′ → #|p, c → c′|p | p ∈ P}, for 1 ≤ i ≤ m.
R′

i = {Z → #|p | p ∈ P}, for m + 1 ≤ i ≤ 2m.
We will prove now that for every computation of Π operating in mode (1) and

producing x, there exists a computation of Π ′ operating in mode (2) producing
x + 2.

224 R. Brijder et al.

Consider an arbitrary computation of Π and suppose that, after a certain step
k during that computation, the control string pi1pi2 · · · pij , with pi1 , pi2 , . . . , pij ∈
P , is present in region i of Π .

Then, there is a computation of Π ′ (starting with an “appropriate” control
string from L′) such that the control string pi1dd

′pi2dd
′ · · · pijdd

′ is present in
region i of Π ′ after a given step k′.

In Π , at step k + 1, the string must exit region i (Π operates in mode (1)),
entering one of the adjacent regions, chosen nondeterministically, losing the pro-
moter pi1 and getting the promoter pi2 as its new head.

This single step of Π is simulated by Π ′ in the following consecutive steps.
The rules activated by promoter pi1 present in region i of Π ′ are executed at
step k′, together with the rule c → c′ present in every region of Π ′ and activated
by any promoter of P . Therefore, at step k′ + 1 the control string must exit
region i, as otherwise in the next step the rule c′ → #|pi1

would be applied and
the entire computation would not be successful.

The only region of Π ′ where the control string can go to is the dummy region
m + i present inside region i (otherwise the promoter d that follows pi1 would
activate the rule Z → #|d present in any of the non-dummy adjacent regions
of region i and the computation would not be successful). Therefore, suppose
the control string goes to region m + i, losing in this way the promoter pi1 ; the
control string may remain in region m+ i for an unbounded number of steps (no
rule can be applied there). At a certain step k′′ the control string comes back
to region i, losing the promoter d and having now the promoter d′ as its head;
therefore, in the step k′′ + 1 the rule c′ → c|d′ is applied. The control string
having now d′ as head may remain in region i for an unbounded number of steps
(no rule can be applied). Eventually, the control string exits region i moving to
an adjacent region, losing the promoter d′, and having the promoter pi2 (the
next non-dummy promoter) as its new head.

Thus, all possible movements of the control string in Π (i.e., all possible
computations) are correctly captured by the functioning of Π ′; consequently,
every successful computation of Π can be simulated by Π ′.

Notice that, in Π ′, if the promoter adjacent to the head of the control string
is non-dummy (i.e., it belongs to the set P), then the control string must move
in a non-dummy region; otherwise a rule from R′

i = {Z → #|p | p ∈ P},
m + 1 ≤ i ≤ 2m, is applied and that would make the computation unsuccessful.

Therefore there are no other successful computations of Π ′ except those that
simulate, in the above described way, successful computations of Π . Thus, the
theorem holds. ��

5 The Influence of the Control Program

Now we analyze in more detail the class of fully-promoted SC P systems op-
erating in mode (1). We show how the structure of the control program and
the type of evolution rules influence the generative power of the constructed

Membrane Systems with External Control 225

membrane system. A series of results, ranging from finite power to computational
universality, is obtained.

It is worth to remark that one can easily obtain the length set of any language
L as output of an SC P system using non-cooperative rules and having L as the
control program. Hence, the structure of the control program influences the
generative power of SC P systems as the following theorem states.

Theorem 3. NFL ⊆ (pro)N (1)P2(ncoo, FL).

Proof. Given an arbitrary language L over the alphabet Σ = {a1, . . . , an}, let
us consider a symbol ∗ /∈ Σ, and let L′ = h(L) where h is the morphism defined
by h(a) = ∗a, for every a ∈ Σ.

Now let us construct an SC P system that generates length(L) as follows:

Π = (V,C, P, L′, μ, w1, w2, R1, R2, i0),

where:

– V = {a′1, . . . , a′n},
– C = ∅,
– P = Σ,
– μ = [1 [2]2]1,
– w1 = λ;w2 = a′,
– R1 = ∅,
– R2 = {a′ → a′outa

′|a | a ∈ Σ},
– i0 = 1.

At the beginning of the computation one of the strings from L′, nondeter-
ministically chosen, is present in the skin region of Π (i.e., region 1). The string
moves back and forth between region 1 and region 2 of the system, losing alter-
natively the symbol ∗ (when passing from region 1 to region 2) and a symbol
a ∈ Σ (when moving in the opposite direction). When the string is in region 2,
its head a ∈ Σ activates exactly the rule that produces and sends out the symbol
a′. Therefore, the number of symbols contained in the output region when the
computation halts (the string is entirely consumed) is equal to the number of
symbols from Σ that occurred in the inserted control string. Thus Π generates
exactly the length(L). ��

Now, from Corollary 2, Theorem 3 and the Turing-Church thesis, we have that
the class of fully-promoted SC P systems using arbitrary RE languages as control
program is universal, even when only non-cooperative rules are used. Hence, the
following theorem holds.

Theorem 4. (pro)N (1)P2(ncoo,RE) = (pro)N (1)
P2(ncoo,RE) = NRE.

It is now natural to ask what happens if we increase the “power” of the evolution
rules used by the P system and we decrease the “power” of the control program.

First we consider SC P systems that use cooperative evolution rules and finite
control programs.

226 R. Brijder et al.

Theorem 5. (pro)N (1)
P∗(coo, FIN) = (pro)N (1)P∗(coo, FIN) = NFIN .

Proof. Given an SC P system Π , it is sufficient to notice that the number of
distinct nondeterministic computations using only a finite number of steps is
bounded by a constant that only depends on Π . Therefore, if Π has a finite
control program, then the set of numbers produced is finite. The other inclusion
follows from Theorem 3. ��

Let us prove next that the class of fully-promoted SC P systems using arbitrary
context-free (regular, respectively) languages as control program generates ex-
actly the family NE(cfc)T 0L (or the family NE(rc)T 0L, respectively), even
with non-cooperative rules.

Theorem 6

(pro)N (1)
P2(ncoo,REG) ⊇ NE(rc)T 0L = NET 0L.

(pro)N (1)
P2(ncoo, CF) ⊇ NE(cfc)T 0L.

Proof. Given Ω = (G,L) an arbitrary E(rc)T0L system (or E(cfc)T0L sys-
tem, respectively) we construct a SC P system Π in (pro)P2(ncoo,REG) (in
(pro)P2(ncoo, CF), respectively) such that N

(1)
(Π) = length(L(Ω)) as follows.

Let G = (Σ, T,H,w) with H = {h1, . . . , hk}. Let

Π = (V,C, P, L, μ, w1, w2, R1, R2, i0),

where:

– V = Σ,
– C = ∅,
– P = {t1, . . . , tk, d, p}, with d, p /∈ {t1, . . . , tk},
– L′ = φ(L)dp with the morphism φ defined by φ(ti) = dti, 1 ≤ i ≤ k,
– μ = [1 [2]2]1,
– w1 = λ;w2 = w,
– R1 = ∅,
– R2 = {X → α|ti | X → α ∈ hi, 1 ≤ i ≤ k} ∪ {N → #|p | N ∈ Σ − T },
– i0 = 2.

Now Π simulates in region 2 the productions of G, applying the tables according
to the strings in L′, in such a way that each table hi has an associated promoter
ti, for every 1 ≤ i ≤ k.

The dummy promoter d is only used to be consumed while the control string
moves from region 1 to region 2. In this way, the new head of the control string
is a symbol ti, for some 1 ≤ i ≤ k. The final promoter p added as last symbol of
any string in L′ is used to check whether or not there are still nonterminals in
region 2 in the last step of the computation. If this is the case, then the special
object # is produced and the computation is not successful. Consequently, the
theorem follows. ��

We continue now to prove that the reverse inclusions also hold.

Membrane Systems with External Control 227

Theorem 7

(pro)N (1)
P∗(ncoo,REG) ⊆ NE(rc)T 0L = NET 0L.

(pro)N (1)
P∗(ncoo, CF) ⊆ NE(cfc)T 0L.

Proof. Consider a fully-promoted SC P system Π of the form

Π = (V,C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0),

such that C = ∅ and L is a regular (context-free, respectively) language over
P = {p1, p2, . . . , pk}.

We consider the morphisms ϕi, 1 ≤ i ≤ m, defined by ϕi(X) = (X, i), for all
X ∈ V , 1 ≤ i ≤ m. By using these morphisms, we associate with each occurrence
of any object X the index of the region where the occurrence resides.

We also use the morphisms ϕt
i, 1 ≤ i ≤ m, defined by

ϕt
i(Xtar) =

⎧⎨⎩
(X, i) if tar = here,
(X, j) if tar = out,
(X, k) if tar = ink,

for all X ∈ V , where j is the label of the surrounding region of i.
We construct now an E(rc)T0L system (or an E(cfc)T0L system, respectively)

Ω = (G,L′) simulating the computations of Π .
First we construct G. Let G = (Σ, T,H,w′), where Σ = {(X, i) | X ∈ V, 1 ≤

i ≤ m}, T = Σ − {(#, i) | 1 ≤ i ≤ m} and w′ = ϕ1(w1) · · ·ϕm(wm).
Each table hi,pj ∈ H , 1 ≤ i ≤ m, 1 ≤ j ≤ k, is constructed in the following

way:

– for each X ∈ V , if X → α|pj ∈ Ri, for some pj ∈ P , then the rule (X, i) →
ϕt

i(α) is added to the table hi. Otherwise, if X is not present as the left hand
side of any rule in Ri, then the rule (X, i) → (X, i) is added to the table hi;

– for each X ∈ V and 1 ≤ l ≤ m, l 	= i, the rule (X, l) → (X, l) is added to
the table hi.

Notice that H has mk tables and each one of them is complete.
Finally we construct L′. To this aim we define the finite substitution ϕ′ by

ϕ′(pj) = {t(i,pj) | 1 ≤ i ≤ m} for each 1 ≤ j ≤ k. We also define the nondeter-
ministic finite state automaton A = (Q, VA, s0, F, δ), where Q = {0, 1, . . . ,m},
VA = {t(i,pj) | 1 ≤ i ≤ m, 1 ≤ j ≤ k}, s0 = 0, F = Q and δ is defined by
δ(0, t(1,pj)) = 1, δ(i1, t(i1,pj)) = {i2 | 1 ≤ i2 ≤ m, and region i1 is adjacent to
region i2 in μ} for every 1 ≤ j ≤ k and 1 ≤ i1 ≤ m. Without loss of generality,
we assume 1 to be the label of the skin membrane of Π .

Now, L′ = ϕ′(L) ∩ L(A) is regular (context-free, respectively) since regular
(context-free, respectively) languages are closed under intersection with regular
languages, see e.g. [10].

The underlying idea of the proof is the following.
Each table t(i,pj) of G with 1 ≤ i ≤ m, 1 ≤ j ≤ k, simulates the rewriting in

parallel of the objects present in region i of Π , by using rules activated by the

228 R. Brijder et al.

promoter pj . All the objects present in the same region that cannot be rewritten
by any active rule, as well as those present in the other regions of the system,
are left unchanged by the application of the table.

The language ϕ′(L) is used to pass from one table to another, in the way
described by the strings of promoters present in the control program L. More
specifically, if the string w = pj1 · · · pjl

is present in L, then ϕ′(L) contains all
the strings of the set Sw = {t(i1,pj1), . . . , t(il,pjl

) | i1, . . . , il ∈ {1, . . . ,m}}. In this
way, each computation of Π starting with the control string w = pj1 · · · pjl

can
be simulated in G by applying the tables following the order of an appropriate
string in Sw. On the other hand, not every string in the set Sw simulates a
correct computation in Π starting with the control string pj1 · · · pjl

. In fact,
the control string in Π can only move through adjacent regions – this has to be
“encoded” in the way that the passage from one table of G to another one is done.
For this reason the appropriate regular (context-free, respectively) language L′

that controls G is obtained by intersecting the language ϕ′(L) with the regular
language L(A).

From the above explanation it follows that each string in L(Ω) contains pairs
(object, region) corresponding to the objects present in the halting configura-
tions of successful computations of Π . In order to get the exact contents of the
output region of Π , we apply to L(Ω) the morphism ϕo, defined by:

ϕo((X, i)) =
{

X if i = i0,
λ otherwise.

Since the family E(rc)T 0L (or the family E(cfc)T 0L, respectively) is clearly
closed under arbitrary morphisms, it follows that N

(1)
(Π) belongs to the family

NE(rc)T 0L (or to the family NE(cfc)T 0L, respectively). Thus the theorem
holds. ��

From Theorems 6 and 7 we obtain

Corollary 1

(pro)N (1)
P∗(ncoo,REG) = NE(rc)T 0L = NET 0L.

(pro)N (1)
P∗(ncoo, CF) = NE(cfc)T 0L.

On the other hand, if SC P systems collect the result in the standard way,
then one gets the following results.

Theorem 8

(pro)N (1)P2(ncoo,REG) ⊇ N(rc)T 0L = NET 0L.

(pro)N (1)P2(ncoo, CF) ⊇ N(cfc)T 0L.

Proof. In the proof of Theorem 6 the special symbol # is only used to check if
any nonterminal of G is still present when the computation of Π halts. Therefore
this checking can be avoided during the simulation of a (rc)T0L system (or a
(cfc)T0L system, respectively). Hence the theorem holds. ��

Membrane Systems with External Control 229

Analogously, note that in Theorem 7 the set of nonterminals used by the ET0L
system constructed in the proof contains only the special object # included in
the alphabet of the corresponding SC P system Π . Therefore if Π collects the
output in the standard mode (i.e., it does not use #), then one gets the following
results.

Theorem 9

(pro)N (1)P∗(ncoo,REG) ⊆ N(rc)T 0L = NET 0L.

(pro)N (1)P∗(ncoo, CF) ⊆ N(cfc)T 0L.

Theorems 8 and 9 yield the following corollary.

Corollary 2

N(rc)T 0L = (pro)N (1)P∗(ncoo,REG) = NET 0L.

N(cfc)T 0L = (pro)N (1)P∗(ncoo, CF).

6 Fully-Promoted SC P Systems: Universality

If SC P systems use arbitrary regular control programs, and only one catalyst,
then they generate the family of recursively enumerable sets of natural numbers.

In [3], P systems using two catalysts and two membranes have been proved
to be universal. This proof can also be applied for non fully-promoted SC P
systems to obtain the following universality result.

Corollary 3. N
(1)
P2(cat2, {{λ}}) = NRE.

In case of fully-promoted SC P systems, the computational universality can be
obtained using arbitrary regular control programs and catalytic rules with only
one catalyst.

Theorem 10. (pro)N (1)
P2(cat1, REG) = NRE.

Proof. The inclusion in NRE follows from Church-Turing thesis. The opposite
inclusion can be proved by simulating regularly controlled grammars with ap-
pearance checking, as follows.

Given a regularly controlled grammar with appearance checking G = (N,

T, S, P,K, F), we construct Π ∈ (pro)P (1)
2 (cat1, REG), collecting the output in

the # way, that simulates G. Let

Π = (V,C, P ′, L, μ, w1, w2, R1, R2, i0),

where:

– V = N ∪ T ∪ {c, Z},
– C = {c},
– P ′ = lab(P) ∪ {d, d′}, d, d′ /∈ lab(P),

230 R. Brijder et al.

– L = φ(K)dd′ with non-erasing morphism φ defined by φ(p) = dp for each
p ∈ lab(P),

– μ = [1 [2]2]1,
– w1 = λ;w2 = SZc,
– R1 = ∅,
– R2 = {cA → cα|p | p : A → α ∈ P} ∪ {cZ → c#|p | p /∈ F}
∪ {Z → Zout|d′},

– i0 = 2.

We show that Π simulates the derivations of G. Note that, by definition, for every
pi1 · · · pik

∈ K, we have dpi1 · · · dpik
dd′ ∈ L. The promoters d are dummies, they

are only used to let the control string to enter and exit region 2, passing in
this way from a promoter pij as the current head to the promotor pij+1 , for
1 ≤ j ≤ k − 1. The derivations of G are simulated by the execution of rules
from R2.

Notice that, because of the catalyst c that inhibits the parallelism, at most
one rule is executed in region 2 when the control string resides in that region.
If a rule cannot be applied and the label of the corresponding production is not
in F , then the computation is unsuccessful (# is produced by applying the rule
cZ → c# that is activated by any promoter p ∈ (lab(P)−F)) and this is correct
since the simulated derivation in G cannot be continued. On the other hand, if a
rule cannot be applied and the label of the corresponding production is in F (so
the production has to be used in the appearance checking mode), then no rule
is applied in region 2, the control string leaves the region and the computation
continues. The last promoter d′ present for any control string in L is used to
move, at the end of the computation, the symbol Z into region 1. It should be
clear from the above description that N

(1)
(Π) is exactly the length set of L(G).

Thus the theorem holds. ��

We conclude this section by presenting some preliminary results concerning the
class of non fully-promoted SC P systems.

By definition, it is clear that

Lemma 3

(pro)N (i)
Pm(α, FL) ⊆ N

(i)
Pm(α, FL),

(pro)N (i)Pm(α, FL) ⊆ N (i)Pm(α, FL),

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}, FL a family of languages, and i ∈ {1, 2}.

It is easy to notice that systems from P1(ncoo, FIN) can generate infinite sets
of numbers when operating in mode (1) and collecting the result in the standard
way. This observation and Theorem 5 yield the following result.

Theorem 11

(pro)N (1)
P∗(α, FIN) = (pro)N (1)P∗(α, FIN) ⊂ N (1)P∗(α, FIN),

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}.

Membrane Systems with External Control 231

On the other hand, if one can use any RE language as the control program, then
both classes of SC P systems have the same computational power. In particular,
from Theorem 4 and Corollary 3, one gets the following result.

Theorem 12

(pro)N (1)Pm(α,RE) = N (1)Pm(α,RE) = NRE,

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}.

7 Concluding Remarks and Open Problems

We have introduced and investigated SC P systems where the computations are
driven by control strings (present in their skin region at the beginning of com-
putations). We have mainly investigated fully-promoted SC P systems, where
all the rules are promoted (hence controlled by the control strings). Most of the
results proved in this paper concern systems operating in mode (1), although
this is just a matter of convenience, because we have proved the equivalence
between both operating modes (under some conditions).

Table 1 gives an overview of the results obtained for fully-promoted SC P
systems operating in mode (1) and collecting the result in the # way.

Table 1. Computational power of fully-promoted SC P systems operating in mode (1)
and collecting the result in the # way. Rows specify the types of evolution rules, and
the columns specify the types of control programs.

RE CF REG FIN
ncoo NRE NE(cfc)T0L NET0L NFIN
cati, i ≥ 1 NRE NRE NRE NFIN
coo NRE NRE NRE NFIN

The results obtained for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way are summarized in Table 2.

Table 2. Computational power for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way. Again, rows specify the types of evolution
rules, and the columns specify the types of control programs.

RE CF REG FIN
ncoo NRE N(cfc)T0L N(rc)T0L NFIN
cati, i ≥ 1 NRE ⊇ N(cfc)T0L ⊇ N(rc)T0L NFIN
coo NRE ⊇ N(cfc)T0L ⊇ N(rc)T0L NFIN

Several problems, mainly concerning non fully-promoted systems, remain
open. Are non-fully promoted SC P systems more powerful than fully-promoted

232 R. Brijder et al.

SC P systems? The answer is positive for SC P systems operating in mode
(1) and having a finite control program (Theorem 11). We conjecture that the
strict inclusion also holds when the control program is regular and the result is
collected in the standard way.

Another open problem is to find a non-trivial upper bound for the generative
power of fully-promoted SC P systems operating in mode (1), collecting the
result in the standard way, and using cooperative or catalytic rules (see Table 2).
We only know that these classes of systems can generate at least the family of
length sets of languages from (rc)T 0L (if the control program is regular) and
from (cfc)T 0L (if the control program is context-free). We doubt that these two
classes are universal – as a matter of fact they may be incomparable with the
classical Chomsky classes.

Finally, another interesting issue to be investigated is having the control pro-
grams produced by another bio-inspired generative device (as for instance, an-
other membrane system, or a DNA-based system).

Acknowledgments

The authors are indebted to the European Research Network SegraVis for sup-
porting this research. R.B. is supported by the Netherlands Organization for
Scientific Research (NWO) project 635.100.006 “VIEWS”.

References

1. P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg: Membrane Systems with
Promoters/Inhibitors. Acta Informatica, 38, 10 (2002), 695–720.

2. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

3. R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally Universal P Systems
without Priorities: Two Catalysts are Sufficient. Theoretical Computer Science,
330, 2 (2005), 251–266.

4. S. Ginsburg, G. Rozenberg: T0L Schemes and Control Sets. Information and Con-
trol, 27 (1974), 109–125.

5. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors. Journal of Uni-
versal Computer Science, 10, 5 (2004), 581–599.

6. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
7. Gh. Păun, G. Rozenberg: A Guide to Membrane Computing. Theoretical Computer

Science, 287, 1 (2002), 73–100.
8. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic

Press, Inc. Orlando, FL, USA, 1980.
9. G. Rozenberg, A. Salomaa (eds.): Handbook of Formal Languages. Springer-Verlag,

Berlin, 1997.
10. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
11. P systems web page: http://psystems.disco.unimib.it/

A Case Study in (Mem)Brane Computation:
Generating Squares of Natural Numbers

Nadia Busi1 and Miguel A. Gutiérrez-Naranjo2

1 Dipartimento di Scienze dell’Informazione - Università di Bologna
Mura Anteo Zamboni 7, I-40127 Bologna, Italy

busi@cs.unibo.it
2 Dpto. de Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

magutier@us.es

Abstract. The aim of this paper is to start an investigation and a com-
parison of the expressiveness of the two most relevant formalisms inspired
by membranes interactions, namely, P systems and Brane Calculi. We
compare the two formalisms with respect to their ability to act as gener-
ator devices. In particular, we show different ways of generating the set
L = {n2 | n ≥ 1} in P systems and in Brane Calculi.

1 Introduction

Natural Computing studies new computational paradigms inspired from various
well known natural phenomena in physics, chemistry, and biology. It abstracts
the way in which nature computes, conceiving new computing models. There are
several fields in Natural Computing that are now well established. Among them,
we mention Genetic algorithms introduced by J. Holland [7] that is inspired by
natural evolution and selection in order to find a good solution in a large set of
feasible candidate solutions, Neural Networks introduced by W.S. McCulloch and
W. Pitts [8] which is based on the interconnections of neurons in the brain, and
DNA-based molecular computing, that was born when L. Adleman [1] published
a solution to an instance of the Hamiltonian path problem by manipulating DNA
strands in a lab.

This paper is devoted to a new field in Natural Computing. Starting from
the structure and functioning of cells as living organisms able to process and
generate information, two different branches of Natural Computing were recently
initiated: Membrane Computing and Brane Calculi.

Membrane Computing was introduced by Gh. Păun in [9]; a comprehensive
presentation1 can be found at [11]. The devices of this model are called P sys-
tems. Roughly speaking, a P system consists of a membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner.

1 A layman-oriented introduction can be found in [10] and further bibliography at [14].

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 233–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

234 N. Busi and M.A. Gutiérrez-Naranjo

Brane Calculi were introduced by L. Cardelli in [4] on the assumption that
in living cells membranes are not merely containers, they are highly dynamic
and participate actively in the cell life. In this way, computation happens on the
membrane, not inside of it.

The first attempt of bridging the two research areas was made in [6] by the
fathers of the two disciplines, L. Cardelli and Gh. Păun. As they point out,
Membrane Computing and Brane Calculi have different objectives and develop
in different directions. While Membrane Computing tries to abstract computing
models, in the Turing sense, from the structure and the functioning of the cell
(. . .), Brane Calculi pay more attention to the fidelity to the biological reality
(. . .).

In that paper [6], four basic operations from Brane Calculi, namely, pino, exo,
mate and drip, are expressed in terms on the Membrane Computing formalism
and the Turing completeness of systems which use the mate, drip operations is
shown. The Turing universality of Brane Calculi (in fact, by using only phago and
exo operations) was proved in [3]. Recently, it has been proved that P systems
with mate and drip operations and using at most five membranes during any
step of a computation are universal (see [2]). This result improves a similar one
from [6] were eleven membranes are used.

In some sense, in this paper we cross the bridge in the other way. Instead
of expressing Brane Calculi operations in terms of the Membrane Computing
formalism, we take a problem from computability, the generation of a set of
numbers, and we show how it can be handled both in Membrane Computing
and in Brane Calculi.

The paper is organized as follows: first the case study, i.e., the set L =
{n2 |n ≥ 1} and some considerations with respect to the codifications are fixed
in the next section. In Section 3, two different Membrane Computing devices
that generate L are shown. Inspired on the second Membrane Computing de-
sign, two Brane Calculi devices that generate L are presented in Section 4. Some
final remarks are presented in the last section.

2 The Case Study

Computational devices can be designed in order to perform different tasks.
Among such tasks, they can be designed to solve decision problems (IX , θX)
where IX is a language over a finite alphabet (whose elements are called in-
stances) and θX is a total boolean function over IX . In a more general case,
the function is not boolean and the problem consists on the computation of a
function f from IX onto a general set S.

Another type of tasks is the generation of various sets (of numbers, vectors,
strings, etc.). Due to the nondeterminism, several different computations are
obtained and some piece of information is considered as the output. Collecting all
(acceptable) outputs, we get a set (of numbers, vectors, strings, etc.) generated
by the computation device.

A Case Study in (Mem)Brane Computation 235

In order to fix ideas, let us consider the case study used in this paper. We
will consider the set {n2 |n ≥ 1}. For its generation, we will design appropriate
devices in the computational models Membrane Computing and Brane Calculi.
Such devices are non-deterministic and several computations can be performed
from the starting point. In each device, a piece of information will be considered
the output of the system. In the case of Membrane Computing, the output is cod-
ified as the number of objects inside a fixed membrane in a halting configuration.
In the Brane Calculi device, the output is codified as the number of membranes
of a specific kind that are present in the system in a halting computation. The
set of all possible outputs of the device is exactly L = {n2 |n ≥ 1}. In this way,
L is the set generated by the device.

3 Membrane Computing

In Membrane Computing, many different types of rules and different semantics
have been presented. The choice of these rules and semantics lead us to different
models of P systems. In this section we present two P systems constructed in
two different models that generate the set {n2 |n ≥ 1}.

In these examples several types of rules are used (O is the alphabet of objects,
H is a finite set of labels, and λ is the empty string):

– Object evolution rules [a → v]h where h ∈ H , a ∈ O, and v is a string over
O describing a multiset of objects. They are associated with membranes and
depending only on the label of the membrane. Using such a rule means that
an object a evolves to the multiset v inside the membrane with label h.

– Cooperation rules: [v → w]h where h ∈ H and v, w are string over O describ-
ing a multisets of objects. This rule is similar to the previous one, but in
this type, the rule is triggered by a multiset of objects whereas in an object
evolution rule only one object is necessary for triggering it.

– Dissolution rules: [a]h → b where h ∈ H , a ∈ O, b ∈ O ∪ {λ}. The object
a inside the membrane labeled with h produces the dissolution of the mem-
brane and it is transformed into the object b. This object b together with
the remaining objects in the membrane h are placed inside the surrounding
membrane.

– Send-in communication rules: a[]h → [b]h where h ∈ H , a, b ∈ O. An
object a out of the membrane labeled with h is sent into the membrane and
transformed into b.

– Send-out communication rules: [a]h → []h b where h ∈ H , a, b ∈ O. This is
dual to the previous case. An object a inside the membrane labeled with h
is sent out of the membrane and transformed into b.

Rules are applied according to the following principles:

– Rules are used as usual in the framework of Membrane Computing, that
is, in a maximally parallel way. In one step, each object in a membrane
can only be used for one rule (non-deterministically chosen when there are

236 N. Busi and M.A. Gutiérrez-Naranjo

several possibilities), but any object which can evolve by a rule of any form
must do it (with the restrictions indicated below).

– If a membrane is dissolved, its content (multiset and internal membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the division rules since a membrane can be
dissolved only once.

In order to generate a set, an output membrane is fixed and the number of
objects in it is counted when the system halts. The number of objects can vary
from one computation to other due to the nondeterminism of the system. In the
next examples, the set of numbers obtained in the output membrane, i.e., the
generated set, is {n2 |n ≥ 1}.

3.1 Cooperation and Priorities

The first P system that we show is taken from [11] (p. 75) and it uses two
of the most powerful features in P systems. The first one is the use of rules
with cooperation between objects as described above. This type of rules are not
triggered by the occurrence of only one object, but two or more objects are
necessary in order to trigger the rule. The second feature is the priority among
rules. In the general framework of Membrane Computing, if two rules can be
applied, one of them is chosen in a non-deterministic way. If a priority between
rules is added, we decrease the non-determinism, since we have a precedence
between them.

With the notation fixed above, the P system is Π = (O,H, μ,w1, w2, w3, 1, R)
where O = {a, b, d, e, f} is the set of objects, H = {1, 2, 3} is the set of labels,
μ = [[[]3]2]1 is the membrane structure, w1 = ∅, w2 = ∅, w3 = af are the
multisets placed in the membranes at the starting point, 1 is the label of the
output membrane, and R is the set of rules:

Rule 1: [a → ab]3 Rule 5: [b → d]2
Rule 2: [a]3 → b Rule 6: [d → de]2
Rule 3: [f → ff]3 Rule 7: [ff → f]2
Rule 4: [d]1 → d []1 Rule 8: [f]2 → λ

with the priority

(Rule 7: [ff → f]2) > (Rule 8: [f]2 → λ)

Rules 1, 3, 5 and 6 are object evolution rules. Rule 7 is a cooperation rule: we
need two objects f in order to trigger the rule. Rules 2 and 8 are dissolution
rules. Finally, rule 4 is a send-out communication rule.

A Case Study in (Mem)Brane Computation 237

The computation is performed as follows. In the initial configuration we only
have objects af in the membrane labeled with 3.

C0 = [[[af]3]2]1

Due to rule 3, the object f deterministically evolves to ff . For the object a we
have two possibilities: By application of rule 1, the object a evolves to ab or by
applying rule 2, membrane 3 dissolves. If we iterate the use of rules 1 and 3,
after n steps, n ≥ 0, we get n occurrences of b, one copy of a, and 2n occurrences
of f in membrane 3.

C1 = [[[abf2]3]2]1
C2 = [[[ab2f4]3]2]1
. . .
Cn = [[[abnf2n

]3]2]1

If then rule 2 is chosen, the membrane labeled with 3 is dissolved after the
evolution of f . With the dissolution, the 2n+1 copies of object f and the n + 1
copies of b become occurrences of objects of membrane 2.

Cn+1 = [[bn+1f2n+1
]2]1

In one step, the n + 1 copies of b are transformed into n + 1 copies of d by rule
5, while the number of occurrences of f is halved.

Cn+2 = [[dn+1f2n

]2]1

In the next step each occurrence of d introduces one occurrence of e and the
number of occurrences of f is halved again.

Cn+3 = [[dn+1en+1f2n−1
]2]1

After n applications of rule 7, [ff → f]2, only one copy of object f is present
in membrane labeled with 2. In the meantime, rule 6 is applied n + 1 times in
each step.

Cn+4 = [[dn+1e2(n+1)f2n−2
]2]1

Cn+5 = [[dn+1e3(n+1)f2n−3
]2]1

. . .

Following the priority relation, rule 7 [ff → f]2 is used as much as possible;
when only one object f remains, rule 8 is used.

C2n+2 = [[dn+1en(n+1)f]2]1
C2n+3 = [dn+1e(n+1)2]1

With the dissolution of membrane 2, all the objects d become objects of mem-
brane 1. In the next step, rule 4 is applied n + 1 times and all copies of d are
sent out to the environment.

C2n+4 = [e(n+1)2]1 dn+1

238 N. Busi and M.A. Gutiérrez-Naranjo

No further step is possible and the computation stops. In the membrane la-
beled with 1 we have (n+ 1)(n+ 1) copies of object e for some n ≥ 0, hence the
set generated is {n2 | n ≥ 1}.

3.2 A Simplified Solution

Now we present a new solution to the same problem. We do not use cooperation
or priorities. Only send-in communication, dissolution and object evolution rules
are applied. The design is based on the well-known property of natural numbers

n∑
k=0

(2k + 1) = (n + 1)2 for all n ≥ 0

The P system is the following: Π = (O,H, μ,we, wr , ws, r, R) with the set of
objects O = {a, b, c, z}, the set of labels H = {e, r, s}, the membrane structure
μ = [[]e []r]s. The initial multisets are we = a2bz, wr = ∅ and ws = ∅, i.e., the
membranes s and r are empty and there exist two copies of a and one copy of b
and z in the membrane e. The output membrane is labeled with r and the set of
rules R is the following:

Rule 1: [a → ab]e Rule 5: [a → λ]s
Rule 2: [b → bc]e Rule 6: [b → λ]s
Rule 3: [z → z]e Rule 7: c []r → [c]r
Rule 4: [z]e → λ

Note that the only non-determinism in this example is produced by the object
z. This object can trigger two rules. The first one is [z → z]e which represents
that the object z inside the membrane e does not change. The second one is
[z]e → λ which means that the object z dissolves the membrane e. The collateral
effect of the application of this rule is that the remaining objects in e are sent
to s.

The initial configuration is C0 = [[a2bz]e []r]s. In the first step the two
objects a evolve according to the rule 1, [a → ab]e, and the object b evolves
following the rule 2, [b → bc]e. These evolutions are deterministic. For the object
z we have two options, rules 3 and 4. Let us suppose that z remains unchanged
following rule 3, [z → z]e. We obtain the configuration C1 = [[a2b3cz]e []r]s.
Let us suppose that in the next steps the object z does not dissolve the membrane
e. We obtain C2 = [[a2b5c4z]e []r]s, C3 = [[a2b7c9z]e []r]s,. . . and in general,
if the element z does not dissolves the membrane e, in the n-th (n ≥ 1) step we
reach the configuration

Cn = [[a2b2n+1cn2
z]e []r]s

Let us now suppose that in the n-th step the object z dissolves the membrane
e by using rule 4. Since the dissolution is considered after the evolution of objects
a and b, we reach the configuration

Cn+1 = [a2b2(n+1)+1c(n+1)2z []r]s n ≥ 0

A Case Study in (Mem)Brane Computation 239

One of the effects of the dissolution is that the objects a, b, and c are now in
the membrane s. On one hand the rules [a → λ]s and [b → λ]s are triggered in
the next step, so objects a and b disappear. On the other hand, objects c are in
the region surrounding the membrane r, so the communication rule c []r → [c]r
are applied and all the elements c go into membrane r. In this way, the next
configuration is Cn+2 = [[c(n+1)2]r]s with n ≥ 0.

No more rules can be applied, so this is a halting configuration and we have
computed the number n2 with n ≥ 1 (encoded by the elements c) in the output
membrane.

4 Brane Calculi

In this section we tackle the problem of generating the set {n2 |n ≥ 1} in Brane
Calculi.

Brane Calculi [4] are a family of process calculi proposed for modeling the
behavior of biological membranes. In a process algebraic setting, Brane Calculi
represent an evolution of BioAmbients [12], a variant of Mobile Ambients [5]
based on a set of biologically inspired primitives of interaction. The main novelty
of Brane calculi consists in the fact that the active entities reside on membranes,
and not inside membranes.

In this paper we are interested in the membrane operations of two basic in-
stances of Brane calculi proposed in [4]: the Phago/Exo/Pino (PEP) and the
Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process
of incorporating external material into a cell by engulfing it with the cell mem-
brane) and exocytosis (the reverse process). A relevant feature of such primitives
is bitonality, a property ensuring that there will never be a mixing of what is in-
side a membrane with what is outside, although external entities can be brought
inside if safely wrapped by another membrane. As endocytosis can engulf an ar-
bitrary number of membranes, it turns out to be a rather uncontrollable process.
Hence, it is replaced by two simpler operations: phagocytosis, that is engulfing
of just one external membrane, and pinocytosis, that is engulfing zero external
membranes.

The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito). Because membrane fission is an uncontrollable process that can split
a membrane at an arbitrary place, it is replaced by two simpler operations:
budding, that is splitting off one internal membrane, and dripping, that consists
in splitting off zero internal membranes. An encoding of the MBD primitives in
PEP is provided in [4].

4.1 Basic Brane Calculi: Syntax and Semantics

In this section we recall the syntax and the semantics of Brane Calculi [4].
A system consists of nested membranes, and a process is associated to each
membrane.

240 N. Busi and M.A. Gutiérrez-Naranjo

Definition 1. The set of systems is defined by the following grammar:

P,Q ::= % | P ◦Q | !P | σ�P �

The set of membrane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions that will be detailed later.

The term % represents the empty system; the parallel composition operator on
systems is ◦. The replication operator ! denotes the parallel composition of an
unbounded number of instances of a system. The term σ�P � denotes the mem-
brane that performs process σ and contains system P .

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !σ we denote the parallel composition of an unbounded number
of instances of process σ. Term a.σ is a guarded process: after performing the
action a, the process behaves as σ.

We adopt the following abbreviations: with a we denote a.0, with �P � we
denote 0�P �, and with σ� � we denote σ� % �.

The structural congruence relation on systems and processes is defined as
follows:2

Definition 2. The structural congruence ≡ is the least congruence relation sat-
isfying the following axioms:

P ◦Q ≡ Q ◦ P σ | τ ≡ τ | σ
P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ % ≡ P σ | 0 ≡ σ

!% ≡ % !0 ≡ 0
!(P ◦Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0� % � ≡ %

Definition 3. The basic reaction rules are the following:

(par)
P → Q

P ◦R → Q ◦R
(brane)

P → Q

σ�P � → σ�Q �

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

2 With abuse of notation we use ≡ to denote both structural congruence on systems
and structural congruence on processes.

A Case Study in (Mem)Brane Computation 241

Rules (par) and (brane) are the contextual rules that permit to a system to
execute also if it is in parallel with another process or if it is inside a membrane,
respectively. Rule (strucong) ensures that two structurally congruent systems
have the same reactions.

With →∗ we denote the reflexive and transitive closure of a relation →.
We say that a system P is deterministic iff for all P ′, P ′′: if P → P ′ and

P → P ′′ then P ′ ≡ P ′′. We say that P has a halting computation (or a deadlock)
if there exists Q such that P →∗ Q and Q 	→.

The system P ′ is a derivative of the system P if P →∗ P ′; the set of derivatives
of a system P is denoted by Deriv(P).

The Phago/Exo/Pino Calculus (PEP). The PEP calculus is inspired by
endocytosis/exocytosis. Endocytosis is the process of incorporating external ma-
terial into a cell by “engulfing” it with the cell membrane, while exocytosis is the
reverse process. As endocytosis can engulf an arbitrary amount of material, giv-
ing rise to an uncontrollable process, in [4] two more basic operations are used:
phagocytosis, engulfing just one external membrane, and pinocytosis, engulfing
zero external membranes.

Definition 4. Let Name be a denumerable set of ambient names, ranged over
by n,m, The set of actions of PEP is defined by the following grammar:

a ::= C←
n | C←⊥

n(σ) | C→
n | C→⊥

n | ©◦ (σ)

Action C←
n denotes phagocytosis; the co-action C←⊥

n is meant to synchronize with
C←
n; names n are used to pair-up related actions and co-actions. The co-phago

action is equipped with a process σ, this process will be associated to the new
membrane that engulfs the external membrane. Action C→

n denotes exocytosis,
and synchronizes with the co-action C→⊥

n . Exocytosis causes an irreversible mixing
of membranes. Action ©◦ denotes pinocytosis. The pino action is equipped with
a process σ: this process will be associated to the new membrane, that is created
inside the membrane performing the pino action.

Definition 5. The reaction relation for PEP is the least relation containing the
following axioms, and satisfying the rules in Definition 3:

(phago) C←
n.σ|σ0�P � ◦ C←⊥

n(ρ).τ |τ0�Q � → τ |τ0� ρ�σ|σ0�P � � ◦Q �

(exo) C→⊥
n .τ |τ0� C→

n.σ|σ0�P � ◦Q � → P ◦ σ|σ0|τ |τ0�Q �

(pino) ©◦ (ρ).σ|σ0�P � → σ|σ0� ρ� � ◦ P �

The Mate/Bud/Drip Calculus (MBD). The MBD calculus is inspired by
membrane fusion and splitting. To make membrane splitting more controllable,
in [4] two more basic operations are used: budding, consisting in splitting off
one internal membrane, and dripping, consisting in splitting off zero internal
membranes. Membrane fusion, or merging, is called mating.

242 N. Busi and M.A. Gutiérrez-Naranjo

Definition 6. The set of actions of MBD is defined by the following grammar:

a ::= maten | mate⊥
n | budn | bud⊥

n(σ) | drip(σ)

Actions maten and mate⊥
n will synchronize to obtain membrane fusion. Action

budn permits to split one internal membrane, and synchronizes with the co-
action bud⊥

n . Action drip permits to split off zero internal membranes. Actions
bud⊥ and drip are equipped with a process σ, that will be associated to the new
membrane created by the membrane performing the action.

Definition 7. The reaction relation for MBD is the least relation containing
the following axioms, and satisfying the rules in Definition 3:

(mate) maten.σ|σ0�P � ◦ mate⊥
n .τ |τ0�Q � → σ|σ0|τ |τ0�P ◦Q �

(bud) bud⊥
n(ρ).τ |τ0� budn.σ|σ0�P � ◦Q � → ρ�σ|σ0�P � � ◦ τ |τ0�Q �

(drip) drip(ρ).σ|σ0�P � → ρ� � ◦ σ|σ0�P �

In [4] it is shown that the operations of mating, budding and dripping can be
encoded in PEP.

For the sake of simplicity, in the present paper we consider a basic calculus
containing the membrane interaction primitives of both the PEP and the MBD
calculi. As the primitives of MBD can be encoded in PEP, we conjecture that
the system described in the following part of the paper can be encoded in an
equivalent system that makes use of the PEP primitives only.

4.2 Computing {n2 | n ≥ 1} in Brane Calculi

Now we show how to model our case study in Brane Calculi. Our solution is in-
spired by the simplified solution in Subsection 3.2. When moving from P systems
to Brane Calculi, two main problems arise.

The first problem is concerned with the fact that in Basic Brane Calculi
there are no objects/proteins floating inside the membranes. Hence, we need an
alternative representation of the output of our system. In the solution based on
P systems presented in Subsection 3.2, the natural number n is represented as
n occurrences of object c inside membrane r. Here the idea is to represent the
output as a family of membranes with a particular process C on them, such that
process C can be distinguished by other processes residing on other auxiliary
membranes.

A second major problem is concerned with the interleaving semantics of Brane
Calculi. We note that the maximal parallelism semantics of P systems is a very
powerful synchronization mechanism. This ensures that – at each computational
step – for each occurrence of object b a new object c is created and for each
occurrence of object a a new object b is created. If we simply encode each object a
(resp. b, c) with a membrane A� � (resp. B� �, C� �, thus obtaining a flat multiset
of membranes, then for mimicking a computational step of the corresponding P

A Case Study in (Mem)Brane Computation 243

system we need to perform a synchronization among an unbounded number of
membranes, and this seems to be a very difficult task in Brane Calculi. On the
other hand, it is quite easy to synchronize an a priori fixed number of membranes.
To solve this problem, we decided to move from the flat structure of membranes
proposed above (and consisting in a multiset of membranes A� �, B� �, and
C� � contained in the same surrounding membrane) to a hierarchical structure.

We start presenting a simplified version of the solution, where the output of
the system is represented by the number of occurrences of C appearing in the
whole structure of the system, and not inside a specific membrane. Then, we
present a more elegant solution where the output of the system is represented
by the number of occurrences of C contained in a specific membrane.

Solution with output scattered in the whole system. The initial system
consists of an external membrane, containing two instances of membranes repre-
senting an encoding of object a and one brane representing an encoding of object
b, as depicted in Figure 1 (the need for the auxiliary membranes decorated with
processes X , Ta and Tb will be clarified in the following).

A A

!
B X

Ext

Ta Tb Ta Tb
M

Fig. 1. The initial membrane system (with M = mate⊥
n)

We mimic a single maximal parallelism computational step of the P system
in Subsection 3.2 by the following sequence of steps: each membrane encoding
object b creates – by dripping – a new membrane representing an encoding of c;
each membrane encoding object a is surrounded by a newly created membrane
representing a and containing a new instance of a membrane representing b.

An evolution of the representation of an object a as a nested family of mem-
branes is reported in Figure 2.

The representations of objects a and b are arranged in a hierarchical structure:
there exists a membrane with process A (and representing object a) surrounding
both a membrane with process B (representing object b) and another membrane
with process A′ (surrounded by another membrane with process E – such a
membrane is created during the phagocytosis to preserve bitonality and cannot
be avoided). The membrane with object A′ contains a membrane decorated
with B and another membrane E containing a membrane A′, and so on. The
most internal instance of membrane decorated with A′ contains the two terminal
membranes Ta and Tb.

A maximal parallelism computational step of the P system in Subsection 3.2
is mimicked in the following way: the external membrane – with process Ext –

244 N. Busi and M.A. Gutiérrez-Naranjo

Fig. 2. The evolution of the system encoding object a

sends one (asynchronous) signal to each of its children. The child membrane with
process B reacts to the signal by spawning a new child membrane with process
C, and sends a signal to the external brane to communicate that it has finished
its task. Each child membrane with process A reacts in the following way:

– first of all, the A membrane sends two signals to its children – decorated with
B and E – that will be used to wake up the instances of membranes decorated
with B inside the hierarchical structure (each of such B membranes will
spawn a new C membrane);

– then it waits for two signals from its children, to acknowledge the end of
the creation of new copies of C by the B membranes in the hierarchical
structure;

– now, a new membrane is created, and the A membrane enters this new
membrane by phagocytosis and spawns a new membrane with process B;

– finally, the A membrane sends a signal to the external membrane to acknowl-
edge the end of its task, and evolves to a membrane with process A′.

Before presenting the definition of the system, we show how to obtain asyn-
chronous communication between a father and a child membrane. If the father
membrane wants to send a signal to one of its children, it produces by pinocyto-
sis a bubble with process mate⊥

x ; the child accepts this signal by performing an
action matex. On the other hand, if a child wants to send a signal to its father,
it produces by dripping a bubble with process C→

x; the father receives this signal
by performing an action C→⊥

x .
Formally, the system is defined as follows:

mate⊥
n� � ◦ Ext� A� Ta� � ◦ Tb� � � ◦

A� Ta� � ◦ Tb� � � ◦
B� � ◦
!(X� �) �

So, we have a big membrane containing two copies of A and one copy of B,
plus the membrane mate⊥

n� �. The membrane mate⊥
n� � is a trigger that fuses

with the big membrane: if the fusion is performed by the first maten action of

A Case Study in (Mem)Brane Computation 245

Ext, then some new copies of C are produced; otherwise, the system ends. As
we already said before, the output of the system is represented by the number of
occurrences of C appearing in the whole structure of the system, and not inside
a specific membrane.

The process Ext is the following:

Ext = !maten.©◦(mate⊥
as

).©◦(mate⊥
as

).©◦(mate⊥
bs

). C→⊥
af

. C→⊥
af

.
C→⊥
bf
.drip(mate⊥

n) |
maten.0

The program Ext triggers the two copies of A and B by producing three
bubbles by pinocytosis that can fuse with the two instances of A and with B.
The membrane B simply produces a child bubble labeled with C then signals
the termination of this task to the external membrane. In this simplified version
of the solution, C may be any process that can be distinguished from the others.

The evolution of membrane A is depicted in Figure 2; here we give a more
detailed description of the behavior of such a kind of membrane.

First of all, the membrane A sends a signal to its children: at the beginning,
this membrane has two dummy children (represented by systems Ta and Tb) that
simply send back the signal; however, during the computation the last created
membrane A has to send a signal to its children to permit to its descendants
of kind B to produce new copies of C. Thus, membrane A sends a signal with
label as to its child with process E and a signal with label bs to its child with
process B to trigger the starting of the execution of a computational step by
the two children. Then, the membrane A waits for two signals: a signal with
label af from its child E (meaning that all the B descendants have spawn a
new copy of C) and a signal with label bf from its child B (meaning that B has
spawn a new copy of C). After the membrane A has received these two signals
from its children, membrane A creates a new sibling bubble decorated with D,
then A enters the D bubble (note that phagocytosis creates a new membrane
surrounding A inside D; this causes the necessity to propagate signals across this
membrane, that has process E). After A enters D, D creates a child with process
B by pinocytosis, and then signals that it has finished its task to its father, and
then, by fusing with a copy of an X membrane, it becomes a membrane with
program A.

The definitions of the remaining systems and processes are as follows:

A = mateas .©◦(mate⊥
as

).©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf
.drip(D). C←

d.A
′

A′ = !mateas .©◦(mate⊥
as

).©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf
.drip(C→

af
)

D = C←⊥
d (E).©◦(B).drip(C→

af
).mate⊥

x

X = matex.A
E = !mateas .©◦(mate⊥

as
). C→⊥

af
.drip(C→

af
)

B = !matebs .©◦(C).drip(C→
bf

)
Ta = (!mateas .drip(C→

af
))

Tb = (!matebs .drip(C→
bf

))

246 N. Busi and M.A. Gutiérrez-Naranjo

Solution with output contained in a specific membrane. Now we show
how to put the encoding of the output of the system inside a single membrane,
with process Res. First of all, we surround the system by two membranes: the
external membrane is decorated with process Ext1 and the internal membrane
is decorated with process Ext2. The initial state of the system is reported in
Figure 3.

!
XA A B

Ext2

Ta Tb Ta Tb

Res

Ext1

M

!
Y

Fig. 3. The initial configuration of the system with output in the Res membrane (with
M = mate⊥

n)

The system behaves as the system presented in the previous subsection as
far as the generation of new copies of C is concerned. On the other hand, when
we decide to terminate (by choosing the second maten action) then, instead
of blocking the system, the continuation of process Ext2 (together with system
!Y � �) permits to the nested membranes A,A′ and B to perform an exocytosis. In
this way, all the C membranes (as well as the terminating Ta and Tb membranes)
are put in the region of the external membrane. The Ext2 membrane, as well
as the E membranes, disappear by performing an exocytosis with the external
membrane, whereas each C membrane produces a child decorated with C′ by
pinocytosis, and then fuses with the Res membrane.

When the computation stops, the result is represented by the number of C′

membranes contained inside the Res membrane, and the structure of the system
is depicted in Figure 4.

Formally, the system is defined as follows:

Ext1�mate⊥
n� �◦ Ext2� A� Ta� � ◦ Tb� � � ◦

A� Ta� � ◦ Tb� � � ◦
B� � ◦
!(X� �)◦
!(Y � �)� ◦

Res� � �

A Case Study in (Mem)Brane Computation 247

X

!

Ext1’

Res

C’ C’ C’...
Y

!

Fig. 4. The final configuration of the system with output in the Res membrane

The processes Ext1 and Ext2 are defined as follows:

Ext1 = ! C→⊥
out

Ext2 = !maten.©◦(mate⊥
as

).©◦(mate⊥
as

).pino(mate⊥
bs

). C→⊥
af

. C→⊥
af

.
C→⊥
bf
.drip(mate⊥

n) |
maten. C→⊥

ae
. C→⊥

ae
. C→⊥

be
. C→

out

The definitions of the remaining systems and processes are as follows:

A = mateas .©◦(mate⊥
as

).©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf
.drip(D). C←

d.A
′ | C→

ae

A′ = !mateas .©◦(mate⊥
as

).©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf
.drip(C→

af
) | C→

ae

D = C←⊥
d (E).©◦(B).drip(C→

af
).mate⊥

x

X = matex.A
Y = matey. C→⊥

ae
. C→⊥

be
. C→⊥

out

E = !mateas .©◦(mate⊥
as

). C→⊥
af

.drip(C→
af

) | mate⊥
y

B = !matebs .©◦(C).drip(C→
bf

) | C→
be

Ta = (!mateas .drip(C→
af

)) | C→
out

Tb = (!matebs .drip(C→
bf

)) | C→
out

Res = !mate⊥
res

C = ©◦ (C′).materes

5 Final Remarks

In the last years, two branches of Natural Computing, Membrane Computing
and Brane Calculi have been developed at the crossroads of Cell Biology and
Computation. Both branches start from the idea of cells are capable to process
and to generate information. Nonetheless, they have followed different paths.

248 N. Busi and M.A. Gutiérrez-Naranjo

Membrane Computing are more interested in the study of computational de-
vices, by taking the cell as inspiration whereas Brane Calculi try to stay as close
to the Biology as possible.

In a certain sense, Brane Calculi are dual to Membrane Computing, since they
work with object placed on membranes, not with object placed in the regions
surrounded by membranes. This is a key difference. In Membrane Computing,
the objects represent chemicals swimming in an aqueous solution inside the mem-
branes and membranes separate the compartments where local rules are applied.
In Brane Calculi, objects are placed on membranes and they correspond to pro-
teins embedded in the real membranes. The computation is made by membrane
operations controlled by these objects.

Another notable difference between Brane Calculi and P systems is concerned
with the semantics of the two formalism: whereas Brane Calculi are usually
equipped with an interleaving, sequential semantics (each computational step
consists of the execution of a single instruction), the usual semantics in mem-
brane computing is based on maximal parallelism (a computational step is com-
posed of a maximal set of independent interactions).

In this paper we started a joint investigation of both formalisms inspired by
the behavior of biological membranes. In particular, we investigate their compu-
tational power w.r.t. their ability to generate sets of numbers, and we take as a
case study the set L = {n2 |n ≥ 1}.

First we recalled the P systems presented in [11] which generates L, then we
provided a new, simplified solution. Then we move to Brane Calculi, and we
tackle the problem of presenting a solution to the case study based on the sim-
plified solution we propose for P systems. After discussing the problems which
arise when moving from P systems to Brane Calculi, we present two solutions
of the problem in Brane Calculi. The most relevant problem is due to the shift
from the maximal parallelism semantics of P systems to the interleaving seman-
tics of Brane Calculi: while maximal parallelism turns out to be a very powerful
synchronization tool, permitting to synchronize an unbounded number of com-
ponents, it seems that this form of synchronization turns out to be problematic
in Brane Calculi. We solve this problem by moving from a “flat” representation
of the system to a hierarchical representation, that can be easily obtained by
making use of an unbounded number of membranes.

We think that the present paper could represent a first step in the comparison
of the two aforementioned formalisms. As future work, we plan to investigate the
possibility to compute NP-complete problems in polynomial time with Brane
Calculi, by taking as a starting point the encouraging results on this topic ob-
tained for P systems (see, for example, [13] and references therein).

Acknowledgement

The second author acknowledges the support by Project TIN2005-09345-C03-01
of the Ministry of Education and Science of Spain, cofinanced by FEDER funds,
and by the Project of Excellence TIC-581 of the Junta de Andalućıa.

A Case Study in (Mem)Brane Computation 249

References

1. L.M. Adleman. Molecular computations of solutions to combinatorial problems.
Science, 226 (1994), 1021–1024.

2. D. Besozzi, N. Busi, G. Franco, R. Freund, Gh. Păun. Two universality results for
(mem)brane systems. In Proceedings of the Fourth Brainstorming Week on Mem-
brane Computing, Vol. I (M.A. Gutiérrez Naranjo, Gh. Păun, A. Riscos-Núñez,
F.J. Romero-Campero, eds.), Fénix Editora, 2006, 49–62.

3. N. Busi, R. Gorrieri. On the computation power of brane calculi. Third Workshop
on Computational Methods in Systems Biology, Edinburgh, 2005.

4. L. Cardelli. Brane calculi. In Computational Methods in Systems Biology 2004 (V.
Danos, V. Schachter, eds.), LNBI 3082, Springer-Verlag, Berlin, 2005, 257–278.

5. L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240,
1 (2000), 177–213.

6. L. Cardelli, Gh.Păun. An universality result for a (mem)brane calculus based on
mate/drip operations. Intern. J. Found. Computer Sci., 17, 1 (2006), 49–68.

7. J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Uni-
versity of Michigan Press, 1975.

8. W.S. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5 (1943) 115–133.

9. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

10. Gh. Păun, M.J. Pérez-Jiménez. Recent computing models inspired from biology:
DNA and membrane computing. Theoria, 18 (2003), 72–84.

11. Gh. Păun. Membrane Computing – An Introduction Springer-Verlag, Berlin, 2002.
12. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients:

An abstraction for biological compartments. Theoretical Computer Science, 325, 1
(2004), 141–167.

13. A. Riscos-Núñez. Cellular Programming: Efficient Resolution of Numerical NP-
Complete Problems. Ph.D. Thesis. University of Seville, 2004.

14. P systems web page http://psystems.disco.unimib.it/

Computing with Genetic Gates, Proteins,
and Membranes

Nadia Busi1 and Claudio Zandron2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna
Mura A. Zamboni 7, I-40127 Bologna, Italy

busi@cs.unibo.it
2 Dipartimento di Informatica, Sistemistica e Comunicazione

Università di Milano-Bicocca
via Bicocca degli Arcimboldi 8, I-20126, Milano, Italy

zandron@disco.unimib.it

Abstract. We introduce Genetic P systems, a class of P systems with
evolution rules inspired by the functioning of the genes.

The creation of new objects – representing proteins – is driven by
genetic gates: a new object is produced when all the activator objects
are present, and no inhibitor object is available. Activator objects are not
consumed by the application of such an evolution rule. Objects disappear
because of degradation: each object is equipped with a lifetime; when
such a lifetime expires, the object decays.

Then, we extend the basic model with bind and release rules and
repressor rules, that simulate the action of protein channels and the
action of substances which connect to other objects to block their use.
We provide a universality result for such a class of systems.

1 Introduction

Membrane computing is a branch of natural computing, initiated by Gheorghe
Păun with the definition of P systems in [3,4,5]. The aim is to provide a formal
modeling of the structure and the functioning of the cell, making use especially
of automata, languages, and complexity theoretic tools.

Membrane systems (also called P systems) are based upon the notion of mem-
brane structure, which is a structure composed by several cell-membranes, hi-
erarchically embedded in a main membrane called the skin membrane. A plane
representation of a membrane structure can be given by means of a Venn di-
agram, without intersected sets and with a unique superset. The membranes
delimit regions and we associate with each region a set of objects, described by
some symbols over an alphabet, and a set of evolution rules.

In the basic variant, the objects evolve according to the evolution rules, which
can modify the objects to obtain new objects and send them outside the mem-
brane or to an inner membrane. The evolution rules are applied in a maximally
parallel manner: at each step, all the objects which can evolve should evolve.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 250–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Computing with Genetic Gates, Proteins, and Membranes 251

A computation device is obtained: we start from an initial configuration, with
a certain number of objects in certain membranes, and we let the system evolve.
If a computation halts, that is no further evolution rule can be applied, the re-
sult of the computation is defined to be the number of objects in a specified
membrane (or expelled through the skin membrane). If a computation never
halts (i.e., one or more object can be rewritten forever), then it provides no
output.

An up-to-date bibliography of the area and other useful resources can be found
at [9].

The goal of this paper is to introduce systems which mimic the functioning of
the genes. The relevance of such a subject has been recently pointed out in [6].
Genetic gates work in the following way: the production of a substance is the
result of the activation of a gene, when certain substances (activators) are present
while other substances (inhibitors) are absent. It is important to stress the fact
that the production of the object does not require that one or more objects are
consumed in order to do this. Nonetheless, objects can disappear due to a decay
process. For this reason, objects are marked with a lifetime, which is decreased
by one at each computation step. When this value becomes equal to zero, the
object disappears.

We also consider rules to simulate the action of protein on membranes to com-
municate objects through protein channels, by defining bind and release rules,
and the action of certain substances which act as repressors by connecting to
other objects so to block their action, by defining repressor rules. We show that
systems with all these types of rules are universal, and we point out various
questions and investigation topics for further research.

The rest of the paper is organized as follows. In Section 2 we give some basic
definitions which will be used throughout the paper. In Section 3 we define
Genetic P systems and in section 4 we extend the the basic class with Bind and
Release rules and repressor rules. In Section 5 we provide an universality result
for such an extended class of systems. Section 6 gives some conclusive remarks
and presents various research topics.

2 Basic Definitions

In this section we provide some basic definitions that will be used throughout
the paper. We start with the definition of multisets and multiset operations.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) 	= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The empty multiset is denoted by ∅.

Given the multiset m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S
while ⊕ denotes their multiset union: m⊕m′(s) = m(s) + m′(s). The operator
\ denotes multiset difference: (m \m′)(s) = if m(s) ≥ m′(s), then m(s)−m′(s)

252 N. Busi and C. Zandron

else 0. The scalar product, j ·m, of a number j with m, is (j ·m)(s) = j · (m(s)).
The cardinality of a multiset is the number of occurrences of elements contained
in the multiset: |m| =

∑
s∈S m(s).

The set of parts of a set S is defined as P(S) = {X | X ⊆ S}.
Given a set X ⊆ S, with abuse of notation we use X to denote also the

multiset

mX(s) =
{

1 if s ∈ X
0 otherwise

The restriction to a subset of a multiset is defined as follows:

Definition 2. Let m be a finite multiset over S and X ⊆ S. The multiset m|X
is defined as follows: for all s ∈ S,

m|X(s) =
{

m(s) if s ∈ X
0 otherwise

We provide some basic definitions on strings, cartesian products, and relations.

Definition 3. A string over S is a finite (possibly empty) sequence of elements
in S. Given a string u = x1 . . . xn, the length of u is the number of occurrences
of elements contained in u and is defined by |u| = n. The empty string is denoted
by λ.

With S∗ we denote the set of strings over S, and u, v, w, . . . range over S.
Given n ≥ 0, with Sn we denote the set of strings of length n over S.

Given a string u = x1 . . . xn and i such that 1 ≤ i ≤ n, with (u)i we denote
the i-th element of u, namely, (u)i = xi.

Given a string u = x1 . . . xn, the multiset corresponding to u is defined as
follows: for all s ∈ S, mu(s) = |{i | xi = s, 1 ≤ i ≤ n}|. With abuse of notation,
we use u to denote also mu.

Definition 4. With S × T we denote the cartesian product of sets S and T ,
with ×nS, n ≥ 1, we denote the cartesian product of n copies of set S and with
×n

i=1Si we denote the cartesian product of sets S1, . . . , Sn, i.e., S1 × . . . × Sn.
The ith projection of (x1, . . . , xn) ∈ ×n

i=1Si is defined as πi(x) = xi, and lifted
to subsets X ⊆ ×n

i=1Si as follows: πi(X) = {πi(x) | x ∈ X}.

Given a binary relation R over a set S, with Rn we denote the composition of n
instances or R, with R+ we denote the transitive closure of R, and with R∗ we
denote the reflexive and transitive closure of R.

3 Genetic P Systems

In this section, we present the definition of Genetic P systems and the definitions
which we need to describe their functioning. To this aim, we start with the
definition of membrane structure:

Computing with Genetic Gates, Proteins, and Membranes 253

Definition 5. Given the alphabet V = {[,]}, the set MS is the least set induc-
tively defined by the following rules:

– [] ∈ MS
– if μ1, μ2, . . . , μn ∈ MS, n ≥ 1, then [μ1 . . . μn] ∈ MS

We define the following relation over MS: x ∼ y if and only if the two strings
can be written in the following form: x = [1. . . [2. . .]2 . . . [3. . .]3 . . .]1 and y =
[1. . . [3. . .]3 . . . [2. . .]2 . . .]1 (i.e., if two pairs of parentheses that are neighbors can
be swapped together with their contents).

The set MS of membrane structures is defined as the set of equivalence classes
w.r.t. the relation ∼∗.

We say that i is the father of j (and j is a child of i) if the membrane j is
contained in i, and no membrane exists that contains j and is contained in i.

The partial function father : {1, . . . , d} → {1, . . . , d} returns the father of a
membrane i, or is undefined if i is the external membrane.

The function children : {1, . . . , d} → P({1, . . . , d}) returns the set of children
of a membrane.

We call membrane each matching pair of parentheses appearing in the membrane
structure. A membrane structure μ can be represented as a Venn diagram, in
which any closed space (delimited by a membrane and by the membranes im-
mediately inside) is called a region of μ.

We can give now the definition of Genetic P systems (or GP systems for short).
To this aim, given a set X , we define RX = P(X)× P(X)×X.

Definition 6. A Genetic P system with timed degradation (of degree d, with
d ≥ 1) is a construct

Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0)

where:

1. V is a finite alphabet whose elements are called objects;
2. μ is a membrane structure consisting of d membranes (usually labeled with

i and represented by corresponding brackets [i and]i, with 1 ≤ i ≤ d);
3. w0

i , 1 ≤ i ≤ d, are strings over V × (IN ∪ ∞) associated with the regions
1, 2, . . . , d of μ; they represent multisets of objects of the form (a, t) present
in the regions of μ, where a is a symbol of the alphabet V and t > 0 represents
the decay time of that object. The multiplicity of a pair in a region is given
by the number of occurrences of this pair in the string corresponding to that
region;

4. Ri, 1 ≤ i ≤ d, are finite multisets1 of genetic gates over V associated with
the regions 1, 2, . . . , d of μ; these gates are of the forms uact,¬uinh :→ (b, t)
where uact ∩ uinh = ∅. uact ⊆ V is the positive regulation (activation)2,

1 Here we use multisets of rules, instead of sets, because each rule can be used at most
once in each computational step.

2 We consider sets of activators, meaning that a genetic gate is never activated by
more than one instance of the same protein.

254 N. Busi and C. Zandron

uinh ⊆ V is the negative regulation (inhibition), b ∈ V is the transcription
of the gate3 and t ∈ IN ∪∞ is the duration of object b;

5. i0 is a number between 1 and d and it specifies the output membrane of Π.

We say that a gate is unary if |uact ⊕ uinh| = 1.
The membrane structure and the multisets represented by wi, 1 ≤ i ≤ d, in Π

constitute the initial state4 of the system. A transition between states is governed
by an application of the transcriptions specified by the genetic gates which is
done in parallel; all objects, from all membranes, which can be the subject of
local evolution (that is, that can be used to apply the rule of a gate which is not
used in the same step by other objects) have to evolve simultaneously.

The gate uact,¬uinh :→ (b, t) can be activated if the region it belongs to
contains enough free activators and no free inhibitors. If the gate is activated,
the regulation objects (activators) in the set uact are bound to such a gate,
and they cannot be used for activating any other gate in the same maximal
parallelism evolution step. On the contrary, if one or more free inhibitor objects
are present in the region where the gate is placed, then one of these objects (non-
deterministically chosen) is bound to the gate, which cannot then be activated.

In other words, the gate uact,¬uinh :→ (b, t) in a region containing a multiset
of (not yet bound) objects m can be activated if uact is contained in m and no
object in uinh appears in m; if the gate performs the transcription, then a new
object (b, t) is produced. Note that the objects in uact and uinh are not consumed
by the transcription operation, but will be released at the end of the operation
and (if they do not disappear because of the decay process) they can be used
in the next maximal parallelism evolution step. Each object starts with a decay
number, which specify the number of steps after which this object disappears.
The decay number is decreased after each parallel step; when it reaches the value
zero, the object disappears. If the decay number of an object is equal to ∞, then
the object is persistent and it never disappears.

Note that the decay number associated to an object depends on the gate that
produced the object (if the object is not present in the initial system), and not on
the type of the object. Hence,a system may contain two gates, say, e.g. a :→ (b, 5)
and a,¬c :→ (b,∞): the first gate produces one copy of object b that decays after
5 time units, whereas the second gate produces a persistent copy of object b.5

We adopt the following notation for gates. The activation and inhibition sets
are denoted by one of the corresponding strings, i,e, a, b,¬c :→ (c, 5) denotes
the gate {a, b},¬{c} :→ (c, 5). If either the activation or the inhibition is empty
then we omit the corresponding set, i.e., a :→ (b, 3) is a shorthand for the gate
{a},¬∅ :→ (b, 3). The nullary gate ∅,¬∅ :→ (b, 2) is written as :→ (b, 2).

3 Usually the expression of a genetic gate consists of a single protein.
4 Here we use the term state instead of the classical term configuration because we will

define a (essentially equivalent but syntactically) different notion of configuration in
Section 5.

5 We could also consider a variant of GP systems where the decaying time is a function
of the type of the object, i.e., all the objects b that are produced in the system will
have the same decaying time. We plan to devote future investigation to this variant.

Computing with Genetic Gates, Proteins, and Membranes 255

3.1 Partial Configurations, Reaction Relation, and Maximal
Parallelism Step

Once defined GP systems, we are ready to describe their functioning. Hence, we
give now the definitions for partial configuration, configuration, reaction relation,
and heating and decaying function.

Definition 7. Let Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a GP system.

A partial configuration of Π is a tuple (w1, R1, w̄1, R̄1), . . . , (wd, Rd, w̄d, R̄d) ∈
×d((V × IN) ×RV × (V × IN)×RV).

We use ×d
i=1(wi, Riw̄i, R̄i) to denote the partial configuration above.

The set of partial configurations of Π is denoted by ConfΠ . We use γ, γ′, γ1,
. . . to range over ConfΠ .

w1, . . . , wd represent the active multisets, whereas w̄1, . . . , w̄d represent the frozen
(already used) multisets, R1, . . . , Rd represent the active gates, while R̄1, . . . , R̄d

represent the frozen (already used) gates.
A configuration is a partial configuration containing no frozen objects; config-

urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 8. Let Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a GP system.

A configuration of Π is a partial configuration ×d
i=1(wi, Ri, w̄i, R̄i) satisfying

the following: w̄i = ∅ and R̄i = ∅ for i = 1, . . . , d.
The initial configuration of Π is the configuration ×d

i=1(w
0
i , Ri, ∅, ∅) .

The activation of a genetic gate is formalized by the notion of reaction relation.
In order to give a formal definition we need the function obj : (V × IN)∗ → V ∗,
defined as follows. Assume that (a, t) ∈ (V ×(IN ∪∞)) and w ⊆ (V ×(IN ∪∞))∗.
Then, obj(λ) = λ and obj((a, t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement
the decay time of objects, destroying the objects which reached their time
limit.

Definition 9. The function DecrT ime : (V × IN)∗ → (V × IN)∗ is defined as
follows:

DecrT ime(λ) = λ
and

DecrT ime((a, t)w) =
{

(a, t− 1)DecrT ime(w) if t > 1
DecrT ime(w) if t = 1

We are now ready to give the notion of a reaction relation.

Definition 10. Let Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a GP system.

The reaction relation *→ over ConfΠ × ConfΠ is defined as follows:
×d

i=1(wi, Ri, w̄i, R̄i) *→ ×d
i=1(w

′
i, R

′
i, w̄

′
i, R̄

′
i) iff there exist k, with 1 ≤ k ≤ d

and uact,¬uinh :→ (b, t) ∈ Rk such that

256 N. Busi and C. Zandron

– R′
k = Rk \ (uact,¬uinh :→ (b, t))

– R̄′
k = R̄k ⊕ (uact,¬uinh :→ (b, t))

– ∀i : 1 ≤ i ≤ d and i 	= k implies w′
i = wi, w̄′

i = w̄i, R′
i = Ri and R̄′

i = R̄i

– if uinh∩dom(obj(wk)) = ∅ and ∃wact ⊆ wk such that6 obj(wact) = uact then
• w′

k = wk \ wact

• w̄′
k = w̄k ⊕ {(b, t)} ⊕DecrT ime(wact)

– if ∃(s, t) ∈ dom(wk) such that s ∈ uinh then
• w′

k = (wk) \ (s, t)
• w̄′

k = w̄k ⊕DecrT ime((s, t))

Definition 11. The function heat&decay : ConfΠ → P(ConfΠ) is then de-
fined as follows:

heat&decay(×d
i=1(wi, Ri, w̄i, R̄i)) = ×d

i=1((DecrT ime(wi))⊕w̄i), Ri⊕R̄i, ∅, ∅)

Now we are ready to define the maximal parallelism computational step �⇒:

Definition 12. Let Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a GP system.

The maximal parallelism computational step �⇒ over (nonpartial) configura-
tions of Π is defined as follows: γ1 �⇒ γ2 iff there exists a partial configuration
γ′ such that γ1 *→+ γ′, γ′ 	*→ and γ2 = heat&decay(γ′).

4 Genetic P Systems with Bind&Release and Repressor
Rules

The use of genetic gates alone is quite restrictive. For instance, no communication
of objects is possible through the membranes, a feature which is fundamental
in the basic variant of P systems. In fact, without communication the system
would not act as a whole unit, but instead as a collection of separate systems or
processes of various types, without interaction.

In order to enrich the model described so far, we consider also two other types
of rules which mimic two different important cellular reactions.

The first type of rules we consider (Bind&Release), mimics the communication
of objects through a protein channel. Two (multisets of) substances are bound
to both sides of a membrane. Then, by means of a channel in the membrane,
they pass in opposite directions through the membrane itself, exchanging in this
way their position. Finally, they can be released in their (new) region.

The second type of rules we consider (Repressor) mimics the action of certain
substances that act to deactivate other substances present in the cell. When such
a substance (a repressor) get in contact with another object, it creates a bond
which cannot be destroyed. The object (and the repressor substance) cannot be
used anymore for any other reaction. We notice that the repressor can create
such a bond in any region of the cell. For this reason, the set of repressor rules
will be valid for the whole system (i.e., we will not define different set of repressor
rules for each region).

6 The symbol = should be intended here as working on multisets.

Computing with Genetic Gates, Proteins, and Membranes 257

We provide the definition of Genetic P systems extended with Bind&Release
and Repressor rules:

Given a set X , we define RX = P(X) × P(X) × X and BRX = P(X) ×
P(X)× P(X)× P(X)

Definition 13. A Genetic P system with timed degradation, Bind and Release
actions and repressor rules (of degree d, with d ≥ 1), or G+P system for short,
is a construct

Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

where

1. V , μ, i0, and w0
i , Ri, for 1 ≤ i ≤ d, are defined as in Definition 6.

2. BRi, 1 ≤ i ≤ d, are finite multisets of Bind and Release rules over V
associated with the regions 1, 2, . . . , d of μ; these rules are of the forms u[v] →
v[u] where u, v ∈ V ∗, and |uv| > 0. The weight of a Bind and Release rule
u[v] → v[u] is |u|+ |v|.

3. Rs is a finite multiset of repressor rules; these rules are associated with the
system (and not to each region), and they are of the form a, b → a&b where
a, b ∈ V .

Besides evolution driven by the application of transcriptions specified by genetic
gates and object degradation, evolution steps in G+P systems are also concerned
with object migration through membranes and proteins repression.

Objects can be moved through membranes using bind and release operations.
If outside a region i is present a multiset u of objects in (V × IN) and inside
i a multiset v of objects in (V × IN), then a rule u[v] → v[u] in BRi can be
activated, moving the multisets u and v outside and inside region i, respectively.

Finally some objects can act as repressor objects, by means of repressor rules
Rs. Such a rules of the form a, b → a&b is activated when a repressor object b
is present, thus binding to an object a and creating a new object which cannot
be used anymore with any other rule.

4.1 Partial Configurations, Reaction Relation, and Maximal
Parallelism Step

As we did for the basic case, we give now the definitions for partial configuration,
configuration, reaction relation, and heating and decaying function for G+P
systems.

Definition 14. Let

Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

be a G+P system.
A partial configuration of Π is a tuple
(w1, R1, BR1, w̄1, R̄1, BR1), . . . , (wd, Rd, BRd, w̄d, R̄d, BRd)
∈ ×d((V × IN)×RV × BRV × (V × IN) ×RV × BRV).

258 N. Busi and C. Zandron

We use ×d
i=1(wi, Ri, BRi, w̄i, R̄i, BRi) to denote the partial configuration

above. The set of partial configurations of Π is denoted by ConfΠ . We use
γ, γ′, γ1, . . . to range over ConfΠ .

w1, . . . , wd represent the active multisets, w̄1, . . . , w̄d represent the frozen (al-
ready used) multisets, R1, . . . , Rd represent the active gate rules, R̄1, . . . , R̄d

represent the frozen (already used) gate rules, BR1, . . . , BRd represent the ac-
tive Bind&Release rules, R̄1, . . . , R̄d represent the frozen (already used) Bind&
Release rules.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 15. Let

Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

be a G+P system.
A configuration of Π is a partial configuration ×d

i=1(wi, Ri, BRi, w̄i, R̄i, BRi)
satisfying the following: w̄i = ∅, R̄i = ∅ and BRi = ∅ for i = 1, . . . , d.

The initial configuration of Π is the configuration ×d
i=1(w

0
i , Ri, BRi, ∅, ∅, ∅).

The activation of a genetic gate is formalized by the notion of reaction relation.
In order to give a formal definition we need the function obj : (V × IN)∗ → V ∗,
defined as follows. Assume that (a, t) ∈ (V ×(IN ∪∞)) and w ⊆ (V ×(IN ∪∞))∗.
Then, obj(λ) = λ and obj((a, t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement the
time index used objects, destroying the objects which reached their time limits.
The function DecrT ime : (V × IN)∗ → (V × IN)∗ is defined as follows:

Definition 16. DecrT ime(λ) = λ
and

DecrT ime((a, t)w) =
{

(a, t− 1)DecrT ime(w) if t > 1
DecrT ime(w) if t = 1

We are now ready to give the notion of reaction relation.

Definition 17. Let

Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

be a G+P system.
The reaction relation *→ over ConfΠ × ConfΠ is defined as follows:
×d

i=1(wi, Ri, BRi, w̄i, R̄i, BRi) *→ ×d
i=1(w

′
i, R

′
i, BR′

i, w̄
′
i, R̄

′
i, BR

′
i) iff there ex-

ist k, with 1 ≤ k ≤ d and a rule R in Rk ∪BRk ∪Rs such that
CASE 1: IF R : uact,¬uinh :→ (b, t) ∈ Rk, THEN

– R′
k = Rk \ (uact,¬uinh :→ (b, t))

– R̄′
k = R̄k ⊕ (uact,¬uinh :→ (b, t))

Computing with Genetic Gates, Proteins, and Membranes 259

– ∀i : 1 ≤ i ≤ d and i 	= k implies w′
i = wi, w̄′

i = w̄i, R′
i = Ri and R̄′

i = R̄i

– if uinh ∩ dom(obj(wk)) = ∅ and ∃wact ⊆ wk such that obj(wact) = uact then
• w′

k = wk \ wact

• w̄′
k = w̄k ⊕ {(b, t)} ⊕DecrT ime(wact)

– if ∃(s, t) ∈ dom(wk) such that s ∈ uinh then
– w′

k = (wk) \ (s, t)
– w̄′

k = w̄k ⊕DecrT ime((s, t))

CASE 2: IF R : u[v] → v[u] ∈ BRk THEN

– ∃Ubr ⊆ wfather(k) and ∃Vbr ⊆ wk such that u = obj(Ubr) and v = obj(Vbr)
– ∀i : 1 ≤ i ≤ d, i 	= k and i 	= father(k) implies w′

i = wi, w̄′
i = w̄i,

BR′
i = BRi and BR

′
i = BRi

– BR′
father(k) = BRfather(k)

– BR
′
father(k) = BRfather(k)

– w′
father(k) = wfather(k) \ Ubr

– w̄′
father(k) = w̄father(k) ⊕DecrT ime(Vbr)

– BR′
k = BRk \ (u[v] → v[u])

– BR
′
k = BRk ⊕ (u[v] → v[u])

– w′
k = (wk) \ Vbr

– w̄′
k = w̄k ⊕DecrT ime(Ubr)

CASE 3: R : a, b → a&b ∈ Rs

– ∃(a, t1), (b, t2) ∈ (V × IN) and (a, t1), (b, t2) ∈ wk

– ∀i : 1 ≤ i ≤ d, i 	= k w′
i = wi and w̄′

i = w̄i

– ∀i : 1 ≤ i ≤ d, R′
i = Ri and R̄′

i = R̄′
i

– ∀i : 1 ≤ i ≤ d, BR′
i = BRi and BR

′
i = BR

′
i

– w′
k = wk \ (a, t1) \ (b, t2)

– w̄′
k = w̄k ⊕ (a&b,min(t1, t2))

Definition 18. The function heat&decay : ConfΠ → P(ConfΠ) is defined as
follows:

heat&decay(×d
i=1(wi, Ri, BRi, w̄i, R̄i, BRi)) =

×d
i=1(DecrT ime(wi) ⊕ w̄i), Ri ⊕ R̄i, BRi ⊕BRi, ∅, ∅, ∅)

Now we are ready to define the maximal parallelism computational step �⇒:

Definition 19. Let Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0) be

a G+P system.
The maximal parallelism computational step �⇒ over (non-partial) configura-

tions of Π is defined as follows: γ1 �⇒ γ2 iff there exists a partial configuration
γ′ such that γ1 *→+ γ′, γ′ 	*→ and γ2 = heat&decay(γ′).

5 Turing Equivalence of G+P Systems

In this section we show that G+P systems with Bind and Release rules of weight
one are Turing powerful. The result is proved by showing how to model Random
Access Machines (RAMs) [8], a well known Turing powerful formalism.

We start recalling the definition of RAMs.

260 N. Busi and C. Zandron

5.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers r1, . . . , rn,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : I1), . . . , (m : Im). In [2] it is shown that the following two
instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next
instruction;

– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by executing
the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the
program is reached.

A state of a RAM is modeled by (i, c1, . . . , cn), where i is the program counter
indicating the next instruction to be executed, and c1, . . . , cn are the current
contents of the registers r1, . . . , rn, respectively. We use the notation (i, c1, . . . ,
cn) →R (i′, c′1, . . . , c

′
n) to denote that the state of the RAM R changes from

(i, c1, . . . , cn) to (i′, c′1, . . . , c′n), as a consequence of the execution of the i-th
instruction.

A state (i, c1, . . . , cn) is terminated if the program counter i is strictly greater
than the number of instructions m. We say that a RAM R terminates if its
computation reaches a terminated state. The output of the RAM is the contents
of register r1 in the terminated state of the RAM (if such a state exists).

5.2 Encoding RAMS in G+P Systems

In this section we show how to model RAMs in G+P systems. Given a RAM
with n registers, the system is composed by an external membrane, containing
n children membranes, each one representing one register: [0[1]1 . . . [n]n]0 (to
simplify the notation, we label the external membrane with 0 instead of 1). The
fact that register ri contains value ci is represented by the presence of ci copies
of object (ri,∞) in the membrane i. The instructions are encoded by genetic
gates. The presence of object pi in some part of the system represents the fact
that the program counter contains the value i (i.e., the next instruction to be
executed is the ith). At the beginning of the computation, an object (pi, 2) is in
the external membrane. All the objects representing the program counter will
be produced with duration 2.

As the output of the RAM is the contents of register r1 in the terminated state
of the RAM, the output of the RAM encoding is the number of occurrences of
object (r1,∞) in membrane 1.

Usually, when providing a RAM encoding of a P system, the output of the
RAM encoding is taken in (one of the) halting configurations of the encoding.

Computing with Genetic Gates, Proteins, and Membranes 261

When considering GP systems, we note that it is not trivial to define what is a
halting configuration. Take, e.g., the system with a negative gate ¬a :→ (b, t),
reaching a configuration containing only a persistent object (a,∞): according to
the reaction relation, this system never terminates. Actually, no real computation
is performed, but what happens is that the inhibitor protein (a,∞) is attacked
to the negative regulation part of the gene.

Hence, here we adopt a different “termination” condition for GP systems,
quite similar to the acceptance condition of automata with final states. Namely,
we consider a computation to be successfully terminated if a configuration is
reached which contains a distinguished persistent object (end,∞) in the external
membrane. The definition of other suitable notions of termination for GP systems
is left for future investigation.

We provide a RAM encoding which satisfies the following condition: the RAM
terminates with output k if and only if the encoding of the RAM reaches a
configuration containing the object (end,∞) in the membrane 0, and containing
exactly k occurrences of object (r1,∞) in membrane 1.

We consider RAMs that satisfy the following constraints:

1. If the RAM has m instructions, then all the jumps to addresses higher than
m are jumps to the address m + 1.

2. The “self-loops” on DecJump instructions – i.e., instruction of the kind (i :
DecJump(rj , i)) – are forbidden.

3. The instruction following a DecJump (either if the decrement or if the jump
is performed) is an increment.

Such constraints are not restrictive, as for any RAM not satisfying the constraints
it is possible to construct an equivalent RAM (i.e., a RAM computing the same
function) which satisfies the constraints above.

Consider a RAM with m instructions and n registers.
The first constraint can be easily satisfied by replacing each jump to an address

higher than m to a jump to the address m + 1.
The second constraint can be satisfied by adding to the RAM a new register

rn+1 that always contains the value zero, and by replacing each instruction
(i : DecJump(rj , i)) with a pair of instructions (i : DecJump(rj , i + 1)) and
(i + 1 : DecJump(rn+1, i). This means that the instructions following the ith
instruction are shifted with one position. More in detail, for all h : i+1 ≤ h ≤ m
we replace h with h + 1 in all the labels of the program, as well as in all the
labels occurring in the jump instructions of the program.

The third constraint can be satisfied by adding a new register rn+2 – that will
ever be incremented and never tested – and by replacing each instruction that
can be reached after performing a DecrJump instruction with the instruction
Succ(rn+2), and by shifting accordingly the other instructions.

If the RAM has m instructions, then the following gate belongs to mem-
brane 0:

pm+1 :→ (end,∞)

262 N. Busi and C. Zandron

This rule permits the system to signal termination when the instruction pm+1
is reached. (Actually, as we will see in the following, two instances of (end,∞)
are produced, but this is not a problem.)

If the ith instruction is (i : Succ(rj)), then the following sequence of rules of
membrane 0 is executed:

step 1: pi,¬rj :→ (rj ,∞)
step 2: pi, rj ,¬pi+1 :→ (pi+1, 2)
step 3: rj []j → [rj]j

If object rj enters membrane j before the object pi+1 is created, no new
program counter i+ 1 will be created and the system will either stop in a failed
computation or diverge without reaching a configuration with object end. As
the program counters have duration equal to 2, at step 3 the object pi decays.

If the i-th instruction is (i : DecJump(rj, s)) then the following sequence of
rules is executed:

step 1: pi[]lj :→ [pi]lj (in membrane j)
If the contents of register rj is zero (no occurrences of rj in membrane j):
step 2: pi,¬rj :→ (ps, 3) (in membrane j)
step 3: [ps]j → ps []j (in membrane j)

After step 2 the object pi decays. If object pi erroneously exits the membrane,
then pi decays just after exiting, and the system reaches a failed computation
(or will diverge).

If the contents of register rj is greater than zero:

step 2: pi, rj ,¬deci,j :→ decri,j (in membrane j)
step 3: rj , decri,j → (pi+1, 3) (in membrane j)
step 4(1): rj , decri,j → rj&decri,j (in membrane j)
step 4(2): [pi+1]lj → pi+1 []lj (in membrane j)

After step 2 the object pi decays. Steps 4(1) and 4(2) are executed in the same
maximal parallelism step. If the rule at step 4(1) takes place before step 3 (i.e.,
the repressor bounds to rj before that pi+1 is created), then no new program
counter is created and the system reaches a failed configuration (or will diverge).

The formal definition of the encoding of a RAM R with m instructions and
n registers, whose registers r1, . . . , rn contain values c1, . . . , cn is reported in
Table 1.

If some of the registers contain a value greater than zero when the RAM
terminates, then the system reaches a configuration containing the end object,
but because of gates pi,¬rj :→ (ps, 3) the system will never terminate. To obtain
an encoding that guarantees that the configurations containing the end object
can perform no further computation, we could add to the RAM a further register
rn+1, that will never be decreased, and consider only RAMs that terminate with
all registers empty but rn+1, and the result is contained in register rn+1. If we
provide a slight variation of the encoding, where membrane n + 1 contains no
gates (as register rn+1 can only be increased), then the above requirement is
fulfilled.

Computing with Genetic Gates, Proteins, and Membranes 263

Table 1. The G+P system encoding a RAM R

Π(R) = (V, μ, w0
0 , . . . , w0

d, R0, . . . , Rd, BR0, . . . , BRd, Rs, i0)

V = {pi | 1 ≤ i ≤ m + 1} ∪ {ri | 1 ≤ i ≤ n}∪
{decri,j | 1 ≤ i ≤ m + 1 ∧ 1 ≤ j ≤ n} ∪ {end}

μ = [0[1]1 . . . [n]n]0

w0
0 = (p1, 2)

|w0
j | = cj and (w0

j)i = (rj , ∞) j = 1, . . . , n and i = 1, . . . , cj

R0 =
{pm+1 :→ (end, ∞)}∪
{pi, rj , ¬pi+1 :→ (pi+1, 2) | the ith instr. is (i : Succ(rj)), i = 1, . . . , m}∪
{pi, rj , ¬pi+1 :→ (pi+1, 2) | the ith instr. is (i : Succ(rj)), i = 1, . . . , m}

Rj =
{pi, ¬rj :→ (ps, 3) | the ith instr. is (i : DecrJump(rj , s))}∪
{pi, rj , ¬deci,j :→ decri,j | the ith instr. is (i : DecrJump(rj , s))}∪
{rj , decri,j → (pi+1, 3) | the ith instr. is (i : DecrJump(rj , s))}

BR0 = {rj [] → [rj] | 1 ≤ j ≤ n}

BRj =
{rj [] → [rj]}∪
{pi[] → [pi] | the ith instr. is (i : DecrJump(rj , s)), i = 1, . . . , m}∪
{[pi] → pi[] | the ith instr. is (i : Succ(rj)), i = 1, . . . , m}

Rs = {rj , decri,j → rj&decri,j | 1 ≤ j ≤ n ∧ 1 ≤ i ≤ m + 1}

i0 = 1

Another feature of the encoding is the fact that, if an erroneous action is
performed, then the system can reach a failed configuration (i.e., a deadlocked
configuration that does not contain the end object). It is possible to produce an
encoding that diverges when an erroneous action is performed, by adding to the
membrane 0 the gate ¬end :→ loop. However, in such a case, the configuration
containing the end object is no longer terminated. A possible solution could be
to signal termination by emitting the end object outside the external membrane.

In this section, we only use a restricted version of the Bind and Release rules,
namely, rules with weight 1. We claim that, by using cooperative symport or an-
tiport rules in combination with very simple genetic gates permitting to generate
as many copies as you want of any object, Turing equivalence can be obtained

264 N. Busi and C. Zandron

as an easy consequence of the results recalled in [7]. We stress the fact that we
use Bind and Release rules of weight 1 to get universality, as symport rules of
weight 2 (or alternatively antiport rules with one object entering the membrane
and one object exiting the membrane) are already universal, without taking into
account genetic gates.

We proved Turing equivalence of G+P systems with Bind and Release rules
of weight one and suppressor rules. We started some investigation on the expres-
siveness of more restricted versions of G+P systems.

We conjecture that in G+P systems with only positive gates and with Bind
and Release rules of weight 1 (and without repressor rules) it is possible to decide
if a system can reach a configuration containing a end object. This result could be
proved by using the set saturation methods for well-structured transition systems
defined in [1]. A consequence of this conjecture is the fact that such a class of
systems is not Turing equivalent, according to the encoding rules defined above.

If we consider systems with both positive and negative gates and with persis-
tent objects (i.e., objects with an infinite duration) only (and without bind and
release rules and without repressor rules), we conjecture that the set of configu-
rations of the system with the maximal parallelism rule is a finite state machine,
hence most of the behavioral properties can be decided.

6 Conclusions

We have presented Genetic P systems, a new class of P systems where objects
can be produced by means of evolution rules which are inspired from the func-
tioning of the genes: a gene is activated (producing a new object), when certain
substances (activators) are present while other substances (inhibitors) are absent.

We have also considered rules that mimic the action of proteins on mem-
branes to communicate objects through protein channels, and rules simulating
the action of repressor substances. We showed that systems with all these types
of rules are universal.

Many investigations and research directions can be explored.
For instance, we can consider different kind of genetic gates, where more

objects can be created at the same time by a single activation of the gate, or
where the inhibition requires the presence of all inhibiting substances.

Also genetic gates where both inhibitors and activators can be attached to
the gate at the same time can be considered.

In what concern the decaying process of the objects, we could also consider
a non–deterministic decay process: at each parallel evolution step some objects
are non–deterministically chosen to be eliminated from the set of objects in the
system.

Various questions already investigated for “classic” P systems, could be in-
vestigated also for the systems defined in this paper, such as, for example, de-
cidability, computational power, comparison with other formalisms.

We also think that such a model would be useful to be used in the systems
biology area, to simulate various biological cell processes.

Computing with Genetic Gates, Proteins, and Membranes 265

References

1. A. Finkel, Ph. Schnoebelen. Well-structured transition systems everywhere! Theo-
retical Computer Science, 256:63–92, 2001.

2. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs, 1967.

3. G. Păun. Computing with membranes: an introduction. Bull. EATCS 67, 1999.
4. G. Păun. Computing with membranes. Journal of Computer and System Sciences,

61(1):108–143, 2000.
5. G. Păun. Membrane Computing. An Introduction. Springer, 2002.
6. G. Păun. 2006 research topics in membrane computing. Proc. Fourth Brainstorming

Week on Membrane Computing, Felix Editora, Sevilla, 2006.
7. Y. Rogozhin, A. Alhazov, R. Freund, Computational power of symport/antiport:

History, advances, and open problems. Proc 6th International Workshop on Mem-
brane Computing (WMC6), LNCS 3850, Springer, 2006.

8. J.C. Shepherdson, J.E. Sturgis. Computability of recursive functions. Journal of
the ACM, 10:217–255, 1963.

9. P Systems webpage. http://psystems.disco.unimib.it.

Classifying States of a Finite Markov Chain
with Membrane Computing

Mónica Cardona1, M. Angels Colomer1,
Mario J. Pérez-Jiménez2, and Alba Zaragoza1

1 Department of Mathematics, University of Lleida
Avda. Alcalde Rovira Roure, 191. 25198 LLeida, Spain

{mcardona,colomer,alba}@matematica.udl.es
2 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

Abstract. In this paper we present a method to classify the states of a
finite Markov chain through membrane computing. A specific P system
with external output is designed for each boolean matrix associated with
a finite Markov chain. The computation of the system allows us to decide
the convergence of the process because it determines in the environment
the classification of the states (recurrent, absorbent, and transient) as
well as the periods of states. The amount of resources required in the
construction is polynomial in the number of states of the Markov chain.

1 Introduction

Markov chains constitute an important type of stochastic processes characterized
by their evolution along determinate values (called states of the process) over
time. These chains represent observations of physic systems whose evolution at a
future time, conditioned on their present and past values, depends only on their
present value. Thus, the Markov chain loses the memory of its starting state.

In order to study the evolution in time of a Markov chain as well as the
existence of the stationary distribution it is necessary to classify its states. This
classification depends on the path structure of the chain.

In this work this problem is approached within the framework of the cellular
computing with membranes. The amount of resources that we use is polynomial
in the number of states. This subject has been also treated in terms of DNA
computing ([1]), based on a mathematical proposition of existence rather than
on the classical definition of the period of a state. This is due to the fact that
DNA computing is good in detecting the existence, but it has difficulties in
obtaining numerical quantifications.

The paper is structured as follows. In the next section, basic concepts concern-
ing Markov chains and P systems are introduced. In Section 3 a semi–uniform

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 266–278, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Classifying States of a Finite Markov Chain with Membrane Computing 267

solution to the problem of classifying the states of a Markov chain in the frame-
work of membrane computing is presented. Moreover, a formal verification of the
system is given, and the run time and the resources required in the description
of the system are analyzed.

2 Preliminaries

2.1 Markov Chains

Markov chains are a class of random processes exhibiting a certain memoryless
property and providing a fundamental ingredient in the study of randomized
algorithms. Their study is one of the main areas in modern probability theory.

A Markov process is a stochastic process that has a limited form of historical
dependency. Let {X(t) : t ∈ τ} be a stochastic process defined on the parameter
τ . We will think of τ in terms of time and the values that X(t) can assume are
called states which are elements of a state space S. In the case when the set τ
is discrete and the set S is finite, the Markov process is called a discrete–time
finite Markov chain. We consider this kind of Markov chains because computer
programs work in discrete steps and computers work with a finite amount of
resources and have a finite number of states.

More formally, a finite Markov chain is a sequence {Xt : t ∈ N} of random
variables verifying the following (Markov) property:

P (Xt+1 = j/X0 = i0, X1 = i1, . . . , Xt = it) = P (Xt+1 = j/Xt = it).

That is, the value of Xt+1 conditioned on the value of Xt, is independent of
the values of random variables Xm for m < t.

We suppose that the state space of the chain, S, is the (finite) set of nonneg-
ative integers {e1, . . . , ek} (whose elements are called states or results), and the
chain is characterized by its evolution among these states over time.

Hence, a finite Markov chain {Xt : t ∈ N} provides a random process by a
change of states or results e1, . . . , ek in certain instants of discrete times t ∈ N,
and where the result of each event only depends on the result of the previous
event. So, such a Markov chain is characterized by the conditional distribution

pij(t) = P (Xt = ej/Xt−1 = ei), for all t ≥ 1,

which is called the transition probability of the process, providing one–step tran-
sition probability.

We say that a finite Markov chain is time homogeneous or it has stationary
transition probabilities if the dependence between consecutive states does not
change, that is, P (Xn = ej/Xn−1 = ei) = P (Xn+m = ej/Xn+m−1 = ei), for
all n,m ∈ N, ei, ej ∈ S. In this case, we write the transition probability as
pij = P (Xn = ej/Xn−1 = ei). These probabilities form a stochastic matrix
P = (pij) with

∑k
j=1 pij = 1, ∀i ∈ {1, . . . , k}, called transition matrix. If pij 	= 0

then we say that the transition from the state ei to state ej is possible.

268 M. Cardona et al.

The Markov property allows us to write an expression for the probability of a
transition in one, two, three or more steps. For n = 1 this probability is simply
pij and is given by the position (i, j) of the transition matrix P . For n = 2 the
probability that the chain is in state ej at step 2 is p

(2)
ij =

∑k
r=1 pirprj, and is the

position (i, j) of the matrix P 2. In general, the probability that the process is in
state ej n steps after being in state ei is given by p

(n)
ij =

∑k
r=1 p

(m)
ir p

(n−m)
rj , 0 ≤

m ≤ n, and is the position (i, j) of the matrix Pn = PmPn−m (by the rules for
matrix multiplication).

The conditions ⎧⎪⎨⎪⎩
p
(1)
ij = pij ,

p
(n)
ij =

k∑
r=1

p
(1)
rj · p(n−1)

ir , for all n ≥ 2,

are called the Kolmogorov–Chapmann equations associated with the homoge-
neous Markov chain whose transition matrix is P = (pij)1≤i,j≤k ([4]).

We denote the initial probabilities by means of the vector q0 = (q1
0 , . . . , q

k
0),

and for each n ≥ 1 we consider the vector qn = (q1
n, . . . , q

k
n), where qj

n (1 ≤ j ≤ k)
is the probability to reach the state ej after n steps of the random process.

Notice that we have qn = q0P
n, for each n ≥ 1. So, in order to determine the

distribution qn it is enough to study the matrix Pn. In [2] the natural powers
of the transition matrix of a finite and homogeneous Markov chain within the
framework of membrane computing are computed. Moreover, the limit of the
sequence {Pn : n ∈ N} of these matrices allows us to obtain the distribution
limit in the case that it exits, and to know the stationary distribution of the
process. For more details see [3] and [4].

There is a well known result [5] relating the existence of the limit of the
sequence {Pn : n ∈ N} with the classification of the states of the Markov chain.
So, we give now a classification of the states of a Markov chain and the condition
by the existence of the limit.

A state ej is accessible from the state ei, denoted by ei → ej , if there is a
natural number n > 0 such that p

(n)
ij > 0. Two states ei, ej are communicating

states, denoted by ei ↔ ej , if ei is accessible from ej and ej is accessible from
ei. The relation of communication is an equivalence, so we can consider the
equivalence classes associated with it.

The following result shows that in a finite Markov chain with k states, if we
know all the paths of length k − 1, then we can know all the communicating
states.

Proposition 1. Let ei, ej be states of a finite Markov chain with k states such
that ej is accessible from ei. Then there exists a path with length smaller than k
from ei to ej.

This result can be proved by substituting the nodes repeated in the path by only
one copy of each of them.

Classifying States of a Finite Markov Chain with Membrane Computing 269

A state ei is called recurrent if for all ej such that ei → ej , then ej → ei. On
the contrary, if there exist j such that ei → ej but ej 	→ ei (that is, there is a
natural number m and a state ej such that p

(m)
ij > 0 but p

(n)
ji = 0 for all n ∈ N),

the state ei is called transient. If in an equivalence class there exists a recurrent
(resp. transient) state, then every state of the class is recurrent (respectively)
transient. If the class of a recurrent state ei is formed only by this state, we say
that ei is an absorbent state (p(n)

ij = 0 for all ej 	= ei and for all n ∈ N).

Given a state ei such that there exists n > 0 and p
(n)
ii > 0, we define its period

as
d(i) = g.c.d.{n ≥ 1 | p(n)

ii > 0}.
All states that belong to the same class have the same period. If the period is 1,
the class is said to be aperiodic, otherwise we refer to it as a periodic class.

The problem of classification is an important one in the mathematical study of
Markov chains and related stochastic processes because it allows us to study their
asymptotic behavior. If we think a Markov chain as a system evolving along the
time, then we are interested in analyzing how that evolution is carried out. For
that, we study the existence and the uniqueness of the stationary distributions,
and the convergence to stationarity starting from any initial distribution. That
study is related with the number of recurrent classes of a finite Markov chain.

There are some necessary conditions for the existence of stationary distribu-
tions, that is to say, there are some results which provide us with information
about the existence of the limit of the sequence of the matrix powers of a finite
Markov chain ([5]).

Theorem 1. For any Markov chain with finite states, there exists a unique
stationary distribution if and only if the set of states contains precisely one
recurrent class.

Theorem 2. A necessary and sufficient condition for the existence of a limit
distribution is that there is, in the set of states of the chain, exactly one aperiodic
recurrent class.

2.2 Membrane Systems

Membrane computing is a branch of Natural Computing, considered in October
2003 by Thomson Institute for Scientific Information (ISI) as a Fast Emerging
Research Front in Computer Science [9]. It was initiated at the end of 1998 by Gh.
Păun (by a paper circulated at that time on web and published in 2000 [6]). Since
then it has received important attention from the scientific community. Details
can be found at the web page http://psystems.disco.unimib.it, maintained
in Milano under the auspices of the European Molecular Computing Consortium,
EMCC.

In short, one abstracts computing models from the structure and the func-
tioning of living cells, as well as from the organization of cell in tissues, organs,

270 M. Cardona et al.

and other higher order structures. The main components of such a model are
a cell-like membrane structure, in the compartments of which one places multi-
sets of symbol-objects which evolve in a synchronous maximally parallel man-
ner according to given evolution rules, also associated with the membranes.
The objects can also be described by strings, they can pass through mem-
branes, can exit the system; in turn, membranes can be divided, dissolved,
created.

A large variety of computing models, called P systems, were considered in this
framework, based on the fundamental concept of biological membrane; the re-
spective models are distributed (compartmentalized) parallel computing devices,
processing multisets of abstract objects by means of various types of evolution
rules. Parallelism, communication, non-determinism, synchronization, dynamic
architecture of the model, etc. are central concepts of the theory, with biological,
mathematical, and computer science sources of inspiration.

In this way, a comprehensive and systematic interdisciplinary research area
was developed, of a high generality and versatility, where models can be de-
vised for a large range of processes where compartmentalization and multiset
processing are natural ingredients. Thus, although the initial goal of membrane
computing was only to learn new ideas, tools, techniques from cell biology to the
help of standard computers, much in the same way as, e.g., evolutionary com-
puting suggests algorithms to be implemented on the electronic computer, the
membrane computing became a new framework for building models for a large
variety of processes, especially from biology (cell biology, tissues, populations of
bacteria, controlling networks of complex phenomena, tumor growth, etc.), but
also from linguistics, management, with several applications to computer science
(computer graphics, approximative solutions to computationally hard problems,
modeling parallel architectures, cryptography).

Most of these models were proven to be computationally universal, able to
compute whatever a Turing machine can compute. In the case when an enhanced
parallelism is available, by means of membrane division, string-object replication,
or membrane creation, polynomial (often linear) time solutions to NP-complete
problems were found.

In many variants, P systems are seen as devices of a generative nature, that
is, from a given initial configuration several distinct computations may be de-
veloped, in a non–deterministic manner, producing different outputs.

In this paper we work with P systems with external output and performing
computing tasks. For example, if a certain natural number, n, is encoded by the
multiplicity of a special object in the initial configuration and we consider the
cardinality of the multiset contained in the environment of a halting configu-
ration as the result of a successful computation, then we can interpret that to
mean that the system computes a partial function from natural numbers onto
sets of natural numbers.

In the following, we assume that the reader is familiar with the basic notions
of P systems, and we refer, for details, to [7].

Classifying States of a Finite Markov Chain with Membrane Computing 271

3 Computing the Classification of the Steps of a Finite
Markov Chain

3.1 Designing a P System

The goal of this paper is to obtain the classification of the states of a finite and
homogeneous Markov chain within the framework of the cellular computing with
membranes.

Let Pk = (pij)1≤i,j≤k be a boolean matrix associated with a finite and homo-
geneous Markov chain of order k such that pij = 0 if the transition from ei to ej

is not possible, and pij = 1 if the transition from ei to ej is possible; that is, Pk

is the adjacency matrix of the directed graph associated with the Markov chain.
The solution presented in this paper is a semi–uniform solution to the problem

of classification, in the following sense: we give a family Π = {Π(Pk) : k ∈ N},
associating with Pk a P system with external output, such that:

– There exists a deterministic Turing machine working in polynomial time
which constructs the system Π(Pk) from Pk.

– The output of the P system Π(Pk) provides the classification of the k states
of the Markov chain as well as the period of the states.

We associate with the matrix Pk a P system of degree 4 with external output,

Π(Pk) = (Γ (Pk), μ(Pk),M1,M2,M3,M4, R, ρ)

defined as follows:

– Working alphabet:

Γ (Pk) = {aij , bij , dij , tij : 1 ≤ i, j ≤ k, } ∪ {cr : 0 ≤ r ≤ 2k + 2} ∪
{tijur : 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ k} ∪ {βi : 0 ≤ i ≤ α + 1} ∪
{sijr : 1 ≤ i, j ≤ k, 0 ≤ r ≤ k} ∪ {Ai1, γi : 1 ≤ i ≤ k} ∪
{Tij , Rij : 1 ≤ i, j ≤ k}

where α = 2k + 4 + -lg2k.+ (k−1)(k+2)
2 .

– Membrane structure: μ(Pk) = [1 [2 [3 [4]4]3]2]1.
– Initial multisets:

M1 = ∅; M2 = {β0}; M3 = {c0};
M4 = {sii0 t

pij(k−1)
ij : 1 ≤ i, j ≤ k}.

– The set R of evolution rules consists of the following rules:

• Rules in the skin membrane labeled by 1:
r1 = {bijbji → aijaji : 1 ≤ i < j ≤ k}
r2 = {bij → γi; γiaijdipdjp → (TipTjp, out) : 1 ≤ i, j, p ≤ k}
r3 = {γidip → (Tip, out) : 1 ≤ i, j, p ≤ k}
r4 = {aijdip → (Rip, out) : 1 ≤ i, j, p ≤ k}
r5 = {di1 → (Ai1, out) : 1 ≤ i ≤ k}

272 M. Cardona et al.

• Rules in the membrane labeled by 2:
r6 = {b2ij → bij : 1 ≤ i, j ≤ k} ∪{βi → βi+1 : 0 ≤ i ≤ α} ∪{βα+1 → δ}.
r7 = {d2

ij → dij : 1 ≤ i, j ≤ k}
r8 = {dijdi(j+l) → dijdil : 1 ≤ i ≤ k, 2 ≤ j + l ≤ k}

• Rules in the membrane labeled by 3:
r9 = {tijur → (tijsuj(r+1), in4) buj : pij = 1, u �= j, 1 ≤ i, j, u ≤ k, 0 ≤ r < k}
r10 = {tijuk → (tij , in4) buj : pij = 1, u 	= j, 1 ≤ i, j, u ≤ k}
r11 = {tijjr → (tij , in4) dj(r+1) : pij = 1, 1 ≤ i, j ≤ k, 0 ≤ r < k}
r12 = {tijjk → (tij , in4) : pij = 1, 1 ≤ i, j ≤ k}
r13 = {cr → cr+1 : 0 ≤ r ≤ 2k + 1} ∪ {c2k+2 → δ}

• Rules in the membrane labeled by 4:
r14 = {suirt

pi1
i1 . . . tpik

ik → (tpi1
i1ur . . . tpik

ikur , out) : 1 ≤ u, i ≤ k, 0 ≤ r ≤ k}.

– The partial order relation ρ over R consists of the following relations on the
rules of R:
• Priority relation in the skin membrane: {r1 > r2 > r3 > r4 > r5}.
• Priority relation in the membrane labeled by 2: {r7 > r8}.
• Priority relation in the membranes labeled by 3: ∅.
• Priority relation in the membranes 4: ∅.

Remark 1. Let us observe that the resources initially required for constructing
the P system Pk are the following:

– Size of the alphabet: θ(k4).
– Intitial number of membranes: 4.
– Number of rules: O(k4).
– Maximal length of a rule: O(k).
– Number of priority relations: O(k6).

3.2 An Overview of Computations

At the beginning, the skin membrane is empty. The membrane labeled by 2 only
contains the object β0 which is a counter used to dissolve that membrane in the
(α+2)–th step, where α = 2k+4+-lg2k.+(k−1)(k+2)/2. The membrane labeled
by 3 contains the object c0 which is a counter used to dissolve the membrane
2 in the (2k + 3)-th step. Initially, the membrane labeled by 4 contains: (a)
objects sii0 (1 ≤ i ≤ k) encoding the states ei of the chain; and (b) objects tij
(1 ≤ i, j ≤ k) encoding the elements pij of the boolean matrix associated to the
transition matrix of the Markov chain.

In the first 2k + 3 steps one applies rules only in the internal membranes
labeled by 2, 3, and 4. During this (so called) first stage, we determine the
accessibility between states (encoded by the objects bij meaning that we can

Classifying States of a Finite Markov Chain with Membrane Computing 273

reach ej from ei) as well as the recurrent time of each state (encoded by the
objects dij meaning that there exists a path from ei to ei with length j). In
the even steps, the rules of membrane 4 will consume all the objects suir and
some objects tij , sending to membrane 3 some objects tijur . In the odd steps,
only rules in membrane 3 are applied (but not in membrane 4, because there do
not exist objects suir in that membrane), sending new objects tij and objects
suj(r+1) (with u 	= j) to that membrane and producing objects buj and djr in
membrane 3. The first stage finalizes in the configuration C2k+3 when the rule
c2k+3 → δ dissolves membrane 3. In this moment we have some objects tij (with
1 ≤ i, j ≤ k) in membrane 4, objects djr , buj (with 1 ≤ j, u, r ≤ k) and the
object β2k+3 in membrane 2 (notice that in each step of this first stage the rule
βi → βi+1 of membrane 2 has been carried out). The skin region is empty.

The second stage begins with the execution of the (2k+4)–th step. During this
stage we eliminate repeated copies of objects bij and dij in membrane 2, and we
compute the period of each state (encoded in the second subscript of the objects
d). The rules of membrane 2 permit transforming two copies of the object bij and
dij into one copy, and the period of each state ei is calculated by means of the
rules of type r8. For that, we need at most α = 2k+4+-lg2k.+(k−1)(k+2)/2.
steps. This stage finalizes when the rule βα+1 → δ dissolves membrane 2 in the
(α + 2)–th step. This stage is a non-deterministic one.

Finally, the third stage is the output phase, and begins with the execution of
the (α+3)–step. In this stage the objects bijbji are transformed into the objects
aijaji by means of the rule r1 (meaning that the states ei and ej belongs to the
same equivalence class). When this rule cannot be applied, then the transient
objects are expelled to the environment applying the rules of types r2 and r3.
After that, the rule r4 sends the recurrent states and their period to the external
environment. The process finalized when the rule r5 sends the absorbent states.

3.3 Formal Verification

Given a computation C of the P system Π(Pk), for each m ∈ N we denote by Cm

the configuration of the system obtained after the execution of m steps. For each
label l ∈ {1, 2, 3, 4}, we denote by Cm(l) the multiset of objects contained in the
membrane labeled by l in the configuration Cm. Also, we denote by Cm(env) the
content of the environment of the system in the configuration Cm.

First of all, we show that during the first stage the objects sijr codify the
existence of a path from ei to ej with length r, and the objects tijur codify the
existence of a path from eu to ej with length r and with ei next to last node.

Lemma 1. For each r such that 1 ≤ r ≤ k we have the following:

(a) If r = 1, then for each i, j such that 1 ≤ i, j ≤ k, the object tiji0 belongs to
C1(3) if and only if there exists a path from ei to ej with length 1 and with
ei being next to last node.
If r > 1, then for each i, j, u such that 1 ≤ i, j, u ≤ k, the object tiju(r−1)
belongs to C(2r−1)(3) if and only if there exists a path from eu to ej with
length r and with ei being next to last node.

274 M. Cardona et al.

(b) For each i, j such that 1 ≤ i, j ≤ k, i 	= j, the object sijr belongs to C2r(4)
if and only if there exists a path from ei to ej with length r.

Proof. We prove the lemma by induction on r.

– Let us suppose that r = 1.
(a) Let i, j be such that 1 ≤ i, j ≤ k.

If tiju0 ∈ C1(3), having in mind the composition of the initial configu-
ration, there exists objects sii0 and tij in C0(4). So, pij = 1 and (ei, ej)
is an arc of the graph associated with the Markov chain. Hence, there
exists a path from ei to ej with length 1 and with ei next to last node.
Conversely, if there exists a path from ei to ej with length 1 and with
ei next to last node, then pij = 1. So, the object tij belongs to C0(4).
Having in mind that sii0 ∈ C0(4), and applying the rules of type r14 we
have tiji0 ∈ C1(3).

(b) Let i, j be such that 1 ≤ i, j ≤ k, i 	= j.
Let us suppose that sij1 ∈ C2(4). Then that object has been produced
by an object tijio belongs to C1(3) and applying the rules of type r9.
From a) we deduce that there exists a path from ei to ej with length 1
(and with ei next to last node).

If there exists a path from ei to ej with length 1, then from a) we
deduce that the object tiji0 belongs to C1(3). Applying the rule of type
r9 we obtain that sij1 ∈ C2(4).

– Let r ≥ 1 and r < k and let us suppose that conditions (a) and (b) hold for
r. Let us show that these conditions hold for r + 1.
(a) Let i, j, u be such that 1 ≤ i, j, u ≤ k.

If the object tijur belongs to C2r+1(3), then in the (2r + 1)–th step the
rules of type r14 has been applied in membrane 4, in order to produce
the object tijur . Then, the objects suir and tij must belongs to C2r(4).
By the induction hypothesis there exists a path from eu to ei of length r.
Having in mind that tij ∈ C2r(4), it follows that (ei, ej) is an arc of the
graph associated. Consequently there exists a path from eu to ej with
length r + 1 with ei next to last node.

Let us suppose that there exists a path from eu to ej with length r+1
with ei next to last node. Then there is a path from eu to ei of length r.
By the induction hypothesis, the object suir belongs to C2r(4). Moreover,
pij = 1 because (ei, ej) is an arc of the graph associated, so tij belongs
to C2r(4). Applying the rules of type r14, we have tijur ∈ C2r+1(3).

(b) Let i, j be such that 1 ≤ i, j ≤ k, i 	= j.
If the object sij(r+1) belongs to C2r+2(4), then there exists u (1 ≤ u ≤ k)
such that the object tujir belongs to C2r+1(3). By the induction hypoth-
esis, there exists a path form ei to ej of length r + 1 with ei next to last
node. Then, there exists a path from ei to ej of length r + 1.

Conversely, let us suppose that there exists a path from ei to ej of
length r + 1. Let u be such that eu is the next to last node of this path.
By induction hypothesis, we have tujir ∈ C2r+1(3). Applying the rules
of type r9 we obtain that the object sij(r+1) belongs to C2r+2(4). �

Classifying States of a Finite Markov Chain with Membrane Computing 275

Lemma 2. For each r such that 1 ≤ r ≤ k we have the following:

(a) There are i, j, u such that 1 ≤ i, j, u ≤ k, tiju(r−1) ∈ C2r−1(3), sijr ∈ C2r(4).
(b) For all i, j, u, z such that 1 ≤ i, j, u, z ≤ k, we have:

tijuz /∈ C2r(3), sijz /∈ C2r−1(4), tpij(k−1)
ij ∈ C2r(4)

Proof. By induction on r. First of all, recall that

C0(4) = {sii0t
pij(k−1)
ij : 1 ≤ i, j ≤ k}, C0(3) = {c0}.

Let i, j be such that 1 ≤ i, j ≤ k and pij = 1. Applying the rules of type
r14 at the initial configuration we have tiji0 ∈ C1(3). Then, applying the rules
of type r9 in the second step we have sij1 ∈ C2(4). Moreover, each object tij
that has evolved in the first step, returns to membrane 4 in the next step. So,
t
pij(k−1)
ij ∈ C2(4), for all i, j (1 ≤ i, j ≤ k).

Having in mind that in the first step all objects sii0 are consumed, we have
sijz /∈ C1(4), for all i, j, z (1 ≤ i, j, z ≤ k) Hence, tijuz /∈ C2(3), for all i, j, u, z
(1 ≤ i, j, u, z ≤ k).

Assuming the result holds for r < k (r ≥ 1), we prove the result holds for r+1.
By the induction hypothesis, there exist i, j (1 ≤ i, j ≤ k) such that sijr ∈

C2r(4). But there is u (1 ≤ u ≤ k) such that tuj ∈ C2r(4); applying the rules
of type r14 we have we have tijur ∈ C2r+1(3). Then, applying the rules of type
r9 in the next step we have suj(r+1) ∈ C2r+2(4). Moreover, each object tij
that has evolved in the r–th step, returns to membrane 4 in the next step. So,
t
pij(k−1)
ij ∈ C2r+2(4), for all i, j (1 ≤ i, j ≤ k).

Having in mind that in the r–th step all objects sijr which belong to C2r(4)
have evolved, we have sijz /∈ C2r+1(4), for all i, j, z (1 ≤ i, j, z ≤ k) Hence,
tijuz /∈ C2r+2(3), for all i, j, u, z (1 ≤ i, j, u, z ≤ k). �

Proposition 2. For each i, j such that 1 ≤ i, j ≤ k we have the following:

(1) If i 	= j, then the following assertions are equivalent:
(a) There exists a path from ei to ej.
(b) The object bij belongs to C2k+2(3).
(c) The object bij belongs to C2k+3(2).

(2) The following conditions are equivalent
(a) There exists a path from ei to ei with length j.
(b) The object dij belongs to C2k+2(3).
(c) The object dij belongs to C2k+3(2).

Proof. Let i, j be such that 1 ≤ i, j ≤ k.

(1) Let i 	= j and let us suppose that there exists a path from ei to ej. Let r ≥ 1
be the length of that path r, and let eu be the next to last node of that path.
From Lemma 1, we have tuji(r−1) ∈ C2r−1(3). Applying the rules of type r9
or r10 we obtain that bij ∈ C2r(3). Hence bij ∈ C2k+2(3).

Conversely, let us suppose that bij ∈ C2k+2(3). Then, from Lemma 2
there exists r (1 ≥ r ≤ k) such that tuji(r−1) ∈ C2r−1(3). From Lemma 1 we
deduce that there exists a path from ei to ej.
Obviously, bij ∈ C2k+2(3) ⇐⇒ bij ∈ C2k+3(2).

276 M. Cardona et al.

(2) Let us suppose that there exists a path from ei to ei of length j. Then,
there exists a state eu and a path from ei to eu of length j − 1, and with
(eu, ei) being an arc of the associated graph. From Lemma 1, the object
tuii(j−1) belongs to C2j−1(3). Applying the rules of type r11 or r12 we have
dij ∈ C2j(3). Hence, dij ∈ C2k+2(3).

Conversely, let us suppose that dij ∈ C2k+2(3). Then, from Lemma 2
there exists r (1 ≥ r ≤ k) such that tuii(j−1) ∈ C2r−1(3). From Lemma 1 we
deduce that there exists a path from ei to ei with length j.

Obviously, dij ∈ C2k+2(3) if and only if dij ∈ C2k+3(2). �

Proposition 3. If α = 2k + 4 + -lg2k.+ (k − 1)(k + 2)/2, then:

Cα+1(2) = {bij : 1 ≤ i, j ≤ k, i 	= j, there is a path from ei to ej} ∪
{dip : 1 ≤ i, p ≤ k, p is the period of the state ei} ∪ {βα+1}.

Cα+2(1) = {bij : 1 ≤ i, j ≤ k, i 	= j, there is a path from ei to ej} ∪
{dip : 1 ≤ i, p ≤ k, p is the period of the state ei}.

Proof. Applying repeatedly the rules βi −→ βi+1 (0 ≤ i ≤ α) starting from the
initial configuration, we have βα+1 ∈ Cα+1(2).

From Proposition 2 we deduce that in membrane 2 of the configuration C2k+3
we have objects bij , with different multiplicities, such that there is a path from
the state ei to state ej, and objects dij , with multiplicity 1, such that there is
a path from the state ei to state ei with length j. Then, applying the rules of
type r6 in, at most, -lg2k. steps, we get that the multiplicity of each object is
1. Simultaneously, applying the rules of type r7 and (8) in at most -lg2k.+(k−
1)(k + 2)/2 steps we produce the objects dip, where p is the greatest common
divisor of {dij : dij ∈ C2k+3(2)}.

In the step α+2, membrane 2 is dissolved by executing the rule βα+1 → δ. �

Theorem 3. Let Cf be the final configuration of the computation C of the sys-
tem Π(Pk). Then:

(a) The state ei is transient with period p if and only if Tip ∈ Cf (env).
(b) The state ei is recurrent (and not absorbent) with period p if and only if

Rip ∈ Cf (env).
(c) The state ei is absorbent (with period 1) if and only if Ai1 ∈ Cf (env).

Proof. (a) Let us suppose that ei is a transient state. If the equivalence class
of ei has more than one element, then we can apply the rules of type r1 in
membrane 1 of the configuration Cα+2 producing objects aij and aji. In this
case, there exists r (1 ≤ r ≤ k) such that the object bir belongs to Cα+2(1) but
bri /∈ Cα+2(1). So, in the (α + 4)–th step the object γi is produced applying the
rules of type r2. Then in the next step (and using the object dip) we obtain that
Tip ∈ Cα+5(env), where p is the period of ei (from Proposition 3).

If the equivalence class of ei is a singleton, then the rules of type r1 cannot be
applied in the configuration Cα+2. So, we apply the rules of type r2 producing

Classifying States of a Finite Markov Chain with Membrane Computing 277

the object γi that in the next step produces (together with the object dip) the
object Tip in the environment (that is, Tip ∈ Cα+4(env)).

Reciprocally, let us suppose that Tip ∈ Cα+4(env)). Then, the object γi must
be generated in order to can apply the rules of types r2 and/or r3. If only the
rules of type r2 are applied, then there are j, j′ (1 ≤ j, j′ ≤ k) such that ej is
accessible from ei and ei is accessible from ej , and ei, ej′ are communicating
states. Hence, ei is a transient state whose equivalence class has more than one
object. If the rules of type r3 are applied, then ei is a transient state whose
equivalence class is a singleton.

(b) Let us suppose that the state ei is recurrent (and not absorbent) with
period p. Then, the equivalence class of ei has more than one object and there is
no transient state belongs to that class. So, the rules of type r1 will be applied in
the configuration Cα+2 and the object γi cannot be produced. Hence, applying
the rules of type r4 in the next configuration we have Rip ∈ Cα+4(env).

Reciprocally, if Rip ∈ Cf (env) then the rule aijdip → (Rip, out) has been
applied (for some j, p with 1 ≤ j, p ≤ k). For that, the objects aij and aji have
been produced and the object γi has not been generated. Consequently, the state
ei is recurrent and its equivalence class has more than one object (that is, it is
not an absorbent state).

(c) Let us suppose that the object ei is absorbent (consequently its period is 1).
In this case, it equivalence class is a singleton. So, there is no j (1 ≤ j ≤ k) such
that bij and bji belongs to Cα+2(1). Then the rules of type r1 are not applicable
for i. Applying the rule di1 → (Ai1, out) we obtain that Ai1 ∈ Cα+3(env).

Reciprocally, if Ai1 ∈ Cf (env), then the object di1 belongs to membrane 1 in
the next to last configuration. So, the objects aij has not been produced. Then,
the state is recurrent and its equivalence class has only one object. �

Remark 2. Let us note that the number of steps of the computation of the P
system Pk is either α + 3 or α + 4. That is, the number of steps is quadratic in
the number of states of the Markov chain.

4 Conclusions

One of the central issues in Markov chain theory is the asymptotic long–term
behavior of Markov chains.

Due to different results concerning the existence (and the uniqueness) of a
stationary distribution, the problem of classification of states is an important one
in the mathematical study of Markov chains and related stochastic processes.

In this paper we give an efficient (semi–uniform) solution of the problem
of classification in the framework of the cellular computing with membranes.
The solution is semi–uniform because for each adjacency matrix of the directed
graph associated with a Markov chain, a specific P system with external output is
designed. The solution is efficient, because it is quadratic in the number of states
of the Markov chain. Furthermore, the amount of resources initially required to
construct the system is polynomial in the order of the Markov chain.

278 M. Cardona et al.

The paper also provides a new example of formal verification of P systems de-
signed to solve a problem (in this case a problem of classification, not a decision
problem), following a specific methodology. These examples are always interest-
ing, for instance, in order to find systematic processes of formal verification in a
model of computation oriented to machines, like the cellular model, a case where
it is well known that the mechanisms of verification are often a very hard task.

Acknowledgement

The third author wishes to acknowledge the support of the project TIN2005-
09345-C04-01 of the Ministerio de Educación y Ciencia of Spain, co–financed
by FEDER funds, and of the Project of Excelence TIC 581 of the Junta de
Andalucia.

References

1. M. Cardona, M.A. Colomer, J. Miró, A. Zaragoza, A step towards DNA computation
model. Submitted, 2006.

2. M. Cardona, M.A. Colomer, M.J. Pérez–Jiménez, A. Zaragoza, Handling Markov
chains with membrane computing. Lecture Notes in Computer Science, 4135 (2006),
72–85.

3. O. Häggström, Finite Markov Chains and Algorithmic Applications. London Math-
ematical Society, Cambridge University Press, 2003.

4. R. Nelson, Probability, Stochastic Processes, and Queueing Theory: The Mathemat-
ics of Computer Performance Modeling. Springer-Verlag, New York, 1995.

5. A.N. Shiryayev. Probability. GTM 95, Springer, 1984.
6. Gh. Păun, Computing with membranes. Journal of Computer and System Sciences,

61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report Nr.
208, 1998.

7. Gh. Păun, Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
8. Gh. Păun, G. Rozenberg, A guide to membrane computing. Theoretical Computer

Science, 287 (2002), 73–100.
9. ISI web page: http://esi-topics.com/erf/october2003.html

Partial Knowledge in Membrane Systems:
A Logical Approach

Matteo Cavaliere1 and Radu Mardare2

1 Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Trento, Italy

matteo.cavaliere@msr-unitn.unitn.it
2 D.I.T, University of Trento

Trento, Italy
mardare@dit.unitn.it

Abstract. We propose a logic for specifying and proving properties of
membrane systems. The main idea is to approach a membrane system
by using the “point of view” of an external observer. Observers (as epis-
temic agents) accumulate their knowledge from the partial information
they collect by observing subparts of the system and by applying logical
reasoning to this information. We provide a formal framework to com-
bine and interpret distributed knowledge in order to recover the complete
knowledge about a membrane system. The proposed logic can be used
to model biological situations where information concerning parts of the
biological system is missing or incomplete.

1 Motivations

Abstracted as a multi-agent system, a biological system reflects interactive, con-
current, and distributed behaviors and, in general, the complex evolutions of
biological systems. The success in dealing with this complexity depends on the
mathematical model chosen as abstraction of the system.

Consider, for example, the immune system [1]. This is constituted by a net-
work of cells, tissues, and organs that work together to defend the body against
attacks by foreign invaders – microbes, germs, bacteria, viruses, parasites, etc.
The immune system’s job is to keep them out or, failing that, to seek out and
destroy them. The immune system functions due to an elaborate and dynamic
communications network. Millions of cells, organized into sets and subsets, gather
in clouds swarming around a hive and pass information back and forth.

Suppose now that we are interested in modeling the interaction of our body
with a given virus. Excepting the immune system, our body contains also other
subsystems, but we can decide that, for the given situation, all the other parts
are meaningless. So we decide to ignore them. For instance, if we consider the
case in which the virus is already present in our body, the first approximation
of the biological reality will consider a main system (our body) in which are
present two subsystems – the virus and the immune system. Going deeper, the

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 279–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

280 M. Cavaliere and R. Mardare

first interaction between the two subsystems involves the innate immune sys-
tem, which is just a subsystem of the immune system comprised of hereditary
components that provide an immediate “first-line” of defense to continuously
ward off pathogens. This subsystem is able to annihilate “well-known” viruses.
If this is the real situation, then modeling only the innate immune system in
relation with the virus is enough for comprehending the biological phenomenon.
But if the virus is unknown, then we might need to go deeper with modeling
and, in addition to the innate immune system, to model also phagocytic cells.
These are cells that represents the “second-line” of defence for our body. They
can analyze unknown entities, destroy viruses and learn the structures of the
destroyed entities. In particular, the immune system is able to design special
cells for fighting with peculiar types of viruses. Hence, on this level, the model-
ing have to be more specific representing also other subsystems of the immune
system.

Depending on the complexity of the biological properties we want to consider,
we can go as deep as necessary with representing the biological entities involved.
More complex models provide more accurate information. Still, as the costs of
modeling and simulation grows with complexity of the model, we have to find
the right level of abstraction that gives, with acceptable costs, the information
we are looking for. Observe that in biology, as in all the empirical sciences,
we cannot hope to reach the level of having complete information concerning a
biological phenomenon. Thus, no matter how complex is the model we choose,
there exists always properties requiring a bigger complexity.

In other words, we always work with partial (observed) knowledge about bio-
logical systems and based on this incomplete information we model or simulate
biological phenomena. In this paper we show how it is possible to manage in-
complete information concerning membrane systems. The work done here can
be seen as related to [7] where a formal observer has been introduced to investi-
gate the formal behavior of a membrane system. However in [7] the observer was
mainly used to extend the computing power of the observed device. In this pa-
per, the observer is an epistemic agent able to compute knowledge and is used to
analyze situations in which the knowledge about the observed system is partial,
incomplete or missing.

2 Formal Language Preliminaries

Membrane systems are based on formal language theory and multiset rewriting.
We now briefly recall the basic theoretical notions used in this paper. For more
details the reader can consult standard books, such as [8] and the corresponding
chapters of the handbook [17].

Given the set A we denote by |A| its cardinality and by ∅ the empty set. We
denote by N and by R the set of natural and real numbers, respectively.

As usual, an alphabet V is a finite set of symbols. By V ∗ we denote the set
of all strings over V . By V + we denote the set of all strings over V excluding

Partial Knowledge in Membrane Systems 281

the empty string. The empty string is denoted by λ. The length of a string v is
denoted by |v|. The concatenation of two strings u, v ∈ V ∗ is written uv.

A multiset is a set where each element may have a multiplicity. Formally, a
multiset over a set V is a map M : V → N, where M(a) denotes the multiplicity
of the symbol a ∈ V in the multiset M .

For multisets M and M ′ over V , we say that M is included in M ′ if M(a) ≤
M ′(a) for all a ∈ V . Every multiset includes the empty multiset, defined as M
where M(a) = 0 for all a ∈ V .

The sum of multisets M and M ′ over V is written as the multiset (M +M ′),
defined by (M + M ′)(a) = M(a) + M ′(a) for all a ∈ V . The difference between
M and M ′ is written as (M−M ′) and defined by (M−M ′)(a) = max{0,M(a)−
M ′(a)} for all a ∈ V . We also say that (M + M ′) is obtained by adding M to
M ′ (or viceversa) while (M − M ′) is obtained by removing M ′ from M . For
example, given the multisets M = {a, b, b, b} and M ′ = {b, b}, we can say that
M ′ is included in M , that (M+M ′) = {a, b, b, b, b, b} and that (M−M ′) = {a, b}.

A multiset M can be expressed in the forms (a,M(a)) or aM(a), for all a ∈
V . If the set V is finite, e.g. V = {a1, . . . , an}, then the multiset M can be
explicitly described as {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))}. The support
of a multiset M is defined as the set supp(M) = {a ∈ V | M(a) > 0}. A multiset
is empty (hence finite) when its support is empty (also finite).

A compact notation can be used for finite multisets: if M = {(a1,M(a1)),
(a2,M(a2)), . . . , (an,M(an))} is a multiset of finite support, then the string
w = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n (and all its permutations) precisely identify the

symbols in M and their multiplicities. Hence, given a string w ∈ V ∗, we can
say that it identifies a finite multiset over V , written as M(w), where M(w) =
{a ∈ V | (a, |w|a)}. For instance, the string bab represents the multiset M(w) =
{(a, 1), (b, 2)}, that is the multiset {a, b, b}. The empty multiset is represented
by the empty string λ.

3 Membrane Systems with Symbol-Objects

We recall the basic notions of membrane systems (also called P systems) with
symbol-objects. The reader can find further details in the monograph [16]. An
updated bibliography of the field can be found at the P systems web-page [18].

Definition 1 (Membrane system with symbol-objects). Given a finite set
of objects O and an infinite set of labels Lab, we consider the following family
of constructs

P = {(μ,wj1 , wj2 , · · · , wjm , Rj1 , Rj2 , · · · , Rjm) | ji ∈ Lab, for i = 1..m}.

where

– μ is a membrane structure consisting of m membranes arranged in an hier-
archical structure enclosed in a main membrane, called skin membrane. The
skin membrane separates the system from the surrounding environment; the

282 M. Cavaliere and R. Mardare

membranes (and hence the regions that they delimit/enclose) are injectively
labeled over LabΠ = {j1, j2, · · · , jm} ⊂ Lab; we convey to label by j1 the
skin membrane.

– wj1 , wj2 , · · · , wjm are strings that represents multisets over O associated with
regions j1, j2, · · · , jm, respectively.

– Rj1 , Rj2 , · · · , Rjm are finite sets of evolution rules over O, associated to re-
gions j1, j2, · · · , jm, respectively. An evolution rule is of the form u → v,
where u is a string over O and v is a string over {ahere, aout | a ∈ O}∪{ainI |
a ∈ O, I ⊆ Lab}. The symbols here, out, inI with I ⊆ Lab are called target
indications. To simplify the notation the target indication here is omitted.

An element Π = (μ,wj1 , wj2 , · · · , wjm , Rj1 , Rj2 , · · · , Rjm) ∈ P is called mem-
brane system with symbol-objects, of degree m. We denote by 0 the membrane
system of degree 0. We call atomic membrane system a system a system of de-
gree 1 having either the set of rules empty or the multiset of objects empty; if its
unique membrane (which is also the skin membrane) is labelled by i and Ri = ∅
while its multiset is wi ∈ O∗, then we denote it by [wi]i; if wi = λ and Ri 	= ∅
then we denote it by [Ri]i; if Ri = ∅ and wi = λ we convey to denote it by [0]i.

Given a membrane system Π , an evolution of Π is a sequence of membrane
systems 〈Π0, Π1, Π2, · · · 〉 where Π0 = Π and, for i ≥ 0, each Πi+1 is obtained
by applying once one of the associated evolution rules in one of the regions of
Πi. Rule and region are chosen in a non-deterministic manner. The remainder
of the system Πi (objects not involved in the application of the rule, set of rules,
membrane structure, labeling of the membranes) is left unchanged in Πi+1.

The passage from Πi to Πi+1 using the rule r in region j of Πi is called
transition and is denoted by Πi

rj−→ Πi+1. 1

The application of an evolution rule r : u → v ∈ Rj in the region j ∈ LabΠ

means to remove the multiset of objects identified by u from region j, and to
add the objects specified by the multiset v, in the regions specified by the target
indications associated to each object in v. In particular, if v contains an object
a with target indication here, then the object a will be placed in the region j
where the evolution rule has been applied. If v contains an object a with target
indication out, then the object a will be moved to the region immediately outside
the region j (this can be the environment if the region where the rule has been
applied is the skin membrane). If v contains an object a with target indication
inI , with I ⊆ Lab, then the object a is moved from the region j and placed in
a non-deterministic way into a region i ∈ I (this can be done only if such region
i ∈ I is immediately inside region j; otherwise the evolution rule u → v cannot
be applied).

We call contents of membrane j in Π , the multiset of objects and the mem-
branes (together with their contents) contained in region j of Π .

1 The reader familiar with membrane systems can notice that we use a sequential
semantics: at each step only a unique rule is executed once. Actually the logic pro-
posed in this paper is very general and can be extended easily to other semantics,
e.g., the maximally parallel one.

Partial Knowledge in Membrane Systems 283

Definition 2 (Membrane composition)
Let Π = (μ,wj1 , wj2 , · · · , wjm , Rj1 , Rj2 , · · · , Rjm) be a membrane system and

i ∈ Lab− LabΠ.
We denote by [Π]i the membrane system

Π ′ = (μ′, wk1 , wk2 , · · · , wkm+1 , Rk1 , Rk2 , · · · , Rkm+1)

such that

– μ′ is μ enclosed into an external membrane labeled by i; the labeling of the
membranes of μ is preserved in μ′;

– k1 = i and ks = js−1 for s = 2..m + 1; consequently wks = wjs−1 and
Rks = Rjs−1 ;

– wk1 = λ, Rk1 = ∅.

Example 1. Consider the membrane system Π defined by

μ = [[]2]1;
R1 = {a → b};
R2 = {b → c};
w1 = b;
w2 = a.

Then [Π]3 is the system Π ′ defined by

μ′ = [[[]2]1]3;
R′

1 = R1 = {a → b};
R′

2 = R2 = {b → c};
R′

3 = ∅;
w′

1 = w1 = b;
w′

2 = w2 = a;
w′

3 = λ.

Definition 3 (Parallel composition)
Let Π = (μ, uj1 , uj2 , · · · , ujm , Rj1 , Rj2 , · · · , Rjm) and

Π ′ = (μ′, vk1 , vk2 , · · · , vkn , Rk1 , Rk2 , · · · , Rkn) be two membrane systems such
that j1 = k1 and LabΠ ∩ LabΠ′ = {j1}. We call parallel composition of the two
systems, denoted by Π |Π ′, the membrane system

Π ′′ = (μ′′, wl1 , wl2 , · · · , wlm+n−1 , Rl1 , Rl2 , · · · , Rlm+n−1)

defined by:

– μ′′ is obtained by enclosing into a common external membrane the contents
of the skin membranes of μ and μ′;

284 M. Cavaliere and R. Mardare

– in μ′′ the labeling of the membranes in μ and in μ′ is preserved; consequently
the skin membrane of Π ′′ is labeled by l1 = j1 = k1;

– wl1 = uj1vk1 , Rl1 = Rj1 ∪Rk1 .
2

The intuition behind the parallel composition operator is that it can be used
to divide an entire membrane system in subsystems, where each subsystem can
be recognized/understood by a certain external observer.

Example 2. Consider the membrane systems

Π : Π ′ :
μ = [[]2 []3]1 μ′ = [[[]5]4]1
w1 = ab w1 = ee
w2 = cd w4 = ccd
w3 = aa w5 = a
R1 = {a → b, a → c} R1 = {a → b, a → d}
R2 = {cd → a} R4 = {d → c}
R3 = {a → b, a → d} R5 = {a → b}

Then Π |Π ′ is the system Π ′′ defined as

μ′′ = [[]2 []3 [[]5]4]1
w1 = eeab

w2 = cd

w3 = aa

w4 = ccd

w5 = a

R1 = {a → b, a → c, a → d}
R2 = {cd → a}
R3 = {a → b, a → d}
R4 = {d → c}
R5 = {a → b}.

Let denote by Pi the class of membrane systems having the skin membrane
labeled by i. Then it is easy to see that the following theorem holds.

Theorem 1. (Pi, |, [0]i) is an Abelian monoid.

Also the following theorem can be easily proved.

Theorem 2. Any membrane system can be composed, by iterating parallel and
membrane composition, starting from atomic membrane systems.
2 The definition is correct as LabΠ ∩ LabΠ′ = {j1}. Notice that, since the labeling of

the membranes is preserved, we have that for s �= 1 Rls and wls = uks (wls = vks)
are preserved as in the original system Π (Π ′, respectively).

Partial Knowledge in Membrane Systems 285

Example 3. Consider the membrane system Π presented in Example 2.
The system Π can be obtained as

[[cd]2|[R2]2]1 | [[aa]3|[R3]3]1 | [ab]1 | [R1]1

with R1, R2 and R3 as in Π . Clearly [cd]2, [aa]3, [ab]1, [R1]1, [R2]2, [R3]3 are
atomic membrane systems.

4 Partial Information in Membrane Systems

We want to propose a formal way of playing with partial information about a
(membrane) system in order to decide some global properties. The idea is to
formally describe open systems. An open system for an observer is a system
formed by a known subsystem and an unknown (opened) part about which the
observer does not know anything. So if the observer knows a subsystem S1 of a
bigger system S1|S2, then the observer considers as entire system, any structure
of type S1|S3, for any possible system S3. Hence, the properties that the observer
knows about the entire system are the properties that systems “like” S1|S2,
S1|S3, etc. have in common.

Consider again the example, presented in the Introduction, where a virus
attacks our body. We have decided to model a relevant part of immune system,
say I, in relation with the virus v. Hence the model of a body that has been
penetrated by a virus is body = I|v|S, where S denotes the rest of the body (we
have not considered to model the rest of the body in details since the system I
is enough for comprehending the interaction with the virus). Suppose now that
the properties we try to specify do not concern only the subsystem I|v (the one
we have considered) but the whole body I|v|S.

Can we sustain that each property of the system I|v can be stated about the
whole body I|v|S?

For correctly answering to this question, we propose a logic to play with
partial information. Consider a complex biological system about which we have
only partial information. This information is collected by some observers placed
in different points of the system. Each observer analyzes a subsystem. Our logic
develops the framework needed to combine the knowledge of these observers
such that is possible to derive interesting properties about the whole system, even
without having complete information about it. Playing with observers might cost
less then fully investigating the system and it might provide enough information
for deciding on the properties we are interested in. All depends on how we
place the observers and how we combine their knowledge in deriving complex
properties.

Formally, we propose a logic developed in dynamic-epistemic paradigm [9] and
enriched with operators from spatial logics [2,3,5,6]. We call it dynamic epistemic
spatial logic. The syntax allows to express open systems and the knowledge of
observers. By combining the knowledge of different observers we can specify
and verify complex properties about the whole system without having complete
knowledge about it.

286 M. Cavaliere and R. Mardare

In related papers [13,15,12] it has been proposed Hilbert-style axiomatic sys-
tems for different such logics, and it has been proved that they are decidable
against a semantics based on process algebra, even in the cases for which the
classical spatial logics have been proved to be undecidable [4].

5 Playing with Partial Information

In this section we will show how, playing with partial information about a system,
we can derive properties of the whole system. For this we reconsider a classi-
cal example used in epistemic reasoning [9] adapted for a biologically inspired
situation.

Consider a biological system S composed by four disjoint subsystems S =
S1|S2|S3|S4. In Figure 1 there are four cells S1, S2, S3 and S4. Each cell contains a
vacuole that can be either normal, having an oval shape as in S3, S4, or abnormal
having a non-circular shape as the vacuoles of S1 and S2. Suppose, in addition,
that the system is analyzed by four observers, each observer having access to
only a subpart of S. Thus observer O1 can see the subsystem S2|S3|S4, O2 the
subsystem S3|S4|S1, O3 can see the subsystem S4|S1|S2 and observer O4 sees
S1|S2|S3. Each observer has a display used for making public announcements.

Fig. 1. The system S Fig. 2. The perspective of O1

The observers know that the system S contains abnormal vacuoles and each
observer tries to compute the exact number of them and their positions in the
system. In doing this the observers do not communicate but only witness the
public announcements. Each observer displays 0 until it knows the exact num-
ber and positions of abnormal vacuoles, moment in which it switches to 1. In
addition, the observers are synchronized by a clock that counts each step of com-
putation. Hence, after each “tick“ the observer has to evaluate its knowledge and
to decide if its display remains on 0 or switches to 1. Thus each observer com-
putes information about the whole system by using the partial information it
possesses and by evaluating the knowledge of the other observers (by reading
their displays). If an observer is able to decide the correct number of abnormal
vacuoles and their exact positions in the system, then it succeeded to do this with

Partial Knowledge in Membrane Systems 287

a lower cost then the cost needed for fully investigating the system. Hereafter
we show that such a deduction is possible.

Consider that the real state of the system is the one in Figure 1. And suppose
that we can control only the observer O1. As O1 sees the subsystem S2|S3|S4,
it sees an abnormal vacuole in subsystem S2 and normal vacuoles in S3 and
S4; in Figure 2 it is represented the perspective of O1. But it does not know if
the system S1 has a normal or an abnormal vacuole. For O1 both situations are
equally possible. Hence, after the first round of computation the display of O1
remains to 0. As it concerns observer O2, it sees an abnormal vacuole, in S1, but
it doesn’t know what is in S2, thus, after the first round, it will show 0 too.

Fig. 3. A hypothetical perspective of O2 Fig. 4. The real perspective of O2

It starts the second round of computation. We come back to our observer,
O1. The observer has seen that, after the first round, the observer O2 has not
succeed to understand the situation (as O2 shows 0 on its display). If the system
S1 would contain a normal vacuole then in the first round O2 would have seen
only normal vacuoles, as in Figure 3. O2 also knows that there is at least one
abnormal vacuole. Hence, if this was the case, O2 had enough information to
decide, in the first round, that the only abnormal vacuole of the system is in S2.
Consequently 1 had to appear on its display. But this was not the case (O1 can
see that by looking to the display of O2). This means that what O2 observed
was the situation presented in Figure 4. Therefore it is possible to decide that
the real situation of the system is the one with an abnormal vacuole in S1. Thus
using only O1 it is possible to compute the real configuration of the system and
then O1 will display 1. The example works similarly in more complex situations.

Observe the advantages of this analysis: using only the partial information
available to O1 about the system S and judging the behavior of the other
observers, we were able to compute the real configuration of the system. The
observers do not exchange information about S, but only about their level of
understanding (their observations of) S. The rest can be computed. If each
subsystem is very complex, and usually this is the case in biology, then the com-
plete information about the system can be larger then an observer can store or
manipulate.

288 M. Cavaliere and R. Mardare

Note also that the observers do not need a central unit for organizing their
information. Each observer organizes its own information and makes public an-
nouncements about its level of knowledge. They work simultaneously in a dis-
tributed network and only playing with their partial information about S and
with the information about the state of the network are able to derive overall
properties of the system.

The approach fits well with the real situation of biological systems. We work
always with partial information which are collected by some observers as re-
sults of “measuring” different aspects of a biological phenomena. Sometimes
these different “faces” of the same phenomena cannot be integrated in the same
mathematical model, or seeking for a property might involve evaluation of dif-
ferent models. For such situations, a formalized way for automatically reasoning,
as in the previous example, might help. Hereafter we introduce a logic designed
for this purpose.

6 A Logic of Partial Information

As pointed in the previous section, the role of observers in understanding and
manipulating biological information is significant. We present a logic of observers,
called dynamic epistemic spatial logic [13,14,15,12], developed for specifying and
model-checking properties of multi-agent systems. It can be successfully applied
for analyzing membrane systems. Our logic proposes a formal way of combining
and analyzing the information provided by different observers about the same
biological phenomena.

Our logic can be related with spatial logics [3,2,5,6]. For a detailed pre-
sentation of it and for a Hilbert-style axiomatization the reader is referred to
[13,15,12].

6.1 The Syntax of LObs

Suppose that we have a class Obs of observers ranged over by A,B,C. We
enrich the language of propositional logic with knowledge operators indexed by
observers KA. A statement like KAφ is read “observer A knows φ”. Then we
can compose more complex epistemic statements. Thus “observer A1 knows that
observer A2 knows φ” is formalized by KA1KA2φ. A formula like KAφ∧KA(φ →
ψ) → KAψ is interpreted as “if observer A knows φ and φ → ψ then the observer
knows ψ”.

In addition to these operators we add some spatial operators meant to describe
the spatial distribution of the subsystems. Anticipating the semantics, we present
the intuition behind these operators.

Formula 0 is meant to characterize the trivial membrane system 0 that might
be ignored in a complex situation3.

3 Some syntaxes of classical logic use 0 for denoting false. This is not the case here.
We use ⊥ to denote false.

Partial Knowledge in Membrane Systems 289

Inspired by spatial logics [2,5,6], we introduce the parallel operator φ ‖ ψ
meant to express the situation in which our system can be decomposed in two
(parallel) subsystems, one satisfying φ and the other one satisfying ψ.

1 will be satisfied by any system, hence it expresses consistency, ”true“. The
role of this element of syntax is essential in expressing open systems. As 1 is a
property that characterizes any system, φ ‖ 1 characterizes any system that has
a subsystem satisfying φ and the rest of the system is, possibly, unknown.

By negation, ⊥ will be used to express the inconsistency.
We also design operators to express membranes. Thus �φ�i is a property that

characterizes a membrane system [Π]i where Π is a membrane system that has
the property φ. Similarly we introduce formulas �wi�i and �Ri�i that characterize
the atomic membrane systems [wi]i and [Ri]i respectively.

As we propose a logic for the studying of membrane systems together with
their evolutions, we allow some modal operators indexed by the transitions of
the systems to express the evolutions of a membrane system. Thus 〈ri〉φ is an
operator meant to specify the system Π able to perform a transition ri, i.e.
Π

ri−→ Π ′, and Π ′ satisfies φ. These operators are inspired by dynamic logics
[10] and are basic operators in Hennessy-Milner logic [11].

Formally, the language of dynamic epistemic spatial logic LObs is defined as
follows:

Definition 4 (The language). Let Obs be the set of observers, O an alphabet
and Lab a set of labels. We define the language of dynamic epistemic spatial
logic, by the following grammar:

φ := 0 | 1 | ¬φ | φ ∧ φ | �wi�i | �Ri�i | �φ�i | φ ‖ φ | 〈ri〉φ | KAφ

where A ∈ Obs, w ∈ O∗, i ∈ Lab and ri is a rule of the set Ri.

Definition 5 (Derived operators). In addition we introduce some derived
operators, widely used in dynamic-epistemic logics:

1. ⊥ def
= ¬1 2. φ ∨ ψ

def
= ¬((¬φ) ∧ (¬ψ)) 3. φ → ψ

def
= (¬φ) ∨ ψ

4. [ri]φ
def
= ¬(〈ri〉(¬φ)) 5. 1

def
= ¬((¬0) ‖ (¬0)) 6.

∼
KAφ

def
= ¬KA¬φ

The dynamic modality [ri]φ, the dual operator of 〈ri〉φ, captures the weakest pre-
condition of a transition ri of a membrane system w.r.t. a given post-specification
φ. We have used the square brackets to denote it, as this notation is classical in
dynamic logics (inspired by the box operator of modal logic). It shouldn’t be con-
fused with the same brackets use on membrane systems for denoting membrane
composition.

Formula 1 is meant to describe the situation in which the system cannot be
decomposed into two non-trivial subsystems.

6.2 The Semantics of LObs

In this subsection we introduce a semantics for the presented logic. It will be
defined underpinning on a satisfiability relation Π |= φ, that establishes the

290 M. Cavaliere and R. Mardare

condition under which we can affirm that the membrane system Π has (satisfies)
the property φ.

As introduced earlier, each observer sees a membrane system in P. This mem-
brane system is the “structure” that the observer can recognize in any more
complex system. Hence, for introducing the semantics, we have to devise an in-
terpretation function int : Obs −→ P that associates to each observer A ∈ Obs
a membrane system int(A) = Π that represents the system that the observer
is able to “recognize”. The intuition is to define the knowledge of the observer
A as the common properties of all systems where A is active, i.e., systems that
contains Π as subsystem.

Definition 6 (Models and satisfaction). Given a class Obs of observers and
an interpretation function int : Obs −→ P we introduce the satisfaction relation
by:

Π |= 1 always
Π |= ¬φ iff Π � φ
Π |= φ ∧ ψ iff Π |= φ and Π |= ψ
Π |= φ ‖ ψ iff Π = Π1|Π2 and Π1 |= φ, Π2 |= ψ
Π |= 0 iff Π = 0
Π |= �wi�i iff Π = [wi]i
Π |= �Ri�i iff Π = [Ri]i
Π |= �φ�i iff Π = [Π ′]i and Π ′ |= φ

Π |= 〈ri〉φ iff there exists a transition Π
ri−→ Π ′ and Π ′ |= φ

Π |= KAφ with int(A) = Π ′ iff Π = Π ′|Π ′′ and ∀Π ′|Π ′′′ ∈ P we have
Π ′|Π ′′′ |= φ

Then the semantics of the derived operators can be obtained.
Π |= [ri]φ iff for any Π ′ such that Π

ri−→ Π ′ (if any), Π ′ |= φ
Π |= 1 iff there are no systems Π ′, Π ′′ with Π = Π ′|Π ′′ and Π ′ 	= 0 	= Π ′′

Π |=
∼
KAφ for int(A) = Π ′ iff either Π 	= Π ′|Π ′′ for any Π ′′, or it exists

Π ′|Π ′′′ such that Π ′|Π ′′′ |= φ

6.3 Expressivity

Open systems: We can exploit the use of 1 to express properties of open
membrane systems. By an open membrane system we mean a system for which
we know only a subpart and we accept any upper-system of the known part
as possible configuration for the overall situation. For example if our system is
Π = Π1|Π2 and an observer knows only Π1, then for the observer any system
of type Π1|Π3, for any Π3 ∈ P, is a possible system Π . Hence what is outside
Π1 is “open information” for our observer. Reconsidering the example in section
5, for A1, in the initial state, Π was an open system because Π1 has (for A1)
either a normal, or an abnormal vacuole.

If we want to express that a system Π is an open system containing a known
subsystem Π1 then we can express this by allowing an observer A1 ∈ Obs to
see only Π1, i.e. int(A1) = Π1. Then Π |= KA11 means that the system Π is

Partial Knowledge in Membrane Systems 291

an upper system of Π1. Indeed, by our semantics, this means that Π = Π1|Π2
and for any Π3 ∈ P we have Π1|Π3 |= 1. But the last condition is trivially true,
hence the semantics is equivalent to Π = Π1|Π2, where Π2 can be any system.
Due to this, we can use KA11 to say ”in this system Π1 is a subsystem”.

We can be more specific and express that any upper system of Π1 has the
property φ. We can do this by taking an upper system of Π1, say Π = Π1|Π2,
and stating that Π |= KA1φ, where int(A1) = Π1. This is equivalent with saying
that for any Π3 ∈ P we have Π3|Π1 |= φ.

If we can characterize a membrane system up to identity, we can express that
a system Π is an open system containing a known subsystem characterized by
φ also without using the epistemic operator, by Π |= φ ‖ 1. Indeed, w.r.t. our
semantics this means that Π = Π1|Π2 and Π1 |= φ, Π2 |= 1. As φ satisfies the
known system and 1 can be stated about any system Π3 ∈ P we obtain that
any system of type Π1|Π3, for any Π3 ∈ P satisfies φ ‖ 1.

Characteristic formulas: Using our logic we can define formulas that will fully
identify a membrane system. Recall Theorem 2 stating that each membrane
system can be decomposed, by using parallel and membrane composition, in
atomic membrane systems. We show further how, by induction in top of atomical
membrane systems, we can define characteristic formulas for any membrane
system.

A characteristic formula of a membrane system Π have to be a formula of our
logic φΠ such that

– Π |= φΠ

– if Π ′ |= φΠ then Π ′ = Π

We define such formulas inductively on structure of Π .

1. φ0
def
= 0 3. φΠ|Π′

def
= φΠ ‖ φΠ′

2. φ[w]i
def
= �w�i 4. φ[Π]i

def
= �φΠ�i

2′. φ[R]i
def
= �R�i

Theorem 3. Giving an arbitrary membrane system Π, the formula φΠ is a
characteristic formula for Π.

The fact that we can define characteristic formulas for membrane systems open
the possibility to project any semantical problem in syntax. Thus, if we want
to verify that the system Π has a property ψ, i.e. Π |= ψ, we can project this
problem in syntax where it is equivalent with � φΠ → ψ, where we denoted
by φΠ the characteristic formula of Π as before. Now the problem Π |= ψ is
equivalent with proving φΠ → ψ with the axioms of our logic.

Similarly, we can express the fact that between Π and Π ′ there exists a
transition Π

ri−→ Π ′ by stating � φΠ → 〈ri〉φΠ′ . Now � φΠ → 〈ri〉φΠ′ can be
proved from the axioms iff the transition Π

ri−→ Π ′ exists. On this direction we
can also imagine more complex situations. Consider, for example, that we have
the system Π and we want to know if, after doing the transitions labeled by ri

292 M. Cavaliere and R. Mardare

then sj, the ts it will reach a state (a membrane system) that will have a subpart
satisfying ψ. This can be syntactically said by � φΠ → 〈ri〉〈sj〉〈ts〉(ψ ‖ 1).
Indeed ψ ‖ 1 describes a system having a subsystem that satisfies ψ. Then the
dynamic operators prefixing it, 〈ri〉〈sj〉〈ts〉(ψ ‖ 1), means that the system will
reach the state satisfying ψ ‖ 1 only after it performs the transitions labeled by
ri, sj , ts in this order.

Validity: The presented syntax allows to express the validity of a property in
a class of membrane systems having the same external membrane i, i.e. the
property is satisfied by any of these systems. We can do this by using a “blind
observer”, i.e. an observer A′ ∈ Obs that sees only the trivial system embedded
in i, int(A′) = [0]i.

Indeed, the epistemic operator KA′ has the following semantics.
Π |= KA′φ iff for any Π ′′ ∈ Pi we have Π ′′ |= φ.

This is so because, if a system Π has the property KA′φ then φ is satisfied by
any system Π ′ ∈ P that can be decomposed in Π ′ = [0]i|Π ′′, i.e. Π ′ must have
the skin membrane i, hence Π ′ ∈ Pi. But Π ′ has the property Π ′|[0]i = Π ′, as
[0]i is the null element of the monoid (Pi, |). Hence φ is satisfied by any system
with the skin i, i.e. it is a valid property over Pi. Thus we can encode, in syntax,
the validity of a property.

Consequently, KA′1 is a validity, as [0]i is a subsystem of any system in Pi,
Π = Π |[0]i.

Satisfiability: Also the satisfiability of a property can be encoded in the syntax.
We say that a property is satisfiable if it exists at least one membrane system
having this property. For this purpose we use the dual of the knowledge operator

for the blind observer
∼
KA′ (as before we assume that int(A′) = [0]i).

Π |=
∼
KA′φ iff it exists a membrane system Π ′′ ∈ Pi such that Π ′′ |= φ

Indeed, if a system Π satisfies
∼
KA′φ then either Π 	= Π ′|[0]i (this is not the case

as always Π = Π |[0]i) or it exists Π ′′ such that Π ′′|[0]i |= φ. But Π ′′|[0]i = Π ′′,

hence it exists a system Π ′′ ∈ Pi that satisfies φ and vice versa. Thus
∼
KA′φ

provides a way to encode, in syntax, the satisfiability of a property.

6.4 (Some) Axioms, Rules and Theorems

In [13,14,15,12] it has been introduced a Hilbert-style axiomatic system for dy-
namic epistemic spatial logic. We present further some interesting axioms and
theorems that can offer an idea about what can be specified and proved using
our logic.

Axiom A 1. � �φ�i ‖ �0�i ↔ �φ�i

The previous axioms states that an empty membrane system contained in mem-
brane i do not come with extra properties if it is considered as a subsystem of a
system having the skin i. Hence, such a subsystem is “transparent”.

Partial Knowledge in Membrane Systems 293

Axiom A 2. � φ ‖ ψ → ψ ‖ φ

Axiom A 3. � (φ ‖ ψ) ‖ ρ → φ ‖ (ψ ‖ ρ)

These entail that ‖ organizes an Abelian monoid structure.

Rule R 1. If � φ → ψ then � φ ‖ ρ → ψ ‖ ρ.

This rule establish the monotonicity of parallel composition.

Axiom A 4. � [ri](φ → ψ) → ([ri]φ → [ri]ψ).

This axiom is the (K) axiom well-known in modal and dynamic logics which,
together with the next rule of necessity shows that, indeed, our operator is an
authentic modal operator.

Rule R 2. If � φ then � [ri]φ.

Axiom A 5. � (〈ri〉φ) ‖ ψ → 〈ri〉(φ ‖ ψ).

If a subsystem Π1 of a system Π = Π1|Π2 can do a transition ri and further
it satisfies φ while its counterpart Π2 satisfies ψ, then the system Π can be
described as able to perform a transition ri thus passing to a system satisfying
φ ‖ ψ.

Axiom A 6. � KAφ ∧KA(φ → ψ) → KAψ

This axiom A6 is the classical (K)-axiom stating that our epistemic operator is
a normal one. It states that if an observer A knows φ and that φ → ψ then it
knows ψ. It is an usual axiom of knowledge [9].

Axiom A 7. � KAφ → φ

Also this axiom is classic in modal and epistemic logics – the axiom (T) –
necessity axiom. It states that the knowledge of any observer must be true,
i.e., an observer cannot know something that is not true.

Axiom A 8. � KAφ → KAKAφ.

Also axiom A8 is well known in epistemic logics. It states that our epistemic
agents (observers) have the positive introspection property, i.e., if an observer A
knows something then it (i.e., the observer) knows that it knows that thing.

Axiom A 9. � KA1 → (¬KAφ → KA¬KAφ)

Axiom A9 states a variant of negative introspection, saying that if an observer
A is active (the system that the observer knows is a subsystem of the whole
system) and if the observer does not know φ, then the observer knows that does
not know φ. Negative introspection is also present in classic epistemic logics.

Rule R 3. If � φ then � KA1 → KAφ.

294 M. Cavaliere and R. Mardare

Rule R3 states that any active observer knows all the tautologies. Also in this
case we deal with a well known epistemic rule, widely spread in epistemic logics.
But our rule works under the assumption that the observer is active.

In [13,15,12] we present a complete axiomatic system and we prove many
theorems in it. Hereafter we will sketch some soundness proofs for the previous
axioms to clarify the intuitions that motivates the choice of them. Similarly all
the axioms can be proved to be sound.

Theorem 4 (Soundness of axiom A5). |= (〈ri〉φ) ‖ ψ → 〈ri〉(φ ‖ ψ)

Proof. If Π |= (〈ri〉φ) ‖ ψ, then Π = Π1|Π2, Π1 |= 〈ri〉φ and Π2 |= ψ. So
∃Π1

ri−→ Π ′
1 and Π ′

1 |= φ. So ∃Π = Π1|Π2
ri−→ Π ′ = Π ′

1|Π2 and Π ′ |= φ ‖ ψ.
Hence Π |= 〈ri〉(φ ‖ ψ).

Theorem 5 (Soundness of axiom A6). |= KAφ ∧KA(φ → ψ) → KAψ

Proof. Suppose that Π |= KAφ and that Π |= KA(φ → ψ), where int(A) = Π1.
Then Π = Π1|Π2 and for any Π ′ we have Π1|Π ′ |= φ and Π1|Π ′ |= φ → ψ.
Hence for any such Π1|Π ′ we have Π1|Π ′ |= ψ and because Π = Π1|Π2 we
obtain that Π |= KAψ.

Further we present some meaningful theorems that can be derived with our
system.

Theorem 6. � KAφ → KA1.

This theorem says that an observer knows something only if it is active.

Theorem 7 (Monotonicity of knowledge). If � φ → ψ then � KAφ →
KAψ

The knowledge is monotone, meaning that if a property φ guarantees a property
ψ then any observer that knows φ knows also ψ.

Theorem 8 (Consistency of knowledge). � KAφ → ¬KA¬φ.

This theorem states that the knowledge of an observer is always consistent; the
observer cannot know φ and ¬φ.

Theorem 9 (Ontological dependency). If int(A) = Π1|Π2, int(A1) = Π1
then � KA1 → KA11.

If the system associated to observer A1 is a subsystem of the system associated
to observer A, then the activation of observer A implies the activation of observer
A1.

For more interesting theorems, the reader is referred to [13,15,12], where, for
this logic, it is also developed a semantics on process algebras proved to be sound
and complete against the same axiomatic system.

Partial Knowledge in Membrane Systems 295

7 A (Simple) Case Study

Consider the membrane system defined as:

Π : Π ′ : Π ′′ :
μ = [[]2 []3 []4]1 μ′ = [[]2 []3]1 μ′′ = [[]4]1
w1 = λ w1 = λ w1 = λ
w2 = a w2 = a w4 = c
w3 = b w3 = b
w4 = c
R1 = {r′ : b −→ bin4} R1 = {r′ : b −→ bin4} R1 = {r′ : b −→ bin4}
R2 = {r′′ : a −→ bout} R2 = {r′′ : a −→ bout} R4 = {rIV : b −→ cout}
R3 = {r′′′ : b −→ aout} R3 = {r′′′ : b −→ aout}
R4 = {rIV : b −→ cout}

Obviously Π = Π ′|Π ′′. Suppose now that we have an observer A ∈ Obs
that can see only the membrane system Π ′, i.e., int(A) = Π ′. Hence, for such
observer, the system Π is an open one, as A can see the subsystem Π ′ and, for
the rest, A accepts any other system as a possible one.

Suppose now that, using the knowledge of A, we want to compute the truth
value of the following property: if Π contains a membrane 4 then, eventually, it is
possible to send an object b to membrane 4 (more exactly after two transitions).
We can express this by stating (and proving) that the next formula can be
derived, as axiom, from the presented axiomatic system.

� KA1 → KA(��1�4 ‖ 1�1 ‖ 1 → 〈r′′2 〉〈r′1〉(��b�4 ‖ 1�1 ‖ 1))

Indeed, the main precondition KA1 ensures that the observer A can see some-
thing in the system Π (i.e., Π ′ is a subsystem of Π). This implies that A knows

��1�4 ‖ 1�1 ‖ 1 → 〈r′′2 〉〈r′1〉(��b�4 ‖ 1�1 ‖ 1)

We can read the knowledge of A as: if ��1�4 ‖ 1�1 ‖ 1, meaning if the
membrane 1 contains a membrane 4 and maybe something else then

〈r′′2 〉〈r′1〉(��b�4 ‖ 1�1 ‖ 1).

The fact that we are not interested in what membrane 4 contains it is expressed
by the firsts two 1, while the fact that membrane 1 might also contains other
things it is specified by the second 1.

Now, this post condition can be read as: the system can use the rule r′′ in
region 2 (which sends an object b to region 1), then it can apply the rule r′

in region 1 (because now, in region 1 there is one b) and after doing these two
transitions, we obtain a membrane system having membrane 4 inside membrane
1 and region 4 contains the object b. The two 1 are used for specifying the fact
that in region 4, as well as in region 1, might be also other things in which (in
this case) we are not interested in.

296 M. Cavaliere and R. Mardare

Following these steps the specified property can also be proved inside the
syntax of the presented logic.

The important point is that we have succeeded to play with partial infor-
mation without using a complete description of the system Π, but only using
the “point of view” about the system of the observer A. Moreover, the specified
property is true not only for the system Π , but also for any other system which
looks to A “indistinguishable” from Π , i.e., any system of type Π ′|Π ′′′ where
Π ′′′ is an arbitrary membrane system.

Indeed, if Π ′′′ does not contain membrane 4, then

KA(��1�4 ‖ 1�1 ‖ 1 → 〈r′′2 〉〈r′1〉(��b�4 ‖ 1�1 ‖ 1))

is still true, as ��1�4 ‖ 1�1 ‖ 1 is false, and in classic propositional logic false
implies anything. From the other side if Π ′′′ contains a membrane 4, then does
not matter what else it contains, the system Π ′|Π ′′′ it is still able to send a b in
membrane 4 in two transitions, as just shown.

8 Conclusion

The logic we have proposed allows us to specify and formally prove properties of
open membrane systems or, in general, properties that involve partial knowledge.
Such properties cannot be formally described (in an “easy” way) by using the
classic theory of membrane systems. The main idea of the presented logic is
that it allows the analysis of the partial knowledge by collecting the partial
information collected by observers of a membrane system. As showed in the
example presented in Section 5, the logic allows to compute information by using
logical reasoning on the information collected by the observers (even if they do
not communicate each other). Sometime, using the presented logical tools, it is
possible to interpret the “behavior” of the single observers for understanding the
information we are looking for. Since this is done is a “distributed” fashion, this
type of analysis has a computational price much smaller then the one needed for
an analysis of the entire system.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology
of the Cell. Garland Publishing, Inc., 2002, fourth edition.

2. L. Caires, L. Cardelli: A Spatial Logic for Concurrency (Part I). Information and
Computation, 186, 2 (2003).

3. L. Caires, L. Cardelli: A Spatial Logic for Concurrency (Part II). In Proceedings of
CONCUR’2002, LNCS 2421, Springer-Verlag, 2002.

4. L. Caires, E. Lozes: Elimination of Quantifiers and Decidability in Spatial Logics
for Concurrency. In Proceedings of CONCUR’2004, LNCS 3170, Springer-Verlag,
2004,

5. L. Cardelli, A.D. Gordon: Anytime, Anywhere: Modal Logics for Mobile Ambi-
ents. In Proceedings of the 27th ACM Symposium on Principles of Programming
Languages, 2000.

Partial Knowledge in Membrane Systems 297

6. L. Cardelli, A.D. Gordon: Ambient Logic. Mathematical Structures in Computer
Science, to appear.

7. M. Cavaliere, P. Leupold: Evolution and Observation: A New Way to Look at
Membrane Systems: Proceedings WMC2003, LNCS 2933, Springer-Verlag, 2004.

8. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

9. R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi: Reasoning about Knowledge. MIT
Press, 1995.

10. D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.
11. M. Hennessy, R. Milner: Algebraic Laws for Nondeterminism and Concurrency.

Journal of ACM, 32, 1 (1985).
12. R. Mardare: Logical Analysis of Complex Systems: Dynamic Epistemic Spa-

tial Logics. PhD Thesis, DIT, University of Trento, Italy, 2006 (available from
http://www.dit.unitn.it/∼mardare/publications.htm).

13. R. Mardare, C. Priami: Decidable Extensions of Hennessy-Milner Logic. 26th In-
ternational Conference on Formal Methods for Networked and Distributed Systems,
FORTE’06, LNCS, Springer-Verlag, 2006.

14. R. Mardare, C. Priami: Model Checking Dynamic Epistemic Spatial Logics. Tech-
nical Report DIT-06-009, Informatica e Telecomunicationi, University of Trento,
2006.

15. R. Mardare, C. Priami: Dynamic Epistemic Spatial Logics. Technical Report,
03/2006, Microsoft Research Center for Computational and Systems Biology,
Trento, Italy, 2006.

16. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
17. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,

Berlin, 1997.
18. The P Systems Web Page: http://psystems.disco.unimib.it.

Tau Leaping Stochastic Simulation Method
in P Systems�

Paolo Cazzaniga1, Dario Pescini1, Daniela Besozzi2, and Giancarlo Mauri1

1 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
cazzaniga/pescini/mauri@disco.unimib.it

2 Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione

Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it

Abstract. Stochastic simulations based on the τ leaping method are
applicable to well stirred chemical systems reacting within a single fixed
volume. In this paper we propose a novel method, based on the τ leaping
procedure, for the simulation of complex systems composed by several
communicating regions. The new method is here applied to dynamical
probabilistic P systems, which are characterized by several features suit-
able to the purpose of performing stochastic simulations distributed in
many regions. Conclusive remarks and ideas for future research are fi-
nally presented.

1 Introduction

Stochastic modeling is recently gaining more attention in the study of biologi-
cal systems because “noise” and discreteness play an important role in cellular
processes involving few molecules. Many experimental evidences can be found in
literature today, such as, e.g., [9,3]. Several examples about stochastic modeling
in biological systems, like signal transduction pathways, or the functioning of
transcription and translation machinery, can be found in [17,26] and references
therein.

It is well known that it is possible to exploit stochastic algorithms to accurately
describe the behavior of biological systems, though these approaches lack of
computational efficiency. Many new algorithms have been proposed to speed
up the computation, trading time for accuracy. A common limitation to many
of these approaches is the single volume hypothesis: all the chemical reactions
occur within a well mixed single volume at constant temperature and pressure.
Here we want to introduce a new stochastic approach in the framework of P
systems [20] – exploiting their topological structure and other features – as a
novel tool for the modeling of multivolume complex systems. In the following
� Work supported by the Italian Ministry of University (MIUR), under project PRIN-

04 “Systems Biology: modellazione, linguaggi e analisi (SYBILLA)”.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 298–313, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tau Leaping Stochastic Simulation Method in P Systems 299

we will assume that the reader is familiar with basic notions on P systems;
for further information we refer, e.g., to [21,8] and to the P systems web page:
http://psystems.disco.unimib.it.

The stochastic simulation algorithm (SSA), introduced by Gillespie in [12], is
currently used as the reference procedure for performing stochastic and discrete
simulations of various biological systems (see, e.g., [1,11,18]). It is an exact nu-
merical simulation method that keeps track of every reaction event occurring
in the system. On the other hand, many realistic problems cannot be efficiently
solved by using it, since the load of computer work is sometimes very high.
To speed up the SSA, Gillespie introduced in [13] the τ leaping method as an
approximate simulation strategy. Using Poisson random numbers, it is indeed
possible to leap over many reaction events in a way that well approximates the
exact stochastic simulation.

The SSA, as well as the τ leaping method, are only applicable to well stirred
chemical reaction systems within a single fixed volume, at constant temperature.
In order to overcome this limit, in this paper we introduce a new method which
exploits the structure (formed by several volumes) and the communication fea-
tures of P systems: using a modified τ leaping procedure, we can then simulate
both the behavior of every volume, as well as the behavior of the whole system.

P systems were introduced in [20] as a class of distributed parallel computing
devices, inspired by the structure and the functioning of living cells. The basic
model consists of a structure composed by several membranes, which delimit
regions and can contain objects, evolving in accord to given evolution rules. In
one step of a computation, all regions are simultaneously processed by using the
rules in a nondeterministic and maximally parallel manner, and at each step
all the objects which can evolve should evolve. All the evolved objects are then
communicated to the regions specified by a target indication associated with each
rule. A computation device is obtained, starting from an initial configuration and
letting the system evolve.

Many different classes of P systems as computing devices have been proposed
[21]. More recently, P systems have been applied in various research areas, rang-
ing from Biology to Linguistics to Computer Science, see, e.g., [8]. In this paper
we use membrane systems as modeling tools and, in particular, we consider dy-
namical probabilistic P systems (DPPs), a stochastic class introduced in [23,24]
for the analysis and simulation of the behavior of complex systems. DPPs are
discrete and stochastic models, where the probability values associated with
the rules change during the evolution of the system. The evolution of DPPs is
achieved using a strategy that is similar to the SSA. Moreover, DPPs can be
used to tackle the problem of maximal parallelism, a basic feature of P systems
which can actually be far from reality in many application cases. Details about
DPPs and examples of simulated systems can be found in [22,23,24].

This paper is structured as follows. In Section 2 we recall some τ leaping
stochastic algorithms, we describe the τ leaping procedure and show some results
in order to test its accuracy and efficiency. In Section 3 we introduce the new τ
leaping procedure in the framework of DPPs and we present the results obtained

300 P. Cazzaniga et al.

by the simulation of a benchmark test case. We conclude with some remarks on
possible extensions of our work.

2 Gillespie’s Stochastic Simulation Methods

In this section we explain how the τ leaping selection procedure works, we present
the description of an implementation of the algorithm and we show some results
in order to prove the accuracy and the efficiency of this method.

The τ leaping method, first introduced by Gillespie in [13], is used to speed
up stochastic simulations where, besides keeping track of every reaction event
(as in SSA [12]), one also selects a leap interval where more than one reaction
can be fired.

Several improvements of the τ leaping have been proposed by Gillespie and
Petzold [14] in order to improve the strategy of selecting the size of the τ leap.
Tian and Burrage [25] and Chatterjee et al. [7] introduced a binomial τ leaping
to avoid the possibility of producing negative concentrations of the chemical
species. Also Cao et al. [4] modified the original τ leaping procedure to work out
the negativity problem.

All these forms of τ leaping are lacking in two parts: first, they violate the
leap condition [13] since, during the leap, the estimated change of the propensity
function is bound by a fraction ε (that is, a pre-specified error control parameter
0 < ε ≤ 1) over the sum of all propensity functions. In this way, any propensity
function that has a relatively small value will be allowed to change by a relatively
large amount (the definitions of propensity function and leap condition will be
given in Section 2.1). Second, the τ leaping selection requires the evaluation of
M2 auxiliary quantities at each step, where M is the number of reactions in the
system.

To avoid these problems, Gillespie et al. [5] introduced a new τ selection
procedure. This procedure (to which we refer in this paper) is more accurate
than the previous ones since it satisfies more closely the leap condition, bounding
in a uniform manner the relative changes in the propensity functions. Moreover,
it is faster than the previous ones because the number of auxiliary quantities
to be computed increases linearly, instead of quadratically, with respect to the
number of reactant species.

2.1 Tau Leaping

We recall here the fundamental hypothesis and main definitions needed to de-
scribe the τ leaping procedure as presented in [5]. Let X be a well stirred sys-
tem in thermal equilibrium consisting of N molecular species S1, . . . , SN , which
can interact through M chemical reaction channels R1, . . . , RM . The vector
X(t) ≡ (X1(t), . . . , XN(t)), where Xi(t) is the number of molecules of the species
Si at time t, describes the state of the system at time t. Let I = {1, . . . , N} and
J = {1, . . . ,M} be, respectively, the sets of indexes over the species and the
reaction channels sets.

Tau Leaping Stochastic Simulation Method in P Systems 301

The probability that a reaction Rj , with j ∈ J , will occur in the next in-
finitesimal time interval [t, t + dt) in the system state x = X(t) is given by
aj(x)dt, where aj(x) is called the propensity function of Rj and is defined as
aj(x) = hj(x)cj , being hj(x) the number of distinct reactant molecules com-
binations and cj the stochastic rate constant associated to Rj . The changes of
species populations are ruled by the state change vector vj ≡ (v1j , . . . , vNj),
j ∈ J . The element vij of vj represents the multiplicity change of the species Si

due to reaction Rj . Given the above system definition, the τ leaping algorithm
can be described as follows.

The aim of the τ leaping procedure is to fire more than one reaction for each
time increment [t, t+ τ). The finding of the exact probability distribution of the
rules applications, within a generic step of length τ , is a hard task to solve. A
possible solution is to approximate the exact behavior of the system, bounding
the changes in the reactions propensity functions; this has, as a consequence, a
limitation of the time increment. Chosen the τ value, it is then possible to guess
the occurring reactions using a Poisson distribution.

Given the state x of the system X , let Kj(τ,x, t) be the exact number of times
that a reaction Rj will be fired in the time interval [t, t + τ), so that K(τ,x, t)
is the exact probability distribution vector (having Kj(τ,x, t) as elements). For
arbitrary values of τ , it is difficult to compute the values of Kj(τ,x, t). On the
contrary, if τ is small enough that the change in the state during [t, t + τ) is so
slight that no propensity function will suffer an appreciable change in its value
(this is called the leap condition), then we can evaluate a good approximation of
Kj(τ,x, t) by using the Poisson random variable with mean and variance aj(x)τ .

So, starting from the state x and choosing a value τ that satisfies the leap
condition, we can update the state of the system at time t + τ according to:

X(t + τ) = x +
M∑

j=1

vjPj(aj(x), τ) (1)

where Pj(aj(x), τ), for each j ∈ J , denotes an independent sample of the Poisson
random variable with mean and variance aj(x)τ .

Each iterative step of the algorithm is composed by four stages:

1. Generate the maximum changes of each species that satisfy the leap condi-
tion.

2. Compute the mean and variance of the changes of the propensity functions.
3. Compute the leap value τ .
4. Toss the reactions to apply.

Hereafter, we describe in detail the motivations and the aims of each of the
four stages.

1. Satisfying the leap condition. The procedure for the selection of τ is ac-
complished in order to bound the relative changes in the molecular populations,
in such a way that the relative changes in the propensity functions will be all
bounded - during the τ interval - by a small value ε (0 ≤ ε ≤ 1).

302 P. Cazzaniga et al.

Let ΔτXi be the change in the population Xi in the time interval [t, t + τ).
Given the state x and its projections xi = Xi(t), the leap condition is:

|ΔτXi| ≤ max{εixi, 1} ∀ i ∈ I, (2)

where the values εi = εi(ε, xi) are chosen so that the relative changes in the
propensity functions will be all bounded, at least, by ε.

To do that, first determine, for each i ∈ I, the highest order of reaction in
which species Si appears as a reactant (denoted by HOR(i)). Then compute:

εi =
ε

gi
(3)

where gi = gi(xi) is defined as follows:

1. if HOR(i) = 1 then gi = 1

2. if HOR(i) = 2 then

gi =

⎧⎪⎨⎪⎩
2 if Ri : SiSk → . . . with i 	= k(

2 +
1

xi − 1

)
if Ri : SiSi → . . .

3. if HOR(i) = 3 then

gi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3 if Ri : SiSkSl → . . . with i 	= k 	= l

3
2

(
2 +

1
xi − 1

)
if Ri : SiSiSk → . . . with i 	= k(

3 +
1

xi − 1
2

xi − 2

)
if Ri : SiSiSi → . . .

The gi values corresponding to reactions having HOR > 3 can be easily
computed by taking into account the combinatoric of the species involved in the
reactions.

2. Compute mean and variance. To compute the largest value of τ that
satisfies the leaping condition (2), we need to evaluate two auxiliary quantities:
the mean and the variance of the expected change in the propensity functions.

Referring to the basic τ -leaping formula (1), it is possible to consider the
quantity defined in (2) to be:

ΔτXi =
∑

j∈Jncr

vijPj(aj(x), τ) ∀ i ∈ I, (4)

where Jncr denotes the set of noncritical reactions.
A critical reaction is a reaction with positive propensity function such that a

small number of firings is currently left before exhausting one of its reactants.
All the other reactions are named, instead, noncritical reactions. It is clear that
the set of reactions J is the direct sum of the critical Jcr and noncritical Jncr

Tau Leaping Stochastic Simulation Method in P Systems 303

reactions sets: J ≡ Jcr ⊕ Jncr. The motivations of the partition and the choice
of j ∈ Jncr in (4), can be found in [5].

As previously said, the Poisson random variables Pj(aj(x), τ) on the right-
hand side of Equation 4 are statistically independent and have mean and vari-
ance aj(x)τ . Hence, the mean and variance of their linear combination can be
computed as follows:

〈ΔτXi〉 =
∑

j∈Jncr

vij [aj(x)τ], var{ΔτXi} =
∑

j∈Jncr

v2
ij [aj(x)τ] (5)

for all i ∈ I. Hence, following the same reasoning that was used in the τ selection
introduced in [14], it is possible to consider the bound given in Equation 1
substantially satisfied if it is simultaneously satisfied by the absolute mean and
the standard deviation of ΔτXi:

|ΔτXi| ≤ max{εixi, 1},
√

var{ΔτXi} ≤ max{εixi, 1}, (6)

for all i ∈ I.
Now, substituting formulas (5) into conditions (6) we obtain the following

bounds on τ :

τ ≤ max{εixi, 1}
|
∑

j∈Jncr
vijaj(x)| , τ ≤ max{εixi, 1}2∑

j∈Jncr
v2

ijaj(x)
(7)

for all i ∈ I.
Finally, it is possible to compute, as described in [14], the two quantities:

μi(x) =
∑

j∈Jncr

vijaj(x), ∀i ∈ I, (8)

σ2
i (x) =

∑
j∈Jncr

v2
ijaj(x), ∀i ∈ I, (9)

where we still have the restriction on the noncritical reactions Jncr, due to the
conditions of the modified non-negative Poisson τ -leaping [5].

3. Compute the τ value. The leap length is obtained substituting Equations
(8, 9) in (7):

τ = min
i∈I

{
max{εxi/gi, 1}

|μi(x)| ,
max{εxi/gi, 1}2

σ2
i (x)

}
, (10)

where gi is obtained by Equation 3.
It is also possible to estimate the mean μj(x)τ , and the standard deviation√
σ2

j (x)τ of the expected change in the propensity function aj(x) in the time
increment τ . Formula 10 requires that these quantities would be bounded by
εaj(x) for j ∈ J , thus satisfying the leap condition.

4. Tossing the reactions. The last stage consists in the sampling of random
numbers according to the Poissonian distribution P (aj(x), τ) with mean and
variance aj(x) τ .

304 P. Cazzaniga et al.

2.2 The Algorithm

In this section, we introduce the algorithm used to compute the value of τ as
described in Section 2.1. We recall here that we are considering the system X
with N molecular species interacting through M chemical reaction channels,
where the vector x describes the state of the system and the dynamic is ruled
by the state change vectors vj .

The algorithm works, for each iterative step, as follows:

1. Locate the set of all critical reactions.
2. Compute the quantities μi and σi

2.
3. Select the value of τ ′ as indicated in Equation (10).
4. If τ ′ < n/a0, where a0 =

∑
j∈J aj(x), then execute an SSA step as described

in [12] and go to step 1, otherwise go to the next step. The factor n is usually
set to a reasonable value (n = 10 in the following simulations).

5. Compute the sum of the propensity functions of all critical reactions, denoted
by ac

0(x).
6. Generate τ ′′ = 1/ac

0(x) · 1/rnd, where rnd is a value randomly chosen from
the uniform distribution over the unit interval (0, 1).

7. If τ ′ < τ ′′ then τ = τ ′, and:

– For all critical reactions Rj set the number of firings kj = 0.
– For all noncritical reactions Rj generate kj as a sample of the Poisson

random variable P (aj(x), τ) with mean aj(x)τ .

8. Else if τ ′′ < τ ′ then τ = τ ′′, and:

– Select one critical reaction Rj to be fired during this step and set kj = 1;
for all other critical reactions Rj set kj = 0.

– For all noncritical reactions Rj generate kj as a sample of the Poisson
random variable P (aj(x), τ) with mean aj(x)τ .

9. Update the state of the system: X(t + τ) = X(t) +
∑

j∈J kj · vj, and check
the termination condition t < tmax.

During step 1, the procedure identifies the set of critical reactions, which will
be used in steps 5 and 6 to avoid the possibility to obtain negative multiplicities
of the species. In step 2 the quantities needed to obtain the largest value of τ ′

(step 3) that satisfies the leap condition are computed. If this value (step 4) is
less than a multiple of 1/a0, then an SSA step is executed because, given the
actual state of the system, it is more accurate and efficient than a τ -leap step.

Steps 5 and 6 generate a second candidate leap τ ′′ that estimates the time of
the next critical reaction.

If τ ′ is smaller than τ ′′, then some noncritical reactions and no critical reac-
tions will be executed during the leap. Otherwise, several noncritical reactions
plus one critical reaction will be executed.

Finally, step 9 updates the state of the system and checks if the current
system time t exceeds the prescribed simulation time tmax. If the condition
holds, terminate the execution, otherwise go to step 1.

Tau Leaping Stochastic Simulation Method in P Systems 305

2.3 Results

In this section we present some results in order to show the accuracy and effi-
ciency of the τ leaping procedure presented above. We have simulated a simple
system of consecutive reactions

A
k1→ B

k2→ C (11)

using both the τ leaping method and the SSA, in order to compare the perfor-
mances of the two procedures.

Figure 1 shows the behavior of the system (11) simulated starting from a
population of 1000 individuals of species A; the stochastic constants used for the
simulation are k1 = 0.1s−1 and k2 = 0.025s−1. For the simulation with τ -leaping
method, ε = 0.03 was used.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80

In
di

vi
du

al
s

Time [s]

A

B

C

SSA
tau leaping

Fig. 1. Consecutive reactions system

Figure 2 shows the histogram plots of the distribution of A(0.1s), that is the
number of individuals of species A at time 0.1 s, obtained from 106 runs of the
SSA and 106 runs of the τ leaping method with ε = 0.03.

The similar behaviors of SSA and τ leaping, shown in Figure 1, and the
negligible distance between the SSA and the τ leap histograms of Figure 2,
prove the accuracy of the τ leaping procedure. The efficiency is proved by the
average number of steps of the simulations, which is equal to 102 using SSA and
to 79 with the τ leaping method.

306 P. Cazzaniga et al.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 850 860 870 880 890 900 910 920 930 940 950

H
is

to
gr

am
 P

lo
t

A species

SSA
tau leaping

Fig. 2. Histogram plot of the distributions of species A

3 τ -DPPs

Two main problems, in the areas of stochastic modeling and of P systems, moti-
vated our work. The first consists in the fact that SSA, as well as the τ leaping
method, are only applicable to well stirred chemical reaction systems contained
inside a single fixed volume. The second problem concerns DPPs which, up to
now, could only allow qualitative simulations of a system’s dynamics.

A solution to the first problem can be proposed within the framework of P
systems, since the membrane structure is suitable to represent systems consist-
ing of many regions. Moreover, the communication among regions is a basic and
powerful feature in P systems and can be exploited for modeling complex bio-
logical systems (such as, e.g., processes involving molecules crossing membranes
in cellular systems).

An immediate consequence of the solution to the first problem, that is, the
use of P systems for representing multivolume systems and the extension of τ
leaping method for such systems, is that DPPs turn out to be valid tools for
performing also quantitative simulations.

In this section we present the new τ leaping selection method in the framework
of DPPs. Then, we describe its implementation and test the exactness of both
the procedure and the communication between membranes. In what follows we
will refer without distinction to volumes or membranes.

Tau Leaping Stochastic Simulation Method in P Systems 307

3.1 Tau Leaping Procedure in DPPs

Dynamical probabilistic P systems (DPPs), introduced by Pescini et al. in [24],
are a stochastic class of P systems where the probability values, associated to
each rule according to a prescribed strategy, vary during the evolution of the
system. Details about the method for evaluating probabilities, the way the sys-
tem works and some notes on the corresponding software simulators, as well as
for examples of some simulated systems, can be found in [22,23,24,6].

Two major advantages in modeling complex systems by means of DPPs con-
sist in the intrinsic stochasticity and the possibility to probe different levels of
parallel rule applications. For instance, it is possible to introduce in DPPs a
bounded parallelism by reducing the maximal consumption of objects, at each
step, inside all membranes (see, e.g., the use of “mute rules” in [2]). The τ leap-
ing method exploits a “bounded parallelism” as well: the number of reactions
applied at each step are dynamically bounded, according to the system state
and the underlying process.

The main difference between τ leaping and DPPs, as previously said, is that
the first one works on a single volume whereas the second one may simulate
complex structured systems, where every membrane can have a different set of
rules. Cazzaniga et al. reviewed in [6] several stochastic approaches using SSA
inside DPPs. The main problem arisen from that study is connected to the com-
munication rules: in order to move objects between membranes, synchronization
of all evolving processes has to be forced.

Moreover, DPPs using SSA inside each membrane [6], are parallel at the mem-
branes level but sequential at the rule level: one single rule and its execution time
are selected, within each membrane, considering only the internal state of the
membrane where the rule will be executed. Therefore, different time increments
inside different membranes are obtained. For this reason, different time lines are
described although one rule per step (in each membrane where at least one rule
can be applied) is executed.

he introduction of τ leaping method inside DPPs works out these problems.
First of all, since the same leap of length τ is chosen for all the volumes in the
system, the membranes are naturally synchronized. The difference between SSA
and τ leaping is that, when using SSA inside DPPs, the synchronization has to
be forced at the end of each step, since all volumes generate different τ values
(in other terms, after the same number of steps the time simulated within the
membranes is different). On the contrary, with τ leaping method we execute
the same number of parallel steps, implicitly synchronizing the processes at the
end of each step, since the same value of τ is used for all membranes at each
iteration.

Secondly, with τ leaping we can consider the communicating rules as the
other internal rules, because the rules execution order, within each step, is not
important, due to the Poissonian random variable. Moreover, the time needed
by the objects to cross the membranes is implicitly taken into account in the
rate constants of the communicating rules.

308 P. Cazzaniga et al.

Finally, with τ leaping, we can manage to keep track of the simulated time of
the whole system: every membrane of the system evolves according to a common
τ value, at each step, and executes the same total number of steps. This is a fun-
damental feature to simulate complex systems and to quantitatively reproduce
their dynamics.

The introduction of τ leaping method inside DPPs requires a new procedure
to select a common τ value among all membranes of the system.

We recall here that the original τ leaping procedure can evolve, during each
step, in three different manners: (i) like the SSA, executing one reaction during
the leap, (ii) executing only noncritical reactions, or (iii) executing noncritical
reactions and one critical reaction.

The τ -DPP selection procedure has to consider how every membrane is evolv-
ing during the actual step; then, the smallest τ generated within the membranes
is used to update the system.

For instance, if a membrane is evolving executing only non critical reactions,
but the τ chosen inside it is not the smallest one of the system, then - after
receiving the minimal τ from some other membrane - this membrane has to
sample the next rules from the set of non critical reactions.

Once the procedure generates a local τ , two different scenarios are possible: no
membranes are evolving like SSA, or at least one membrane is evolving according
to SSA.

If no membranes are evolving like SSA, the smallest τ (τmin) generated inside
the volumes during the current step is chosen. Then the number of firings of the
rules is sampled as the Poisson random variable P (aj , τmin).

If there is at least one membrane evolving in the SSA manner, which generates
a value τSSA, the procedure has to check if τmin = τSSA. This requirement is
needed because if τSSA is greater than τmin, it is not possible to apply the rule
selected inside that membrane, because the execution would be longer than the
leap. Otherwise, τmin = τSSA means that τmin was generated by the membrane
evolving according to the SSA, thus the execution of the selected rule is allowed.

3.2 The New Algorithm

In this section we introduce the procedure to select the τ leap value among
L membranes, and we show how to execute local and communication rules.
The considered structure is composed by l systems Xl, l = 1, . . . , L, each of
them defined as in Section 2.1. Moreover, different Xl can have different sets of
rules and object species. The selection of local τ inside the membranes is done
following the procedure presented in Section 2.2, the smallest τ of the system is
then used to select the number of firings of the rules.

We remark that, in this new version of the algorithm, a flag is used during
the iterations to remember how the rule selection has to proceed: flag = 1
means that the membrane is evolving according to the SSA, flag = 2 means
that the membrane has to execute only non critical reactions, and flag = 3
means that the membrane will execute non critical reactions and one critical
reaction.

Tau Leaping Stochastic Simulation Method in P Systems 309

For each iterative step, the new version of the algorithm works, inside every
volume l, as follows:

1. Locate the set of all critical reactions.
2. Compute the quantities μi and σi

2.
3. Select the value of τ ′ as indicated in equation (10).
4. If τ ′ < n/a0 then extract an SSA τ as described in [12], set flag = 1 and

go to step 8, otherwise go to the next step. The factor n is usually set to a
reasonable value (n = 10 in the following simulations).

5. Compute the sum of the propensity functions of all critical reactions ac
0(x).

6. Generate τ ′′ = 1/ac
0(x) · 1/rnd, where rnd is a value randomly chosen from

the uniform unit interval (0, 1).
7. If τ ′ < τ ′′, then set τ = τ ′ and flag = 2, else set τ = τ ′′ and flag = 3.
8. Receive the smallest τ of the system: τmin.
9. If flag = 1 and τ = τmin, extract one reaction to execute.

10. If flag = 1 and τ > τmin, set τ = τ − τmin.
11. If flag = 2:

– For all critical reactions Rj , set the number of firings kj = 0.
– For all noncritical reactions Rj , generate kj as a sample of the Poisson

random variable P (aj(x), τmin) with mean aj(x)τmin.
12. If flag = 3:

– Select one critical reaction Rj to be fired during this step and set kj = 1,
for all other critical reactions Rj set kj = 0.

– For all noncritical reactions Rj , generate kj as a sample of the Poisson
random variable P (aj(x), τmin) with mean aj(x)τmin.

13. Send and receive objects to and from other membranes (if communication
rules were selected).

14. If flag = 1 and τ > τmin and no objects are received, go to step 8, otherwise
go to the next step.

15. Update the state of the system: X(t+τmin) = X(t)+
∑

j∈J kj ·vj , and check
the termination condition t < tmax.

The procedure begins like the pure τ leaping method, that is, the same τ
selection is executed (from step 1 to step 7).

After receiving the smallest τ , during step 8, the procedure has to check how
the membrane will evolve.

Hence, during step 9, if flag = 1 and the internal τ is the smallest of
the system, a single rule is applied during the actual iteration (evolving like
SSA).

Otherwise (step 10), if flag = 1 and the internal τ is greater than the small-
est τ of the system, then the value of the local τ is decreased by τmin and
no rule is executed. This is necessary because during τmin is not possible to
completely execute the rule selected with the SSA, since it would need τ to be
executed.

If flag = 2 or flag = 3, the algorithm selects the rules to fire as a sample of
the Poisson random variable P (aj(x), τmin) with mean aj(x)τmin.

310 P. Cazzaniga et al.

All the communication rules are applied during step 13, sending and receiving
objects to and from other membranes.

Step 14 is an operation executed, inside a membrane evolving in a SSA manner
without applying any reaction, to check if any object has been received. In the
positive case a new value of τ will be computed during the next iteration because,
although no reactions will be executed, the state of the membrane changes due
to the received objects. Otherwise, when no object has been received, in the next
iteration the execution of the algorithm inside this membrane jumps directly to
step 8 of the algorithm.

Finally, step 15 updates the state of the system and check if the actual sys-
tem time t exceeds the prescribed simulation time tmax. If the condition holds,
terminate the execution, otherwise go to step 1.

3.3 A Test Case

To test the new algorithm presented in the previous section, we have imple-
mented the consecutive reactions systems (11) with τ -DPPs. It is possible to
test the communication (here considered as instantaneous) between membranes,
and check the new τ selection procedure modeling the system by means of two
volumes and putting one rule in each volume. We label the membranes with 1
and 2, and then we put rule A → (B, in2) inside volume 1 and B → (C, in1)
inside volume 2.

Figure 3 shows that the τ leaping and the τ -DPPs simulations have similar
behavior. This benchmark shows that our algorithm is correct and reliable.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80

In
di

vi
du

al
s

Time [s]

A

B

C

tau DPPs
tau leaping

Fig. 3. Comparison between Gillespie’s τ leaping and DPPs τ leaping

Tau Leaping Stochastic Simulation Method in P Systems 311

4 Conclusions

In this paper we have shown how the stochastic method based on the τ leap-
ing procedure can be implemented within the framework of P systems, for the
simulation of complex biological systems. In particular, we have considered the
class of dynamical probabilistic P systems, to exploit the possibility of modeling
systems composed by several volumes and of probing different levels of parallel
rule application.

The new τ selection procedure here introduced works by selecting the smallest
τ taken from the set of taus generated inside the membranes during the current
iteration; then, an evolution step is performed executing several rules, which are
selected following the procedure presented in Section 3.

The advantage of introducing τ leaping method inside DPPs is that we can
choose the same leap of length τ for all the volumes, we can communicate objects
in the right way (assuming that they are sent to the other volumes just at the
end of each step, because the execution order does not matter), thus obtaining
a good approximation of the system’s behavior. An important aspect is that we
can trace the simulated time of the whole system, since every membrane evolves
according to the chosen common τ value. Moreover, the time needed to run the
simulation with the new procedure is shorter than the time needed by the SSA.
In Section 3.3 the communication and the new τ leap procedures are tested,
comparing the behavior of a simple system implemented both with the single
volume model and with the multi-volume model.

Effective and promising results [16,15] have been obtained with the appli-
cation of τ -DPPs for the stochastic simulations of Ras/cAMP/PKA signalling
pathway (in response to glucose addition and intracellular acidification) in Sac-
charomyces cerevisiae [19]. Current applications of τ -DPPs are also addressing
the investigation of Repressilator systems [10].

The approach proposed in this paper opens several interesting research lines,
ranging from the modeling of real cellular processes or complex biological sys-
tems in general, to the algorithmic improvements of the procedure, and the
development of other relevant (modelling and simulating) features in the area of
Membrane Computing.

References

1. A. Arkin, J. Ross, and H.H. McAdams. Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics,
149:1633–1648, 1998.

2. D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Modelling metapopulations
with stochastic membrane systems. Submitted.

3. W.J. Blake, M. Kærn, C.R. Cantor, and J.J. Collins. Noise in eukaryotic gene
expression. Nature, 422:633–637, 2003.

4. Y. Cao, D.T. Gillespie, and L.R. Petzold. Avoiding negative populations in explicit
Poisson tau-leaping. Journ. Chem. Phys., 123:054104, 2005.

312 P. Cazzaniga et al.

5. Y. Cao, D.T. Gillespie, and L.R. Petzold. Efficient step size selection for the tau-
leaping simulation method. Journ. Chem. Phys., 124:044109, 2006.

6. P. Cazzaniga, D. Pescini, F.J. Romero-Campero, D. Besozzi, and G. Mauri.
Stochastic approaches in P systems for simulating biological systems. In M.A.
Gutiérrez-Naranjo, G. Păun, A. Riscos-Núnez, and F.J. Romero-Campero, Eds.,
Proceedings of the Fourth Brainstorming Week on Membrane Computing, RGNC
REPORT 02/2006, 145–164. Fénix Editora, 2006.

7. A. Chatterjee, D.G. Vlachos, and M.A. Katsoulakis. Binomial distribution based
tau-leap accelerated stochastic simulation. Journ. Chem. Phys., 122:024112, 2005.

8. G. Ciobanu, G. Păun, and M.J. Pérez-Jiménez, Eds., Applications of Membrane
Computing. Springer–Verlag, Berlin, 2005.

9. N. Fedoroff and W. Fontana. Small numbers of big molecules. Science, 297:1129–
1131, 2002.

10. J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz. Modeling a synthetic multi-
cellular clock: Repressilators coupled by quorum sensing. PNAS, 101:10955–10960,
2004.

11. M. Gibbons and J. Bruck. Chemical systems with many species and many channels,
Journ. Phys. Chem., 104:1876–1889, 2000.

12. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journ.
Phys. Chem., 81:2340–2361, 1977.

13. D.T. Gillespie and L.R. Petzold. Approximate accelerated stochastic simulation of
chemically reacting systems. Journ. Chem. Phys., 115:1716–1733, 2001.

14. D.T. Gillespie and L.R. Petzold. Improved leap-size selection for accelerated
stochastic simulation. Journ. Chem. Phys., 119:8229–8234, 2003.

15. E. Martegani, R. Tisi, F. Belotti, S. Colombo, C. Paiardi, J. Winderickx, P. Caz-
zaniga, D. Besozzi, and G. Mauri. Identification of an intracellular signalling com-
plex for RAS/cAMP pathway in yeast: experimntal evidences and modelling. In-
ternational Specialised Symposium on Yeasts, Hanasaari - Espoo, Finland, June
18-21, 2006.

16. E. Martegani, P. Cazzaniga, D. Besozzi, S. Colombo and G. Mauri. Stochastic
modeling of the Ras/cAMP signal transduction pathway in yeast. Computational
Methods in Systems Biology, Trento, Italy, October 18-19, 2006.

17. T.C. Meng, S. Somani, and P. Dhar. Modeling and simulation of biological systems
with stochasticity. In Silico Biology, 4:0024, 2004.

18. C.J. Morton-Firth. Stochastic simulation of cell signaling pathways. PhD thesis,
University of Cambridge, Cambridge, UK, 1998.

19. D. Müller, S. Exler, L. Aguilera-Vázquez, E. Guerrero-Mart́ın, and M. Reuss.
Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccha-
romyces cerevisiae. Yeast, 20:351–367, 2003.

20. G. Păun. Computing with membranes. J. Comput. Syst. Sci., 61:108–143, 2000.
21. G. Păun. Membrane Computing. An Introduction. Springer–Verlag, 2002. Berlin.
22. D. Pescini, D. Besozzi, and G. Mauri. Investigating local evolutions in dynami-

cal probabilistic P systems. Proceedings of Seventh International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05). IEEE
Computer Press, 440–447, 2005.

23. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Analysis and simulation of
dynamics in probabilistic P systems. In A. Carbone, N. Pierce, Eds., DNA Com-
puting, 11th International Workshop on DNA Computing, DNA11, London, ON,
Canada, June 6-9, 2005. LNCS 3892, 236–247, Springer–Verlag, 2006.

Tau Leaping Stochastic Simulation Method in P Systems 313

24. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17:183–204,
2006.

25. T. Tian and K. Burrage. Binomial leap methods for simulating stochastic chemical
kinetics. Journ. Chem. Phys., 121:10356–10364, 2004.

26. T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in
vivo reactions. Computational Biology and Chemistry, 28:165–178, 2004.

P Machines: An Automata Approach to
Membrane Computing�

Gabriel Ciobanu1,2 and Mihai Gontineac1,3

1 Romanian Academy, Institute of Computer Science
Blvd. Carol I nr.8, 700505 Iaşi, Romania

2 “A.I.Cuza” University, Faculty of Computer Science
3 “A.I.Cuza” University, Faculty of Mathematics

Blvd. Carol I nr.11, 700506 Iaşi, Romania
gabriel@info.uaic.ro, gonti@uaic.ro

Abstract. In this paper we present P machines corresponding to mem-
brane systems with a single membrane. We give examples of simple P
machines for both P systems with promoters and P systems with priori-
ties. For each case we get the same results for both P machines and their
corresponding P systems. We present a way of connecting simple P ma-
chines, and give an example how the new resulting network corresponds
to P systems with more than one membrane.

1 Introduction

Membrane systems (called also P systems) represent a new abstract model of
parallel and distributed computing inspired by cell compartments and molecular
membranes [10]. A cell is divided in various compartments, each compartment
with a specific task, and all of them working simultaneously to accomplish a
more general task of the whole system. The membranes of a P system determine
regions where objects and evolution rules can be placed. The objects evolve
according to the rules associated with each region, and the regions cooperate
in order to maintain the proper behavior of the whole system. It is desirable
to find good connections with various fields of computer science, including the
well-known automata theory. There exist some previous attempts [8,6,9,1] in this
direction: [8] and [9] present P automata, namely devices which works mainly
with communication rules; [6] presents a P transducer as a form of Mealy mem-
brane automata, but the dynamical aspects are not clearly described; in [1] we
find a preliminary study of the dynamics of P systems, and the open problems
listed at the end of this paper also motivate our attempt. We have to men-
tion here the existence of some devices working with multisets, namely multiset
automata introduced in [7]. All these models are non-compositional.

In [4] we have introduced two versions of Mealy automata, namely Mealy
multiset automata, and elementary Mealy membrane automata. We define here
an improved version of the elementary Mealy membrane automaton named sim-
ple P machine by extending the communication capabilities. We provide some
� This work has been supported by the research grant CNCSIS 1426.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 314–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

P Machines: An Automata Approach to Membrane Computing 315

examples on how we can use these P machines to describe various features of a
membrane system.

2 Mealy Multiset Automata

In order to provide a suitable model for the rules of a membrane, we need the
notion of Mealy multiset automata (MmA). Roughly speaking, a MmA consists
of a storage location (a box for short) in which we place a multiset over an input
alphabet, and a device to translate the input multiset into a multiset over an
output alphabet. The way in which a MmA works is described in steps. We have
a detection head which detects whether or not a given multiset appears in the
input multiset available in the box. If the multiset is detected, then it is removed
from the box, and the automaton inserts a multiset over the output alphabet (or
a marked symbol if the output alphabet is the same) which cannot be viewed by
the detection head. Our automaton stops when no further translation is possible.
We say that the submultiset read by the head was translated to a multiset over
the output alphabet. We give here only the definitions and the properties which
we need for defining the P machines. For more details see [4,5].

Formally, a Mealy multiset automaton A = (Q, V,O, f, g, q0) is defined by

– a finite set Q of states ;
– a special state q0 ∈ Q which is both initial and final;
– a finite set V of objects representing the input alphabet ;
– a finite set O of objects representing the output alphabet, and O ∩ V = ∅;
– a state-transition (partial) mapping f : Q× N 〈V 〉 → P(Q);
– an output (partial) mapping g : Q× N 〈V 〉 → P(N 〈O〉).
If |f(q, a)| ≤ 1 we say that A is Q-deterministic, and if |g(q, a)| ≤ 1 we say

that A is O-deterministic.
A MmA is endowed with a box where it receives a multiset. After that, it

begins to process this multiset over V passing through different configurations.
It starts with a multiset from N 〈V 〉, and ends with a multiset from N 〈V ∪O〉.
A configuration of A is a triple (q, α, β̄) where q ∈ Q, α∈ N 〈V 〉, β̄∈ N 〈O〉. We
say that a configuration (q, α, β̄) passes to (s, α − a, β̄ + b̄) or that we have a
transition between these configurations, if there is a ⊆ α such that s ∈ f(q, a)
and b̄ ∈ g(q, a). We denote this by (q, α, β̄) � (s, α − a, β̄ + b̄). We denote by �∗

the reflexive and transitive closure of �.
We can alternatively define a configuration to be a pair (q, α) where α ∈

N 〈V ∪O〉, and the transition relation is (q, α) � (s, α − a + b̄), with the same
conditions as above.

A multiset α∈ N 〈V 〉 is said to be a totally consumed multiset (tc-multiset) for
A if, starting from a configuration (q0, α, ε), the MmA can pass through config-
urations until it arrives in a configuration (q0, ε, β̄) (i.e., there exists (q0, α, ε) �∗

(q0, ε, β̄)).
A multiset α∈ N 〈V 〉 is said to be a consumed multiset (c-multiset) for A if,

starting from a configuration (q0, α, ε), the MmA can pass through configurations
until it arrives in a configuration (q, ε, β̄) (i.e., there exists (q0, α, ε) �∗ (q, ε, β̄)).

316 G. Ciobanu and M. Gontineac

In both these cases, we say also that α was entirely translated to β̄. In all the
other situations we say that α∈ N 〈V 〉 is partially consumed (pc-multiset), or it
is partially translated.

For the categorical properties of MmA’s, as well as MmA’s behavior and bisim-
ulation relation, we refer to [4,5]; in [5] we present some coalgebraic properties
of Mealy multiset automata).

2.1 Restricted Direct Product of Mealy Multiset Automata

Let Ai = (Qi, V, O, fi, gi) be a finite family of Mealy multiset automata, and Bi

their corresponding boxes (i = 1, n). We can connect them in parallel in order
to obtain a new MmA defined by A =

∧n
i=1 Ai = (×n

i=1Qi, V, O, f, g), called the
restricted direct product of Ai, where:

– f((q1, q2, . . . , qn), a) = (f1(q1, a), f2(q2, a), . . . , fn(qn, a));
– g((q1, q2, . . . , qn), a) = (g1(q1, a), g2(q2, a), . . . , gn(qn, a));
– the box B of A is the disjoint union

⊔n
i=1 Bi of Bi, i = 1, n;

– a configuration of A is a triple (q, α, β̄), where q = (q1, q2, . . . , qn), α =
(α1, α2, . . . , αn), and β̄ = (β̄1, β̄2, . . . , β̄n);

– the (asynchronous) transition relation of A is given by (q, α, β̄) � (s, α −
a, β̄ + b̄) if and only if there is at least an i ∈ 1, n such that si ∈ fi(qi, ai)
and b̄i ∈ gi(qi, ai).

The asynchronous nature of the transition is closer to biology: “The biological
systems are massively concurrent, heterogeneous, and asynchronous” [3].

3 Simple P Machines

The previous automata-like approaches for P systems are based on “top-down”
communication rules, and the “maximal parallel and nondeterministic” way of
applying the rules is more or less visible. We present a new automata-like systems
such that every membrane is able to evolve and communicate. While the parallel
part is given by the way we connect various MmA’s, the “maximality” and the
“nondeterministic” aspects are ensured by a “smart” device that is formalized
by a control resource mapping. The control resource mapping (CRM) is used in
both computing with priorities and computing with promoters. The advantages of
such an approach come from the fact that we proceed bottom-up, i.e., we start
from a single membrane, then we indicate how we connect single membranes
such that these devices can model P systems, as well as tissue-like P systems.

Generally speaking a simple P machine (shortly sPM) is built from:

– a resource box B together with a control resource mapping CRM ;
– n Mealy multiset automata, connected in parallel. They consume and trans-

late tc-multisets from their boxes (allocated by CRM) into marked multisets
over the same alphabet. We use marked multisets for the output because the
input alphabet and the output one must be disjoint; the marking also shows
us where the corresponding multiset must go (i.e., all marks belong to a set
of targets).

P Machines: An Automata Approach to Membrane Computing 317

Attached to such a machine we have a distribution map denoted by DM . A DM
is involved in refreshing the content of the resource box, and in communication
with other P machines. We define a cascade product of a P machine with itself
in order to go to the next computation step of the P system.

Definition 1. A simple P machine is given by M = (V,
∧n

i=1 Ai, O,B,CRM),
where:

– V = {a1, a2, . . . , am} is an input alphabet;
– Ai = (Qi, V, Oi, fi, gi) are MmA’s connected in parallel;
– O is an output alphabet O =

⋃n
i=1 Oi defined by the output alphabets Oi =

V × Ti, where target sets Ti indicate the indexes of the simple P machines
connected to M; whenever we consider only an isolated simple P machine,
then Ti = {0} for all i = 1, . . . , n;

– B is the box where M receives a multiset for processing;
– CRM : N 〈V 〉 → P(N 〈V 〉n+1) is the control resource mapping; this map

assigns the resources available in B to the bags of the A′
is. It has one supple-

mentary component indicating the multiset unassigned (the remaining mul-
tiset). So if w = w1a1 + w2a2 + · · · + wmam ∈ N 〈V 〉 is the input multiset,
CRM(w) is of the form (l1x1, l2x2, . . . , lnxn, w

′), where
∑n

i=1 lixi +w′ = w
and xi are tc-multisets of Ai.

We have a distribution mapping DM attached to a simple P machine. It plays
the role of an interface. DM is defined on N 〈V 〉 ∪

⋃n
i=1 N 〈Oi〉, and takes val-

ues in (N 〈V 〉)T , where T =
⋃n

i=1 Ti. DM removes the target component of a
multiset, and puts that multiset in the box of the corresponding P machine.
A step of computation starts with an input multiset, followed by a repartition
made by CRM , a translation made by the parallel MmA’s (i.e.,

∧n
i=1 Ai), and

a distribution done by DM . The distribution conditions satisfied by CRM(w)
can define various features of a simple P machine.

Maximal Parallel and Nondeterministic sPM

Given a simple P machine M = (V,
∧n

i=1 Ai, O,B,CRM), we define the control
resource mapping CRM : N 〈V 〉 → P(N 〈V 〉n+1) such that this map assigns the
resources available in B to the bags of the A′

is in a maximal parallel and non-
deterministic way. If w = w1a1 + w2a2 + · · · + wmam =

∑m
j=1 wjaj ∈ N 〈V 〉 is

the input multiset, then CRM(w) is of the form (l1x1, l2x2, . . . , lnxn, w
′) where∑n

i=1 lixi + w′ = w, xi are tc-multisets of Ai and xi � w′, for all i = 1, n.
In this way we model the maximal parallel feature, because the multiset which
remains unprocessed in the box is minimal (does not contain any submulti-
set that can be processed by a MmA from the direct product). The nonde-
terminism feature is given by the fact that CRM(w) can take any value from
{(l1x1, l2x2, . . . , lnxn, w

′) |
∑n

i=1 lixi + w′ = w, xi is a tc-multiset of Ai, xi �
w′, i = 1, n}. Due to the competition on resources, li can take any value between
0 and max{l ∈ N | lxi ⊆ w}. xi belong to N 〈V 〉, and so it can be written as a
linear combination of ai’s, namely xi =

∑m
j=1 αijaj , αij ∈ N. Hence

∑n
i=1 lixi =

318 G. Ciobanu and M. Gontineac∑n
i=1(

∑m
j=1 liαijaj) ⊆ w, and so

∑m
j=1(

∑n
i=1 liαij)aj ⊆

∑m
j=1 wjaj . This means

that for all j = 1, . . . ,m we have
∑n

i=1 liαij ≤ wj .

Lemma 1. (l1, l2, . . . , ln) is a solution of the following system:

n∑
i=1

l′iαij ≤ wj , j = 1,m.

In order to obtain a compact writing, we can use the following method of finding
the coefficients l1, l2, . . . , ln for CRM(w) taken from linear algebra:

1. We use a vector W = (w1, w2, . . . , wm), and the matrix of the tc-multisets
of the restricted direct product

∧n
i=1 Ai, A = (αij)n×m

2. We find the set of admissible solutions, i.e., the solutions of the system
L′A ≤ W , where L′ = (l′1, l′2, . . . , l′n). Let La be this set; obviously it is not
empty, since (0, 0, . . . , 0) ∈ La.

3. Choose one L ∈ La, and then calculate W − LA;

Theorem 1. An admissible solution L = (l1, l2, . . . , ln) is an optimal one (i.e.,
the simple P machine is working in a maximal parallel way) if and only if every

line of matrix ML =

⎛⎝W − LA
. . .

W − LA

⎞⎠
n×m

−A has at least a negative element.

Proof. If (l1, l2, . . . , ln) is a solution, it must satisfy the maximality condition,
i.e., for all xk, xk � w′ = w −

∑n
i=1 lixi. It follows that for all k = 1, n, xk �∑m

j=1 wjaj −
∑n

i=1 lixi iff
∑m

j=1 αkjaj �
∑m

j=1 wjaj −
∑n

i=1(
∑m

j=1 liαijaj) =∑m
j=1(wj −

∑n
i=1 liαij)aj . Thus, if (l1, l2, . . . , ln) is an optimal solution for all

xk, k = 1, n, then there is a jk ∈ 1,m such that αkjk
> wjk

−
∑n

i=1 liαijk
, i.e.,

wjk
−
∑n

i=1 liαijk
− αkjk

< 0. This means that every line of matrix ML has at
least a negative element. ��

Maximal Consuming and Nondeterministic sPM

We refer here to a maximal consuming P system, namely a maximal parallel P
system which consumes the largest number of resources among all the possibili-
ties. Considering a simple P machine M = (V,

∧n
i=1 Ai, O,B,CRM), the maxi-

mal parallelism and nondeterminism is given by CRM(w) ∈ {(l1x1, l2x2, . . . , ln
xn, w′) |

∑n
i=1 lixi + w′ = w, xi is a tc-multiset of Ai, xi � w′, i = 1, n}.

Due to the competition on resources, li can take any value between 0 and
max{l ∈ N | lxi ⊆ w}. xi belong to N 〈V 〉, so it can be written as a linear
combination of ai, namely xi =

∑m
j=1 αijaj, αij ∈ N. Hence lixi =

∑m
j=1 liαijaj .

Since lixi ⊆ w =
∑m

j=1 wjaj, we obtain that liαij ≤ wj for all j = 1, . . . ,m. The
difference with respect to a maximal parallel approach is given by an additional
objective function Φ : Nn → N 〈V 〉 given by Φ(l′1, l

′
2, . . . , l

′
n) =

∑n
i=1 l′ixi.

Theorem 2. A simple P machine is working in a maximal consuming and non-
deterministic way if and only if for any given input multiset w, the coefficients
li of CRM(w) are solutions of the following problem of integer programming:

P Machines: An Automata Approach to Membrane Computing 319⎧⎪⎨⎪⎩
∑n

i=1 l′iαij ≤ wj j = 1,m
l′i ≥ 0 i = 1, n

max Φ(l′1, l
′
2, . . . , l

′
n)

.

Example 1. We give here a simple example.

M = ({a, b, c},
2∧

i=1

Ai, {(a, 0), (b, 0), (c, 0)}, B, CRM),

with TC(A1) = {n(a + b)|n ∈ N}, TC(A2) = {n(a + c) | n ∈ N}. A1 translates
l(a+b) into l(c, 0), and A2 translates l(a+c) into l(b, 0). Let us consider the input
multiset w = 3a+2b+2c. Then CRM(w) ∈ {(2(a+b), a+c, c), (a+b, 2(a+c), b)}.
Simple calculations lead us to the output of the machine which can be either
(b, 0) + 3(c, 0) or 3(b, 0) + (c, 0).

Simple P Machines with Promoters

In P machines with promoters, some of the objects of the input alphabet of
arbitrary Ai are special elements called promoters. Only their presence in the
resource box allows the corresponding Ai to receive the related resources in its
input bag. If V = {a1, a2, . . . , am}, we consider that the last m− p elements are
promoters, and denote their set by P , i.e., P = {ap+1, ap+2, . . . , am}. We denote
by Pi the set of promoters of Ai; it can be empty if Ai has not promoters.

Let w = w1a1 + w2a2 + · · · + wmam ∈ N 〈V 〉 the input multiset of the sPM
M = (V,

∧n
i=1 Ai, O,B,CRM) with promoters in P. If Pi = {ai1 , ai2 , . . . , ait},

then Ai can receive from CRM an input multiset in its bag if and only if
wi1 , wi2 , . . . , wit are all different from 0, i.e.,

∏t
s=1 wis 	= 0. As usual, we have

that CRM(w) ∈ {(l1x1, l2x2, . . . , lnxn, w
′) |
∑n

i=1 lixi + w′ = w}. An approach
similar to the previous subsections leads us to the following result:

Proposition 1. Ai receives an input multiset in its bag iff (�)
∏

ais∈Pi
wis 	= 0.

Moreover, the coefficients of the tc-multisets for all the A′
is which satisfy the

previous condition (�) are obtained as solutions of the system:∑
i∈I

l′iαij ≤ wj , j = 1,m,

where we denote by I ⊆ {1, 2, . . . , n} the set of indices of specific A′
is where the

condition (�) is satisfied.

Simple P Machines with Priorities

Let M = (V,
∧n

i=1 Ai, O,B,CRM) be a simple P machine. We consider a partial
priority order relation over the set of the Mealy multiset automata that are part
of M, and we denote this priority order by ” ≤ ”. The possible values of CRM
for an input multiset w =

∑m
j=1 wjaj are more difficult to be obtained, at least

from the formal point of view. We define a relation of immediate precedence:
Ai4Aj if Ai≤Ajand there is no Ak such that Ai < Ak < Aj .

320 G. Ciobanu and M. Gontineac

This relation defines some levels of precedence given by a partition of the set
{1, 2, . . . , n} of MmA’s indices. The levels of precedence are defined by:

level 0: L0 contains the indices of the MmA’s which have no predecessor
. . .
level (s + 1): Ls+1 = {j ∈ 1,m | (∃)rj ∈ Ls such that Arj ≺ Aj}
. . .

Suppose now that L0,L1, . . . ,Lt are the levels of precedence. As in the nondeter-
ministic and maximal parallel case, we denote by A = (αij)n×m the matrix of the
tc-multisets of the restricted direct product

∧n
i=1 Ai. With respect to the levels

of precedence, we denote by As the matrix obtained from A by erasing all its lines
which do not have indexes from Ls. We apply a similar procedure for the un-
known coefficients, denoting by L′

s the vector obtained from L′ = (l′1, l
′
2, . . . , l

′
n)

by removing the components which have not indexes from Ls. We obtain the
possible values for CRM(w) by solving the following set of problems:

Level L0

Step 0.1. Find the set of admissible solutions for level L0, i.e., the solutions
of the system L′

0A0 ≤ W . Let La
0 be this set (obviously it is non-empty because

(0, 0, . . . , 0) ∈ La
0).

Step 0.2. For all L0 ∈ La
0 , calculate W − L0A0, and then consider a matrix

ML0 =

⎛⎝W − L0A0
. . .

W − L0A0

⎞⎠−A0.

Step 0.3. If every line of ML0 contains at least a negative element, the cor-
responding admissible solution L0 is an optimal one, and so it can be chosen.
We have a nondeterministic choice, since it can have several optimal solutions.
Let w0 = w −

∑
i∈L0

lixi such that w0 =
∑m

j=1 w0
jaj . We denote by W 0 its

corresponding vector.

Level L1

Step 1.1. Find the set of admissible solutions for level L1, i.e., the solutions
of the system L′

1A1 ≤ W 0. Let La
1 be this set (obviously it is non-empty because

(0, 0, . . . , 0) ∈ La
1).

Step 1.2. For all L1 ∈ La
1 , calculate W 0 −L1A1, and then consider a matrix

ML1 =

⎛⎝W 0 − L1A1
. . .

W 0 − L1A1

⎞⎠−A1.

Step 1.3. If every line of ML1 contains at least a negative element, the cor-
responding admissible solution L1 is an optimal one, and so it can be chosen.
We have a nondeterministic choice, since it can have several optimal solutions.
Let w1 = w0 −

∑
i∈L1

lixi such that w1 =
∑m

j=1 w1
jaj . We denote by W 1 its

corresponding vector.
. . .

Suppose that we have {li, i ∈ Lr}, wr = wr−1 −
∑

i∈Lr
lixi, wr =

∑m
j=1 wr

jaj ,
and we denote by W r its corresponding vector.

P Machines: An Automata Approach to Membrane Computing 321

Level Lr:
Step r.1. Find the set of admissible solutions for level Lr+1, i.e., the solutions

of the system L′
r+1Ar+1 ≤ W r. Let La

r+1 be this set (obviously it is non-empty
because (0, 0, . . . , 0) ∈ La

r+1).
Step r.2. For all Lr+1 ∈ La

r+1, calculate W r − Lr+1Ar+1, and then consider

the matrix MLr+1 =

⎛⎝W r − Lr+1Ar+1
. . .

W r − Lr+1Ar+1

⎞⎠−Ar+1.

Step r.3. If every line of MLr+1 contains at least a negative element, the
corresponding admissible solution Lr+1 is an optimal one, and so it can be
chosen.

Solving the existing levels of precedence, we get the possible values of CRM(w).

4 Examples of Simple P Machines

We describe first how priorities and promoters are useful in defining arithmetical
operations in membrane systems. After each example we provide the simple P
machine describing the corresponding membrane systems.

4.1 Control Mechanisms in P Systems

In P systems several mechanisms allow to control the computation. In general
the objects and the rules governing the computation are chosen in a nonde-
terministic way. Moreover, this choice is exhaustive in the sense that no rule
can be further applied in the same evolution step: this is the maximal parallel
rewriting. A global clock is assumed, that is the same clock for all the regions
of a membrane system. At each tick of this clock, a current configuration of the
system is transformed into another one, and so defining a transition between the
configurations of the system. A sequence of transitions is called a computation.
A computation is halting if it reaches a halting configuration, one where no rules
are applicable at all.

We have various control mechanisms in membrane systems. They are inspired
by some biological entities. For instance, we have catalysts representing objects
which appear on both left-hand and right-hand sides of a rule. The catalysts
directly participate in rules (but are not modified by them), and they are counted
as any other object such that the number of applications of a rule involving a
catalyst is as large as the number of copies of the catalyst. They can be used to
apply a certain rule in a sequential way, increasing the control of using the rule.
Another controlling mechanism is given by activators, a formal representation
of enzymes. An activator is related to a rule. The rules need activators to be
applied, so the parallelism of each rule is limited to the number of its activators.
The activators can evolve in the same step (this is not possible for catalysts).

Here we refer mainly to control mechanisms defined over sets of rules rather
than individual rules; such mechanisms are given by priorities and promoters. A
priority relation among rules means that in each region we have a partial order

322 G. Ciobanu and M. Gontineac

relation on the set of rules, and a rule can be chosen (to process a multiset of
objects) only if no rule of a higher priority is applicable in the same region. Pro-
moters and inhibitors formalize the reaction enhancing and reaction prohibiting
roles of various substances (molecules) present in cells. In membrane systems,
promoters and inhibitors are represented as multisets of objects associated with
given sets of rules. A rule from such a set of a given region can be used only
if all the promoting objects are present, and all the inhibiting objects are not
present in that region. From the generative point of view, there is a symmetry
between the two ideas: systems with promoters are equal in power to systems
with inhibitors, and they characterize the recursively enumerable sets of natural
numbers. Membrane systems with promoters/inhibitors achieve universal com-
putations in a simpler way. From a technical point of view, it is much easier to
work with promoters. The systems become simpler; if we have enough promoters,
then systems with only one membrane are already universal.

Regarding the difference between promoters and catalysts, we can say that the
catalysts directly participate in rules, and they are counted as objects required
by rules, and the number of rule application in parallel is as large as the number
of catalysts. In the case of promoters, the presence of only one promoter makes it
possible to use a rule involving that promoter as many times as possible, without
any restriction.

4.2 Membrane Systems and Their Corresponding sPM

We present some examples of P systems implementing arithmetic operations on
numbers represented by the numbers of objects. In these examples we use prior-
ities and promoters as control mechanisms in membrane computing, presenting
membrane systems with priorities and promoters for multiplication. Other arith-
metical operations on numbers represented by using unary and binary compact
encodings are presented in [2].

Multiplication with promoters: Figure 1 presents a P system Π1 with pro-
moters for multiplication of n (objects a) by m (objects b), the result being the
number of objects d in membrane 0. The object a is a promoter in the rule
b → bd|a, i.e., this rule can only be applied in the presence of object a. The
available m objects b are used in order to apply m times the rule b → bd|a in
parallel; based on the availability of a objects the rule au → u where u is a cat-
alyst is applied in the same time and consumes an a. The procedure is repeated
until no object a is present within the membrane. Note that each time when one
object a is consumed, then m objects d are generated.

Π1 = (V, μ, w0, R0, 0),
V = {a, b, d, u}, μ = [0]0, w0 = anbmu,

R0 = {r1 : b → bd|a, r2 : au → u}.

We describe now a simple P machine computing the multiplication presented
by the previous P systems. We have only one membrane, and we denote it

P Machines: An Automata Approach to Membrane Computing 323

Fig. 1. Multiplication with promoters

with 0; therefore the target can be only 0. M = (V,A1
∧
A2, O,B,CRM)

with the input alphabet is V = {a, b, c, d, u} and the output alphabet is O =
{(a, 0), (b, 0), (c, 0), (d, 0), (u, 0)}.

A1 translates b into (b, 0) + (d, 0), A2 translates a + u into (u, 0).
CRM is defined as

CRM(k1a + k2b + k3u + k4d) = (l1b, l2(a + u), w′), where
l1b + l2(a + u) + w′ = k1a + k2b + k3 + k4d, and

l1 =
{

k2 if k1 	= 0
0 if k1 = 0 , l2 = min{k1, k3}.

The distribution mapping is defined by
DM(l1((d, 0) + (b, 0)) + l2(u, 0)) = w′ + l1b + l1d + l2u,
where w′ is the content of B before applying the resource distribution.

Proposition 2. M computes the product of two positive integers.

Proof. We insert initially na+mb+u in the resource box. We have the following
sequence of computations:

na + mb + 1u =⇒CRM (mb, a + u, (n− 1)a) =⇒A1
∧ A2

(m((b, 0) + (d, 0)), (u, 0), (n− 1)a) =⇒DM (n− 1)a + mb + u + md =⇒CRM

(mb, a + u, (n− 2)a + md) =⇒A1
∧ A2

(m((b, 0) + (d, 0)), (u, 0), (n− 2)a + md) =⇒DM (n− 2)a + mb + u + 2md
. . .
=⇒CRM (mb, a + u, a + (n− 2)md) =⇒A1

∧ A2

(m((b, 0) + (d, 0)), (u, 0), a + (n− 2)md) =⇒DM a + mb + u + (n− 1)md
=⇒CRM (mb, a + u, (n− 1)md) =⇒A1

∧ A2

(m((b, 0) + (d, 0)), (u, 0), (n− 1)d) =⇒DM mb + u + nmd. ��

Multiplication with priorities: Figure 2 presents a membrane system Π2
with priorities for multiplication of n (objects a) by m (objects b), the result
being the number of objects d in membrane 0.

Π2 = (V, μ, w0, (R0, ρ0), 0),
V = {a, b, d, e, u, v}, μ = [0]0, w0 = anbmu,

R0 = {r1 : bv → dev, r2 : av → u, r3 : eu → dbu, r4 : au → v},
ρ0 = {r1 > r2, r3 > r4}.

324 G. Ciobanu and M. Gontineac

Fig. 2. Multiplication with priorities

We use the priority relation between rules; for instance bv → dev has a higher
priority than av → u, meaning the second rule is applied only when the first
one cannot be applied anymore. Initially only the rule au → v can be applied,
generating a catalyst v which activates m times the rule bv → dev. Then av → u
consumes an a, and transform the catalyst v into a catalyst u. Now eu → dbu is
applied m times, followed by another change of catalyst u into a catalyst v by
consuming an a (this is done by the rule au → v). The procedure is repeated
until no object a is present within the membrane. It is easy to note that each
time when one object a is consumed, then m objects d are generated.

We describe now a simple P machine that does the same job. We have only
one membrane denoted by 0, and the target can be only 0. We have M =
(V,
∧4

i=1 Ai, O,B,CRM), where the alphabets are V = {a, b, c, d, e, u, v} and
O = {(a, 0), (b, 0), (c, 0), (d, 0), (e, 0), (u, 0), (v, 0)}.

A1 translates e+ u into (d, 0) + (b, 0)+ (u, 0), A2 translates a+ u into (v, 0),
A3 translates b+ v into (d, 0)+(e, 0)+(v, 0), and A4 translates a+ v into (u, 0).
CRM is defined as CRM(k1a + k2b + k3d + k4e + k5u + k6v)=

=(l1(e + u), l2(a + u), l3(b + v), l4(a + v), w′), where
l1(e+u)+l2(a+u)+l3(b+v)+l4(a+v)+w′ = k1a+k2b+k3c+k4d+k5e+k6f ,

and
l1 = min{k4, k5},

l2 =
{

0 l1 	= 0
min{k1, k5} l1 = 0 ,

l3 = min{k2, k6},

l4 =
{

0 l3 	= 0
min{k1, k6} l3 = 0 .

The distribution mapping is defined by
DM(l1((d, 0)+(b, 0)+(u, 0))+ l2(v, 0)+ l3((d, 0)+(e, 0)+(v, 0))+ l4(u, 0)) =
= w′ + l1b + (l1 + l3)d + l3e + (l1 + l4)u + (l2 + l3)v,

where w′ is the content of B before applying the distribution mapping.

Proposition 3. M can compute the product of two positive integers

Proof. We insert initially na + mb + u = na + mb + 0d + 0e + 1u + 0v in the
resource box; the result is obtained as the coefficient of d. We have the following
sequence of computations.

P Machines: An Automata Approach to Membrane Computing 325

Step 1
We consume first one a and one u to produce one v:

na + mb + u = na + mb + 0d + 0e + 1u + 0v =⇒CRM

(0, a + u, 0, 0, (n− 1)a + mb) =⇒∧ Ai

(0, (v, 0), 0, 0, (n− 1)a + mb) =⇒DM (n− 1)a + mb + v.
Next m steps consume m objects b, and produce m objects d and m objects e:

=⇒CRM (0, 0, b + v, 0, (n− 1)a + (m− 1)b) =⇒∧ Ai

(0, 0, (d, 0) + (e, 0) + (v, 0), (n− 1)a + (m− 1)b) =⇒DM

(n− 1)a + (m− 1)b + d + e + v =⇒CRM

(0, 0, b + v, 0, (n− 1)a + (m− 2)b + d + e) =⇒∧ Ai

(0, 0, (d, 0) + (e, 0) + (v, 0), (n− 1)a + (m− 2)b + d + e) =⇒DM

(n− 1)a + (m− 2)b + 2d + 2e + v
. . .
=⇒CRM (0, 0, b + v, 0, (n− 1)a + (m− 1)d + (m− 1)e) =⇒∧ Ai

(0, 0, (d, 0) + (e, 0) + (v, 0), (n− 1)a + (m− 1)d + (m− 1)e) =⇒DM

(n− 1)a + md + me + v.
Step 2
We consume one a and one v in order to produce one u:

(n− 1)a + md + me + v =⇒CRM (0, 0, 0, a + v, (n− 2)a + md + me) =⇒∧ Ai

(0, 0, 0, (u, 0), (n− 2)a + md + me) =⇒DM (n− 2)a + md + me + u
Next m steps consume m objects e, and produce m objects b and m objects d:

=⇒CRM (e + u, 0, 0, 0, (n− 2)a + md + (m− 1)e) =⇒∧ Ai

((d, 0) + (b, 0) + (u, 0), 0, 0, 0, (n− 2)a + md + (m− 1)e) =⇒DM

(n− 2)a + b + (m + 1)d + (m− 1)e + u =⇒CRM

((d, 0) + (b, 0) + (u, 0), 0, 0, 0, (n− 2)a + b + (m + 1)d + (m− 2)e) =⇒DM

(n− 2)a + 2b + (m + 2)d + (m− 2)e + u
. . .
=⇒CRM (e + u, 0, 0, 0, (n− 2)a + (m− 1)b + (2m− 1)d) =⇒∧ Ai

((d, 0) + (b, 0) + (u, 0), 0, 0, 0, (n− 2)a + (m− 1)b + (2m− 1)d) =⇒DM

(n− 2)a + mb + 2md + u

Return to Step 1
The computations goes on until the all the objects a are consumed from B.

Both steps have (m + 1) computations steps defined by the application of
CRM followed by the application of the restricted direct product of MmA’s and
an application of DM . Hence after 2(m + 1) computation steps, we consume 2a
in order to produce 2md. Finally we obtain the following multisets in the box:

1. If n = 2k + 1 is an odd integer, then we execute k pairs (Step 1, Step 2),
then one additional Step 1, and finally the box contains mnd + me + v;

2. If n = 2k is an even integer, then we execute k pairs (Step 1, Step 2), and
the box contains mb + mnd + u.

In both situations we get mn objects d. ��

Remark 1. An interesting feature of the membrane systems for multiplication
presented in this paper is that the computation may continue after reaching a

326 G. Ciobanu and M. Gontineac

certain result, and so the system acts as a P transducer [6]. Thus if initially there
are n (objects a) and m (objects b), the system evolves and produces n·m objects
d. Afterwards, the user can inject more objects a and the system continues the
computation obtaining the same result as if the objects a are present from the
beginning. For example, if the user wishes to compute (n + k) ·m, it is enough
to inject k objects a at any point of the computation.

5 Connecting Simple P Machines

Let us to consider a family of simple P machines indexed by a finite set T (of
targets). We can define the neighborhood of a simple P machine Mj (j ∈ T) to
be the set of all the simple P machines which can communicate with Mj . In
a P system environment (i.e., hierarchical system of simple P machines), by a
neighborhood of Mj we understand its parent, its children, and itself.

The output of a simple P machine Mj = (V,
∧nj

i=1 A
j
i , O,Bj , CRM j) is given

by a multiset from N 〈V × T 〉 of the form w′′j +
nj∑
i=1

ki · (yi, tari); it can be viewed

as a translation mapping from N 〈V 〉 into N 〈V × T 〉. w′′j represents the updated
content of the box; it contains the unprocessed multiset w′j added with possible
other multisets from its neighborhood.

We show how we can connect a simple P machine with other simple P ma-
chines. This can be done by using a cascade-like product and the distribution
mapping DM j : N 〈V × T 〉 → (N 〈V 〉)mj , where mj is the number of simple P
machines in the neighborhood of Mj.

DM j(
mj∑
i=1

ki · (yi, tari)) = (w1 + k1 · y1, w
2 + k2 · y2, . . . , w

mj + kmj · ymj),

where wi represents the box content of the simple P machine indexed by i.
An example of a graphical representation of a network composed of four simple

P machines M0, M1, M2 and M3 is given by the following picture:

B(0)

B(2)

A(1,1)

A(1,2)

A(2,1)

A(0,1)

A(0,2)

A(0,k)

B(0) DM(0)

A(2,2)

A(2,m)

B(2) DM(2) B(3)

A(3,1)

A(3,2)

A(3,p)

B(1)

A(1,n)

B(1) DM(1)

B(3) DM(3)

CRM(0) CRM(1)

CRM(3)CRM(2)

P Machines: An Automata Approach to Membrane Computing 327

an bm

0

c

00

1

d −> b
 f −> c>fb −> fd(e,1)

ac −> f

Fig. 3. P system with two membranes

The simple P machine M0 (left upper corner) is the skin membrane of this
network. We have two children represented by the simple P machines M1 (right
upper corner) and M2 (left lower corner), and the simple P machine M3 (right
lower corner) is the child of M1. As far as we can observe, M3 can communicate
only with M1, M1 can communicate only with M0 and M3, and M2 can
communicate only with M0. If we denote by N(j) the set of indexes of the
simple P Machines in the neighborhood of the sPM indexed by j, in our diagram
we have following sets: N(0) = {0, 1, 2}, N(1) = {0, 1, 3}, N(2) = {0, 2}, and
N(3) = {1, 3}.

Figure 3 presents a P system with two membranes which also computes the
multiplication of two numbers n and m. The P system (with two membranes) is
given by

Π = ({a, b, c, d, e, f}, {e}, ∅, [0[1]1]0, anbmc, ∅, (R0, ρ0), (∅, ∅), 1), where

– R0 = {r0 : ac → f, r1 : fb → fd(e, 1), r2 : f → c, r3 : d → b}
– ρ0 = {r1 > r2, r1 > r3}

We consider two simple P machines M0 = (V,
∧4

i=1 A0
i , O,B0, CRM0), and

M1 = (V, ∅, O,B1, ∅) where the alphabets are V = {a, b, c, d, e, f} and O =
{(a, 0), (b, 0), (c, 0), (d, 0), (e, 0), (f, 0), (a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (f, 1)}
A0

1 translates a + c in (f, 0), A0
2 translates f + b in (f, 0) + (d, 0) + (e, 1), A0

3
translates f in (c, 0), and A0

4 translates d in (b, 0).
CRM0 is defined as

CRM0(k1a + k2b+ k3c+ k4d + k5e+ k6f) = (l1(a + c), l2(f + b), l3f, l4d, w′),
where

l1 = min{k1, k2}, l2 = min{k2, k6},l3 =
{

0 l2 	= 0
k6 l2 = 0 , l4 =

{
0 l2 	= 0
k4 l2 = 0

The distribution mapping is defined by
DM(l1(f, 0) + l2((f, 0) + (d, 0) + (e, 1)) + l3(d, 0) + l4(b, 0)) =
(w′ + (l1 + l2)f + (l2 + l3)d + l4b, w” + l2e), where w′ and w” represent the

contents of B0 and B1, respectively, before applying distribution.
It can be verified that if we insert initially na+mb+ c in B1, after doing the

computation, we get c + md in B1 and mne in B2.

328 G. Ciobanu and M. Gontineac

6 Conclusion and Further Work

According to our knowledge, we present for the first time an automaton corre-
sponding faithfully to a membrane system with a single membrane and empha-
sizing on its maximal parallel evolution rules. We call simple P machine such
an automaton. We give examples of simple P machines for both P systems with
promoters and P systems with priorities. For each case we show that the P ma-
chines provide the same result as their corresponding P systems. We present a
way of connecting simple P machines according to their communication rules,
and give am example how the new resulting network corresponds to P systems
with more than one membrane.

Considering the class P of the P systems involving priorities, promoters, ac-
tivators, or catalysts, we claim that we can build a P machine having the same
behavior and result. In such a P machine

– every rule is modeled by a very simple Mealy multiset automata;
– various features involved by priority, promoters, as well as maximal parallel

and nondeterministic application of the rules are captured by the control
resource mappings;

– communications are modeled by the distribution mappings.

The converse of this claim is true because of the universality of P systems.
However it is hard to have a constructive converse, namely an effective procedure
of building a P systems having the same behavior and results as a given P
machine. In fact we use very simple MmA’s incorporated in sPM to model a
P system; they have only one generator (i.e., the left-hand side of the rule) for
the set of tc-multisets (a cyclic semimodule). On the other hand, the definition
of a P machine does not restrict the Mealy multiset automata representing its
parallel components to have only one generator for the set of all tc-multiset.
This means that such a machine can change the “rules” after every computation
step, for instance. These things are subject of further investigations.

Another direction of further research is given by the definition and the study
of various aspects of machine-like theory (behavior, bisimulation, composition).
It is also interesting to continue the study of Mealy multiset automata by using
linear algebra, detecting, for example, which are the links between the matrix
associated with two different tc-multisets.

Automata theory has mainly a sequential nature, in contrast with P systems.
Membrane systems represent abstract models inspired by the compartments of a
cell. We try to connect the theory of membrane computing with the classic theory
of (Mealy) automata. On the other hand, our machine has the capability to be
highly adaptable, i.e., we can easily pass from strings to multisets and back, and
so on. The inductive description is not able to distinguish between deterministic
and nondeterministic automata. As we are more interested in their behavior, we
think to a co-inductive point of view (see [5]). It is worth to point out that while
strings are of algebraic nature, multisets can be also viewed as their duals, so
they have a coalgebraic nature.

P Machines: An Automata Approach to Membrane Computing 329

References

1. F. Bernardini, V. Manca. Dynamical aspects of P systems. BioSystems, 70 (2002),
85–93.

2. C. Bonchiş, G. Ciobanu, C. Izbaşa. Encodings and arithmetic operations in mem-
brane computing. In Theory and Applications of Models of Computation, LNCS
3959, Springer, 2006, 618–627.

3. L. Cardelli. Languages and notations for systems biology. Unconventional Program-
ming Paradigms, Le Mount St.Michel, 2004.

4. G. Ciobanu, M. Gontineac. Mealy multiset automata. International Journal of
Foundations of Computer Science, 17 (2006), 111–126.

5. G. Ciobanu, M. Gontineac. Algebraic and coalgebraic aspects of membrane com-
puting. In Membrane Computing. WMC6, LNCS 3850, Springer, 2006, 181–198.

6. G. Ciobanu, Gh. Păun, Gh. Ştefănescu. P transducers, New Generation Computing,
24 (2006), 1–28.

7. E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana. Multiset automata. In Multiset
Processing: Mathematical, Computer Science, and Molecular Computing Points of
View, LNCS 2235, Springer, 2001, 69–83.

8. E. Csuhaj-Varju, G. Vaszil. P automata or purely communicating accepting P
systems. In Membrane Computing. WMC-CdeA 2002, LNCS 2597, Springer, 2003,
219–233.

9. M. Oswald. P Automata, PhD Thesis, Technical University Vienna, 2004.
10. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.

Modeling Dynamical Parallelism in Bio-systems

Erzsébet Csuhaj-Varjú1, Rudolf Freund2, and Dragoş Sburlan3,4

1 Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende utca 13–17, H-1111 Budapest, Hungary
csuhaj@sztaki.hu

2 Faculty of Informatics
Vienna University of Technology

Favoritenstr. 9–11, A–1040 Vienna, Austria
rudi@emcc.at

3 Department of Computer Science and Artificial Intelligence
University of Seville,

Av. Reina Mercedes, 41012, Seville, Spain
4 Faculty of Mathematics and Informatics

Ovidius University of Constantza,
124 Mamaia Bd., Constantza, Romania

dsburlan@univ-ovidius.ro

Abstract. Among the many events that occur in the life of biological
organisms there are multitudes of specific chemical transformations that
provide the cell with usable energy and molecules needed to form its
structure and coordinate its activities. These biochemical reactions, as
well as all other cellular processes, are governed by basic principles of
chemistry and physics. A significant factor that determines whether or
not reactions could take place is the entropy (it measures the randomness
of the system). This measure depends on various factors. In an abstract
framework, all these factors, which describe the way molecules interact,
can be expressed by means of a computable multi-valued function that,
depending on the current state of the system, establishes the possible
ways of the evolution of the system. Inspired by these facts, we intro-
duce and study several bio-mimetic computational rewriting systems that
use discrete components (i.e., finite alphabets, finite set(s) of rewriting
rules, etc.) and perform their computational steps in a non-deterministic
manner and in a degree of rewriting parallelism that depends on the
current state of the system, both specified by a given multi-valued func-
tion. Furthermore, we describe systems which produce the same output
independently of the values taken by the considered functions.

1 Introduction

In nature, we often find biological systems that are not necessarily homogeneous,
but consist of many discrete, interacting entities that have a certain physical
spatial distribution. This fact suggests that even if these entities interact in a
parallel manner, they obey to some local conditions (concentration, for instance)

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 330–351, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling Dynamical Parallelism in Bio-systems 331

and therefore the interaction parallelism cannot be considered as maximal or
fixed, but as a variable that depends on the state of the system.

For example, at the cell level, bio-molecular mechanisms are the result of
many different chemical reactions that take place with a certain degree of mutual
independence but in such way that they finally (and amazingly) exhibit an overall
co-ordination. Traditionally, these behaviors were modeled by using the theory
of partial derivative equations and non-linear dynamical systems. However, this
approach usually gave the general evolution and the dynamics of the system
but not always the exact solution. From a discrete point of view, the interest
was mainly in inferring the properties of the languages generated by such bio-
inspired models. Although discrete models of complex phenomena may generate
errors, the magnitude of the errors can be reduced arbitrarily by considering a
better granularity of the phenomenon. This approach in general leads to a high
computational effort, so a more efficient way of studying properties of bio-systems
might be to consider discrete formal systems that, in their formal description
have embedded a certain degree of randomness, describing the way systems
evolve.

One such property regards the measure of parallelism. From this point of
view, for instance, using biochemical reasoning, one might predict that, given
a particular state of a bio-system and the rules that make it evolve, an ap-
proximate next state is reached after a certain time. Basically, even if one does
not know the exact number of times the rules are applied, one knows that af-
ter a particular time the reactions that had the potential to be applied, were
actually accomplished in an approximate rate with respect to the state of the
system.

Moreover, from the point of view of computer science, in case we are try-
ing to make use of bio-systems as computational devices we should be able to
control their behavior irrespectively of the rate of parallelism occurring within
them. Therefore, we are interested in systems that one might call “parallel fault
tolerant” which means that they produce the same output no matter which is
the “evolution” of the parallelism. This assumption might also have a biological
counterpart, namely, natural sub-systems are able to regulate themselves and
replace, in case is needed, the functions of other sub-systems such that the over-
all system can perform the same task. From this point of view, one can assume
that a complex bio-system (like a cell or whatever organism) has the ability to
reach a “desired” state, no matter how “local” decisions were made.

Here we will consider two bio-mimetic models, namely Lindenmayer systems,
inspired by the development of multi-cellular organisms, and P systems with pro-
moters, motivated by enzyme activation/inactivation taking place in the living
cells.

We will extend the original definitions of these systems by considering com-
putable multi-valued functions that control the derivation (in terms of specifying
the rewriting parallelism and the nondeterminism).

332 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

2 Preliminaries

We assume the reader to be familiar with basic notions of formal languages, in
particular Lindenmayer systems, and P systems (for more details one can consult
[4], [5], and [6]).

We start by briefly recalling some basic notions concerning Lindenmayer sys-
tems and then we present some elementary notions concerning multisets. Later
on, we will introduce several new definitions needed for the purpose of this work.

A 0L system (an interactionless L-system) is a triple H = (V,R,w), where
V is an alphabet, w ∈ V +, the axiom, and R is a set of rules (productions) of
the form a → v, where a ∈ V and v ∈ V ∗. Moreover, the production set R is
complete: for every a ∈ V there is a rule of the form a → v, v ∈ V ∗ in R. The
direct derivation relation in a 0L system H = (V,R,w) is defined as follows: for
x, y ∈ V ∗ we write x =⇒R y if x = a1 . . . an, y = z1z2 . . . zn, ai ∈ V, zi ∈ V ∗,
1 ≤ i ≤ n, and ai → zi ∈ R. We denote the reflexive and transitive closure of
=⇒R by =⇒∗

R.
A T 0L system (a tabled 0L system) with k tables, k ≥ 1, is a construct

H = (V, T, w) where T = {T1, . . . , Tk} and each triple (V, Ti, w), 1 ≤ i ≤ k, is a
0L system. A string x directly derives a string y in H, x, y ∈ V ∗, if and only if
y is directly generated from x by applying some of the tables of H, say, Ti.

A T 0L system, where a subalphabet Δ of the alphabet V is distinguished as
the terminal alphabet, written as H = (V, T, w,Δ), is called an ET 0L system
(an extended T 0L system) and its language is defined by L(H) = {v ∈ T ∗ |
w =⇒∗ v}.

We now turn to the basic notions concerning multisets. A multiset over an
arbitrary set X is a mapping M : X −→ IN . By M(x), x ∈ X , we denote the
multiplicity of x in the multiset M . If the set X = {x1, . . . , xn} is finite, then the
multiset M can explicitly be given in the form {(x1,M(x1)), . . . , (xn,M(xn))}.
The support of a multiset M is the set supp(M) = {x ∈ X | M(x) ≥ 1}.
A multiset M is empty if its support is empty. Let M1,M2 : X −→ IN be
two multisets. We say that M1 is included in M2 (denoted by M1 ⊆ M2) if
M1(x) ≤ M2(x), for all x ∈ X . The inclusion is strict if M1 ⊆ M2 and M1 	= M2.
The union (difference) of two multisets, M1 ∪M2 : X −→ IN (respectively, M1 \
M2 : X −→ IN), is defined as (M1 ∪M2)(x) = M1(x) + M2(x) (respectively, for
M2 ⊆ M1, (M1\M2)(x) = M1(x)−M2(x)), for all x ∈ X . A multiset M of finite
support, {(x1,M(x1)), . . . , (xn,M(xn))}, can also be represented by the string
w = x

M(x1)
1 x

M(x2)
2 . . . x

M(xn)
n , and all the permutations of this string precisely

identify the objects in the support of M and their multiplicities in M . We note
that the Parikh image of w, ΨX(w), is exactly the vector (M(x1), . . . ,M(xn))
of the multiplicities. The cardinality of a multiset w = x

M(x1)
1 x

M(x2)
2 . . . x

M(xn)
n

is card(w) = M(x1) +M(x2) + . . .+M(xn); the number of occurrences of xi in
w is denoted by |w|xi = M(xi), for 1 ≤ i ≤ n.

Let l ∈ IN and let w = xt1
1 . . . xtn

n , xi ∈ X , ti ∈ IN , 1 ≤ i ≤ n, be a multiset
over X . We define the product l ∗ w = xl·t1

1 xl·t2
2 . . . xl·tn

n .

Modeling Dynamical Parallelism in Bio-systems 333

Let us consider a finite set of symbols V = {a1, a2, . . . , an}. A multiset rewrit-
ing rule is a pair (u, v) where u ∈ V +, v ∈ V ∗ represent multisets over the set V ;
such a rule can also be written as u → v. For a multiset rewriting rule r : u → v,
with u, v ∈ V ∗ being multisets over V , let left(r) = u and right(r) = v.

In what follows we formally define the conditions required for a given multiset
rewriting rule (or several multiset rewriting rules) to be applied (to be applied
simultaneously, respectively) on a given multiset of symbols.

Let w ∈ V ∗ be a multiset over V and let R = {r1, r2, . . . , rk} be a set of
multiset rewriting rules such that ri = ui → vi, with ui, vi ∈ V ∗, 1 ≤ i ≤ k. Let
us denote the set of applicable multiset rewriting rules to w by Rap

w ⊆ R, i.e.,
Rap

w = {r ∈ R | left(r) ⊆ w}.
By Rsap

w = rt1
1 rt2

2 . . . rtk

k , ti ∈ IN , 1 ≤ i ≤ k, we denote the multiset over
R of multiset rewriting rules being simultaneously applicable to w. Rsap

w is any
multiset such that ⋃

1≤i≤k

ti ∗ left(ri) ⊆ w. (1)

By RSAP
w we denote the set of all multisets of rules simultaneously applicable

to w, i.e., RSAP
w = {Rsap

w satisfying (1) | Rsap
w ∈ R∗}.

Next, we define the “impact” of a multiset of rules when they are applied to a
given multiset of symbols (i.e., how many distinct symbols are rewritten). Based
on this concept, we further define the set containing the multisets of rules that
produce the largest “impact” on a given multiset of symbols.

For x = ri1
1 ri2

2 . . . rik

k ∈ RSAP
w , let

Dx = supp(
k⋃

i=1

left(ri)).

The set Dx indicates all distinct symbols from w that are rewritten by an ap-
plication of x.

By

RMSAP
w = {x = ri1

1 ri2
2 . . . rik

k ∈ RSAP
w | card(Dx) = max

y∈RSAP
w

(card(Dy))}

we denote the set of multisets of rules simultaneously applicable to w, called the
maximal component of RSAP

w .

Remark 1. The maximal component of RSAP
w contains all multisets of rules si-

multaneously applicable to w such that the rewriting of distinct symbols is max-
imal (in the sense of the processed objects).

Let Y be a set of multisets over R; we denote

Pr(Y) = {r1r2 . . . rk | rt1
1 rt2

2 . . . rtk

k ∈ Y }.

We will use the set of sets Ww = {X ⊆ RMSAP
w | Pr(X) = Pr(RMSAP

w)}.

334 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

Let

RMAX
w = {x ∈ RSAP

w | there exists ay ∈ RSAP
w such that x ⊆ y implies x = y}

be the set of multisets of all maximal rules simultaneously applicable to w.

Remark 2. The concept of maximal parallelism of rewriting (used, for instance,
in the P systems framework) is expressed using the set RMAX

w ⊆ RSAP
w . For

example, considering a P system Π in a given configuration and a region of Π
containing a set of rules R that acts on the multiset w, an element in RMAX

w gives
a possible ensemble of rules that can be applied on w in a maximally parallel
manner.

In addition, one can remark that RMSAP
w ⊇ RMAX

w . Observe that for non-
cooperative multiset rewriting rules Pr(RMAX

w) = Pr(RMSAP
w).

The notions presented above regarding multisets and rules can be extended
to strings and productions in a straightforward manner as follows1. However, as
opposed to the multiset case, here we have to pay more attention to the implicit
order of the symbols in a string.

Considering a set of productions R = {r1, r2, . . . , rk} over an alphabet V ,
the set of productions applicable to a string w is RSap

w = {r ∈ R | w =
α1left(r)α2, α1, α2 ∈ V ∗}. Let U = {a | a ∈ V } and let o : V ∗ → U∗ be a mor-
phism that maps symbols from V into their corresponding overlined symbols.
Let hri : (V ∪ U)∗ → (V ∪ U)∗ such that hri(α1left(ri)α2) = α1o(left(ri))α2,
α1, α2 ∈ (V ∪ U)∗. Then we can define a multiset of productions simulta-
neously applicable to a string w as follows (recall that we are not interested
which are the sites in w where the productions from R are applied, but only if
they can be applied simultaneously). RSsap

w = rt1
1 . . . rtk

k such that there exists
ht1

r1
(ht2

r2
(. . . htk

rk
(w) . . .)), i.e., there exist “enough” sites in w where the produc-

tions could be applied. The set of all multisets of productions simultaneously
applicable to the string w is denoted by RSSAP

w .
The set of all distinct symbols from the string w rewritten by an application

of the multiset of productions x = ri1
1 ri2

2 . . . rik

k ∈ RSSAP
w is

DSx = {a ∈ V | (∃) ri, 1 ≤ i ≤ k, such that left(ri) = α1aα2, α1, α2 ∈ V ∗}.

The maximal component of RSSAP
w is defined as for multisets, i.e.,

RSMSAP
w = {x = ri1

1 ri2
2 . . . rik

k ∈ RSSAP
w | card(DSx) = max

y∈RSSAP
w

(card(DSy))}.

Let Y be a set of multisets over R; we denote

Pr(Y) = {r1r2 . . . rk | rt1
1 rt2

2 . . . rtk

k ∈ Y }.

We will use the set of sets WSw = {X ⊆ RSMSAP
w | Pr(X) = Pr(RSMSAP

w)}.
1 We will use similar notations as for the multiset case, the difference being a capital

letter S on the right-hand side of each defined operator.

Modeling Dynamical Parallelism in Bio-systems 335

Example 1. Let V = {a, b, c}. Consider the multiset w = aaabbbbccc and the set
of multiset rewriting rules R = {r1 : abc → α, r2 : bcc → β, r3 : aac → γ, r4 :
acccc → θ}. Then we have:

– RSAP
w = {r1, r

2
1 , r

3
1 , r2, r3, r1r2, r1r3, r2r3};

– RMAX
w = {r3

1, r1r2, r1r3, r2r3};
– Dr1r3 = Dr1 = {a, b, c}; Dr3 = Dr4 = {a, c};
– RMSAP

w = {r1, r
2
1 , r

3
1 , r1r2, r1r3, r2r3}.

Example 2. Let V = {a, b, c, d}. Consider the string w = aabc and the set of
rewriting productions R = {r1 : a → α1, r2 : a → α2, r3 : b → β, r4 : c → γ, r5 :
d → θ}. Then we have:

RSSAP
w = {r1, r2, r

2
1, r

2
2 , r3, r4, r1r2, r1r3, r2r3, r1r4, r2r4, r3r4}

∪ {r2
1r3, r

2
2r3, r

2
1r4, r

2
2r4, r1r2r3, r1r3r4, r2r3r4}

∪ {r2
1r3r4, r

2
2r3r4, r1r2r3r4};

RSMAX
w = {r2

1r3r4, r
2
2r3r4, r1r2r3r4};

RSMSAP
w = {r1r3r4, r2r3r4, r

2
1r3r4, r

2
2r3r4, r1r2r3r4}

WSw = {{r1r3r4, r
2
2r3r4, r1r2r3r4}, {r1r3r4, r2r3r4, r1r2r3r4},

{r2
1r3r4, r

2
2r3r4, r1r2r3r4}, . . .}.

3 On Dynamical Parallelism in L Systems

In this section we extend the classical definition of Lindenmayer system in order
to fit a more general perspective. The new constructs model developmental sys-
tems in which parts of the organism change simultaneously but not necessarily in
the totally parallel manner as in the case of the classical Lindenmayer systems,
but determined by the current state of the organism. We present several results
regarding the computational power of these systems.

Computing formal systems, usually, make use of rewriting rules to perform
their computations. The semantics of such formal models provides the ways how
the rewriting rules are applied. Here, in order to capture the most general case, we
will consider computable multi-valued functions that, depending on the current
state of the system, control the applications of the rules. This assertion can be
better understood if we provide the reader with some biological motivation.

For a given state of a bio-system (represented by a multiset/string w), one can
predict that a certain rule, say a → α, is to be applied on w in a rate specified by
a value in the interval (x, y) ⊆ (0, 1). Therefore, in that computational step, the
rule a → α is applied a number of times i, such that

[
x · |w|a

]
≤ i ≤

[
y · |w|a

]
.

However, when generalizing this concept, we might assume that there is more
than one interval that control the applications of the rules, and this brings us to
the following formalism.

Definition 1. An M -rate 0L system, or an M0L system, is a quadruple H =
(V,R, ω, f), where:

336 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

• V = {a1, . . . , am} is a finite alphabet,
• R is a finite set of rules of the form a → α, where a ∈ V and α ∈ V ∗.
Moreover, R is complete, i.e., for each symbol a ∈ V there exists at least one
production a → α ∈ R with α ∈ V ∗. The productions in R are uniquely labeled,
i.e., we associate to each production a → α, where a ∈ V and α ∈ V ∗, a unique
label l and then we also can write the production in the form l : a → α.
• f is a multi-valued computable function such that f : V ∗ → P(R∗) with
f(x) ∈ P(RSSAP

x) for x ∈ V ∗,
• ω ∈ V ∗ is the axiom.

M0L systems use M -rate parallel derivations, i.e., x ∈ V ∗ directly derives y ∈
V ∗ in a M0L system H = (V,R, ω, f), written as x=⇒

f
y, if x = x1x2 . . . xn,

y = y1y2 . . . yn, xi ∈ V , yi ∈ V ∗, 1 ≤ i ≤ n, and the following conditions hold:

– for every j, 1 ≤ j ≤ n, either yj = xj (the j-th symbol remains unchanged),
or r : xj → yj ∈ P (some production of R is applied to the j-th symbol);

– the multiset of productions applied to x is in f(x), where f(x) ∈ P(RSSAP
x).

(Thus, if the multiset of the productions applied to x is rt1
1 rt2

2 . . . rtk

k ∈ f(x),
then production ri is applied ti times to x, for 1 ≤ i ≤ k).

This manner of derivation is called the ‘‘weak mode”. In the case of the “strong
mode” of derivation, we consider f : V ∗ → P(R∗), f(x) ∈ {X ⊆ RSMSAP

x |
Pr(X) = Pr(RSMSAP

x)}. (Thus, if a symbol appears in the string x, then at
least one occurrence of it is rewritten.)

The transitive and reflexive closure of M0L=⇒H is denoted by
M0L

=⇒∗
H . The gen-

erated language of the M0L system H is

L(H) = {u ∈ V ∗ | ω
M0L

=⇒∗
H u}.

Remark 3. For both derivation modes, the local degree of parallelism for a given
derivation step is defined by

max
y∈f(x)

(card(supp(y))).

For the weak mode of derivation, a degree of parallelism k, 1 ≤ k ≤ 2, means that
at most two distinct productions are applied simultaneously. The computable
multi-valued function f defines how many times a certain production is applied
to a given string.

Definition 2. An M -rate T 0L system, or an MT 0L system, is a triplet H =
(V, T, ω), where:
• V is a finite alphabet,
• T = {(T1, f1), . . . , (Tk, fk)} is a finite set of pairs, where each Ti, 1 ≤ i ≤ k, is
a complete set of productions of the form a → α, where a ∈ V, α ∈ V ∗, and each
fi, 1 ≤ i ≤ k, is a computable multi-valued function such that fi : V ∗ → P(T ∗

i)
with fi(x) ∈ P(TiS

SAP
x) for x ∈ V ∗,

• ω ∈ V ∗ is the axiom.

Modeling Dynamical Parallelism in Bio-systems 337

As for M0L systems, this way of defining fi, 1 ≤ i ≤ k, stands for the weak mode
of derivation and for the strong mode of derivation, the multi-valued functions
are defined as fi : V ∗ → P(T ∗

i) with fi(x) ∈ {X ⊆ TiS
MSAP
x | Pr(X) =

Pr(TiS
MSAP
x)} for x ∈ V ∗, 1 ≤ i ≤ k.

We say that x directly derives y in an MT 0L system H = (V, T, ω), with
x, y ∈ V ∗, written as x

MT0L=⇒ H y, if x
M0L=⇒Hi y for some i, 1 ≤ i ≤ k, with the

M0L system Hi = (V, Ti, ω, fi).

The transitive and reflexive closure of MT0L=⇒ H is denoted by
MT0L

=⇒∗
H . The

generated language of the MT 0L system H is

L(H) = {u ∈ V ∗ | ω
MT0L

=⇒∗
H u}.

Definition 3. An M -rate ET 0L system, or an MET 0L system, is a quadruple
H = (V, T, ω,Δ), where H = (V, T, ω) is an MT 0L system, and Δ ⊆ V , Δ 	= ∅,
is the terminal alphabet. In an MET 0L system H = (V, T, ω,Δ), x directly
derives y, for x, y ∈ V ∗, written as x

MET0L=⇒ H y, if x
MT0L=⇒ H y.

The transitive and reflexive closure of MET0L=⇒ H is denoted by
MET0L

=⇒∗
H .

The language generated by the MET 0L system H is L(H) = {w ∈ Δ∗ |

ω
MET0L

=⇒∗
H w}.

Definition 4. An M0L (MT 0L, MET 0L) system generating the same lan-
guage independently of the functions associated with the set(s) of productions is
called parallel-free M0L (MT 0L, MET 0L) system.

The families of languages generated by M0L (or MT0L, MET0L) systems work-
ing in the strong mode are denoted by M0Ls (or MT 0Ls, MET 0Ls, respec-
tively).

The families of languages generated by M0L (or MT0L, MET0L, respec-
tively) systems working in the weak mode are denoted by M0Lw (or MT 0Lw,
MET 0Lw, respectively).

When we speak about the families of languages mentioned above, we will
denote the parallel-free property by adding the superscript pf .

U = {L | card(L) = 1} denotes the family of all singleton languages.

The following result describes the computational power of extended, interac-
tionless M -rate Lindenmayer systems working in the weak mode of derivation
and being parallel-free.

Theorem 1. ME0Lw,pf = MET 0Lw,pf = U ∪ {∅}.
Proof. The assertion is obvious, because if an ME0L system is parallel-free, then
irrespectively of whatever set/sets of multi-valued functions one chooses, the
system produces the same output. So, one can choose the multi-valued functions
in such a manner that the productions cannot be applied at all. Therefore, such
systems generate languages consisting of at most the axioms of the systems. ��
Using a similar argument one can prove the following statement.

338 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

Theorem 2. MT 0Lw,pf = M0Lw,pf = U.

Next we prove that extended, interactionless M -rate Lindenmayer systems are
able to generate any language over a given alphabet V .

Theorem 3. ME0Lw = MET 0Lw = P(V ∗).

Proof. We prove that using these systems we can generate any language L (com-
putable or not). For the sake of simplicity, but without loosing the general-
ity, we might consider only languages over a one letter alphabet. For a given
L ⊆ {a}+, let us consider the system H = (V, P, ω,Δ, f) where V = {a,A},
ω = A, Δ = {a}, and the set P contains the following productions:

r1 : A → aA,

r2 : A → λ,

r3 : a → a.

Let us define f as follows:
For a given string w = anA, n ≥ 0, we have:

• f(w) ⊆ {r1r
i
3 | 0 ≤ i ≤ n} iff an /∈ L,

• f(w) ⊆ PSSAP
w and there exists z ∈ {r2r

i
3 | 0 ≤ i ≤ n} such that

z ∈ f(w) iff an ∈ L.

It is easy to observe that whenever an /∈ L, then the number of symbol a increases
(the production r1 : A → aA is executed since there exists z ∈ {r1r

i
3 | 0 ≤ i ≤ n},

such that z ∈ f(anA)).
In case of an ∈ L, due to the definition of f production r2 : A → λ might be

executed. Therefore, the system H generates a string w ∈ L.
In this way, the constructed system generate any subset of V ∗. Hence, we have

that ME0Lw = MET 0Lw = P(V ∗). ��

In the following we give examples of M -rate 0L systems working in the strong
mode.

Example 3. Let H = (V, P, ω, F) be an M0L system working in the strong mode
such that:

V = {a, b, c},
P = {r1 : a → aa, r2 : b → bb, r3 : c → cc},
ω = abc,

f(w) = {r1r2r3}, for w ∈ V ∗.

Obviously, H generates the language L(H) = {anbncn | n ≥ 1}.
Example 4. The language L = {a, a3} is not an M0Ls,pf (or MT 0Ls,pf) lan-
guage. This is proved by contradiction as follows. If there exists an M0Ls,pf

system H = (V, P, ω) such that L(H) = {a, a3}, then, since obviously V = {a},
we have two cases: (i) ω = a and a ⇒ a3, hence a3 ⇒ ak, k 	= 1, 3, therefore we
obtain a contradiction; (ii) w = a3, hence, a ⇒ a and a ⇒ λ. Thus a3 ⇒ a2, and
so a2 ∈ L(G), therefore again we obtain a contradiction.

Obviously, the following results hold.

Modeling Dynamical Parallelism in Bio-systems 339

Proposition 1. MT 0Ls,pf ⊂ RE.

Proposition 2. M0Ls,pf ⊂ RE.

In the following we shall prove that the class of parallel-free MET0L systems in
the strong mode identifies the class of ET0L languages.

Theorem 4. MET 0Ls,pf = ET 0L.

Proof. We first note that for each L ∈ ET 0L there exists an ET0L system H
with two tables such that L = L(H), thus without the loss of generality we can
consider ET0L systems with only two tables.
We prove the result by double inclusion.

(1) MET 0Ls,pf ⊇ ET 0L
Let us consider an ET0L system H̃ = (Ṽ , T̃ , ω̃, Δ̃) such that T̃ = {T̃1, T̃2}.

Let h1 : Ṽ ∗ → V
∗

be a morphism such that h1(a) = a, a ∈ Ṽ . Moreover, let
h2 : Ṽ ∗ → V

∗
be a morphism such that h2(a) = a, a ∈ Ṽ .

We will simulate the computation of the system H̃ with a parallel-free MET0L
system H = (V, T, ω,Δ) in the strong mode which is defined as follows. Let
• V = Ṽ ∪ {h1(A), h2(A) | A ∈ Ṽ } ∪ {t1, t2, t3, t4} ∪ {#};
• T = {(T1, f1), (T2, f2), (T3, f3), (T4, f4)}, where

T1 = {A → h1(α)t1 | A → α ∈ T̃1}
∪ {h1(A) → h1(A) | A ∈ Ṽ }
∪ {h2(A) → # | A ∈ Ṽ }
∪ {# → # , t1 → λ , t2 → # , t3 → # , t4 → #},

T2 = {A → A | A ∈ Ṽ }
∪ {h1(A) → At2 | A ∈ Ṽ }
∪ {h2(A) → # | A ∈ Ṽ }
∪ {# → # , t1 → # , t2 → λ , t3 → # , t4 → #},

T3 = {A → h2(α)t3 | A → α ∈ T̃2}
∪ {h1(A) → # | A ∈ Ṽ }
∪ {h2(A) → h2(A) | A ∈ Ṽ }
∪ {# → # , t1 → # , t2 → # , t3 → λ , t4 → #},

T4 = {A → A , | A ∈ Ṽ }
∪ {h2(A) → At4 | A ∈ Ṽ }
∪ {h1(A) → # | A ∈ Ṽ }
∪ {# → # , t1 → # , t2 → # , t3 → # , t4 → λ};

and fi : V ∗ → P(R∗) with fi(x) ∈ {X ⊆ RSMSAP
x | Pr(X) = Pr(RSMSAP

x)}
for x ∈ V ∗, 1 ≤ i ≤ 4, arbitrarily.

340 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

• ω = ω̃;
• Δ = Δ̃.

We now show how the construction works. We want to simulate the applica-
tions of tables of H̃; to this aim, without loosing the generality, we may assume
that T̃1 is simulated first. So, at the beginning, one table is chosen nondetermin-
istically and is applied to the initial sentential form ω. If table T2 or T4 is chosen,
then the current sentential form is left unchanged (only the productions of type
A → A, A ∈ V are applied). If table T1 (or T3) is chosen, then productions
of type A → h1(α)t1 will be executed. However, because the parallelism is not
necessarily total but it depends on the function f1 (or f3, respectively), then not
necessarily all symbols A from the current sentential form will be rewritten. How-
ever, if in the sentential form there is at least one occurrence of symbol A, since
in table T1 there exists a production having the symbol A on the left-hand side
and the system works in the strong derivation mode, then A will be rewritten at
least once (remember that fi(x) ∈ {X ⊆ RSMSAP

x | Pr(X) = Pr(RSMSAP
x)}).

Consequently, a symbol t1 is produced. Assume now that still there are symbols
A not rewritten by T1 despite the existence of a production for rewriting A. If this
is the case, then if any other table (except T1) is chosen for a next application,
symbol # is generated (hence, the system will not be able anymore to generate
a string over Δ because the production # → # is present in every table of H
and will always be executed). Therefore, the only table that can be applied and
that does not produce the symbol # is again T1. Finally, all symbols A ∈ V will
be rewritten by applications of table T1. In addition, table T1 is also responsible
for deleting all symbols t1. After completing these tasks, the current string will
have only images by morphism h1 of symbols from V (let us call them overlined
symbols). At that moment, if we choose any other table except T2 to apply, then
again symbol # will be produced. If table T2 is applied, then in a similar way
as before, the system checks whether or not all overlined symbols are rewritten
into the “original” ones. Again, during this checking procedure if we choose to
apply a table other than T2, then symbol # is produced. The simulation of the
application of table T̃2 follows a similar pattern. In this way, the computation
takes place step by step, simulating the computation by (̃H) if the proper tables
are chosen for application, and always producing the trap symbol if a “wrong”
table is chosen for application.

Observe that the strong working mode feature is essential because if at a
certain moment a wrong table is chosen for application, then we have to be sure
that at least one symbol # is produced, hence a production has to be applied at
least once if it can be applied.

In conclusion, we have shown that the constructed system H generates the
same language as ET0L system H̃. Consequently, we have that MET 0Ls,pf ⊇
ET 0L.

(2) ET 0L ⊇ MET 0Ls,pf

In order to prove this inclusion, we will simulate the computation of an arbitrary
MET0Ls,pf system H = (V , T , ω,Δ) with an appropriate ET0L system H =
(V, T, ω,Δ). First, we remark that because the system H is parallel-free in the

Modeling Dynamical Parallelism in Bio-systems 341

strong mode, then, irrespectively of how the multi-valued functions associated
with the sets of productions are chosen, the result of the computation is the
same. In particular, one can choose the multi-valued functions such that during
the computation the productions are applied in a totally parallel manner (as for
the L systems).

Therefore, H is defined as follows:
• V = V ;
• T = {T1, T2, . . . , Tk} providing that T = {T1, T2, . . . , Tk}, k ≥ 1;
• ω = ω;
• Ti = {A → α | A → α ∈ Ti}, 1 ≤ i ≤ k;
• Δ = Δ.

Observe that in an ET0L system, when a certain table is applied, if a pro-
duction can be applied then it will be applied (of course, respecting the non-
determinism if it exists). This corresponds to the strong mode of derivation for
MET0L systems.

Consequently, we have that ET 0L ⊇ MET 0Ls,pf and therefore we can con-
clude that MET 0Ls,pf = ET 0L. ��

4 P Systems with Promoters/Inhibitors

In this section we turn to P systems with promoters/inhibitors.

Definition 5. A P system with promoters/inhibitors with symbol objects, of de-
gree m ≥ 1, is a construct

Π = (V,Σ,C, P, I, μ, w1, . . . , wm, R1, . . . , Rm, i0),

where:

– V is the alphabet of Π; its elements are called objects;
– Σ is the output alphabet, Σ ⊆ V ;
– C ⊆ V is the set of catalysts;
– P is the set of promoters, P ⊆ V ;
– I is the set of inhibitors, I ⊆ V ;
– μ is a membrane structure consisting of m membranes labeled by elements

of 1, 2, . . . ,m;
– wi, 1 ≤ i ≤ m, are strings that represent multisets over V associated with

the regions 1, 2, . . . ,m of μ, called the initial multisets;
– Ri, 1 ≤ i ≤ m, is a finite set of evolution rules associated with the region i

of μ.
An evolution rule can be non-cooperative, i.e., of the form a → v, or can be
promoted (inhibited) non-cooperative, i.e., of the form a → v|p (or a → v|¬i,
respectively), it can be catalytic, i.e., of the form ca → cv, or, finally, it can
be promoted (inhibited) catalytic, i.e., of the form ca → cv|p (or ca → cv|¬i,
respectively), where a ∈ (V \ C), c ∈ C, p ∈ P , i ∈ I, and v is a string
representing a multiset over Vtar, with Vtar = (V \ C) × TAR, for TAR =
{here, out} ∪ {inj | 1 ≤ j ≤ m}.

342 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

The target is indicated as the index of the object. If no target is specified
then is understood as target here, also, the subscript j is omitted in inj if
the object has only one choice to follow the target indication.

– i0 ∈ {1, . . . ,m} is the label of the output region of Π.

The membrane structure is a hierarchical arrangement of membranes, embedded
in a skin membrane, the one which separates the system from the environment.
Each membrane defines a region, i.e., the space in-between the membrane and
the membranes directly included in it (if any). Membranes are labeled in order
to identify the regions they delimit.

The configuration of Π is an instantaneous description of it, including its
membrane structure and the contents of all the membranes. The initial configu-
ration is composed by the membrane structure μ and the objects initially present
in the regions of the system, as described by w1, . . . , wm, above.

The result of applying a rule u → v (or u → v|p or u → v|¬i), where u, v ∈ V ∗

is determined by v. If the object a appears in v in the form ahere, then it will
remain in the same region. If it occurs in v in the form aout or ain, then it will
exit to the upper region or to one of the inner regions, respectively.

A promoted rule u → v|p can be applied only in the presence of promoter p.
An inhibited rule u → v|¬i can be applied only in the absence of inhibitor i.
Promoters and inhibitors can evolve according to some rules.

For two configurations C1 = (w′
1, w

′
2, . . . , w

′
m) and C2 = (w′′

1 , w
′′
2 , . . . , w

′′
m) of

Π , we say that a transition from C1 to C2 is performed if we can pass from
C1 to C2 by applying the rules from R1, . . . , Rm, in the corresponding regions
1, . . . ,m, in a maximally parallel manner and with competition on the objects∗.

A computation of Π is a sequence of transitions between configurations, start-
ing from the initial one. Π performs a successful computation iff it halts, i.e.,
there is no rule applicable to the objects present in the halting configuration.

The result of a successful computation is the number (or the vector of num-
bers) of objects from Σ present in the output region i0 in the halting config-
uration. Collecting all the numbers (or vectors of numbers), for any possible
halting configuration, we obtain the set N(Π) (or Ps(Π), respectively) – the set
of numbers (vectors of numbers) generated by Π .

The family of sets of numbers (or vectors of numbers) generated by P systems
with promoted (β = pro)/inhibited (β = inh) non-cooperative (α = ncoo)
and catalytic (α = catk) object rewriting rules using at most k catalysts, and
having at most m membranes, is denoted by NOPm(α, β) (or PsOPm(α, β),
respectively).

The following results regarding the computational power of P systems with
promoters/inhibitors are known.
• PsOP2(cat1, pro) = PsOP2(cat1, inh) = PsRE (see [1],[3]).
• PsOP1(ncoo, inh) = PsET 0L (see [8]).

1 In Section 5 we consider another mode of applying the rules by employing some
computable multi-valued functions that will govern the applications of the rules.

Modeling Dynamical Parallelism in Bio-systems 343

In what follows, we will prove that the model of P systems with non-cooperative
promoted rules in computational power equals the model of P systems with
non-cooperative inhibited rules.

Our first step is to show that the family of sets of vectors generated by P
systems with promoted non-cooperative rules and an arbitrary membrane struc-
ture equals the family of sets of vectors generated by P systems with the same
features but with only one membrane.

Lemma 1. PsOPm(ncoo, pro) = PsOP1(ncoo, pro), for m ≥ 2.

Proof. The inclusion PsOPm(ncoo, pro) ⊇ PsOP1(ncoo, pro) is trivial. For the
proof of the inclusion PsOPm(ncoo, pro) ⊆ PsOP1(ncoo, pro), we construct a P
system Π1 = (V,Σ,C, P, I, μ, w,R, i0) that simulates the computation of the P
system Πm = (V ,Σ,C, P , I, μ, w1, . . . , wm, R1, . . . , Rm, i0) in the following way.

First, let L = {1, 2, . . . ,m} denote the set of labels of the regions of Πm.
Then, we define:

• V = {ai | a ∈ V , i ∈ L};
• Σ = {ai | a ∈ Σ, i = i0 ∈ L};
• C = C = I = I = ∅;
• P ⊆ V ;
• μ = []1.
Let h : V

∗ × L → V ∗ be a mapping such that
1) h(a, i) = ai, a ∈ V , i ∈ L;
2) h(λ, i) = λ, for all i ∈ L;
3) h(x1x2, i) = h(x1, i)h(x2, i), x1, x2 ∈ V

∗
, i ∈ L.

• We define w = h(w1)h(w2) . . . h(wm), where wi is the multiset present in region
i ∈ L of Πm at the beginning of the computation;
•R is defined as follows. For each rule a → α|b ∈ Ri where a, b ∈ V and α is a
string over {c, cout, cin | c ∈ V }, i ∈ L, to R we add the rule h(a, i) → α′|h(b,i)

where α′ is the corresponding string over {h(c, i), h(c, j), h(c, k) | c ∈ V , i, j, k ∈
L}, j being the label of the outer region of i, and k being the label of the inner
region of i;
• i0 = 1.

In other words, for the P system with a single region that simulates a P system
with m regions, we have encoded the region labels into objects (the subscript
associated to an object indicates the region the corresponding object belongs
to) and we have expressed the rules of regions by the corresponding encoded
objects. In this way we ensured that, when simulating Πm with Π1, both the
parallelism at the level of regions and at the level of the whole system Πm is
respected. In addition, one can remark that whenever Πm halts, Π1 halts as
well. Moreover, when Π1 halts, in the output region of Π1 we will have all the
objects corresponding to the multisets present in all regions of Πm. However, in
the output multiset wΠ1 of Π1 we can distinguish the output multiset wΠm

of

344 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

Πm because we know which are the objects corresponding to the output region
of Πm (they are the objects that have as index i0).

Therefore, we have that PsOPm(ncoo, pro) ⊆ PsOP1(ncoo, pro). Con-
sequently, the theorem holds. ��

Now, one can prove that the class of sets of vectors of numbers generated by
P systems with non-cooperative promoted rules includes at least the class of
Parikh images of languages generated by ET0L systems.

Lemma 2. PsOP1(ncoo, pro) ⊇ PsET 0L.

Proof. We will simulate the computation performed by an arbitrary ET0L sys-
tem H = (V, T, ω,Δ) with T = {T1, T2}, using a P system Π1 defined as follows.
(Without the loss of the generality we may assume that H has only two tables.)
Let

Π1 = (Vπ , Σ, C, P, I, μ, w,Rπ , i0), where:

• Vπ = V ∪ {t, t1, t2,K,K1};
• Σ = Δ;
• C = I = ∅;
• P ⊆ V ;
• w = ωt;
• μ = []1;
• i0 = 1.

The set of rules, Rπ, consists of the following elements:

t → t1,

t → t2,

A → αK|t1 , for all rules A → α ∈ T1,

A → αK|t2 , for all rules A → α ∈ T2,

K → K1,

t1 → t|A , for all A ∈ V \Δ,

t2 → t|A , for all A ∈ V \Δ,

t1 → λ|K1 ,

t1 → t|K1 ,

t2 → λ|K1 ,

t2 → t|K1 ,

K1 → λ.

At the beginning of the simulation, inside the region of the P system we have
the input multiset, consisting of string ω (which corresponds to the axiom of

Modeling Dynamical Parallelism in Bio-systems 345

the ET0L system H), and object t (which represents the starting trigger for the
simulation of the nondeterministic table selection mechanism). Nondeterminis-
tically, object t is transformed into t1 or t2. Once object t1 (or object t2) is
produced, the simulation of the application of the corresponding table of the
ET0L system starts. All rules A → αK|t1 (or A → αK|t2 , respectively) corre-
sponding to rules A → α ∈ T1 (or A → α ∈ T2, respectively) are applied in
the maximally parallel manner. One can notice that if we applied at least once
such a rule, we have produced at least one object K. At this moment, we can
distinguish two cases: 1) the current configuration is represented by a multiset
that contains objects corresponding to nonterminals of the ET0L system; 2)
the current configuration is represented by a multiset that contains only objects
corresponding to terminals of the ET0L system.

In the first case one of the rules t1 → t|A or t2 → t|A will be executed, as well
as the rule K → K1. Since an object t is produced, the simulation of applying
a table of the ET0L system is iterated (recall that we do not have a terminal
string, therefore we do not have to stop).

In the second case, the rules t1 → t|A or t2 → t|A cannot be executed because
we assumed that the current configuration is represented by a multiset that
contains only objects corresponding to terminals of the ET0L system. Therefore,
the rule K → K1 is executed and afterward one of the rules t1 → λ|K1 (or
t2 → λ|K1 , respectively) and t1 → t|K1 . Depending on which rule is chosen to
be applied we again have two cases – we stop the simulation having a terminal
string in the output region or we continue. In both cases, as a last step of the
iteration, rule K1 → λ is applied.

The construction elaborated above proves that PsOP1(ncoo, pro) ⊇ PsET 0L.
��

For the converse inclusion we have to prove that any P system with non-
cooperative promoted rules can be simulated by a P system with non-cooperative
inhibited rules. Therefore, since PsOP1(ncoo, inh) = PsET 0L, the following re-
sult holds.

Lemma 3. PsOP1(ncoo, pro) ⊆ PsET 0L.

Proof. Let us consider a P system with non-cooperative promoted rules Π̃ =
(Ṽ , Σ̃, C̃, P̃ , Ĩ, μ̃, w̃, R̃, ĩ0) where Ṽ = {Ai | 1 ≤ i ≤ k}, Σ̃ ⊆ Ṽ , P̃ ⊆ Ṽ ,
C̃ = Ĩ = ∅, and μ̃ = []1.
Without any loss of generality we may assume that a non-cooperative rule
A → α is equivalent from computational point of view with the promoted non-
cooperative rule A → α|A. Hence, let us assume that R̃ = R̃1 ∪ R̃1 ∪ . . . ∪ R̃k,
with k = card(Ṽ), where

R̃i = {Ai → α(1,i)|p(1,i) ,

Ai → α(2,i)|p(2,i) ,

.

Ai → α(ti,i)|p(ti,i)}

346 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

The set R̃i, 1 ≤ i ≤ card(Ṽ), contains all the rules from R̃ having the symbol
Ai on their left-hand side. Remark that all the rules are promoted by certain
objects from V ; in particular all non-cooperative rules were written as the equiv-
alent promoted ones using the above convention.

We construct a P system with non-cooperative inhibited rules Π that simu-
lates the computation of Π̃ as follows. Let

Π = (V,Σ,C, P, I, μ, w,R, i0), where:

• V = Ṽ ∪ {rj,i | Ai → α(j,i) ∈ R} ∪ V ∪ V ∪ V̇ ∪ V̈ ∪ {X0, X1, X, Y0, Y1, Y };
• Σ = Σ̃;
• C = P = ∅;
• I ⊆ V ;
• μ = []1;
• i0 = 1;
and the set of rules R is defined as follows:
• for each R̃i ⊆ R̃ defined before we add the following rules ∗ to R:

Step Rule
1 r(j,i) → ṙ(j,i)|¬p(j,i) , 1 ≤ j ≤ ti

1? Ai → AiX0

2? X0 → X1X

2? Ai → α(j,i)Y0|¬ṙ(j,i)

3? ṙ(j,i) → r̈(j,i)|¬X0

3?, 4? X → λ

3? X1 → X

3? Y0 → Y1Y

3? Ai → Ȧi

3? Ai → Ȧi|¬X0

4? r̈(j,i) → λ|¬Y

4?,5? Y → λ

4? Y1 → Y

4? Ȧi → Äi|¬Y

5? r̈(j,i) → r(j,i)|¬X

5? Ȧi → Ai|¬X

The simulation is performed as follows. First of all, recall that the classical
definition of P systems assumes a universal clock that regulates the computation;
1 On the left-hand side of each rule we have specified the step of a given iteration, in

which the corresponding rule might be applied. The question marks indicate that
the corresponding rules might not be applicable in that step.

Modeling Dynamical Parallelism in Bio-systems 347

we will use this feature to synchronize different branches of the computation that
run in parallel. The basic idea of the simulation is the following: we try to simu-
late the execution of the rules Ai → α(j,i)|p(j,i) ∈ R by checking the simultaneous
existence of Ai and p(j,i) in different branches of computation (that require some
renaming of objects). If they are available simultaneously, then we simulate the
rewriting of Ai by α(j,i), otherwise we re-establish the initial configuration (since
we have used the renaming of objects). We stop the simulation when we detect
that no rules can further be applied in the simulated P system.

In more details, let us consider that with each rule Ai → α(j,i)|p(j,i) ∈ R
an object r(j,i) ∈ V is associated. Its purpose will be, by means of the rule
r(j,i) → ṙ(j,i)|¬p(j,i) , to “check” whether or not the object p(j,i) is in the current
multiset (if p(j,i) exists, then in the current multiset we will have the object
ṙ(j,i)). Simultaneously, all objects Ai which are present will be rewritten by the
rule Ai → AiX0. The object X0 is the root of another branch of the computation
that is required to “collect” the symbols Ai not rewritten by the rule Ai → α(j,i)
(this situation occurs when the rules of type Ai → α(j,i)|p(j,i) were not executed
because the objects p(j,i) were missing and there were no non-cooperative rules
of type Ai → α ∈ R). These objects are rewritten by the rule Ai → Ȧi. Later,
objects Ȧi will be rewritten into Ai if there exists at least one rule of Π that
was simulated and the process is repeated, otherwise we stop the computation
by deleting all objects r̈(j,i) (by the rule r̈(j,i) → λ|¬Y) and transforming the
objects Ȧi into Äi (by the rule Ȧi → Äi|¬Y). It is worth mentioning that the
objects Y0 (and their descendants, the objects Y1, Y) are used as witnesses to
the simulation of rules Ai → α(j,i). If at least one object Y appeared, it means
that the simulation should continue since at least one rule was simulated. ��

By Lemma 1, Lemma 2, and Lemma 3 we conclude that:

Theorem 5. PsOPm(ncoo, pro) = PsOPm(ncoo, inh) = PsET 0L, for m ≥ 1.

5 On Dynamical Parallelism in P Systems with
Non-cooperative Promoted Rules

In this section we will extend the original definition of P systems with sym-
bol rewriting rules to P systems working with dynamical parallelism in rule
applications and we will mainly focus on the definition of P systems using non-
cooperative promoted rules. However, the notions presented below can easily be
extended to other models of P systems.

For instance, considering an alphabet of objects V , a multiset of objects w ∈
V ∗, and a set of multiset rewriting rules R = {ri : ui → vi|pi | ui, vi, pi ∈
V ∗, 1 ≤ i ≤ k} we can define Rsap

w = rt1
1 rt2

2 . . . rtk

k , ti ∈ IN , 1 ≤ i ≤ k, a multiset
over R = {ri : ui → vi|pi | 1 ≤ i ≤ k} of multiset rewriting promoted rules
simultaneously applicable to w. Rsap

w is any multiset such that:⋃
1≤i≤k

ti ∗ left(ri) ⊆ w and pi ⊆ w if ti > 0.

348 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

Based on this concept, as before we can define, the notions RSAP
w , RMSAP

w , Dx,
RMAX

w , Ww. Hence, we can consider M-rate derivations in the weak and in the
strong mode, in a similar fashion as we did for M0L systems.

Consider a P system Π = (V,Σ,C, P, I, μ, w1, . . . , wn, R1, . . . , Rn, i0) defined
using the standard notation. Let fi : V ∗ → P(R∗) with fi(x) ∈ P(RSAP

x) for
x ∈ V ∗,, 1 ≤ i ≤ n, be computable multi-valued functions.

Now consider the system

Π(f1, . . . , fn) = (V,C,Σ, P, I, μ, w1, . . . , wn, R1, . . . , Rn, i0, f1, . . . , fn)

and let us describe how the computations are performed.
Starting from the initial configuration given by the n-tuple (w1, . . . , wn),

where wi, 1 ≤ i ≤ n, are multisets over V , the system evolves according to
the rules and objects present in the membranes, in a non-deterministic parallel
manner. The selection of the rules as well as the number of applications of the
selected rules on the multiset wi, 1 ≤ i ≤ n, are given by a multi-valued func-
tion fi, 1 ≤ i ≤ n (we have that fi(wi) ∈ P((Ri)SAP

wi
), in case of weak mode

derivation, or fi(wi) ∈ {X ⊆ RMSAP
wi

| Pr(X) = Pr(RMSAP
wi

)} for the strong
mode derivation). As usually, the system performs computation steps according
to a universal clock.

For a given configuration (x1, x2, . . . , xn) with xi, 1 ≤ i ≤ n, being multisets
over V , the rules are applied according to (Ri)sap

xi
= rt1

(i,1)r
t2
(i,2) . . . r

tk

(i,k) ∈ fi(xi),
1 ≤ i ≤ n (i.e., given a multiset xi, the rule r(i,j) is applied tj times, 1 ≤ j ≤ k).

For two configurations C1 = w′ and C2 = w′′ of Π , we say that a transition
is performed from C1 to C2 if we can pass from C1 to C2 by using the evolution
rules from Ri, 1 ≤ i ≤ n, applied according to the functions fi, 1 ≤ i ≤ n.

As usual, a computation of a P system Π is a sequence of transitions between
configurations. The system will make a successful computation if and only if it
halts. In case of generative P systems, the result of a successful computation is
the number (or the vector of numbers) of objects from Σ present in the membrane
i0, in a halting configuration of Π . If the computation never halts, then we will
have no output.

A P system Π is parallel-free if and only if for any set of functions fi, 1 ≤ i ≤ n,
the system Π produces the same set of vectors of natural numbers.

For such P systems, when speaking about the generated families of sets of
(vectors of) natural numbers we will specify the mode of derivation (weak
or strong), as well as the parallel-free property by superscripts associated to
the classical notation given in Section 4. For instance, PsOP s,pf

m (ncoo, pro)
represents the family of sets of numbers generated by P systems using non-
cooperative promoted rules, working in the strong mode and having the parallel-
free property.

Let us consider the following example:

Example 5. LetthePsystemΠ = (V,Σ,C, P, I, μ, w,R, ϑ, f)bedefinedasfollows:

V = {a, p};
Σ = {a};

Modeling Dynamical Parallelism in Bio-systems 349

C = ∅;
P = {p};
I = ∅;
μ = []1;
w = a2p;
R = {r1 : a → aaa|p, r2 : p → p, r3 : p → λ};
ϑ = 1;

f(x) = {r[0.5∗|x|a]+1
1 ri

2r
j
3 | i, j ∈ {0, 1}, i + j = 1}, x ∈ V ∗.

Let us investigate in more details how this system performs computation.
First, observe that the execution of rule r1 is controlled by the promoter p, while
the number of applications of r1 on the current multiset is given by the function
f . Assume that the rule r1 : a → aaa|p is executed k times in k derivation steps.
Then we have:

|w|a = |w1|a = 2;
|w2|a = 6;
|w3|a = 14;
· ·
|wk|a = ([|wk−1|a ∗ 0.5] + 1) ∗ card(right(r1))

+ |wk−1|a − ([|wk−1| ∗ 0.5] + 1)
= 2 ∗ (1 + [|wk−1| ∗ 0.5]) + |wk−1|a

where wi denotes the multiset of objects present in the region of Π , at the step
i of computation.

Observe that if |w1|a
...2 ⇒ |wk|a

...2, then this means that [|wi|a ∗ 0.5] = |wi|a ∗ 0.5,
1 ≤ i ≤ k. Since |w1|a = 2, we can drop off the integer part function and we
have the following recurrent formulas:

|wk|a = 2 ∗ |wk−1|a + 2 ∗20

|wk−1|a = 2 ∗ |wk−2|a + 2 ∗21

· ·
|w2|a = 2 ∗ |w1|a + 2 ∗2k−2

In order to obtain the general term |wk|a, we will multiply each recurrent formula
by a corresponding constant (as shown above) and we will sum up the results.
It follows that

|wk|a = 2k−1 ∗|w1|a +21 +22 + · · ·+2k−1 = 2+ · · ·+2k = 2∗(2k−1)
2−1 = 2k+1−2.

This means that Π generates the set {2k+1 − 2 | k ≥ 2}.

In Section 3 we have shown that MET 0Ls,pf = ET 0L. Since we have proved
in a constructive manner that PsOPm(ncoo, pro) = PsOPm(ncoo, inh), for m ≥
1, and in [8] it is proved also constructively that PsOPm(ncoo, inh) = PsET 0L,
then the following result holds.

350 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

P systems with m ≥ 1 membranes, using non-cooperative promoted symbol
objects rewriting rules, working in the strong mode, and having the parallel-free
property, generate the set of all Parikh images of languages generated by ET0L
systems. More formally, we state:

Theorem 6. PsOP s,pf
m (ncoo, pro) = PsET 0L, for m ≥ 1.

6 Conclusions

In this paper we have considered a general perspective of modeling biological
systems. The chemical reactions that might take place in real organisms are
modeled by rewriting objects but not in a totally parallel manner as in the
case of Lindenmayer systems or maximally parallel manner as in the P systems
framework.

We define the parallelism with the help of multi-valued functions that for a
given configuration establish the number of times the rules are applied. Regard-
ing this matter, we propose two ways of performing the derivation, the weak and
the strong modes, respectively. The weak mode describes the case when no re-
striction is imposed on the way the rewriting is done; the system is parallel (not
necessarily maximal) with competition on objects if it is the case. The strong
mode of derivation assumes that rules are applied in a manner described by the
multi-valued functions, but, in addition one can remark that each distinct sym-
bol from the sentential form is rewritten at least once (of course, if there are
rules that can handle it).

We have also shown that the new classes of P systems contain proper sub-
classes which are able to generate/accept the same families of sets of vectors/
numbers as the corresponding upper classes, regardless the choice of the rewriting
parallelism. The systems having this property are called parallel-free P systems.

Several results in these topics have been presented. In addition, we have
studied known problems in P systems theory. In Section 4 we have solved an
open problem in [4], regarding the computational power of P systems with non-
cooperative promoted rules.

Acknowledgments

The work of the third author was possible due to a doctoral FPU grant from
Ministry of Education, Spain.

References

1. P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, Membrane Systems with
Promoters/Inhibitors. Acta Informatica, 38, 10 (2002), 695–720.

2. M. Cavaliere, D. Sburlan, Time Independent P Systems, Lecture Notes in Computer
Science, 3365 (2005), 239–258.

3. M. Ionescu, D. Sburlan, On P Systems with Promoters/Inhibitors, International
Journal of Universal Computer Science, 10, 5 (2004), 581–599.

Modeling Dynamical Parallelism in Bio-systems 351

4. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
5. G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press,

New York, 1980.
6. G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.
7. D. Sburlan, Promoting and Inhibiting Contexts in Membrane Systems, doctoral The-

sis, University of Seville, Spain, 2006.
8. D. Sburlan, Further Results on P Systems with Promoters/Inhibitors, International

Journal of Foundations of Computer Science, 17, 1 (2006), 205–222.

P Colonies with a Bounded Number
of Cells and Programs�

Erzsébet Csuhaj-Varjú1,2, Maurice Margenstern3, and György Vaszil1

1 Computer and Automation Research Institute, Hungarian Academy of Sciences
Kende utca 13–17, H-1111 Budapest, Hungary

{csuhaj,vaszil}@sztaki.hu
2 Department of Algorithms and Their Applications, Loránd Eötvös University

Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary
3 Université Paul Verlaine - Metz, LITA, EA 3097

Île du Saulcy, 57045 Metz Cedex 1, France
margens@univ-metz.fr

Abstract. We continue the investigation of P colonies, a class of ab-
stract computing devices composed of very simple agents (computational
tools), acting and evolving in a shared environment. We show that if P
colonies are initialized by placing a number of copies of a certain object
in the environment, then they can generate any recursively enumerable
set of numbers with a bounded number of cells, each cell containing a
bounded number of programs (of bounded length), for constant bounds.

1 Introduction

P colonies were introduced in [4] as a class of very simple membrane systems
similar to the so-called colonies of simple formal grammars ([3]). A P colony
intends to model a community of very simple cells living together in a shared
environment. The cells are represented by a collection of objects and rules for
processing these objects, they are the basic computing agents in this formal
model of computing.

To restrict the capabilities of the agents, only two (or three) objects are al-
lowed to be inside any cell. Moreover, the rules of the cells are either of the form
a → b, specifying that an internal object a is transformed into an internal object
b, or of the form c ↔ d, specifying the fact that an internal object c is sent out
of the cell, to the environment, in exchange of the object d, which was present
in the environment and is now brought inside the cell. Thus, a cell containing
the objects a, c will contain the objects b, d after applying these rules in parallel.
Two such rules can also be combined into so called “checking” rules of the form
� This publication was supported by the Hungarian Foundation for Research and Tech-

nological Innovation (project no. TéT F-19/04) and the EGIDE in France (project
no. Balaton 09000TC, year 2005) in the frame of the Hungarian-French Intergovern-
mental Scientific and Technological Cooperation. The work of Erzsébet Csuhaj-Varjú
and György Vaszil was also supported by the Hungarian Scientific Research Fund
“OTKA” grant no. T 042529.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 352–366, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

P Colonies with a Bounded Number of Cells and Programs 353

c ↔ d/c′ ↔ d′ or c ↔ d/a → b which specify two possible actions: if the first
rule is not applicable then the second one should be applied.

With each cell, we associate a set of programs composed of rules as above.
In the case of systems consisting of cells with only two objects inside, each
program has two rules; when considering cells with three objects inside, then
the programs have three rules. The rules of the program must be applied in
parallel to the objects in the cell.

The cells of a P colony execute a computation by synchronously applying
their programs to objects inside the cells and outside in the environment. When
a halting configuration is reached, that is, when no more rules can be applied,
the result of the computation is read as the number of certain types of objects
present in the environment.

For more information on membrane computing, consult the monograph [7], for
more on grammar systems and colonies in particular, see [1] and [3], respectively.

It was shown in [4] and [2] that P colonies are able to compute any recursively
enumerable set of numbers, even in the situation when the starting configuration
contains an infinite number of copies of a certain object in the environment, and
two or three copies of the same object inside the cells. However, there is no lower
bound given for the number of cells or the number of programs needed to reach
this power.

In the present paper we show that if the environment is initialized by a finite
multiset of objects before the computation begins, then P colonies generate any
recursively enumerable set of natural numbers with a bounded number of cells
and a bounded number of programs in each cell, for constant bounds. The values
of the bounds presented in our results depend on the type of rules the P colonies
are given with and they suggest a trade-off between the number of necessary cells
and the number of necessary programs in each cell. Our results demonstrate that
one cell with a bounded, but fairly large amount of programs, might possess the
power of Turing machines, which power can also be reached by several cells and
a significantly lower number of programs in each cell.

2 Preliminaries and Definitions

Let V be an alphabet, let V ∗ be the set of all words over V , and let ε denote the
empty word. We denote the length of a word w ∈ V ∗ by |w|, and the number of
occurrences of a symbol a ∈ V in w by |w|a. The set of non-negative integers is
denoted by N.

A multiset over an arbitrary (not necessarily finite) set V is a mapping M :
V → N which assigns to each object a ∈ V its multiplicity M(a) in M . The
support of M is the set supp(M) = {a | M(a) ≥ 1}. If V is a finite set, then M
is called a finite multiset. The set of all finite multisets over the finite set V is
denoted by V ◦. We say that a ∈ M if M(a) ≥ 1, the cardinality of M , card(M)
is defined as card(M) = Σa∈MM(a). For two multisets M1,M2 : V → N,
M1 ⊆ M2 holds, if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2
is defined as (M1 ∪ M2) : V → N with (M1 ∪ M2)(a) = M1(a) + M2(a) for all

354 E. Csuhaj-Varjú, M. Margenstern, and G. Vaszil

a ∈ V , the difference is defined for M2 ⊆ M1 as (M1 − M2) : V → N with
(M1 − M2)(a) = M1(a) − M2(a) for all a ∈ V . A multiset M is empty if its
support is empty, supp(M) = ∅.

We will represent a finite multiset M over V by a string w over the alphabet
V with |w|a = M(a), a ∈ V , and ε will represent the empty multiset.

Now we recall the definition of a P colony [4]. A P colony is a construct

Π = (V, e, of , IE , C1, . . . , Cn), n ≥ 1,

where V is an alphabet (its elements are called objects), e (the environmental
object) and of (the final object) are two distinguished objects of V , IE ∈ (V −
{e})◦ is a finite multiset of objects initially present in the environment besides
the infinitely many copies of e, and C1, . . . , Cn are the cells of the colony. In [2]
and in [4], the multiset IE is empty, that is, initially only an infinite supply of
e objects are present in the environment. Here we define IE to be a finite non-
empty multiset, because we would like to allow the initialization of the colony
by placing objects different from e in the environment.

Each cell Ci, 1 ≤ i ≤ n, is a pair Ci = (Oi, Pi), where Oi is a multiset over {e}
having the same cardinality for all i, 1 ≤ i ≤ n (the initial state of the cell), and
Pi is a finite set of programs; each program being a set of rules of the forms a → b
(internal point mutation), c ↔ d (one object exchange with the environment),
c ↔ d/c′ ↔ d′ (checking rule for one object exchange with the environment), or
c ↔ d/a → b (checking rule for one object exchange with the environment or
internal point mutation), where a, b, c, d, c′, d′ ∈ V . The programs contain one
rule for each element of Oi, thus, the number of rules of a program coincides
with the cardinality of Oi, 1 ≤ i ≤ n.

A program is called restricted if it contains one point mutation rule of the
form a → b, and either one exchange rule of the form c ↔ d, or one checking
rule of the form c ↔ d/c′ ↔ d′. A P colony is called restricted if it contains two
objects in each cell and has only restricted programs. Two-objects colonies with
non-restricted programs, or three-objects colonies are called non-restricted.

The programs of the cells are used in the non-deterministic maximally parallel
way usual in membrane computing: in each time unit, each cell which can use
one of its programs should use one. When using a program, each of its rules must
be applied to distinct objects of the cell. In this way, we get transitions among
the configurations of the colony. A sequence of transitions is a computation. A
computation is halting if it reaches a configuration where no cell can use any
program. The result of a halting computation is the number of copies of the
object of present in the environment in the halting configuration. Initially, the
environment contains IE , a finite number of copies of objects from V − {e}
together with arbitrarily many copies of the environmental object e. Moreover,
as stated above, the cells also contain two or three copies of e inside.

Because of the non-determinism in choosing the programs, several computa-
tions can be obtained from a given initial configuration, hence with a P colony Π
we can associate a set of numbers computed by all possible halting computations
of Π .

P Colonies with a Bounded Number of Cells and Programs 355

For a P colony Π = (V, e, of , IE , C1, . . . , Cn) as above, a configuration can be
formally written as an (n + 1)-tuple

(w1, . . . , wn;wE),

where wi represents the multiset of objects from cell Ci, 1 ≤ i ≤ n (wi ∈ V 2

in the case of two-objects colonies and wi ∈ V 3 in the case of three-objects
colonies), and wE ∈ (V − {e})∗ represents the multiset of objects from the
environment different from the “background” object e.

The initial configuration is (ee, . . . , ee; IE) in the case of two-objects colonies
and (eee, . . . , eee; IE) in the case of three-objects colonies where IE ∈ (V −{e})∗.

Let the programs of each Pi be labeled in a one-to-one manner by labels in the
set lab(Pi) in such a way that lab(Pi) ∩ lab(Pj) = ∅ for i 	= j, 1 ≤ i, j ≤ n. For
a rule r and a multiset w ∈ V ◦, let left(r, w) = a and right(r, w) = b if a ∈ w
and r is a point mutation rule r = (a → b) or a checking rule r = (c ↔ d/a → b)
and d 	∈ w, and let left(r, w) = right(r, w) = ε otherwise. Let also, for a rule
r and a multiset w ∈ V ◦, export(r, w) = c and import(r, w) = d if d ∈ w and
r is an exchange rule r = (c ↔ d) or a checking rule r = (c ↔ d/c′ ↔ d′). If r
is a checking rule as above with d 	∈ w but d′ ∈ w, then let export(r, w) = c′,
import(r, w) = d′. Let export(r, w) = import(r, w) = ε in all other cases. For a
program p and any α ∈ {left, right, export, import}, let α(p, w) =

⋃
r∈p α(r).

A transition from a configuration to another is denoted as

(w1, . . . , wn;wE) ⇒ (w′
1, . . . , w

′
n;w′

E)

where the following conditions are satisfied: There is a set of program la-
bels P with |P | ≤ n, such that p, p′ ∈ P , p 	= p′, p ∈ lab(Pj) implies
p′ 	∈ lab(Pj), and for each p ∈ P , p ∈ lab(Pj), left(p, wE) ∪ export(p, wE) =
wj , and

⋃
p∈P import(p, wE) ⊆ wE . Furthermore, the chosen set P is maximal,

that is, if any other program r ∈
⋃

1≤i≤n lab(Pi), r 	∈ P , is added to P , then the
conditions above are not satisfied.

Now, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab(Pj),
let

w′
j = right(p, wE) ∪ import(p, wE).

If there is no p ∈ P with p ∈ lab(Pj) for some j, 1 ≤ j ≤ n, then let

w′
j = wj ,

and moreover, let

w′
E = wE −

⋃
p∈P

import(p, wE) ∪
⋃
p∈P

export(p, wE).

A configuration is halting if the set of program labels P satisfying the conditions
above cannot be chosen to be other than the empty set, ∅.

The set of numbers computed by a P colony Π is defined as

N(Π) = {|vE |of
| (w1, . . . , wn, IE) ⇒∗ (v1, . . . , vn, vE)}

356 E. Csuhaj-Varjú, M. Margenstern, and G. Vaszil

where (w1, . . . , wn, IE) is the initial configuration, (v1, . . . , vn, vE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

The family of all sets of numbers computed as above by initialized environment
P colonies with k-objects (k = 2, 3) of degree at most n ≥ 1 having at most h ≥ 1
programs in the cells without using checking rules, is denoted by IPCol k(n, h).
In the case of two-objects colonies, if we use only restricted programs, then we
write IPCol 2R instead of IPCol 2. If checking rules are allowed, then we write
IPCol Ch k instead of IPCol k; thus, for instance, IPCol Ch 2R(n, h) will
be the family of numbers computed by restricted two-objects P colonies with at
most n cells, each having at most h programs where the use of checking rules is
allowed.

In the following we compare the families IPCol α(n, h), where α ∈
{2, 3, 2R,Ch 2, Ch 3, Ch 2R}, with NRE, the family of sets of numbers com-
puted by Turing machines, and for this we need the notion of a (non-
deterministic) register machine. A register machine consists of a given number
of registers each of which can hold an arbitrarily large non-negative integer num-
ber (we say that the register is empty if it holds the value zero), and a set of
labeled instructions which specify how the numbers stored in registers can be
manipulated. There are several types of instructions which can be used.

– li : (ADD(r), lj , lk) - add 1 to register r and then go to one of the instructions
with labels lj or lk, non-deterministically chosen,

– li : (SUB(r), lj) - if register r is non-empty, then subtract 1 from it, otherwise
leave it unchanged, and go to the instruction with label lj in both cases,

– li : (CHECK(r), lj, lk) - if the value of register r is zero, go to instruction lj ,
otherwise go to lk,

– li : (CHECKSUB(r), lj , lk) - if register r is non-empty, then subtract 1 from it
and go to the instruction with label lj , otherwise go to the instruction with
label lk,

– lh : HALT - halt the machine.

Thus, formally, a register machine is a construct M = (m,H, l0, lh, R), where
m is the number of registers, H is the set of instruction labels, l0 is the start
label, lh is the halting label, and R is the set of instructions; each label from H
labels only one instruction from R. A register machine M computes a set N(M)
of numbers in the following way: it starts with empty registers by executing
the instruction with label l0 and proceeds by applying instructions as indicated
by the labels (and made possible by the contents of the registers); if the halt
instruction is reached, then the number stored at that time in register 1 is said to
be computed by M . Because of the non-determinism in choosing the continuation
of the computation in the case of ADD instructions, N(M) can be an infinite set.

It is known (see, e.g., [6]) that in this way we can compute all sets of num-
bers which are Turing computable by using instructions of type ADD, CHECKSUB,
and HALT. It is also known, that there exist universal register machines with a
small number of registers and a small number of instructions, the exact numbers
depending on the chosen set of instructions and the chosen notion of universality.

P Colonies with a Bounded Number of Cells and Programs 357

In [5] several results on small universal register machines are presented. The
register machines in this framework are used to compute functions of non-
negative integers by having the argument of the function in one of the registers
before the computation starts, and obtaining the result of the function in an
other register after a halting computation. The universal machines have eight
registers, and they can simulate the computation of any register machine M
with the help of a “program”, an integer code(M) ∈ N coding the particular
machine M . If code(M) is placed in the second register and an argument x ∈ N
is placed in the third register, then the universal machine simulates the com-
putation of M by halting if and only if M halts, and by producing the same
result in its first register as M produces in its output register after a halting
computation.

Since these machines are defined to compute functions of non-negative integers
and work in such a way that the argument of the function is initially present in
the third register, we need to modify them in order to conform to the number
generating definition we have given above. Thus, we add a new start label l′0 and
a separate non-deterministic ADD instruction, l′0 : (ADD(r3), l′0, l0), to produce an
argument x ∈ N in the third register before the actual computation begins, that
is, to make the resulting universal machine generate any value from the range
of the function computed by the simulated register machine. We summarize the
results we use from [5] in the following theorem.

Theorem 1. [5] Let M be the set of register machines. Then, there are register
machines U1, U2, U3 with eight registers and a recursive function g : M → N
such that for each M ∈ M, N(M) = N(Ui(g(M))), where N(Ui(g(M))) denotes
the set of numbers computed by Ui, 1 ≤ i ≤ 3, with initially containing g(M) in
the second register.

All these machines have one HALT instruction labeled by lh, one instruction
of the type ADD labeled by l0, and

– U1 has 8 + 11 + 13 = 32 instructions of the types ADD, SUB, and CHECK,
respectively,

– U2 has 9+13 = 22 instructions of the types ADD, and CHECKSUB, respectively,
– U3 has 8 + 1 + 12 = 21 instructions of the types ADD, CHECK, and CHECKSUB,

respectively.

Moreover, these machines either halt using the HALT instruction and having
the result of the computation in the first register, or their computation goes on
infinitely.

3 The Universality of P Colonies with a Bounded
Number of Cells

The proofs of the following results are based on techniques from [2] which are
combined with Theorem 1.

358 E. Csuhaj-Varjú, M. Margenstern, and G. Vaszil

3.1 Two-Objects P Colonies with Checking Rules

First we consider restricted two-objects P colonies with checking rules.

Theorem 2

IPCol Ch 2R(23, 5) = IPCol Ch 2R(22, 6) = NRE.

Proof. Let L ∈ NRE and let M be a register machine with L = N(M). Consider
the universal register machines from Theorem 1. By placing the code of M , the
value g(M), in the second register, they compute N(M), producing the result
in their first register. We show how to construct P colonies which simulate the
computation of U2 and U3.

Consider a P colony (V, e, a1, IE , C1, . . . , Cn) where V contains the special
object e, two symbols li and l′i for each instruction label li of the universal
machine, and one symbol aj , 1 ≤ j ≤ 8, for each register. The number of
symbols aj in the environment corresponds to the value of register j. Thus, the
initial contents of the environment, IE consists of g(M) copies of object a2 and
the label of the initial instruction l0. And so, the result of the computation can be
read as the number of objects a1 corresponding to the value of the first register
in a halting configuration.

The P colony we are going to construct contains one cell for each instruction.
An instruction li : (ADD(r), li,1, li,2) (li,1, li,2 are the labels of the corresponding

instructions) is simulated by increasing the number of objects corresponding to
the value of register r by one and by changing the instruction label li present in
the environment to li,1 or li,2. This can be done with five programs as follows.

Pi = {〈e → ar; e ↔ li〉, 〈li → li,1; ar ↔ e〉, 〈e → e; li,1 ↔ e〉,
〈li → li,2; ar ↔ e〉, 〈e → e; li,2 ↔ e〉}.

The reader can easily verify that the cell Ci starts working when label li oc-
curs in the environment. Then, by applying 〈e → ar; e ↔ li〉, the first program
listed above in Pi, one copy of symbol ar is generated (meantime li is brought
in the cell), and then either by the the second or by the fourth program (i.e.,
by 〈li → li,1; ar ↔ e〉 or by 〈li → li,2; ar ↔ e〉) ar is exported to the envi-
ronment. Ci finishes its activity by sending either li,1 or li,2 out from the cell
to the environment by using the third or the fifth program given above in Pi,
respectively.

An instruction li : (CHEKSUB(r), li,1, li,2) is simulated with five programs by
exchanging the label li to li,1 and decreasing the number of objects ar by one,
or if the number of objects ar is zero, then exchanging li to li,2.

Pi = {〈e → e; e ↔ li〉, 〈li → li,1; e ↔ ar/e ↔ e〉, 〈ar → e; li,1 ↔ e〉,
〈li,1 → li,2; e ↔ e〉, 〈e → e; li,2 ↔ e〉}.

As in the previous case, the cell starts working when label li appears in the
environment. Then, by using the first program in Pi, above, li is brought in the

P Colonies with a Bounded Number of Cells and Programs 359

cell. If the environment contains at least one copy of ar, then one ar is brought
inside the cell (by using 〈li → li,1; e ↔ ar/e ↔ e〉, the second program given
in Pi) and meantime li is changed for li,1. If the environment is free from ar,
then inside the cell only li is changed for li,1. The cell finishes its activity either
by applying the third program (i.e., 〈ar → e; li,1 ↔ e〉) which changes ar to e
and sends label li,1 to the environment or by using the fourth and after then the
fifth program when label li,2 is sent out from the cell, indicating that no ar was
present in the environment. The computation continues with the simulation of
the instruction labeled with li,2.

An instruction of type li : (CHECK(r), li,1, li,2) is simulated by six programs as
follows.

Pi = {〈e → e; e ↔ li〉, 〈li → l′i,1; e ↔ ar/e ↔ e〉, 〈l′i,1 → li,1; ar ↔ e〉,
〈e → e; li,1 ↔ e〉, 〈l′i,1 → li,2; e ↔ e〉, 〈e → e; li,2 ↔ e〉}.

This cell works similarly to the previous one, the only difference is that after
bringing one copy of ar inside the cell, this symbol must be returned to the
environment, which is performed by applying the third program (i.e., by 〈l′i,1 →
li,1; ar ↔ e〉).

In the colony, there are no programs for the halting label lh, thus, its appear-
ance ends the computation which otherwise never stops.

For the simulation of U2, consider Π2 = (V, e, a1, IE , C0, . . . , C22) with V and
IE as above, and one cell with the programs P0 for the initial ADD instruction
labeled with l0 which fills the input register, nine cells with Pi, 1 ≤ i ≤ 9, for the
simulation of the rest of the ADD instructions, and thirteen cells with Pi, 10 ≤
i ≤ 22, for simulating the CHECKSUB instructions. This gives us 1 + 9 + 13 = 23
cells with at most 5 programs.

For the simulation of U3, consider Π3 = (V, e, a1, IE , C0, . . . , C21) with V ,
IE and P0 as above, eight cells with Pi, 1 ≤ i ≤ 8, for the simulation of the
ADD instructions, one cell with P9 for the CHECK instruction, and twelve cells
with Pi, 10 ≤ i ≤ 21, for simulating the CHECKSUB instructions. This gives us
1 + 8 + 1 + 12 = 22 cells, this time with at most 6 programs.

Thus, we have shown that U2 can be simulated with 23 cells having at most 5
programs, and that U3 can be simulated with 22 cells having at most 6 programs.
This proves our statement. ��

The number of programs in one cell can be decreased if we use arbitrary, not
necessarily restricted programs.

Theorem 3
IPCol Ch 2(22, 5) = NRE.

Proof. Consider U3 from Theorem 1 and Π3 = (V, e, a1, IE , C0, . . . , C21)
from the proof of Theorem 2 where cell C9 corresponds to the instruction
l9 : (CHECK(r), l9,1, l9,2) which is simulated in P9 with six restricted programs as

360 E. Csuhaj-Varjú, M. Margenstern, and G. Vaszil

described above. If we allow non-restricted programs, then we can replace P9
with

P ′
9 = {〈e → e; e ↔ l9〉, 〈l9 → l9,1; e ↔ ar/e → l9,2〉, 〈l9,1 ↔ e; ar ↔ e〉,

〈l9,1 → e; l9,2 ↔ e〉}

which achieves the same effect as P9 with four programs. After bringing l9 inside
the cell (by performing the first program given in P ′

9), l9 is rewritten to l9,1 and
depending on whether or not the environment contains at least one occurrence of
ar, either one copy of ar is brought inside the cell or e is changed for l9,2. In the
first case both l9,1 and ar are exported to the environment, thus the presence of
ar in the environment is verified and the computation continues with simulating
the instruction labeled by l9,1. The second case proves that the environment is
free from ar and then the computation continues with simulating the instruction
labeled with l9,2, after exporting l9,2 to the environment. Thus, we can simulate
U3 with Π ′

3 = (V, e, a1, IE , C0, . . . , C8, C
′
9, C10, . . . , C21), C′

9 = (O9, P
′
9), which

gives us 22 cells with at most 5 programs. As 5 programs are necessary for the
simulation of the ADD and the CHECKSUB instructions, at most 5 programs are
needed for each Pi. ��

Now we show that by increasing the number of programs, one cell is sufficient
to generate any set in NRE, even with restricted programs.

Theorem 4

IPCol Ch 2R(1, 142) = NRE.

Proof. Similarly to the proof of Theorem 2, we show how to construct a P colony
Π which simulates the computation of the universal register machine U3 from
Theorem 1.

Let the nine ADD instructions be labeled by l0, . . . , l8, the one CHECK instruction
be labeled by l9, and the twelve CHECKSUB instructions be labeled by l10, . . . , l21.

Let Π = (V, e, a1, IE , C) where V contains the special objects e, t; the symbol
li for each instruction of U3, that is, for 0 ≤ i ≤ 21; the symbols l′i for the ADD
instructions, that is, for 0 ≤ i ≤ 8; the symbols l′′i for the CHECK and CHECKSUB
instructions, that is, for 9 ≤ i ≤ 21; and one symbol aj for each register j, 1 ≤
j ≤ 8, of U3. The initial contents of the environment, IE consists of a number
of copies of the object a2 for initializing the contents of the second register, and
one copy of the symbols l′i for 0 ≤ i ≤ 8. The result of a computation can be
read in a halting configuration as the number of objects a1 in the environment.

The computation starts by producing an arbitrary number of copies of the
double primed instruction labels l′′i , 9 ≤ i ≤ 21, and the introduction of a copy
of the initial instruction label l0. This is achieved with the following programs.

Pini = {〈e → l′′9 ; e ↔ e〉, 〈e → l′′21; l
′′
21 ↔ e〉, 〈e → l0; l′′21 ↔ e〉} ∪

{〈e → l′′i ; l′′i ↔ e〉, 〈e → l′′i+1; l
′′
i ↔ e〉, | 9 ≤ i ≤ 20}.

P Colonies with a Bounded Number of Cells and Programs 361

Now, for each instruction li : (ADD(r), li,1, li,2), 0 ≤ i ≤ 8, we have the following
programs

Pi = {〈li → l′i; e ↔ e〉, 〈e → ar; l′i ↔ l′i〉, 〈l′i → li,1; ar ↔ e〉,
〈l′i → li,2; ar ↔ e〉}.

It is easy to see that first label li is changed for symbol l′i inside the cell (the
first program given above in Pi), and then symbol e is changed for ar (by 〈e →
ar; l′i ↔ l′i〉, the second program in Pi). Then ar is sent out to the environment
and either the computation continues with simulating the instruction labeled by
li,1 or it continues with simulating the instruction labeled by li,2.

For the instructions li : (CHECKSUB(r), li,1, li,2), 10 ≤ i ≤ 21, we have the
programs

Pi = {〈li → l′i; e ↔ ar/e ↔ e〉, 〈ar → e; l′i ↔ l′′i 〉, 〈l′′i → li,1; e ↔ e〉,
〈l′i → li,2; e ↔ e〉}.

First, label li is changed for symbol l′i and if the environment contains at least
one copy of ar, then it is brought inside the cell. These changes are performed by
the first program listed in Pi. In the case of successfully bringing ar in the cell,
the computation continues with applying the second and the third program (i.e.,
by 〈ar → e; l′i ↔ l′′i 〉 and 〈l′′i → li,1; e ↔ e〉) , which results in erasing ar from
the cell (rewriting it onto e) and introducing the label of the next instruction
to be simulated, li,1. If ar was not present in the environment, then the fourth
program changes l′i to li,2, the label of the next instruction to be simulated.

For the instruction l9 : (CHECK(r), l9,1, l9,2) we also add these four programs,
but with the second and the third one modified to avoid decreasing the value
stored in the register. Thus,

P9 = {〈l9 → l′9; e ↔ ar/e ↔ e〉, 〈ar → ar; l′9 ↔ l′′9 〉, 〈l′′9 → l9,1; ar ↔ e〉,
〈l′9 → l9,2; e ↔ e〉}.

Moreover, in order to ensure that the cell exchanges primed objects from inside
with double primed objects from the environment, we also consider the programs

Ptrap = {〈l′i → t; e ↔ e〉, 〈l′i → t; ar ↔ e〉, 〈t → t; e ↔ e〉 | 9 ≤ i ≤ 21}

where t is a trap-object. If an exchange cannot be realized because the number of
double primed symbols produced in the initial phase is insufficient, then the trap-
object is introduced and the program 〈t → t; e ↔ e〉 works forever, preventing
the halting of the computation.

Considering the P colony above with C = (O,P) with P =
⋃21

i=0 Pi ∪ Pini ∪
Ptrap, we need 27 programs for the initial phase, 36 programs for the ADD in-
structions, 48 programs for the CHECKSUB instructions, 4 programs for the CHECK
instruction, and 27 programs in Ptrap. This gives us 27+36+4+48+27 = 142,
thus our statement is proved. ��

362 E. Csuhaj-Varjú, M. Margenstern, and G. Vaszil

3.2 P Colonies Without Checking Rules

Now we show how the use of checking rules can be avoided. First we consider the
case of two-objects P colonies with restricted and with unrestricted programs.

Theorem 5

IPCol 2(35, 8) = IPCol 2R(57, 8) = NRE.

Proof. We show how the universal register machines U1 and U3 from Theorem 1
can be simulated. Let U3 have nine ADD instructions labeled by l0, . . . , l8, one
CHECK instruction labeled by l9, and twelve CHECKSUB instructions labeled by
l10, . . . , l21, as in the previous theorem.

Consider Π3 = (V, e, a1, IE , C0, . . . , C21) from the proof of Theorem 2 and let
Π ′

3 = (V ′, e, a1, IE , C′
0, . . . C

′
34) where V ′ = V ∪ {l′i, l′′i | 0 ≤ i ≤ 21}. Now we

construct the cells C′
i, 0 ≤ i ≤ 34, which achieve the same effect as the 21 cells

of Π3. Note that the ADD instructions are simulated in Π3 by Pi, 0 ≤ i ≤ 8,
without checking rules, thus we can take

C′
i = Ci, 0 ≤ i ≤ 8,

without any change at all.
For the instruction l9 : (CHECK(r), l9,1, l9,2) we need two cells in Π ′

3, having at
most eight restricted programs as follows.

P ′
9 = {〈e → l′9,2; e ↔ l9〉, 〈l9 → l′9; l

′
9,2 ↔ e〉, 〈l′9 → l′′9 ; e ↔ ar〉,

〈l′′9 → l9,1; ar ↔ e〉, 〈l9,1 → l9,1; e ↔ l′′9,2〉, 〈l′9 → l9,2; e ↔ l′′9,2〉,
〈l′′9,2 → e; l9,1 ↔ e〉, 〈l′′9,2 → e; l9,2 ↔ e〉},

and

P ′
22 = {〈e → l′′9,2; e ↔ l′9,2〉, 〈l′9,2 → e; l′′9,2 ↔ e〉}.

The interplay of these two cells produces the desired “checking” effect, they ex-
change the symbol l9 to l9,1 if there is at least one ar symbol in the environment,
otherwise l9,2 is released. In more details, first cell C′

9 imports label l9 from the
environment and meantime introduces symbol l′9,2 (the first program given in
P ′

9). Then, by program 〈l9 → l′9; l
′
9,2 ↔ e〉, it changes l9 to l′9 and exports l′9,2

to the environment. In the next step cell C′
22 starts working, the activity of C′

9
depends on whether or not the environment contains at least one occurrence of
ar. In the next two steps C′

22 performs its programs which results in eliminating
l′9,2 from and exporting l′′9,2 to the environment. After then, C′

22 stops with its
activity. If the environment contains at least one copy of ar, then meantime C′

9
brings one ar inside the cell and rewrites l′9 onto l′′9 (the third program of P ′

9, i.e.,
〈l′9 → l′′9 ; e ↔ ar〉). The process continues with performing the fourth program in
P ′

9, by returning ar to the environment and changing l′′9 to l9,1. In the next two
steps, since the environment contains l′′9,2, cell C′

9, by performing the fifth and
seventh program in P ′

9, above, eliminates l′′9,2 from the environment and sends

P Colonies with a Bounded Number of Cells and Programs 363

the label of the next instruction to be simulated, l9,1 out from the cell. If the
environment does not contain ar, then after performing the second program, i.e.,
〈l9 → l′9; l′9,2 ↔ e〉, cell C′

9 must stop with its activity. It starts working again
after C′

22 had already sent l′′9,2 to the environment. By applying the sixth and
eights program in P ′

9, C′
9 brings l′′9,2 from the environment and sends out l9,2,

the label of the next instruction to be simulated.
For the instructions li : (CHECKSUB(r), li,1, li,2), 10 ≤ i ≤ 21, we also need two

cells with at most eight programs as follows. Let for each i, 10 ≤ i ≤ 21,

P ′
i = {〈e → l′i,2; e ↔ li〉, 〈li → l′i; l

′
i,2 ↔ e〉, 〈l′i → l′′i ; e ↔ ar〉,

〈ar → e; l′′i → li,1〉, 〈li,1 → li,1; e ↔ l′′i,2〉, 〈l′i → li,2; e ↔ l′′i,2〉,
〈l′′i,2 → e; li,1 ↔ e〉, 〈l′′i,2 → e; li,2 ↔ e〉},

and

P ′
13+i = {〈e → l′′i,2; e ↔ l′i,2〉, 〈l′i,2 → e; l′′i,2 ↔ e〉}.

The reader can easily observe that these pairs work together almost the same
manner as the ones above. The only difference is that, they not only check, but
if possible, also decrease the number of ar symbols in the environment.

Thus, if we have
C′

i = (ee, P ′
i), 9 ≤ i ≤ 34,

in Π ′
3, then we can simulate U3 with 35 cells, each having at most eight non-

restricted programs, but no checking rules.
For the proof of the statement concerning two-objects P colonies with re-

stricted rules, we simulate the universal machine U1 from Theorem 1. U1 has
nine ADD instructions labeled by l0, . . . , l8, thirteen CHECK instructions labeled
by l9, . . . , l21, and eleven SUB instructions labeled by l22, . . . , l32.

Let Π ′′
3 = (V ′′, e, a1, IE , C′′

0 , . . . C
′′
56) with V ′′ = {e} ∪ {li, l′i, l′′i | 0 ≤ i ≤

32} ∪ {aj | 1 ≤ j ≤ 8}, and let

C′′
i = C′

i, 0 ≤ i ≤ 8, where C′
i is as above.

For each instruction li : (CHECK(r), li,1, li,2), 9 ≤ i ≤ 21, we need two cells C′′
i

and C′′
24+i, as described above for P ′

9 and P ′
22.

For each instruction li : (SUB(r), li,1), 22 ≤ i ≤ 32, we need two cells in the P
colony, having at most seven restricted programs as follows. For i, 22 ≤ i ≤ 32,
let

Pi = {〈e → l′i,1; e ↔ li〉, 〈li → l′i; l
′
i,1 ↔ e〉, 〈l′i → l′′i ; e ↔ ar〉,

〈l′′i → li,1; ar → e〉, 〈li,1 → li,1; e ↔ l′′i,1〉, 〈l′i → li,1; e ↔ l′′i,1〉,
〈l′′i,1 → e; li,1 ↔ e〉},

and

P24+i = {〈e → l′′i,1; e ↔ l′i,1〉, 〈l′i,1 → e; l′′i,1 ↔ e〉}.

364 E. Csuhaj-Varjú, M. Margenstern, and G. Vaszil

The interplay of these pairs results in the decrease of the number of symbols
ar in all cases when this number is non-zero. It is easy to see that the two
cells work in a similar manner as the two cells that are presented above which
simulate instruction li : (CHECKSUB(r), li,1, li,2). The only difference is that both
in the case of presence of ar in the environment and in the case of its absence,
the computation continues with simulating the instruction labeled by li,1.

Now, if we have
C′′

i = (ee, P ′′
i), 9 ≤ i ≤ 56,

in Π ′′
3 , then we can simulate U1 with 57 cells, each having at most seven restricted

program, without checking rules. ��

The number of programs in the cells can be decreased if, instead of two, we allow
three objects in each cell, and thus, three instructions in each program.

Theorem 6
IPCol 3(35, 7) = NRE.

Proof. Consider Π ′
3 = (V ′, e, a1, IE , C′

0, . . . C
′
34) simulating U3 from Theorem 1

as described in the first part of the proof of the previous theorem. Now define
C′′

i = (eee, P ′′
i), 0 ≤ i ≤ 35, where for i, 0 ≤ i ≤ 8, P ′′

i is obtained from P ′
i by

adding a rule e → e to each program.
For l9 : (CHECK(r), l9,1, l9,2), we have

P ′′
9 = {〈e → l′9,2; e → l′9,1; e ↔ l9〉, 〈l9 → e; l′9,2 ↔ e; l′9,1 → l′9,1〉,

〈l′9,1 → l′′9,1; e ↔ ar; e ↔ e〉, 〈ar ↔ e; l′′9,1 → l9,1; e ↔ l′′9,2〉,
〈l′9,1 → e; e ↔ l′′9,2; e → l9,2〉, 〈l′′9,2 → e; l9,1 ↔ e, e → e〉,
〈l′′9,2 → e; l9,2 ↔ e; e → e〉},

and
P ′′

22 = {〈e → l′′9,2; e ↔ l′9,2; e → e〉, 〈l′9,2 → e; l′′9,2 ↔ e; e → e〉},
The interplay of the two cells is very similar to the interplay of cell pairs

constructed to simulate the corresponding CHECK instructions in the pre-
vious proofs. The simulation starts with the work of cell C′′

9 . By applying
the first program given in P ′′

9 symbol l9 is brought in the cell and the two
remaining symbols e are rewritten onto symbols l′9,2 and l′9,1. At the next
step, the cell sends out l′9,2 to the environment, l9 is rewritten to e and
l′9,1 remains unchanged. At the following step, C′′

22 imports l′9,2 from the
environment and rewrites one occurrence of e onto l′′9,2. Meantime C′′

9 either
imports one ar from the environment and rewrites l′9,1 onto l′′9,1 or, if there
is no occurrence of ar in the environment, it stops with its activity. In the
following step, C′′

22 sends l′′9,2 to the environment and rewrites l′9,2 to e and
finishes its activity. During this step C′′

9 does not work, it has no program
to be applied. After the appearance of l′′9,2 in the environment, C′′

9 starts
working again. Then either by applying the fourth and the sixth program or
the fifth and the seventh program given above in P ′′

9 it finishes the simulation by

P Colonies with a Bounded Number of Cells and Programs 365

exporting l9,1 or l9,2 to the environment, respectively. In the first case, i.e., when
the next instruction to be simulated is labeled by l9,1, C′′

9 returns the copy of ar

to the environment, thus verifies the presence of ar in the environment.
For the rules li : (CHECKSUB(r), li,1, li,2), 10 ≤ i ≤ 21, let us define

P ′′
i = {〈e → l′i,2; e → l′i,1; e ↔ li〉, 〈li → e; l′i,2 ↔ e; l′i,1 → l′i,1〉,

〈l′i,1 → l′′i,1; e ↔ ar; e → e〉, 〈ar → e; l′′i,1 → li,1; e ↔ l′′i,2〉,
〈l′i,1 → e; e ↔ l′′i,2; e → li,2〉, 〈l′′i,2 → e; li,1 ↔ e, e → e〉,
〈l′′i,2 → e; li,2 ↔ e; e → e〉},

and
P ′′

13+i = {〈e → l′′i,2; e ↔ l′i,2; e → e〉, 〈l′i,2 → e; l′′i,2 ↔ e; e → e〉}.
These cells work together very similarly as the cell pair C′′

9 and C′′
22, above, the

only difference is that C′′
i not only checks the presence/absence of symbol ar in

the environment but if the environment has at least one occurrence of ar, then
it eliminates one copy of ar from the environment. Thus, if we consider the P
colony Π ′′

3 = (V ′, e, a1, IE , C′′
0 , . . . C

′′
34), then our statement is proved. ��

4 Conclusion

We have shown that P colonies are able to simulate universal register machines,
provided they are initialized as follows: besides the infinitely many copies of
the environmental object, a finite number of other objects are placed in the
environment. Thus, P colonies are able to generate any recursively enumerable
set of non-negative integers with a bounded number of cells, each containing a
bounded number of programs of a bounded length.

We have considered different types of universal machines and different types
of P colonies, but still, our results are only a first approximation of the number
of necessary cells and programs. To decrease the present bounds, or to prove
that they are sharp ones, remains a topic of further research.

References

1. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, Gh.: Grammar Systems – A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London,
1994.

2. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, Gy.: Computing
with cells in environment: P colonies. Journal of Multiple Valued Logic and Soft
Computing (to appear).

3. Kelemen, J., Kelemenová, A.: A grammar-theoretic treatment of multi-agent sys-
tems. Cybernetics and Systems, 23 (1992), 621–633.

4. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically
inspired computing model. In: Workshop and Tutorial Proceedings. Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems (Alife IX)
(M. Bedau et al., eds.), Boston Mass., 2004, 82–86.

366 E. Csuhaj-Varjú, M. Margenstern, and G. Vaszil

5. Korec, I.: Small universal register machines. Theoretical Computer Science, 168
(1996), 267–301.

6. Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

7. Păun, Gh.: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.

P Finite Automata and Regular Languages over
Countably Infinite Alphabets�

Jürgen Dassow1 and György Vaszil2

1 Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

PSF 4120, D-39016 Magdeburg, Germany
dassow@iws.cs.uni-magdeburg.de

2 Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende utca 13-17, 1111 Budapest, Hungary
vaszil@sztaki.hu

Abstract. We examine the class of languages over countably infinite al-
phabets characterized by a class of restricted and simplified P automata
variants, which we call P finite automata, and show that these classes
possess several properties which make them perfect candidates for being
the natural extension of the notion of finite automata and that of regular
languages to infinite alphabets. To this aim, we also show that P finite
automata are equivalent to a restricted variant of register machines, pro-
viding a more conventional automata theoretical characterization of the
same infinite alphabet language class.

1 Extending the Chomsky Hierarchy to Infinite
Alphabets

We wish to use the framework of P automata to combine two approaches used
earlier to handle languages over infinite alphabets with devices having a finite
description, that is, with devices which can be described without the necessity of
specifying an infinite set of transition rules, and to define in some reasonable way
the infinite alphabet counterparts of classical language classes from the Chomsky
hierarchy.

One of these approaches can be summarized as enabling the device to remem-
ber a finite number of symbols from the infinite alphabet. If we think of machines
accepting strings of symbols, they might be equipped with a certain kind of data
structure made of memory slots capable of storing arbitrary symbols of the in-
finite alphabet, and with the ability to make equality checks between the input
symbols and some parts of the memory contents. Then, if we also create rules to
manipulate the contents of the memory, the transitions can be given by reference
to a finite subset of the memory slots and not to the input symbols themselves.
� Research supported in part by the Hungarian Scientific Research Fund “OTKA”

grant no. F037567 and by the Alexander von Humboldt Foundation of the Federal
Republic of Germany.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 367–381, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

368 J. Dassow and G. Vaszil

An example of this approach is [3] where the authors extend the notion of reg-
ular languages to infinite alphabets by defining them as sets of strings accepted
by so called finite memory automata, finite automata equipped with a finite set
of memory registers capable of storing symbols of the input. The transitions
which can also manipulate in some simple way the contents of the memory, are
based on the internal state of the finite control unit, and the equality (or non-
equality) of the input symbol with the contents of certain registers. A similar
idea is used in [1] to extend the notion of pushdown automata and of context-
free grammars to infinite alphabets. Since equality check in this framework is
“easy”, the language {a2n

i | i, n ≥ 1} over the alphabet Σ = {ai | i ≥ 1}, for
example, can easily be accepted by finite memory automata. On the other hand,
to capture relationships of the symbols other than equality or non-equality is
“hard”, the language {a2i | i ≥ 1} over Σ, for example, cannot be characterized
with any of the above mentioned devices.

The second approach for handling infinite alphabets can be summarized as
coding the symbols using a finite alphabet and then working with the corre-
sponding code-word language (over a finite alphabet) instead of the original
language (which is over an infinite alphabet).

As an example, we could mention [5] where a symbol ai from the infinite
alphabet Σ = {ai | i ≥ 1} is coded as the word 0i1 over the binary alphabet
{0, 1}, and then a language over the infinite alphabet Σ is defined to be regular
(or context-free), if the corresponding code-word language over the binary alpha-
bet {0, 1} is, in the conventional sense, regular (or context-free). This approach
has some advantages, the language {a2i | i ≥ 1}, for example, which cannot be
characterized with finite memory automata, is clearly regular according to this
definition. On the other hand, the equality check of symbols proves to be “hard”
in this framework, the language {aiai | i ≥ 1} for example, is in this sense a
non-regular, or {aiaiai | i ≥ 1} is a non-context-free language.

In the present paper, we propose the combination of the previously described
approaches: Instead of just coding or just remembering symbols, we propose to
remember the codes of symbols. In some sense, this can not only be seen as a
proposal which eliminates certain shortcomings of the above outlined concepts,
but also as a more “realistic” description of the act of remembering a symbol
from an infinite alphabet: The remembered object needs to be somehow denoted,
and for this, a finite collection of signs, elements of a notation, can be used, thus,
when we think of storing symbols, we really mean to think of storing code-words
corresponding to symbols, and exactly this fact is expressed in our proposed
model.

To explore these ideas, we will use the framework of membrane systems, or
more precisely of P automata, which provide a very natural machinery to cap-
ture the above described concepts. The introduction of P automata in [2] was
motivated by the idea of using P systems as language acceptors while keeping
the machinery as simple as possible. The objects in a P automaton may move
through the membranes from region to region, but they may not be modified
during the functioning of the systems, and furthermore, the “words” accepted by

P Finite Automata over Infinite Alphabets 369

a P automaton correspond to the sequences of multisets containing the objects
entering from the environment in each step of the evolution of the system.

Although the number of different objects used by the system, that is, the
number of elements of the object alphabet of the system is finite, the number of
possible multisets of objects entering the skin membrane in one computational
step can be infinite. The reason for this property lies in the parallelism of the
application of the evolution rules (which are communication rules in this case).
The number of objects manipulated by one rule is finite, but since they can be
applied in any number of “copies”, the number of objects affected by the rules
in one computational step can be arbitrary high, thus the potential number
of objects requested by the rules of the skin membrane to enter the system is
unbounded. Because of the infinite number of potential input multisets, it is
rather natural to consider a P automaton as a machine working with strings of
symbols over infinite alphabets.

In the following we define a quite restrictive class of such P automata, which
we call P finite automata, to obtain a reasonably simple, but on the other hand,
a still rather complex class of languages over countably infinite alphabets, and
examine how appropriate candidate this language class is for being called the
“infinite alphabet counterpart” of regular languages. To explore the relationship
of our P automaton based model and the ones based on more conventional type
of automata, we also define restricted variants of register machines which have
additional capabilities for dealing with countably infinite alphabets, but a very
restricted way of using the registers, the motivation of these restrictions being to
formalize the properties of the P automaton based model in a more conventional-
like automata theoretical framework.

We will show that the languages over finite alphabets contained by the lan-
guage class accepted by P finite automata are precisely the regular languages,
thus, since all infinite alphabet languages mentioned above as examples are also
contained in this class, with P finite automata we can obtain a more adequate
generalization of finite automata, and of regular languages, to infinite alphabets,
then with any of the above mentioned approaches.

2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to
be familiar with the basics of formal language theory, for details see [8]. Let Σ
be a not necessarily finite, but countable set of symbols called alphabet. Let Σ∗

be the set of all words over Σ, that is, the set of finite strings of symbols from
Σ, and let Σ+ = Σ∗ − {ε} where ε denotes the empty word.

Let V be a set of objects, let N and Z denote the set of nonnegative integers
and the set of integers respectively. A multiset is a mapping M : V → N which
assigns to each object a ∈ V its multiplicity M(a) in M . The support of M is
the set supp(M) = {a | M(a) ≥ 1}. If supp(M) is a finite set, then M is called
a finite multiset. The set of all finite multisets over the set V is denoted by V ◦.

We say that a ∈ M if M(a) ≥ 1. For M1,M2 : V → N, the containment
relation M1 ⊆ M2 holds if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and

370 J. Dassow and G. Vaszil

M2 is defined as (M1 ∪ M2) : V → N with (M1 ∪ M2)(a) = M1(a) + M2(a)
for all a ∈ V , the difference is defined for M2 ⊆ M1 as (M1 − M2) : V → N
with (M1 − M2)(a) = M1(a) − M2(a) for all a ∈ V , and the intersection is
(M1 ∩M2) : V → N with (M1 ∩M2)(a) = min(M1(a),M2(a)) for a ∈ V , where
min(x, y) denotes the minimum of x, y ∈ N. We say that M is empty if its
support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string w
over the alphabet V with |w|a = M(a) where a ∈ V and |w|a denotes the number
of occurrences of the symbol a in the string w, and with ε representing the empty
multiset. In the following we sometimes identify the finite multiset of objects
M : V → N with the word w over V representing M , thus we write w ∈ V ◦,
or sometimes we enumerate the not necessarily distinct elements a1, . . . , an of a
multiset as M = {{a1, . . . , an}}, by using double brackets to distinguish from
the usual set notation.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane which is unique and usually labeled with 1,
is called the skin membrane. The membrane structure is denoted by a sequence
of matching parentheses where the matching pairs have the same label as the
membranes they represent. If membrane i contains membrane j, and there is no
other membrane, k, such that k contains j and i contains k, then we say that
membrane i is the parent membrane of j, denoted as parent(j) = i.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. Applying the rules synchronously in each region, the
system performs a computation by passing from one configuration to another
one. Several variants of the basic notion have been introduced and studied prov-
ing the power of the framework, see the monograph [7] for a summary of notions
and results of the area. In the following we concentrate on communication rules
called symport or antiport rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule is
present in a region i, then the objects of the multiset x can enter from the parent
region or can leave to the parent region, respectively. An antiport rule is of the
form (x, in; y, out), x, y ∈ V ◦, in this case, objects of x enter from the parent
region and in the same step, objects of y leave to the parent region. All types
of these rules might be equipped with a promoter or inhibitor multiset, denoted
as (x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , with x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦},
where if Z = z then the rules can only be applied if region i contains the objects
of multiset z, or if Z = ¬z, then region i must not contain any of the elements
of z. (For more on symport/antiport see [6], for the use of promoters see [4].)

A P automaton is Γ = (V, μ, (w1, P1, F1), . . . , (wn, Pn, Fn)) where n ≥ 1 is the
number of membranes, V is a finite set of objects, μ is a membrane structure of n
membranes with membrane 1 being the skin membrane, and for all i, 1 ≤ i ≤ n,

– wi ∈ V ◦ is the initial contents (state) of region i, that is, it is the finite
multiset of all objects contained initially by region i,

P Finite Automata over Infinite Alphabets 371

– Pi is a finite set of communication rules associated to membrane i, they can
be symport rules or antiport rules, with or without promoters or inhibitors,
as above, and

– Fi ⊆ V ◦ is a finite set of finite multisets over V called the set of final states
of region i. If Fi = ∅, then all the states of membrane i are considered to be
final.

To simplify the notations we denote symport and antiport rules with or without
promoters/inhibitors as (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}, thus we
also allow x, y, z to be the empty multiset/empty string. If y = ε or x = ε, then
the notation above denotes the symport rule (x, in)|Z or (y, out)|Z , respectively,
if z = ε, then the rules above are without promoters or inhibitors, they can also
be denoted as (x, in; y, out). We might also exchange the order of multisets to
be sent out and to be imported, that is, the rule (x, out; y, in)|Z is equivalent to
(y, in;x, out)|Z , with x, y, Z as above.

The n-tuple of finite multisets of objects present in the n regions of the P au-
tomaton Γ describes a configuration of Γ , the n-tuple (w1, . . . , wn) ∈ (V ◦)n is
the initial configuration.

We say that a promoter or inhibitor Z of a rule (x, in; y, out)|Z ∈ Pi is consis-
tent with a configuration (w1, . . . , wn), if it permits the application of the rule,
that is, either Z = z ∈ V ◦ and z ⊆ wi, or Z = ¬z, z ∈ V ◦ and z ∩ wi = ε.

The transition mapping of a P automaton is a partial mapping δ : V ◦ ×
(V ◦)n → 2(V ◦)n

. These mappings are defined implicitly by the rules of the sets
Pi, 1 ≤ i ≤ n. For a configuration (u1, . . . , un),

(u′
1, . . . , u

′
n) ∈ δ(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ◦ the automaton may enter the new
configuration (u′

1, . . . , u
′
n) ∈ (V ◦)n, if there exist rules as follows.

– For all i, 1 ≤ i ≤ n, there is a multiset of rules Ri = {{ri,1, . . . , ri,mi}},
where ri,j = (xi,j , in; yi,j, out)|Zi,j ∈ Pi and Zi,j , 1 ≤ j ≤ mi, is consistent
with ui, satisfying the conditions below, where xi, yi denote the multisets⋃

1≤j≤mi
xi,j and

⋃
1≤j≤mi

yi,j , respectively. Furthermore, there is no rule
occurrence r ∈ Pj , being consistent with uj, 1 ≤ j ≤ n, with the additional
restriction that if r ∈ P1 then r 	= (x, in)|Z , such that the rule multisets R′

i

with R′
i = Ri for i 	= j and R′

j = {{r}} ∪Rj , also satisfy the conditions.

The conditions are given as

1. x1 = u, and
2. (
⋃

parent(j)=i xj) ∪ yi ⊆ ui, 1 ≤ i ≤ n,

and then the new configuration is obtained by

u′
i = ui ∪ xi − yi ∪

⋃
parent(j)=i

yj −
⋃

parent(j)=i

xj , 1 ≤ i ≤ n.

372 J. Dassow and G. Vaszil

Note that we allow the use of rules of type (x, in)|Z in the skin membrane in such
a way that the application of any number of copies of these rules is considered
to be maximally parallel.

Let us extend δ to δ̄, a function mapping (V ◦)∗, the sequences of finite mul-
tisets over V , and (V ◦)n, the configurations of Γ , to new configurations.

1. δ̄(v, (u1, . . . , un)) = δ(v, (u1, . . . , un)), v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄((v1) . . . (vs+1), (u1, . . . , un)) =

⋃
δ(vs+1, (u′

1, . . . , u
′
n))

for all (u′
1, . . . , u

′
n) ∈ δ̄((v1) . . . (vs), (u1, . . . , un)), vj , ui, u

′
i ∈ V ◦,

1 ≤ i ≤ n, 1 ≤ j ≤ s + 1.

Note that we use brackets in the multiset sequence (v1) . . . (vs+1) ∈ (V ◦)∗ in
order to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ◦.

The sequence of multisets of objects accepted by the P automaton is the
sequence of input multisets consumed by the skin membrane during the sequence
of computational steps while the system reaches a final state, a configuration
where for all j with Fj 	= ∅, the contents uj ∈ V ◦ of membrane j is “final”, i.e.,
uj ∈ Fj .

Let Γ be a P automaton as above with initial configuration (w1, . . . , wn), let
Σ be an alphabet, and let f : V ◦ −→ Σ ∪ {ε} be a mapping with f(x) = ε if
and only if x = ε.

We obtain the words of the language accepted by Γ as the images of the
accepted multiset sequences, that is,

L(Γ, f) = {f(v1) . . . f(vs) ∈ Σ∗ | (u1, . . . , un) ∈ δ̄((v1) . . . (vs), (w1, . . . , wn))
with uj ∈ Fj for all j with Fj 	= ∅, 1 ≤ j ≤ n, 1 ≤ s}.

Obviously, the choice of the mapping f is essential. It has to be “easily” com-
putable because the power of the P automaton should be provided by the under-
lying membrane system and not by f itself. The notion of “easiness”, however,
greatly depends on the context we are working in, so we do not give it a general
specification here.

3 P Finite Automata and Restricted Register Automata

Now we introduce restricted variants of P automata which we call P finite au-
tomata. The object alphabet of a P finite automaton contains a distinct element
which is the only one that can appear in an arbitrary number of copies in-
side the membrane structure and can be present only in the skin membrane.
The other objects can move around through the regions, but they can only be
exported, thus, their number of occurrences cannot increase during any compu-
tation. These properties are ensured by the very special and very simple form of
rules which can be used by the system.

Definition 1. A P finite automaton (PFA in short) is a P automaton (V ∪
{a}, μ, (w1, P1, F1), . . . , (wn, Pn, Fn)) where V ∪ {a} is a finite alphabet with a

P Finite Automata over Infinite Alphabets 373

distinct element denoted by a, μ is a membrane structure of n membranes, and
for 1 ≤ i ≤ n, wi ∈ V ◦ is the initial multiset of region i, Fi is the set of final
states for region i, and Pi is a finite set of rules associated to region i where

– if i 	= 1, Pi contains rules of the form (x, in; y, out)|Z with Z ∈ {z,¬z},
x, y, z ∈ V ◦, and

– P1 contains rules of the form (x, in; y, out)|Z where x ∈ {a}◦, y ∈ (V ∪{a})◦,
Z ∈ {z,¬z}, z ∈ V ◦.

Thus, a PFA can only input multisets of the symbol a from the environment
and these symbols can only remain in the skin region or be sent back to the
environment, but they cannot enter regions i with i ≥ 2. The symbol a is the only
one which can appear in arbitrary many copies inside the system, the number
of the other letters is at most as many as in the initial configuration, it might
only decrease during the computation.

The correspondence between the set of possible input multisets and the count-
ably infinite alphabet Σ = {ai | i ≥ 1} is based on the number of a symbols in
the input. If M ∈ {a}◦ is an input multiset containing k copies of the symbol
a, that is, M(a) = k, then M is mapped to ak ∈ Σ. Thus, a sequence of input
multisets corresponds to a sequence of letters from Σ. This is expressed in the
following definition.

Definition 2. Let Σ = {ai | i ≥ 1} be a countably infinite alphabet, and let
Γ be a PFA as above. The language over Σ accepted by Γ , denoted as L(Γ), is
defined as follows.

L(Γ) = {ai1ai2 . . . ais ∈ Σ∗ | (u1, . . . , un) ∈ δ̄((v1) . . . (vs), (w1, . . . , wn))
with uj ∈ Fj for all j with Fj 	= ∅, 1 ≤ j ≤ n, and

f(vk) = aik
, 1 ≤ k ≤ s}

where f is defined as f : {a}◦ → Σ ∪ {ε}, with f(M) = ai where M(a) = i for a
multiset M(a) > 0, and f(M) = ε for M with M(a) = 0, that is, if M is empty.

Let L(PFA) denote the class of languages accepted by P finite automata.
Now we define restricted two register automata, or RRA in short, an other

type of machine model to capture the capabilities of P finite automata. As we
will show, the two models are equivalent, that is, they characterize the same
class of infinite alphabet languages.

An RRA has a finite control unit and two registers holding nonnegative integer
values. The machine is capable of changing states, subtracting certain values
from the first register and adding other values to the second one, until no more
modifications of this type are possible. At this point, if the value of the second
register is k, the machine reads an input symbol ak from the countably infinite
input alphabet, empties the second register, and adds its value to the contents
of the first register. Then it continues its work by starting again the subtracting
and adding process.

374 J. Dassow and G. Vaszil

Definition 3. A restricted register finite automaton, or RRA in short, is a con-
struct M = (Σ,Q, P, q0, r0, F) where Σ = {ai | i ≥ 1} is a countably in-
finite alphabet, Q is a finite set of states of the form Q = {0, 1, . . . , c}n ×
{0,−1, . . . ,−c}n×{0, 1, . . . , c}n for some positive integer c ∈ N, the initial state
is q0 ∈ {0, 1, . . . , c}n×{0}2n ⊂ Q, r0 ∈ N is a nonnegative integer, the initial con-
tents of the first register, F ⊆ {0, 1, . . . , c}n×{0}2n ⊂ Q is the set of final states,
P is a finite set of instructions of the form [q; i1, i2], or [q; p1p2 . . . p2n; i1, i2]
where q ∈ {0, 1, . . . , c}n × {0}2n ⊂ Q, i1, i2 ∈ N, and pi ∈ Z, 1 ≤ i ≤ 2n,
with pi ≤ 0 for 1 ≤ i ≤ n, and pi ≥ 0 for n + 1 ≤ i ≤ 2n. Furthermore, for
[q; p1p2 . . . p2n; i1, i2] ∈ P ,

– if i1 = i2 = 0, then
∑2n

i=1 pi = 0, or
– if i1 + i2 > 0, then pi = 0 for n + 1 ≤ i ≤ 2n, and

∑2n
i=1 pi < 0. (1)

We call two states, q, q′ ∈ Q, similar, denoted as q ∼ q′, if the first n coordinates
coincide, that is, if q = (c1, . . . , c3n) and q′ = (c′1, . . . , c

′
3n) with ci = c′i for

1 ≤ i ≤ n.
A configuration of M is a triple (q, r1, r2) with the current state q ∈ Q, and

the current register contents r1, r2 ∈ N. Given a configuration (q, r1, r2), the
register contents can be modified obtaining (q, r′1, r

′
2), denoted as

(q, r1, r2) ⇒ (q, r′1, r
′
2),

if there is an instruction [q′; i1, i2] ∈ P for some q′ ∼ q with r1 − i1 ≥ 0,
r′1 = r1 − i1, r′2 = r2 + i2. Thus, the instruction can be applied in any q ∈ Q
being similar to q′ by subtracting the value of i1 from the first register, and
adding i2 is to the second register.

The internal state of the machine can be modified, denoted as

(q, r1, r2) ⇒ (q′, r′1, r
′
2),

if there is an instruction [q′′; p1p2 . . . p2n; i1, i2] ∈ P for some q′′ ∼ q, where
q = (c1, . . . , c3n), ci +pi ≥ 0, 1 ≤ i ≤ n, and r1− i1 ≥ 0. Then, q′ = (c′1, . . . , c′3n)
where c′i = ci for 1 ≤ i ≤ n, c′n+i = cn+i + pi for 1 ≤ i ≤ 2n, and r′1 = r1 − i1,
r′2 = r2 + i2. Thus, when an instruction of this type is used, then after modifying
the register contents using the values i1, i2, the machine enters a new state q′

obtained from q by adding pi, 1 ≤ i ≤ n, to the n + ith component of q (note
that pi ≤ 0), or adding pn+i to the 2n + ith component of q (where pn+i ≥ 0).

The machine can read the input symbol aj ∈ Σ, denoted as

(q, r1, j) ⇒aj (q′, r′1, 0),

where r′1 = r1 + j, that is, if the contents of the second register is j, the symbol
aj can be read from the input, while j is added to the value of the first register
and the contents of the second register is changed to 0. The new state q′ =
(c′1, . . . , c′3n) is obtained from q = (c1, . . . , c3n) such that c′i = ci + ci+n + ci+2n

for 1 ≤ i ≤ n, and c′i = 0 for n + 1 ≤ i ≤ 3n.

P Finite Automata over Infinite Alphabets 375

Let us denote the reflexive and transitive closure of ⇒ by ⇒∗, and let a
transition of M be defined as

(q, r1, 0) �aj (q′, r′1, 0),

if there is a sequence of rule applications

(q, r1, 0) ⇒∗ (q′′, r′′1 , j) ⇒aj (q′, r′1, 0),

where r′1 = r′′1 + j, and the following properties hold:
There is no [q̄; i1, i2] ∈ P such that q̄ ∼ q with i1 ≤ r′′1 , and there is no

[q̄; p1p2 . . . p2n; i′1, i′2] such that q̄ ∼ q and if q′′ = (c′′1 , . . . , c′′3n) then pi + c′′i ≥ 0
for all 1 ≤ i ≤ n, and i′1 ≤ r′′1 .

Note, that if (q, r1, 0) �aj (q′, r′1, 0) holds and there is a rule of the form
[q′′; 0, i2] ∈ P with q ∼ q′′, then (q, r1, 0) �aj+k·i2 (q′, r′1 + k · i2, 0) also holds, for
any k ∈ N.

Note also, that if any of i1 or i2 in an instruction [q; p1p2 . . . p2n; i1, i2] ∈ P is
not zero, and the instruction was used in a transition (q, r1, 0) �aj (q′, r′1, 0), then
it cannot be used in any other transition since, due to the constraint marked with
(1) above, after being in state q′ = (c′1, . . . , c′3n), the internal control can never
enter state q = (c1, . . . , c3n) again, because Σ3n

i=1c
′
i < Σ3n

i=1ci, and the machine
has no way to increase the sum of coordinates in the states.

Definition 4. Let M be a RRA as above. The language accepted by M is
defined as

L(M) = {w = x1 . . . xn ∈ Σ∗ | (q0, r0, 0) = C0 �x1 C1 �x2 · · · �xn−1

Cn−1 �xn Cn = (qf , r, 0) where qf ∈ F}.

Let the class of languages (over countably infinite alphabets) accepted by RRA
be denoted by L(RRA).

Now we show that P finite automata and restricted register automata are
equivalent, that is, they accept the same class of infinite alphabet languages.

Lemma 1. L(RRA) = L(PFA).

Proof. We first show that L(RRA) ⊆ L(PFA). Let Σ = {ai | i ≥ 1} be a
countably infinite alphabet, and let L ⊆ Σ∗ be a language accepted by the RRA
M = (Σ,Q, P, q0, r0, F) with Q = {0, 1, . . . c}n×{0,−1, . . .− c}n ×{0, 1, . . . c}n,
c ∈ N. We construct a P finite automaton Γ , such that L(M) = L(Γ).

Let Γ = (V ∪ {a}, [[]2]1, (w1, P1, F1), (w2, P2, ∅)) where V = {bi | 1 ≤ i ≤
n} ∪ {q, q′ | q ∈ Q} ∪ {A,A′, A′′, B, C}. For each q = (c1, . . . , c3n) ∈ Q, let us
denote with w(q) the multiset w(q) = bc1

1 . . . bcn
n . Note that for all q ∼ q̄, q, q̄ ∈ Q,

w(q) = w(q̄). Now, let

w1 = ar0w(q0)AC,

P1 = {(ai1 , out; ai2 , in)|q′A′′ | [q; i1, i2] ∈ P} ∪

376 J. Dassow and G. Vaszil

{(ai1b−p1
1 . . . b−pn

n , out; ai2 , in)|q′A′′ | [q; p1 . . . p2n; i1, i2] ∈ P,

i1 + i2 > 0} ∪
{(biC, out)|q | 1 ≤ i ≤ n, q ∈ Q} ∪ {(x, out)|B | x ∈ (V − {BC}) },

F1 = BC,

w2 = {{an·c
i | 1 ≤ i ≤ n}} ∪ {{q, q′ | q ∈ Q}} ∪ {{A′, A′′, B}},

P2 = {A′q, out;Aw(q), in)|A′′ , (A′′w(q)q′, out;A′q, in),
(A, out;A′′q′, in) | q ∈ Q} ∪ {(B, out;A′qf , in) | qf ∈ F} ∪

{(bp1+n

1 . . . bp2n
n , out; b−p1

1 . . . b−pn
n , in)|¬q′ | [q; p1 . . . p2n; 0, 0] ∈ P}.

We claim that Γ accepts the same words as M . To see this, consider the following.
A configuration of Γ containing the multiset w(q)ar1AC in the first region corre-
sponds to a configuration (q, r1, 0) of M . Γ is able to check which state of M cor-
responds to the multiset w(q) by using one of its rules (A′q, out;Aw(q), in) in the
second region which exchanges w(q) for the symbol q. Now, the rule (biC, out)|q
in the first region makes sure that q is really the state which was corresponding
to the contents of the first region since if there are any bi symbols are left, then C
is exported to the environment which makes it impossible for Γ to reach a final
state. Now q is brought back to the second region and w(q) is sent back to the first
region together with the symbols A′′q′. When A′′ and q′ is present in the first re-
gion, then the rules (ai1 , out; ai2 , in)|q′A′′ and (ai1b−p1

1 . . . b−pn
n , out; ai2 , in)|q′A′′

can be used to simulate [q, i1, i2] and [q; p1 . . . p2n; i1, i2], i1 + i2 ≥ 0, from the
rule set of M , respectively, while the rules of the form [q; p1 . . . p2n; 0, 0] are sim-
ulated by the rules (bp1+n

1 . . . bp2n
n , out; b−p1

1 . . . b−pn
n , in)|¬q′ in the second region.

The maximal parallel application of these rules corresponds to the repeated ap-
plication of the corresponding instructions of M . If a situation corresponding to
a final state of M is reached by Γ , then it is possible to finish the computation
by sending the symbol B from the second region to the first, which then re-
sults in exporting everything but C to the environment, reaching the final state
F1 = BC.

Let us now show that L(PFA) ⊆ L(RRA). Let Σ = {ai | i ≥ 1} be a
countably infinite alphabet, and let L ⊆ Σ∗ be a language accepted by the P
finite automaton Γ = (V ∪{a}, μ, (w1, P1, F1), . . . , (wm, Pm, Fm)). We construct
an RRA M , such that L(M) = L(Γ).

Let W =
⋃

1≤i≤m wi be the multiset of all objects from V which can be
found in the membrane system initially, and let c = maxb∈V (W (b)). Let also
M = (Σ,Q, P, q0, r0, F) with Q = {0, 1, . . . c}n×{0,−1, . . .− c}n ×{0, 1, . . . c}n,
and if we assume, without the loss of generality, that V = {b1, . . . bk}, then
n = m · k. The states of the finite control correspond to the possible distri-
butions of elements from V in the different membranes of Γ , the initial state
is q0 = (c1,1, . . . , c1,k, . . . , cm,1, . . . , cm,k, 0, . . . , 0) with ci,j = wi(aj), the set of
final states is F = {qf = (c1,1, . . . , cm,k, 0, . . . , 0) ∈ Q | for all i, 1 ≤ i ≤
m, with Fi 	= ∅, ci,j = ui(aj), 1 ≤ j ≤ k, for some ui ∈ Fi}. We say that a
promoter or inhibitor Z of a rule (x, in; y, out)|Z ∈ Pi is consistent with a state

P Finite Automata over Infinite Alphabets 377

q = (c1,1, . . . , c1,k, . . . , cm,1, . . . , cm,k, cm+1,1, . . . , c3m,k), if it is consistent with
the configuration of Γ corresponding to the state q, that is, with the configura-
tion (

⋃
1≤i≤k b

c1,i

i , . . . ,
⋃

1≤i≤k b
cm,i

i) given by the first n coordinates of q.
The initial register contents is r0 = w1(a), and the set of rules P is defined as

follows.

P = {[q; i1, i2] | (ai1 , out; ai2 , in)|Z ∈ P1, q ∈ Q such that Z is consistent
with q} ∪

{[q; p1,1 . . . p2m,k; 0, 0] | pi,j = −u(bj), pparent(i)+n,j = u(bj),
pi+n,j = v(bj), pparent(i),j = −v(bj) for all (u, out; v, in)|Z ∈ Pi,

such that Z is consistent with q, 1 ≤ i ≤ m, 1 ≤ j ≤ k} ∪
{[q; p1,1 . . . p2m,k; i1, i2) | p1,j = −u(bj), (ai1u, out; ai2 , in)|Z ∈ P1,

with i1 + i2 > 0, u(a) = 0, u 	= ε, 1 ≤ j ≤ k, and pi,j = 0
for 2 ≤ i ≤ m, 1 ≤ j ≤ k, suchthat Z is consistentwith q}.

To see how these rules simulate the P finite automaton Γ , consider the follow-
ing. A configuration (ar1v1, . . . , vm), vi ∈ V ◦, 1 ≤ i ≤ m, of Γ corresponds
to the configuration (q, r1, 0) of M where q describes the distribution of ele-
ments of V in the membrane structure, q = (c1,1 . . . , cm,k, 0 . . . , 0) with ci,j

denoting the number of elements of symbol bj inside membrane i, that is, with
ci,j = vi(bj), 1 ≤ i ≤ m, 1 ≤ j ≤ k. Each rule of the P finite automaton corre-
sponds to an instruction of M , their maximal parallel application is simulated
by the repeated application of these instructions, and the final states of M are
constructed to describe the final configurations. ��

4 L(PFA) as the Extension of the Regular Language
Class to Infinite Alphabets

First we show that all “conventional”, finite alphabet regular languages can be
accepted by P finite automata.

Lemma 2. L(REG) ⊂ L(PFA).

Proof. Let M = (Σ1, Q, δ, q0, F) be a finite automaton over the finite input
alphabet Σ1 = {a1, . . . , ak}, with set of states Q, transition relation δ : Q×Σ →
Q, initial state q0 ∈ Q, and set of final states F ⊆ Q. Let the regular language
accepted by M be denoted by L(M). Let us also assume that q0 	∈ F .

Let TRANS = {[q1, ai, q2] | δ(q1, ai) = q2} and let TRANS′ = {[q1, ai, q2]′ |
δ(q1, ai) = q2}, a primed and a non-primed set of triples corresponding to the
transitions of M . Let us also denote for any t′ ∈ TRANS′, by next(t′) ∈
TRANS the set of those non-primed transition symbols which correspond to
transitions that can follow the transition denoted by the primed symbol t′, that
is, next(t′) = {[q2, aj, q3] ∈ TRANS | t′ = [q1, ai, q2]′}. For any non-primed
t ∈ TRANS, we always denote the corresponding primed symbol from TRANS′

by t′.

378 J. Dassow and G. Vaszil

Now we construct a P finite automaton Γ , such that L(Γ) = L(M). Let Γ =
(V ∪{a}, [[]2]1, (w1, P1, ∅), (w2, P2, F2)) where V = TRANS∪TRANS′∪{#}
and

w1 = a#,

P1 = {(ai, in; a, out)|t, (ai−1, out)|t′ | t = [qj , ai, qk], i > 1} ∪
{(a, in; a, out)|t | t = [qj , a1, qk]},

w2 = {{t, t′ | t ∈ TRANS}},
P2 = {(#, in; t0, out) | t0 = [q0, ai, q]} ∪

{(t, in; t′, out), (t′, in; s, out) | t ∈ TRANS, s ∈ next(t′)},
F2 = { {{t, t′ | t ∈ TRANS}} − {{s′}} | for

all s′ ∈ TRANS′ such that s′ = [q, ai, qf]′, qf ∈ F}.

It is not difficult to see how Γ simulates M . The rules of the second region
are responsible for sending symbols representing the transitions of M into the
first region in an order which is a legal transition sequence of M , and the rules
of the first region import from the environment the necessary number of as
corresponding to the input symbol belonging to the simulated transition. ��

Now we show that the class of finite alphabet languages accepted by P finite
automata is precisely the class of regular languages.

Lemma 3. If L is a language over a finite alphabet, such that L ∈ L(PFA),
then L ∈ L(REG).

Proof. Let M = (Σ,Q, P, q0, r0, F) be a RRA and let L(M) ⊆ Σ∗
1 where Σ1 ⊆ Σ

is a finite alphabet. Note that the existence (the applicability) of a rule of the
form [q, 0, i2] ∈ P with i2 > 0 would contradict the fact that L(M) is a language
over a finite alphabet, thus, we can assume that there are no rules of this form in
the rule set P . Let us also assume, without the loss of generality, that q0 	∈ F . In
the following, we construct a nondeterministic finite automaton M ′, such that
L(M ′) = L(M).

Let for all q ∈ Q, Decq = {i1 | [q′; i1, i2] ∈ P, q′ ∼ q, i1 > 0}, and let ∞ be a
symbol, such that for all i ∈ N, i ≤ ∞. Then, let rest(q) ∈ N ∪ {∞} be the set

rest(q)
{

min(Decq)− 1 if Decq 	= ∅,
∞ if Decq = ∅,

that is, rest(q) denotes the maximal nonnegative integer value which can be
stored in the first register when M is in state q, such that no rule of the form
[q′, i1, i2] decrementing the first register can be applied because the contents of
the first register is less then necessary. If for a certain q ∈ Q, there is no such

P Finite Automata over Infinite Alphabets 379

rule, that is, the set Decq is empty, then rest(q) = ∞. Note that for q, q′ ∈ Q, if
q ∼ q′, then rest(q) = rest(q′).

Let M ′ = (Σ1, Q
′, δ, q′0, F ′) be a finite automaton with input alphabet Σ1,

state set Q′, transition relation δ : Q′ ×Σ1 → 2Q′
, initial state q′0 ∈ Q′, and set

of final states F ′ ⊆ Q′.
The states of M ′ are elements of Q× N,

Q′ = {(q, i) | q ∈ Q, 0 ≤ i ≤ max({rest(q) | q ∈ Q, rest(q) 	= ∞}) + |Σ1|+
r0 + c ·m · |P |},

where c ∈ N, such that Q ⊆ {0, 1, . . . , c}n×{0,−1, . . . ,−c}n×{0, 1, . . . , c}n and
m = max({i2 | [q; p1 . . . p2n; i1, i2] ∈ P}).

The initial state of M ′ is q′0 = (q0, r0). For the initial state, we define for
all j, 0 ≤ j ≤ |Σ1|, that is, since in our notation a0 = ε, for all symbols from
Σ1 ∪ {ε}

trans((q0, r0), aj) = {(q, i) | (q0, r0, 0) �aj (q, i, 0)}.
Let Q′

0 = {(q0, r0)}, and let Q1 = Q′
0 ∪ {(q, i) ∈ trans((q0, r0), aj) | 0 ≤ j ≤

|Σ1|}. Now, for all states in (q, i) ∈ Q′
1 and 0 ≤ j ≤ |Σ1|,

trans((q, i), aj) = {(q′, i′) | (q, i, 0) �aj (q′, i′, 0)},

and Q′
2 =

⋃
(q,i)∈Q′

1,0≤j≤|Σ1| trans((q, i), aj).
We continue this way the definition of trans andQ′

i, i ≥ 0. That is, if we already
have Q′

i, then Q′
i+1 =

⋃
(q,k)∈Q′

i,0≤j≤|Σ1| trans((q, k), aj), where for 0 ≤ j ≤ |Σ1|,

trans((q, k), aj) = {(q′, k′) | (q, k, 0) �aj (q′, k′, 0)}.

We claim that
⋃

i≥0 Q′
i is a finite set, namely that

⋃
i≥0 Q′

i ⊆ Q′, that is, that
M ′ with δ = trans is a finite automaton.

To see this, consider a derivation of the RRA M ,

(q0, r0, 0) �x1 . . . (qi, ri, 0) �xi+1 (qi+1, ri+1, 0) . . . �xn (qn, rn, 0),

and let (qi, ri, 0) �xi+1 (qi+1, ri+1, 0) be a transition with

(qi, ri, 0) ⇒∗ (qi, r
′
i, j) ⇒xi+1 (qi+1, ri+1, 0) (2)

where xi+1 = aj , and ri+1 = r′i + j.
There are two possibilities.

1. If rest(qi) < ri, then r′i ≤ rest(qi), otherwise there would be a rule [q′, k1, k2]
∈ P with q′ ∼ q, k1 > 0, such that r′i ≥ k1, and this is not allowed by the
definition of a derivation step of RRA. So, since r′i ≤ rest(qi), the new
contents of the first register is ri+1 = r′i + j ≤ rest(qi) + j ≤ rest(qi) + |Σ1|.

2. If rest(qi) > ri then r′i = ri−si,1, j = si,2 where if Pi is the multiset of rules
of the form [q′i, p1 . . . p2n; i1, i2] applied in the transition denoted by (2) above,

380 J. Dassow and G. Vaszil

then si,1 =
∑

[q;p1...p2n;i1i2]∈Pi
i1, si,2 =

∑
[q;p1...p2n;i1i2]∈Pi

i2 (since there is
no rule of the form (q, 0, i) ∈ P). Now, since ri+1 = ri − si,1 + si,2, the value
of the first register can increase at most with the value si,2 ≤ mi · |Pi| during
the transition, where mi = max({i2 | [q; p1 . . . p2n; i1, i2] ∈ Pi}).

Let us now look again at the derivation and the transition step (qi, ri, 0) �xi+1

(qi+1, ri+1, 0) above. If this transition is of the first type, then ri+1 ≤ rest(qi)+|Σ1|
which means that (qi+1, ri+1) ∈ Q′.

If the transition step (qi, ri, 0) �xi+1 (qi+1, ri+1, 0) is of the second type, then
let (qj , rj , 0) �xj+1 (qj+1, rj+1, 0) for some l ≤ j ≤ i the be the transition
sequence containing all consecutive transitions of the second type which took
place before, that is, where

– either l = 0, or (ql−1, rl−1, 0) �xl (ql, rl, 0) is a transition of the first type,
and

– (qj , rj , 0) �xj+1 (qj+1, rj+1, 0) is a transition of the second type for all
l ≤ j ≤ i.

Since the rules [q′i; p1 . . . p2n; i1, i2), q′i ∼ qi, with i2 > 0 have the property that
no q′′i ∼ q′i, q′′i ∈ {0, 1, . . . , c}n × {0}2n is reachable after their application, if
we start the derivation with a register value rl in the first register, then the
total increase of this value cannot be more then s2 = c · m · |P | where m =
max({i2 | [q; p1 . . . pn; i1, i2] ∈ P}). Thus ri+1 ≤ rl + s2. Since rl = r0, or
rl ≤ rest(qi) + |Σ1|, it has to hold that ri+1 ≤ r0 + rest(qi) + |Σ1| + s2,and
therefore (qi+1, ri+1) ∈ Q′ holds also in this case.

After these considerations we can see that trans is a function of type
Q′ ×Σ1 → 2Q′

, thus, if we take δ = trans and F ′ = {(q, i) | (q, i) ∈ Q′, q ∈ F},
then it is clear that the finite automaton M ′ simulates the RRA M , because δ
specifies the transitions of M and all states of F ′ correspond to accepting con-
figurations of M . ��

5 Conclusion

We have presented two equivalent computing models which are able to charac-
terize languages over infinite alphabets, we called them P finite automata and
restricted register finite automata. We have shown that the languages over finite
alphabets contained in the language class that these models characterize are
precisely the regular languages, thus it can be seen as the extension of the class
of regular languages to infinite alphabets. Without going into the details, we
would like to add that the languages mentioned in the introduction as regular
in the sense of [3] but not regular in the sense of [5], and vice versa, can all be
accepted by our model, thus, it seems that our approach is able to eliminate at
least some of the shortcomings of previous attempts to define the class of regular
languages over infinite alphabets in a reasonable way. A more detailed analysis
of L(PFA) (or equivalently L(RRA)) remains a topic of further study.

P Finite Automata over Infinite Alphabets 381

References

1. Cheng, E.H.Y., Kaminski, M.: Context-free Languages over Infinite Alphabets. Acta
Informatica, 35 (1998), 245–267.

2. Csuhaj-Varjú, E., Vaszil, Gy.: P Automata. In: Păun, Gh., Zandron, C. (eds.): Pre-
Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, 2002. Pub. No. 1 of MolCoNet-IST-2001-32008
(2002) 177–192, and also in Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C.
(eds.): Membrane Computing. LNCS 2597, Springer, Berlin, 2003, 219–233.

3. Kaminski, M., Francez, N.: Finite-Memory Automata. Theoretical Computer Sci-
ence, 134 (1994), 329–363.

4. Mart́ın-Vide, C., Păun, A., Păun, Gh.: On the Power of P Systems with Symport
Rules. Journal of Universal Computer Science, 8(2) (2002), 317–331.

5. Otto, F.: Classes of Regular and Context-free Languages over Countably Infinite
Alphabets. Discrete Applied Mathematics, 12 (1985), 41–56.

6. Păun, A., Păun, Gh.: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing, 20(3) (2002), 295–306.

7. Păun, Gh.: Membrane Computing: An Introduction. Springer, Berlin, 2002.
8. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-Verlag,

Berlin, vol. 1-3, 1997.

Mitotic Oscillators as MP Graphs

Giuditta Franco1, Pietro Hiram Guzzi2,
Vincenzo Manca1, and Tommaso Mazza2

1 Department of Computer Science, University of Verona, Italy
franco@sci.univr.it, vincenzo.manca@univr.it

2 Magna Græcia University of Catanzaro, Italy
{hguzzi, t.mazza}@unicz.it

Abstract. This paper proposes a model in terms of metabolic P graphs
of a few important processes occurring during the biological phase where
the choice is made to begin again mitosis or to arrest it. The cellular
processes during this phase turn out to be especially interesting in the
case of DNA damage, which triggers a specific destruction of Cdc25A
phosphatase. It has important implications to understand the role of cell
cycle checkpoints and the mechanism(s) guiding the proliferation of UV-
resistant tumored cells. The formalism of metabolic P graphs highlights
the relevant information of the biological network dynamics, and the
individuation of few parameters rules the basic mechanisms of Cdc25A
degradation, involving a couple of important mitotic oscillators.

1 Introduction

Membrane systems were proposed as a model to represent various aspects of
molecular localization and compartmentalization, including the movement of
molecules between compartments, the dynamic rearrangement of molecular re-
actions, and the interaction between molecules in a compartmentalized setting.
They have been widely investigated as models and tools of interest for com-
puter science [20], while recently the intent to employ membrane systems as a
framework to study real biological systems is vividly pursued [4,1,3].

In particular, a novel perspective has been introduced by Manca and his group
[4,18] along with the idea of controlling the evolution of a (membrane) system by
means of rules whose “strength” is identified with a numerical value (reactivity)
which depends on the system state (that is, the objects concentration). Every
reactivity denotes the ability of the corresponding rule to compete against other
rules in capturing part of the population of reactants on which the reaction is
performed [7]. By going ahead in this perspective, every reactivity is determined
by the corresponding (reaction) map evaluated on the state of the system, and
a strategy for partitioning the objects in the system (at every transition) is
given, which depends on the relative magnitude of every reactivity [5]. This new
strategy of rule application was inspired by actual ‘metabolic reactions’, and it
seems to lead membrane computing toward interesting simulations of biological

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 382–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mitotic Oscillators as MP Graphs 383

processes, such as representations of signal transduction networks and complex
oscillations [6,8,16].

The dynamics regulating the cyclic oscillation of some biochemicals is espe-
cially important to figure out the regulation mechanisms that provide the life of
the cellular system. Namely mitotic oscillations are a mechanism exploited by na-
ture to regulate the mitosis process, that is, the cell division aimed at producing
two daughter cells identical to the single parent cell. Mitotic oscillations concern
the fluctuation of activation state of the substances involved in the process. The
context and the inspiration of this paper lie in [17], where the mitotic oscillator
of amphibian embryos was studied by means of three models, inspired by the A.
Goldbeter differential equations system and by the careful observation and the
direct description of the biological oscillator itself. In particular, the formalism
of metabolic P graphs is introduced that represents all the information needed
by the metabolic algorithm to calculate the dynamics of a biological network.

Here we analyze the interruption, after a DNA damage, of the cell division
cycle due to the degradation of Cdc25A, which is a phosphatase crucial in the mi-
tosis process [14,15]. This is even more interesting if one considers that up to now
the arrest induced by DNA damage has been ascribed only to the transcription
factor and tumor suppressor protein p53. Surprisingly though, transient inhibi-
tion of Cdk2 (the kinase whose complex is activated by Cdc25A) in response
to DNA damage occurs even in cells lacking p53 [11] or p21, [24] which is an
inhibitory protein transcriptionally regulated by p53. Thus, p21WAF1/CIP1 is an
important effector of the mitosis arrest [9] and plays a critical role in the well-
documented p53 function (for a P systems model of p53 signaling pathways by
we refer to [22]). It has also important implications for understanding cell cycle
checkpoints and the mechanism(s) through which p53 inhibits human neoplasia.

Given the importance of checkpoints for preventions of genetic diseases in-
cluding cancer, we explore these alternative mechanisms of mitosis arrest, by
identify a p53-independent signalling pathway that causes the cell division ar-
rest after DNA damage. We formalize such a biological reality as a metabolic P
graph [17], with the aim to obtain a model to reproduce and observe the evolu-
tion of the system. The fluctuation of the key elements concentrations is crucial
to capture typical healthy states of the system. The goal is to deflect whichever
diseased path to healthy paths by modulating, in a few steps, the considered
concentrations.

In what follows, we first we present a qualitative description of the main
phenomena involving three mitotic oscillators, then the pathway in which we
are interested, and finally the graph describing the corresponding process.

2 Checkpoints in Cell Cycle

The cell cycle consists of the four phases, Gap 1, S, Gap 2, and M, that are
displayed in Figure 1. Gap 1 (called G1) is the interval between mitosis and DNA
replication, that is characterized by cell growth. G1 is a vital phase of cell growth
because just in this cell cycle phase the choice to begin again mitosis is made.

384 G. Franco et al.

The transition that occurs at the restriction point (called R) during the G1
phase commits the cell to the proliferative cycle. If the conditions that enforce
this transition are not present, the cell exits the cell cycle and enters a non-
proliferative phase (called G0) during which cell growth, segregation, and apop-
tosis occur [12,2]. Replication of DNA occurs during the synthesis phase (called
S), which is followed by a second gap phase (called G2) during which growth
and preparation for cell division occurs. Mitosis and production of two daughter
cells occur in the phase called M. The switches from one phase to the next one
are critical checkpoints of the basic cyclic mechanism of proliferating cells, and
they are studied with a wide interest [11,13,24].

Fig. 1. Phases of the cell cycle. During the G1 phase progression or arrest (G0 phase)
of the cycle is decided.

The passage through the four phases of the cell cycle is regulated by a family
of cyclins1 that act as regulatory subunits for cyclin-dependent kinases cdks.

Cyclins are a family of proteins involved in the progression of cells through the
whole cell cycle. Cyclin forms a complex with the cyclin-dependent kinase, which
activates the latter protein kinase function and promotes the mitosis phase.
When cyclin concentration in the cell is low, it detaches from Cdk inhibiting the
enzyme’s activity (probably by producing a protein chain to block the enzymatic
site). Therefore, the activity of the various cyclin/cdk complexes that regulate
the progression through G1-S-G2 phases of the cell cycle is controlled by the
1 Cyclins are so named because their concentration varies in a cyclical fashion during

the cell cycle. They are produced or degraded as needed in order to drive the cell
through the different phases of the cell cycle.

Mitotic Oscillators as MP Graphs 385

synthesis of the appropriate cyclins during a specific phase of the cell cycle.
In [17] one may find a few models for the minimal structure of such a mitotic
oscillator, that is, the binding of the cyclin with the cdk2 which so passes from
its inactive to its active state.

The cyclin/cdk complex is then activated by the sequential phosphorylation
and dephosphorylation of the key residues of the complex located principally on
the cdk subunits. In eukaryotes, protein phosphorylation is probably the most
important regulatory event. Many enzymes and receptors are switched "on" or
"off" by phosphorylation and dephosphorylation. Phosphorylation is catalyzed
by various specific protein kinases, whereas phosphatases dephosphorylate. In
the framework of the process we are going to describe in the next section, we
have three oscillators: a DNA-damage induced activation of the kinases Chk1 and
Chk2, and a consequent activation of Cdc25A (a serine/threonine phosphatase)
due to its phosphorylation (phosphoCdc25A) made by the active Chk1 and Chk2.
Finally, a massive amount of phosphoCdc25A dephosphorylates the complex
cdk2-cyclinE by making it active and inducing the S-phase of cell division (see
Figure 2).

DNA damage

Chk1
Chk2

Chk1
Chk2

+
+

Cdc25A P−Cdc25A

P−Cdk2−CyclinECdk2−CyclinE

G1−arrest!

G1/S transition

Fig. 2. Passages from the inactive states to the active ones in our process – oscillators
are all reversible reactions

386 G. Franco et al.

We will examine the role of Cdc25 family members of which at least Cdc25A
is essential both for the entry into S phase [14], at the checkpoint control of
the G1-S transition, and for the cell cycle arrest in response to a DNA damage.
In particular, we analyze the degradation of phosphorylated Cdc25A by ubiq-
uitin mediation, which inhibits the activation of the complex cdk2-cyclinE and
provokes the G1 arrest. Such a degradation takes place in the cytosol (which
is the fluid part of the cytoplasm, different from organelles and membranes)
and is mediated by the ‘endopeptidase activity’ of ‘26S proteasome’, causing the
dissociation of phosphoCdc25A in its constituting aminoacids (Figure 5). This
mechanism is intriguing because we could learn how to module the quantity of
Cdc25A in order to arrest the proliferation of tumored cells (that have DNA
damage).

3 Cycle Arrest in Response to Stress

Episodes of DNA damage during G1 pose a particular challenge, because repli-
cation of damaged DNA can be deleterious and because no other chromatid is
present to provide a template for recombinational repair. Besides, by considering
that cyclins operate as a promoting factor for the mitosis phase and that typical
cancer evolutions act as a suppressor of certain components of the cyclins family,
in case of DNA damage the desired (healthy) state is identified by the G0 phase.
Thus, in this context, we are interested to figure out the conditions under which
G0 is reached.

There are several proteins that can inhibit the cell cycle in G1 but, when
DNA damage has occurred, p53 is that protein which accumulates in the cell
inducing the p21-mediated inhibition of cyclin D/cdk. In fact, DNA-damaging
agents induce a p53-dependent G1 arrest that may be critical for p53-mediated
tumor suppression [23]. There is an alternative way though, where inhibition of
Cdk2 in response to DNA damage occurs even in cells lacking p53 or p21; this
is depicted in Figure 3.

Human cells respond to ultraviolet light or ionizing radiation by rapid, ubiq-
uitin and proteosome-dependent protein degradation of Cdc25A[15,13]. Namely,
DNA damage triggers specific destruction of Cdc25A phosphatase. This event
prevents the entry of a cell into the S-phase, by maintaining the cyclin E-Cdk2
complexes in phosphorylated form [19]. “Unfortunately”, between 16 and 24 hours
after the exposure to UV, the cells resume DNA replication and progression
through the cell cycle, indicating that the UV-induced cell cycle arrest is re-
versible.

The overall phenomenon described here is not dependent on p53 and previ-
ous studies [12] have demonstrated that the abundance of Cdc25A appears to
determine the extent of DNA synthesis upon UV-induced DNA damage. Thus,
the elimination of Cdc25A evokes a cell cycle arrest promoting repair of the
DNA crosslinks caused by UV and protects the cells from formation of the DNA
strand breaks. Finally, a 3-hour period of expression of Cdc25A to prevent down-
regulation of the cellular Cdc25A activity by UV reduced the survival of the

Mitotic Oscillators as MP Graphs 387

Fig. 3. p53 independent G1 arrest in response to stress

irradiated cells examined by colony formation assays. These results uncover a
mechanism of cellular defense against genotoxic stress that can be rewritten in
mathematical way and subsequently simulated.

The substances relevant to describe the process of degradation of Cdc25A in
the cytosol, after its activation in the nucleus of the cell, are reported in Table 1.

The relevant chemical reactions of the process (that represent the stoichio-
metric level of a metabolic P graph) are the following. First the phosphorylation
of Cdc25A at ser123 in response to DNA damage occurs in the nucleoplasm.

Nucleoplasm

ATP + Cdc25A + Chk1 → ADP + phosphoCdc25A (J0)

ATP + Cdc25A + Chk2 → ADP + phosphoCdc25A (J1)

The rules J0 and J1 activate the phosphatase Cdc25A by means of active kinases.
In such a way, the detection of DNA damage results in the phosphorylation
of Cdc25A at Ser-123 by Chk1 and Chk2, by concurrently inhibiting Cdc25A.
Then, phosphoCdc25A migrates from the nucleoplasm to the cytosol of the cell;
for notational convenience we call it phosphoCdc25A@Cytosol, and we have the
following rule.

388 G. Franco et al.

Table 1. Actors of the model

Symbol Name Compartment
Chk1 Checkpoint kinase 1 nucleoplasm
Chk2 Serine/threonine-protein kinase Chk2 nucleoplasm
ATP Adenosine Triphosphate nucleoplasm

Cdc25A M-phase inducer phosphatase 1 nucleoplasm
ADP Adenosine diphosphate nucleoplasm

phosphoCdc25A M-phase inducer phosphatase 1 nucleoplasm
Ubiquitin Ubiquitin cytosol

UbiqutinLigase E3 Ubiquitin Ligase cytosol
Ubiquitinatedphospho- M-phase inducer phosphatase 1 cytosol

-25Cdc25A
proteasome26s Proteosome complex cytosol

Migration to Cytosol

phosphoCdc25A → phosphoCdc25A@Cytosol (J2)

Finally, in the cytosol we have sequentially the degradation of phosphorylated
Cdc25A by ubiquitin mediation and the degradation of Cdc25A by proteasome,
that may be described by the following J3 and J4 rules, respectively.

Cytosol

phosphoCdc25A@Cytosol + Ubiquitin + UbiquitinLigase→
UbiquitinatedphosphoCdc25A@Cytosol + UbiquitinLigase (J3)

UbiquitinatedphosphoCdc25A@Cytosol + proteasome26s →
AminoAcid + proteasome26s. (J4)

The J3 reaction is mediated by the ‘ubiquitin-protein ligase activity’ of the cat-
alyzing enzyme ‘Ubiquitin ligase’, and one molecule of ‘Ubiquitinated Phospho-
Cdc25A’ is produced by transforming one molecule of phosphoCdc25A@Cytosol.
The reaction J4 finally degradesUbiquitinatedphosphoCdc25A@Cytosol by trans-
forming it into one molecule of its aminoacid by means of proteasome 26s activity.

The model of the above interactions may be depicted as in Figure 4 where re-
actants reside in compartments (nucleoplasm and cytosol) and interact between
them (arrows). However, no indication is given about the dynamics of the sys-
tem, that is how the reactants interact to each other. In order to point out the
dynamics of the system, in the next section we describe the process of interest
by means of a metabolic P graph, a formalism introduced in [17] which extends
the Stoichiometric Network Analysis [10] developed in the context of complex
reaction networks [21].

Mitotic Oscillators as MP Graphs 389

Fig. 4. Graph of interactions

4 Metabolic P Graphs

The starting assumption is that the localization and the concentrations of any
biochemical element at each instant determines all the relevant properties which
underly the function that a biological system exhibits at that (observation) time.

By definition [17], an MP graph is a structure G = (T,R, F,E,C), where:

– T is the set of nodes representing substances relevant for the process (for ex-
ample, those in Table 1). We may think of each element in T as the container
of a certain amount of a peculiar kind of substance. We represent such a kind
of nodes as circles with the type of objects contained in it (see Figure 5).

– R is the set of nodes representing biochemical reactions between substances.
We represent each of the nodes in R as a full bullet and we label it with the
name of the reaction represented by that node (see Figure 5).

– F is the set of nodes labeled by reaction maps represented in Figure 5 along
with dotted arrows.

390 G. Franco et al.

– E is a set of nodes presenting input or output gates. It usually contains two
different kind of nodes: input gates and output gates. In our case, some non-
definite substances induced by DNA damage are assumed to come through
an input gate (denoted by a star in our graph), and the output gates are
represented by relevant effects of the process, such as mitosis, arrest, and
degradation (see Figure 5).

– C is a set of edges (connections) between nodes. The edges are of two different
kinds: plain edges or dashed edges.

i) Plain edges connect types to biochemical reactions (circles and full bullets
in the graph), in particular, they specify reactants and products of the re-
actions. Arcs connecting reactants to reactions are depicted as lines while
arcs connecting reactions to products appear as arrows (oriented arcs).

ii) Dotted arrows connect a possibly empty set of substances to one full
bullet (they represent the reaction map of the corresponding rule).

Two components are easily distinguishable in MP graphs: a stoichiometric
component and a regulation component. The stoichiometric component is the
subgraph obtained after removing from an MP graph G = (T,R, F,E,C) the
nodes F and the dotted arcs which connect them to the other nodes. This re-
moved part is the reaction regulation layout of G.

In Figure 5 we abstract from the graph in Figure 4 the stoichiometric compo-
nent of the system, and we insert the regulation component as a way to control
the process. Note that in this model the rule J2 of the previous section is not
present because it is not relevant for the dynamics of the substances variations,
while J1 and J2 are assembled in the rule R2 because they act in parallel and,
by experimental observations, their reactivities may be considered identical.

As one can easily see, the formalism of MP graphs highlights the information
of the biological network dynamics by pointing out the crucial tuning points
of the system. In Figure 5, for example, there is an important difference with
respect to the graph in Figure 4: the dynamics of the process is expressed by
the graph and few essential parameters regulating the pathways are identified in
the reactivities of the rules. Namely, the reactivities f1, f2, f3, and f4 control the
dynamics of the activation oscillators of the kinases and the complex CyclinE-
cdk2, respectively, while the reactivities h2, h3, and h4 control the information
flow of PhosphoCdc25A degradation process. Unfortunately, the reactivities are
the unknown part of the system, and there is work in progress to identify them
and to simulate the dynamics of the graph by following the strategy of the
metabolic P algorithm [17]:

– Reactants are distributed among all the rules step by step according to a
“competition” strategy.

– If a couple of rules need the same reactant in two cases (R2 and K2, R3 and
J3), then each of these rules gets a portion of the available substance, in a
percentage that is proportional to its reaction strength (reactivity) at that
step (f2 and h2, f3 and h3).

– The reactivity of a rule at a given instant depends on the state of the system,
defined as the concentration and localization of all substances.

Mitotic Oscillators as MP Graphs 391

mitosis arrest degradation

DNA damage

Chk1, Chk2 Chk1+, Chk2+

ATP

ADP

Cdc25A

PhosphoCdc25A
Ubiquitin

UbiquitinatedphosphoCdc25A

AminoAcid

CyclinE−cdk2
CyclinE−cdk2+

Ub−Ligase

Proteasome26s

J3

R4

h3

R1

R2

R3

J4

f1

f2

K1

K2

f4

h2

f3
h1

h4

Fig. 5. Metabolic P graph of the process leading to a p53 independent G1
arrest. Rules K2, J3, J4, with their reactivities h2, h3, h4, are crucial for the Phospho-
Cdc25A degradation process induced by UV radiation by means of DNA damage. The
role of Ubiquitin Ligase and Proteasome26s that are catalyzing enzymes are identified
with the reactions themselves (given the assumption that they are present in the cy-
tosol in abundance for the process). Rules R1, R2, R3, R4 control the “back and forth”
of the oscillators.

– According to its stoichiometric “reading”, any rule determines its own re-
action unit and therefore the amount of substances which it consumes and
produces.

Our qualitative reasoning about the reactivities follows. The oscillator (R1,
R2) in a first approximation may be neglected: the reactions velocities are such
that we can suppose to have enough amount of activated Chk1 and Chk2 kinases
to trigger the process. K2 is the highest reactivity in the whole system (for
instance, h2 = 1), while K1 is very slow (for instance, h1 = 0.1). We know
that the amount of (inactive) Cdc25A is from 0 to 40 reaction units, and that
about one third of it is degraded. More precisely, the process performed by J3
and J4 has reactivity 0.3 times the amount of cdc25A, that is, h3 = h4 =
0.3|cdc25A|. Finally, the oscillator (R3, R4) has the most complex reactivities:
f3 = α|Cdc25A| and f4 = β|PhosphoCdc25A|, with α switching from assuming
values in [0, 0.15] to assuming values in [0, 1], and β switching from assuming

392 G. Franco et al.

Fig. 6. Expected behavior of the (R3,R4) oscillator with low degradation (i.e., low
amount of ubiquitin) and high degradation (high amount of ubiquitin), graph on the
top and on the bottom respectively

Mitotic Oscillators as MP Graphs 393

values in [0, 1] to assuming values in [0, 0.25]. The desired goal of the simulations
is to show that both the amounts of cdc25A and of the complex CyclinE-cdk2
oscillate, and these oscillations depend on the reactivity of K2, which seems to
be the crucial value for this system dynamics.

The most important substances to consider are Cdc25A and PhosphoCdc25A,
which are, respectively, responsible to arrest or to trigger the mitosis of the
cell, by means of the activation of the complex CyclinE-cdk2. Their behavior is
reported in Figure 6 when degradation in the cytosol is low (upper figure) and
when degradation in the cytosol is high (bottom figure). In the first case we have
a permanent oscillator, while in the second one both substances degrade if not
fed by the environment. The conclusion is that the dynamics of the system and
even the choice between mitosis or arrest is strongly influenced by the amount
of ubiquitin. Therefore, an external intervention to increase such a substance
would trigger an arrest of the mitosis cycle.

5 Future Work

We are further investigating two strategies to systematically compute the re-
activities of MP metabolic graphs describing biological systems, namely using
genetic algorithms, which find “good” values in order to obtain a desired behavior,
and using the method of MP Log-gain Regulation, based on the computational
progression of the MP algorithm starting by actual biological data.

The ultimate idea of this work is to insert this graph in a more general one
which models also the pathways of p53 dependent G1 arrest, in such a way to
figure out the relationships between the p53-mediated tumor suppression and
the radiation-resistant DNA synthesis phase (and consequent cell mitosis).

References

1. N. Barbacari, A. Profir, and C. Zelinschi. Gene regulatory network modelling
by means of membrane systems. In R. Freund, G. Lojka, M. Oswald, and Gh.
Păun, editors, Pre-proceedings of the 6th International Workshop on Membrane
Computing, July 18-21, 2005, Vienna, Austria, pages 162–178, 2005.

2. J. Bartek and J. Lukas. Pathways governing g1/s transition and their response to
DNA damage. FEBS Lett., 3(490):117–122, 2001.

3. F. Bernardini, M. Gheorghe, N. Krasnogor, R.C. Muniyandi, M.J. Pérez-Jiménez,
and F.J. Romero-Campero. On P systems as a modelling tool for biological sys-
tems. In R. Freund, Gh. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane
Computing, International Workshop, WMC6, Vienna, Austria, 2005, Selected and
Invited Papers, volume 3850 of Lecture Notes in Computer Science, pages 115–134.
Springer, 2006.

4. L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological dynam-
ics. In G. Ciobanu, Gh. Păun, and M.J. Perez-Jimenez, editors, Applications of
Membrane Computing, chapter 3, pages 81–126. Springer, 2006.

5. L. Bianco, F. Fontana, and V. Manca. Metabolic algorithm with time-varying
reaction maps. In Proceedings of the Third Brainstorming Week on Membrane
Computing, Sevilla, Spain, pages 43–61, February 2005.

394 G. Franco et al.

6. L. Bianco, F. Fontana, and V. Manca. P systems and the modeling of biochemical
oscillations. In R. Freund, Gh. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing, 6th International Workshop, WMC 2005, volume 3850 of
Lecture Notes in Computer Science, pages 200–209. Springer, January 2006.

7. L. Bianco, F. Fontana, and V. Manca. P systems with reaction maps. International
Journal of Foundations of Computer Science, to appear (2006).

8. L. Bianco and V. Manca. Symbolic generation and representation of complex
oscillations. International Journal of Computer Mathematics, 17, 1 (2006), 27–48.

9. V. Chopin, R.A. Toillon, and N. Jouy. P21(waf1/cip1) is dispensable for g1 arrest,
but indispensable for apoptosis induced by sodium butyrate in mcf-7 breast cancer
cells. Oncogene, 23(1):21–29, 2004.

10. B. L. Clark. Stability of complex reaction networks. Adv. Chem. Phys., 43:1–216,
1983.

11. J. D’Anna, J.G. Valdez, R.C. Habbersett, and H.A. Crissman. Association of g1/s-
phase and late s-phase checkpoints with regulation of cyclin-dependent kinases in
chinese hamster ovary cells. Radiat. Res., 148:260–271, 1997.

12. K.I. Nakayama et al. Regulation of the cell cycle at the g1-s transition by proteolysis
of cyclin e and p27kip1. Biochem. Biophys. Res. Commun., 4(282):853–860, 2001.

13. J. Falck, N. Mailand, R.G. Syljuåsen, J. Bartek, and J. Lukas. The atm-chk2-
cdc25a checkpoint pathway guards against radioresistant DNA synthesis. Nature,
410(6830):842–847, 2001.

14. S. Jinno, K. Suto, A. Nagata, M. Igarashi, Y. Kanaoka, H. Nojima, and
H. Okayama. Cdc25a is a novel phosphatase functioning early in the cell cycle.
EMBO J., 13:1549–1556, 1994.

15. N. Mailand, J. Falck, C. Lukas, R.G. Syljuåsen, M. Welcker, J. Bartek, and
J. Lukas. Rapid destruction of human cdc25a in response to DNA damage. Science,
288(5470):1425–1429, 2000.

16. V. Manca. Topics and problems in metabolic p systems. Fourth Brainstorming on
Membrane Computing, Sevilla, Spain, 2006.

17. V. Manca and L. Bianco. Biological networks in metabolic p systems. Submitted.
18. V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:

Applications to biological phenomena. In G. Mauri, Gh. Păun, M.J. Pérez-Jiménez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, 5th International
Workshop, WMC 2004, volume 3365 of Lecture Notes in Computer Science, pages
63–84. Springer, 2005.

19. E.A. Nilssen, M. Synnes, N. Kleckner, B. Grallert, and E. Boye. Intra-g1 arrest in
response to uv irradiation in fission yeast. Proc. Natl. Acad. Sci., 100(19):10758–63,
2003.

20. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.
21. L.A. Segel and I.R. Cohen. Design Principles for the Immune System and Other

Distributed Autonomous Systems. Santa Fe Institute Studies in the Sciences of
Complexity, Oxford University Press, 2001.

22. Y. Suzuki and H. Tanaka. Modelling p53 signaling pathways by using multiset pro-
cessing. In G. Ciobanu, M. J. Pérez-Jiménez, and Gh. Păun, editors, Applications of
Membrane Computing, Natural Computing Series, pages 203–214. Springer, Berlin,
2006.

23. T. Waldman, K.W. Kinzler, and B. Vogelstein. p21 is necessary for the p53-mediated
g1 arrest in human cancer cells. Cancer Research, 55(22):5187–5190, 1995.

24. H. Zhao, J.L. Watkins, and H. Piwnica-Worms. Disruption of the checkpoint kinase
1/cell division cycle 25a pathway abrogates ionizing radiation-induced s and g2
checkpoints. Proc. Natl. Acad. Sci., 99:14795–800, 2002.

Infinite Hierarchies of Conformon-P Systems

Pierluigi Frisco

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, EH14 4AS, UK
pier@macs.hw.ac.uk

Abstract. Two models of conformon-P systems, one restricted in the
number of input conformons and the other restricted in the number of
input membranes, are proved to induce infinite hierarchies.

The described systems do not work under the requirement of maximal
parallelism and perform deterministic simulations of restricted counter
machines.

1 Introduction

The subdivision of a cell into compartments delimited by membranes has been
an inspiration to G. Păun for the definition of a new class of (distributed and
parallel) models of computation called membrane systems [23].

The hierarchical structure, the locality of interactions, the inherent paral-
lelism, and also the capacity (in the less basic models) for membrane division,
represent the distinguishing hallmarks of membrane systems.

Research on membrane systems, also called ‘P systems’ (where ‘P’ stands for
‘Păun’), has really flourished [24].

One can distinguish three main lines of research concerning membrane sys-
tems:
1. establishing their generative power;
2. using them to develop algorithms for solving computationally hard problems;
3. using them as a modeling platform.

In relation with the first item in the previous list an interesting open problem
was to find a non-universal model of P systems that induces an infinite hierarchy
on the number of membranes.

In [14] several models of P systems answering the problem were proposed and
accepted as solutions to it. The models described in [14] (and also in subse-
quent related research [16,15]) were featured with maximal parallelism, i.e., in
each time step the number of performed operations is the maximum number of
operations that can be performed.

Here we consider conformon-P systems without maximal parallelism, i.e., in
each time step the number of performed operations is any number between 1
and the maximum number of operations that can be performed. We prove that
some restricted models of conformon-P systems induce infinite hierarchies on the
number of membranes and on the number of input symbols. These results are
obtained with deterministic simulations of restricted counter machines.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 395–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

396 P. Frisco

2 Preliminaries

We assume the reader to have familiarity with basic concepts of formal language
theory [13], and in particular with the topic of membrane computing [24]. In this
section we recall particular aspects relevant to our presentation.

2.1 Counter Automata

Non-rewriting Turing machines were introduced by M.L. Minsky in [21] and then
reconsidered in [22] under the name of program machines. After their introduc-
tion such machines and some variants of them have been studied under different
names: in [11] they were called (multi)counter machines, in [1] multipushdown
machines, in [19] register machines, and in [12] counter automata. Such devices
have counters (also called registers) each of unbounded capacity recording a
natural number or zero.

Simple operations can be performed on the counters: addition of one unit and
conditional subtraction of one unit. After each or these operations the machine
can change state. The main difference between the original models and some of
the subsequent variants indicated above is that the latter may have a read only
tape where the input is recorded. In the model introduced by M.L. Minsky, and
considered by us, such tape is not present and the input is recorded as a number
in one of the counters of the machine. It is shown in [21] that counter automata
can simulate any Turing machine (see also [13, Theorem 7.9]).

Formally a counter automaton with n counters (n ∈ N set of natural numbers)
is defined as M = (S,R, s0, f), where S is a finite set of states, s0, f ∈ S are
respectively called the initial and final state; R is the set of rules of the form
(sj , l

+, sn) (if in state sj increase the value of the counter l of 1 and go to state
sn), or (sj , l

−, si, sk) (if in state sj the value of counter l is zero, then go to state
sk; otherwise decrease the value of the counter l by 1 and then go to state si).

Configurations and computations for counter automata are defined as in [21].

2.2 Conformon-P Systems

In [8], Frisco & Ji introduced a variant of membrane systems called conformon-
P systems (cP systems). This variant, later studied also in [9,5,6,7], is based
on simple and basic concepts inspired by a theoretical model of the living cell
centred around conformon [17,18].

The concept of conformon was introduced in molecular biology independently
in [10] and [26]. The common part of the two definitions is the conformational
deformation of (macro) molecules in a cell.

A cP system has conformons, a name-value pair, as objects. If V is an alphabet
(a finite set of letters) and N0 is the set of natural numbers with 0 included, then
a conformon is [α, a], where α ∈ V and a ∈ N0, we will say that α is the name
and a is the value of the conformon [α, a]. If, for instance, V = {A,B,C, . . . , Z},
then [A, 5], [C, 0], [Z, 14] are conformons, while [AB, 21], [C,−15], and [D, 0.5] are
not.

Infinite Hierarchies of Conformon-P Systems 397

Two conformons can interact according to an interaction rule. An interaction
rule is of the form r : α

n→ β, where r is the label of the rule, α, β ∈ V , and
n ∈ N0, and it says that a conformon with name α can give n from its value
to the value of a conformon having name β. A rule r can be applied only if
the value of the conformon with name α is greater than or equal to n. If, for
instance, there are conformons [G, 5] and [R, 9] and the rule r : G

3→ R, then
the application of r leads to [G, 2] and [R, 12] and the rule r cannot be applied
to [G, 2].

The compartments (membranes) present in a cP system have a label, every
label being different. Compartments can be unidirectionally connected to each
other and for each connection there is a predicate. A predicate is an element
of the set {≥ n,≤ n | n ∈ N0}. Examples of predicates are: ≥ 5,≤ 2, etc. If,
for instance, there are two compartments (with labels) m1 and m2 and there
is a connection from m1 to m2 having predicate ≥ 4, then conformons having
value greater than or equal to 4 can pass from m1 to m2. In a time unit any
number of conformons can move between two connected membranes as long as
the predicate on the connection is satisfied. Notice that we have unidirectional
connections that is: m1 connected to m2 does not imply that m2 is connected
to m1. Moreover, each connection has its own predicate. If, for instance, m1
is connected to m2 and m2 is connected to m1, the two connections can have
different predicates.

Maximal parallelism, i.e., the fact that in each time step the number of per-
formed operations is the maximum number of operations that can be performed,
feature present in most of the variants of P systems, is absent in cP systems. In
each time step of a cP systems the number of performed operations is any num-
ber between 1 and the maximum number of operations that can be performed.

A computation halts when one (any) conformon is present in a specific (ac-
knowledgement) membrane. When this happens no operation is performed even
if it could.

2.3 Some Modules for Conformon-P Systems

In the following we will use the concept of module: a group of membranes with
conformons and interaction rules in a cP system able to perform a specific task.

An example of module is a splitter [5]: a module that, when a conformon [X,x]
with x ∈ {x1, . . . , xh}, xi < xi+1, 1 ≤ i ≤ h − 1 is associated with a specific
membrane of it, it may pass such a conformon to other specific membranes
according to its value x. In Figures 2 and 3 splitters are depicted by a thicker
line, their label starts with spl, and their edges have ‘=’ as predicate.

Some of the links between membranes present in the cP systems depicted
in Figures 2 and 3 have predicates of the kind [A, a] (a conformon). This is a
shorthand for a separator module [5]: when conformons of type [Xi, x], 1 ≤ i ≤
h, x ≥ 1 are associated with a specific membrane of it, a separator may pass
them to specific different membranes according to their name content. So if there
is an edge between membrane 1 and membrane 2 having [A, a] as predicate, it
means that only the conformons [A, a] can pass from membrane 1 to membrane 2.

398 P. Frisco

The combination of splitters and separators allows us to define strict interac-
tion rule: A(α) γ→ B(β) where α, β, γ ∈ N0, meaning that a conformon with name
A can interact with B passing just γ only if the value of A and B before the
interaction is α and β respectively. The detailed module for strict interaction is
depicted in Figure 1. Notice that in a strict interaction just γ is passed even if
the value of A could be decreased by any multiple of γ.

Similarly interactions of the kind A
γ→ B(β) and A(α) γ→ B can be defined.

[A, α] [B, β]

[A, α]

A
γ→ B

B
γ→ A

[B, β]

[B, β + γ][A, α − γ]

[A, α − γ] [B, β + γ]

Fig. 1. A detailed strict interaction

In Figures 2 and 3 a forward slash (/) indicates different possibilities for
conformons’ values, predicates, etc. Moreover, circles with a number indicate
membranes having that number as label.

3 Infinite Hierarchies

The search for a non-Turing-complete model of P system for which the number
of membranes induces an infinite hierarchy on the computation that can be
performed by such system was raised in [24]. Moreover, a prize on the description
of such system was advertised in [27].

Candidate solutions to this problem were reported in [4,20], but they were
based on definitions that were considered too restrictive, so they were not ac-
cepted as solutions.

In [14] several models of P systems answering the problem were proposed and
accepted as solutions to it. There restricted communicating P system (RCPS) and
restricted counter machines (RCM) were defined. A RCM is a counter machine
which is restricted in its operations: it can increase the value of a counter, say
C, only if it decreases the value of another counter, say D at the same time. The
counters C and D are said to be connected. The research presented in [14] was
followed by [16,15] where infinite hierarchies on the number of symbols or on
the number of membranes on the computational power of (restricted) variants
of P systems were presented. These studies concerned models of P systems with
maximal parallelism.

Infinite Hierarchies of Conformon-P Systems 399

In the following sections we will describe how two variants of P systems with-
out maximal parallelism, basic conformon-P system with restricted features, can
induce infinite hierarchies on the computation they can perform. These results
are obtained with a deterministic simulation of RCPS.

By a deterministic simulation we mean that if the simulated RCM is determin-
istic, then there will be an isomorphism between the sequence of configurations
in the computation of the RCM and some configurations in the basic cP system.
This does not mean that in the basic cP system the operations allowing the tran-
sition from the simulation of one configuration to the one that deterministically
comes after it follow a deterministic path, actually the cP systems defined in the
following are non-deterministic. These concepts will be discussed in more details
in Section 4.

If the simulated RCM is non-deterministic (one state can be followed by more
than one), then in a similar way the simulating basic cP system will be non-
deterministic.

3.1 Hierarchy on the Number of Membranes

In this section we consider conformon-restricted basic cP systems, i.e., basic cP
systems having a conformon with a distinguished name, let us say l, and such
that only some membranes (called input membranes) contain only l conformons
in the initial configuration (this restrictions is equivalent to the one imposed to
the RCPSs presented in [14], where only the object o is used to store the value
of the simulated RCM).

Conformon-restricted basic cP systems are accepting devices: a computation
is a finite sequence of configurations with the initial configuration having some l
conformons in the input membranes (and no conformons in the acknowledgement
membrane), while the last (final) configuration is the only one in the sequence
having one (any) conformon in the acknowledgement membrane. As customary
in cP systems, when a final configuration is reached no operation is performed
even if it could. If for an input there is such a computation, then we say that
the conformon-restricted basic cP system accepts the input.

Conformon-restricted basic cP systems are equivalent to RCM.

Lemma 1. Conformon-restricted cP systems can perform a deterministic sim-
ulation of a RCM M = (S,R, s0, f) with two (connected) counters.

Proof. First we explain the general idea, then we will go into the details of
the proof. Let us assume that M has two counters: c1 and c2 whose content
is encoded into the value of one conformon l initially present in, let us say,
membrane 5 and membrane 4. We will refer to the former of this conformon
with l(m5) and with l(m4) to the latter. Moreover here we concentrate only on
the operations performed on the value of l(m5) knowing that the value of l(m4)
changes in the opposite way (as the two counters are connected). If the value of
counter c1 is 0 (1), then also the value of l(m5) is 0 (1, respectively); if the value
of c1 is x > 1, then the value of l(m5) is 2(x − 1) + 1. This means that if the
value of c1 is 0 and it is increased by 1, then the value of l(m5) is increased also

400 P. Frisco

by 1; if the value of c1 is bigger than 1 and it is increased by 1, then the value
of l(m5) is increased by 2. Similarly for a subtraction: if the value of c1 is 1 and
it is decreased (by 1), then the value of l(m5) (is 1 and it) is decreased by 1; in
all the other cases the value of l(m5) is decreased by 2.

The cP system is aware of the value of the c1 counter through some ‘state’
conformons (defined later on). If the value of the c1 counter is 0, then the ‘state’
conformon will carry this information and no further subtraction will be sim-
ulated until an addition is performed on that counter. If the value of the c1
counter is bigger than 0, then subtractions can be simulated.

In this way the number of ‘state’ conformons is increased by |S|×n×2 (where
|S| is the number of states and n is the number of counters of M), but the
resulting cP system performs a deterministic simulation (and can be computed
in polynomial time).

Now we will explain the cP systems in details; during this proof we will refer
to Figures 2 and 3.

The initial configuration of the cP system (identified by the conformons in
bold in Figures 2 and 3) is: for each state n of the simulated RCM there are
conformons [ŝn, 0] and [ŝ=0

n , 0] present in membrane 1, [s′n, 0] in membrane 8,
[s̄=0

n , 0] in membrane 20, [sn, 0] and [s=0
n , 0] in membrane 25, and [s̈n, 0] in mem-

brane 29. All these s conformons are called ‘state’ conformons as they are as-
sociated with the states of M . Membranes 4 and 5 (input membranes) contain
the conformon with name l whose value reflects the content of the two counters
in M (as indicated above). The remaining of the initial configuration is: [c, 1] in
membrane 2, [c̄, 0] in membrane 6, [z, 6] in membrane 10, [k, 0] in membrane 16,
[w, 4] in membrane 18, and [v, 1] in membrane 22. The rest of the system will be
introduced during the description.

As indicated before, the cP system has two conformons associated with each
state of M : sj in case the value of l(m4) is bigger than 0 and s=0

j otherwise.
Let us assume that the value of l(m4) is bigger than 0 and that M is in state j.
In this case [sj , 30] will be present in membrane 1. If (sj , l

+, sn) ∈ R, then the
value of conformon l(m4) will be increased by 2 (through the conformon c), the
conformon [sn, 30] is generated using part (2 units) of the value of l(m5) (this is
because these two l conformons represent connected counters).

For each rule (sj , l
+, sn) ∈ R the instruction sj

20→ ŝn is in membrane 1. In this
way the conformons [ŝn, 20] and [sj , 10] are generated and they can pass (through
spl1) to membranes 2 and 3 respectively. In membrane 2 [ŝn, 20] can give (with
strict interaction) 2 to the c conformon and then pass to membrane 3 while the
c conformon can pass to membrane 5. After passing 2 units to l the c conformon
can pass back to membrane 2. In membrane 3 [ŝn, 18] and [sj , 10] can interact
such that [sj , 0] and [ŝn, 28] are generated and they can pass to membrane 25
and 4 respectively. In membrane 4 the value of ŝn can be increased by 2 (taken
from the value of l(m5)), when this happens [ŝn, 30] can pass to membrane 25.
Through membranes 25, 27, and spl3 [ŝn, 0] and [sn, 30] are generated and they
can pass to membrane 1.

Infinite Hierarchies of Conformon-P Systems 401

Now we describe how the simulation of one instruction of the kind (sj , l
+, sn)

in R is performed when the value of the l counter is 0. In this case [l, 0] can
be in membrane 13 and no l conformon is present in membrane 5. We will see
later on how this happens, for the moment let us take this as a fact. Let us also
assume the conformon [s=0

j , 30] is in membrane 1, this simulates that M is in

state j. As the instruction s=0
j

21→ ŝn is also present in this membrane, then the
conformons [s=0

j , 9] and [ŝ=0
n , 21] can be generated and pass to membranes 14 and

6, respectively (through spl1). In membrane 6 [c̄, 2] and [ŝ=0
n , 19] are generated,

afterwards they can pass to membrane 13 and 7, respectively. In membrane
13 [c̄, 2] can give 1 to [l, 0], when this happens [l, 1] can pass to membrane 5,
while [c̄, 1] to membrane 7. Notice that in this way the value of l has been
increased by 1 (and not 2). When [ŝ=0

n , 19] and [c̄, 1] are both in membrane 7
they can interact such that [ŝ=0

n , 20] and [c̄, 0] are generated and they can pass
to membrane 8 and 6 respectively. When [ŝ=0

n , 20] is in membrane 8, then the
‘state’ conformon [sn, 30] is generated (indicating that the value of the counter
is bigger than 0). This process (similar to what we have described) happens
between the membranes 1, 4, 8, 14, 15, 24, 25, 27 and spl2 and at the end of it
[sn, 30] and [ŝ=0

n , 0] are in membrane 1.
Now we describe how an instruction of the kind (sj , l

−, si, sk) is simulated.
In case the ‘state’ conformon is s=0

j , then the counter is empty and the next

state is sk. This is simulated by the rules s=0
j

16→ ŝ=0
k present in membrane 1 and

allowing [s=0
j , 14] and [ŝ=0

k , 16] to be generated. The creation of [sk, 30] (similar
to what described before) is performed through the membranes 25, 32, 33, spl1,
and spl2.

In case the ‘state’ conformon is sj and an instruction of the kind (sj , l
−, si, sk)

is simulated, then two situations are possible. If the value of l(m5) is 1 (indicating
that the counter contains 1), then 1 has to be subtracted by l(m5) and the next
‘state’ conformon has to be s=0

i (indicating that the counter is empty); if the
value of l(m5) is bigger than 2 (indicating that the counter contains at least 2),
then 2 has to be subtracted by l(m5) and the next ‘state’ conformon has to be
si (indicating that the counter is not empty).

If [sj , 30] is present in membrane 1 and the instruction (sj , l
−, si, sk) is sim-

ulated, then [sj , 11] and [ŝi, 19] are generated and they can pass to membranes
23 and 5 respectively. In membrane 5 ŝi decreases the value of l of 1 (this is
always possible) and then [ŝi, 20] can pass to membrane 16. Here it interacts
with [k, 0] so that [k, 11] and [ŝi, 9] are created and they can pass to membranes
5 and 17 respectively. The role of [k, 11] is to subtract 1 from the value of l. If
this is possible then [k, 12] will also pass to membrane 17, if this is not possible
then the k conformon will stay in membrane 5 until the z conformon will be also
there.

In case after the interaction with ŝi the value of l becomes 0, then it can
pass to membrane 10 and here interact with [z, 6]. As a result of this and other
interactions (involving membranes 11 and 12) [l, 0] (originally in membrane 4)
can pass to membrane 13 (this fact was considered above), while [z, 6] can pass

402 P. Frisco

to membrane 17. It should be clear now that in membrane 17 either [k, 12] or
[z, 6] is present, they cannot be present together.

If [k, 12] is present, then the 2 units taken from l(m5) are passed to l(m4) and
[si, 30] is generated and it can pass to membrane 1; if instead [z, 6] is present
in membrane 17, then the unit taken from l(m5) is passed to l(m4) and [s=0

i , 30]
is generated and it can pass to membrane 1. These processes, similar to others
described above, happen in between the membranes 17-33 (with the exception
of membrane 26).

If j is a final state for M , then either [sj , 30] or [s=0
j , 30] will be present in

membrane 1. When this happens, then the application of either sj
18→ ŝf or s=0

j
18→

ŝf will create a conformon with value 18. This conformon can pass to membrane
26 (the acknowledgement membrane) halting in this way the computation. �

The just given constructive proof can be used to create conformon-restricted cP
systems that can perform a deterministic simulation of RCMs (with any number
of connected counters).

Let us assume that a specific RCM has m counters C = {c1, . . . , cm} each with
an initial value. Then it is possible to build a conformon-restricted cP systems
Π ′ having l conformons present in m different input membranes. Considering
the proof of Lemma 1 this seems to be a must as collecting more than one
conformon with name l in the same membrane would not allow the system Π ′

to perform a simulation on the RCM (we will discuss this point in Section 4).
The system Π ′ would be such that every time the value of an l conformon is
increased (decreased), then the one of its connected counter (for the particular
simulated instruction) is decreased (increased, respectively) by the same amount.
The information on the connected counter can be present in the name or in the
value of the ‘state’ conformons (similarly to what was done in the previous
proof).

So we can state:

Corollary 1. Conformon-restricted cP systems can perform a deterministic
simulation of RCMs.

Here is the reverse of this inclusion:

Lemma 2. A RCM with m counters can simulate a conformon-restricted cP
system having m input membranes.

Proof. In the initial configuration the value stored in the m counters is the value
of the l conformons present in the initial configuration of the cP system. The
rest of the description of the cP system is encoded into the finite control of the
RCM.

The increase/decrease of the value of the l conformons is split into a sequence
of increases/decreases of 1. Every time 1 is subtracted by the value of an l
conformon, then the value of the associated counter is decreased by 1 and the one
of the connected counter is increased by 1. Chains of coupled increase/decrease of
connected counters simulate the passage of value between different conformons.
Similarly when the value of an l conformon is increased.

Infinite Hierarchies of Conformon-P Systems 403

When the simulation of a conformon passing to the acknowledgement mem-
brane is simulated, then the RCM goes into a final state. �

The fact that RCMs induce an infinite hierarchy on the number of counters is
proved in [14]. Considering this, we can state:

Theorem 1. Conformon-restricted cP systems induce an infinite hierarchy on
the number of membranes.

3.2 Hierarchy on the Number of Symbols

In this section we consider membrane-restricted basic cP systems, i.e., basic cP
systems in which the number of input membranes is restricted to one and the
set of names of input conformons is bounded.

An initial configuration is such that some input conformons are present in
the input membrane, no input conformon is present in the remaining mem-
branes, and the acknowledgement membrane is empty. We say that a membrane-
restricted basic cP systems accepts an input if there is a finite sequence of
configurations starting from an initial configuration and ending with a (final)
configuration (being the last one in the sequence) in which one (any) conformon
is in the acknowledgement membrane. As customary in cP systems, when a final
configuration is reached no operation is performed even if it could.

Lemma 3. Membrane-restricted cP systems with two input conformons can per-
form a deterministic simulation of a RCM M = (S,R, s0, f) with two connected
counters.

Proof. (sketch) The proof follows the one of Lemma 1. Let us assume that the
names of the input conformons are l1 and l2 and that their initial value reflects
the initial content of the counters in M (in the same way as it is done in the
proof of Lemma 1).

The operations performed on l1 and l2 are similar to the ones performed to
the l conformons in the proof of Lemma 1.

The simulation of an instruction of the RCM changing its state into a final
one lets a conformon to go into the acknowledgement membrane halting in this
way the computation. �

Let us assume that a specific RCM has m counters C = {c1, . . . , cm}, then it is
possible to build a membrane-restricted cP system having input conformons with
name c1, . . . , cm in the input membrane. The equivalence between the number
of counters and the number of different names of input conformons seems to
be a must (we will discuss this point in Section 4). The membrane-restricted
cP system would be such that every time the value of an input conformon is
increased (decreased), then the one of its connected counter (for the particular
simulated instruction) is decreased (increased, respectively) by the same amount.
The information on the connected counter can be present in the name or in the
value of the ‘state’ conformons.

So we can say:

404 P. Frisco

Corollary 2. Membrane-restricted cP systems can perform a deterministic sim-
ulation of RCMs.

Here is the reverse of this inclusion whose proof follows the one of Lemma 2:

Lemma 4. A RCM with m counters can simulate a membrane-restricted cP
system having m input conformons.

If we now consider that RCMs induce an infinite hierarchy on the number of
counters [14], then we have:

Theorem 2. Membrane-restricted cP systems induce an infinite hierarchy on
the number of input conformons.

4 Final Remarks

At the beginning of Section 3 we defined deterministic simulation and we in-
dicated that the restricted cP systems used by us are non-deterministic even if
they can perform deterministic simulations.

The non-determinism present in the considered cP systems arises from the
fact that some operations can be performed in parallel. If, for instance, the
operations A and B can be performed in parallel in a cP system, then (as maximal
parallelism is not present) A can be applied before B, or B can be applied before
A, or A and B can be applied at the same time.

We are going to investigate if it is possible to have the results presented in
this paper with deterministic cP systems. In this respect we will consider to use
Petri nets [25] as done in [6].

It is also relevant to notice that the use of separator modules on the confor-
mons representing counters let the sum of these conformons not to be constant
but to fluctuate. This fluctuation is due to the separator module used by (vari-
ants of) strict interactions (see Figure 1 and [5, Figure 2]). Because of the way
the cP systems described in this paper have been devised, these fluctuations do
not interfere with the simulations performed by them.

An essential element in the proof of Lemma 1 is the presence of connected
loops. Here with loop we mean that, during the simulation, some name of confor-
mons cycle in between some membranes (the conformon itself changes because of
its value). In the proof of Lemma 1 the k conformon loops between membranes
16, 5, and 17 or between membranes 16, and (5, 9)+ (the superscript + indicates
that k can keep passing between membranes 5 and 9), while the z conformon
loops between membranes 10, 11, 12, 17, 5, 9, and 19.

Two loops are connected if one can be completed only if the other is taking
place. In the proof of Lemma 1, for instance, the k conformon can complete the
16, (5, 9)+ loop only when the z conformon is traversing its loop.

We think that loops are necessary in a system lacking maximal parallelism
in order to have some computational power. We also think that the number of
loops and their connections can be a measure of computational complexity of
system lacking maximal parallelism. The concepts of (connected) loops seems

Infinite Hierarchies of Conformon-P Systems 405

13

23

14 1

[s′
n, 5]

≤ 0

16

19

17

7

14

4

33

28

27
32

30

= 5/ = 15/ = 30

≥ 1

= 10

= 20 = 19 = 21

[c, 3]

≤ 0

[ŝ=0
n , 19]

[c̄, 2]

≥ 20

= 1/ = 4

= 11

= 9

[l, 0] ≤ 4

≤ 0

= 18

≥ 28≤ 0

[ŝi, 20] [z, 8]/
[k, 5]≤ 0

≥ 13

≤ 0[l, 1]

≥ 6

[c̄, 1]

≤ 0

≥ 29

[ŝn, 30]

= 14

= 9/ = 21

= 7/ = 8

≥ 5

≥ 24

≤ 0

[k, 12]

[ŝn, 18]

[c, 1]

≥ 2

[ŝ=0
n , 15]

= 10/ = 15/ = 16/ = 30≥ 5

= 4/ = 6

= 5/ = 11

[ŝf , 18]

26

[c̄, 0]

[ŝ=0
n , 21]

ŝ=0
n

2� c̄

6

[ŝi, 19] [k, 11] [z, 2] [c, 3]

l
1↔ ŝi l

1↔ k k
6→ z c

2→ l

[l, α]

5

[ŝ=0
n , 19] [c̄, 1]

c̄
1→ ŝ=0

n

7

sj
20→ ŝn

s=0
j

21→ ŝ=0
n

sj
18→ ŝf

[s′
n, 5]

s′
n

4→ ŝn

s=0
j

18→ ŝf

s=0
j

30→ ŝ=0
k

sj
19→ ŝi

[s̄=0
i , 15]

s̄=0
i

8→ ŝ=0
i

[sj , 30]/[s=0
j , 30]

1

[̂sn, 0] [̂s=0
n , 0]

[ŝn, 18]

[sj , 10]

sj
10→ ŝn

3

[c, 1]

ŝn
2� c

[ŝn, 20]

2
[s′

n, 0] [ŝ=0
n , 20]

ŝ=0
n

5� s′
n

8

[s′
n, 1] [ŝn, 4]

s′
n

1→ ŝn

24

[z, 6]

z
4→ l

[l, 0]

10

[v, 2] [w, 6] [ŝn, 28/29]

l
2↔ v l

1↔ w ŝn
1↔ l

[l, β]

4
[z, 8] [k, 5]

9

k
5→ z

[z, 2] [l, 4]

l
4→ z

12

[l, 0] [c̄, 2]

c̄
1↔ l

13

s=0
j

9→ ŝ=0
n

[ŝ=0
n , 15]

[s=0
j , 9]

14

[ŝ=0
n , 24]

ŝ=0
n

24→ ŝn

[ŝn, 5]

15

522

18

[l, 0/4]

[z, 2]

11

= 16 [ŝn, 4/20] [ŝ=0
n , 21] [ŝi, 19] [ŝf , 18]

[sj , 10/11/12/30]

[s=0
j , 9/12/14/30] [s′

n, 1/5] [ŝ=0
k , 16]

spl1

[s̄=0
i , 7/15] [s=0

i , 8] [s̈i, 4/10] [si, 6]

[ŝ=0
k , 5/16] [s=0

k , 11] [ŝn, 9/30]

[ŝ=0
i , 14/30] [sn, 21] [s=0

n , 16]

spl3

[s̈i, 10] [ŝn, 30] [ŝ=0
i , 30] [ŝ=0

k , 16] [s̄=0
i , 15]

s̈i
6→ si ŝn

21→ sn ŝ=0
i

16→ s=0
i ŝ=0

k
11→ s=0

k s̄=0
i

8→ s=0
i

[sn, 0] [s=0
n , 0]

25

[k, 5]

[v, 1]

[w, 4]

s=0
j

16→ ŝ=0
k

Fig. 2. Conformon-restricted cP systems associate to Lemma 1 (part 1)

406 P. Frisco

1
1

5

5

10

≤ 6

1

29
[ŝi, 19]

4

1

25

251
≤ 0

25

≤ 0 ≥ 30

≥ 16
≤ 0/ ≥ 30

[ŝi, 9]

[k, 11]

≤ 0 = 12
= 6/ = 9/

≥ 2

= 13

= 21 = 2

≥ 20

[ŝi, 5]

≤ 0

≥ 20

[w, 6]

[v, 2]

≤ 0/ ≥ 30

≥ 15

≤ 0

≥ 19

= 9
= 19

≥ 9

[s̄=0
i , 15]

= 10 ≤ 0

≥ 10

≤ 0

[s=0
i , 19]

ŝ=0
k

5→ s=0
k

[s=0
k , 11]

[ŝ=0
k , 5]

32

s=0
j

14→ s=0
k

[s=0
k , 16]

[s=0
j , 14]

33

ŝn
9→ sn ŝ=0

i
14→ s=0

i

[sn, 21] [s=0
i , 16]

[ŝn, 9] [ŝ=0
i , 14]

27

[ŝi, 20]

[k, 0]

ŝi
11→ k

16

[z, 6] [k, 12]

z
4→ ŝi k

12→ ŝi

[ŝi, 9]

17

[ŝi, 13]

[z, 13]

z
7→ ŝi

19

ŝi
15→ s̄=0

i

20

[ŝi, 20]

[̄s=0
i , 0]

[w, 4]

[ŝi, 21]

ŝi
2� w

18

[s=0
i , 15]

ŝi
5→ s=0

i

[ŝ1, 5]

21

[s=0
i , 20]

s=0
i

1� v

[v,1]

22

[s̄=0
i , 7] [s=0

i , 8]

s̄=0
i

7→ s=0
i

28

[si, 10]

ŝi
9→ si

[ŝi, 9]

31

[ŝi, 19]

ŝi
10→ s̈i

[̈si, 0]

29

[si, 6] [s̈i, 4]

s̈i
4→ si

30

23

[s=0
i , 19] [si, 19]

[sj , 11]

sj
11→ s=0

i sj
11→ si

[z, 2/6] [k, 12]

[ŝi, 9/13/21]

spl2

[ŝi, 9/19]

[s̈i, 10]

spl4

Fig. 3. Conformon-restricted cP systems associate to Lemma 1 (part 2)

to us to be related to the ones of concurrent steps and subsystem in Petri nets
[25] and to the one of cycles and topology in directed graphs [2,3]. This re-
minds us of several biological processes that can be modeled with cyclic directed
graphs: metabolic pathways, signalling pathways, gene regulatory networks, etc.
We count to investigate this further.

The deterministic simulation can be also used to obtain other results. In [5]
Theorem 3 states that a cP system with unbounded total value can perform
a (non-deterministic) simulation of a program machine (meaning that in that
proof 0-gamble – see [6] – is present). Considering the proof of Lemma 1 we can
then state:

Theorem 3. Conformon-P systems with unbounded value can perform a deter-
ministic simulation of program machines.

We conclude this paper posing a problem related to variants of P systems in-
ducing an infinite hierarchy (so, also related to what reported in [14,15,16]).
The proofs on the presence of such hierarchies are based on a mapping from the
space of configurations of the simulated system (for instance, an RCM) to the

Infinite Hierarchies of Conformon-P Systems 407

considered P system model. In this mapping the content of the counters of the
RCM is represented, for instance, by the number of objects in the P system.

Is it possible to have another mapping such that the infinite hierarchy is not
induced?

In Section 3.1 we wrote: “... this seems to be a must as collecting more than
one conformon with name l in the same membrane would not allow the system
Π ′ to perform a simulation on the RCM.”.

This ‘must’ has no proof (we were not able to give one), even if our common
sense suggests that it is not possible to do otherwise.

References

1. B. S. Baker and R. V. Book. Reversal-bounded multipushdown machines. Journal
of Computer and System Science, 8:315–332, 1974.

2. B. Bollobás. Extremal graph theory. Academic Press, 1978.
3. G. Chartrand and L. Lesniak. Graphs and Digraphs. Chapman and Hall/CRC,

2005.
4. R. Freund. Special variants of P systems inducing an infinite hierarchy with respect

to the number of membranes. Bulletin of EATCS, 75:209–219, 2001.
5. P. Frisco. The conformon-P system: A molecular and cell biology-inspired com-

putability model. Theoretical Computer Science, 312(2-3):295–319, 2004.
6. P. Frisco. P systems, Petri nets, and Program machines. In R. Freund, G. Lo-

jka, M. Oswald, and G. Păun, editors, Proceedings 6th International Workshop
on Membrane Computing (WMC6), volume 3850 of Lecture Notes in Computer
Science, pages 209–223. Springer-Verlag, Berlin, Heidelberg, New York, 2006.

7. P. Frisco and R. T. Gibson. A simulator and an evolution program for conformon-P
systems. In SYNASC 2005, 7th International Symposium on Simbolic and Numeric
Algorithms for Scientific Computing, pages 427–430. IEEE Computer Society, 2005.
Workshop on Theory and Applications of P Systems, TAPS, Timisoara (Romania),
September 26-27, 2005.

8. P. Frisco and S. Ji. Conformons-P systems. In M. Hagiya and A. Ohuchi, editors,
DNA8, 8th International Meeting on DNA Based Computers, Hokkaido University,
Sapporo, Japan, June 10-13, volume 2568 of Lecture Notes in Computer Science,
pages 291–301, 2002.

9. P. Frisco and S. Ji. Towards a hierarchy of info-energy P systems. volume 2597
of Lecture Notes in Computer Science, pages 302–318. Springer-Verlag, Berlin,
Heidelberg, New York, 2002.

10. D. E. Green and S. Ji. The electromechanical model of mitochondrial structure
and function. Molecular Basis of Electron Transport, pages 1–44, 1972. J. Schultz,
B. F. Cameron (eds).

11. S. A. Greibach. Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7:311–324, 1978.

12. H. J. Hoogeboom. Carriers and counters. P-systems with carriers vs. (blind)
counter automata. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Develop-
ments in language theory, 6th International conference, DLT 2002, Kyoto, Japan,
September 2002, Revised papers, volume 2450 of Lecture Notes in Computer Sci-
ence, pages 140–151, 2003.

13. J. E. Hopcroft and D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

408 P. Frisco

14. O. H. Ibarra. On membrane hierarchy in P systems. Theoretical Computer Science,
334:115–129, 2005.

15. O. H. Ibarra and G. Păun. Characterizations of context-sensitive languages and
other languages classes in terms of symport/antiport P systems. Theoretical Com-
puter Science, 2006. in press.

16. O. H. Ibarra and S. Woodworth. On bounded symport/antiport P systems. In Pre-
proceedings of The 11th International Meeting on DNA Computing, pages 25–36,
2005. London, Ontario, Canada.

17. S. Ji. The Bhopalator: a molecular model of the living cell based on the concepts of
conformons and dissipative structures. Journal of Theoretical Biology, 116:395–426,
1985.

18. S. Ji. The Bhopalator: an information/energy dual model of the living cell (II).
Fundamenta Informaticae, 49(1-3):147–165, 2002.

19. J. P. Jones and Y. V. Matijasevič. Register machine proof of the theorem on
exponential Diophantine representation of enumerable sets. Journal of Symbolic
Logic, 49(3):818–829, September 1984.

20. S. Krishna. Languages of P systems: computability and complexity. PhD thesis,
Indian instituto of technology Madras, 2001. India.

21. M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.

22. M. L. Minsky. Computation: Finite and Infinite Machines. Automatic computa-
tion. Prentice-Hall, 1967.

23. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000.

24. G. Păun. Membrane Computing. An Introduction. Springer-Verlag, Berlin, Heidel-
berg, New York, 2002.

25. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Hei-
delberg, New York, 1998.

26. M. V. Volkenstein. The conformon. Journal of Theoretical Biology, 34:193–195,
1972.

27. C. Zandron. P-systems web page: http://psystems.disco.unimib.it.

A Protein Substructure Based P System
for Description and Analysis
of Cell Signalling Networks

Thomas Hinze, Thorsten Lenser, and Peter Dittrich

Friedrich Schiller University Jena
Bio Systems Analysis Group

Ernst-Abbe-Platz 1–4, D-07743 Jena, Germany
{hinze,thlenser,dittrich}@minet.uni-jena.de

Abstract. The way how cell signals are generated, encoded, transferred,
modified, and utilized is essential for understanding information pro-
cessing inside living organisms. The tremendously growing biological
knowledge about proteins and their interactions draws a more and more
detailed image of a complex functional network. Considering signalling
networks as computing devices, the detection of structural principles, es-
pecially modularization into subunits and interfaces between them, can
help to seize ideas for their description and analysis. Algebraic models
like P systems prove to be appropriate to this. We utilize string-objects
to carry information about protein binding domains and their ligands.
Embedding these string-objects into a deterministic graph structured
P system with dynamical behavior, we introduce a model that can de-
scribe cell signalling pathways on a submolecular level. Beyond questions
of formal languages, the model facilitates tracing the evolutionary devel-
opment from single protein components towards functional interacting
networks. We exemplify the model by means of the yeast pheromone
pathway.

1 Introduction

Protein signalling networks can be viewed as computational devices of the cell,
triggering and directing responses to external inputs. Therefore, the utilization
of tools and techniques from computer science to study signalling networks con-
stitutes an almost natural step. In this contribution, we propose a specialized
version of the P system framework, which is a term-rewriting mechanism de-
signed with cellular principles in mind [12,13].

Cell signalling networks (CSNs) represent a class of biochemical reaction net-
works, set apart from others (such as metabolic networks) by an arrangement of
special properties. One of these is the importance of the configuration of individ-
ual molecules (proteins) to their function in the network, which is exemplified
by the activation of certain kinases via phosphorylation. Therefore, the protein
constituents of CSNs should not be viewed as atomic objects, but rather as

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 409–423, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

410 T. Hinze, T. Lenser, and P. Dittrich

entities whose configuration can change over the course of time. Another distin-
guishing property of CSNs is the importance of their temporal behavior. While
the steady-state behavior might be enough to characterize a metabolic network,
the function of a CSN depends heavily on its temporal evolution. Thirdly, par-
titioning the whole pathway into several connected modules is thought to be
a keystone for understanding molecular networks, a concept common to both
metabolic and signalling systems. The formalism described here intends to in-
corporate the module concept by altering the established membrane framework
from a tree-based to a graph-based structure. Similar approaches to P system
structures are considered in tissue and population P systems [2,10].

P systems with string-objects have already been considered in [12], while
graph-based membrane structures were introduced in [14], and dynamics in
[15,18]. Our approach to temporal dynamics is based on the metabolic algo-
rithm developed in [8], where a kinetic understanding of P system rewriting
rules is explained and simulated. While these features have been introduced
and investigated previously, the novelty of the approach presented here lies in
their combination into one system, in order to define a framework suitable for
modeling complex CSNs. A detailed account of the system is provided, and its
suitability for modeling CSNs is demonstrated by an extensive example model
of the yeast pheromone pathway.

2 Modeling Cell Signalling Networks

Modern molecular biology yields more and more data which shed light on sig-
nalling processes in the cell. In order to keep up with these developments, the-
oretical biologists and computer scientists have to provide modeling formalisms
capable of integrating this growing knowledge. This section will briefly review
common practices in modeling CSNs and introduce the advantages of using the
P systems approach for this task, together with the extensions and novelties that
are proposed in this contribution.

The most common class of formal CSN models consists of analytical models,
based on differential equations. These systems are relatively straightforward to
set up from a reaction network, and a plethora of tools for their numerical eval-
uation is available. Unfortunately, differential equations do not allow to include
much human-readable information into the model, so that large models quickly
become incomprehensible. Additionally, due to their continuous nature, these
approaches are usually not tractable by tools and theory of computer science.

A classic step from continuous to discrete models leads to stochastic ap-
proaches, in which the number of molecules of each molecular species is assumed
to be a random variable with temporally varying probability distribution. The
conversion of a set of reactions into a stochastic system description has been
addressed by a range of publications, mostly building on the fundamental work
by Gillespie [5].

Algebraic approaches, drawing heavily on concepts from theoretical computer
science, have several advantages to offer. They are well understood, cover a wide

A Protein Substructure Based P System for Description and Analysis 411

field of different modeling aspects, and each one comes with its own set of tools to
analyze specific models. Additionally, they enable structuring and classification
on several levels of abstraction. A short and by no means complete list of such
formalisms would include: state-based systems such as abstract machines and
X machines [4], process calculi such as π calculus [11], ambient calculus [3] and
Petri nets [16], and term-rewriting systems based on Chomsky-grammars [17].
P systems, which represent an instance of the last category, are especially suited
to develop models of cellular computation.

The general P system framework [13] is based on rewriting of multisets of
molecule objects, which are contained in different compartments of the cell.
Rewriting rules are localized to the compartments, so that object-processing
depends on the current localization. Objects can move between compartments,
allowing the flow of a signal through the system. Here, we extend this formalism
with a set of concepts that are essential for modeling CSNs.

By considering string-objects, we allow the substructures and properties of
individual proteins to carry information. Extending the original concept of mem-
branes to the more abstract view of distinguished modules in the CSN leads to
models built out of coherent components, which are easier to create, maintain
and re-use. In order to enable detailed studies on the temporal evolution of the
system, we replace the maximally parallel rewriting from the original framework
with a mechanism that is based on reaction kinetics. For each rewriting rule, the
number of applications per turn is given by a kinetic function, depending on the
current configuration of the module. This way, a deterministic system evolution
is obtained.

3 System Description

We introduce a deterministic rewriting P system based on multisets of string-
objects. The system description combines aspects of formal languages with
numeric evaluations for handling of object selection and multiplicities. String-
objects are composed in a way to encode information about protein substructures
and specific protein properties.

Formal Language Prerequisites

We denote the empty word by ε. The concatenation of formal languages L1
and L2 over a common alphabet Σ is written as L1 ⊗ L2 = {uv | u ∈ L1 ∧
v ∈ L2}. P(L) denotes the power set of L. Let A be an arbitrary set and
N the set of natural numbers including zero. A multiset over A is a mapping
F : A −→ N ∪ {∞}. F (a), also denoted as [a]F , specifies the multiplicity of
a ∈ A in F . Multisets can be written as an elementwise enumeration of the form
{(a1, F (a1)), (a2, F (a2)), . . .} since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support
supp(F) ⊆ A of F is defined by supp(F) = {a ∈ A | F (a) > 0}. A multiset F
over A is said to be empty iff ∀a ∈ A : F (a) = 0. The cardinality |F | of F
over A is |F | =

∑
a∈A F (a). Let F1 and F2 be multisets over A. F1 is a subset

of F2, denoted as F1 ⊆ F2, iff ∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and F2

412 T. Hinze, T. Lenser, and P. Dittrich

are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1. The intersection F1 ∩ F2 = {(a, F (a)) | a ∈
A ∧ F (a) = min(F1(a), F2(a))}, the multiset sum F1 7 F2 = {(a, F (a)) | a ∈
A∧F (a) = F1(a)+F2(a)}, and the multiset difference F18F2 = {(a, F (a)) | a ∈
A ∧ F (a) = max(F1(a) − F2(a), 0)} form multiset operations. Multiplication of
a multiset F = {(a, F (a)) | a ∈ A} with a scalar c, denoted c · F , is defined by
{(a, c · F (a)) | a ∈ A}. The term 〈A〉 = {F : A −→ N ∪ {∞}} describes the set
of all multisets over A.

Definition of the System

Let N+ = N \ {0} be the set of natural numbers without zero. A P system for
describing CSNs of degree n ∈ N+ is a construct

ΠCSN = (V, V ′, E,M, n)

where V and V ′ are two alphabets; without loss of generality #,¬, * /∈ V ∪ V ′.
Furthermore, E and M specify channels and modules. The regular set

S = V + ⊗
(
{#} ⊗ ((V ′)+ ∪ {¬} ⊗ (V ′)+ ∪ {*})

)∗
describes the syntax for string-objects. The leftmost substring from V + holds
the protein identifier, followed by a finite number of protein property substrings
from (V ′)+ which are separated by #. For example, consider the string-object
C :D#p#*#¬q identifying protein (complex) C :D with specified property p,
a second arbitrary property (*), and without property q. Each protein prop-
erty substring expresses a specific additional information about the protein, for
instance whether it is activated with respect to a certain function or carries a
ligand at a certain binding site. Two kinds of meta symbols are allowed. The sym-
bol ¬ excludes the subsequent property but permits all other properties at this
substring position. The placeholder * stands for an arbitrary (also unknown or
unspecified) protein property substring. This way, uncertainty about the prop-
erties of proteins can be explicitly expressed. String-objects can be processed
inside modules and they can move between modules along predefined channels
(edges). The finite set of modules

M = {M1, . . . ,Mn}

defines functional reaction units where multisets of string-objects can be mod-
ified by regulated rewriting. A module need not be embedded into a physical
membrane, it just represents a space where reactions can occur. Multiple mod-
ules are allowed to share the same physical space. Modules are intended to form
small units that fulfill well-defined functions. Each module Mi is defined as a
tuple:

Mi = (Ri1, . . . , Riri , fi1, . . . , firi , Ai) where
Rij ∈ 〈S〉 × 〈S〉 is a reaction rule composed of two finite multisets
fij : 〈S〉 −→ N is a function corresponding to kinetics of reaction Rij

Ai ∈ 〈S〉 is a multiset of axioms representing the initial contents of Mi

A Protein Substructure Based P System for Description and Analysis 413

The set of channels is defined as

E ⊆ {1, . . . , n} × {1, . . . , n} × P(S × {g : 〈S〉2 −→ N})× N where
eij = (i, j, Iij , dij) ∈ E

represents a directed channel from module Mi to module Mj . String-objects are
allowed to pass the channel if they match the filter interface denoted by the
construct

Iij ⊆ {(w, gw,ij) | w ∈ S ∧ gw,ij : 〈S〉2 −→ N}.

The elements of Iij correspond to the notion of filter patterns (receptors) w and
concentration gradients gw,ij between source module Mi and destination module
Mj. Function gw,ij marks the maximum capacity of the channel for string-objects
matching the pattern w, depending on the contents of Mi and Mj . For simplicity,
we assume that all filter interface patterns of channels beginning at the same
module are pairwise disjoint to each other:

⋂
j∈{1,...,n} Match(supp(Iij)) = ∅ ∀i ∈

{1, . . . , n} where Match : P(S) −→ P(S) is defined in the next subsection. The
support of the construct Iij is defined in analogy to multisets. The natural
number dij attached to each channel defines its time delay. Each passing string-
object takes this amount of time when moving from module Mi to module Mj .

Matching and Matching Strategies

String-objects may contain excluding symbols ¬ and wild-cards * to express par-
tially incomplete knowledge about protein properties. Selecting string-objects for
reactions and deciding which string-objects are allowed to pass a channel requires
a definition of matching. Matching evaluates whether or not string-objects fit to
each other, considering their identifiers and all possible combinations of protein
property substrings resulting from their wild-carded patterns. We can distinguish
between several matching strategies that differ by their handling of uncertainty.
Extreme versions of matching are characterized by a loose and a strict strategy.
A prerequisite of matching string-objects is their common number of property
substrings.

In the symmetric relation Match loose, two string-objects match iff there is
at least one common wild-card free representation. The loose strategy requires
a minimum degree of similarity between objects with incomplete information.
Uncertainty is interpreted as arbitrary replacements within the search space
given by S.

Match loose ⊆ S × S

Match loose =
⋃

m∈N

{(p#p1#p2 . . .#pm, s#s1#s2 . . .#sm) | (p = s) ∧

∀j ∈ {1, . . . ,m} : [(pj = sj) ∨ (pj = *) ∨ (sj = *) ∨
((pj = ¬q) ∧ (sj 	= q)) ∨ ((sj = ¬q) ∧ (pj 	= q))]}

414 T. Hinze, T. Lenser, and P. Dittrich

In contrast, the strict matching strategy follows the opposite intention. The
two participating string-objects are interpreted as a pattern and a candidate
for matching. Matching only occurs when the candidate s#s1#s2 . . .#sm is
a concretion of the pattern p#p1#p2 . . .#pm. The strict strategy embodies a
matching with maximum degree of similarity between string-objects. Because of
the different roles of the matching partners, the strict matching relation is not
necessarily symmetric.

Matchstrict ⊆ S × S

Matchstrict =
⋃

m∈N

{(p#p1#p2 . . .#pm, s#s1#s2 . . .#sm) | (p = s) ∧

∀j ∈ {1, . . . ,m} : [(pj = sj) ∨ (pj = *) ∨ ((pj = ¬q) ∧ (sj 	= q))]}

Let the regular set S be a syntax description for string-objects. Matching of
a single string-object w ∈ S to the search space generated by S is defined by

Match(w) = {s ∈ S | (w, s) ∈ Matchx}

with x = loose or x = strict. Consequently, we define the matching of a language
L ⊆ S by the function Match : P(S) −→ P(S) with

Match(L) =
⋃

w∈L

Match(w).

Definition of System Behavior

This subsection describes the dynamical behavior of P systems ΠCSN. The mul-
tiset Li(t) denotes the contents of module Mi at time t ∈ N. Li(t) is assumed to
be empty for t < 0. It represents the configuration of the module controlled by
a global clock and leads to the definition of the system step:

Li(0) = Ai

L′
i(t) = Li(t) 8 Eductsi(t) 7 Products i(t)

Li(t + 1) = L′
i(t) 8Outgoingi(t) 7 Incoming i(t)

A system step consists of four stages of modification, each of which is carried
out synchronously in all modules. Firstly, the multiset of reaction educts is de-
termined and removed from the module contents Li(t). Controlled application
of local reaction rules transforms these educts into a multiset of products, which
is added to the module contents without time delay. A subset of the new mod-
ule contents can enter outgoing channels to move to (other) modules. Finally,
arriving string-objects that have passed channels towards the module complete
its contents.

Let Rij = (FA, FB) ∈ 〈S〉 × 〈S〉 be a reaction rule in module Mi with
supp(FA) = {a1, . . . , ap} and supp(FB) = {b1, . . . , bq}. In terms of a chemical
denotation, the rule Rij can be written as

FA(a1) · a1 + . . . + FA(ap) · ap −→ FB(b1) · b1 + . . . + FB(bq) · bq

A Protein Substructure Based P System for Description and Analysis 415

where FA(a1), . . . , FA(ap) encode stoichiometric factors of educts a1, . . . , ap, and
FB(b1), . . . , FB(bq) stoichiometric factors of products b1, . . . , bq, respectively. All
educt strings that match to the pattern ak are provided by Match(ak). A com-
bination of educt strings from Li(t) matching the left hand side of Rij forms
a multiset of string-objects used to apply the reaction once. Since the kinetic
law, described by the scalar function fij , returns the number of applications of
reaction rule Rij within one step, the multiset of string-objects extracted from
Li(t) to act as educts for Rij can be written as Educts ij(t):

Educts ij(t) =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fij
(
{(e1,∞), . . . , (ep,∞)} ∩ Li(t)

)
·

{
(e1, FAij (a1)), . . . , (ep, FAij (ap))

}
Considering educts of all reaction rules Ri1, . . . , Riri in module Mi, we achieve

Educts i(t) =
⊎

j∈{1,...,ri}
Educts ij(t).

Equivalently, the multiset of products obtained from reaction rule Rij is deter-
mined by the multiset Products ij(t):

Products ij(t) =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fij
(
{(e1,∞), . . . , (ep,∞)} ∩ Li(t)

)
·

{
(b1, FBij (b1)), . . . , (bq, FBij (bq))

}
Considering products of all reaction rules Ri1, . . . , Riri in module Mi, we achieve

Products i(t) =
⊎

j∈{1,...,ri}
Products ij(t).

Although the multiset difference always returns non-negative multiplicities, also
in case of a lack of educt-objects, the number of product-objects is only deter-
mined by Bij . This effect could be compensated by extension of multiset multi-
plicities to negative integers as well. This way, the requirement of mass-balance
could formally be sustained without additional formalism. For sufficiently large
numbers of proteins, however, this effect is negligible.

After performing the reactions, the multisets of outgoing and incoming string-
objects are specified using L′

i(t) and filter interfaces Iij . Let

Outgoingij(t)=L′
i(t)∩

{
(v,gw,ij(L′

i(t),L
′
j(t)))

∣∣v∈S∧w∈supp(Iij)∧v∈Match(w)
}

the multiset of transferred string-objects along the channel from Mi to Mj .
We define:

Outgoingi(t) =
⊎

j∈{1,...,n}
Outgoing ij(t)

Incoming i(t) =
⊎

k∈{1,...,n}
Outgoingki(t− dki)

416 T. Hinze, T. Lenser, and P. Dittrich

Generated Language

This subsection specifies the configuration of system ΠCSN at time t and finally
the generated formal language L(ΠCSN). The contents Li(t) of all modules Mi

form the essential part of the system configuration. Since string-objects can
take several time steps to pass channels, the system configuration at time t also
subsumes all multisets Outgoingij(τ) with τ = 0, . . . , t− 1. The configuration of
module Mi at time t is a construct

Ci(t) =
(
Li(t),

(
Outgoingij(τ)

)
j=1,...,n

τ=0,...,t−1

)
.

Furthermore,

CΠCSN(t) = (C1(t), . . . , Cn(t)).

ΠCSN generates the language

L(ΠCSN) = supp

(∞⊎
t=0

(
n⊎

i=1

Li(t)

))
,

the set of string-objects that occur in any module during infinite execution of
the system.

4 System Properties

P systems of the framework ΠCSN feature a combination of properties which
are relevant to describe and analyze CSNs. Bringing together notions of sub-
structured string-objects, configurable modules interconnected by channels, and
a formalization of deterministic dynamical system behavior, the proposed ap-
proach lends itself to applications beyond classification of computational power.
Further studies are focused on the evolutionary development from small low-
structured subunits towards much more complex networks with shared resources.
Establishing correlations between physical structures and biological functions is
a key issue here. In preparation of these objectives, we have designed ΠCSN with
the following properties.

Modularity: System composition of a finite number of interacting modules
follows the idea of defined functional subunits. Modularization can be seen
as a powerful tool to represent the inherent structure of a complex system,
its organization, and its basic principles. Each module performs a specific set
of reactions in an autonomous manner. Communication between modules is
separated from reaction processes.

Static System Topology: Established CSNs own a static topology based on
modules and directed channels resulting in a graph structure. Each of the
channels acts as a filter with regard to both qualitative and quantitative as-
pects. Configurable patterns represent receptors to accept or reject proteins

A Protein Substructure Based P System for Description and Analysis 417

with specific properties. Maximum capacity as well as time delay reflect
physical restrictions. In CSNs, channels often form cascades consisting of
several stages with different protein ligands, complexes or activation state.

Ability to Identify Objects/Substructures: Each single (protein or lig-
and) molecule handled within the system is treated as an individual object.
It identifies the underlaying protein and provides information about addi-
tional specific properties. Since reactions within CSNs often keep proteins
but modify their properties, consideration of sub-structural information is
essential in the model in order to handle combinatorial networks.

Flexibility in Level of Abstraction: The concept of substrings containing
information about specific protein properties gives the system a high degree
of flexibility in the level of abstraction. Wild-carded and excluding patterns
enable coping with uncertainty. The way how incomplete information can
be processed by reaction and transduction spans a wide range of detail.
Consequences of uncertainty to the system behavior become obvious.

Determinism: The system ΠCSN is constructed to work in a deterministic man-
ner. Subsequent execution of system steps leads to a unique path through
configurations. In terms of the computational path, determinism implies con-
fluence.

Computational Tractability: Determinism and finite system components fa-
cilitate simulations in silico. All aspects of the system description and system
behavior are formalized for ΠCSN. Sets, multisets, and functions used within
the system are polynomially decidable with regard to the number of objects.
Software tools like computer algebra systems can serve for further analysis.

Computational Completeness: The ability to use P systems as models for
computation can be seen as a fundamental aspect in the field of membrane
computing [9]. Investigations about their (sub)classes of computability de-
pending on certain combinations of system properties and restrictions mo-
tivate theoretically inspired contributions to the field. Reaction networks
are known to be computational complete, constructively shown in [7]. Each
module Mi of ΠCSN forms such a reaction network.

5 Example: Signal Transduction in the Yeast Pheromone
Pathway

The pheromone response pathway in Saccharomyces cerevisiae (yeast hereafter)
is among the best understood signalling pathways in eukaryotes. Its constituents
(proteins) and their interactions have been subject of a great variety of studies,
and the overall picture of how these act together in the pathway is rapidly
emerging (see [1] for a review). Yeast cells exist in two mating types, MATa and
MATα, which secrete pheromones to stimulate mating behavior in the opposite
type. Effects of this stimulation are the arrest of the cell cycle, changes in the

418 T. Hinze, T. Lenser, and P. Dittrich

expression of around 200 genes, and even an elongation of the cell in the direction
of its mating partner.

To show the suitability of the P system formalism to model cell signalling
networks, we have decided to convert the comprehensive yeast pheromone path-
way model by Kofahl and Klipp [6] into our framework. The pathway consists
of different modules: the G-protein-coupled receptor (M1, corresponding to re-
ceptor activation and G-protein cycle in [6]), formation of the scaffold protein
(M2), MAPK cascade (M3), Fus3 phosphorylation cycle (M4), and responses of
the cell to the activation of the pathway (not modelled here).

In the module M1, the receptor protein Ste2 is activated by α-Factor
pheromone. In response to activation of Ste2, the trimeric G-protein breaks
into its α and βγ subunits, of which the latter passes on the signal. The “service
module” M2 binds the three components of the MAPK cascade (Ste11, Ste7 and
Fus3) to the scaffold protein Ste5, which is then bound by Gβγ. Ste20 can now
bind to this complex (creating complex C), where it phosphorylates Ste11 and
thus triggers the MAPK cascade (M3). In this cascade, Ste11 activates Ste7,
which in turn activates Fus3. Activated Fus3 is then split off (leaving complex
C′) and moves into the nucleus. Unphosphorylated Fus3 can again bind to C′,
creating a cycle which amplifies the response.

Πpheromone = (V, V ′, E,M, 4)

V = {Ste2, α,Gβγ,Gα, Ste5, Ste11, Ste7,Fus3, Ste20,C,C′, :}
V ′ = {a,GDP,GTP, p}

M = {M1,M2,M3,M4}
E = {(1, 3, I13, d13), (3, 1, I31, d31), (2, 3, I23, d23),

(3, 2, I32, d32), (3, 4, I34, d34)}

I13 = {(Gβγ, g13(L′
1(t), L

′
3(t)) = "kg13 [Gβγ]L′

1(t)
#)}

I31 = {(Gβγ, g31(L′
3(t), L

′
1(t)) = "kg31 [Gβγ]L′

3(t)
#)}

I23 = {(Ste5:Ste11:Ste7:Fus3,
g23(L′

2(t), L
′
3(t)) = "kg23 [Ste5:Ste11:Ste7:Fus3]L′

2(t)
#)}

I32 = {(Ste5:Ste11:Ste7:Fus3,
g32(L′

3(t), L
′
2(t)) = "kg32 [Ste5:Ste11:Ste7:Fus3]L′

3(t)
#)}

I34 = {(C#p#p#p#p, g34(L′
3(t), L

′
4(t)) = "kg34 [C#p#p#p#p]L′

3(t)
#)}

M1 = (R11, R12, R13, R14, R15, f11, f12, f13, f14, f15, A1) with
R11 = Ste2#¬a + α −→ Ste2#a
R12 = Ste2#a −→ Ste2#¬a
R13 = Gβγ:Gα#GDP + Ste2#a −→ Gα#GTP + Gβγ + Ste2#a

A Protein Substructure Based P System for Description and Analysis 419

Ste20

Ste2

GTP GDP

Ste5

Fus3

GDP

Ste20

Ste11 Ste5

Ste7

Fus3

Fus3

Cellular response: cell cycle arrest, gene expression alteration, growth towards pheromone source

Ste7

Ste11 Ste5

Ste7 Fus3

Ste11 Ste5

Ste11

Ste7 Fus3

Ste20

Ste11 Ste5

Ste7 Fus3

Ste7 Fus3

Ste11 Ste5

Ste7 Fus3

Ste11 Ste5

Ste20

Ste7 Fus3

Ste11 Ste5

Ste20

Ste7 Fus3

Ste11 Ste5

p

p

p

p

Ste20

Ste7 Fus3

Ste11 Ste5

p

p

Ste20

Ste7 Fus3p

Ste11 Ste5 p

p

p

Ste20

Ste7 Fus3

Ste11 Ste5 p

p

p

p

Ste20

Ste11 Ste5

Ste7 Fus3p p

p

p

p

p p

Ste2

GβγGα

Gβγ

Gα

α

Gα

Gβγ

α

Gβγ

Gβγ

Gβγ

Gβγ

Gβγ

Gβγ

Gβγ

Gβγ

R14

Gβγ R13

R31

R33

R35

R36

R38R41

R42

R44

R11

R12

R21

R25

R23

R24

R15

R22

R26

R32

R34

R37

R43

M1

M2

M4

M3

Fig. 1. Module diagram and reaction scheme of the yeast pheromone pathway. At
bidirectional arrows, the upper rule corresponds to the rightward direction. Due to the
combinatorial complexity, not all sequences of phosphorylation and only one dissocia-
tion of complex C are shown in M3.

R14 = Gα#GTP −→ Gα#GDP
R15 = Gβγ + Gα#GDP −→ Gβγ:Gα#GDP

f11(L1(t)) =
⌊
k11[Ste2#¬a]L1(t)[α]L1(t)(1/V

2
1)
⌋

f12(L1(t)) =
⌊
k12[Ste2#a]L1(t)(1/V1)

⌋
f13(L1(t)) =

⌊
k13[Gβγ:Gα#GDP]L1(t)[Ste2#a]L1(t)(1/V

2
1)
⌋

f14(L1(t)) =
⌊
k14[Gα#GTP]L1(t)(1/V1)

⌋
f15(L1(t)) =

⌊
k15[Gβγ]L1(t)[Gα#GTP]L1(t)(1/V

2
1)
⌋

A1 = {(α, 6 · 1017), (Ste2#¬a, 1018), (Gβγ:Gα#GDP, 1018)}

M2 = (R21, R22, R23, R24, R25, R26, f21, f22, f23, f24, f25, f26, A2) with
R21 = Ste5 + Ste11 −→ Ste5:Ste11
R22 = Ste5:Ste11 −→ Ste5 + Ste11

420 T. Hinze, T. Lenser, and P. Dittrich

R23 = Ste7 + Fus3 −→ Ste7:Fus3
R24 = Ste7:Fus3 −→ Ste7 + Fus3
R25 = Ste5:Ste11 + Ste7:Fus3 −→ Ste5:Ste11:Ste7:Fus3
R26 = Ste5:Ste11:Ste7:Fus3 −→ Ste5 + Ste11 + Ste7 + Fus3

f21(L2(t)) =
⌊
k21[Ste5]L2(t)[Ste11]L2(t)(1/V

2
2)
⌋

f22(L2(t)) =
⌊
k22[Ste5:Ste11]L2(t)(1/V2)

⌋
f23(L2(t)) =

⌊
k23[Ste7]L2(t)[Fus3]L2(t)(1/V

2
2)
⌋

f24(L2(t)) =
⌊
k24[Ste7:Fus3]L2(t)(1/V2)

⌋
f25(L2(t)) =

⌊
k25[Ste5:Ste11]L2(t)[Ste7:Fus3]L2(t)(1/V

2
2)
⌋

f26(L2(t)) =
⌊
k26[Ste5:Ste11:Ste7:Fus3]L2(t)(1/V2)

⌋
A2 = {(Ste5, 9.5 ·1016), (Ste11, 9.5 ·1016), (Ste7, 2 ·1016), (Fus3, 2 ·1016)}

M3 = (R31, R32, R33, R34, R35, R36, R37, R38,

f31, f32, f33, f34, f35, f36, f37, f38, A3) with
R31 = Ste5:Ste11:Ste7:Fus3 + Gβγ −→ Ste5:Ste11:Ste7:Fus3:Gβγ

R32 = Ste5:Ste11:Ste7:Fus3:Gβγ −→ Ste5:Ste11:Ste7:Fus3 + Gβγ

R33 = Ste5:Ste11:Ste7:Fus3:Gβγ + Ste20 −→ C#¬p#¬p#¬p#¬p
R34 = C#*#*#*#* −→ Ste5:Ste11:Ste7:Fus3:Gβγ + Ste20
R35 = C#¬p#¬p#*#* −→ C#¬p#p#*#*

R36 = C#¬p#p#¬p#* −→ C#¬p#p#p#*

R37 = C#¬p#p#p#¬p −→ C#¬p#p#p#p
R38 = C#¬p#p#p#p −→ C#p#p#p#p

f31(L3(t)) =
⌊
k31[Ste5:Ste11:Ste7:Fus3]L3(t)[Gβγ]L3(t)(1/V

2
3)
⌋

f32(L3(t)) =
⌊
k32[Ste5:Ste11:Ste7:Fus3:Gβγ]L3(t)(1/V3)

⌋
f33(L3(t)) =

⌊
k33[Ste5:Ste11:Ste7:Fus3:Gβγ]L3(t)[Ste20]L3(t)(1/V

2
3)
⌋

f34(L3(t)) =
⌊
k34[C#*#*#*#*]L3(t)(1/V3)

⌋
f35(L3(t)) =

⌊
k35[C#¬p#¬p#*#*]L3(t)(1/V3)

⌋
f36(L3(t)) =

⌊
k36[C#¬p#p#¬p#*]L3(t)(1/V3)

⌋
f37(L3(t)) =

⌊
k37[C#¬p#p#p#¬p]L3(t)(1/V3)

⌋
f38(L3(t)) =

⌊
k38[C#¬p#p#p#p]L3(t)(1/V3)

⌋
A3 = {(Ste20, 6 · 1017)}

M4 = (R41, R42, R43, R44, f41, f42, f43, f44, A4) with
R41 = C#p#p#p#p −→ C′#p#p#p + Fus3#p
R42 = C′#p#p#p + Fus3#¬p −→ C#p#p#p#¬p

A Protein Substructure Based P System for Description and Analysis 421

R43 = C#p#p#p#¬p −→ C′#p#p#p + Fus3#¬p
R44 = C#p#p#p#¬p −→ C#p#p#p#p

f41(L4(t)) =
⌊
k41[C#p#p#p#p]L4(t)(1/V4)

⌋
f42(L4(t)) =

⌊
k42[C′#p#p#p]L4(t)[Fus3]L4(t)(1/V

2
4)
⌋

f43(L4(t)) =
⌊
k43[C#p#p#p#¬p]L4(t)(1/V4)

⌋
f44(L4(t)) =

⌊
k44[C#p#p#p#¬p]L4(t)(1/V4)

⌋
A4 = {(Fus3, 6 · 1017)}

While most parts of the model given in [6] were directly adapted, a few slight
changes had to be introduced. Concentrations, which were given in nM in the
original, were converted into molecule numbers. In order to compensate for this
effect on the reaction kinetics, these were extended by the volume Vi of each
module as a normalization constant. Values for all parameters kij appearing in
the reaction kinetics are not given here, but can be calculated from the data
given in [6]. In accordance with the original model, reaction kinetics consist of
mass-action formulations, which have to be rounded in order to yield integer
values as results.

6 Discussion

An important aspect of the system is its capability to deal with the combinatorial
complexity arising when proteins incorporating multiple sites for modification
and binding are involved. The usage of wild-cards and exclusions allows a com-
pact formulation of systems that would be substantially larger if only atomic
objects were considered. This major advantage could even be extended by the
introduction of generic logical expressions into the protein descriptions.

It is important to mention two potential limitations of the system. On the
one hand, the reaction kinetics mechanism might produce imprecise results in
case of small object numbers, due to the fact that educts of multiple reactions
can sum up to more proteins than currently present. As a possible solution,
we propose the extension of the multiset definition to negative multiplicities, so
that modules can formally contain negative numbers of objects. In this case, the
kinetic formulation would ensure any educt with a negative multiplicity could
not participate in a reaction, but rather would have to be refilled again. On
the other hand, a potential constraint comes from the way in which the kinetic
functions are applied to each combination of proteins matching the right side
of a reaction rule. In order to work precisely, this approach requires the kinetic
functions to be linear. Therefore, it is advisable not to use wild-carded reaction
rules with non-linear kinetics. Both of these points require further research to
maximize the system’s usability.

The choice of the matching strategy strongly influences the system behavior.
Strict matching implies maximum specificity of the reactions. In contrast, to

422 T. Hinze, T. Lenser, and P. Dittrich

involve a large pool of protein configurations, a loose matching should be pre-
ferred. Special application scenarios can be tackled by additional matching
strategies.

7 Conclusions

The introduced model ΠCSN intends to combine advantages of P systems with
mechanisms observed in cell signalling networks. It is conceived as a descrip-
tion, analysis, and prediction tool for ongoing studies about the evolutionary
development of protein structures, their properties, interactions, and resulting
network functions. To this end, we have integrated string-objects and a modular
architecture into a deterministic framework. In future, simulations as well as
theoretical investigations will lead the way towards a deeper understanding of
the correlation between CSN structure and function.

Acknowledgements

This work is part of the ESIGNET project (Evolving Cell Signalling Networks
in Silico), which has received research funding from the European Community’s
Sixth Framework Programme (project no. 12789). Further funding from the
Federal Ministry of Education and Research (BMBF, grant 0312704A) is ac-
knowledged.

References

1. L. Bardwell. A walk-through of the yeast mating pheromone response pathway.
Peptides, 25:1465–1476, 2004.

2. F. Bernardini, M. Gheorghe. Population P systems. Journal of Universal Computer
Science, 10(5):509–539, 2004.

3. L. Cardelli, A.D. Gordon. Mobile ambients. LNCS 1378, Springer-Verlag, Berlin,
1998.

4. S. Eilenberg. Automata, Languages, and Machines. Academic Press, New York,
1976.

5. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry, 81:2340–2361, 1977.

6. B. Kofahl, E. Klipp. Modelling the dynamics of the yeast pheromone pathway.
Yeast, 21:831–850, 2004.

7. M.O. Magnasco. Chemical kinetics is Turing universal. Physical Review Letters,
78(6):1190–1193, 1997.

8. V. Manca, L. Bianco, F. Fontana. Evolution and oscillation in P systems: Appli-
cations to biological phenomena. LNCS 3365, Springer-Verlag, Berlin, 2005.

9. C. Martin-Vide, G. Păun. Computing with membranes (P systems): Universality
results. LNCS 2055, Springer-Verlag, Berlin, 2001.

10. C. Martin-Vide, G. Păun, J. Pazos, A. Rodriguez-Paton. Tissue P systems. Theo-
retical Computer Science, 296(2):295–326, 2003.

A Protein Substructure Based P System for Description and Analysis 423

11. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

12. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

13. G. Păun. Membrane Computing: An Introduction. Springer-Verlag, Berlin, 2002.
14. G. Păun, Y. Sakakibara, T. Yokomori. P systems on graphs of restricted forms.

Publicationes Mathematicae, 60, 2002.
15. D. Pescini, D. Besozzi, G. Mauri, C. Zandron. Dynamical probabilistic P systems.

International Journal of Foundations of Computer Science, 17(1):183–195, 2006.
16. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice Hall, 1961.
17. G. Rozenberg, A. Salomaa, Eds. Handbook of Formal Languages. Springer-Verlag,

Berlin, 1999.
18. Y. Suzuki, H. Tanaka. Symbolic chemical system based on abstract rewriting and

its behavior pattern. Artificial Life and Robotics, 1:211–219, 1997.

Characterizations of Some Restricted
Spiking Neural P Systems�

Oscar H. Ibarra and Sara Woodworth

Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu

Abstract. A k-output spiking neural P system (SNP) with output neu-
rons, O1, · · · , Ok, generates a tuple (n1, · · · , nk) of positive integers if,
starting from the initial configuration, there is a sequence of steps such
that during the computation, each Oi generates exactly two spikes a a
(the times the pair a a are generated may be different for different out-
put neurons) and the time interval between the first a and the second
a is ni. After the output neurons have generated their pairs of spikes,
the system eventually halts. Another model, called k-train SNP, has only
one output neuron. It generates a k-tuple (n1, · · · , nk) if, starting from
the initial configuration, the output neuron O generates the spike train
aa · · · a with exactly k+1 a’s such that the interval between the ith a and
the i + 1st a is ni, and the system eventually halts. We assume, without
loss of generality, that each neuron in the SNP is either bounded or un-
bounded. (Bounded here means that there is a fixed constant c such that
at any time during the computation, the number of spikes in the neuron
is at most c. Otherwise, the neuron is unbounded.) It is known that 1-
output SNPs (= 1-train SNPs) are universal, i.e., they generate exactly
the recursively enumerable sets over N . Here, we show the following:

1. For k ≥ 1, a set Q ⊆ Nk is semilinear if and only if it can be gen-
erated by a k-output SNP, where every unbounded neuron satisfies
the property that once it starts “spiking” it will no longer receive
future spikes (but can continue spiking). This result also holds for
k-train SNP.

2. The set Q = {(m, 2m) | m ≥ 1} (which is semilinear) cannot be
generated by any 2-output bounded SNP (i.e., SNP all of whose
neurons are bounded). Thus, for k ≥ 2, there are semilinear sets
over Nk that cannot be generated by k-output bounded SNPs. This
contrasts a known result that 1-output bounded SNPs generate all
semilinear sets over N .

3. For k ≥ 2, k-output bounded SNPs are computationally more pow-
erful than k-train bounded SNPs. (They are identical when k = 1.)

4. For k ≥ 1, k-output bounded SNPs and k-train bounded SNPs
can be characterized by certain classes of nondeterministic finite au-
tomata with strictly monotonic counters.

� This research was supported in part by NSF Grants CCF-0430945 and CCF-0524136.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 424–442, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Characterizations of Some Restricted Spiking Neural P Systems 425

1 Introduction

Spiking neural P systems (SNPs) were recently introduced in [6], and investigated
in a series of papers: [11], [12], [5]. The SNP model incorporates into membrane
computing [10] ideas from spiking neurons, see, e.g., [1], [7], [8].

A SNP consists of a set of neurons corresponding to nodes of a graph. The
neurons send signals (spikes) along synapses (directed edges of the graph). This
is done by means of firing rules, which are of the form E/aj → ak; t with j ≥
1, j ≥ k ≥ 0, t ≥ 0, where E is a regular expression, j is the number of spikes
consumed by the rule, k is the number of spikes transmitted along each outgoing
synapse, and t is the delay from firing the rule and emitting the spike. The rule
can be used only if the number of spikes in the neuron is “covered” by expression
E, in the sense that the current number of spikes in the neuron, n, is such that
an is contained in the set L(E) denoted by the expression E. In the time interval
between firing a rule and emitting the spike, the neuron is closed/blocked – it
does not receive other spikes and cannot fire. After the time interval, the neuron
is again open and can again fire and receive other spikes. As a simplification,
the rule aj/aj → a; t is written as aj → a; t. Here as in previous papers we will
only use rules where k = 0 or 1. When k = 0, we call this rule a forgetting rule.
We only use this type of rule in a very restricted sense. For the forgetting rules
in this paper, the delay is always 0, E is a singleton language, all spikes in E
are used when the rule is used, and E is disjoint from all the other rules in the
neuron. We use the rule form aj → λ to represent these rules. (This definition
is chosen since it is consistent with the definition in all previous papers.)

Starting from a fixed initial distribution of spikes in the neurons (initial con-
figuration) and using the rules in a synchronized manner (a global clock is as-
sumed), the system evolves. A computation is a sequence of transitions starting
from the initial configuration. A transition is maximally parallel in the sense
that all neurons that are fireable must fire. However, in any neuron, at most one
rule is allowed to fire. Details can be found in [6].

SNPs can be used as computing devices in various ways. Here, as in previous
papers, we will use them as generators of numbers. We will only consider SNPs
with two types of neurons:

1. A neuron is bounded if every rule in the neuron is of the form ai/aj → a; t ,
where j ≤ i, or of the form ak → λ, provided there is no rule of the form
ak/aj → a; t in the neuron. Note that there can be several such rules in the
neuron. These rules are called bounded rules. (For notational convenience,
we will write ai/ai → a; t simply as ai → a; t.)

2. A neuron is unbounded if every rule in the neuron is of the form E/ac → a; t,
where E denotes an infinite (unary) regular set. Examples of such rules are:
a3(a2)∗/a2 → a; t , a3(a2)∗/a3 → a; t , a(a)∗/a → a; t. (Again, there can be
several such rules in the neuron.) These rules are called unbounded rules.

A SNP is bounded if all the neurons in the system are bounded. If, in addition,
there are unbounded neurons then the SNP is said to be unbounded.

426 O.H. Ibarra and S. Woodworth

We generalize the SNP by allowing it to produce k outputs. A k-output
SNP Π has k output neurons, O1, · · · , Ok. We say that Π generates a k-tuple
(n1, · · · , nk) ∈ Nk if, starting from the initial configuration, there is a sequence
of steps such that each output neuron Oi generates exactly two spikes a a (the
times the pairs a a are generated may be different for different output neurons)
and the time interval between the first a and the second a is ni.

Moreover, after all the output neurons have generated their pair of spikes,
the system eventually halts in the sense that it reaches a configuration where all
neurons are open but no neurons are fireable. The set of all k-tuples generated
is denoted by Q(Π).

It was recently shown in [5] that a set Q(Π) ⊆ N1 is recursively enumerable
if and only if it can be generated by a 1-output unbounded SNP Π all of whose
unbounded neurons have only one rule, and it is either a(a)∗/a → a; 0 or
a(a)∗/a → a; 2.

It was also shown in [6] that semilinear subsets of N1 can be characterized
by bounded SNPs. However, it turns out that bounded k-output SNPs cannot
generate all semilinear subsets of Nk, when k ≥ 2. For example, we show in
this paper that the set of tuples {(m, 2m) | m ≥ 1} cannot be generated by a
2-output SNP. We then give a characterization of subsets of Nk generated by
k-output bounded SNPs.

For semilinear subsets of Nk (for any k), we show that they can be character-
ized by k-output unbounded SNPs where every unbounded neuron satisfies the
property that that once it starts “spiking” it will no longer receive future spikes
(but can continue spiking). Such SNPs are called 1-reversal-bounded.

We then look at another restricted model called k-train SNP. Such a system
has only one output neuron. Again, there are two types of neurons: bounded and
unbounded but 1-reversal-bounded, as defined before. We say that Π generates
the k-tuple (n1, · · · , nk) if, starting from the initial configuration, the output
neuron O generates the spike train aa · · ·a with exactly k + 1 outputted a’s
such that the interval between the ith a and the i + 1st a is ni, and the system
eventually halts. We show that 1 reversal-bounded k-train unbounded SNPs also
characterize the semilinear sets over Nk. We also give a characterization of k-
train bounded SNPs and show that they cannot generate all semilinear sets. In
fact, they are weaker than k-output bounded SNPs.

2 Characterization of k-Output Bounded SNPs

We first recall the definition of a semilinear set. A set Q ⊆ Nk is a linear set if
there exist vectors v0, v1, . . . , vt in Nk such that

Q = {v | v = v0 + m1v1 + · · ·+ mtvt, mi ∈ N}.

The vectors v0 (referred to as the constant vector) and v1, v2, . . . , vt (referred to as
the periods) are called the generators of the linear set Q. A set Q ⊆ Nk is semilin-
ear if it is a finite union of linear sets. The empty set is a trivial (semi)linear set,
where the set of generators is empty. Every finite subset of Nk is semilinear – it

Characterizations of Some Restricted Spiking Neural P Systems 427

is a finite union of linear sets whose generators are constant vectors. It is also clear
that the semilinear sets are closed under (finite) union. It is also known that they
are closed under complementation, intersection, and projection. A semilinear sub-
set of N1 (i.e., 1-tuples) is sometimes referred to as regular.

It is known that 1-output SNPs with only bounded neurons generate exactly
the semilinear sets over N1 [6]. However, as we shall see in Theorem 1, when
k ≥ 2, k-output SNPs with only bounded neurons cannot generate all semi-
linear sets over Nk. But these SNPs can generate some simple semilinear sets.
For example Figure 1 is a SNP with only bounded neurons generating the set
{(m,n,m + n) | m,n ≥ 2}.

a2

a2/a a;0

a

a
a a;0

a a;1

a3

a3 a;0

a a;1

a2

a3

a4 a;0

a a;1

a2

a3

a3 a;4

a a;0

a2/a a;0

a

a a;0

a a;1
a2 a;0

a2 a;0

a2 a;0

OUT1 OUT2 OUT3

Fig. 1. Bounded SNP generating Q = {(m, n, m + n) | m, n ≥ 2}

Theorem 1. The set Q = {(m, 2m) | m ≥ 1} cannot be generated by any 2-
output bounded SNP.

Proof. Let Π be a SNP with m neurons that are all bounded. The distribution of
the spikes in the neurons and states of the neurons corresponding to the spiking
intervals specified by the last rules used in each neuron (the open-close status
and the time since the neurons were closed, depending on the rule used) and
the rule to be used next define the configuration of the system. It is important
to note that our definition of configuration includes the next rule that can be
applied in the neuron. Clearly, there are at most n configurations that the system
can be in, for some n. Let O1 and O2 be the output neurons.

Suppose Π generates the set Q = {(m, 2m) | m ≥ 1}. Let s = n + 1. Then Π
generates (s, 2s). Let t1 and t2 be the times the output membrane O1 generates
the first and second spikes, respectively. Hence, t2 − t1 = s. Similarly, let t3 and
t4 be the times O2 spikes; hence t4 − t3 = 2s. We consider two cases:

Case 1. Suppose t1 ≤ t3. Then we claim that t3 − t1 ≤ n. Otherwise, in the time
interval between t1 and t3, the system will enter some configuration C twice at
times t′1 and t′3, where t1 ≤ t′1 < t′3 ≤ t3. Let t′3 − t′1 = r. (Note that r ≤ n.)
Then, clearly the tuple (s + kr, 2s) is also generated by Π for each k ≥ 1. This
is a contradiction.

Case 2. Now suppose t3 ≤ t1. Then, again, t1−t3 ≤ n; otherwise (by an argument
similar to Case 1), for some r ≤ n, (s, 2s + kr) will also be generated by Π for
each k ≥ 1, a contradiction.

428 O.H. Ibarra and S. Woodworth

Thus we may assume that |t3− t1| ≤ n. But this would imply that t4− t2 ≥ n.
Then for some r ≤ n, (s, 2s + kr) will also be generated by Π for each k ≥ 1,
which is again a contradiction. ��

Next, we give a characterization of subsets of Nk generated by k-output bounded
SNPs. Consider a nondeterministic finite automaton M with k counters, all of
which are output counters.

1. Initially all counters are zero.
2. No counter is decremented during the computation.
3. In one step, zero or more counters can be incremented (by 1).
4. When a counter is incremented, it gets incremented at every step until such

time when it stops incrementing. Thereafter, the counter no longer incre-
ments.

5. Each counter gets incremented at some point.
6. When all the counters have stopped incrementing, the machine may continue

computing but eventually halts in an accepting state. The values in the k
counters is then said to be generated by M.

Note that item 4 is an important restriction on the operation of the machine.
Call the counter machine (CM) described above a strictly monotonic k-output
CM. Clearly, the set {(m,n,m + n) | m,n ≥ 1} can be generated by a strictly
monotonic 3-output CM. Other examples are: {(n, n) | n ≥ 1}, {(k, n) | k, n ≥
1, k < n}, and {(m, k, n,) | m, k, n ≥ 1,m < k < n}. The first two can be
generated by strictly monotonic 2-output CMs, and the last can be generated
by a strictly monotonic 3-output CM.

Formally, we can define a strictly monotonic k-output CM as M =< k,B, l1,
lh, R > where k is the number of counters in the system, B is the set of instruction
labels, l1 is the starting instruction, lh is the halting instruction, and R is the
set of instructions. The instructions in R are of the form

li : (BEGIN(r1, · · · , rp), END(s1, · · · , sq), li1 , · · · , lit)
li : (CONTINUE, li1 , · · · , lit)
li : (HALT)

The counters are indexed 1, · · · , k. The instruction li : (BEGIN(r1, · · · , rp),
END(s1, · · · , sq), li1 , · · · , lit) starts incrementing counters r1, · · · , rp (this assumes
these counters were zero) and stops incrementing counters s1, · · · , sq (this as-
sumes these counters have been incrementing at every step, since they started
incrementing earlier). The set {r1, · · · , rp} (respectively, {s1, · · · , sq}) is called
the incrementing set (respectively, end-incrementing set) of the instruction. The
counters in the incrementing set begin incrementing during the current step,
but the counters in the end-incrementing step are stopped before they are incre-
mented during the current step. If p = 0 or q = 0, we do not write BEGIN or END.
In particular, if p = q = 0, then the instruction reduces to li : (li1 , · · · , lit), which
we denote by the instruction li : (CONTINUE, li1 , · · · , lit) for clarity. During this
instruction no counter changes state but all previously incrementing counters
are incremented by one and then the system changes state. We emphasize that

Characterizations of Some Restricted Spiking Neural P Systems 429

once a counter r has begun incrementing, it is incremented at each proceeding
step until r is in the end-incrementing set of the current instruction. If r is ever
incremented again, the computation is invalid. The incrementing set must be
disjoint of the end-incrementing set (since we cannot begin and end a counter
in a single step). The instruction li : (HALT) halts the execution. We can assume
without loss of generality that no instruction loops back to itself. Note that if
li1 , · · · , lit are identical (i.e., the next instruction is unique), we need only put
one such label.

To better understand how strictly monotonic CMs operate we give the follow-
ing examples.

Example 1. The set Q = {(n, n) | n ≥ 1} can be generated by the strictly
monotonic CM M =< 2, {l1, · · · , l5}, l1, l5, R > where

R = { l1 : (BEGIN(1, 2), l2, l4),
l2 : (CONTINUE, l3, l4),
l3 : (CONTINUE, l2, l4),
l4 : (END(1, 2), l5),
l5 : (HALT)}

This program begins incrementing the counters at time 1. The (possibly exe-
cuted) CONTINUE instructions allow some nondeterministic amount of time to
elapse. Then we end the incrementing of both counters at time n+ 1. This gives
us the tuple (n, n) where n ≥ 1. (Note that the counters increment during the
time step they are begun guaranteeing that each counter contains an output
which is ≥ 1.)

Example 2. The set Q = {(m, k, n) | m ≤ k ≤ n,m ≥ 1} can be generated by
the strictly monotonic CM M =< 3, {l1, · · · l14}, l1, l14, R > where

R = { l1 : (BEGIN(1, 2, 3), l2, l4, l5, l6),
l2 : (CONTINUE, l3, l4.l5, l6),
l3 : (CONTINUE, l2, l4, l5, l6),
l4 : (END(1), l7, l9, l10),
l5 : (END(1, 2), l11, l13),
l6 : (END(1, 2, 3), l14),
l7 : (CONTINUE, l8, l9, l10),
l8 : (CONTINUE, l7, l9, l10),
l9 : (END(2), l11, l13),
l10 : (END(2, 3), l14),
l11 : (CONTINUE, l12, l13),
l12 : (CONTINUE, l11, l13),
l13 : (END(3), l14),
l14 : (HALT)}

The following characterizes k-output bounded SNPs.

Theorem 2. A set Q ⊆ Nk is generated by a k-output bounded SNP if and only
if Q is generated by a strictly monotonic k-output CM.

430 O.H. Ibarra and S. Woodworth

Proof. Let Π be a bounded SNP with output neurons O1, · · · , Ok. Denote by
c1, · · · , cn all possible configurations Π can be in, with c1 the initial configuration
and cn the halting configuration. The configuration contains the number of spikes
in each neuron, the open/closed status of each neuron, the current delay for each
closed neuron, and the number of times each output neuron has spiked so far (0,
1, 2, or more than 2 times). The strictly monotonic CM M simulating Π will
have counters 1, . . . , k, where counter i corresponds to output neuron Oi. The
instructions of M are defined as follows:

1. cn : (HALT) is an instruction of M.
2. If from configuration ci, Π enters configuration ci1 or ci2 or · · · or cit without

any of the output neurons spiking, then ci : (CONTINUE, ci1 , ci2 , · · · , cit) is an
instruction of M.

3. If from configuration ci, Π enters configuration ci1 or ci2 or · · · or cit with
output neurons Or1 , · · · , Orp spiking for the first time and output neurons
Os1 , · · · , Osq spiking for the second time, then
li : (BEGIN(r1, · · · , rp), END(s1, · · · , sq), li1 , · · · , lit) is an instruction of M. (If
some output neuron spikes more than twice, we force M into an infinite
loop.)

It is straightforward to verify that M generates exactly the tuples generated by
Π .

We now prove the converse. Let M be a strictly monotonic k-output CM.
We construct a k-output bounded SNP Π equivalent to M. Informally, Π will
simulate each instruction of M. When a instruction begins incrementing counter
r, the corresponding output neuron is triggered to spike sending the first a into
the environment. When a instruction is executed which ends the incrementing of
counter r the corresponding output neuron is triggered to spike sending a second
a into the environment. (If a invalid computation is simulated, some output
neuron will end up sending at least 3 spikes into the environment invalidating
the simulation.) The simulation of each instruction takes exactly one time step.
This guarantees that the number of time steps between the two spikes of the
output neuron is precisely the same as the number of increments of the simulated
counter.

Formally, the simulation is done by creating 2m modules for each instruction
li where m is the largest number of nondeterministic choices per instruction in
M. (Each module is known as module lij or l′ij where 1 ≤ j ≤ m.) All the
neurons are empty in the initial configuration except the neurons in module
l11 which each initially contain one spike. When the computation halts, every
neuron in the system is empty.

To simulate an instruction of the form li : (BEGIN(r1, · · · , rp), END(s1, · · · , sq),
li1 , · · · , lit) we create 2m modules. The first module (li1) is shown in Figure 2.
The module introduces up to t+ 2 new neurons which are initiated when only a
single spike is sent to each neuron. At any time step, up to 2m + 1 spikes could
be received by any neuron but if more than one spike is received by the neurons
in this module they are forgotten (using the rules a2 → λ, · · · , a2m+1 → λ).

Characterizations of Some Restricted Spiking Neural P Systems 431

NONDETERMINISTIC CHOICE

a a;0

a2

...

a2m+1

li1
1

a a;0

a2

...

a2m+1

r1

li1
t

li11
'

li1

a a;0

a2

...

a2m+1

a a;0

a a;1

a2

...

a2m+1

a a;1

a2

...

a2m+1

...

...

li1
t+1 li1

t+m+2 li1
t+m+3li1

2

a a;0

a a;1

a2

...

a2m+1

BEGIN END

rplitt
' s1 sq

......

a a;1

a2

...

a2m+1

li1
t+m+1

...

Fig. 2. Bounded SNP module simulating instruction li1 : (BEGIN(r1, · · · , rp),
END(s1, · · · , sq), li1 , · · · , lit)

The neuron lt+m+2
i1 is used to send a single spike to each output neuron in

the set {r1, · · · , rp, s1, · · · , sq}. The neuron lt+m+3
i1 is used to send a single spike

to each output neuron in the set {s1, · · · , sq}. These two neurons guarantee that
when this instruction is simulated, neurons r1, · · · , rp each receive one spike while
neurons s1, · · · , sq each receive two spikes. This will cause each of these output
neurons to spike in the following step. The different number of spikes allow the
output neurons to check that they receive exactly one BEGIN instruction followed
by exactly one END instruction. Otherwise the output neuron is guaranteed to
spike zero, one, or at least three times.

The set of neurons l1i1, · · · , lt+m+1
i1 is used to nondeterministically choose which

instruction to execute next. The neuron l1i1 will always fire immediately. The neu-
rons lt+1

i1 , · · · lt+m+1
i1 will always fire with a delay of one time step. The remaining

neurons (l2i1, · · · , lti1) nondeterministically choose to either fire immediately or af-
ter a delay of one time step. This will produce two sets of spikes. The number of
spikes which are sent immediately is i′ where 1 ≤ i′ ≤ t. This set of spikes will
initiate exactly one instruction module (module l′ii′ i′ corresponding to instruc-
tion li′) while the other connected modules forget their spikes. The second set
of spikes is sent after a delay of one time step. This set consists of t+m+ 1− i′

spikes. This set of spikes is forgotten by all the neurons since it is strictly larger
than m. (If li is a deterministic rule, the neurons l2i1, · · · , lm+2

i1 are unnecessary
since their job is to guarantee that the delayed spikes are always forgotten. In a
deterministic rule there will be no delayed spikes.)

The instruction modules alternately execute primed and unprimed next in-
struction modules. So an unprimed module connects only to primed modules
and vice versa. This guarantees that a module is unable to get both a set of first

432 O.H. Ibarra and S. Woodworth

spikes from one instruction module during the same step as the second set of
spikes from a different instruction module.

The remaining modules for instruction li are created identically to module li1
except that the rules in the neurons are slightly changed. For modules lij and
l′ij (where 1 < j ≤ m), each neuron has spiking rules of the form aj → a; t along
with the set of forgetting rules {a1 → λ, · · · , aj−1 → λ, aj+1 → λ, a2m+1 → λ}.
Depending on the program of M, some modules may be unreachable in the
overall simulation. Obviously if the neurons are unreachable they can be removed
without detriment.

To simulate the instruction li : (CONTINUE, li1 , · · · , lit) we again create 2m
modules using the same technique. However, since these instructions do not
change the state of any counter, the neurons lt+m+2

ij and lt+m+3
ij (for 1 ≤ j ≤ m)

are not needed.

a9

a10/a4 a;0

a8 a;0

a11/a9 a;0

a7/a5 a;0

a5 a;0

...
a a;0

r

a
...

a2m+1

HALT

Fig. 3. Bounded SNP module simulating instruction li : (HALT) (left) and rules within
each output neuron (right)

The halt instruction must simply stop the computation so the simulation
module (shown in Figure 3) takes any spikes received and forgets them. Since no
further module is initiated, this will cause Π to halt. Also, the rules contained
in each output neuron are given in Figure 3. These rules guarantee the neuron
receives exactly one BEGIN instruction followed by exactly one END instruction
during the computation. Any deviation will guarantee that the valid condition
of ‘exactly 2 spikes are sent to the environment’ is not met.

The SNP system Π that is created outputs exactly two spikes from each
output neuron if and only if the simulated computation of M is valid. ��
To illustrate the construction of the bounded SNP simulating a strictly mono-
tonic CM, we give a very simple example below.

Example 3. Let Q = {(n, n) | n ≥ 4, n is even}. A CM generating this set is
M =< 2, (l1, · · · , l5), l1, l5, R > where

R = { l1 = (BEGIN(1, 2), l2),
l2 : (CONTINUE, l3),
l3 : (CONTINUE, l2, l4),
l4 : (END(1, 2), l5),
l5 : (HALT)}

Characterizations of Some Restricted Spiking Neural P Systems 433

a
a a;0

a2

a3

a4

a5

l11
4

a9

a10/a4 a;0

a8 a;0

a11/a9 a;0

a7/a5 a;0

a5 a;0

...

a a;0

1
a9

a10/a4 a;0

a8 a;0

a11/a9 a;0

a7/a5 a;0

a5 a;0

...

a a;0

2

a a;0

a2

a3

a4

a5

a2 a;0

(a a3 ... a5)

a a;0

(a2 ... a5)

a a;0

a a;1

(a2 ... a5)

a a;1

(a2 ... a5)

a
a a;0

a2

a3

a4

a5

a2 a;0

(a a3 ... a5)

a2 a;0

(a a3 ... a5)

a a;0

a2

a3

a4

a5

l11 l21' l31 l42' l51

HALT

l11
1

l21
2'

l31
1

l31
2

l31
3

l42
5'

l42
4'

l42
1'

a a;1

(a2 ... a5)

a a;1

(a2 ... a5)

l31
4

l31
5

Fig. 4. Bounded SNP Π simulating M generating Q = {(n, n) | n ≥ 4, n is even}

The SNP Π which simulates M is given in Figure 4. (To save space, a set of
forgetting rules is written as a rule of type (a2 ∨· · · ∨a5) → λ. This means if the
neuron contains between 2 and 5 spikes, these spikes are all forgotten.) Note that
all unnecessary and unreachable modules and neurons have been removed. It can
be seen that for this example, only one module is needed for each instruction. We
use module l11 to simulate instruction l1, module l21 to simulate instruction l2,
module l31 to simulate instruction l3, and module l42 to simulate instruction l4.
Also, many of these modules had unnecessary neurons which were also removed.

The characterization allows us to easily show that a set is generated by a k-
output bounded SNP by simply showing that it can be generated by a strictly
monotonic k-output CM. So, e.g., the sets in Examples 1 and 2 can be generated
by 2-output and 3-output bounded SNPs, respectively.

Suppose we relax the operation of a strictly monotonic k-output CM so that
we no longer require that when a counter is incremented, it gets incremented at
every step until such time when it stops incrementing. Thus, each counter need
not be incremented at each step, but eventually, the machine halts in an accept-
ing state when each counter has value at least 1. This type of machine (called

434 O.H. Ibarra and S. Woodworth

0-reversal CM in the next section) is more powerful than a strictly monotonic
k-output CM, since such CMs generate exactly the semilinear sets. In the next
section, we characterize them in terms of restricted k-output unbounded SNPs.

3 Reversal-Bounded k-Output Unbounded SNPs

In order to characterize all the semilinear sets over Nk, we need unbounded
neurons that operate in a restricted manner. A k-output SNP is reversal-bounded
if there is an integer r ≥ 0 such that for each unbounded neuron, the number
of times the spike size changes values from nonincreasing to nondecreasing and
vice-versa during any computation is at most r. The system is 1-reversal when
r = 1. A k-output SNP where each unbounded neuron operates with the property
that it can receive spikes, but once it starts spiking it will no longer receive
future spikes (but can continue spiking) would be considered a 1-reversal SNP.
Moreover, as we shall see, for the results of this section, we can assume there
is only one rule in each unbounded neuron, and it is a3(a2)∗/a2 → a; 0. Note
that when r = 0, i.e., the system is 0-reversal, then the unbounded neurons can
be deleted from the system without affecting the computation. Hence, such a
system is equivalent to a k-output bounded SNP.

We need a counter machine characterization of semilinear sets. A nondeter-
ministic multicounter machine (CM) M is a nondeterministic finite automaton
with a finite number of counters (it has no input tape). Each counter can only
hold a nonnegative integer. The machine starts in a fixed initial state with all
counters zero. During the computation, each counter can be incremented by
1, decremented by 1, or tested for zero. A distinguished set of k counters (for
some k ≥ 1) is designated as the output counters. The output counters are
non-decreasing (i.e., cannot be decremented). A k-tuple (n1, · · · , nk) ∈ Nk is
generated if M eventually halts in an accepting state, all non-output counters
zero, and the contents of the output counters are n1, · · · , nk, respectively. We will
refer to a CM with k output counters (the other counters are auxiliary counters)
as a k-output CM.

A CM is reversal-bounded if there exists an r ≥ 0 such that during any
computation, each non-output counter is r-reversal in the sense that it alternates
between nondecreasing mode and nonincreasing mode and vice-versa at most r
times. Note that when r = 0, the counter is nondecreasing. (By definition, the
output counters are 0-reversal.)

The following theorem is known [4] (see also [3]):

Theorem 3. The following statements are equivalent for any set Q ⊆ Nk:

1. Q is a semilinear set.
2. Q can be generated by a reversal-bounded k-output CM.
3. Q can be generated by a CM with exactly k counters, all of which are output

counters (hence, 0-reversal counters).

Using the above result, we can prove:

Characterizations of Some Restricted Spiking Neural P Systems 435

Theorem 4. The following statements are equivalent for any Q ⊆ Nk:

1. Q is semilinear.
2. Q can be generated by a reversal-bounded k-output unbounded SNP.
3. Q can be generated by a 1-reversal k-output unbounded SNP.

a a;0

a a;0

li

a a;0

li4li2

a a;1

a a;0

a a;1

a a;0

a a;1

a2

a a;1

a2li1

li3

li5

li6

li7
lj1

r

NONDETERMINISTIC CHOICE

lj1

ljk

NONDETERMINISTIC
CHOICE

...

Fig. 5. Reversal-bounded addition module

Proof. Clearly (3) implies (2). We first show that (1) implies (3) and then show
that (2) implies (1). From Theorem 3, if Q is semilinear, then it can be gen-
erated by a CM M with exactly k counters, all of which are output counters
(hence, nondecreasing). We give a construction of a 1-reversal k-output SNP Π
equivalent to M. We will see that each bounded neuron has a spike bound of 2
and each unbounded neuron is 1-reversal. A nondecreasing counter machine has
instructions of the form li : (ADD(r), lj1 , · · · , ljk

) and li : (HALT). The instruction
li : (HALT) halts the computation. The instruction li : (ADD(r), lj1 , · · · , ljk

) adds
1 to counter r and then nondeterministically moves to some state lj1 · · · , ljk

.
To simulate each instruction of the form li : (ADD(r), lj1 , · · · , ljk

), we create an
addition module as shown in Figure 5. To simulate the instruction of the form
li : (HALT) we create the output module shown in Figure 6 which halts the com-
putation and outputs our generated k-tuple. The initial configuration of Π has
zero spikes in all neurons except the neuron l0 which contains a single spike.

Each addition module is initiated when a spike enters neuron li. This causes
neuron li to spike transmitting a spike to both li1 and li2. Both of these neurons
in turn spike sending 2 spikes to neuron r. Neuron r records the current count
of counter r (xr) by containing 2xr spikes. Neuron li2 also sends three spikes
to neurons li3, li4, and li5 (which operate with neurons li6 and li7 to form a
nondeterministic module). These three neurons use rules with various delays to
nondeterministically either have neuron li6 or neuron li7 fire (the other neuron
forgets). This initiates either the simulation of instruction lj or triggers another

436 O.H. Ibarra and S. Woodworth

a a;0

a2

a3(a2)*/a2 a;0
a a;0

a a;0

HALT

1 HELP1a

OUT1

a2 a;0

HELP1b

a a;0

a2

a3(a2)*/a2 a;0
a a;0

k

OUTk

HELPka

a2 a;0

HELPkb

Fig. 6. Output module for reversal-bounded k-output unbounded SNP

nondeterministic choice module. The linking of k − 1 nondeterministic choice
modules allows us to nondeterministically choose to next execute one and only
one instruction from the set {lj1 , · · · , ljk

}. When the add module completes its
computation, no spikes are left in the module allowing the instruction to be
executed repeatedly.

The output module is initiated when instruction li : (HALT) is executed by
sending a spike to neuron HALT . This neuron fires sending a single spike to
neuron 1. Now the neuron contains an odd number of spikes causing the neuron
to fire continuously (and decrementing the number of spikes by 2 at each step)
until the neuron contains only a single spike. Each time the neuron spikes, a spike
is sent to neuron HELP1a and neuron OUT1. Neuron HELP1a spikes (sending
a spike to neuron OUT1) in the following step for each spike it receives. This
guarantees that neuron OUT1 will receive a single spike after neuron 1 spikes for
the first time and after neuron 1 spikes for the last time. Neuron OUT1 spikes at
each of these two steps generating n1. The two spikes of neuron OUT1 are also
sent to neuron HELP1b which fires after the second spike is received. This spike
is sent to neuron 2 causing its spikes to be odd. We repeat the process until all
the numbers (n1, · · · , nk) have been generated.

We now show that (2) implies (1). By Theorem 3, it is sufficient to show that
any reversal-bounded k-output SNP can be simulated by a reversal-bounded k-
output CM. Given a reversal-bounded k-output SNP Π , we construct a reversal-
bounded k-output CM M to simulate Π . M has several counters, which are
initially zero. k counters are the output counters, G1, · · · , Gk. For 1 ≤ i ≤ k,
when output neuron Oi in Π has generated the first spike a, output counter
Gi starts incrementing at every step of the simulation. When Oi has generated
the second spike a, Gi stops incrementing. When all the output counters have
stopped incrementing, M enters the Ending Phase, which we will describe below.

Now we describe how the other counters of M are used to keep track of the
number of spikes in the neurons during the computation. A bounded neuron
is easy to simulate and does not need a counter. Since the regular expression

Characterizations of Some Restricted Spiking Neural P Systems 437

in a bounded neuron represents a finite set, the simulation of the neuron can be
done in the finite control.

Now consider an unbounded neuron. For each unbounded rule E/aj → a; 0,
the rule can be applied when the number of current spikes is covered by the
expression E. Since E is a regular expression it can be written in the form
(ai1(ak1)∗)+· · ·+(ait(akt)∗) where i, k ≥ 0, t ≥ 1. For such a rule, we need t aux-
iliary counters and 2t buffers in the finite control (of sizes i1, · · · , it, k1, · · · , kt).
The first of these counters will store the number of spikes (n) minus i1 currently
in the neuron divided by k1 (so the counter stores (n − i1)/k1). The second
counter will store (n− i2)/k2 and so forth. The buffers and counters operate as
follows.

Every time a spike enters the neuron in Π , the buffers in M corresponding
to ai1 , · · · , ait are incremented. If any of these buffers are full, the buffer is left
unchanged and the corresponding buffer in ak1 , · · · , akt is incremented. If one
of these buffers is full, the buffer is emptied and the corresponding counter is
incremented.

To simulate an unbounded neuron in Π firing, M nondeterministically picks
an applicable rule. (A rule is applicable when some buffer ais is full and buffer
aks is empty.) To fire the rule, we must remove j spikes from the neuron. To
simulate this, we remove j from each of our buffers aj1 , · · · , ajt . If any of these
buffers do not have enough to subtract j, we subtract what we can (until the
buffer is zero) and then try to subtract one from the corresponding counter. If
the counter contained at least 1, the buffer is refilled and the remainder of j
is subtracted. If the counter is zero, the remainder of j is subtracted from the
corresponding buffer ai.

Finally, we note that Π is a “maximal parallel” system with respect to the
number of neurons that can fire in any given step. M can easily keep track in
its finite control (using the values of the bounded neurons and the values of the
buffers and counters simulating the unbounded neurons) the maximal number
of neurons fireable at any given step. It follows that M generates Q(Π), and M
is reversal-bounded.
Ending Phase: This phase is entered only when the k output counters have k
values generated by the k output neurons of the SNP.M continues the simulation
until Π halts. By definition, this happens when all the neurons, except for a
specified subset R of neurons, have zero spike and those in R have two spikes.
M checks that this configuration has been entered and enters an accepting state.

��

Remark 1. We note that the theorem above holds even if we restrict the un-
bounded neurons in the SNP to have only the rule a3(a2)∗/a2 → a; 0.

4 Reversal-Bounded k-Train Unbounded SNPs

Now consider another restricted model called reversal-bounded k-train SNP. Such
a system has only one output neuron. Again, there are two types of neurons:
bounded and unbounded but reversal-bounded, as defined before. We say that

438 O.H. Ibarra and S. Woodworth

Π generates the k-tuple (n1, · · · , nk) if, starting from the initial configuration, the
output neuron O generates the spike train aa · · ·a with exactly k + 1 outputted
a’s such that the interval between the ith a and the i+1st a is ni, and the system
eventually halts.

Theorem 5. The following statements are equivalent for any Q ⊆ Nk:

1. Q is semilinear.
2. Q can be generated by a reversal-bounded k-train unbounded SNP.
3. Q can be generated by a 1-reversal k-train unbounded SNP.

Proof. Again (3) implies (2). The proof of (2) implies (1) is similar to the one
in Theorem 4. We now show that (1) implies (3)

To prove that any semilinear set can be generated by a restricted k-train SNP
only requires changing the output module from Theorem 4 since the add module
can work in the same manner as before. The new output module can be seen
in Figure 7. This module is initiated when instruction li : (HALT) is simulated

a a;0

a2

a3(a2)*/a2 a;0

a a;0

a a;0

HALT

r1

O

a2 a;0

a3(a2)*/a2 a;0

rk

a3(a2)*/a2 a;0

a a;0

a a;0

a2

a a;0

....

....

a a;0

a2

a a;0

a a;0

a a;3(k-1)-2

a a;0 a2 a;0

a a;0

a a;0

a2

a a;0

....

a a;0

a a;0

a a;3(k-2)-2

a a;0

a a;0

a a;0

a3(a2)*/a2 a;0

....

r2 r3

H11

D11

D12

D1[3(k-1)]

D2[3(k-2)]

H14 H15

H12 H13

H16

H21

H22

D21

H24 H25

H26

H23

Hk1

Hk2

Hk3

Fig. 7. Output module for reversal-bounded k-train unbounded SNP

Characterizations of Some Restricted Spiking Neural P Systems 439

sending a single spike to neuron HALT . This causes neuron HALT to spike
which sends a single spike to the neuron r1 causing the neuron to contain an
odd number of spikes. This causes the neuron to continuously spike (decreasing
the number of spikes it contains by two at each step) until only a single a is
contained in neuron r1. Each time neuron r1 spikes, a spike is sent to both
neuron H11 and neuron H14. This causes neuron H14 to spike after neuron r1’s
initial spike and after its final spike. This allows a single spike to be sent to the
second counter neuron once the first counter is done decrementing (with a delay
of three steps). The delay of three steps between each counter is negated by the
use of the delay neurons D11 to D1[3(k−1)].

The output neuron O receives spikes from the first counter through neurons
H12 and H13. Neuron H13 receives spikes from neuron H12. This means that
neuron O will first receive a single spike from neuron H12 which represents the
first spike of neuron r1 which causes O to spike. At each additional step, neuron
O receives two spikes from both neuron H12 and neuron H13. Unlike the proof of
Theorem 4, neuron O never receives a single spike from neuron H13 because as
soon as H12 no longer contains a spike, neuron H16 sends a second spike to H13
causing it to no longer be applicable (since it will contain two spikes). However,
neuron O will receive a single spike designating the beginning time for n2 which
also happens to be the correct ending time for n1.

The neurons designated by the dashed box in Figure 7 are repeated for each
counter neuron with a few modifications. The number of delay neurons is 3(k−i)
for each counter i. Also, the delay on the rule in each neuron Hi6 needs to be
changed so that the spike corresponds to the last spike in H13. Therefore, this
delay is 3(k−i)−2 for each Hi6. This means that for counter k, no delay neurons
are needed. Also, the last counter does not need to initiate any further counters
nor should the single spike from neuron Hk3 be thwarted. (This last spike is
needed to send the final spike from neuron O.) Therefore, neurons Hk4, Hk5,
and Hk6 are not needed. ��

Remark 2. Again, we note that the theorem above holds even if we restrict the
unbounded neurons in the SNP to have only the rule a3(a2)∗/a2 → a; 0.

5 k-Train Bounded SNPs

We will give a characterization of k-train SNPs all of whose neurons are bounded.
A strictly monotonic k-output CM is sequential if for 1 ≤ r < k, counter r+1 can
(and must) only start incrementing when counter r has stopped incrementing
aft er having been incremented. Hence, a sequential strictly monotonic k-output
CM (simplified to sequential k-output CM) has simplified rules of the forms

li : (BEGIN(1), li1 , · · · , lit)
li : (BEGIN(r + 1), END(r), li1 , · · · , lit) for 1 ≤ r < k
li : (END(k), li1 , · · · , lit)
li : (CONTINUE, li1 , · · · , lit)
li : (HALT)

440 O.H. Ibarra and S. Woodworth

For a set Q ⊆ Nk, define the language (over k symbols a1, · · · , ak), LQ =
{an1

1 · · ·ank

k | (n1, · · · , nk) ∈ Q}. Clearly, Q is generated by a sequential k-output
CM if and only if LQ is a regular set, i.e., accepted by a nondeterministic finite
automaton (NFA).

Theorem 6. A set Q ⊆ Nk is generated by a k-train bounded SNP if and only
if it is generated by a sequential strictly monotonic k-output CM.

Proof. Given a k-train bounded SNP generating Q, it is straightforward to con-
struct a sequential k-output CM generating Q.

For the converse, let M be a sequential k-output CM M generating Q. We
construct a k-train bounded SNP generating Q using the same techniques as in
Theorem 2 with a few slight changes. Since each of the instructions in M is just
a simplified version of the instructions in Theorem 2, clearly the simulation can
be created in the same fashion. There are two main differences in creating Π .

First, for each instruction of the form li : (BEGIN(r + 1), END(r), li1 , · · · , lit),
we instead simulate the instruction li : (END(r), li1 , · · · , lit). The reason for this
is due to the nature of a spike train which only requires k + 1 output spikes

a9

a10/a4 a;0

a8 a;0

a11/a9 a;0

a7/a5 a;0

a5 a;0

a4 a;0

a3 a;0

a2 a;0

a a;0

1

a5

a8 a;0

a7/a5 a;0

a4/a a;0

a3/a a;0

a2/a a;0

a a;0

2

a5

a8 a;0

a7/a5 a;0

a4/a a;0

a3/a a;0

a2/a a;0

a a;0

a a;0

OUT

k

a5

a8 a;0

a7/a5 a;0

a4/a a;0

a3/a a;0

a2/a a;0

a a;0

3

...

a5

a8 a;0

a7/a5 a;0

a4/a a;0

a3/a a;0

a2/a a;0

a a;0

BEGIN(1) END(1) END(3)END(2) END(k)

1'

Fig. 8. Bounded train SNP output module

Characterizations of Some Restricted Spiking Neural P Systems 441

(rather than the previous 2k output spikes) since each middle spike represents
both the end of output r and the beginning of output r + 1.

The second difference is in how the output neuron is triggered. For this con-
struction, the changes in the output are reflected in Figure 8. The new manner
of output requires two new neurons (1′ and OUT) and different rules in neurons
1, · · · , k. Since the output is a train, we only have one output neuron labeled
OUT which first spikes when instruction li : (BEGIN(1), li1 , · · · , lit) is executed.
OUT spikes a second time when the instruction li : (BEGIN(2), END(1), li1 , · · · , lit)
is executed and it continues to spike for each consecutive BEGIN/END instruc-
tion until it spikes for the k + 1st time after executing the instruction li :
(END(k), li1 , · · · , lit).

The simulating SNP system Π must check that the order of instructions is
correct (meaning instruction li : (BEGIN(r + 1), END(r), lI1 , · · · , lit) is executed
before instruction li′ : (BEGIN(r+2), END(r+1), li′

1
, · · · , li′

t
) and after instruction

li′′ : (BEGIN(r), END(r− 1), li′′
1
, · · · , li′′

t
)). Π must also check that each BEGIN/END

instruction is only executed once. The rules given in Figure 8 guarantee that
if the computation of M is invalid, then the simulated computation in Π will
output more than k + 1 spikes (which is also invalid). ��

Corollary 1. For k ≥ 2, k-train bounded SNPs are strictly weaker than k-output
bounded SNPs.

6 Conclusion

The results in this paper can be summarized as follow. For k ≥ 2:

sequential strictly monotonic k-output CMs
= k-train bounded SNPs
< k-output bounded SNPs
= strictly monotonic k-output CMs
< reversal-bounded k-output CMs
= reversal-bounded k-output unbounded SNPs
= reversal-bounded k-train unbounded SNPs
= semilinear sets over Nk.

In the above ‘=’ means equivalent, and ‘<’ means weaker.
Suppose we augment a reversal-bounded k-output unbounded SNP with one

unbounded free neuron. Thus, one neuron is unbounded with no reversal bound
and all the other neurons are reversal-bounded. Call such a system reversal-
bounded + 1-free k-output unbounded SNP. This model of SNP can be simulated
by a reversal-bounded k-output CMs augmented with one free (i.e., unrestricted
counter). It is known that this model is equivalent to one with only reversal-
bounded counters [4]. Hence such CMs generate only semilinear sets. Thus, we
can add “= reversal-bounded k-output CMs + 1 free counter” at the end of the
above results. For the case k = 1, all the models above are equivalent, and they
generate exactly the semilinear sets over N1 (i.e., regular sets over a∗).

442 O.H. Ibarra and S. Woodworth

It follows that many closure properties (e.g., union, intersection, and comple-
mentation) hold for sets generated by the SNP models above. Similarly, many
standard decision problems (e.g., membership, containment, and equivalence
problems) are decidable.

References

1. W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, 2002.

2. S. Greibach: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7, 3 (1978), 311–324.

3. T. Harju, O. Ibarra, J. Karhumaki, and A. Salomaa: Some decision problems con-
cerning semilinearity and commutation. Journal of Computer and System Sciences,
65 (2002), 278–294.

4. O. Ibarra: Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25 (1978), 116–133.

5. O. Ibarra, A. Păun, Gh. Păun, A. Rodriguez-Paton, P. Sosik, and S. Woodworth:
Normal forms for spiking neural P systems, submitted, 2006.

6. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta In-
formaticae, 71, 2-3 (2006), 279–308 (also available at [13]).

7. W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32–36.

8. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.
9. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
10. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
11. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P

systems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.
12. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural

P systems. Submitted, 2006.
13. The P Systems Web Page: http://psystems.disco.unimib.it.

A Membrane Algorithm for the Min Storage
Problem

Alberto Leporati and Dario Pagani	

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
leporati@disco.unimib.it,
dario.pagani@gmail.com

Abstract. Min Storage is an NP–hard optimization problem that
arises in a natural way when one considers computations in which the
amount of energy provided with the input values is preserved during the
computation. In this paper we propose a polynomial time membrane al-
gorithm that computes approximate solutions to the instances of Min
Storage, and we study its behavior on (almost) uniformly randomly
chosen instances. Moreover, we compare the (estimated) coefficient of
approximation of this algorithm with the ones obtained from several
other polynomial time heuristics. The result of this comparison indicates
the superiority of the membrane algorithm with respect to many other
traditional approximation techniques.

1 Preliminaries

Membrane systems (also known as P systems) were introduced in [7] as a new
class of distributed and parallel computing devices, inspired by the structure and
functioning of living cells. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the
skin. Membranes divide the Euclidean space into regions, that contain some
objects (represented by symbols of an alphabet) and evolution rules. Using these
rules, the objects may evolve and/or move from a region to a neighboring one.
The rules are applied in a nondeterministic and maximally parallel way: all the
objects that may evolve are forced to evolve. A computation starts from an
initial configuration of the system and terminates when no evolution rule can be
applied. The result of a computation is the multiset of objects contained into an
output membrane or emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic no-
tions and the terminology underlying P systems. For details, and a systematic
introduction on the subject, we refer the reader to [9]. The latest information
about P systems can be found in [11].

� This research was supported by the European Research Training Network Segravis.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 443–462, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

444 A. Leporati and D. Pagani

In [6], Nishida has proposed a new type of approximation algorithms for op-
timization problems, named membrane algorithms. A membrane algorithm op-
erates on a particular type of P system, which is a linear collection of separated
regions determined by nested membranes. Each region contains a number of can-
didate solutions, and a local optimization algorithm. At each computation step,
the local optimization algorithms which occur in the system are concurrently
executed on the currently available solutions. New candidate solutions are pro-
duced in each region as a result; the best and the worst of them are sent to the
immediately inner and immediately outer region, respectively. By repeating this
process, a good solution will likely appear in the innermost region after a suitable
number of computation steps. The algorithm terminates after a prefixed number
of iterations has been performed, or some halting condition is verified (such as,
for example, the solution(s) of the innermost region is (resp., are) not changed
for a predetermined number of steps). In [6], a membrane algorithm which com-
putes approximate solutions to the instances of the Travelling Salesman Problem
(TSP) is described; moreover, the results of some computer experiments are pre-
sented, showing that this algorithm is indeed a good approximation heuristic for
TSP.

In this paper we elaborate after Nishida’s membrane algorithm for TSP, and
we propose a new membrane algorithm for another NP–hard optimization prob-
lem, Min Storage [5]. This problem arises in a natural way if we consider
conservative computations, that is, computations in which the amount of energy
associated with the input values is first preserved during the computation of the
output values, and then it is completely returned with them. In [5], it has been
proved that Min Storage is strongly NP–hard, and that it is 2–approximable.
This means that there exists a polynomial time algorithm that, for every in-
stance E of Min Storage, returns a feasible solution sol(E) which is at most
the double of the optimal solution opt(E). In this paper we present the results
of some computer experiments in which the new membrane algorithm for Min
Storage is compared with several “classical” polynomial time heuristics. As we
will see, the membrane algorithm performs considerably well (with an estimated
coefficient of approximation which is well under 2), especially when the number
of membranes and the number of iterations in the algorithm are sufficiently large
(where the term “sufficiently” has been experimentally determined).

The paper is organized as follows. In Section 2 we recall the definition of Min
Storage and some of its properties. In Section 3 we present a membrane algo-
rithm to solve the problem. Precisely, we propose two versions: MA4MS (Mem-
brane Algorithm for Min Storage) which uses a particular kind of crossover
and mutation to produce new candidate solutions, and MA4MS LS, which uses
only a simple local search. In Section 4 we discuss a method that allows to gener-
ate random instances of Min Storage with an (almost) uniform distribution of
probability. Section 5 illustrates the results of some computer experiments which
have been performed on MA4MS and MA4MS LS. As we will see, these results
led us to abandon MA4MS and to use only the version with the local search for
further investigation. In Section 6 we describe several “classical” polynomial time

A Membrane Algorithm for the Min Storage Problem 445

heuristics for Min Storage. Section 7 illustrates the results of other computer
experiments, which have been performed to compare the performance (in terms
of average coefficient of approximation) of our membrane algorithm against the
above classical heuristics. Section 8 concludes the paper.

2 The Problem

Let us first introduce the problem we want to solve. As stated in the Intro-
duction, this problem comes from the study of conservative (that is, energy
preserving) computations. We refer the interested reader to [5] for two possible
interpretations of the problem in this setting.

Let E = 〈e1, e2, . . . , ek〉 be a finite sequence of integer numbers. For a fixed
i ∈ {1, 2, . . . , k}, the i-th prefix sum of E is the value

∑i
j=1 ej . Let C be a positive

integer; we say that E is C–feasible if for each i ∈ {1, 2, . . . , k} the i-th prefix
sum of E is in the closed interval [0, C].

Problem 1. Name: ConsComp.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers such that e1 + e2 +
. . . + ek = 0, and an integer number C > 0.

– Question: is there a permutation π ∈ Sk (the symmetric group of order k)
such that the sequence eπ(1), eπ(2), . . . , eπ(k) is C–feasible? ��

The fact that the resulting sequence eπ(1), eπ(2), . . . , eπ(k) is C–feasible can be
explicitly written as:

0 ≤
i∑

j=1

eπ(j) ≤ C ∀ i ∈ {1, 2, . . . , k}

The following theorem, which has been proved in [5], shows that it is very
unlikely that a polynomial time algorithm exists that correctly classifies every
instance of ConsComp as positive or negative.

Theorem 1. ConsComp is NP–complete.

The ConsComp problem naturally leads to the formulation of the following
optimization problem.

Problem 2. Name: Min Storage.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers such that e1 + e2 +
. . . + ek = 0.

– Solution: a permutation π ∈ Sk such that
∑i

j=1 eπ(j) ≥ 0 for each i ∈
{1, 2, . . . , k}.

– Measure: max
1≤i≤k

∑i
j=1 eπ(j). ��

446 A. Leporati and D. Pagani

Informally, the output of Min Storage is the minimum value of C for which
there exists a permutation π ∈ Sk such that the sequence eπ(1), eπ(2), . . . , eπ(k)
is C–feasible. Notice that a trivial upper bound for the value of C is:

∑
i∈{1,2,...,k} : ei>0

ei =
1
2

k∑
i=1

|ei|

while a trivial lower bound is max1≤i≤k |ei|.
It is immediately seen that Min Storage is in the class NPO [1, page 27].

In fact, checking whether some given integers e1, e2, . . . , ek sum up to zero can
be trivially done in polynomial time; each feasible solution has linear length
and besides it can be verified in polynomial time whether a given permutation
π ∈ Sk is a feasible solution; finally, the measure function can be computed
in polynomial time. Since the underlying decision problem ConsComp is NP–
complete, we can immediately conclude that Min Storage is NP–hard [1, page
30]. Just like the ConsComp decision problem, this means that it is very unlikely
that a polynomial time algorithm exists that gives the correct solution to every
instance of Min Storage.

Since the Min Storage problem is NP–hard, a natural question is how well
its optimal solutions can be approximated in polynomial time. Precisely, we
ask ourselves whether there exists a PTAS (Polynomial Time Approximation
Scheme) or even a FPTAS (Fully Polynomial Time Approximation Scheme) for
Min Storage. Concerning these questions, in [5] it has been proved that Con-
sComp is NP–complete in the strong sense, by showing a polynomial reduction
from 3–Partition [2, page 224], a well known strongly NP–complete problem.
As a consequence, Min Storage is strongly NP–hard, and thus it doesn’t ad-
mit a FPTAS [1, page 116]. The next natural question is whether there exists a
PTAS for Min Storage; this possibility is currently under investigation.

In [5] it has also been proved that the algorithm shown in Figure 1 is a 2–
approximation algorithm for Min Storage. The proof derives from the fact
that, denoted by M the value max1≤i≤k |ei|, the variable st (that records the
energy currently stored into the system) assumes values only from the interval
[0, 2M − 1]. The variable max, which contains the value returned at the end
of the computation, records the maximum of the values assumed by st into the
subinterval [M, 2M − 1]. Since the optimal solution cannot be less than M , the
value returned by the algorithm is at most the double of the optimal solution.
A direct inspection of the pseudo–code reveals that the time complexity of the
algorithm is linear with respect to k, the length of the input sequence. Hence,
Min Storage is in the class APX of problems which admit a constant factor
polynomial time approximation algorithm.

3 A Membrane Algorithm for Min Storage

Let us now introduce a membrane algorithm that produces approximate so-
lutions to any instance of Min Storage. As stated in the Introduction, the

A Membrane Algorithm for the Min Storage Problem 447

Fig. 1. Pseudocode of a 2–approximation algorithm for Min Storage

algorithm is based on a structure composed by nested membranes. Each of the
regions determined by the membranes contains a certain number of candidate
solutions, and a local optimization algorithm. Formally, let m be the number of
nested membranes, and let 0 and m − 1 be the innermost and the outermost
regions, respectively. Just like in the membrane algorithm for TSP, proposed
by Nishida in [6], we put one candidate solution in region 0 and two candidate
solutions in the other regions.

Another fundamental component of the system is the transport mechanism,
that allows candidate solutions to move to the immediately inner or to the
immediately outer region. The idea underlying the algorithm is to move good
solutions towards the innermost region, and bad solutions towards the outermost
region. When the computation halts, the best candidate solution produced by
the system is thus contained into the innermost region, which is by definition
the region in which the output is observed at the end of the computation.

A first difficulty in adapting the TSP membrane algorithm proposed by Nishi-
da to the Min Storage problem is that, differently from TSP, not all the
permutations of the elements E = {e1, e2, . . . , ek} given in the instance give rise
to feasible solutions. This is due to the fact that in a feasible solution π of Min
Storage all prefix sums are non negative; clearly, this property is not preserved
if we exchange two randomly chosen elements of the solution. To overcome this
difficulty, we have slightly modified the measure function associated with Min
Storage as follows:

F (π) =

⎧⎪⎪⎨⎪⎪⎩
max
1≤i≤k

i∑
j=1

eπ(j) if
∑i

j=1 eπ(j) ≥ 0 for all i ∈ {1, . . . , k}
k∑

i=1
|ei| −NumVPSπ otherwise

where NumVPSπ is the number of non negative (that is, valid) prefix sums
determined by π. In this way, all feasible solutions get a lower measure with
respect to non feasible solutions. Moreover, every permutation can be measured,
and we can also choose what among two non feasible solutions to prefer: the
one which has the lowest number of negative prefix sums. As an alternative

448 A. Leporati and D. Pagani

approach, we could impose to work only with feasible solutions (discarding non
feasible ones when they appear), and adopt the usual measure function for Min
Storage. However, since the probability to generate a non feasible solution is
very high, this approach has been considered infeasible from a computational
point of view.

The structure of the algorithm is analogous to the one proposed by Nishida
for TSP. Given an instance E of Min Storage, the algorithm works as follows:

1. put one random solution in region 0, and two random solutions in every
region from 1 to m− 1;

2. repeat the following steps d times:
(a) in each region, apply the local optimization algorithm to produce new

candidate solutions;
(b) for every region i ∈ {1, 2, . . . ,m− 1}, send the best among the solutions

contained in the region (both old and new) to region i − 1 (that is,
towards the interior of the system). Similarly, for all i ∈ {0, 1, . . . ,m−2}
send the worst solution of region i to region i + 1;

(c) in each region i ∈ {1, 2, . . . ,m − 1}, remove all solutions but the best
two. In region 0, remove all solutions but the best one;

3. return the solution contained in region 0 as the output of the algorithm.

With respect to the membrane algorithm for TSP, we have used different
local optimization algorithms. Precisely, for region 0 we have used a kind of
local search: given a solution π, this operation explores the solutions which can
be found in its neighborhood (which depends upon a specified element of π); if
one of such solutions has a better measure than π, then it substitutes π. Formally,
the neighborhood of π is defined as follows.

Definition 1. Let π ∈ Sk be a candidate solution, and let α ∈ {1, 2, . . . , k}. The
neighborhood Neigh(π, α) of π, with respect to position α, is the set of k − 1
solutions defined as follows:

Neigh(π, α) =
⋃
i�=α

{πi,α}

where πi,α is the solution obtained from π by exchanging the elements in positions
i and α.

The local search in region 0 is thus executed as follows:

LocalSearch4MS(π, α)

Best ← π
min ← F (π)
for i ← 1 to k − 1 do

π′ ← select an element from Neigh(π, α)
if F (π′) < min

then min ← F (π′)

A Membrane Algorithm for the Min Storage Problem 449

Best ← π′

Neigh(π, α) = Neigh(π, α) \ {π′}
return Best

In order to improve the probability to generate feasible solutions, the position
α with respect to which we build the neighborhood of π is chosen as the first
position for which the corresponding prefix sum is negative; if all prefix sums
are non negative, then α is chosen at random in the set {1, 2, . . . , k}.

In a first version of our membrane algorithm, that we have called MA4MS
(Membrane Algorithm for Min Storage), we have tried to use a kind of crossover
operation between candidate solutions as a local optimization algorithm for re-
gions 1, 2, . . . ,m − 1. The idea, very well known in the domain of genetic algo-
rithms, is to start from two solutions A and B, cut them in the same position
and then recombine them as shown on the left of Figure 2. However, if we ap-
ply this operation to permutations, it is very likely that we obtain sequences
in which some elements are missing and some are repeated; that is, in general
we do not obtain two permutations as a result. Hence we have tried to use a
variant of the standard crossover operation, named partially matched crossover
(or PMX, for short) [4]. Just like the standard crossover, PMX operates on two
permutations, say π and π′. This time, however, the two permutations are not
recombined; rather, two “cutpoints” are randomly selected (let us call them l
and r, respectively, with l ≤ r) and then the elements of π are permuted ac-
cording to positions π′(l), π′(l + 1), . . . , π′(r). Similarly, the elements of π′ are
permuted according to positions π(l), π(l + 1), . . . , π(r). As an example, let us
assume that π = 〈2, 3, 1, 7, 4, 6, 5〉, π′ = 〈5, 1, 7, 6, 4, 2, 3〉, l = 2 and r = 5. This
situation is depicted on the right of Figure 2. Now, in both permutations π and
π′ the elements 3 and 1 are exchanged, then the elements 1 and 7 are exchanged,
and so on. The pseudocode of the PMX operation is the following:

PMX(π, π′)

l, r ← random(1, . . . , k)
if l > r then exchange l and r
for i ← l to r do

find the position j ∈ {1, 2, . . . , k} such that π(j) = π′(i)
find the position j′ ∈ {1, 2, . . . , k} such that π′(j′) = π(i)
exchange π(i) and π(j)
exchange π′(i) and π′(j′)

return π, π′

Once two new solutions have been generated using the PMX operation, a
“mutation” operation is applied on each of them with the probability p = i

m ,
which is directly proportional to the depth of the region into the system. This
means, in particular, that the mutation is never performed in the innermost
region, whereas it is almost always applied in the outermost region. This op-
eration simply chooses two positions in a random way (according to a uniform
probability distribution) and then exchanges the elements in such positions.

450 A. Leporati and D. Pagani

A left A

left

A left

Aleft

right

rightB B

B

B

right

right

π

π’

l r

2

2

3 1 7 4 6 5

5 1 7 6 4 3

Fig. 2. The standard crossover operation (left) and the first step in partially matched
crossover (right)

As we will see later, we have also considered a second version of the above
membrane algorithm, in which no PMXs and no mutations are performed. In-
stead, LocalSearch4MS is used as the local optimization algorithm in every
membrane of the system. We have called such variant MA4MS LS.

4 Generating Random Instances of Min Storage

We have performed some computer experiments on randomly chosen instances
of Min Storage, in order to study the behavior of our membrane algorithm.
All the random choices made during the experiments were performed according
to the discrete uniform distribution. Hence the first problem we faced was to
generate random instances for Min Storage in a uniform way. Formally, we
can state the problem as follows.

Problem 3. Let e1, e2, . . . , ek be independent variables uniformly distributed over
the set of integers from the interval [−M,M]: how can we extract in a uniform
way those k–tuples for which e1 + e2 + . . . + ek = 0? ��

A possible solution to this problem could be to extract each element ei and to
discard the entire k–tuple if the sum is not zero; however the probability of suc-
cess, Prob

[∑k
i=1 ei = 0

]
, is fairly small. In order to compute such probability

we observe that the distribution of the sum of k discrete independent uniformly
distributed random variables is a k–th order convolution. Hence, the evaluation
of the probability of success amounts to compute how many k–tuples with el-
ements in [−M,M] whose sum is zero we can build. To the best knowledge of
the authors, this calculation seems to require the examination of an exponen-
tial number of k–tuples, and thus it is not feasible. As a consequence, we can
compute an estimate of the probability of success by approximating the distri-
bution of the random variable Y = e1 +e2 + . . .+ek with an appropriate normal
distribution.

First of all, let us compute the mean and variance of each random variable ei.
Since ei is uniformly distributed over the interval [−M,M] of integers, it holds:

A Membrane Algorithm for the Min Storage Problem 451

E [ei] =
M∑

x=−M

x · 1
2M + 1

=
1

2M + 1

M∑
x=−M

x = 0

and

var [ei] = E
[
e2

i

]
− (E [ei])

2 = E
[
e2

i

]
=

M∑
x=−M

x2 · 1
2M + 1

=
2

2M + 1

M∑
x=1

x2 =
M(M + 1)

3

For linearity we obtain:

E [Y] =
k∑

i=1

E [ei] = 0

Since e1, e2, . . . , ek are independent variables, the variance of their sum is the
sum of their variances, hence:

var [Y] =
k∑

i=1

var [ei] = k · M(M + 1)
3

A direct consequence of the Central Limit theorem is that we can approximate
the distribution of Y with the normal distribution N

(
0, kM(M+1)

3

)
having the

same mean and variance. In our experiments we have considered k = 100 and
M = 106; this means that var [Y] ≈ 1014, and the probability of success is:

Prob [Y = 0] ≈ 6.91 · 10−8

As stated above, this is a very small value. On the other hand, let us notice that
there is a bijective correspondence between the set of all k–tuples whose sum is
zero and the set of all (k−1)–tuples whose sum is in the interval [−M,M]. This
observation suggests that we could extract k− 1 elements in a uniform way and
check whether their sum is in the interval [−M,M]. If this is the case then we
put ek = −

∑k−1
i=1 ei, thus producing an instance; otherwise, we discard the entire

(k−1)–tuple and we try with a different set of k−1 elements. Now the probability
of successfully generate an instance is Prob

[
−M ≤

∑k−1
i=1 ei ≤ M

]
. Once again,

we can approximate the distribution of the random variable Z =
∑k−1

i=1 ei with

the normal distribution N
(
0, (k − 1)M(M+1)

3

)
. Thus, if

φ(x) =
1√
2π

exp
(
− 1

2x2

)
and Φ(x) =

∫ x

−∞
φ(u) du

452 A. Leporati and D. Pagani

Prob[Y]

Y
(k−1)M

M0− M
−(k−1)M

ε

Fig. 3. Gaussian approximation of the distribution of Z =
∑k−1

i=1 ei

are the probability density function and the cumulative distribution function of
the standardized normal distribution N(0, 1), it holds:

Prob

[
−M ≤

k−1∑
i=1

ei ≤ M

]
≈ Φ

(
M

σ

)
− Φ

(
−M

σ

)
= 2Φ

(
M

σ

)
− 1

where σ =
√

(k − 1)M(M+1)
3 . For k = 100 and M = 106 we obtain:

Prob

[
−106 ≤

99∑
i=1

ei ≤ 106

]
≈ 0.138 (1)

Intuitively, for fixed values of M and k we approximate the real distribution of
Z (that can assume every integer value in the interval [−(k − 1)M, (k − 1)M])
with a normal distribution (see Figure 3), and we consider the portion of the
curve contained into the vertical strip included between −M and M . For growing
values of k, such strip becomes small with respect to the entire curve, and thus
the portion of the curve into the strip tends to become an horizontal segment.
This means that we find k–tuples whose sum is zero with almost a uniform
distribution. We can estimate the error due to the fact that the portion of curve
into the strip is not horizontal by looking at the difference between the higher
and the lower values it assumes in this interval:

ε = Prob

[
k−1∑
i=1

ei = 0

]
− Prob

[
k−1∑
i=1

ei = M

]

For k = 100 and M = 106, the error is ε ≈ 1.04 ·10−9. As a consequence, we can
safely assume that our strategy produces k–tuples whose sum is equal to zero
with a uniform probability distribution; moreover, as stated in (1), about 13.8%

A Membrane Algorithm for the Min Storage Problem 453

of the times it will produce one of such k–tuples. A computer experiment has
confirmed this last result.

Before looking at the experiments, let us recall the notion of coefficient of
approximation. Let cA(E) be the value which is returned as a solution by a
heuristic A for the instance E of the Min Storage problem, and let opt(E) be
the optimal solution, that is, the value returned by the brute force algorithm that
examines all possible feasible solutions. Then, the coefficient of approximation
of algorithm A over the instance E is the value appA(E), where

appA(E) =
|cA(E)|
opt(E)

(2)

Note that appA(E) is always greater than or equal to 1, and that the closer it is
to 1, the better the approximate solution is. We say that algorithm A has the
guaranteed coefficient of approximation c if appA(E) ≤ c, for every instance E . For
example, Approx Min Storage has a guaranteed coefficient of approximation
equal to 2.

5 First Experiments with MA4MS

We have implemented the membrane algorithm MA4MS in the Java program-
ming language. To simulate the parallel application of local optimization algo-
rithms we have implemented them as threads, with a monitor that allows to
synchronize the exchange of information between the regions of the system.

Then, we have performed some computer experiments to study the behavior
of MA4MS on randomly chosen instances. To measure the performance of the
algorithm we have computed an estimate of its coefficient of approximation (see
also equation (2)), averaged on the number N of instances considered in the
experiment:

appMA4MS =
1
N

N∑
i=1

Fi(π)
opti

where opti has been put equal to the optimal solution of the i-th instance in
those experiments for which the length of the instances allowed to compute it.
In the experiments for which the length of the instances did not allow to compute
the optimal solution with the brute force approach, we have substituted it with
the theoretical lower bound max1≤i≤k |ei|.

In the first experiment we have tested the behavior of MA4MS by running
10000 tests, each with randomly generated instances of increasing length (10,
20, 50 and 100). The number m of regions and the number d of iterations have
been put equal to 10 and 50, respectively. The results are illustrated in Figure
4 (on the left). As we can see, the average coefficient of approximation grows
together with k, the length of the instances, going well above the value 2 given
by Approx Min Storage. This is probably due to the fact that the partially
matched crossover is not able to differentiate the solutions initially assigned
to the system. Indeed, with PMX, solutions that differ in a small number of

454 A. Leporati and D. Pagani

k appMA4MS Variance

10 1.2052383 0.0433753
20 1.7645406 0.1412564
50 3.0863457 0.6402221
100 4.6576763 1.8045398

k appMA4MS Variance

10 1.0875901 0.0139737
20 1.5258556 0.0582978
50 2.6124590 0.2444580
100 3.9430665 0.5004649

Fig. 4. Results obtained for MA4MS on 10000 tests, with m = 10 and d = 50 (on
the left) and with m = 30 and d = 150 (on the right), for different lengths k of the
instances

positions produce new solutions which are similar. As we can see on the right of
Figure 4, this problem remains even if we raise the parameters m and d to 30
and 150, respectively.

For these reasons, we have abandoned our first version of the membrane al-
gorithm and we have repeated the above experiments with the second version,
MA4MS LS, in which LocalSearch4MS is used as a local optimization algo-
rithm in all regions, instead of PMX and mutations. In Figure 5 (left) we can see
the results of the second experiment described above, with m = 30 and d = 150.

k appMA4MS Variance

10 1.0032719 0.0002333
20 1.0093292 0.0003654
50 1.0600094 0.0045419
100 1.1978124 0.0162296

m d appMA4MS

10 20 2.1003992
30 60 1.4055032
50 100 1.2228035
80 150 1.1003962
150 200 1.1066577
300 500 1.0214561

Fig. 5. Results obtained with MA4MS LS, on: (left) 10000 tests, with m = 30 and
d = 150, for different lengths k of the instances; (right) groups of 10 instances of length
100, and growing values of m and d

It is apparent that MA4MS LS obtains better results, and thus we will use it
in the following to perform some comparisons with some “classical” heuristics
specially crafted for Min Storage. Let us note that, in this new version of the
algorithm, the only “forces” that drive to a good solution are local search and
the transport mechanism, that moves good solutions towards region 0 and bad
solutions towards region m− 1. No other forces (crossover, mutations, etc.) are
involved, and hence it is our opinion that this is a “true” membrane algorithm,
in the original spirit of Membrane Computing.

Some computer experiments have also been performed to see how the average
coefficient of approximation is affected by the number m of regions and the
number d of iterations. Figure 5 (on the right) shows some results obtained on
groups of 10 instances, each containing 100 elements, for growing values of m
and d. Notice that d ≥ m, so that a good solution has always the possibility to
reach the innermost region. Figure 6 contains two plots of the average coefficient

A Membrane Algorithm for the Min Storage Problem 455

Avg.Coeff.Approx

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

1,5

50 82 114 146 178 210 242 274 306 338 370 402 434 466 498

Avg.Coeff.Approx

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Fig. 6. Average coefficients of approximation obtained by letting vary d (up) and m
(down) independently

of approximation with respect to growing values of d (up) and of m (down). All
coefficients have been computed by performing 10 tests with instances of length
100. In the first experiment the value of m has been fixed to 80, and the value of
d has been let vary in the interval [50, 500]; in the second experiment, instead,
the value of d has been fixed to 150 and the value of m has been let vary in the
interval [10, 100].

We have also tried to increase the number of candidate solutions occurring in
each region (but the innermost, which continues to have only one solution). As we
can see in Table 1, the average coefficient of approximation decreases, but only
slightly. Perhaps more interesting was to evaluate the speed of convergence of the

Table 1. Results obtained with MA4MS LS, by letting vary the number of candidate
solutions in the regions (but the innermost). Each test contained 100 instances of length
100; m = 30 and d = 160.

Number of solutions appMA4MS Variance

2 1.0609374 0.0022672
3 1.0392002 0.0018685
5 1.0231814 0.0007303
10 1.0145107 0.0005448

456 A. Leporati and D. Pagani

Table 2. Speed of convergence of MA4MS LS, with respect to the number of candidate
solutions in the regions

Num. sol. C.A. < 2 C.A. < 1.5 C.A. < 1.1 Avg. Gain

2 23 50 134 0.5065
3 17 38 111 0.3915
5 20 41 99 0.3355
10 15 37 93 0.2865

algorithm, with respect to the number of candidate solutions. Table 2 reports
the results obtained with tests of 10 instances of length 100. The second, third
and fourth column contain the number of steps needed (on average) to lower the
average coefficient of approximation below 2, 1.5 and 1.1, respectively. Finally,
in the last column we report the average of the gains obtained during each
iteration of the algorithm. As we can see, when the number of candidate solutions
grows the number of steps needed to obtain a good coefficient of approximation
decreases. As a drawback, also the average gain decreases.

6 Some Heuristics for Min Storage

In this section we propose some “classical” polynomial time heuristics for solving
Min Storage. Subsequently, we will run the same tests for both these heuristics
and MA4MS LS, in order to compare the behavior of our membrane algorithm
with more traditional approximation algorithms.

All the proposed algorithms have been implemented in the C programming
language, to obtain the fastest execution times as possible. All lists have been
implemented as arrays. We have associated a boolean flag to each element of
the lists, indicating whether the element has to be considered as deleted or not,
so that we can assume that the removal of a generic element L[i] from a list
L takes a constant time. As for sorting operations, we have assumed to use
some comparisons–based optimal algorithm such as QuickSort or MergeSort,
which take Θ(k log k) time steps to sort k elements; in our experiments, we have
indeed used the QuickSort routine included in the standard C libraries.

The first heuristic we consider is the greedy algorithm. This algorithm main-
tains a list L of elements to be considered. At the beginning of the execution
L contains all the elements {e1, e2, . . . , ek} of the instance. An integer variable
st, initially set to 0, indicates the amount of energy currently stored into the
gate. The algorithm repeats the following operations until L becomes empty:
first it finds the minimum positive value of st + �, with � ∈ L, then it updates
the value of st with st + �, and finally it removes � from L. An integer variable
stmax records the maximum value reached by st; the value of stmax at the
end of the execution is the result returned by the greedy algorithm. It is easily
seen that this algorithm can also be implemented as shown on the left side of

A Membrane Algorithm for the Min Storage Problem 457

Fig. 7. Pseudocode for the Greedy (on the left) and Min (on the right) algorithms

Figure 7. From the inspection of the pseudocode it is clear that, under the hy-
potheses made above, the execution time of the whole algorithm is Θ(k2).

Another heuristic is the Min algorithm, whose pseudocode is shown on the
right side of Figure 7. As we can see, at each iteration of the outer while loop the
minimum of the remaining positive elements is chosen. For each positive element
considered the inner while loop takes as many negative elements as possible,
choosing the maximum of them (that is, the one with minimum absolute value)
at each iteration. After an initial sorting, each element is considered only once
during the execution of the two while loops; hence, the total execution time
of the algorithm is Θ(k log k). We have also considered a dual algorithm, which
we have called Max, where at each iteration of the outer loop the maximum of
the remaining positive elements is chosen, whereas at each iteration of the inner
loop the minimum of the remaining negative values is chosen.

Another variation is the MaxMinMax algorithm, where at each iteration of
the outer while loop the maximum of the remaining positive values is chosen,
as in Max. This time, however, there are two inner while loops: first we remove
(as much as possible) the minimum negative elements, that is those with highest
absolute value, and then we remove as much as possible the maximum elements.
Also in this case there exists a dual algorithm, called MinMaxMin, where at
each iteration of the outer loop we remove the minimum of the remaining positive
elements, and in the two inner loops we remove first the maximum and then the
minimum of the remaining negative elements.

A further variation is given by algorithms MinMaxMinMax and MaxMin-
MaxMin. In the outer loop of these algorithms the maximum or the minimum
of the remaining positive elements is alternately chosen; precisely, in the former

458 A. Leporati and D. Pagani

algorithm the first element chosen from the instance is the minimum of positive
elements, whereas in the latter algorithm the maximum element of the instance
is chosen first. The two inner loops are just like those of MaxMinMax and
MinMaxMin; in particular, if the minimum of positive values has been chosen
in the outer loop then we first remove the maximum negative elements and then
the minimum ones, whereas we do the opposite if the maximum of positive ele-
ments was chosen. It is immediately seen that all the variations just exposed are
uninfluent to the asymptotic execution time, that remains equal to Θ(k log k).

Another approach to solve Min Storage is the Best Fit algorithm, shown
in Figure 8. Best Fit assumes as a first estimate for the capacity of the gate

Fig. 8. Pseudocode for the Best Fit algorithms

(denoted by est in the pseudocode) the theoretical lower bound max1≤i≤k |ei|.
During the execution of the algorithm the estimate for the capacity is adjusted,
by increasing it of the smallest possible amount. Precisely, at each iteration
of the outer while loop we add to the internal storage some positive values
from the instance, and then we add some negative values. Positive values of the
instance are scanned from the maximum down to the minimum; each of them
is added to the internal storage (and removed from the instance), unless the
resulting value exceeds est. Analogously, negative values are scanned from the
minimum to the maximum; each of them is added to the internal storage (and
removed from the instance), unless the resulting value becomes negative. If at
some point no positive value can be added — that is, if st+min(Lp) > est, where
st is the energy currently stored into the gate and min(Lp) is the minimum of
the remaining positive elements — then we adjust the value of est by putting
est = st + min(Lp). Now we can add min(Lp) to the internal storage and then
try to add some negative elements. The result returned by the algorithm is the
value of est at the end of the execution, that is, after all the elements of the

A Membrane Algorithm for the Min Storage Problem 459

instance have been considered. A direct inspection of the pseudocode allows us
to see that the execution time of Best Fit is Θ(k2).

7 Comparison Experiments

In this section we describe three computer experiments we have performed to
compare the behavior of the proposed heuristics with MA4MS LS. Each instance
was generated according to the random process described in Section 4. All the
classical heuristics, as well as MA4MS LS (with m = 300 membranes and d =
500 iterations), have been executed on a number of instances, and for each
algorithm we have computed its average coefficient of approximation as well as
the corresponding variance. The results obtained during these experiments are
illustrated in Figure 9.

In the first experiment we have generated 100 instances, each one containing
12 elements. The elements were chosen from the interval [−106, 106] of integers.
The small number and length of instances have been chosen in order to allow

Fig. 9. Results obtained during the three computer experiments

the computation of optimal solutions through the “brute force” algorithm that
examines all permutations in Sk. This means that the obtained results are the
real average coefficients of approximation of the involved heuristics. Due to the
length of instances, during the other two experiments we were not able to com-
pute optimal solutions; hence, in those cases, in order to compute the coefficients
of approximation we have used the theoretical lower bound max1≤i≤k |ei| as the
optimal solution, thus obtaining upper bounds to the real coefficients. Indeed,
the first experiment was conceived to compare these upper bounds with the real
coefficients of approximation, although computed over very small instances. As
we can see from the tables, the values obtained are pretty similar.

In the first experiment, among the traditional heuristics Best Fit has ob-
tained the best average coefficient of approximation, and also the smallest vari-
ance; this means that it frequently finds a good solution. On the other hand, the
membrane algorithm has always found the optimal solution. This is probably due

460 A. Leporati and D. Pagani

to the fact that, since the number of regions is high with respect to the length of
the instances, then the probability that an optimal solution is produced during
the initial generation of candidate solutions is very high. Further, a relatively
high number of iterations in the algorithm allows such optimal solution to reach
the innermost membrane before the algorithm halts.

In the second experiment we have generated 100000 instances of 100 elements,
each taken from the interval [−106, 106] of integers. As we can see in Figure 9,
for traditional heuristics we have obtained results similar to those of the first
experiment. MA4MS LS has obtained both a low average coefficient of approx-
imation and a (very) low variance; moreover, it performs better than almost
all the traditional heuristics. However, the winner is Best Fit. An interesting
observation is that Best Fit did not find a solution equal to max1≤i≤k |ei| for
only 4564 of the 100000 instances; since the optimal solution cannot be less than
this value, this means that for at least 95.4% of instances Best Fit found the
optimal solution. We can explain this result by saying that Best Fit performs
so well because it has been intentionally conceived for Min Storage. We are
currently investigating whether higher values for the parameters m and d would
lead to a better performance of MA4MS LS. Let us note, however, that even
if this hypothesis should be true, the execution time of the algorithm would
make us prefer again Best Fit, since it is very quick. Does this mean that
we should forget MA4MS LS? The answer is negative, as shown by the next
experiment.

For the third experiment, we have considered a variant of the Min Storage
problem, where we have relaxed the requirement that the amount of energy
stored into the gate at the beginning of the computation is zero. This corresponds
to a natural extension of the notion of conservative computation, obtained by
letting the gate to have a positive amount ε of energy stored at the beginning
of the computation, and requiring that exactly the same amount ε of energy is
stored into the gate at the end of the computation. When this situation occurs,
we say that the computation is ε–conservative. Hence up to now we have dealt
with 0–conservativeness. Clearly also the variant of Min Storage concerning ε–
conservative computations (with ε ≥ 0) is NP–hard, by the restriction property
[2, page 63], since it contains Min Storage as a particular case.

In the third experiment we generated 100 instances, each one composed by 100
elements taken from the interval [−106, 106] of integers. For each instance we ran
the proposed algorithms, varying the initial energy ε from 0 to max1≤i≤k |ei|,
with steps of 100. At first sight it may be surprising to see that Best Fit
gives no more the best results: indeed, among the traditional heuristics Min-
MaxMinMax has both the lowest average coefficient of approximation and
the lowest variance. It is our opinion that Best Fit does not perform bet-
ter than MinMaxMinMax because the former algorithm starts by consider-
ing the elements of the instance from the greatest positive to the smallest
positive element, each time taking the element if there is enough free stor-
age into the gate; negative elements are considered only later. Of course, this
may not be the optimal strategy, especially when the initial energy stored into

A Membrane Algorithm for the Min Storage Problem 461

the gate is high with respect to gate capacity. The latter algorithm alternately
chooses the minimum and the maximum of the positive elements remaining
into the instance, and then it immediately considers negative elements: as a
consequence, it has more chances to make the right choices. Some modifica-
tions to the Best Fit algorithm in order to perform better when there is a
positive initial amount of energy into the gate are currently under considera-
tion.

However, the absolute winner in this experiment is MA4MS LS. Once again it
has a very low variance, and almost the same average coefficient of approximation
as in the previous experiment; we can interpret this fact by saying that MA4MS
LS is a stable algorithm, in the sense that its performance is not affected by
small changes in the definition of the instances.

8 Conclusions

In this paper we have proposed some polynomial time approximation heuristics
for Min Storage, a strongly NP–hard optimization problem that naturally
arises in the context of conservative (that is, energy preserving) computations.
One of the proposed heuristics is a membrane algorithm which was inspired by
a previous work by Nishida [6].

We studied the behavior of all these heuristics on (almost) uniformly ran-
domly chosen instances through several computer experiments. A first set of
experiments allowed us to understand that a very simple local optimization al-
gorithm, LocalSearch4MS, suffices to make the membrane algorithm obtain
good solutions for Min Storage. We have called MA4MS LS the resulting algo-
rithm. The results obtained from a second set of experiments suggest that Min
Storage seems to be easy to solve on uniformly randomly chosen instances. In
particular, one of the proposed heuristics, namely Best Fit, seems to perform
very well when the initial energy stored into the gate is zero. Interestingly, the
same heuristic is no more the best when the initial energy is positive.

If we look at the average coefficient of approximation obtained for MA4MS
LS during the second set of experiments, we can see that we always obtain
approximately the same value. Moreover, the low value obtained for the variance
shows that the algorithm is also pretty stable, that is, its (average) behavior is
not affected too much by small changes in the instances of the problem. If we
compare this situation with the behavior of Best Fit, we can draw the following
conclusions. Best Fit performs well since it is an algorithm which has been
intentionally crafted for Min Storage; stated otherwise, it strongly reflects the
structure of the problem. On the contrary, MA4MS LS is a general algorithm,
that behaves in the same way independent of the problem on which it is applied.

Acknowledgements

We gratefully thank the anonymous referees, whose comments have helped us to
improve a previous version of this paper.

462 A. Leporati and D. Pagani

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti–Spaccamela, M. Pro-
tasi. Complexity and Approximation. Combinatorial Optimization Problems and
Their Approximability Properties. Springer–Verlag, 1999.

2. M.R. Garey, D.S. Johnson. Computers and Intractability. A Guide to the Theory
on NP–Completeness. W.H. Freeman and Company, 1979.

3. G.V. Gens, E.V. Levner. Computational complexity of approximation algorithms
for combinatorial problems. Proceedings of the 8th International Symposium on
Mathematical Foundations of Computer Science, Lecture Notes in Computer Sci-
ence 74, Springer–Verlag, Berlin, 1979, pp. 292–300.

4. D.E. Goldberg, R. Lingle. Alleles, Loci and the Traveling Salesman Problem. In
Proceedings of the International Conference on Genetic Algorithms, 1985, pp. 154–
159.

5. A. Leporati, C. Zandron, G. Mauri. Conservative Computations in Energy–based P
systems. In G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa
(Eds.) Membrane Computing: 5th International Workshop, WMC 2004, Milan,
Italy, June 14–16, 2004, LNCS 3365, Springer–Verlag, 2005, pp. 344–358.

6. T.Y. Nishida. Membrane Algorithms. In R. Freund, Gh. Păun, G. Rozenberg, A.
Salomaa (Eds.) Membrane Computing: 6th International Workshop, WMC 2005,
Vienna, Austria, July 18–21, 2005, LNCS 3850, Springer–Verlag, 2006, pp. 55–66.

7. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science — TUCS Report
No. 208, 1998.

8. Gh. Păun. Computing with Membranes. An Introduction. Bulletin of the EATCS,
67:139–152, February 1999.

9. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
10. Gh. Păun, G. Rozenberg. A Guide to Membrane Computing. Theoretical Computer

Science, 287(1):73–100, 2002.
11. The P systems Web page: http://psystems.disco.unimib.it/

P Systems with Symport/Antiport and Time

Hitesh Nagda1, Andrei Păun1,2, and Alfonso Rodŕıguez-Patón2

1 Department of Computer Science/IfM, Louisiana Tech University
P.O. Box 10348, Ruston, LA 71272, USA

{hhn002, apaun}@latech.edu
2 Universidad Politécnica de Madrid - UPM, Facultad de Informática

Campus de Montegancedo S/N, Boadilla del Monte, 28660 Madrid, Spain
arpaton@fi.upm.es

Abstract. We consider symport/antiport P systems using the time as
the support for the output of a computation. We describe and study the
properties of “timed symport/antiport systems”, showing that this new
model of membrane systems based on time has more power/flexibility,
and thus allows us to improve previous universality results. We were able
to improve or match the best results concerning the symport/antiport
systems which consider the output as originally defined as the number
of molecules found in a pre-defined elementary membrane in the halting
configuration of the system.

1 Introduction

We continue the work on symport/antiport P systems which were considered in
a series of recent papers. We refer the interested reader to [1], [2], [5], [6], [11], for
basic definitions and results in this area. Briefly, the systems that we consider
in this paper extend the original definition by using the paradigm of time as
the output of a computation as previously introduced in [4] and [8]. The idea
originates in [12] as Problem W; the novelty is that instead of the “standard” way
to output, like the multiplicities of objects found at the end at the computation in
a distinguished membrane as it was defined in the model from [11], it seems more
“natural” to consider certain events (i.e., configurations) that may occur during
a computation and to relate the output of such a computation with the time
interval between such distinguished configurations. Our system will compute a
set of numbers similarly with the case of “normal” symport/antiport systems as
defined in [11], but the benefit of the current setting is that the computation
and the observance of the output are now close to the biology and to the tools
used for cell biology (fluorescence microscopy, FACS). The model of the “timed”
P system that we investigate here is the symport/antiport P system. We note
that such a “timed” approach could be applied also to other types of P systems.
Actually the spiking neural P systems ([9], [14]) use a similar idea: the output of
such a system is the time elapsed between two spikes of a pre-defined “output”
neuron. Going back to the symport/antiport model, we are studying another
way of viewing the output of such a system; the motivation comes from the fact

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 463–476, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

464 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

that cells can become fluorescent if, for example, some types of proteins with
fluorescence properties are present in the cells. Such a fluorescent “configuration”
of a cell will be the configuration that starts the clock used for the output.
Even more interesting (making our definition a very natural way of viewing the
output of a system) is the fact that there are tools currently used by researchers
in cell biology that can detect the fluorescence of each cell individually. Such
an automated technique for viewing the output of a computation using cells is
highly desirable since it holds the promise of fast readouts of the computations
with low error rates in the readout.

2 Timed Symport/Antiport Systems

We will use a modified definition from the one given in [11]: instead of spec-
ifying the output region where the result of the computation will be “stored”
in a halting computation, we specify two configurations (we can call them also
relations) Cstart and Cstop (which are described by regular languages) that need
to be satisfied by the multisets of objects in the membrane structure at two
different times during the computation. We restrict the description of Cstart and
Cstop to regular languages, (each word from the language representing a pos-
sible configuration of the system that satisfies the respective relation) due to
two main reasons: first we want to use the idea of restriction in the start/stop
configurations. In this way we make sure that some “artificial” constructs (for
example encoding the whole RE set into the configurations) are not possible,
and on the other hand, the regular languages express enough for the start/stop
configurations to help in obtaining similar universality results as for “regular”
systems with symport/antiport.

An important observation is the fact that we will not require the cell to
“stop working” when reaching the result; i.e., we will not require the strong
restriction that the system reaches a halting configuration for a computation
to have a result. It is worth noting also that a similar idea of “configuration-
based output” was considered recently in [7] where the authors pre-defined in the
system two membranes: fin and ack; initially ack is empty, but once it receives
an element, the number of objects hat are present in that moment in fin is the
output of the computation. In this way one can consider the output of non-
halting computations in that case as well. Of course, one can immediately see
that in [7] the result is still encoded as multiplicities of different molecules, in
our framework, we use the time between configurations to encode the result of
the computation.

Before progressing any further we give some basic notions used in the re-
mainder of the paper; the language theory notions used but not described are
standard, and can be found in any of the many monographs available, for in-
stance, in [15].

A membrane structure is pictorially represented by a Venn diagram, and it
will be represented here by a string of matching parentheses.

P Systems with Symport/Antiport and Time 465

A multiset over a setX is a mappingM : X −→ N. Here we alwaysuse multisets
over finite sets X (that is, X will be an alphabet). A multiset with a finite support
can be representedby a string overX ; the number of occurrences of a symbola ∈ X
in a string x ∈ X∗, denoted by |x|a, represents the multiplicity of a in the multiset
represented by x. Clearly, all permutations of a string represent the same multiset,
and the empty multiset is represented by the empty string, λ.

We will use symport rules of the form (ab, in) and (ab, out), associated with
a membrane and stating that the objects a, b can enter, respectively, exit the
membrane together, and antiport rules of the form (a, out; b, in), stating that a
exits and at the same time b enters the membrane.

Based on rules of these types, we modify the definition from [11] to introduce
the model of a timed symport/antiport P system as the following construct:

Π = (O,μ,w1, . . . , wm, E,R1, . . . , Rm, Cstart, Cstop),

where

– O = {a1, . . . , ak} is an alphabet (its elements are called objects);
– μ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) bijectively labeled with 1, 2, . . . ,m; m is called the
degree of Π ;

– wi, 1 ≤ i ≤ m, are strings over O representing multisets of objects associated
with the regions 1, 2, . . . ,m of μ, present in the system at the beginning of
a computation;

– E ⊆ O is the set of objects that are continuously available in the environment
in arbitrarily many copies;

– R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet
V associated with the membranes 1, 2, . . . ,m of μ;

– Cstart and Cstop are regular subsets of (O∗)m, describing configurations of
Π . We will use a regular language over O∪{$} to describe them, the special
symbol $ 	∈ O being used as a marker between the configurations in the
different regions of the system. More details will be given in the following.

For a symport rule (x, in) or (x, out), we say that |x| is the weight of the rule.
The weight of an antiport rule (x, out; y, in) is max{|x|, |y|}. The rules from a set
Ri are used with respect to membrane i as explained above. In the case of (x, in),
the multiset of objects x enters the region defined by the membrane, from the
surrounding region, which is the environment when the rule is associated with
the skin membrane. In the case of (x, out), the objects specified by x are sent out
of membrane i, into the surrounding region; in the case of the skin membrane,
this is the environment. The use of a rule (x, out; y, in) means expelling the
objects specified by x from membrane i at the same time with bringing the
objects specified by y into membrane i. The objects from E appear in arbitrarily
many copies in the environment. The rules are used in the non-deterministic
maximally parallel manner specific to P systems with symbol objects: in each
step, a maximally parallel multiset of rules is used.

In this way, we obtain transitions between the configurations of the system.
A configuration is described by the m-tuple of multisets of objects present in

466 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

the m regions of the system, as well as the multiset of objects from O − E
which were sent out of the system during the computation. It is important to
note that such objects appear only in a finite number of copies in the initial
configuration and can enter the system again (knowing the initial configuration
and the current configuration in the membrane system, one can know precisely
what “extra” objects are present in the environment). On the other hand, it is
not necessary to take care of the objects from E which leave the system because
they appear in arbitrarily many copies in the environment as defined before (the
environment is supposed to be inexhaustible, irrespective how many copies of
an object from E are introduced into the system, still arbitrarily many remain
in the environment). The initial configuration is α0 = (w1, . . . , wm).

Let us now describe the way this systems “outputs” the result of its compu-
tation: when the system enters some configuration α from Cstart (we also say
that Cstart is satisfied), we assume that an external observer (external to the
cell) starts a counter t that is incremented at each clock cycle (or in other words,
each time the symport/antiport rules are applied in the nondeterministic paral-
lel manner). At some point, when the system enters some configuration β from
Cstop (hence Cstop is satisfied), we stop incrementing t, and the value of t repre-
sents the output of the computation1. If the system never reaches a configuration
in Cstart or in Cstop, then we consider the computation unsuccessful, no output
is associated with it. The set of all numbers t (computed as described above)
is denoted by N(Π). The family of all sets N(Π) computed by systems Π of
degree at most m ≥ 1, using symport rules of weight at most p and antiport
rules of weight at most q, is denoted by NTPm(symp, antiq) (we use here similar
notations as the ones from [11] and [2]).

We emphasize the fact that in the definition of Π we assume that Cstart and
Cstop are regular. Other, more restrictive, cases can be of interest but we do not
discuss them here.

Details about P systems with symport/antiport rules can be found in [11];
a complete formalization of the syntax and the semantics of these systems is
provided in the paper [13] where reachability of symport/antiport configurations
was discussed.

3 Register Machines and Counter Automata

In the proofs from the next sections we will use register machines and counter
automata as devices characterizing NRE, hence the Turing computability.

Informally speaking, a register machine consists of a specified number of reg-
isters (counters) which can hold any natural number, and which are handled
according to a program consisting of labeled instructions; the registers can be
increased or decreased by 1 – the decreasing being possible only if a register
holds a number greater than or equal to 1 (we say that it is non-empty) –, and
checked whether they are non-empty.
1 By convention, in the case when a configuration α is reached that satisfies both

Cstart and Cstop, then we consider that the system has computed the value 0.

P Systems with Symport/Antiport and Time 467

Formally, a (non-deterministic) register machine is a device M = (m,B, l0,
lh, R), where m ≥ 1 is the number of counters, B is the (finite) set of instruction
labels, l0 is the initial label, lh is the halting label, and R is the finite set of
instructions labeled (hence uniquely identified) by elements from B (R is also
called the program of the machine). The labeled instructions are of the following
forms:

– l1 : (ADD(r), l2, l3), 1 ≤ r ≤ m (increment the value of the register r and
then jump non-deterministically to one of the instructions with labels l2, l3),

– l1 : (SUB(r), l2, l3), 1 ≤ r ≤ m (if register r is not empty, then subtract 1
from it and go to the instruction with label l2, otherwise go to the instruction
with label l3),

– lh : HALT (the halt instruction, which can only have the label lh).

A register machine generates a natural number in the following manner: we
start computing with all m registers being empty, with the instruction labeled
by l0; if the computation reaches the instruction lh : HALT (we say that it halts),
then the values of register 1 is the number generated by the computation. The
set of numbers computed by M in this way is denoted by N(M).

We recall also the definition of the counter automaton; for more details we
refer the interested to the literature [10]. Such a device is a construct M =
(m,Q, q0, qf , P), where d is the number of counters, Q = {q0, . . . , qf} is the set
of states of the machine, q0 is the start state while qf is the final state and P is
the set of instructions, of three types:

– (p → q, c+) with p, q ∈ Q and c a counter. This instruction will increment
the value of the register c and move from state p in state q.

– (p → q, c−) with p, q ∈ Q and c a counter. The instruction tries to decrement
the value of the counter c; if it was originally greater than zero, then it is
decremented and M moves to the state q, otherwise (if the value stored in
c is zero) the computation is stopped and the machine does not produce
output.

– (p → q, c = 0) with p, q ∈ Q and c a counter. The instruction tests the
value of the counter c; if it is zero, then M moves to state q, otherwise the
computation stops and the machine does not produce an output.

It is known (see [10]) that non-deterministic register machines and counter au-
tomata generate exactly the family NRE, of Turing computable sets of numbers.

4 Universality Results for Timed P Systems Having Only
One Membrane

The first result that we give is related to the results obtained in [2] and [6] where
it is proved that systems using only one membrane and symport rules of size
3 are universal. We need to mention that in our setup (by using the time as
the output of the computation) we are able to generate all the subsets of NRE

468 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

including the ones containing the values from 0 to 7, which is not the case of
the aforementioned results where there are some “garbage” symbols left in the
output region. Another remark that should be made is that rather than using
the more complicated notion of conflicting counters in a register machine, we use
here a proof which is easier to understand and, implicitly, easier to implement.

Theorem 1. P systems with time are universal for one membrane and symport
of length 3 even when no antiport is used: NRE = NTP1(sym3, anti0)

Proof. We consider a register machine M = (m,B, l0, lh, R) and we construct
the system

Π = (O, [1]1, w1, E,R1, Cstart, Cstop)

with the following components

O = {ar | 1 ≤ r ≤ m} ∪ {Pl, P
′
l , P

′′
l , Ql, Q

′
l, Xl, X

′
l , X

′′
l , l | l ∈ B} ∪ {b, t},

w1 = l0P1 . . . PlQ1 . . . QlX1 . . . XlX
′′
1 . . . X ′′

l b
2,

E = {ar | 1 ≤ r ≤ m} ∪ {P ′
l , P

′′
l , Q′

l, X
′
l , l | l ∈ B} ∪ {t},

Cstart = {b2t2w1 | w1 ∈ (O − {b, t})∗}, in other words, b and t appear exactly
two times, and the rest of the symbols can appear in any numbers.

Cstop = {tiw2 | i ≥ 1, w2 ∈ (O − {a1})∗}, in this case we have that t appears at
least once, while a1 does not appear in the region.

and the following rules in R1:

1. For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules

(Pl1 l1, out), (Pl1 l2ar, in), (Pl1 l3ar, in).

We simulate the work of the ADD instruction in two steps. First we send
out the current instruction label together with the marker Pl1 that will
come back in the membrane with two other objects, a copy of ar so that
the register r is incremented and also the new instruction label. To simulate
the non-deterministic behavior of these machines we have two symport rules
that do the same job, the only difference being the next instruction label
being brought back in the system. It is clear that the simulation of the ADD
instruction is performed correctly.

2. For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the following rules:

(Pl1 l1, out), (Pl1P
′
l1
P ′′

l1
, in), (P ′

l1
Ql1 , out), (P ′′

l1
Xl1ar, out), (Ql1Q

′
l1
, in),

(Xl1X
′
l1
l2, in), (Q′

l1
P ′′

l1
X ′′

l1
, out), (Q′

l1
X ′

l1
, out), (X ′′

l1
l3, in).

We simulate the work of the SUB instruction in several steps (5 if the register
is not empty and 6 if it is empty). We first send out the current label with
its corresponding P marker by the rule (Pl1 l1, out). At the next step the
symbol P brings in two more symbols that keep track of the instruction
being simulated with theirs indices: (Pl1P

′
l1
P ′′

l1
, in), P ′ is working as a timer

while P ′′ is checking whether the register is empty or not. If the register is

P Systems with Symport/Antiport and Time 469

not empty, then P ′′ will exit decreasing the register and taking at the same
time another marker to the outside to help identify the correct case later:
(P ′′

l1
Xl1ar, out). At the next stage X will return with yet another marker

and the next instruction label to be brought in (in this case l2 as the register
was not empty), (Xl1X

′
l1
l2, in). The work is finished in this case by the rule

(Q′
l1
X ′

l1
, out).

If the register is empty, we perform the same initial steps, sending P and
the current instruction label out, P returns with P ′ and P ′′; this time P ′′

cannot exit the membrane at the next step since the register is empty, but P ′

is exiting together with Q, then Q returns with Q′. At the next step we have
the “branching point”: rather than exiting with X ′ (which will be present in
the membrane in the case when the register was not empty), Q′ exits with
P ′′ and X ′′. If X ′′ exits, that means that the register was empty, thus when
X ′′ returns in the system, it returns with the label of the next instruction
to be simulated as l3.

3. The terminating/counting work is done by the rules:

(lhb2, out), (bt, in), (bta1, out).

It is clear that at the end of the simulation, if the register machine has
reached the final state, we will also have the halting instruction symbol in
the system membrane. At that time we will have the computed value encoded
as the multiplicity of the object a1 that is associated with the output register.
We will also have in the system the label of the halting instruction, lh, thus
the rule (lhb2, out) can be applied only when the simulation was performed
correctly. At the next step, the two b-s return with two copies of t, satisfying
the Cstart configuration. One can note that if there are no copies of a1 in the
membrane, then also the configuration Cstop is satisfied at the same time,
thus our system would compute the value 0 in that case. For any even value
encoded in the multiplicity of a1 it will take exactly half that number of
steps for the two copies of the pair bt to push the a1-s out of the membrane
and again the same amount to return to the membrane.

Let us give a small example: for the value 4, the first step 2 copies of a1 are
pushed out, and at the next step the symbols b2t2 return in the membrane;
in two more steps we will have 0 copies of a1 and at least one copy of t, so
the whole process took the correct 4 steps to complete.

For an odd number we perform the same work, with the exception of
the last step, when there is only one copy of a1 in the membrane. At that
moment, only one bt can exit, leaving the second one in the membrane,
satisfying the Cstop condition at the correct time. ��

In the following we recall a proof from [8] due to its relevance to the current
paper. The best known result for “standard” symport/antiport P systems in this
setting is N1RE = N1OP1(sym0, anti2), thus the following result improves the
best known result for symport/antiport systems by being able to generate sets
of numbers containing also the values 0 and 1. Another observation is that the
Cstart, Cstop configuration are in this case quite simple. We call them having

470 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

minimal restrictions on multiplicities; we mean by this the fact that for each
object and each membrane, the Cstart, Cstop rules will impose either a fixed
multiplicity or not impose any restrictions for the object.

Theorem 2. Using minimal restrictions on the multiplicities of the objects for
the Cstart, Cstop rules we have NRE = NTP1(sym0, anti2).

Proof. To prove the theorem we follow the constructions from the literature for
the “standard” symport/antiport P systems, this time using counter automata.
In the initial configuration, the unique membrane contains the start state as
its only object. The work of the counter automaton can be simulated using the
antiport rules in the following way.

For a rule (p → q, λ) ∈ R we will have in our timed P system the rule
(q, in; p, out); for an increment instruction (p → q, i+) on the counter ci we will
add the antiport rule (qci, in; p, out) to R1. The decrement instruction can only
be applied if the counter is non zero: (p → q, i−) is simulated by (q, in; pci, out).
Finally, (p → q, i = 0) is simulated by the rules (q′i, in; p, out); (∞, in; ici, out),
(q′′, in; q′, out), and (q, in; q′′i, out) in three steps: first we replace p by q′ and
i, then i checks whether the register i is empty or not; if nonempty, the spe-
cial marker ∞ is brought in and the computation cannot continue; in the case
when the register was empty the computation can continue by expelling the two
symbols q′′ and i together to bring in the next state q.

It is clear now that the register machine is simulated in this way only by using
antiport rules of weight2 2. When the final state appears as the current state
of the simulation it is time to start “counting” the result. We define Cstart =
{wf | w ∈ (O−{f,∞})∗}. The rule (f, in; fc0, out) will expel one symbol c0 at a
time, thus if we define Cstop = {fw′ | w′ ∈ (O− {f, c0})∗}, we will have exactly
i steps between Cstart and Cstop, where i is the multiplicity of the symbol c0
(i.e., the contents of the output register) in the system. Following the previous
discussion the equality NRE = NTP1(sym0, anti2) was shown, which completes
the proof. ��

5 Universality Results for Timed P Systems Having Two
Membranes

In this section we will provide two dual results with the ones presented in [1], [2]
when considering systems with two membranes. It is worth noting that in [1] the
authors use and intersection with a finite alphabet when defining the result of
a computation. The best result from [2] is N3RE = N3OP2(sym1, anti1). Here
we improve this result in the sense that we generate also the sets of numbers
containing the values 0 through 3. We will give in the following theorem the

2 The result can be strengthened in the following way: the construction works even if
we only use antiport rules of dimensions (1, 2) or (2, 1) by adding to the only two
rules of dimension (1, 1) some padding symbols. For example the rule (q′′, in; q′, out)
can be padded with the extra symbol P in this way (q′′P, in; q′, out).

P Systems with Symport/Antiport and Time 471

Cstart/Cstop configurations in the form <multiset for membrane 1>$<multiset
for membrane 2> described by regular languages as defined in the second section
of the paper; in the first two proofs we showed universality of a single region,
thus the symbol $ was not used.

Theorem 3. NRE = NTP2(sym1, anti1).

Proof. We will follow the construction from [1] and note the changes made. For
a detailed explanation of the work of the system we refer the interested reader
to [1].

Let us consider a counter automaton M = (m,Q, q0, qf , P) which starts with
empty counters and has n instructions in the set P .

We construct the P system Π = (O, [1[2]2]1, w1, w2, E,R1, R2, Cstart, Cstop)
with the following components

O = E ∪ {bj, b
′
j | 1 ≤ j ≤ n} ∪ {#, F, I},

w1 = q0IF##,

w2 = b1b2 . . . bnb
′
1b

′
2 . . . b

′
ndd,

E = Q ∪ {cr | 1 ≤ r ≤ m} ∪ {aj , a
′
j , a

′′
j | 1 ≤ j ≤ n} ∪ {z},

Cstart = {d#2w1$w2 | w1 ∈ (O − {d,#})∗, w2 ∈ (O − {d})∗},
Cstop = {zw3$w4 | w3 ∈ O∗, w4 ∈ (O − {c1})∗}.

The definition of Cstart means that for starting to count we need to reach a state
when exactly one copy of d and two copies of # are present in membrane 1, at
the same time as no copy of d is present in membrane 2. At the same time, Cstop

is only satisfied when at least one copy of the symbol z is present in membrane
1 and no copies of c1 appears in membrane 2.

Let us now define the rules from R1 and R2:

R1 = Rini
1 ∪Rsim

1 ∪Rtimer
1 , and

R2 = Rini
2 ∪Rsim

2 ∪Rtimer
2 , where

Rini
1 = {(I, out; ck, in) | 1 ≤ k ≤ m} ∪ {(I, in)},

Rini
2 = ∅,

Rsim
1 = {(qi, out; aj, in), (a′′j , out; ql, in) | (j : qi → ql, .) ∈ P}

∪ {(bj , out; a′j, in), (aj , out; bj, in), (#, out; bj, in) | 1 ≤ j ≤ n}
∪ {(a′j , out; a′′j , in) | where j is the label of an increment or decrement

instruction} ∪ {(#, out; #, in)}
∪ {(b′j , out; a′′j , in), (a′j, out; b

′
j , in) | (j : qi → ql, k = 0) ∈ P}

∪ {(#, out; b′j , in) | (j : qi → ql, k = 0) ∈ P}
Rsim

2 = {(bj , out; aj, in) | 1 ≤ j ≤ n}
∪ {(aj , out; ck, in), (a′j , in) | (j : qi → ql, k+) ∈ P}
∪ {(a′j , out; bj, in) | j labels an increment or decrement instruction}
∪ {(aj , out) | j labels a decrement or test with 0 instruction}

472 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

∪ {(ck, out; a′j, in) | (j : qi → ql, .) ∈ P}
∪ {(b′j , out; bj, in), (b′j, in) | (j : qi → ql, k = 0) ∈ P},

Rtimer
1 = {(d, out; z, in)},

Rtimer
2 = {(d, out; qf , in), (qf , out;F, in), (c1, out; z, in), (z, out)}.

The simulation of the counter automaton is done in phases. The rules from
the ini phase bring in membrane 1 an arbitrary number of objects ci for any
register i. This helps with the simulation of the increment instruction in the
automaton. The rules in the sim group perform the actual simulation of the
different instructions in the automaton (increment, decrement, test for 0). We
refer the interested reader to [1] for the details of the construction and the
proof of correctness. We change the construction in the finishing part of the
simulation to match the output based on the time that passes between two
configurations. For this we note that at the start of each simulation step we
have a symbol codifying the current state in the automaton qi in membrane
1, whereas membrane 2 holds the current values of the counters codified by
multiplicities of the symbols cj.

After a successful simulation, we will reach a state when qf is in membrane 1
and some number of c1 objects that are present in membrane 2 codify the output
of the system. At this moment we can use the rules from the set timer. We will
give step-by-step explanations for this phase.

At step 1 qf is in membrane 1 and dd in membrane 2. By using the rule
(d, out; qf , in) we will now have d in membrane 1 and dqf in membrane 2. At
the next step d from membrane 1 is replaced by a z using the rule (d, out; z, in),
and at the same time qf returns in membrane 1 by the rule (qf , out;F, in). At
the next step qf will remove the second d from membrane 2, thus satisfying the
Cstart condition. There are two cases: a) the output register was empty and b)
the output register is not empty.

In the case a) we have the following configuration: in membrane 1 we have
zd and in membrane 2 we have qfF and no copies of c1; this configuration
that satisfied Cstart will satisfy also Cstop, thus the value computed is correctly
reported as 0.

Case b) if there was at least on copy of c1 in membrane 2, then the rule
(c1, out; z, in) is applicable, so now membrane 1 has d and membrane 2 has
zqfF , and this satisfies Cstart. At the next moment the symbol d will be replaced
by a second z in membrane 1, while the first z returns to membrane 1 by the
rule (z, out). If the value of the output counter was 1, then there are no more
copies of c1 in membrane 2, thus the configuration satisfies at this step Cstop,
thus correctly computing the value 1. If the register stored a value more than 2,
then the computation continues in a homogenous fashion from now on: the two
copies of z will expel each a copy of the c1 marker and at the next step return to
membrane 1. If the amount of objects c1 was odd, then the computation finishes
with the two symbols z in membrane 1 and no symbols c1 in membrane 2, thus
reaching the Cstop in a correct amount of time. On the other hand, if the output
of the computation was an even value, then one of the z symbols will be swapped

P Systems with Symport/Antiport and Time 473

with the last c1, while the second z will remain in membrane 1, making the Cstop

satisfiable, thus computing also in this case the correct number of steps. This
concludes the proof. ��

We will now proceed to prove the last result of the paper which still deals with
universality of timed symport/antiport P systems. We prove that two membranes
and symport of size 2 are enough for generating all the NRE sets. The best
result for the case of symport/antiport systems with output in an elementary
membrane is given in [2] where the authors show that such systems with two
membranes and symport of size 2 are universal, but cannot generate sets of
numbers containing the values 0 through 6. In the case of systems based on time,
we match the universality result of systems with two membranes and symport
of size two, but we are also able to generate the sets of numbers containing the
values 0 through 6.

Theorem 4. NRE = NTP2(sym2, anti0).

Proof. We will follow again the construction from [1] and note the changes made
to it.

Let us consider as in the proof of Theorem 3 a counter automaton M =
(m,Q, q0, qf , P) which starts with empty counters and has n instructions. We
construct the P system Π = (O, [1[2]2]1, w1, w2, E,R1, R2, Cstart, Cstop) with
the following components:

O = E ∪Q ∪ {bj, gj | 1 ≤ j ≤ n} ∪ {g′j | 1 ≤ j ≤ n− 1} ∪ {#, $, F, y},
w1 = q0a1F$b1b2 . . . bn,

w2 = #q1q2 . . . qfg1g2 . . . gng
′
1g

′
2 . . . g′n−1yy,

E = {cr | 1 ≤ r ≤ m} ∪ {aj , a
′
j , dj , d

′
j | 1 ≤ j ≤ n},

Cstart = {y2w1$#w2 | w1 ∈ (O − {y})∗, w2 ∈ (O − {#})∗},
Cstop = {yw3$w4 | w3 ∈ (O − {c1})∗, w4 ∈ O∗}.

The rules from R1 and R2 are as follows:

R1 = Rsim
1 , and

R2 = Rsim
2 ∪Rtimer

2 , where
Rsim

1 = {(qiaj , in) | (j : qi → ql, .) ∈ P}
∪ {(bjgj, out) | j is the label of a increment or zero check
∪ {(ckbj, in) | (j : qi → ql, k+) ∈ P, qi, ql ∈ Q, 1 ≤ k ≤ m}
∪ {(ckgj, out) | (j : qi → ql, k−) ∈ P, qi, ql ∈ Q, 1 ≤ k ≤ m}
∪ {(a′jgj, in) | 1 ≤ j ≤ n− 1} ∪ {(#, out), (#, in)}
∪ {(djbj , in), (djck, out), (a′jg

′
j, out) | (j : p → q, k = 0) ∈ P}

∪ {(d′jg′j , in), (d′j , out) | (j : p → q, k = 0) ∈ P}

474 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

∪ {(a′jql, out) | (j : qi → ql, k+) ∈ P or (j : qi → ql, k−) ∈ P}
∪ {(djql, out) | (j : qi → ql, k = 0) ∈ P, 1 ≤ k ≤ m},

Rsim
2 = {(ajbj, in), (bjgj, out), (a′jgj , in) | 1 ≤ j ≤ n− 1, (j : qi → ql, .) ∈ P}

∪ {(qi, in) | qi ∈ Q} ∪ {(a′j$, in) | 1 ≤ j ≤ n} ∪ {(#$, out)}
∪ {(a′jql, out) | (j : qi → ql, k+) ∈ P or (j : qi → ql, k−) ∈ P}
∪ {(a′jg′j, out), (d′jg′j, in), (djql, out) |

(j : qi → ql, k = 0) ∈ P, 1 ≤ k ≤ m}
Rtimer

2 = {(qfF, in), (qfy, out), (Fy, out), (yc1, in)}.

The simulation of the register machine is done by the rules in the sim groups.
We refer the interested reader to [1] for the details of the construction and the
proof of correctness. We note that the construction from [1] was changed for
our purposes, thus the rules from the group start as they were defined in the
Theorem 2 in [1] are no longer needed since we do not need the “safety net” of
the computation running forever (done by using the symbol #2) if the simulation
is blocked. This is due to the flexibility of the Cstart/Cstop configurations. We
note that the construction is simulating the work of the counter automaton
in membrane 1 and use membrane 2 as a filtering mechanism. Membrane 1
contains both the values of the counters (codified as multiplicities of objects
ci), the current state of the automaton (codified as an object qj) and the next
instruction to be executed (codified as a symbol ak). At the end of a successful
simulation we will have qf in membrane 1, some number of objects c1 codifying
the output of the simulation and # in membrane 2 (if # has reached membrane
1, then the simulation was not correct). The rules in the timer group can only
be applied after the simulation was completed successfully, thus the symbol qf

appears in membrane 1. At that time qf together with F enter membrane 2 by
rule (qfF, in) ∈ Rtimer

2 , where they are able to “pair” with a copy of y each and
exit to membrane 1, by using the rules (qfy, out), (Fy, out) ∈ Rtimer

2 . At this
moment we will have again qf and F in membrane 1, and also y2 in the same
membrane. It is easy to see that the Cstart is satisfied now since the two carrier
symbols y are in membrane 1. If the value in register 1 is zero, then the Cstop

is also valid producing the correct output for this case. If the value computed
by the automaton is non-zero, then the objects y will start moving copies of c1
in membrane 2, and return to membrane 1 using the symbols qf and F . This
is done up until all the symbols c1 have been moved in region 2. We have two
cases for this process: a) the number computed by the automaton is even or b)
the number computed is odd.

In the case a) one can notice that it takes two steps for a symbol y to return
to membrane 1, but since there are exactly two such symbols in the system,
for every two steps of the system, two c1-s are moved to region 2 and the two y
symbols return to membrane 1. Thus in the same amount of steps as the number
computed, the configuration Cstop becomes satisfied – to this aim, it needs at
least one copy of y present in membrane 1, so we need in this case to wait until
both y-s return to membrane 1 after the c1-s are depleted. In the case b) one

P Systems with Symport/Antiport and Time 475

can note that in some even number of steps, 2s for example, exactly 2s copies of
c1 are moved to region 2 and the y-s return to membrane 1, thus without loss of
generality we can assume that in 2s steps we only have one more copy of c1 in
membrane 1. In that moment, one of the y-s will move the c1 to region 2, while
the other copy of y cannot move, thus at the next step we reach a configuration
from Cstop, and the system outputs correctly the value 2s + 1. ��

6 Final Remarks

For the newly introduced timed P systems we improved or matched the four
best known results for “regular” symport/antiport P systems. It is worth noting
that the new feature of outputting the result using time is more flexible than the
previously considered methods, thus the previous results could be even improved
by using completely different techniques that take advantage of the flexibility of
the time as a framework of outputting the result of a computation. For example
in the new framework we no longer have the (rather strong) requirement that
the computation should halt, only to reach a configuration from Cstart and then
one from Cstop. We conjecture that this new definition could prove useful also
in conjunction with classes of symport/antiport systems that using the original
definition could only generate finite sets (e.g., generate some non-finite family of
numbers, etc.).

Acknowledgments

A. Păun gratefully acknowledges the support in part by LA BoR RSC grant
LEQSF (2004-07)-RD-A-23 and NSF Grants IMR-0414903 and CCF-0523572.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin, Some Optimal Results on Symport/Antiport
P Systems with Minimal Cooperation, M.A. Gutiérrez-Naranjo et al. (eds.), Cel-
lular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix
Editora, Sevilla (2005), 23–36.

2. A. Alhazov, R. Freund, Yu. Rogozhin, Computational Power of Symport/Antiport:
History, Advances and Open Problems, R. Freund et al. (eds.), Membrane Comput-
ing, International Workshop, WMC 2005, Vienna (2005), revised papers, Lecture
Notes in Computer Science 3850, Springer (2006), 1–30.

3. F. Bernardini, A. Păun, Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice, WMC03 revised papers in Lecture Notes in Computer Science 2933,
Springer (2004), 43–54.

4. M. Cavaliere, R. Freund, Gh. Păun, Event–Related Outputs of Computations in
P Systems, M.A. Gutiérrez-Naranjo et al. (eds.), Cellular Computing (Complexity
Aspects), ESF PESC Exploratory Workshop, Fénix Editora, Sevilla (2005), 107–
122.

476 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

5. R. Freund, A. Păun, Membrane Systems with Symport/Antiport: Universality Re-
sults, in Membrane Computing. Intern. Workshop WMC-CdeA2002, Revised Pa-
pers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in
Computer Science, 2597, Springer-Verlag, Berlin (2003), 270–287.

6. P. Frisco, J.H. Hogeboom, P systems with Symport/Antiport Simulating Counter
Automata, Acta Informatica, 41 (2004), 145–170.

7. P. Frisco, S. Ji, Towards a hierarchy of conformon-P systems, Membrane Com-
puting. International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania,
August 2002, Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
eds.), Springer, Berlin, 2003, 302–318,

8. O.H. Ibarra, A. Păun, Counting Time in Computing with Cells, Proceedings of
DNA11 conference, June 6-9, 2005, London Ontario, Canada, (14 pages).

9. M. Ionescu, Gh. Păun, T. Yokomori, Spiking Neural P Systems, Fundamenta In-
formaticae, 71, 2-3 (2006), 279–308.

10. M.L. Minsky, Recursive Unsolvability of Post’s Problem of “Tag” and Other Topics
in Theory of Turing Machines, Annals of Mathematics, 74 (1961), 437–455.

11. A. Păun, Gh. Păun, The Power of Communication: P Systems with Sym-
port/Antiport, New Generation Computing, 20, 3 (2002) 295–306.

12. Gh. Păun, Further Twenty-six Open Problems in Membrane Computing, the Third
Brainstorming Meeting on Membrane Computing, Sevilla, Spain, February 2005.

13. Gh. Păun, M.J. Pérez-Jiménez, F. Sancho-Caparrini, On the Reachability Problem
for P Systems with Symport/Antiport, Proc. Automata and Formal Languages
Conf., Debrecen, Hungary, 2002.

14. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, Spike Trains in Spiking Neural P
Systems, International Journal of Foundations of Computer Science, in press.

15. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, 1997.

Towards Probabilistic Model Checking
on P Systems Using PRISM

Francisco J. Romero-Campero1, Marian Gheorghe2,
Luca Bianco3, Dario Pescini4, Mario J. Pérez-Jiménez1, and Rodica Ceterchi5

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Seville, Avda. Reina Mercedes, 41012 Sevilla, Spain
{fran,marper}@cs.us.es

2 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

M.Gheorghe@dcs.shef.ac.uk
3 Department of Computer Science, University of Verona

Strada Le Grazie 15, 37134 Verona, Italy
bianco@sci.univr.it

4 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
pescini@disco.unimib.it

5 University of Bucharest, Faculty of Mathematics and Computer Science
Academiei 14, 70109 Bucharest, Romania

rc@funinf.cs.unibuc.ro

Abstract. This paper presents the use of P systems and π-calculus to
model interacting molecular entities and how they are translated into a
probabilistic and symbolic model checker called PRISM.

1 Introduction

The complexity of bio-molecular cell systems is currently the focus of intensive
experimental research, nevertheless the enormous amount of data about the func-
tion, activity, and interactions of such systems makes necessary the development
of models able to provide a better understanding of the dynamics and properties
of the systems. A model, an abstraction of the real-world onto a mathemati-
cal/computational domain, highlights some key features while ignoring others
that are assumed to be not relevant. A good model should have (at least the
following) four properties: relevance, computability, understandability and ex-
tensibility, [20]. A model must be relevant capturing the essential properties of
the phenomenon investigated; and computable so it can allow the simulation of
its dynamic behavior, and the qualitative and quantitative reasoning about its
properties. An understandable model will correspond well to the informal con-
cepts and ideas of molecular biology. Finally, a good model should be extensible
to higher levels of organizations, like tissues, organs, organisms, etc., in which
molecular systems play a key role.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 477–495, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

478 F.J. Romero-Campero et al.

In this paper we will deal with models developed within the framework of
membrane computing. Membrane computing is an emergent branch of natural
computing introduced by G. Păun in [15]. This new model of computation starts
from the assumption that the processes taking place in the compartmental struc-
ture of a living cell can be interpreted as computations. The devices of this model
are called P systems. Roughly speaking, a P system consists of a cell-like mem-
brane structure, in the compartments of which one places multisets of objects
which evolve according to given rules.

Although most research in P systems concentrates on the computational
power of the devices involved, lately they have been used to model biological
phenomena within the framework of computational systems biology. In this case
P systems are not used as a computing paradigm, but rather as a formalism
for describing the behavior of the system to be modeled. In this respect several
P systems models have been proposed to describe oscillatory systems [8], sig-
nal transduction [17], gene regulation control [16], quorum sensing [12,18,21] and
metapopulations [19]. These models differ in the type of the rewriting rules, mem-
brane structure and the strategy applied to run the rules in the compartments
defined by membranes. Some of these models using the metabolic algorithm [5],
the dynamical probabilistic P systems [19], and (multicompartmental) Gillespie
Algorithm [17] were applied in certain case studies.

As P systems are inspired from the structure and functioning of the living cell,
it is natural to consider them as modeling tools for biological systems, within the
framework of systems biology, being an alternative to more classical approaches
like ordinary differential equations (ODEs) and to some recent approaches like
Petri nets and π-calculus. Differential equations have been used successfully to
model kinetics of conventional macroscopic chemical reactions where the main
focus is on the average evolution of the concentration of chemical substances
across the whole system. Nevertheless, there is an implicit assumption of contin-
uously varying chemical concentration and deterministic dynamics. Two critical
characteristics of this approach are that the number of molecules of each type
in the reaction mix is large and that for each type of reaction in the system, the
number of reactions is large within each observation interval, that is reactions
are fast.

When the number of particles of the reacting species is small and reactions
are slow, which is frequently the case in some biological systems, both previ-
ous assumptions are questionable and the deterministic continuous approach to
chemical kinetics should be complemented by an alternative approach. In this
respect, one has to recognize that the individual chemical reaction steps occur
discretely and are separated by time intervals of random length. Stochastic and
discrete approaches like the ones used with Petri nets [11], π-calculus [20] and
P systems [17,19] are more accurate in this situation. Nevertheless, these for-
malisms differ in some essential features that will be discussed briefly in this
paper.

Towards Probabilistic Model Checking on P Systems Using PRISM 479

Most research in systems biology focuses on the development of models of
different biological systems in order to be able to simulate them, accurately
enough such as to be able to reveal new properties that can be difficult or
impossible to discover through direct experiments. One key question is what one
can do with a model, other than just simulate trajectories? This question has
been considered in detail for deterministic models, but less for stochastic models.
Stochastic systems defy conventional intuition and consequently are harder to
conceive. The field is widely open for theoretical advances that help us to reason
about systems in a greater detail and with a finer precision.

An attempt in this direction consists in using model checking tools to analyze
in an automatic way various properties of the model. There are previous studies
investigating the use of model checking for P system specifications [2,7].

Our current attempt uses a probabilistic symbolic model checking approach
based on PRISM (Probabilistic and Symbolic Model Checker) [22] and investi-
gates continuous time P systems with Gillespie dynamics using protein-protein
interaction rules.

Systems consisting of interacting molecular entities have been modeled by
using π-calculus formalism [20] explaining the principles of transforming the
biological system into a π-calculus model in a coherent way.

In this paper it is shown how π-calculus and P systems can model systems
consisting of reactions with biochemical entities. The specification is translated
into PRISM and various properties are studied. Some simulations obtained using
the PRISM simulator as well as a P system simulator with Gillespie dynamics
are presented.

The paper is organized as follows: in Section 2 a brief overview of PRISM
is presented; Section 3 deals with P system specifications in PRISM, Section 4
presents a case study representing the cell cycle in eukaryotes described using a
P system specification and a π-calculus definition; both are then translated into
PRISM and contrasted in Section 5; conclusions are drawn in Section 6.

2 PRISM

Probabilistic model checking is a formal verification technique. It is based on the
construction of a precise mathematical model of a system which is to be analyzed.
Properties of this system are then expressed formally using temporal logic and
analyzed against the constructed model by a probabilistic model checker.

PRISM, the probabilistic and symbolic model checker in this study, sup-
ports three different types of probabilistic models, discrete time Markov chains
(DTMC), Markov decision processes (MDP), and continuous time Markov chains
(CTMC). PRISM supports systems specifications through two temporal logics,
PCTL (probabilistic computation tree logic) for DTMC and MDP and CSL
(continuous stochastic logic) for CTMC.

In order to construct and analyze a model with PRISM, it must be specified
in the PRISM language, a simple, high level, state-based language based on the
Reactive Modules formalism of [1].

480 F.J. Romero-Campero et al.

Here we describe some aspects of the PRISM language through the following
illustrative example taken from [22].

// N-place queue + server

ctmc

const int N = 10;
const double mu = 1/10;
const double lambda = 1/2;
const double gamma = 1/3;

module queue
q : [0 .. N] init 0;

[] q < N -> mu : (q’ = q + 1);
[] q = N -> mu : (q’ = q);
[serve] q > 0 -> lambda : (q’ = q - 1);

endmodule

module server
s : [0 .. 1] init 0;

[serve] s = 0 -> 1 : (s’ = 1);
[] s = 1 -> gamma : (s’ = 0);

endmodule

The fundamental components of the PRISM language are modules, variables
and commands. A model is composed of a number of modules which can interact
with each other. A module contains a number of local variables and commands.

The previous example consists of two modules; the first one represents a queue
and the second one represents a server.

A module is specified as:

module 〈name〉

endmodule

Note that, in the example above, there are only two local variables, q in the
queue module representing the size of the queue, and s in the server module
which represents whether or not the server is busy. In the declaration of a variable
its initial value and range must be specified. A variable declaration looks like:

name : [lower-bound .. upper-bound] init value;

Towards Probabilistic Model Checking on P Systems Using PRISM 481

The values of these variables at any given time constitute the states of the
module. The space of reachable states is computed using the range of each vari-
able and its initial value. The global state of the whole model is determined by
the local state of all modules.

The behavior of each module is described by a set of commands. A command
takes the form:

[action] g → λ1 : u1 + · · ·+ λn : un;

The guard g is a predicate over all the variables of the model. Each update ui

describes the new values of the variables in the module specifying a transition
of the module. The expressions λi are used to assign probabilistic information,
rates, to transitions.

The label action placed inside the square brackets are used to synchronize
the application of different commands in different modules. This forces two or
more modules to make transitions simultaneously. The rate of this transition is
equal to the product of the individual rates, since the processes are assumed to
be independent.

In our example, in the queue module there are three commands; the first one
allows a new client to join the queue with probability mu if the maximal size,
N, has not been reached yet; otherwise the second command maintains the size
of the queue constant with probability mu. The third command is synchronized
with the first command of the server module and describes the situation when
there are clients in the queue and the server is free; in this case with rate lambda
the server is set to busy and one client is removed from the queue. Observe that
the rate of this transition is equal to the product of the two individual rates (1 ×
lambda = lambda), this is a common technique, an action is passive with rate 1
and the other action active which actually defines the rate for the synchronized
transition.

PRISM supports many other features like constants, expressions, process al-
gebra operators, etc. For a detailed description of the tool we refer to [22].

3 Transforming P System Specification into PRISM

The main components of a P system are a membrane structure consisting of a
number of membranes that can interact with each other, an alphabet of objects,
and a set of rules associated to each membrane. These components can easily be
mapped into the components of the PRISM language using modules to represent
membranes, variables to describe the alphabet and commands to specify the
rules.

A P system is a construct

Π = (Σ,L, μ,M1,M2, . . . ,Mn, R1, . . . , Rn)

482 F.J. Romero-Campero et al.

where:

– Σ is a finite alphabet of symbols representing objects;
– L is a finite alphabet of symbols representing labels for the compartments1;
– μ is a membrane structure containing n ≥ 1 membranes labeled with ele-

ments from L;
– Mi = (li, wi), for each 1 ≤ i ≤ n, is the initial configuration of membrane i

with li ∈ L and wi ∈ Σ∗ a finite multiset of objects;
– Ri, for each 1 ≤ i ≤ n, is a finite set of rules in membrane i of the form

specified below with objects in Σ and labels in L.

The types of rules we will consider in this paper are those referred in the
literature as protein-protein interaction rules.

− Transformation, complex formation and dissociation rules:

[a]l
c→ [b]l

[a, b]l
c→ [e]l where a, b, e ∈ Σ and l ∈ L

[a]l
c→ [b, e]l

These rules are used to specify chemical reactions taking place inside a com-
partment of type l ∈ L, more specifically they represent the transformation
of a into b, the formation of a complex e from the interaction of a and b,
and the dissociation of a complex a into b and e respectively. These types of
rules are used for example in [5] to describe oscillations as a consequence of
the interactions between different objects inside a single compartment.

− Diffusing in and out:

[a]l
c→ a []l

where a ∈ Σ and l ∈ L

a []l
c→ [a]l

When chemical substances move or diffuse freely from one compartment
to another one we use these types of rules, where a moves from or to a
compartment of type l.

These rules are also used to model metapopulations [19] where individuals
can move from one compartment to another one or signal molecules occurring
in bacteria [17] using population P systems [4] as a model.

1 Two membranes with the same label will be considered of the same type.

Towards Probabilistic Model Checking on P Systems Using PRISM 483

− Binding and debinding rules:

a [b]l
c→ [e]l

where a, b, e ∈ Σ and l ∈ L

[a]l
c→ b [e]l

Using rules of the first type we can specify reactions expressing the binding
of a ligand swimming in one compartment to a receptor placed on the mem-
brane surface of another compartment. The reverse reaction, debinding of a
substance from a receptor, can also be described by using the second rule.
These rules were used to model signalling at the cell surface in [17].

− Recruitment and releasing rules:

a [b]l
c→ e []l

where a, b, e ∈ Σ and l ∈ L

e []l
c→ a [b]l

With these rules we represent the interaction between two chemicals in dif-
ferent compartments whereby one of them is recruited from its compartment
by a chemical on the other compartment, and then the new complex remains
in the latter compartment. In a releasing rule a complex, e, located in one
compartment can dissociate into a and b, with a remaining in the same com-
partment as e, and b being released into the other compartment. In [17], these
rules were used to describe the signal transduction between environmental
concentrations of signal molecules and the cytoplasmic concentrations of dif-
ferent kinases.

Here, in order to capture the features of all these rules, we consider generic rules
of the form:

u [v]l
c→ u′ [v′]l (1)

with u, v, u′, v′ some finite multisets of objects and l the label of a membrane.
These rules are multiset rewriting rules that operate on both sides of the mem-
branes, that is, a multiset u placed outside a membrane labeled by l and a
multiset v placed inside the same membrane can be simultaneously replaced by
a multiset u′ and a multiset v′ respectively. In this way, we are able to capture
in a concise way the features of both communication rules (diffusion, binding,
debinding etc . . .) and transformation rules considered before. This generic type
of rules was referred as boundary rules in [3].

We also associate to each rule a stochastic constant, c, which will be used
to compute the probability of applying a rule in a given configuration, see [17].
This is necessary to characterize the reality of the phenomenon to be modeled.
The necessity of taking into account these quantitative aspects has been made
clear in a few recent studies regarding the use of P systems to model biological
systems.

484 F.J. Romero-Campero et al.

In what follows we will describe how to specify P systems models in the
PRISM language.

First of all, since we work with continuous time P systems with Gillespie dy-
namics our model will be declared as a CTMC using the key word stochastic.
The membranes occurring in the membrane structure will be represented us-
ing modules and the topology according to which membranes communicate or
interact will be coded in the commands of each module.

Each module will describe the behavior of one membrane by representing the
rules associated to it using commands and the objects placed in it using local
variables.

More specifically, given Π = (Σ,L, μ,M1,M2, . . . ,Mn, R1, . . . , Rn) a P sys-
tem as before, each membrane in μ will be uniquely identified with an identifier
i, 1 ≤ i ≤ n.

– Each membrane i will be specified using a module which will be called
compartment_i.

– For each object o ∈ Σ that can be present inside the compartment defined by
membrane i a local variable o_i will be declared in module compartment_i.
The initial value of the variable will be given by the corresponding initial
multiset wi; its value range will be determined experimentally or it will be
derived from the literature.

A constant o_i_bound representing the upper bound of the object o_i
will be declared to specify the value range.

– To describe the rules in Ri commands will be used. We will focus on the
generic type of rule in (1). In general, these rules need two membranes to
interact in a synchronized way to exchange objects. In this case the two
modules representing the corresponding membranes will synchronize the ap-
plication of two different commands by using the label rule_k, where k is
the index of the rule being specified.

Therefore, assuming that compartment i is contained in compartment j
and given a rule of the form

a1, . . . , ap [b1, . . . , br]i
c→ c1, . . . , cs[d1, . . . , dt]i

The command in module compartment_j will be:
[rule_k] a1_j > 0 & ... & ap_j > 0 &

c1_j < c1_j_bound & ... & cs_j < cs_j_bound ->
c * a1_j * ... *ap_j :
(a1_j’ = a1_j - 1) & ... & (ap_j’ = ap_j - 1) &
(c1_j’ = c1_j + 1) & ... & (cs_j’ = cs_j + 1);

The command in module compartment_i will be:
[rule_k] b1_i > 0 & ... & br_i > 0 &

d1_i < d1_i_bound & ... & dt_i < dt_i_bound ->
b1_i * ... * br_i :
(b1_i’ = b1_i - 1) & ... & (br_i’ = br_i - 1) &
(d1_i’ = d1_i + 1) & ... & (dt_i’ = dt_i + 1);

Towards Probabilistic Model Checking on P Systems Using PRISM 485

Observe that these two commands are applied when the guards hold, that is,
if and only if there are some reactants in the corresponding membranes and
the products have not reached the upper bounds determined experimentally.
Also note that the rate of this transition is the product of the individual rates:

(c * a1_j * ... * ap_j) * (b1_i * ... * br_i)

Here we assume that the objects a’s and b’s are different, if we have an object
with multiplicity greater than one present on the left hand side of the rule
the rate associated to the command will be different and it will be computed
as it is explained in [10].

When this transition is performed the local variables representing the
reactants are decreased by one and the variables representing the products
are increased by one.

Finally, note that although the rules of the general form in (1) require
synchronization between two modules representing membranes, in the par-
ticular case of transformation, complex formation and dissociation rules only
one membrane is involved and no synchronization is needed. Given a rule of
type:

[a1, . . . , ap]l
c→ [b1, . . . , br]l (2)

the PRISM specification will be as follows:
[] a1_i > 0 & ... & ap_i > 0 &

b1_i < b1_i_bound & ... & br_i < br_i_bound ->
c * a1_i * ... * ap_i :
(a1_i’ = a1_i - 1) & ... & (ap_i’ = ap_i - 1) &
(b1_i’ = b1_i + 1) & ... & (br_i’ = br_i + 1);

4 Cell Cycle in Eukaryotes – A Case Study

In this section two different models of the cell cycle in eukaryotes will be pre-
sented and contrasted using PRISM and our simulator of P systems with Gille-
spie dynamics available from [25]. The first model is expressed using a P system
specification with a single compartment whereas the second one [13] uses a π-
calculus approach.

The cell division cycle in eukaryotes is a coordinated set of processes whereby
a cell replicates all its components and divides into two nearly identical daugh-
ter cells. These processes are controlled by a complex network consisting of
cyclin-dependent kinase (CDK) and its corresponding cyclin. Kinases, cdc14,
and phosphatases, cdh1, regulate CDK activity. There are also stoichiometric
inhibitors (CKI), that sequester cyclin-CDK dimers inhibiting their activity.

4.1 A P System Model

Our P system model is given by,

Π = (Σ, {1}, [], (1, w), R)

486 F.J. Romero-Campero et al.

where:

– Σ contains all the protein and complexes of proteins involved in the system:
Σ = {cdk, cyclin, cdk.cyclin, cdk.degc, cki, cdk.cyclin.cki, cdh1,

cdh1off, cdc14, cdc14off}
– the membrane structure has only one component that will be labeled by 1.
– w is the initial multiset of objects (molecules) which determines the initial

configuration of the system,

w = cdk100 cyclin200 cki100 cdh1100 cdc14200

– the rules of R describe the interactions taking place in the cell cycle control2:
r1 : [cdk, cyclin]1

c1→ [cdk.cyclin]1 c1 = 0.5
cdk is activated upon binding with its corresponding cyclin producing the
dimer cdk.cyclin.
r2 : [cdh1, cdk.cyclin]1

c2→ [cdh1, cdk.degc]1 c2 = 0.005
r3 : [cdk.degc]1

c3→ [cdk]1 c3 = 0.001
These two rules describe how cdh1 regulates the activity of the dimers
cdk.cyclin by degrading the bound cyclin.
r4 : [cdk.cyclin, cki]1

c4→ [cdk.cyclin.cki]1 c4 = 0.003
r5 : [cdk.cyclin.cki]1

c5→ [cdk.cyclin, cki]1 c5 = 0.3
cki also inhibits the activity of the dimers cdk.cyclin by forming the triplets
cdk.cyclin.cki.
r6 : [cdh1, cdk.cyclin]1

c6→ [cdh1off, cdk.cyclin]1 c6 = 0.005
cdh1 can also be inhibited by cdk.cyclin dimers.
r7 : [cdh1off, cdc14]1

c7→ [cdh1, cdc14off]1 c7 = 0.009
r8 : [cdh1, cdc14off]1

c8→ [cdh1, cdc14]1 c8 = 0.009
cdh1 and cdc14 regulate each other activity by inhibition and activation.

Now we will specify the previous P system in the PRISM language using the
algorithm described in section 3. Since Π is a continuous time P system with
Gillespie dynamics, our model will be declared as being stochastic.

The PRISM model will have a single module, compartment, representing the
only membrane present in the membrane structure of Π .
module compartment

...
endmodule

In this module we will describe the alphabet Σ and the initial multiset w using
local variables. For example, cdk, cyclin and the dimer cdk.cyclin are specified
as follows:

cdk_1 : [0 .. cdk_1_bound] init 100;
cyclin_1 : [0 .. cyclin_1_bound] init 200;
cdk.cyclin_1 : [0 .. cdk.cyclin_1_bound] init 0;

2 The time units of the stochastic constants associated with the rules are minutes.

Towards Probabilistic Model Checking on P Systems Using PRISM 487

Finally the rules from R will be described using commands. We observe that
since the model consists only of rules of the form in (2) no synchronization is
required in this case study.

[cdk, cyclin]1
c1→ [cdk.cyclin]1 c1 = 0.5

[] cdk_1 > 0 & cyclin_1 > 0 &
cdk.cyclin_1 < cdk.cyclin_1_bound ->

c1*cdk_1*cyclin_1 :
(cdk_1’ = cdk_1 - 1) & (cyclin_1’ = cyclin_1 - 1) &
(cdk.cyclin_1’ = cdk.cyclin_1 + 1);

[cdk.cyclin.cki]1
c5→ [cdk.cyclin, cki]1 c5 = 0.3

[] cdk.cyclin.cki_1 > 0 &
cdk.cyclin_1 < cdk.cyclin_1_bound & cki_1 < cki_1_ bound ->

c5*cdk.cyclin.cki_1 :
(cdk.cyclin.cki_1’ = cdk.cyclin.cki_1 - 1) &
(cki_1’ = cki_1 + 1) &
(cdk.cyclin_1’ = cdk.cyclin_1 + 1);

We have run simulations of the previous P system and PRISM specifications
using our simulator of P system with Gillespie dynamics and the PRISM simu-
lator. In Figure 1 we depict the evolution of the number of objects representing
the dimer cdk.cyclin, cdh1 and cdc14.

Observe that, although both simulators use the same strategy for the evolution
of the two different models, the simulations are not exactly the same. This is
due to the fact that we are dealing with stochastic approaches.

Nonetheless, both runs show a sudden increase of the dimer cdk.cyclin reach-
ing a peak of almost 100 molecules in less than a minute, then the number of
dimers decay steadily to zero. The evolution of cdh1 and cdc14 is similar, at
the beginning both decay slightly and then they increase reaching a number of
molecules approximately equal to the initial one.

4.2 A π-Calculus Model

Within the framework of π-calculus a system of interacting molecular entities
is described and modeled by a system of concurrent communicating processes.
Communication occurs on complementary channels, that are identified by spe-
cific names. Each molecule in the molecular system is described by a process and
modifications due to chemical interactions are represented using communication
and message passing between different processes through different channels, [20].

In what follows we comment on some fragments of a π-calculus specification
of the same network of the cell cycle specified before using P systems. These
fragments were taken from [13].

488 F.J. Romero-Campero et al.

cdk−clyclin
cdh1
cdc14

0 2 4 6 8 10 12
0

50

100

150

200

250

time

M
ol

ec
ul

es

cdk−cyclin
cdh1
cdc14

0 2 4 6 8 10 12
0

50

100

150

200

250

RUN 2

time

M
ol

ec
ul

es
R

U
N

Fig. 1. Simulations using the PRISM simulator (first graph) and our simulator of P
systems with Gillespie dynamics (second graph)

1. SYSTEM ::= CYCLIN | CDK | CDH1 | CDC14 | CKI
First the molecular population is specified as a system of concurrent pro-
cesses each one representing a molecule; CYCLIN, CDK, CDH1, CDC14 and CKI.

Towards Probabilistic Model Checking on P Systems Using PRISM 489

The following two fragments are examples of how chemical interactions are
specified in π-calculus.

2. CYCLIN ::= (v bb) BINDING-SITE
BINDING-SITE ::= (lb〈bb〉, R4), CYCLIN-BOUND
CDK ::= (lb(cbb), R4). CDK-CATALYTIC

The process CYCLIN is defined as another process BINDING-SITE with com-
munication channel bb. The process CDK has the complementary channel to
BINDING-SITE, lb〈bb〉, and so they can communicate, with rate R4, to pro-
duce two new processes CYCLIN-BOUND and
CDK-CATALYTIC. This fragment correspond to rule r1 of the P system speci-
fication.

3. CKI ::= DEGRCKI + BINDCYC
BINDCYC ::= (bind(x),R11).0
CYC-CDK-CKI ::= (bind〈bb〉, R11).TRIM

This fragment is similar to the previous one. CKI can be replaced either by
the process DEGRCKI or BINDCYC nondeterministically. The process BINDCYC
can communicate with CYC-CDK-CKI to produce TRIM, process representing
the trimer. This fragment correspond to rule r4 of the P system specification.

The above π-calculus specification may be translated into PRISM [22]. In the
next page the parts corresponding to the fragments of the specification presented
before are given. The π-calculus specification was mapped into PRISM using
modules to describe processes, labels of commands correspond to communication
channels, values of variables represent the number of different processes and
commands specify the effect of a communication.

module cyclin
cyclin : [0..CYCLIN] init CYCLIN;
cyclin_bound : [0..CYCLIN] init 0;
trim : [0..CYCLIN] init 0;
[lb] cyclin>0 & cyclin_bound<CYCLIN

-> cyclin : (cyclin_bound’=cyclin_bound+1) &
(cyclin’=cyclin-1);

[bind] cyclin_bound>0 & trim<CYCLIN
-> cyclin_bound : (trim’=trim+1) &

(cyclin_bound’=cyclin_bound-1);
endmodule

The module above describes the processes representing molecules of type cy-
clin. The variables cyclin, cyclin_bound and trim represent the number of
processes CYCLIN, CYCLIN_BOUND and TRIM of the previous π-calculus specifi-
cation. Below the modules describing the molecules of type cdk and cki are
presented.

Observe that the command labels lb and bind specify the communication
channels and the effect of these communications are described in the

490 F.J. Romero-Campero et al.

corresponding commands. For example, the label lb synchronise the first com-
mands in modules cyclin and cdk, where the number of processes of type cyclin
is decreased by one and the number of processes of type cyclin_bound and
cdk_cat are increased by one representing the removal of a process CYCLIN and
the creation of two new processes CYCLIN_BOUND and CDK-CATALYTIC.

module cdk
cdk : [0..CDK] init CDK;
cdk_cat : [0..CDK] init 0;
[lb] cdk>0 & cdk_cat<CDK

-> cdk : (cdk_cat’=cdk_cat+1) & (cdk’=cdk-1);
endmodule

The fragment 3 of the π-calculus specification is described in the next module
and the creation of a process TRIM is represented using the commands labelled
by bind which decrease by one the variable cki representing the number of CKI
processes whereas in the module cyclin the variable trim is increased by one.

module cki
cki : [0..CKI] init CKI;
[bind] cki>0 -> cki : (cki’=cki-1);

endmodule

Using the PRISM simulator simulations of the previous π-calculus model can
be obtained [22]. The evolution of the number of processes CYCLIN, CDH1 and
CDC14 is depicted below. Note the similarity between this graph and the ones in
Figure 1.

cyclin
cdh1
cdc14

0 2 4 6 8 10 12
0

50

100

150

200

250

Fig. 2. A Simulation of the π-calculus model

Towards Probabilistic Model Checking on P Systems Using PRISM 491

5 Some Results and Discussions

We deal with systems of interacting biochemical entities. In this section we will
show how these systems are modeled using π-calculus and P systems formalism
and how these are represented in PRISM.

From the previous case study modeled by using π-calculus and P systems
approaches we can identify some general principles of representing, in the for-
malisms, different aspects of the modeling process.

In P systems, molecules are represented using objects from a finite alpha-
bet and therefore the molecular population present in the system is specified
by multisets of objects. In π-calculus a concurrent and communicating process
abstracts the behavior of a molecule and the whole molecular system is specified
as a system of concurrent and communicating processes.

Compartments are explicitly specified in P systems as regions delimited by
membranes. Although in π-calculus there is no component that corresponds di-
rectly with a biological compartment, processes representing molecules in the
same compartment share certain exclusive communication capabilities (private
communication channels), that are inaccessible to processes representing
molecules in other compartments.

Regarding biochemical reactions, in P systems they are specified using rewrit-
ing rules according to which objects representing reactants are replaced with
objects representing products. In the π-calculus approach different processes
representing molecules interact through complementary communication chan-
nels; this communication and the changes triggered by it describe a chemical
interaction between the molecules represented using these processes.

The translocation of a molecule from one compartment to another one is
modeled in P system using a particular type of rewriting rule, called boundary
rule, where the compartments involved in the movement are specified. In the case
of π-calculus mobile communication in which communication channel names
are sent as messages is used to describe the movement of a process from one
compartment to another using the extrusion of a private channel’s scope.

In the following two tables we sum up how biomolecular systems are specified
in P systems and in π-calculus and how these specifications can be mapped into
PRISM so that we can perform probabilistic model checking on them.

Biomolecular entity P system entity π-calculus entity

Molecule Object Process
Molecular Multiset of System of
Population objects concurrent processes

Compartment Region defined Private Communication
by a membrane channels

Biochemical Re-writing rule Communication
Transformation through channels
Compartment Boundary rule Extrusion of a
Translocation private channel’s scope

492 F.J. Romero-Campero et al.

Biomolecular entity P system PRISM π-calculus PRISM

Molecule Variable Module
Molecular Variable values Variables
Population in modules

Compartment Module Command
Labels

Biochemical Command Synchronization
Transformation between commands
Compartment Synchronization Synchronization
Translocation between commands between commands

One of the key features of our approach is the explicit stochastic behavior
of our models. As mentioned before stochastic systems defy conventional intu-
ition and consequently are harder to conceive. The main stream methodology
to get the statistics of a stochastic system is the simulation of many trajecto-
ries. Nevertheless, simulation is the exploration of finite behaviors over given
time intervals, whereas probabilistic model checking allows us to investigate the
truth or otherwise of temporal queries expressed in temporal logics over possibly
infinite sets of behaviors over possibly unbounded time intervals [6].

In what follows we use CSL (Continuous Stochastic Logic) and PRISM to for-
mulate and check three temporal biological queries against our model of the cell
cycle in eukaryotes in order to illustrate what kind of properties may be checked.

First, we study the expected number of molecules of cdk.cyclin, cdh1 and
cdc14. For this we associate to each state a reward representing the value of the
variable which specifies the corresponding protein. Then we formulate the query
regarding the expected value of that reward at the time instant T:

R = ? [I = T]

In figure 3 we have plotted these expected values as T varies.
Observe that the expected number of molecules of dimers cyclin.cdk decreases

steadily to low numbers whereas cdh1 and cdc14 decrease slightly during the first
two minutes to start increasing gradually afterwards to reach approximately the
initial number of molecules.

In order to get a finer grain analysis of the monotonic decrease of cyclin.cdk
we investigate the probability that the dimers cdk.cyclin at time T is greater
than a given threshold t. This property is specified by the CSL formula:

P = ? [true U[T,T] cdk.cyclin >= t]

In Figure 4 it is depicted the probability that the number of dimers cdk.cyclin
is greater than 90, 80 and 70 as time varies for the P system specification.

Besides transient analysis we can also study steady state properties using the
operator S. In order to verify that cdh1 and cdc14 return to their initial values
in the long term we have verified the following temporal queries:

S >= 0.9 [cdh1 = 100]
S >= 0.9 [cdc14 = 200]

Towards Probabilistic Model Checking on P Systems Using PRISM 493

cyclin
cdh1
cdc14

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

Fig. 3. Expected evolution of the P system specification

90
80
70

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

time

P
ro

ba
bi

lit
y

Fig. 4. Probability that the number of dimers cdk.cyclin is greater than a given thresh-
old in the P system specification

494 F.J. Romero-Campero et al.

6 Conclusions and Future Work

In this paper we have discussed how P systems and π-calculus can model systems
of interacting biochemical entities. A simple case study regarding the cell cycle
has been used to illustrate the different methodologies. We have also shown how
P systems and π-calculus specifications can be translated into PRISM allowing
us to perform probabilistic model checking; in this respect specific questions were
addressed for the P system specification.

Future work will aim to compare through more complex case studies some
differences between P system specifications and other modeling paradigms - Petri
nets, cellular automata, ambient calculus, in order to understand advantages and
limitations offered by these methods and their suitability for different problems.

Acknowledgement

This work is supported by Ministerio de Ciencia y Tecnoloǵıa of Spain, by Plan
Nacional de I+D+I (TIN2005-09345-C04-01), cofinanced by FEDER funds, by
Junta de Andalućıa, by project of Excellence TIC 581, and by a FPU fellowship
from the Ministerio de Ciencia y Tecnoloǵıa of Spain.

References

1. Alur, R., Henzinger, T.A. (1999) Reactive Modules, Formal Methods in System
Design, 15, 7–48.

2. Andrei, O., Ciobanu, G., Lucanu, D. (2005) Executable Specifications of P Systems,
LNCS, 3365, 126–145.

3. Bernardini, F., Manca, V. (2003) P Systems with Boundary Rules, LNCS, 2597,
107–118.

4. Bernardini, F., Gheorghe, M. (2004) Population P Systems, J. UCS, 10(5), 509–
539.

5. Bianco, L., Fontana, F., Manca, V. (2006) P Systems with Reaction Maps, Inter-
national Journal of Foundations of Computer Science, 17 (1), 27–48.

6. Calder, M., Vyshemirsky, V., Gilbert, D, Orton, R. Analysis of Signalling Pathways
using Continuous Time Markov Chains, Transactions on Computational Systems
Biology, to appear.

7. Dang, Z., Ibarra, O.H. (2005) On One-Membrane P systems Operating in Sequen-
tial Mode, Int. J. Found. Comput. Sci., 16 (5), 867–881.

8. Fontana, F., Bianco, L., Manca, V. (2005) P Systems and the Modeling of Bio-
chemical Oscillations, LNCS, 3850, 199 – 208.

9. Gillespie, D.T. (1976) A General Method for Numerically Simulating the Stochastic
Time Evolution of Coupled Chemical Reactions, J Comput Physics, 22, 403–434.

10. Gillespie, D.T. (1977) Exact Stochastic Simulation of Coupled Chemical Reactions,
The Journal of Physical Chemistry, 81 (25), 2340–2361.

11. Goss, P.J.E., Peccoud, J. (1998) Quantitative modeling of stochastic systems in
molecular biology using stochastic Petri nets., Proc. Natl. Acad. Sci. USA, 95,
6750–6755.

Towards Probabilistic Model Checking on P Systems Using PRISM 495

12. Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M.
(2005) An appealling Computational Mechanism Drawn from Bacterial Quorum
Sensing, Bulletin of the EATCS, 85, 135–148.

13. Lecca, P., Corrado, P. Cell Cycle Control in Eukaryotes: A BioSpi Model, Electronic
Notes in Theoretical Computer Science, to appear.

14. Novak, B., Csikasz-Nagy, A., Gyorffy, B., Nasmyth, K., Tyson, J.J. (1998) Model
Scenarios for Evolution of the Eukaryotic Cell Cycle, Phil. Trans. R. Soc. Lond.,
353, 2063–2076.

15. Păun, Gh. (2000) Computing with Membranes, Journal of Computer and System
Sciences, 61(1) 108–143.

16. Pérez-Jiménez, M.J., Romero-Campero, F.J. Modelling Gene Expression Control
Using P Systems: The Lac Operon, A Case Study, submitted.

17. Pérez-Jiménez, M.J., Romero-Campero, F.J. (2006) P Systems, a New Computa-
tionl Modelling Tool for Systems Biology, Transactions on Computational Systems
Biology VI, LNBI 4220, 176–197.

18. Pérez-Jiménez, M.J., Romero-Campero, F.J. A Model of the Quorum Sensing Sys-
tem in Vibrio Fischeri Using P Systems, submitted.

19. Pescini, D., Besozzi, D., Mauri, G., Zandron, C. (2006) Dynamical Probabilistic
P Systems, International Journal of Foundations of Computer Science, 17 (1),
183–195.

20. Regev, A., Shapiro, E. (2004) The π-Calculus as an Abstraction for Biomolecular
Systems, In G. Ciobanu and G. Rozenberg, editors, Modelling in Molecular Biology.
Springer, Berlin.

21. Terrazas, G., Krasnogor, N., Gheorghe, M., Bernardini, F., Diggle, S., Camara, M.
(2005) An Environment Aware P-System Model of Quorum Sensing. CIE 2005,
LNCS, 3526, 473–485.

22. PRISM Web Site: http://www.cs.bham.ac.uk/~dxp/prism/
23. The P Systems Web Site: http://psystems.disco.unimib.it
24. SciLab Web Site http://scilabsoft.inria.fr/
25. P System Simulator:

http://www.dcs.shef.ac.uk/~marian/PSimulatorWeb/PSystemMF.htm

Graphical Modeling of Higher Plants
Using P Systems

Alvaro Romero-Jiménez, Miguel A. Gutiérrez-Naranjo,
and Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla, Spain
Alvaro.Romero@cs.us.es, magutier@us.es, marper@us.es

Abstract. L systems have been widely used to model and graphically
represent the growth of higher plants [20]. In this paper we continue
developing the framework introduced in [21], which make use of the
topology of membrane structures to model the morphology of branching
structures.

1 Introduction

The growth of plants, considered as a function of time, have attracted the at-
tention of scientific community for a long time. Features such as the bilateral
symmetry of leaves, the central symmetry of flowers and, more recently, the study
of self-similarity and fractal structure have been matter of study for computer
scientists, mathematicians, and life scientists among others.

In 1968, Aristid Lindenmayer presented a theoretical framework for studying
the development of simple multicellular organisms. The devices introduced in
this framework are known as parallel rewriting systems or L systems.

L systems were introduced for modeling multicellular organisms in terms of di-
vision, growth, and death of individual cells [10,11]. These organisms are treated
as an assembly of discrete units, which represent the individual cells. These sys-
tems must be considered as dynamic models, which means that the form of the
organism is the result of development along time. This development is described
in terms of production rules, which are applied in parallel and are intended to
capture the simultaneous progress of time in all parts of the growing organisms.

Several years later, the range of applications of L systems were extended to
higher plants and complex branching structures [3,4]. In the first approach, the
essence of development of less complex organisms is the replacement of individual
cells by sets of cells, according to the production rules of the system. On the other
hand, the units of information in L systems modeling higher plants represent
complex structures, such as branches or leaves, instead of individual cells. These
structures are replaced by other ones using the production rules.

In [5,6] a first approach for using P systems to simulate the growth and de-
velopment of living plants is presented. This approach mixes L systems and

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 496–506, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Graphical Modeling of Higher Plants Using P Systems 497

P systems, being in fact an L system “factorized” into several units, which are then
computed in the compartments delimited by the membranes of the P system.

L systems use strings as data structures, which fits in a natural way in sequen-
tial structures such as microorganisms, or linear structure of fractals such as the
Koch curve [8,9]. Nonetheless, the visual interpretation of strings of symbols as
branching structures needs to add memory pointers in order to remember the
location and orientation in which the branches were developed. These memory
facilities are the key for developing several branches from the same point.

The topology of P systems is inherently a branching structure based on the
inclusion relationship. This feature allowed us to present a framework for mod-
eling the topology of living plants, without the necessity of considering memory
pointers [21]. We think our approach is closer to reality than L systems, in the
sense that we do not make “rewriting” over the membrane structure, but instead
we use evolution rules to expand it. This is inspired by the fact that mature
structures in higher plants, such as trunks and branches, keep their morphol-
ogy along time. They change only in length and width, and the growth of new
structures (leaves, flowers, new branches, and so on) is started only from specific
points, already present.

In this paper we continue developing the framework introduced in [21], provid-
ing two means (randomness and non-determinism) for modeling the individual
variations among different specimens of a same species that occur in nature.

The paper is organized as follows: first L systems and the usual way to vi-
sualize them are recalled in Sections 2 and 3. In Section 4, the variant of P
systems used in this paper, a restricted version of P systems with membrane
creation, is presented. Section 5 is devoted to the graphical visualization of the
configurations of these P systems, whereas we discuss in Section 6 the differences
between the representations obtained when stochastic and non-deterministic P
systems are considered. Finally, conclusions and lines for future research are
presented.

2 L Systems

The key idea of L systems for formalizing the development of plants is that
of rewriting. This is a technique for defining complex objects by successively
replacing parts of a simple initial object by using production rules.

The first formal definition of rewriting systems operating on strings of symbols
was proposed by Thue at the beginning of the twentieth century (see [22]),
but rewriting systems started to be widely considered after Chomsky’s work on
formal grammars [2], where the concept of rewriting is used to describe natural
languages.

The essential difference of L systems with respect to Chomsky grammars lies in
the method of applying the production rules. In Chomsky grammars, production
rules are applied sequentially, whereas in L systems they are applied in parallel:
in a derivation step all symbols of the string are rewritten.

498 A. Romero-Jiménez, M.A. Gutiérrez-Naranjo, and M.J. Pérez-Jiménez

The simplest class of L systems are the deterministic and context-free ones.
Let V denote an alphabet, V ∗ the set of all words over V , and V + the set of all
nonempty words over V . A string 0L system is an ordered triplet G = 〈V, ω, P 〉
where V is the alphabet of the system, ω ∈ V + is a nonempty word called the
axiom and P ⊂ V × V ∗ is a finite set of production rules. A production rule
(a, v) is written as a → v. The letter a and the word v are called the predecessor
and the successor of this production rule, respectively. It is assumed that for any
letter a ∈ V , there is at least one word v ∈ V ∗ such that a → v ∈ P . A 0L
system is deterministic (noted D0L system) if and only if for each a ∈ V there
is exactly one v ∈ V ∗ such that a → v ∈ P .

Let μ = a1 . . . am be an arbitrary word over V . The word ρ = φ1 . . . φm, with
φ1 . . . φm ∈ V ∗, is directly derived from (or generated by) μ, and we denote it
by μ ⇒ ρ, if and only if ai → φi ∈ P for all i ∈ {1, . . . ,m}. Starting with the
axiom ω ∈ V +, a sequence of strings μ0 = ω, μ1, μ2, . . . is generated recursively,
where μi ⇒ μi+1, that is, the string μi+1 is obtained from the preceding string
μi by replacing simultaneously every symbol in μi according to production rules
of the system.

3 Graphical Representation of L Systems

Originally, L systems were conceived for the study of multicellular organisms and
the neighborhood relations between their different cells. After the incorporation
of geometric features, L systems became appropriate for computer graphics rep-
resentation that allows visualizations of these multicellular organism and their
developmental processes. The first steps in this line can be found in the eighties’
literature [17,23], but the most popular graphical interface for L systems was in-
troduced by P. Prusinkiewicz [18,19] based on the previous Papert’s concept of
turtle graphics [14]. In an informal description, we can consider a turtle standing
on a sheet of paper facing a given direction. The tail of the turtle is full of ink
and it traces a line on the sheet when the turtle moves. The turtle obeys several
commands: move forward by a fixed length l drawing or not the corresponding
segment; turn left or right by a fixed angle δ.

More formally, a state of the turtle is defined as a triplet (x, y, α), where
(x, y) represent the Cartesian coordinates of the turtle’s position and the angle
α represent the direction in which the turtle is facing. Given a step size l and
an angle increment δ, the turtle responds to the following commands:

– F : the state of the turtle changes from (x, y, α) to (x+ l cosα, y + l senα, α).
A line segment between (x, y) and (x + l cosα, y + l senα) is drawn.

– f : analogous to the previous command, the state of the turtle changes from
(x, y, α) to (x + l cosα, y + l senα, α). The segment is not drawn.

– +: the state of the turtle changes from (x, y, α) to (x, y, α + δ).
– −: the state of the turtle changes from (x, y, α) to (x, y, α− δ).

Graphical Modeling of Higher Plants Using P Systems 499

This method has been profusely used to interpret strings. For example, the
representation of the string F + F − −F + F with initial state (0, 0, 0), l = 2
cm and δ = 60 degrees is depicted in Figure 1.

Fig. 1. The string F + F − −F + F

According to these rules, the turtle interprets a character string as a sequence
of line segments. Note that different strings can lead to the same graphical
representation.

If we want to model tree-like shapes and branching structures then new fea-
tures have to be added. For that, an extension of turtle interpretation to strings
with brackets is considered. Two new symbols are introduced to delimit a branch:
the symbols “[” and “]”. The turtle interpretation of the symbols is the follow-
ing, when [is read, the turtle should remember its current direction and posi-
tion. Then the branch can be drawn by the usual interpretation. Termination of
the branch is marked by]. The turtle must then return to the location of the
branch point, which it remembers. The formal interpretation of the symbols is the
following.

– [: push the current state of the turtle onto a push-down stack. The informa-
tion saved on the stack contains the turtle’s position and orientation, and
possibly other attributes such as the color and width of lines being drawn.

–] : pop a state from the stack and make it the current state of the turtle. No
line is drawn, although in general the position of the turtle changes.

For example, the representation of the string F [+F [+F [+F][F]][F [F][−F]]]
[F [F [+F][F]][−F [+F][F]]] with initial state (0, 0, 90), l = 2 cm and δ = 22.5
degrees is shown in Figure 2.

4 P Systems with Membrane Creation

Membrane computing is a branch of natural computing which abstracts from the
structure and the functioning of the living cell. In the basic model, membrane
systems (also frequently called P systems) are distributed parallel computing
devices, processing multisets of symbol-objects, synchronously, in the compart-
ments defined by a cell-like membrane structure1.
1 A detailed description of P systems can be found in [15] and updated information

in [24].

500 A. Romero-Jiménez, M.A. Gutiérrez-Naranjo, and M.J. Pérez-Jiménez

Fig. 2. The string F [+F [+F [+F][F]][F [F][−F]]][F [F [+F][F]][−F [+F][F]]]

In this paper we will consider P systems which make use of membrane creation
rules, which was first introduced in [7,12]. However, our needs are far simpler
than what the models found in the literature provide. This is the reason why we
introduce the new variant of restricted P systems with membrane creation.

A restricted P system with membrane creation is a tuple Π = (O,μ,
w1, . . . , wm, R) where:

1. O is the alphabet of objects.
2. μ is the initial membrane structure, consisting of a hierarchical structure of

m membranes (all of them with the same label; for the sake of simplicity we
omit the label).

3. w1, . . . , wm are the multisets of objects initially placed in the m regions
delimited by the membranes of μ.

4. R is a finite set of evolution rules associated with every membrane, which
can be of the two following kinds:
(a) a → v, where a ∈ O and v is a multiset over O. This rule replaces an

object a present in a membrane of μ by the multiset of objects v.
(b) a → [v], where a ∈ O and v is a multiset over O. This rule replaces an

object a present in a membrane of μ by a new membrane with the same
label and containing the multiset of objects v.

A membrane structure (extending the membrane structure μ) together with
the objects contained in the regions defined by its membranes constitute a con-
figuration of the system. A computation step is performed applying to a config-
uration the evolution rules of the system in the usual way within the framework
of membrane computing, that is, in a non-deterministic maximal parallel way;
a rule in a region is applied if and only if the object occurring on its left–hand
side is available in that region; this object is then consumed and the objects
indicated in the right–hand side of the rule are created inside the membrane.
The rules are applied in all the membranes simultaneously, and all the objects
in them that can trigger a rule must do it. When there are several possibilities
to choose the evolution rules to apply, non-determinism takes place.

Graphical Modeling of Higher Plants Using P Systems 501

5 Graphical Representation of Restricted P Systems
with Membrane Creation

In this section we show how to use, through a suitable graphical representation,
restricted P systems with membrane creation to model branching structures.2
The key point of the representation relies on the fact that a membrane structure
is a rooted tree of membranes, whose root is the skin membrane and whose leaves
are the elementary membranes. It seems therefore a perfect frame to encode the
branching structure.

Once we have a membrane structure establishing the topology of the object we
want to model, we will follow a variant of the turtle interpretation of L systems.
Let us suppose that the alphabet O of objects contains the objects F,+ and −
and let us fix the length l and the angle δ.

A simple model to graphically represent a membrane structure is to make a
depth-first search of it, drawing, for each membrane containing the object F , a
segment of length m× l, where m is the multiplicity of F . If the number of copies
of F in a membrane increases along the computation, the graphical interpretation
is that the corresponding branch is lengthening. This segment is drawn rotated
with respect to the segment corresponding to the parent membrane with an
angle of n× δ, where n is the multiplicity of objects “+” minus the multiplicity
of objects “−” in the membrane. That is, each object “+” means that the rotation
angle is increased by δ whereas each object “−” means that it is decreased by δ.

In the real world, the branches of a plant not only lengthen but also widen
themselves. Thus, we also fix the width w and use a new symbol W whose
multiplicity will specify the width of the segments to be drawn as follows: if the
number of objects W present in a membrane is n, then the segment corresponding
to this membrane must be drawn with width n× w.

For a better understanding let us consider the following example: let Π1 be
the restricted P system with membrane creation such that

– The alphabet of objects is O = {L,E,W,F,+,−, BL, BR, BS1 , BS2}.
– The initial membrane structure together with the initial multiset of objects

is [LEWFBLBS1].
– The rules are:

BS1 → [LEWFBS2BR] BL → [+LEWFBLBS1]
BS2 → [LEWFBLBS1] BR → [−LEWFBLBS1]

L → LF E → EW

In this system, the objects BS1 and BS2 represent straight branches to be created,
whereas the objects BL and BR represent branches to be created rotated to the
left and to the right, respectively. The objects F and W will determine the length
and the width of the corresponding branch. The objects L and E do not have a
graphical interpretation; they can be considered as seeds for growing the branch
in length and width.
2 A preliminary version with simpler examples can be found in [21].

502 A. Romero-Jiménez, M.A. Gutiérrez-Naranjo, and M.J. Pérez-Jiménez

Fig. 3. First four configurations

Fig. 4. Graphical representation of the configurations

This way, a thorough analysis of the initial membrane structure and of the
rules shows that Π1 models a branching structure consisting of a main trunk
from which branches to the left and to the right come out alternatively. These
new branches behave in the same way as the main trunk. Figure 3 shows the
evolution of the system along three computation steps, and we can see in Figure 4
the corresponding graphical representation of each configuration, where we fix a
bottom-up orientation with a length l of 1 cm, a width w of 0.4 pt and an angle
δ of 22.5 degrees.

Note how the graphical representation of the configurations shows that the
growth of the branching structure being modeled is not made by replacing seg-
ments by complex and repetitive modules, but by expanding the figure from

Graphical Modeling of Higher Plants Using P Systems 503

specific points with new segments (similar to how branches of higher plants
spring from buds).

6 Stochastic Versus Non-deterministic P Systems

In the previous section we have introduced a technique to construct somehow
realistic representations of branching structures in the framework of P systems.
Each configuration of a given restricted P system with membrane creation can be
translated to a set of graphical commands which produce the required picture.

An important drawback, as the example above shows, is that all the trees
generated by the same deterministic P system are identical. It is then necessary
to introduce specimen-to-specimen variations that preserve the general aspects
of the branching structure but modify its details.

One possible way to achieve this is to consider stochastic P systems. Several
alternatives to incorporate randomness into membrane systems can be found
in the literature (see [1,13,16] and the references therein). One of them is to
associate each rule of the P system with a probability. Thus, to pass from a
configuration of the system to the next one we apply to every object present
in the configuration a rule chosen at random, according to those probabilities,
among all the rules whose left–hand side coincides with the object.

For example, let us consider Π2 the following restricted P system with mem-
brane creation:

– The alphabet of objects is O = {L,E,W,F,+,−, T, B}.
– The initial membrane structure together with the initial multiset of objects

is [LEWFTB].
– The rules are:

T → [LEWFTB] L → LF

B
2/3−−→ [+LEWFTB] E → EW

B
1/3−−→ [−LEWFTB]

Note that we do not make explicit the probability of the rule when this is
one. Also, it is easy to see from the probabilities assigned to the rules with left–
hand side equal to B, that the trees generated by this system favors developing
branches to the left.

Let us fix a length l of 1 cm, a width w of 0.4 pt and an angle δ of 22.5 degrees.
Thus, after two computation steps we could have obtain, depending on the rules
chosen for the object B, any of the trees shown in Fig. 5, with the upper left
one being the most probable, and this probability decreasing as we go from left
to right and from top to bottom.

On the other hand, for non-deterministic P systems we could consider together
all the trees generated by all of its computations. We would obtain in this way
a “forest”. Thus, taking Π2 as a non-deterministic system instead of a stochastic
one, we would obtain after two computation steps the graphical representation

504 A. Romero-Jiménez, M.A. Gutiérrez-Naranjo, and M.J. Pérez-Jiménez

Fig. 5. Trees obtained from Π2

depicted in Figure 5 (here the trees have been arranged in a 2 × 4 rectangular
grid, but another methods to place the trees are possible).

7 Final Remarks

In this paper we have shown the suitability of P systems for modeling the growth
of branching structures. It is our opinion that using membrane computing for
this task could be an alternative to L systems, the model most widely studied
nowadays, for several reasons: the process of growing is closer to reality, since for
example a plant does not grow by “rewriting” its branches, but by lengthening,
widening and ramifying them; the membrane structure of P systems supports
better and clearer the differentiation of the system into small units, easier to
understand and possibly with different behaviors; the computational power of
membrane systems can provide tools to easily simulate more complex models of
growing, for example taking into account the flow of nutrients or hormones.

Nevertheless, it is still necessary a deeper study of several features of our pro-
posed framework as compared with that of Lindenmayer systems. Two aspects
that have to be investigated are the complexity of the models that can be con-
structed, and the computational efficiency in order to generate their graphical
representation. On one hand, the use of the ingredients of membrane computing
can lead to more intuitive models; on the other hand, we lose the linear sequence
of graphical commands that characterize the parsing algorithm of L systems.

It is also fundamental to develop computer tools that make easier the genera-
tion, within our framework, of the graphical representations from given models.
For that, it should be interesting to analyze the possibility of transforming the
models of higher plants constructed using membrane computing into equivalent
ones using Lindenmayer systems. This way, we could reuse the available software
for these latter systems.

Graphical Modeling of Higher Plants Using P Systems 505

The computation model considered here, restricted P system with membrane
computing, is a very simple one (at least, in terms of membrane computing). We
finish the paper by proposing extensions to this model in several ways that we
think are interesting enough to be considered and studied:

– A labeling of the membranes could be useful to distinguish between different
parts of the plant being modeled.

– The use of communication rules, allowing objects to cross the membranes of
the system, are basic for modeling the flow of nutrients and hormones.

– Rules of the form o → μ, where o is an object and μ is a membrane structure,
could lead to a clearer, faster and more compact representation of a plant.

Acknowledgement. This work was supported by the Project TIN2005-09345-
C03-01 of the Ministry of Education and Science of Spain, cofinanced by FEDER
funds, and by the Project of Excellence TIC-581 of the Junta de Andalucía.

References

1. Ardelean, I.I., Cavaliere, M.: Modelling Biological Processes by Using a Probabilis-
tic P System Software. Natural Computing, 2, 2 (2003), 173–197.

2. Chomsky, N.: Three Models for the Description of Language. IRE Trans. on In-
formation Theory, 2, 3 (1956), 113–124.

3. Frijters, D., Lindenmayer, A.: A Model for the Growth and Flowering of Aster
Novae-Angliae on the Basis of Table (0,1)L systems. In Rozenberg, G., Salomaa,
A. (eds.): L systems. Lecture Notes in Computer Science, Vol. 15. Springer–Verlag,
Berlin, 1974, 24–52.

4. Frijters, D., Lindenmayer, A.: Developmental Descriptions of Branching Patterns
with Paracladial Relationships. In Lindenmayer, A., Rozenberg, G. (eds.): Au-
tomata, Languages, Development. North–Holland, 1976, 57–73.

5. Georgiou, A., Gheorghe, M.: Generative Devices Used in Graphics. In Alhazov,
A., Martín–Vide, C., Păun, Gh. (eds.): Preproceedings of the Workshop on Mem-
brane Computing. Technical Report, Vol. 28/03. Research Group on Mathematical
Linguistics, Universitat Rovira i Virgili, Tarragona, 2003, 266–272.

6. Georgiou, A., Gheorghe, M., Bernardini, F.: Membrane–Based Devices Used in
Computer Graphics. In Ciobanu, G. Păun, Gh., Pérez–Jiménez, M.J. (eds.): Ap-
plications of Membrane Computing. Springer–Verlag, Berlin, 2006, 253–282.

7. Ito, M., Martín–Vide, C., Păun, Gh.: A Characterization of Parikh Sets of ET0L
Languages in Terms of P Systems. In Ito, M., Păun, Gh., Yu, S. (eds.): Words,
Semigroups, and Transductions. World Scientific, 2001, 239–254.

8. von Koch, H.: Sur One Courbe Continue sans Tangente, Obtenue par une Con-
struction Géometrique Élémentaire. Arkiv för Matematik, 1 (1904), 681–704.

9. von Koch, H.: Une Méthode Géometrique Élémentaire pour L’étude de Certaines
Questions de la Théorie des Courbes Planes. Acta Mathematica, 30 (1906), 145–
174.

10. Lindenmayer, A.: Mathematical Models for Cellular Interaction in Development,
Parts I and II. Journal of Theoretical Biology, 18 (1968), 280–315.

11. Lindenmayer, A.: Developmental Systems without Cellular Interaction, Their Lan-
guages and Grammars. Journal of Theoretical Biology, 30 (1971), 455-484.

506 A. Romero-Jiménez, M.A. Gutiérrez-Naranjo, and M.J. Pérez-Jiménez

12. Madhu, M., Krithivasan, K.: P Systems with Membrane Creation: Universality
and Efficiency. In Margenstern, M., Rogozhin, Y. (eds.): Proceedings of the Third
International Conference on Universal Machines and Computations. Lecture Notes
in Computer Science, Vol. 2055. Springer–Verlag, Berlin, 2001, 276–287.

13. Obtulowicz, A., Păun, Gh.: (In Search of) Probabilistic P Systems. Biosystems,
70, 2 (2003), 107–121.

14. Papert, S.: Mindstorms: Children, Computers and Powerful Ideas. Basic Books,
1980.

15. Păun, Gh.: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
16. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical Probabilistic P Sys-

tems. International Journal of Foundations of Computer Science, 17, 1 (2006),
183–204.

17. Prusinkiewicz, P., Lindenmayer, A., Hanan, J.: Developmental Models of Herba-
ceous Plants for Computer Imagery Purposes. Computer Graphics, 22, 4 (1988),
141–150.

18. Prusinkiewicz, P.: Graphical Applications of L systems. In Proceedings of Graphical
Interface ’86. Kaufmann, 1986, 247–253.

19. Prusinkiewicz, P., Hanan, J.: Lindenmayer Systems, Fractals and Plants. Lecture
Notes on Biomathematics, Vol. 79. Springer-Verlag, Berlin, 1989.

20. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-
Verlag, Berlin, 1990.

21. Romero–Jiménez, A., Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M. J.: The Growth
of Branching Structures with P Systems. In Graciani–Díaz, C., Păun, Gh., Romero–
Jiménez, A., Sancho–Caparrini, F. (eds.): Proceedings of the Fourth Brainstorming
Week on Membrane Computing, Vol. II. Fénix Editora, Sevilla, 2006, 253–265.

22. Salomaa, A.: Formal Languages. Academic Press (1973)
23. Smith, A.R.: Plants, Fractals and Formal Languages. Computer Graphics, 18, 3

(1984), 1–10.
24. The P Systems webpage http://psystems.disco.unimib.it/

Identifying P Rules from Membrane Structures
with an Error-Correcting Approach�

José M. Sempere and Damián López

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
{jsempere,dlopez}@dsic.upv.es

Abstract. In this work we propose an error-correcting approach to solve
the identification of P rules for membrane modifications based on the
behavior of the P system. To this aim, we take the framework of inductive
inference from (structural) positive examples. The algorithm that we
propose is based on previous definitions of distances between membrane
structures and multiset tree automata.

1 Introduction

Membrane structures are linked to P systems as the structural information as-
sociated to them in order to make calculations. The membrane structure can be
represented by a tree in which the internal nodes denote regions which have inner
regions inside. The root of the tree is always associated to the skin membrane
of the P system.

The relation between regions and trees has been strengthened by Freund et
al. [6]. The authors established that any recursively enumerable set of trees can
be generated by a P system with active membranes and string objects. In such
a framework, P systems can be viewed as tree generators.

In this work we use multiset tree automata to accept and handle the tree
structures defined by P systems [19] and we use edit distances between trees
and multiset tree automata [11]. Edit distances for membrane systems were also
considered in [4] and [5]. Here, we propose an inferring method to obtain a
multiset tree automaton from a (finite) set of trees.

The structure of this work is as follows: First we introduce basic definitions and
notation about multisets, tree languages, and automata and P systems. Then, we
define multiset tree automata, we define the relation of mirroring between trees
and we show some results between tree automata, multiset tree automata, and
mirroring trees. We establish the minimum editing distance between membrane
structures. In Section 3, we propose an error-correcting approach to infer multiset
tree automata from examples of membrane structures. Finally, we mention some
conclusions and give some guidelines for future works.

� Work supported by the Spanish CICYT under contract TIC2003-09319-C03-02 and
the Generalitat Valenciana GV06/068.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 507–520, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

508 J.M. Sempere and D. López

2 Notation and Definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane systems and multiset processing. We suggest the following books to the
reader: [16], [14], and [2].

Multisets

First, we will provide some definitions from multiset theory as exposed in [20].

Definition 1. Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function.

Definition 2. Let A = 〈D, f〉 be a multiset; we say that A is empty if for all
a ∈ D, f(a) = 0.

Definition 3. Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. Then

1. the removal of multiset B from A, denoted by A 8 B, is the multiset C =
〈D,h〉 where for all a ∈ D h(a) = max(f(a) − g(a), 0),

2. their sum, denoted by A⊕B, is the multiset C = 〈D,h〉, where for all a ∈ D
h(a) = f(a) + g(a), and

3. we say that A = B if the multiset (A8B) ⊕ (B 8A) is empty.

A multiset M = 〈D, f〉 whose size, |M |, defined by
∑

a∈D f(a), is finite is said
to be bounded. Formally, we will denote the set of all multisets 〈D, f〉 such that∑

a∈D f(a) = n by Mn(D).
A concept that is quite useful to work with sets and multisets is the Parikh

mapping. Formally, a Parikh mapping can be viewed as the application Ψ :
D∗ → Nn where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define
Ψ(x) = (#d1(x), · · · ,#dn(x)) where #dj (x) denotes the number of occurrences
of dj in x.

P Systems

We introduce now some basic concepts from membrane systems taken from [14].
A general P system of degree m is a construct

Π = (V, T, C, μ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

– V is an alphabet (the objects)
– T ⊆ V (the output alphabet)
– C ⊆ V , C ∩ T = ∅ (the catalysts)
– μ is a membrane structure consisting of m membranes
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i

Identifying P Rules from Membrane Structures 509

– Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the
ith region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}

and δ is an special symbol not in V (it defines the membrane dissolving
action). From now on, we will denote the set {here, out, ink | 1 ≤ k ≤ m}
by tar.

– i0 is a number between 1 and m and it specifies the output membrane of Π
(in the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging the leaving order (if several objects leave the
system at the same time then permutations are allowed). The set of numbers
that represent the objects in the output membrane i0 will be denoted by N(Π).
Obviously, both sets L(Π) and N(Π) are defined only for halting computations.

One of the multiple variations of P systems is related to the creation, division,
and modification of membrane structures. There have been several works in
which these variants have been proposed (see, for example, [1,13,14,15]).

In the following, we enumerate some kinds of rules which are able to modify
the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′

2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (e.g., ex-
ocytosis, endocytosis, etc.) has been widely studied in the membrane computing
area.

Tree Automata and Tree Languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3,9]. First, let a ranked alphabet be the association of an alphabet V
with a finite relation r in V ×N. We denote by Vn the subset {σ ∈ V | (σ, n) ∈ r}.
We will denote by maxarity(V) the maximum integer n such that Vn is not
empty.

The set V T of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0
σ(t1, . . . , tn) ∈ V T whenever σ ∈ Vn and t1, . . . , tn ∈ V T , (n > 0)

and let a tree language over V be defined as a subset of V T .
Given the tuple l = 〈1, 2, . . . , k〉 we will denote the set of permutations of l

by perm(l). Let t = σ(t1, . . . , tn) be a tree over V T , we will denote the set of

510 J.M. Sempere and D. López

permutations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , . . . , tin) |
〈i1, i2, . . . , in〉 ∈ perm(〈1, 2, . . . , n〉)}.

Let N∗ be the set of finite strings of natural numbers, separated by dots,
formed by using the catenation as the composition rule and the empty word λ
as the identity. Let the prefix relation ≤ in N∗ be defined by the condition that
u ≤ v if and only if u · w = v for some w ∈ N∗ (u, v ∈ N∗). A finite subset D of
N∗ is called a tree domain if:

u ≤ v where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabeled tree whose nodes co-
rrespond to the elements of D where the hierarchy relation is the prefix order.
Thus, each tree t over V can be seen as an application t : D → V . The set D is
called the domain of the tree t, and denoted by dom(t). The elements of the tree
domain dom(t) are called positions or nodes of the tree t. We denote by t(x) the
label of a given node x in dom(t).

Let the level of x ∈ dom(t) be |x|. Intuitively, the level of a node measures its
distance from the root of the tree. Then, we can define the depth of a tree t as
depth(t) = max{|x| | x ∈ dom(t)}. In the same way, for any tree t, we denote
the size of the tree by |t| and the set of subtrees of t (denoted with Sub(t)) as
follows:

Sub(a) = {a} for all a ∈ V0

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, . . . , tn) (n > 0)

Given a tree t = σ(t1, . . . , tn), the root of t will be denoted as root(t) and
defined as root(t) = σ. If t = a then root(t) = a. The successors of a tree t =
σ(t1, . . . , tn) will be defined as Ht = 〈root(t1), . . . , root(tn)〉. Finally, leaves(t)
will denote the set of leaves of the tree t.

Definition 4. A finite deterministic tree automaton is defined by the tuple A =
(Q, V, δ, F) where Q is a finite set of states, V is a ranked alphabet, Q ∩ V = ∅,
F ⊆ Q is the set of final states and δ =

⋃
i:Vi �=∅ δi is a set of transitions defined

as follows:

δn : (Vn × (Q ∪ V0)n) → Q n = 1, . . . ,m
δ0(a) = a ∀a ∈ V0

Given the state q ∈ Q, we define the ancestors of the state q, denoted by Ant(q),
as the set of strings

Ant(q) = {p1 · · · pn | pi ∈ Q ∪ V0 ∧ δn(σ, p1, . . . , pn) = q}

From now on, we will refer to finite deterministic tree automata simply as tree
automata. We suggest [3,9] for other definitions on tree automata.

Identifying P Rules from Membrane Structures 511

The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees
as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
you can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q, V, δ, F), where:

Q = Sub(T)
F = T

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q

δ0(a) = a a ∈ V0

Multiset Tree Automata and Mirrored Trees

We will extend over multisets some definitions of tree automata and tree lan-
guages. We will introduce the concept of multiset tree automata and then we
will characterize the set of trees that it accepts.

Given any tree automaton A = (Q, V, δ, F) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1)⊕MΨ (p2)⊕ · · · ⊕MΨ (pn) where
∀1 ≤ i ≤ n MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals to the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up
parsing as in the tree automaton case.

Definition 5. A multiset tree automaton is a tuple MA = (Q, V, δ, F), where Q
is a finite set of states, V is a ranked alphabet with maxarity(V) = n, Q∩V = ∅,
F ⊆ Q is a set of final states and δ is a set of transitions defined as follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi �= ∅

δi

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n
δ0(a) = MΨ (a) ∈M1(Q ∪ V0) ∀a ∈ V0

We can take notice that every tree automaton A defines a multiset tree automa-
ton MA as follows.

512 J.M. Sempere and D. López

Definition 6. Let A = (Q, V, δ, F) be a tree automaton. The multiset tree au-
tomaton induced by A is defined by the tuple MA = (Q, V, δ′, F) where each
δ′ is defined as follows: MΨ (r) ∈ δ′n(σ,M) if δn(σ, p1, p2, . . . , pn) = r and
MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A is
nondeterministic.

As in the case of tree automata, δ′ could also be extended to operate on
trees. Here, the automaton carries out a bottom-up parsing where the tuples
of states and/or symbols are transformed by using the Parikh mapping Ψ to
obtain the multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns
a multiset with at least one final state, then the input tree is accepted. So, δ′

can be extended as follows:

δ′(a) = MΨ (a) for any a ∈ V0,

δ′(t) = {M ∈ δ′n(σ,M1 ⊕ · · · ⊕Mn) | Mi ∈ δ′(ti) 1 ≤ i ≤ n}
for t = σ(t1, . . . , tn) (n > 0).

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T | MΨ (q) ∈ δ′(t), q ∈ F}.

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AntΨ (q) = {M | MΨ (q) ∈ δn(σ,M)}.

Theorem 1. (Sempere and López, [19]) Let A = (Q, V, δ, F) be a tree au-
tomaton, MA = (Q, V, δ′, F) be the multiset tree automaton induced by A and
t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q, then MΨ (q) ∈ δ′(t).

Corollary 1. (Sempere and López, [19]) Let A = (Q, V, δ, F) be a tree automa-
ton and MA = (Q, V, δ′, F) be the multiset tree automaton induced by A. If
t ∈ L(A), then t ∈ L(MA).

We will introduce the concept of mirroring in tree structures as exposed in [19].
Informally speaking, two trees will be related by mirroring if some permutations
at the structural level hold. We propose a definition that relates all the trees
with this mirroring property.

Definition 7. Let t and s be two trees from V T . We will say that t and s are
mirror equivalent, denoted by t �� s, if one of the following conditions holds:

1. t = s = a ∈ V0,
2. t ∈ perm1(s),
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists < s1, s2, . . . , sk >∈

perm(< s1, s2, . . . , sn >) such that ∀1 ≤ i ≤ n ti �� si.

Identifying P Rules from Membrane Structures 513

Theorem 2. (Sempere and López, [19]) Let A = (Q, V, δ, F) be a tree automa-
ton, t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F)
be the multiset tree automaton induced by A. If t �� s, then δ′(t) = δ′(s).

Corollary 2. (Sempere and López, [19]) Let A = (Q, V, δ, F) be a tree automa-
ton, MA = (Q, V, δ′, F) the multiset tree automaton induced by A and t ∈ V T .
If t ∈ L(MA), then, for any s ∈ V T such that t �� s, s ∈ L(MA).

The last results were useful to propose an algorithm to determine whether two
trees are mirror equivalent or not [19]. So, given two trees s and t, we can
establish in time O((min{|t|, |s|})2) whether or not t �� s.

Editing Distances Between Membrane Structures

The initial order of a membrane structure can be fixed. Anyway, whenever the
system evolves (membrane dissolving, division, creation, etc.) this order can be
at least somehow ambiguous. Furthermore, the initial order of a P system is only
a naming convention given that the membrane structure of any P system can be
renamed without changing its behavior due to the parallelism ingredient (observe
that if this mechanism was sequential, then the ordering could be important for
the final output).

The representation by trees could be essential for the analysis of the dynamic
behavior of P systems. Whenever we work with trees to represent the membrane
structure of a given P system, we can find a mirroring effect.

Example 1. Let us take the three membrane structures of Figure 1. Then, the
associated trees are the following (in top-down order):

σ(σ(a, a), σ(a, σ(a)))
σ(σ(σ(a), σ(a, a)), σ(a, a))

σ(σ(σ(a, σ(a), a), a), σ(a, a))
Observe that the symbol a denotes the names for elementary regions instead

of objects.

We proposed a method to establish if two membrane structures μ and μ′ are
identical [19], while in [11] we proposed an algorithm to obtain the minimum set
of membrane rule applications needed to transform μ into μ′ (or vice versa). The
last algorithm was based on multiset tree automata and the tree representation
for membrane structures. Note that the target of that algorithm was to force
the automaton to accept the tree. The algorithm employed edit operations for
substitution (reduction) of a tree to a state of the automaton, deletion of a
(sub)tree and insertion of a state. Intuitively, the substitution of a tree by a
state of the automaton could be seen as the substitution of the tree by the
nearest tree that could be reduced to the state.

3 Identification with an Error-Correcting Approach

Here, we address the problem of inferring some operators that regulate the behav-
ior of a P system: given a set of membrane structures generated by an arbitrary

514 J.M. Sempere and D. López

a a a a

a a aa a

a
a

a a

a

a

Fig. 1. Three membrane structures

P system, the problem consists of defining the set of rules needed to generate the
membrane structures of the set and (possibly) some others that do not belong to it.

This problem could be approached as a Grammatical Inference problem [18].
Here, the set of membrane structures can be represented by a set of trees and the
set of rules that regulate the P system behavior is deduced from a multiset tree au-
tomata. So,wewill solve theproblembyusing inferencemethods for tree languages.

The problem of inferring tree languages has been widely approached in the
grammatical inference literature. So, in [7] a method to infer k-testable tree
sets from sample data is proposed. In [8] a method to infer recognizable tree
languages from finite information is proposed. Finally, in [12] a method to infer
reversible tree languages from samples was proposed.

Here, we will use an inferring method based on error-correcting techniques.
The method that we propose is based on a preliminary technique for tree au-
tomata inference [10] based on the Error-Correcting Grammatical Inference me-
thod (ECGI) [17]. Basically, the method constructs the set of transitions of the
automaton such that the editing distances from the sample data to the automa-
ton is minimal.

In what follows, we propose an adaptation of such method. We will use multi-
set tree automata instead of tree automata and the editing operations together
with the minimal editing distance is based on our previous work [11]. So, we
propose Algorithm 1 as a method to infer multiset tree automata from a finite

Identifying P Rules from Membrane Structures 515

sample of trees. Algorithm 1 uses a subroutine showed as Algorithm 2 which
calculates the minimal editing distance for every tree to the current multiset
tree automaton and adds the new transitions needed to converge to the minimal
cost tree automaton.

Algorithm 1. Error correcting multiset tree automata inference algorithm.
Input:

– A set of trees S = {t1, t2, . . . tn} (Membrane representations)

Output:

– A multiset tree automaton A = (Q, V, δ, F) that, at least, recognizes the set of
trees {s : ∃t ∈ S, t � s}

Method:

1. Obtain the initial automaton
– V = {σ} ∪ leaves(t1)
– ∀s ∈ Sub(t1) in postorder

if s = σ(u1, u2, . . . , up) then Q = Q ∪ {< u1u2 . . . up >}
else /*s ∈ leaves(t1)*/ Q = Q ∪ s

End∀
– F = {< u1u2 . . . uk >} where t1 = σ(u1, u2, . . . , uk)
– δ(a) = a ∀a ∈ leaves(t1)

if u1, u2, . . . uk, < u1u2 . . . uk >∈ Q then add to the automaton
the transition δ(σ, u1u2 . . . uk) =< u1u2 . . . uk >

2. ∀ti ∈ S with 2 ≤ i ≤ n
– A = Expand(A, ti)

End∀
3. Return(A)

EndMethod.

The output of the Algorithm 1 is a multiset tree automaton that recognizes all
the trees given as input at the minimum editing cost together with the mirrored
trees of the input. Observe, that this automaton could recognize some other trees
that have not been supplied as input. The correctness of the algorithm and its
complexity, which is polynomial with the size of the tree set, is deduced from
our previous work on editing distance [11].

We will discuss a complete example of the algorithm running in order to clarify
its behavior.

Example 2. Let us consider the following training set:⎧⎨⎩ σ(σ(a, a), σ(a, σ(a))),
σ(σ(σ(a), σ(a, a)), σ(a, a)),
σ(σ(σ(a, σ(a), a), a), σ(a, a))

⎫⎬⎭
which corresponds to the membrane structures showed in Figure 1.

516 J.M. Sempere and D. López

Algorithm 2. Automaton modification subroutine Expand(A, t).
Input:

– A multiset tree automaton A = (Q, V, δ, {qf}) and a tree t = σ(t1, t2, . . . , tm)
(membrane representation)

Output:

– A multiset tree automaton A = (Q, V, δ, F) that accepts, at least, L(A)∪{s : s � t}
Method:

1. Consider the input automaton A and perform an error correcting analysis for t
according to [11]

2. From the previous step, obtain the accepting minimum cost path Δt. Distinguish
those non-error transitions ΔN

t from the error transitions ΔE
t

3. ∀s ∈ Sub(t)
if s = (σ, s1, . . . , sk) then

consider τs the transition δ(σ, q1 . . . qk) = ps ∈ Δt

and set Red[s] = ps

else /* s ∈ leaves(t) */ set Red[s] = s
End∀

4. ∀s = σ(s1, . . . , sk) ∈ Sub(t) /* in postorder */
if τs ∈ ΔE

t or Red[s] = ∅ then
add a new state qN to Q
add the transition δ(σ, Red[s1] . . . Red[sk]) = qN

set Red[s] = qN

else if ∃τsi ∈ ΔE
t then add the transition δ(σ, Red[s1] . . . Red[sk]) = qN

End∀
5. add the transition δ(σ, Red[t1]Red[t2] . . . Red[tm]) = qf

6. Return(A)

EndMethod.

The first step in Algorithm 1 considers the empty automaton and the first tree,
thus obtaining the initial multiset tree automaton with the following transitions:

δ(σ, aa)= q1
δ(σ, a)= q2

δ(σ, aq2)= q3
δ(σ, q1q3)= q4 ∈ F

The second inference step performs an error correcting analysis of the second tree
in the training set and the previous automaton. The distance matrix is shown
in Table 1. Figure 2 summarizes the error correcting analysis.

Identifying P Rules from Membrane Structures 517

Table 1. Distance table of each subtree (in postorder) and each state of the automaton.
Minimum cost path is boldmarked. Second postorder subtree is deleted in the analysis,
therefore its row contains no bold figure. Note that it is not necessary to obtain all the
distances for the root node because only distances to final states will be considered.

q1 q2 q3 q4

s1 1 0 2 8
s2 0 1 3 9
s3 7 6 4 2
s3 0 1 3 7
s5 – – – 4

a

δ(σ, a) = q2

a a

����

����

− − ∗

�������

����

δ(σ, aq2) = q3 ∗

a a

����

����

δ(σ, aa) = q1

�������

����������

δ(σ, q1q3) = q4 ∈ F ∗

Fig. 2. Error correcting parsing of the tree σ(σ(σ(a), σ(a, a)), σ(a, a)). Error produc-
tions are marked with an asterisk. Note that a subtree deletion also occurred. This edit
operation is also considered as an error transition.

The error correcting analysis obtains three error transitions. The automaton
is then modified to accept the sample. Three new transitions are added (marked
with an asterisk) in the following way:

δ(σ, aa)= q1
δ(σ, a)= q2

δ(σ, aq2)= q3
δ(σ, q1q3)= q4 ∈ F

(∗) δ(σ, aa)= q5
(∗) δ(σ, q2q5)= q6
(∗) δ(σ, q6q1)= q4 ∈ F

Note that the inference process adds a transition which is equal to an already
exiting one. This case can be run-time detected, using the existing transition
instead of creating a new one. This automaton is considered in the following
inference step. This step considers the following tree

σ(σ(σ(a, σ(a), a), a), σ(a, a))

518 J.M. Sempere and D. López

The distance matrix is shown in Table 2. Figure 3 summarizes the error cor-
recting analysis.

Table 2. Distance table of each subtree (in postorder) and each state of the automaton.
Minimum cost path is boldmarked.

q1 q2 q3 q4 q5 q6

s1 1 0 2 8 1 6
s2 2 3 1 7 2 5
s3 6 5 4 6 6 6
s3 0 1 3 9 0 7
s5 – – – – – 4

The final automaton is the following:

δ(σ, aa)= q1
δ(σ, a)= q2

δ(σ, aq2)= q3
δ(σ, q1q3)= q4 ∈ F
δ(σ, aa)= q5

δ(σ, q2q5)= q6
δ(σ, q6q1)= q4 ∈ F

(∗) δ(σ, a)= q7
(∗) δ(σ, aq7a)= q8
(∗) δ(σ, aq8)= q3

a

a

− − ∗ a

�������

�������

δ(σ, a) = q2 ∗ a

����

����������

δ(σ, aq2) = q3 ∗

a a

����

����

δ(σ, aa) = q1

�������

�������������

δ(σ, q1q3) = q4 ∈ F

Fig. 3. Error correcting parsing of the tree σ(σ(a,σ(a, σ(a), a), a), σ(a, a)). Error pro-
ductions are marked with an asterisk. Note that the transition used to reduce the third
postorder subtree is marked as error. This transition does not add error cost but one of
its descendants is an error transition and therefore a new transition must be created.

Identifying P Rules from Membrane Structures 519

In the last example we obtain a multiset tree automaton which is consistent
with the input data. Observe that this automaton induces a set of P rules for a
P system as was showed in [19] and [11].

4 Conclusions and Future Work

We have proposed a method to infer a multiset tree automaton from a finite set
of membrane structures. This multiset tree automaton employs the minimum
number of tree editing operations to accept the input set. From this multiset
tree automaton we can obtain a set of P rules that regulates the behavior of a
P system which generates the membrane structures given as input.

Here, we have used a grammatical inference technique based on an error-
correcting approach. In the future we will explore other options to infer new
models (i.e., reversible tree languages, locally testable tree languages, etc.) So,
a new question arises: Given a set of trees of a tree language class (reversible,
locally testable, etc.), what is the common characteristics of the P systems that
generate them? Such a characteristic will introduce a characterization of P sys-
tems based on the kind of membrane structures that they generate.

References

1. A. Alhazov, T.O. Ishdorj. Membrane operations in P systems with active mem-
branes. In Proc. Second Brainstorming Week on Membrane Computing, TR 01/04
of RGNC, Sevilla University, 2004, 37–44.

2. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, Multiset Processing. LNCS 2235,
Springer, Berlin, 2001.

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997, release October, 1rst 2002.

4. A. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez.
Weak metrics on configurations of a P system. In Proc. Second Brainstorming
Week on Membrane Computing, RGNC TR 01/04 of RGNC, Sevilla University,
2004, 139–151.

5. E. Csuhaj-Varjú, A. Di Nola, Gh. Păun, M.J. Pérez-Jiménez, G. Vaszil. Editing
configurations of P systems. In 3rd Brainstorming Week on Membrane Compu-
ting 2005, TR 01/05 of RGNC, Sevilla University (M.A. Gutiérrez Naranjo, A.
Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, eds.), Fénix Editora, Sevilla,
2005, 131–155.

6. R. Freund, M. Oswald, A. Păun. P systems generating trees. In Pre-proceedings
of Fifth Workshop on Membrane Computing (WMC5) (G. Mauri, Gh. Păun, C.
Zandron, eds.), MolCoNet project IST-2001-32008, 2004, 221–232.

7. P. Garćıa. Learning k-Testable Tree Sets from Positive Data. Informe técnico
DSIC-II/46/93, 1993.

8. P. Garćıa, J. Oncina. Inference of Recognizable Tree Sets. Informe técnico DSIC-
II/47/93, 1993.

9. F. Gécseg, M. Steinby. Tree languages. In Handbook of Formal Languages, volume 3
(G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, 1997, 1–69.

520 J.M. Sempere and D. López

10. D. López, S. España. Error correcting tree language inference. Pattern Recognition
Letters, 23, 1-3 (2002), 1–12.

11. D. López, J.M. Sempere. Editing distances between membrane structures. In
Proceedings of the 6th International Workshop, WMC 2005 (R. Freund, Gh. Păun,
G. Rozenberg, A. Salomaa, eds.), LNCS 3850, Springer, Berlin, 2006, 326–341.

12. D. López, J.M. Sempere, P. Garćıa Inference of reversible tree languages. IEEE
Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 34, 4 (2004),
1658–1665.

13. A. Păun. On P systems with active membranes. In Proc. of the First Conference
on Unconventionals Models of Computation, 2000, 187–201.

14. Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
15. Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori. On the power of membrane division

on P systems. Theoretical Computer Science 324, 1 (2004), 61–85.
16. G. Rozenberg, A. Salomaa, eds.. Handbook of Formal Languages Springer, Berlin,

1997.
17. H. M. Rulot ECGI. Un algoritmo de inferencia gramatical mediante corrección

de errores. PhD Dissertation, Departamento de Sistemas Informáticos y Com-
putación. Universidad Politécnica de Valencia 1992 (in Spanish).

18. Y. Sakakibara. Recent advances of grammatical inference. Theoretical Computer
Science, 185 (1997), 15–45.

19. J.M. Sempere, D. López. Recognizing membrane structures with tree automata.
In 3rd Brainstorming Week on Membrane Computing 2005, TR 01/05 of RGNC,
Sevilla University (M.A. Gutiérrez Naranjo, A. Riscos-Núñez, F.J. Romero-
Campero, D. Sburlan, eds.), Fénix Editora, Sevilla, 2005, 305–316.

20. A. Syropoulos. Mathematics of multisets. In [2], 347–358.

Computational Completeness of Tissue
P Systems with Conditional Uniport

Sergey Verlan1, Francesco Bernardini2, Marian Gheorghe3,
and Maurice Margenstern4

1 LACL, Département Informatique
Université Paris 12

61 av. Général de Gaulle, 94010 Crétiel, France
verlan@univ-paris12.fr

2 Leiden Institute of Advanced Computer Science
Universiteit Leiden

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl

3 Department of Computer Science
The University of Sheffield

Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

4 Université Paul Verlaine - Metz, UFR MIM, LITA, EA 3097
Ile du Saulcy, 57045 Metz Cédex, France

margens@univ-metz.fr

Abstract. The paper introduces (purely communicative) tissue P sys-
tems with conditional uniport. Conditional uniport means that rules
move only one object at a time, but this may be with the help of another
one acting as an activator which is left untouched in the place where it
is. Tissue P systems with conditional uniport are shown to be compu-
tationally complete in the sense that they can recognize all recursively
enumerable sets of natural numbers. This is achieved by simulating de-
terministic register machines.

1 Introduction

Membrane computing is an emerging branch of natural computing which deals
with distributed and parallel computing devices of a bio-inspired type, which are
called membrane systems or P systems (see [13], [14], and also [19] for a compre-
hensive bibliography of P systems). P systems, originally devised by Gh. Păun
in [13], are introduced as computing devices which abstract from the structure
and functioning of living cells – they are defined as a hierarchical arrangement of
regions delimited by membranes (membrane structure), with each region having
associated a multiset of objects and a finite set of rules. Communication of ob-
jects through membranes is one of the fundamental features of every membrane
system and this naturally led to the question of closely investigating the power
of communication, that is, considering purely communicative P systems where
objects are never modified but they just change their place within the system.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 521–535, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

522 S. Verlan et al.

A first attempt to address this issue was done in [10] by considering certain
“vehicle-objects” (an abstraction for plasmids or for vectors from gene cloning)
which actively carry objects through membranes. Then, the bio-chemical idea of
membrane transport of pairs of molecules was considered in [12] by introducing
the notion of P systems with symport/antiport. In such P systems, multisets of
objects, here denoted by x, y, are moved across the membranes by means of rules
of the form (x, in), (x, out) (symport rules, where multiset x is moved in one di-
rection being either from outside to inside a membrane or from inside to outside
a membrane, respectively), and (x, out; y, in) (antiport rules, where multiset x
is moved from inside to outside a membrane and multiset y is simultaneously
moved from outside to inside a membrane); x, y can be of any size but they
cannot be empty. As it happens in few other models (e.g., see the billiard ball
model [18], the chip firing game [8], or railway simulation [9]), computing by
communication turns out to be computationally complete: by using only sym-
port and antiport rules, we can generate all Turing computable sets of numbers
[12]. However, as in the aforementioned models of other inspiration, in order to
generate all Turing computable sets, some infinity must be present and, in P
systems with symport/antiport this is provided in the form of an infinite supply
of objects taken from an external environment. Several subsequent works have
been dedicated to improve this result in what concerns both the number of mem-
branes used and the size of symport/antiport rules used inside the membranes.
We refer to [16] for a survey of these investigations.

The class of membrane computing models was later extended to tissue P sys-
tems [14]: a variant of P systems where the underlying structure is defined as
an arbitrary graph that is introduced as an abstraction for the organization in
tissues of cells in multicellular organisms. Nodes in the graph represent cells
(i.e., elementary membranes) that are able to communicate objects alongside
the edges of this graph [14]. In particular, purely communicative tissue P sys-
tems with symport/antiport were investigated in [14] by showing completeness
results for systems using rules of different sizes and different structures for the
underlying graph. More recently, it was proved in [2] that tissue P systems with
symport/antiport rules of a minimal size (i.e., rules of the forms (a, in), (a, out),
(a, out; b, in), with a, b objects from a given alphabet) are computational com-
plete and two cells suffice.

In this paper we consider tissue P systems with a different model of communi-
cation called conditional uniport. Conditional uniport means that every applica-
tion of a communication rule moves one object in a certain direction by possibly
using another one as an activator which is left untouched in the place where it is.
In other words, rules are assigned to the edges of the graph and they represent
channels of communication; in the cell placed at one end of an edge, an object
is used to activate the channel and either receives another object (in a single
copy) from the cell at the other end of that edge, or sends another object (in one
single copy) to the cell at the other end of the edge. The biological motivation for
conditional uniport is twofold. On the one hand, in living cells, the active trans-
port of small molecules is driven by protein channels: a molecule binds to one of

Computational Completeness of Tissue P Systems with Conditional Uniport 523

these channels which, through a change of conformation, is able to release the
molecule outside the compartment (see [1]). On the other hand, in tissues, cell-
to-cell communication depends heavily on extracellular signal molecules, which
are produced by a cell to signal their neighbors or cells that are further away.
In turn, these cells can respond to extracellular signal molecules by means of
particular proteins called receptors; each receptor binds at cell-surface level to
particular signal molecules and it is able to initiate a specific response inside the
cell (see [1]). In both cases, it is only the small molecule or the signal molecule
to move in one direction and, in order to be transported or to be recognized, it
requires another object, a protein channel or a receptor. Such a model of com-
munication was already investigated in [3] where an evolution-communication
model was considered. This means that, besides conditional uniport, multiset
rewriting rules can be used to modify the objects placed inside the cells. The
main result reported in [3] showed how to achieve computational completeness
by having only 2 cells and using non-cooperative multiset rewriting rules. Here
we instead focus on the purely communicative case, with the usual assumption
of an infinite supply of objects from the environment, and we show that tissue
P systems with conditional uniport are able to simulate deterministic register
machines by using 24 cells. This means that they can recognize all recursively
enumerable sets of natural numbers.

2 Preliminaries

We recall here some basic notions concerning the notation commonly used in
membrane computing and the few notions of formal language theory we need in
the rest of the paper. We refer to [14], [17] for further details.

An alphabet is a finite non-empty set of abstract symbols. Given an alpha-
bet V , we denote by V ∗ the set of all possible strings over V , including the
empty string λ. The length of a string x ∈ V ∗ is denoted by |x| and, for each
a ∈ V , |x|a denotes the number of occurrences of the symbol a in x. A multiset
over V is a mapping M : V −→ N such that, M(a) defines the multiplicity of a
in the multiset M (N denotes the set of natural numbers). Such a multiset can
be represented by a string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗ and by all its permu-

tations, with aj ∈ V , M(aj) 	= 0, 1 ≤ j ≤ n. In other words, each string x ∈ V ∗

identifies a multiset over V defined by Mx = { (a, |x|a) | a ∈ V }.
We also recall the notion of a (deterministic) register machine [11]. A deter-

ministic register machine is the following construction:

M = (Q,R, q0, qf , P),

where Q is a set of states, R = {A1, . . . , Ak} is the set of registers, q0 ∈ Q is the
initial state, qf ∈ Q is the final state and P is a set of instructions (called also
rules) of the following form:

1. (p,A+, q) ∈ P , p, q ∈ Q, p 	= q, A ∈ R (being in state p, increase register A
and go to state q).

524 S. Verlan et al.

2. (p,A−, q, s) ∈ P , p, q, s ∈ Q,A ∈ R (being in state p, decrease register A
and go to q if successful or to s if A is zero).

3. (qf , STOP).

Moreover, for each state p ∈ Q, there is only one instruction of one of the above
types.

A configuration of a register machine is given by the k+1-tuple (q, n1, . . . , nk)
describing the current state of the machine as well as the contents of all registers.
A transition of the register machine consists in updating/checking the value of
a register according to an instruction of one of types above and by changing the
current state to another one. We say that M computes a value y ∈ N on the input
x ∈ N if starting from the initial configuration (q0, x, 0, . . . , 0) it reaches the final
configuration (qf , y, 0, . . . , 0). We say that M recognizes the set S ⊆ N if for
any input x ∈ S the machine stops and for any y 	∈ S the machine performs an
infinite computation. It is known that register machines recognize all recursively
enumerable sets of numbers [11].

We may also consider non-deterministic register machines where the first type
of instruction is of the form (p,A+, q, s) and with the following meaning: if the
machine is in state p, then the register A is increased and the current state is
changed to q or s non-deterministically. In this case the result of the computation
is the set of all values of the first register when, starting with the configuration
(q0, 0, 0, . . . , 0), the computation eventually halts. We assume that the machine
empties all registers except the first register before stopping. It is known that
non-deterministic register machines generate all recursively enumerable sets of
non-negative natural numbers starting from empty registers [11].

3 The Model

Now we formally introduce the notion of tissue P systems with conditional uni-
port.

Definition 1. A tissue P systems with conditional uniport (a TPCU, for short)
of degree n ≥ 1 is a construct

T = (V,E,w1, . . . , wn, R, cI)

where:

1. V is a finite alphabet;
2. E ⊆ V is the set of symbols which appear in the environment;
3. wi ∈ V ∗, for all 1 ≤ i ≤ n, is the multiset initially associated to cell i;
4. R is a finite set of rules of the forms:

(a) (i, a → j) with 1 ≤ i, j ≤ n, i 	= j and a ∈ V ,
(b) (i, a → j, b) with 1 ≤ i, j ≤ n, i 	= j and a, b ∈ V ,
(c) (i, b, a → j) with 1 ≤ i, j ≤ n, i 	= j and a, b ∈ V ,
(d) (0, a → j, b) with 1 ≤ j ≤ n and a, b ∈ V ,
(e) (i, b, a → 0) with 1 ≤ i ≤ n and a, b ∈ V ,

Computational Completeness of Tissue P Systems with Conditional Uniport 525

(f) (i, a → 0) with 1 ≤ i ≤ n, and a ∈ V ,
(g) (0, a → i) with 1 ≤ i ≤ n, and a ∈ V ;

5. cI ∈ {1, . . . , n} is the input cell.

Thus, a TPCU is defined as a collection of n ≥ 1 cells denoted by 1, 2, . . . , n, each
one of them containing a multiset over the given alphabet V. We also consider
that the environment contains infinitely many copies of the objects in E and
initially it does not contain any object in V \ E. Cells are allowed to interact
with each other and with the environment through the application of the rules
in R. A rule (i, a → j) specifies that an object a may be moved from cell i to
cell j without any condition. A rule (i, a → j, b) with 1 ≤ i, j ≤ n, i 	= j and
a, b ∈ V , specifies that if an object b is in cell j, then an occurrence of symbol
a may be moved from cell i to cell j. A rule (i, b, a → j), with 1 ≤ i, j ≤ n,
i 	= j and a, b ∈ V , specifies that if an object a and an object b are both present
inside cell i, then that object a may be moved from cell i to cell j. Similarly, in
presence of an object b inside cell j, a rule (0, a → j, b) may be used to move an
occurrence of object a from the environment, denoted by 0, to cell j; if an object
a and an object b are both present inside cell i, then a rule (i, b, a → 0) may
be used to move that object a from cell i to the environment. Rules (i, a → 0),
(i, a → 0) can instead be used to move an object a from cell i to the environment
and vice versa without any condition.

As usual in membrane computing, we adopt a non-deterministic maximally
parallel strategy for the application of the rules which makes the system transit
from one configuration to the other. Specifically, we have that, in each step, all
the rules that can be applied, depending on the current distribution of objects
inside the cells, must be applied. Objects are non-deterministically assigned to
the rules with the only restriction that, within the same step, the same occurrence
of the same symbol is used by at most one rule. This means that an occurrence of
a symbol cannot be simultaneously moved and used to move another object, and
can be used to move at most one occurrence of another symbol. However, the
same rule can be used in parallel many different times to move many different
objects. Moreover, notice that rules do not modify the objects involved in their
applications, hence, whenever a rule involves two objects, one is moved into some
other cell whereas the other one is left untouched in the place where it is. We
also remark the difference with respect to the more standard notion of promoters
from [14]: promoters are multisets of objects that are used to activate a whole set
of rules; the activated rules are then applied in a non-deterministic maximally
parallel manner irrespectively of the multiplicity of the promoting multisets.

Let T = (V,E,w1, . . . , wn, R, cI) be a TPCU of degree n ≥ 1. A configuration
of T is any tuple (w′

1, w
′
2, . . . , w

′
n) with w′ii ∈ V ∗, for all 1 ≤ i ≤ n. Then, given

a multiset x ∈ V ∗, the TPCU T recognizes multiset x if, by starting from con-
figuration (w1, . . . , xwI , . . . , wn), after a finite sequence of transitions obtained
by applying the rules as described above, it produces a final configuration where
no more rules can be applied to the objects placed inside the cells and the en-
vironment. Moreover, the TPCU T recognizes a family of multisets M if, for

526 S. Verlan et al.

all x ∈ M , T recognizes x. If that is the case, we also say that the TPCU T
recognizes the set of natural numbers N(M) = { |x| |x ∈ M }.

Finally, we naturally associate to each TPCU a communication graph which
represent the structure of the system as it is induced by the rules provided in
the definition of the system.

Definition 2. Let T = (V,E,C1, . . . , Cn, R, cO) be a TPCU. The communica-
tion graph of T , denoted by Γ (T), is the undirected graph ({1, . . . , n}, A) where
{i, j} ∈ A if and only if, there is a rule (i, a → j, b) or (i, b, a → j) in R for
some a, b ∈ O.

Thus, given a TPCU, its communication graph is the graph containing a node
per each cell in the system and an edge between every two cells which are allowed
to interact by means of some rule. As we will see, this notion is particularly useful
to graphically represent the structure of a given TPCU.

In the next section, we introduce some macro-elements (macros, for short) that
group several conditional uniport rules. Macros are seen as sub-functional units
which can be combined to form larger “blocks of cells” dedicated to perform some
specific tasks. Specifically, we will define macros necessary to construct blocks
which simulate incrementing and decrementing instructions of a deterministic
register machine. Thus, in Section 5, we will be able to show the computational
completeness of TPCU’s.

4 Macros

Here we present the details of the macros mentioned at the end of the previ-
ous section; we also introduce a specific graphical representation for them. We
remark that the behavior of each macro is non-deterministic, but instructions
are grouped in such a way that macros have only one non-looping branch in the
non-deterministic evolution. Then, after the description of these macros, we show
how they can be combined to construct simulation blocks for the incrementing
and decrementing instructions of a deterministic register machine.

4.1 Synchronization of Two Signals

This macro, shortly denoted as syn2, is represented in the left part of Figure 1.
This macro aims to synchronize symbols s1 and s2 which are treated like

signals. If both of them are present in input cells (1 and 2), then they will
continue to output cells (3 and 4). More precisely, if object s1 is present in cell 1
and object s2 is present in cell 2, then object s1 will go to cell 3 and object s2
will go to cell 4. Notice that the opposite is true as well: if one of the two signals
is missing, then the other one does not move. No assumption about the time
necessary to do this operation is made, i.e., it is not done in one time unit. We
can only affirm that s1 arrives in cell 3 before s2 arrives in cell 4. We give below
necessary rules that implement the syn2 macro.

1. (2, s2 → 1, s1)
2. (1, s2, s1 → 3)

Computational Completeness of Tissue P Systems with Conditional Uniport 527

Fig. 1. syn2 element

3. (5, X → 1, s2)
4. (5, X ′ → 1, X)
5. (1, X ′ → 5, s2)
6. (1, X → 5)
7. (1, X ′, s2 → 5)
8. (5, X ′, s2 → 4)

Symbols X and X ′ are initially present in cell 5.
The communication graph induced by these rules is presented in the right

part of Figure 1. It is easy to observe that the above structure, rules and initial
objects permit to obtain the desired behavior. Indeed, if symbol s1 is present in
cell 1 and there is no symbol s2 in cell 2, then nothing happens. Similarly, if s2
is present and s1 is not present, this part of the system does not evolve. When
both s1 and s2 are present, rule 1 brings s2 to cell 1. After that either rule 2, or
rule 3 will be applied (but not both of them because s2 cannot be involved in
more than one rule). Suppose that rule 3 is applied (the case of rule 2 is similar).
In this case, symbol X is brought to cell 1. At the next step, symbol s1 is sent
by rule 2 to cell 3, hence performing the first part of the synchronization. At the
same time one of the rules 4 or 6 is applied. If rule 6 is applied, then the system
may loop using rules 3 and 6. Hence, at some moment rule 4 will be applied.
This application brings symbol X ′ in cell 1. This symbol permits to move s2
to cell a and further to cell 4. At the same time symbols X and X ′ return to
their original place in cell a and they are ready for another application of this
macro-element.

We note that the synchronization of s1 and s2 is the only non-looping evolution
of the subsystem above. Moreover, the same group of cells of Figure 1 with the
same communication graph may be reused for other pairs of signals by just
adding similar rules for each pair of signals to be synchronized.

4.2 Synchronization and Duplication of Two Signals

This macro, shortly denoted as syndup, is represented in the left part of Figure 2.
This macro, like the previous one, synchronizes symbols s1 and s2: if both of

them are present in input cells (1 and 2), then they will continue to output cells
(3 and 4). At the same time symbol s3 goes from cell 5 to cell 6. If s2 arrives

528 S. Verlan et al.

Fig. 2. syndup macro

to cell 4, it will be present there at least one step before s3 arrives to cell 6. In
some sense, s3 is a copy of s2 (which is a little bit time-shifted).

More precisely, if object s1 (resp. s2, s3) is present in cell 1 (resp. cell 2, cell 5),
then object s1 will go to cell 3, object s3 will go to cell 6 and object s2 possibly
will go to cell 4. If object s2 is sent to cell 4, then it arrives there one step before
s3 arrives in cell 6. As before, no assumption about the time necessary to do this
operation is made. We give below necessary rules that implement the syndup
macro.

1. (2, s2 → 1, s1)
2. (1, s2, s1 → 3)
3. (5, X → 1, s2)
4. (5, s3 → 1, X)
5. (1, X → 5)
6. (1, s3, s2 → 4)
7. (1, s3 → 6)

Symbol X is initially present in cell 5.
The communication graph induced by these rules is presented in the right

part of Figure 2.
Similarly to macro syn2, it is easy to observe that the above structure, rules

and initial objects permit to obtain the desired behavior. Symbol s1 is sent to
cell 3, while symbol s3 may send symbol s2 to cell 4. Finally, symbol s3 goes to
cell 6. There are two non-looping evolutions of this macro-element corresponding
to the final position of s2.

We remark that cells 1, 2 and 3 may be shared between syn2 and syndup
macros.

4.3 Infinite Loop

This macro, shortly denoted as i-loop, is represented in the left part of Figure 3.

Computational Completeness of Tissue P Systems with Conditional Uniport 529

Fig. 3. i-loop macro

This macro has the following meaning. Object s is always a subject to a
computation in cell 1. Hence, if it is not taken from there, the system will never
halt. We give below the necessary rules that implement this macro.

1. (1, s → 2, Xs)
2. (2, Xs, s → 1)

Symbol Xs is initially present in cell 2.
It is clear that above rules will infinitely move symbol s between cells 1 and a.

4.4 Symbol Check

This macro-instruction, shortly denoted as s-check, is represented in the left part
of Figure 4.

Fig. 4. s-check macro

This macro has the following meaning. In presence of object A in cell 1, symbol
s from cell 1 will go to cell 2. This behavior is simply implemented by a rule
(1, A, s → 2).

4.5 Incrementing and Decrementing a Counter

The left part of Figure 5 presents two macros denoted A-plus and A-minus.
These macros are used to increment/decrement the counter A. When object

s (s1) arrives to cell 1, it increments (decrements) counter A and after that s
(s1) goes to cell 2. We give below necessary rules that implement these macros
(cell 0 is the environment):

1. (3, A → 1, s1)
2. (0, A → 1, s)
3. (1, s → 6)
4. (1, s1 → 6)
5. (1, A → 4)
6. (4, A → 5)
7. (4, A → 5, s)

530 S. Verlan et al.

Fig. 5. A-plus and A-minus macros

8. (4, A → 5, s1)
9. (6, A → 5)
10. (6, A, s → 7)
11. (6, A, s → 7)
12. (6, A → 7, s)
13. (6, A → 7, s1)
14. (7, A → 5)
15. (7, s → 2)
16. (7, s1 → 2)
17. (7, s, A → 3)
18. (7, s1, A → 0)

The idea used to implement these macros is quite simple: symbol s (resp. s1)
brings from the environment (resp. cell 3) symbol A into cell 1. If more than
one A is brought, than at least one A will arrive in cell b triggering an infinite
computation. Hence, the only possible halting computation is the one which
brings an object A from the environment, at the next step moves A and s (s1)
from cell 1 to cell a and cell c respectively, and then uses s to move A from cell
a to cell c. After that, in such a computation, both symbols are moved to cell d,
and finally A will go to its place, while s (s1) reaches cell 2.

Notice that, although A-plus and A-minus are seen as separate macros, they
are actually implemented through a unique group of cells containing rules for
simulating both an incrementing and a decrementing instruction. In general, the
same group of cells with the communication graph of Figure 5 can be used to
simulate many different incrementing/decrementing instructions by joining the
sets of rules necessary to simulate each instruction.

Remark 1. Macros defined above may be joined just by superposing some of their
cells. Hence, a net-like structure may be built using these elements. Moreover,
since we place objects in cells and after that move them, the obtained system
has similarities with Petri Nets (e.g., see [15]). However, there are significant
differences. In particular, macros above are in some sense time-less, because
there is no limit on the number of steps necessary to perform their action. But
in a halting configuration this will finally happen.

Computational Completeness of Tissue P Systems with Conditional Uniport 531

5 Computational Completeness

In this section we show how a register machine is simulated by using the macros
introduced in the previous section, and hence we obtain the computational com-
pleteness of TPCU’s. To this aim, we introduce the notation NRTPCUn, for
any n ≥ 1, to denote the family of sets of natural numbers recognized by tissue
P systems with conditional uniport.

Theorem 1. NRTPCU24 = NRE.

Proof. Let M be a deterministic register machine. We will prove the assertion of
the theorem in the following way. First, we construct Π and we show that this
system simulates the behavior of M . In the same time, we investigate all other
possible evolutions of Π and we show that only evolutions corresponding to the
simulation of M lead to a halting configuration of Π .

In what follows we show how an arbitrary incrementing instruction (p,A+, q)
of M is simulated. We mentioned before that we use macros defined in Section
4 as building blocks. We combine them as it is depicted in Figure 6. We number
cells and we indicate their number below them. We remark that rules and objects
of Π can be easily deduced from these pictures.

Fig. 6. Simulation of (p, A+, q)

The incrementing instruction is simulated as follows. Signals (symbols) p and
Apq synchronize, after that Apq increments register A, and synchronizes with
symbol q. After these actions q is exchanged with p, Apq returns to its place and
register A is incremented.

As we have already said, all incrementing instructions of M may be simulated
using the same graph structure because macros for different instructions may
share the same cells.

532 S. Verlan et al.

Fig. 7. Simulation of (p, A−, q, s)

The case of a decrementing instruction (p,A−, q, s) is depicted in Figure 7
(we remark that all working symbols (D, s1, s2) will be indexed by the number
of the instruction). We number cells and we indicate their number below them.
Specifically, in order to simulate a decrementing instruction, signals p and D
(D indeed stands for Dpqs) synchronize and if D does not arrive in the output
cell 6 (we recall that it arrives there non-deterministically), then s1 will be kept
in an infinite computation (in cell 9). Hence this branch will not halt. In the
other branch of the computation, D arrives in the output cell 6 and if there
are symbols A present, then it will move further. We remark that cell 6 stores
counter symbols. Now, the symbol s1, depending on position of D will choose
the corresponding branch of the computation. In this way the zero check on
register A is performed. We note, that finally all additional symbols return to
their original places. We remark that we use the same three cells (1, 2 and 7)
for both signal synchronization in the upper left corner.

Like in the previous case the simulation of all decrementing instructions may
share the same graph. Moreover, the incrementing and incrementing graphical
representations have a common underlying graph (which is in fact the graph
corresponding to the decrementing enriched with some edges). The initial con-
figuration contains the symbol q0 at cell 1.

We stress once more that Π can be easily deduced from the graphical repre-
sentations corresponding to each instruction. From a structural point of view,
cell 1 contains the current state, cell 2 contains all states of the machine except
the current one. Cell 3 contains symbols Apq and Dpqs that are used to drive

Computational Completeness of Tissue P Systems with Conditional Uniport 533

the all simulation in Π of corresponding instructions from M . Cell 6 contains
unary values of all the registers. We also note that after expanding all macro-
instructions, system Π contains 24 cells.

For any configuration of M (q, An1
1 , . . . , Ank

k), there is a corresponding config-
uration of Π , where cell 1 contains q and cell 6 contains symbols An1

1 , . . . , Ank

k .
Then, in order to finish the proof we need to show that the simulation of M
is the only possible halting computation. Indeed, we observe that the computa-
tion is started when a symbol p corresponding to a state of M arrives in cell 1
(initially in cell 1 symbol q0 is present). Suppose, for simplicity, that there is
the following instruction of M : (p,A+, q). In this case, symbol p goes to cell 2
where all unused state symbols are kept. In the meanwhile symbol Apq goes to
cell 4 and drives the computation – first it increments register A and after that
synchronizes with symbol q. At the end, symbol Apq returns to cell 2, while cell 1
contains q, hence corresponding instruction of M is simulated.

For the decrementing case, symbol p is synchronized with D which drives the
further computation. Therefore, at any moment, there is only one symbol that
triggers the further computation (leading to a halting configuration). Since there
is only one halting evolution, it corresponds to the simulation of M . ��

6 Discussion

In this paper a class of tissue P systems, called “with conditional uniport” or
TPCU’s, for short, is introduced. This model relies on simple communication
rules which move simple symbol objects between adjacent components either
freely or in the presence of another symbol object in one of these components.
It is proved that this model, although with these very simple rules, it is compu-
tationally complete: it can recognize all recursively enumerable sets of natural
numbers. In this respect, we also conjecture that, with some modifications in
the proof of Theorem 1, TPCU’s can be shown to be able to simulate non-
deterministic register machines. This could lead to a characterization of the
family of recursively enumerable sets of natural numbers based on generative
TPCU’s which do not require an input multiset.

The idea of conditional communication is not completely new to the area of
membrane computing. For instance, the concept of activated membrane chan-
nels was previously introduced in [6], and P automata [5] already considered
rules which allow a multiset to enter a membrane only in presence of another
specific multiset inside that membrane. However, in these variants, “activators”
are defined as generic multisets of any size, and, in order to achieve the power
of Turing machines, activators of size at least two are always used. Thus, our
approach is closer to minimal symport/antiport [16] as it reports completeness
for systems with a “minimal” cooperation in the communication rules: activators
consists of one single object, and rules involve at most two objects. On the other
hand, with respect to results reported in [16], the completeness of conditional
uniport is obtained by using a higher number of cells and tissue P systems with

534 S. Verlan et al.

a complex graph structure. The optimality of this result is not known though,
and this opens the possibility for improvements on the number of cells.

In addition to the completeness result the paper introduces a set of “blocks”
of tissue P system components using conditional uniport rules with a certain
behavior – the synchronization of the objects moving between components, in-
crementing/decrementing the number of object symbols when a specific ’signal’
object occurs in the block. These constructions are useful in order to simplify
the proof of Theorem 1, but they might be considered as primitive components
that (maybe with some restrictions or modifications) are combined to produce
more powerful blocks. In our future works this approach will be investigated as
a modular way of building solutions to some problems. This proposal is very
relevant for investigations into modeling self-assembly phenomena by using P
systems and their variants [4], [7] as it shows a great suitability in this respect.

Acknowledgements

Marian Gheorghe and Francesco Bernardini are supported by the British Council
research contract PN 05.014/2006, Maurice Margenstern and Sergey Verlan are
funded by the Égide programme Alliance 0881UG. Francesco Bernardini is also
supported by NWO, Organisation for Scientific Research of The Netherlands,
project 635.100.006 “VIEWS”.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: The Molecular
Biology of the Cell. 4th edn., Garland Publ. Inc., London, 2002.

2. Alhazov, A., Rogozhin, Y., Verlan, S.: Symport/Antiport Tissue P Systems with
Minimal Cooperation. In Proceedings of the ESF Exploratory Workshop on Cellular
Computing (Complexity Aspects), Sevilla, Spain, 2005, 37–52.

3. Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems: Univer-
sality Results. Soft Computing, 9 (2005), 640–649.

4. Bernardini, F., Gheorghe, M., Krasnogor, N., Giavitto, J.L.: On Self-Assembly in
Population P Systems. In Calude, C., Dinneen, M., Păun, G., Pérez-Jiménez, M.J.,
Rozenberg, G., eds.: Uncoventional Computation. 4th International Conference,
UC 2005, Sevilla, Spain, October 2005, LNCS 3365, Springer, 2005, 46–57.

5. Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicative Accepting P
Systems. In Păun, G., Rozenberg, G., Salomaa, A., Zandron, C., eds.: Membrane
Computing. International Workshop, WMC-CdeA 02, Curtea de Argeş, Romania,
August 19-23, 2002, LNCS 2597, Springer, 2003, 219–233.

6. Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Chan-
nels. In Păun, G., Rozenberg, G., Salomaa, A., Zandron, C., eds.: Membrane
Computing. International Workshop, WMC-CdeA 02, Curtea de Argeş, Romania,
August 19-23, 2002, LNCS 2597, Springer, 2003, 261–269.

7. Gheorghe, M., Păun, G.: Computing by Self-Assembly: DNA Molecules, Poly-
nominoes, Cells. In Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.L., eds.:
Systems Self-Assembly: Multidisciplinary Snapshots. Studies in Multidisciplinarity,
Elsevier, 2006 (in press).

Computational Completeness of Tissue P Systems with Conditional Uniport 535

8. Goles, E., Margenstern, M.: Universality of the Chip-Firing Game. Theoretical
Computer Science, 172 (1997), 91–120.

9. Margenstern, M.: Two Railway Circuits: a Universal Circuit and an NP-difficult
one. Computer Science Journal of Moldova, 9 (2001), 3–33.

10. Mart́ın-Vide, C., Păun, G., Rozenberg, G.: Membrane Systems with Carriers.
Theoretical Computer Science, 270 (2002), 779–796.

11. Minsky, M.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

12. Păun, A., Păun, G.: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing, 20 (2002), 295–305.

13. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences,
61 (2000), 108–143.

14. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin, 2002.
15. Reisig, W.: Petri Nets. An Introduction. Springer, Berlin, 1985.
16. Rogozhin, Y., Alhazov, A., Freund, R.: Computational Power of Sym-

port/Antiport: History, Advances and Open Problems. In Freund, R., Păun, G.,
Rozenberg, G., Salomaa, A., eds.: Membrane Computing. International Workshop,
WMC6, Vienna, Austria, LNCS 3850, Springer, 2006, 1–31.

17. Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages. Volume 1–3.
Springer, 1997.

18. Toffoli, T., Margolus, N.: Cellular Automata Machines. The MIT Press, Cam-
bridge, Mass., 1987.

19. The P Systems Web Page: http://psystems.disco.unimib.it

Distributed Evolutionary Algorithms Inspired
by Membranes in Solving Continuous

Optimization Problems

Daniela Zaharie1 and Gabriel Ciobanu2,3

1 Department of Computer Science, West University of Timişoara
Blvd. V. Pârvan no. 4, 300223 Timişoara, Romania

dzaharie@info.uvt.ro
2 A.I. Cuza University, Faculty of Computer Science

Blvd. Carol I no.11, 700506 Iaşi
3 Institute of Computer Science, Romanian Academy

Blvd. Carol I no. 8, 700505 Iaşi, Romania
gabriel@iit.tuiasi.ro

Abstract. In this paper we present an analysis of the similarities be-
tween distributed evolutionary algorithms and membrane systems. The
correspondences between evolutionary operators and evolution rules and
between communication topologies and policies in distributed evolution-
ary algorithms and membrane structures and communication rules in mem-
brane systems are identified. As a result of this analysis we propose new
strategies of applying the operators in evolutionary algorithms and new
variants of distributed evolutionary algorithms. The behavior of these vari-
ants is numerically tested for some continuous optimization problems.

1 Introduction

Membrane systems and evolutionary algorithms are computation models inspired
by nature, both based on applying some evolution(ary) rules to a (multi) set of
simple or structured objects. Both models have distributed features. Membrane
systems represent a suitable framework for distributed algorithms [2], and evolu-
tionary algorithms allow natural extensions for distributed implementation [13].

A membrane system consists of a hierarchy of membranes that do not inter-
sect, with a distinguishable membrane, called the skin membrane, surrounding
them all. A membrane without any other membranes inside is elementary, while
a non-elementary membrane is a composite membrane. The membranes produce
a demarcation between regions. For each membrane there is a unique associated
region. Because of this one-to-one correspondence we sometimes use membrane
instead of region. The space outside the skin membrane is called the environ-
ment. Regions contain multisets of objects, evolution rules and possibly other
membranes. Only rules in a region delimited by a membrane act on the ob-
jects in that region. The multisets of objects from a region correspond to the
“chemicals swimming in the solution in the cell compartment”, while the rules
correspond to the “chemical reactions possible in the same compartment”. The

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 536–553, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Evolutionary Algorithms Inspired by Membranes 537

rules must contain target indications, specifying the membrane where the new
objects obtained after applying the rule are sent. The new objects either remain
in the same region when they have a here target, or they pass through mem-
branes, in two directions: they can be sent out of the membrane delimiting a
region from outside, or can be sent in one of the membranes delimiting a re-
gion from inside, precisely identified by its label. In a step, the objects can pass
only through one membrane. There exist many variants and classes of membrane
systems; many of them are introduced in [8].

Evolutionary algorithms are reliable methods in solving hard problems in the
field of discrete and continuous optimization. They are approximation algorithms
which achieve a trade-off between solution quality and computational costs. De-
spite the large variety of evolutionary algorithms (genetic algorithms, evolution
strategies, genetic programming, evolutionary programming), all of them are
based on the same idea: evolve a population of candidate solutions by applying
some rules inspired by biological evolution: recombination (crossover), mutation,
and selection [3]. An evolutionary algorithm acting on only one population is sim-
ilar to a one-membrane system. Distributed evolutionary algorithms, which evolve
separate but communicating (sub)populations, are more like membrane systems.

It is natural to ask questions as: How similar are membrane computing and
distributed evolutionary computing? Can ideas from membrane computing im-
prove the evolutionary algorithms, or vice-versa?

A first attempt to build a bridge between membrane computing and evolu-
tionary computing is given by T.Y Nishida, in [7], where a membrane algorithm
is developed by using a membrane structure together with ideas from genetic
algorithms (crossover and mutation operators) and from metaheuristics for local
search (tabu search).

In this paper we go further and deeper, and analyze the relationship between
different membranes structures and different communication topologies specific
to distributed evolutionary algorithms. Moreover, we propose new strategies for
applying evolutionary rules and new variants of distributed evolutionary algo-
rithms inspired by membrane systems structure and functioning.

The paper is organized as follows. In Section 2 we analyze the correspon-
dence between evolutionary operators and evolution rules. As a result of this
analysis, we propose a new, more flexible, strategy of applying the evolutionary
operators. Section 3 is devoted to the similarities between membrane structures
and communication topologies on one hand, and between communication rules
in membrane systems and communication policies in distributed evolutionary
algorithms on the other hand. As a result of this analysis is proposed a new vari-
ant of distributed evolutionary algorithms. Section 4 is devoted to a numerical
analysis of the membrane systems inspired variants of evolutionary algorithms.

2 Evolutionary Operators and Evolution Rules

Evolutionary algorithms (EAs) working on only one population (panmictic EAs)
can be interpreted as particular membrane systems having only one membrane.

538 D. Zaharie and G. Ciobanu

Inside this single membrane there is a population of candidate solutions for
the problem to be solved. Usually a population is an m-uple of n-dimensional
vectors: P = x1 . . . xm, xi = (x1

i , . . . , x
n
i) ∈ D, where D is a discrete or a

continuous domain depending on the problem to be solved. The evolutionary
process consists in applying the recombination, mutation and selection operators
to the current population in order to obtain a new population.

Recombination (crossover): The aim of this operator is to generate new elements
from a set of elements (called parents) selected from the current population. Thus
we have a mapping R : Dr → Dq, where usually q ≤ r. Typical examples of
recombination operators are:

r = q = 2, R((u1, . . . , un), (v1, . . . , vn)) =

((u1, . . . , uk, vk+1, . . . , vn), (v1, . . . , vk, uk+1, . . . , un)) (1)

and

r arbitrary , q = 1, R(xi1 , . . . , xir) =
1
r

r∑
j=1

xij (2)

The first type of recombination corresponds to one point crossover (where
k ∈ {1, . . . , n − 1} is an arbitrary cut point) used in genetic algorithms, while
the second example corresponds to intermediate recombination used in evolution
strategies [3].

Mutation: The aim of this operator is to generate a new element by perturbing
one element from the current population. This can be modelled by a mapping
M : D → D defined by M((u1, . . . , un)) = (v1, . . . , vn). Typical examples are:

vi =
{

1 − ui with probability p
ui with probability 1− p

and vi = ui + N(0, σi), i = 1, n

(3)
The first example is used in genetic algorithms based on a binary coding (ui ∈
{0, 1}), while the second one is typical for evolution strategies. N(0, σi) denotes a
random variable with normal distribution, of zero mean and standard deviation
σi.

Selection: It is used to construct a set of elements starting from the current
population such that the best elements with respect to the objective function
of the optimization problem to be solved are favored. It does not generate new
configurations, but only sets of existing (not necessarily distinct) configurations.
Thus it maps Dq to Dr and can be used in two main situations: selection of
parents for recombination (in this case q = m, r < m, and the parents selection
is not necessarily based on the quality of elements), and selection of survivors (in
this case q ≥ m, r = m, and the survivors are stochastically or deterministically
selected by taking into account their quality with respect to the optimization
problem). In the following, the mapping corresponding to parents selection is

Distributed Evolutionary Algorithms Inspired by Membranes 539

denoted by Sp and the mapping corresponding to survivors selection is denoted
by Ss.

A particular evolutionary algorithm is obtained by combining these evolution-
ary operators and by applying them iteratively to a population. Typical ways of
combining the evolutionary operators lead to the main evolutionary strategies:
generational, and steady state. In the generational (synchronous) strategy, at
each step a population of new elements is generated by applying recombination
and mutation. The population of the next generation is obtained by applying
selection to the population of new elements or to the joined population of par-
ents and offsprings. The general structure of a generational EA is presented in
Algorithm 1 where X(t) denotes the population corresponding to generation t,
z denotes an offspring and Z denotes the population of offsprings. The sym-
bol ∪+ denotes an extended union, which allows multiple copies of the same
element (as in multisets). The mapping M is the extension of M to Dq, i.e.,
M(xi1 , . . . , xiq) = (M(xi1), . . . ,M(xiq)).

Algorithm 1. Generational Evolutionary Algorithm
1: Random initialization of population X(0)
2: t := 0
3: repeat
4: Z := ∅
5: for all i ∈ {1, . . . , m} do
6: Z := Z ∪+ (M ◦ R ◦ Sp)(X(t))
7: end for
8: X(t + 1) := Ss(X(t) ∪+ Z)
9: t := t + 1

10: until a stopping condition is satisfied

In the steady state (asynchronous) strategy, at each step a new element is gen-
erated by recombination and mutation, and assimilated into the population if it
is good enough (e.g., better than one of its parents, or than the worst element
in the population). More details are in Algorithm 2.

The simplest way to interpret a generational or a steady state evolution-
ary algorithm as a membrane system is to consider the entire population as a
structured object in a membrane, and the compound operator applied as one
evolution rule which includes recombination, mutation and selection. Such an
approach represents a rough and coarse handling which does not offer flexibility.
A more flexible approach would be to consider each evolutionary operator as an
evolution rule.

Evolutionary operators are usually applied in an ordered manner (as in Algo-
rithms 1 and 2): first parents selection, then recombination and mutation, and
finally survivors selection. Starting from the way the evolution rules are applied
in a membrane system, we consider that the rules can be independently applied to
the population elements, meaning that no predefined order between the operators
is imposed. At each step any operator can be applied, up to some restrictions

540 D. Zaharie and G. Ciobanu

Algorithm 2. Steady State Evolutionary Algorithm
1: Random initialization of population X(0)
2: t := 0
3: repeat
4: z := (M ◦ R ◦ Sp)(X(t))
5: X(t + 1) := Ss(X(t) ∪+ z)
6: t := t + 1
7: until a stopping condition is satisfied

ensuring the existence of the population. The recombination and mutation op-
erators R and M can be of any type, with possible restrictions imposed by the
coding of population elements. By applying these operators, new elements are
created. These elements are unconditionally added to the population. Therefore
by applying the recombination and mutation operators, the population size is
increased. When the population size reaches an upper limit (e.g., twice the initial
size of the population), then the operators R and M are inhibited.

The role of selection is to modify the distribution of elements in the population
by eliminating or by cloning some elements. Simple selection operators could be
defined by eliminating the worst element of the population, or by cloning the
best element of the population. When selection is applied by cloning, then the
population size is increased and selection is inhibited whenever the size reaches a
given upper bound. On the other hand, when selection is applied by eliminating
the worst element, the population size is reduced, and selection is inhibited
whenever the size reaches a given lower bound (e.g., half of the initial size of the
population).

By denoting with x1 . . . xm (xi ∈ D) the entire population, with xi1 . . . xiq

an arbitrary part of the population, with x∗ the best element and with x− the
worst element, the evolutionary operators can be described more in the spirit of
evolution rules from membrane systems as follows:

Rule 1 (recombination): xi1 . . . xir → xi1 . . . xirx
′
i1

. . . x′
iq

where (xi1 , . . . , xir) =
Sp(x1, . . . , xm) is the set of parents defined by the selection operator Sp, and
(x′

i1
, . . . , x′

iq
) = R(xi1 , . . . , xir) is the offspring set obtained by applying the

recombination operator R to this set of parents;
Rule 2 (mutation): xi → xix

′
i where x′

i = M(xi) is the perturbed element
obtained by applying the mutation operator M to xi;

Rule 3a (selection by deletion): x− → λ, meaning that the worst element (with
respect to the objective function) is eliminated from the population;

Rule 3b (selection by cloning): x∗ → x∗x∗ meaning that the best element (with
respect to the objective function) is duplicated.

Rule 4 (insertion of random elements): x → xξ, where ξ ∈ D is a randomly
generated element and x is an arbitrary element of the population.

The last rule does not correspond to the classical evolutionary operators but
is used in evolutionary algorithms in order to stimulate the population diversity.

Distributed Evolutionary Algorithms Inspired by Membranes 541

By following the spirit of membrane computing, these rules should be applied
in a fully parallel manner. However, in order to avoid going too far from the
classical way of applying the operators in evolutionary algorithms, we consider
a sequential application of rules. Thus we obtain an intermediate strategy: the
evolutionary operators are applied sequentially, but in an arbitrary order. Such a
strategy, based on a probabilistic decision concerning the operator to be applied
at each step, is described in Algorithm 3. The rules involved in the evolutionary
process are: recombination, mutation, selection by deletion, selection by cloning
and random elements insertion. The probabilities corresponding to these rules
are pR, pM , pSd, pSc and pI ∈ [0, 1]. By applying the evolutionary operators
in such a probabilistic way, we obtain a flexible algorithm which works with
variable size populations. In Algorithm 3 the population size corresponding to
iteration t is denoted by m(t). Even if variable, the population size is limited by
a lower bound, m∗, and an upper bound, m∗.

Algorithm 3. Evolutionary algorithm with random selection of operators
1: Random initialization of the population X(0) = x1(0) . . . xm(0)(0)
2: t := 0
3: repeat
4: generate a uniform random value u ∈ (0, 1)
5: if (u < pR) ∧ (m(t) < m∗) then
6: apply Rule 1 (recombination)
7: end if
8: if (u ∈ [pR, pR + pM)) ∧ (m(t) < m∗) then
9: apply Rule 2 (mutation)

10: end if
11: if (u ∈ [pR + pM , pR + pM + pSd)) ∧ (m(t) > m∗) then
12: apply Rule 3a (selection by deletion)
13: end if
14: if (u ∈ [pR + pM + pSd, pR + pM + pSd + pSc)) ∧ (m(t) < m∗) then
15: apply Rule 3b (selection by cloning)
16: end if
17: if (u ∈ [pR + pM + pSd + pSc, 1]) ∧ (m(t) < m∗) then
18: apply Rule 4 (insertion of a random element)
19: end if
20: t := t + 1
21: until a stopping condition is satisfied

An important feature of Algorithm 3 is given by the fact that only one operator
is applied at each step, and thus it can be considered as an operator oriented
approach. This means that first an operator is probabilistically selected and only
afterwards are selected the elements on which it is applied.

Another approach would be that oriented toward elements, meaning that at
each step all elements can be involved in a transformation and for each one
is selected (also probabilistically) the rule to be applied. After such a parallel
step, a mechanism of regulating the population size can be triggered. If the
population became too small, then selection by cloning can be applied or some

542 D. Zaharie and G. Ciobanu

random elements could be inserted. If the population became too large, then
selection by deletion could be applied. This strategy is characterized through a
parallel application of rules, thus it is more in the spirit of membrane computing.
However, this strategy did not provide better results than Algorithm 3 when it
was tested for continuous optimization problems.

We can expect that the behavior of such algorithms be different from the
behavior of more classical generational and steady state algorithms. However,
from a theoretical viewpoint, such an algorithm can be still modeled by a Markov
chain and the convergence results still hold [11]. This means that if we use a
mutation operator based on a stochastic perturbation described by a distribution
having a support which covers the domain D (e.g., normal distribution) and an
elitist selection (the best element found during the search is not eliminated from
the population), then the best element of the population converges in probability
to the optimum.

The difference appears with respect to the finite time behavior of the algo-
rithm, namely the ability to approximate (within a certain desired precision)
the optimum in a finite number of steps. Preliminary tests suggest that for some
optimization problems, the strategy with random selection of operators works
better than the generational and steady state strategies; numerical results are
presented in Section 4. This means that using ideas from the application of evo-
lution rules in membrane systems, we can obtain new evolutionary strategies
with different dynamics.

3 Communication Topologies and Policies

As it has been stated in the previous section, a one-population evolutionary al-
gorithm can be mapped into a one-membrane system with rules associated to
the evolutionary operators. Closer to membrane computing are the distributed
evolutionary algorithms which work with multiple (sub)populations. In each sub-
population the same or different evolutionary operators can be applied leading
to homogeneous or heterogeneous distributed EAs, respectively. Introducing a
structure over the population has different motivations [13]: (i) it achieves a
good balance between exploration and exploitation in the evolutionary process
in order to prevent premature convergence (convergence to local optima) in the
case of global optimization problems; (ii) it stimulates the population diversity
in order to deal with multimodal optimization problems or with dynamic opti-
mization problems; (iii) it is more suitable to parallel implementation.

Therefore, besides the possibility of improving the efficiency by parallel imple-
mentation, structuring the population in communicating subpopulations allows
developing new search mechanisms which behave differently than their serial
counterparts [13]. The multi-population model of the evolutionary algorithms,
also called island-model, is based on the idea of dividing the population in some
communicating subpopulations. In each subpopulation is applied an evolutionary
algorithm for a given number of generations, then a migration process is started.
During the migration process some elements can change their subpopulations,

Distributed Evolutionary Algorithms Inspired by Membranes 543

or clones of some elements can replace elements belonging to other subpopu-
lations. The main elements which influence the behavior of a multi-population
evolutionary algorithm are the communication topology and the communication
policy. The communication topology specifies which subpopulations are allowed
to communicate while the communication policy describes how is ensured the
communication. The communication topology in a distributed evolutionary al-
gorithm plays a similar role as the membranes structure plays in a membrane
system. On the other hand, the communication policy in distributed evolutionary
algorithms is related to the communication rules in membrane systems.

3.1 Communication Topologies and Membrane Structures

The communication topology describes the connections between subpopulations.
It can be modeled by a graph having nodes corresponding to subpopulations, and
edges linking subpopulations which communicate in a direct manner. According
to [1], typical examples of communication topologies are: fully connected topol-
ogy (each subpopulation can communicate with any other subpopulation), linear
or ring topology (only neighbor subpopulations can communicate), star topol-
ogy (all subpopulations communicate through a kernel subpopulation). More
specialized communication topologies are hierarchical topologies [5], and hyper-
cube topologies [4]. The fully connected, star, and linear topology can be easily
described by using hierarchical membrane structures which allows transferring
elements either in a inner or in the outer membrane (see Figure 1).

Fully connected topology. Let us consider a number of s fully connected subpopu-
lations. The fully connected topology can be modeled by using s+1 membranes,
namely s elementary membranes and one skin membrane containing them (see
Figure 1(a)). The elementary membranes correspond to the given s subpopula-
tions, and they contain both evolution rules and communication rules. The skin
membrane plays only the role of communication environment, thus it contains
only communication rules and the objects which have been transferred from the
inner membranes. The transfer of an element between two inner membranes is
based on two steps: the transfer of the element from the source membrane to
the skin membrane and the transfer of the element from the skin membrane to
the target membrane. Another structure which corresponds to a fully connected
topology is that associated to tissue P systems.

Star topology. The membrane structure corresponding to a star topology with
s subpopulations is given by one skin membrane corresponding to the kernel
subpopulation, and s − 1 elementary membranes corresponding to the other
subpopulations (see Figure 1(b)). The main difference from the previous struc-
ture associated to a fully connected topology is that the skin membrane has
not only the role of an environment for communication, but it can contain also
evolution rules.

Linear topology. In this case a subpopulation p can communicate only with its
neighbor subpopulations p + 1 and p− 1. The corresponding structure is given

544 D. Zaharie and G. Ciobanu

1

3

2

4

1

3 4

1 2 3 4

0

1 2

43 1

2 3

4

2

1
2

34

(a) (b) (c)

Fig. 1. Communication topologies in distributed evolutionary algorithms and their
corresponding membranes structures. (a) Fully connected topology; (b) Star topology;
(c) Linear topology.

by nested membranes, each membrane corresponding to a subpopulation (see
Figure 1(c)).

Different situations appear in the case of ring and other topologies [4] which
are associated with cyclic graph structures. In these situations the corresponding
membrane structure is given by a net of membranes, or tissue P systems.

3.2 Communication Policies and Communication Rules

A communication policy refers to the way the communication is initiated, the
way the migrants are selected, and the way the immigrants are incorporated
into the target subpopulation. The communication can be initiated in a syn-
chronous way after a given number of generations, or in an asynchronous way
when a given event occurs. The classical variants of migrants selection are ran-
dom selection and selection based on the fitness value (best elements migrate
and the immigrants replace the worst elements of the target subpopulation).
The communication policies are similar to communication rules in membrane
computing, meaning that all communication steps can be described by some
typical communication rules in membrane systems.

There are two main variants for transferring elements between subpopula-
tions: (i) by sending a clone of an element from the source subpopulation to the
target subpopulation (pollination); (ii) by moving an element from the source
subpopulation to the target one (plain migration). An element is selected with
a given probability, pm, usually called migration probability. If the subpopula-
tions size should be kept constant, then in the pollination case for each new
incorporated element, another element (e.g., a random one, or the worst one)

Distributed Evolutionary Algorithms Inspired by Membranes 545

is deleted. In the case of plain migration a replacing element (usually randomly
selected) is sent from the target subpopulation to the source one.

In order to describe a random pollination process between s subpopulations
by using communication rules specific to a membrane system, we consider the
membrane structure described in Figure 1(a). Each elementary membrane corre-
sponds to a subpopulation, and besides the objects corresponding to the elements
in the subpopulation, it also contain some objects which are used for communica-
tion. These objects, denoted by rid, are identifiers of the regions with which the
subpopulation corresponding to the current region can communicate (in a fully
connected topology of s subpopulations the identifiers belong to {1, . . . , s}). On
the other hand, when the migration step is initiated, a given number of copies of
a migration symbol η are created into each elementary membrane. The multiplic-
ity of η is related with the migration probability pm (e.g., it is "mpm#, where m
is the size of subpopulation in the current region). Possible communication rules,
for each type of membrane, describing the pollination process are presented in
the following:

Elementary membranes. Let us consider the membrane corresponding to a sub-
population Si (i 	= 0). There are two types of rules: an exporting rule ensuring
the transfer of an element to the skin membrane which plays the role of an com-
munication environment, and an assimilation rule ensuring, if it is necessary,
that the subpopulation size is kept constant.
The export rule can be described as:

RSi

export : ηxSirSi

id → (xSi , here)(xSirSi

id d, out) (4)

The assimilation rule can be described as:

RSiass : dxSi → λ (5)

xSi denotes in both rules an arbitrary element from the subpopulation Si, and
rSi

id identifies the region where clones of the elements from the subpopulation Si

can be sent. At each application of RSi

export a copy of the symbol η is consumed,
and a copy of a deletion symbol d is created in the skin membrane.

Skin membrane. The communication rule corresponding to the skin membrane
is:

R0 : dxSirSi

id → (dxSi , inid) (6)
In the case of plain random migration, any element xSi from a source subpop-
ulation Si can be exchanged with an element xSj from a target subpopulation
Sj . Such a communication process is similar with that in tissue P systems [8]
described as (i, xSi/xSj , j). Other communication policies (e.g., those based on
elitist selection or replacement) can be similarly described.

3.3 Distributed Evolutionary Algorithms Inspired by Membrane
Systems

A first communication strategy inspired by membrane systems is that used in the
membrane algorithm proposed in [7] and also in [6]. The membrane algorithm

546 D. Zaharie and G. Ciobanu

proposed in [7] can be interpreted as a hybrid distributed evolutionary algorithm
based on a linear topology (Figure 1c) and a tabu search heuristic. The basic idea
of communication between membranes is that of moving the best element in the
inner membrane and the worst one in the outer membrane. The skin membrane
receives random elements from the environment. The general structure of such
an algorithm in presented in Algorithm 4.

Algorithm 4. Distributed evolutionary algorithm based on a linear topology
1: for all i ∈ {1, . . . , s} do
2: Random initialization of the subpopulation Si

3: end for
4: repeat
5: for all i ∈ {1, . . . , s} do
6: Apply an EA to Si for τ steps
7: end for
8: Apply local search to the best element in S1

9: for all i ∈ {1, . . . , s − 1} do
10: send a clone of the best element from Si to Si+1

11: end for
12: for all i ∈ {2, . . . , s} do
13: send a clone of the worst element from Si to Si−1

14: end for
15: Add a random element to S1

16: for all i ∈ {1, . . . , s} do
17: Delete the two worst elements of Si

18: end for
19: until a stopping condition is satisfied

Another communication topology, corresponding to a simple membrane struc-
ture but not very common in distributed evolutionary computing, is that of star
type (Figure 1b). In the following we propose a hybrid distributed evolutionary
algorithm based on this topology. Let us consider a membrane structure consist-
ing of a skin membrane containing s−1 elementary membranes. Each elementary
membrane i contains a subpopulation Si on which an evolutionary algorithm is
applied. This evolutionary algorithm can be based on a random application of
rules. The skin membrane contains also a subpopulation of elements, but dif-
ferent transformation rules are applied here (e.g., local search rules instead of
evolutionary operators). The communication is only between S1 (corresponding
to skin membrane) and the other subpopulations. The algorithm consists of two
stages: an evolutionary one and a communication one which are repeatedly ap-
plied until a stopping condition is satisfied. The general structure is described
in Algorithm 5.

The evolutionary stage consists in applying an evolutionary algorithm on each
of the subpopulations in inner membranes for τ iterations. The evolutionary
stage is applied in parallel to all subpopulations. The subpopulations in inner
membranes are initialized only at the beginning, thus the next evolutionary

Distributed Evolutionary Algorithms Inspired by Membranes 547

stage starts from the current state of the population. In this stage the only
transformation of the population in the skin membrane consists in applying a
local search procedure to the best element of the population.

The communication stage consists in sending clones of the best element from
the inner membranes to the skin membrane by applying the rule x∗ → (x∗, here)
(x∗, out) in each elementary membrane. Moreover, the worst elements from the
inner membranes are replaced with randomly selected elements from the skin
membrane. If the subpopulation S1 should have more than s elements, then at
each communication stage some randomly generated elements are added. The
effect of such a communication strategy is that the worst elements in inner
membranes are replaced with the best elements from other membranes or with
randomly generated elements. In order to ensure the elitist character of the
algorithm, the best element from the skin membrane is conserved at each step.
It represents the approximation of the optimum we are looking for.

Algorithm 5. Distributed evolutionary algorithm based on a star topology
1: for all i ∈ {1, . . . , s} do
2: Random initialization of the subpopulation Si

3: end for
4: repeat
5: for all i ∈ {2, . . . , s} do
6: Apply an EA to Si for τ steps
7: end for
8: Apply local search to the best element in S1

9: Reset subpopulation S1 (all elements in S1 excepting for the best one are deleted)

10: for all i ∈ {2, . . . , s} do
11: send a clone of the best element from Si to S1

12: end for
13: add random elements to S1 (if its size should be larger than s)
14: for all i ∈ {2, . . . , s} do
15: Replace the worst element of Si with a copy of a randomly selected element

from S1

16: end for
17: until a stopping condition is satisfied

4 Numerical Results

The aim of the experimental analysis was twofold: (i) to compare the behavior
of the evolutionary algorithms with random application of operators (Algorithm
3) and of those based on generational and steady-state strategies (Algorithms
1 and 2); (ii) to compare the behavior of distributed evolutionary algorithms
based on linear and star topologies (Algorithm 4 and Algorithm 5) with that of
an algorithm based on a fully connected topology and random migration [15].

The particularities of the evolutionary algorithm applied in each subpopula-
tion and the values of the control parameters used in the numerical experiments
are presented in the following.

548 D. Zaharie and G. Ciobanu

Evolutionary operators. The generation of offsprings is based on only one varia-
tion operator inspired from differential evolution algorithms [12]. It combines the
recombination and mutation operators, so an offspring zi =R(xi, x∗, xr1 , xr2 , xr3)
is obtained by

zj
i =

{
γxj

∗ + (1 − γ)(xj
r1
− xj

∗) + F · (xj
r2
− xj

r3
)N(0, 1), with probability p

(1 − γ)xj
i + γU(aj, bj), with probability1− p,

(7)

where r1, r2 and r3 are random values from {1, . . . ,m}, x∗ is the best element of
the population, F ∈ (0, 2], p ∈ (0, 1], γ ∈ [0, 1] and U(aj , bj) is a random value,
uniformly generated in domain of values for component j.

In the generational strategy an entire population of offsprings z1 . . . zm is
constructed by applying the above rule. The survivors are selected by comparing
the parent xi with its offspring zi and by choosing the best one. In the sequential
strategy, at each step is generated one offspring which replaces, if it is better,
the worst element of the population.

In the variant based on Algorithm 3 the following rules are probabilistically
applied: the recombination operator given by Equation (7) is applied with prob-
ability pR, the selection by deletion is applied with probability pSd and the
insertion of random elements is applied with probability pI . Since there are two
variants of the recombination operator (for γ = 0 and for γ = 1) each one
can be applied with a given probability: p0

R and p1
R. These probabilities satisfy

p0
R + p1

R = pR.

Test functions. The algorithms have been applied to some classical test functions
(see Table 1) used in empirical analysis of evolutionary algorithms. All these
problems are of minimization type, the optimal solution being x∗ ∈ D and
the optimal value being f∗ ∈ [−1, 1]. x∗ and f∗ have been randomly chosen
for each test problem. In all these tests the problem size was n = 30. The
domains values of decision variables are D = [−100, 100]n for sphere function,
D = [−32, 32]n for Ackley’s function, D = [−600, 600]n for Griewank’s function
and D = [−5.12, 5.12]n for Rastrigin’s function.

Parameters of the algorithms. The parameters controlling the evolutionary algo-
rithm are chosen as follows: m = 50 (population size), p = F = 0.5 (the control
parameters involved in the recombination rule given in Equation (7)), ε = 10−5

(accuracy of the optimum approximation).
We consider that the search process is successful whenever it finds a configura-

tion, x∗, for which the objective function has a value which satisfies |f∗−f(x∗)| <
ε by using less than 500000 objective functions evaluations. The ratio of success-
ful runs from a set of independent runs (in our tests the number of independent
runs of the same algorithm for different randomly initialized populations was 30)
is a measure of the effectiveness of the algorithm. As a measure of efficiency we
use the number nfe of objective function evaluations, both average value and
standard deviation.

Distributed Evolutionary Algorithms Inspired by Membranes 549

Table 1. Test functions

Name Expression

Sphere f1(x) = f∗ +
n∑

i=1

(xi − x∗
i)

2

Ackley f2(x) = f∗ − 20 exp

(
−0.2

√∑n
i=1(xi − x∗

i)2

n

)

− exp

(
1
n

n∑
i=1

cos(2π(xi − x∗
i))

)
+ 20 + e

Griewank f3(x) = f∗ +
1

4000

n∑
i=1

(xi − x∗
i)

2 −
n∏

i=1

cos((xi − x∗
i)/

√
i) + 1

Rastrigin f4(x) = f∗ +
n∑

i=1

((xi − x∗
i)

2 − 10 cos(2π(xi − x∗
i))) + 10

Table 2. Comparison of evolutionary rules applying strategies in a panmictic EA

Test Generational Steady state Algorithm 3
fct Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉
f1 30/30 27308±396 30/30 25223±469 30/30 24758± 1328
f2 30/30 37803±574 30/30 35223±611 29/30 27461± 2241
f3 30/30 29198±1588 30/30 27010±1016 28/30 20017 ± 1640
f4 19/30 335518±55107 18/30 296111±49316 29/30 193741± 113126

Results. Table 2 presents comparative results for generational, steady state and
the strategy based on random selection of operators (Algorithm 3). For the
first two strategies the evolutionary operator described by Equation (7) was
applied for γ = 0. For γ = 1 the success ratio of generational and sequential
variants is much smaller, therefore these results are not presented. The proba-
bilities for applying the evolutionary operators in Algorithm 3 were pR = 0.5
(p0

R = 0.35,p1
R = 0.15), pSd = 0.5, pI = 0. The initial population size was

m(0) = 50 and the lower and upper bounds were m∗ = m(0)/2 and m∗ = 2m(0)
respectively.

The results of Table 2 suggest that for the functions f1, f2, f3 the Algorithm 3
does not prove to be superior to generational and steady state strategies. How-
ever a significant improvement can be observed for function f4 which is a difficult
problem for EA based on recombination as in Equation (7). However, by chang-
ing the probability p involved in the recombination operator (e.g., p = 0.2 instead
of p = 0.5) a good behavior can be obtained also by generational and steady
state strategies. On the other hand, by dynamically adjusting the probabilities
of applying the evolutionary operators the behavior of Algorithm 3 can be im-
proved. For instance, if one choose pR = 0, pSd = 0.1 and pI = 0.9 whenever
the average variance of the population is lower than 10−8, then in the case of
Ackley function the success ratio is 30/30 and 〈nfe〉 is 19312 with a standard
deviation of 13862.

550 D. Zaharie and G. Ciobanu

The second set of experiments aimed to compare the communication strategies
inspired by membranes (Algorithm 4 and Algorithm 5) with a communication
strategy characterized by a fully connected topology and a random migration of
elements [15]. In all experiments the number of subpopulations was s = 5, the
initial size of each subpopulation was m(0) = 10 and the number of evolutionary
steps between two communication stages was τ = 100. In the case of random
migration the probability of selecting an element for migration was pm = 0.1.

Table 3. Behavior of distributed EAs based on a generational EA

Test Fully connected topology Linear topology Star topology
fct. and random migration (Algorithm 4) (Algorithm 5)

Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉
f1 30/30 30500±1290 30/30 30678±897 30/30 34943± 4578
f2 30/30 41000±2362 30/30 41349±1864 30/30 51230± 8485
f3 20/30 32500±2449 30/30 33013±3355 26/30 41628 ± 8353
f4 7/30 158357±66647 4/30 95538±10610 24/30 225280 ± 132636

The results in Table 3 show that the communication strategy based on the
linear topology (Algorithm 4) behaves almost similarly to the strategy based
on fully connected topology and random migration. On the other hand, the
communication strategy based on the star topology (Algorithm 5) has a different
behavior, characterized by a slower convergence. This behavior can be explained
by the higher degree of randomness induced by inserting random elements in the
skin membrane. However this behavior can be beneficial in the case of difficult
problems (e.g., Rastrigin) by avoiding premature convergence situations. In the
case of Rastrigin’s function the success ratio of Algorithm 5 is significantly higher
than in the case of the other two variants.

Table 4. Behavior of distributed EAs based on the random application of evolutionary
operators

Test Fully connected topology Linear topology Star topology
fct and random migration (Algorithm 4) (Algorithm 5)

Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉
f1 30/30 42033±4101 30/30 59840±11089 30/30 98280± 20564
f2 30/30 117033±80778 30/30 156363±103488 29/30 266783± 96539
f3 15/30 51065±14151 17/30 72901±38654 21/30 111227 ± 58491
f4 30/30 94822±22487 30/30 107412±25363 30/30 111752 ± 19783

The results in Table 4 show that by using the Algorithm 3 in each subpopu-
lation the convergence is significantly slower for Ackley and Griewank functions
while it is significantly improved in the case of Rastrigin function, both with
respect to other distributed variants and with the panmictic algorithms used in
the experimental analysis.

Distributed Evolutionary Algorithms Inspired by Membranes 551

These results suggest that structuring the population as in membrane sys-
tems, and applying the evolutionary operators in an unordered manner, we ob-
tain evolutionary algorithms with a new dynamics. This new dynamics leads to
significantly better results for certain evolutionary operators and test functions
(see results in Table 4 for Rastrigin’s function). However the hybrid approach is
not superior to the classical generational variant combined with a random migra-
tion for the other test functions. Such a situation is not unusual in evolutionary
computing, being accepted that no evolutionary algorithm is superior to all the
others with respect to all problems [14].

Algorithm 5 is somewhat similar to the membrane algorithm proposed by
Nishida in [7]. Both are hybrid approaches which combine evolutionary search
with local search, and are based on a communication structure inspired by mem-
brane systems. However there are some significant differences between these two
approaches:

(i) they use different communication topologies: linear topology in the mem-
brane algorithm of [7] vs. star topology in Algorithm 5; therefore they use
different membrane structures (see Figure 2);

(ii) they address different classes of optimization problems: combinatorial op-
timization vs. continuous optimization;

(iii) they are based on different evolutionary rules (genetic crossover and muta-
tion in [7] vs. differential evolution recombination here), and different local
search procedures (tabu search in [7] vs. Nelder-Mead local search [10] in
the current approach);

(iv) they are characterized by different granularity: micro-populations (e.g., two
elements) but a medium number of membranes (e.g., 50) in [7] vs. medium
sized subpopulations (e.g., 10) but a small number of membranes (e.g., 5);

(v) they are characterized by different communication frequencies: transfer of
elements between membranes at each step in the membrane algorithm vs.
transfer of elements only after τ evolutionary steps have been executed
(e.g., τ = 100).

Local Search (Nelder Mead)
+Random immigrants

EA EA

EA

Random immigrants

mGA
mGA

Tabu
Search

(a) (b)

Fig. 2. (a) Membrane structure of Algorithm 5.(b) Membrane structure of Nishida’s
approach.

552 D. Zaharie and G. Ciobanu

5 Conclusions

As it has been recently stated in [9], the membrane community is looking for
a relationship, a link between membrane systems and distributed evolutionary
algorithms. We claim that the main similarity is at a conceptual level, and each
important concept in distributed evolutionary computing has a correspondent
in membrane computing. This correspondence is summarized in the following
table:

Membrane system Distributed Evolutionary Algorithm
Membrane(region) Population
Objects Individuals
Evolution rules Evolutionary operators
Membrane structure Communication topology
Communication rules Communication policy

Besides these conceptual similarities, there are some important differences:

(i) membrane systems have an exact notion of computation, while evolutionary
computation is an approximate one;

(ii) membrane computing is based on symbolic representations, while evolution-
ary computing is mainly used together with numerical representations.

Despite these differences, ideas from membrane computing are useful in develop-
ing new distributed meta-heuristics. A first attempt was given by the membrane
algorithm proposed in [7]. However this first approach did not emphasized at all
the important similarities between membrane computing and distributed evolu-
tionary computing. This aspect motivates us to start a depth analysis of these
similarities, having the aim of describing the evolutionary algorithms by using
the formalism of membrane computing. As a result of this analysis, we present
in this paper a non-standard strategy of applying the evolutionary operators.
This strategy, characterized by an arbitrary application of evolutionary opera-
tors, proved to be behave differently than the classical generational and steady
state strategies when applied for some continuous optimization problems. On
the other hand, based on the relationship between membrane structures and
communication topologies, we introduce a new hybrid distributed evolutionary
algorithm effective in solving some continuous optimization problems. The al-
gorithms 3 and 5 proposed and analyzed in this paper are good and reliable
in approximating solutions of optimization problems. This fact proves that by
using ideas from membrane computing, new distributed metaheuristic methods
can be developed.

Besides this way of combining membrane and evolutionary computing there
are at least two other research directions which deserve further investigation:

(i) the use of evolutionary algorithms to evolve membrane structures;
(ii) the use of membrane systems formalism in order to understand the behavior

of distributed evolutionary algorithms.

Distributed Evolutionary Algorithms Inspired by Membranes 553

References

1. E. Alba, M. Tomassini. Parallelism and Evolutionary Algorithms, IEEE Transac-
tions on Evolutionary Computation, 6(5), pp. 443-462, 2002.

2. G. Ciobanu. Distributed Algorithms over Communicating Membrane Systems,
BioSystems 70(2), pp. 123–133, 2003.

3. A.E. Eiben, J.E. Smith. Introduction to Evolutionary Computing, Springer, 2002.
4. F. Herrera, M. Lozano. Gradual Distributed Real-Coded Genetic Algorithms, IEEE

Transactions on Evolutionary Computation, 41, pp. 43–63, 2002.
5. J.J. Hu, E. D. Goodman. The Hierarchical Fair Competition (HFC) Model for

Parallel Evolutionary Algorithms, Proceedings of Congress of Evolutionary Com-
putation, IEEE Computer Society Press, pp. 49–54, 2002.

6. A. Leporati, D. Pagani. A Membrane Algorithm for the Min Storage Problem
in H.J. Hoogeboom, Gh. Păun, G. Rozenberg (eds.), Pre-Proceedings of the 7th
Workshop on Membrane Computing, 17-21 July 2006, Leiden, pp. 397–416, 2006.

7. T.Y. Nishida. An Application of P Systems: A New Algorithm for NP-complete
Optimization Problems, in N. Callaos, et al. (eds.), Proceedings of the 8th World
Multi-Conference on Systems, Cybernetics and Informatics, V, pp. 109–112, 2004.

8. Gh. Păun. Membrane Computing. An Introduction, Springer, 2002.
9. Gh. Păun. Further Twenty-Six Open Problems in Membrane Computing,

Third Brainstorming Meeting on Membrane Computing (online document,
http://psystems.disco.unimib.it), 2005.

10. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical Recipes in
C, Cambridge University Press, 2002.

11. G. Rudolph. Convergence of Evolutionary Algorithms in General Search Spaces, in
Proc. of the third Congress on Evolutionary Computation, IEEE Computer Society
Press, pp. 50–54, 1996.

12. R. Storn, K. Price. Differential Evolution – A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Technical Report TR-95-012, ICSI,
1995.

13. M. Tomassini. Parallel and Distributed Evolutionary Algorithms: A Review, in K.
Miettinen, M. Mäkelä, P. Neittaanmki and J. Periaux (eds.): Evolutionary Algo-
rithms in Engineering and Computer Science, J. Wiley and Sons, pp. 113–133,
1999.

14. D.H. Wolpert, W.G. Macready. No Free Lunch Theorems for Optimization, IEEE
Transactions on Evolutionary Computing, 1, pp. 67–82, 1997.

15. D. Zaharie, D. Petcu. Parallel Implementation of Multi-population Differential
Evolution, in D. Grigoras, A. Nicolau (eds.), Concurrent Information Processing
and Computing, IOS Press, pp. 223–232, 2005.

Author Index

Alhazov, Artiom 123, 135
Andrei, Oana 154
Ardelean, Ioan I. 1

Bernardini, Francesco 49, 170, 521
Besozzi, Daniela 18, 298
Bianco, Luca 183, 197, 477
Brijder, Robert 215
Busi, Nadia 233, 250

Cámara, Miguel 42
Cardona, Mónica 266
Cavaliere, Matteo 215, 279
Cazzaniga, Paolo 298
Ceterchi, Rodica 477
Ciobanu, Gabriel 154, 314, 536
Colomer, M. Angels 266
Csuhaj-Varjú, Erzsébet 330, 352

Dassow, Jürgen 367
Dittrich, Peter 409

Fontana, Federico 183
Franco, Giuditta 382
Freund, Rudolf 123, 170, 330
Frisco, Pierluigi 395

Gheorghe, Marian 49, 197, 477, 521
Gontineac, Mihai 314
Gutiérrez-Naranjo, Miguel A. 233,

496
Guzzi, Pietro Hiram 382

Hinze, Thomas 409

Ibarra, Oscar H. 424

Kleijn, Jetty 66
Koutny, Maciej 66
Krasnogor, Natalio 197

Lenser, Thorsten 409
Leporati, Alberto 443
López, Damián 507
Lucanu, Dorel 154

Manca, Vincenzo 86, 382
Mardare, Radu 279
Margenstern, Maurice 352, 521
Mauri, Giancarlo 298
Mazza, Tommaso 382

Nagda, Hitesh 463

Oswald, Marion 123

Pagani, Dario 443
Păun, Andrei 100, 463
Pérez-Jiménez, Mario J. 49, 100,

266, 477, 496
Pescini, Dario 197, 298, 477

Riscos-Núñez, Agust́ın 215
Rodŕıguez-Patón, Alfonso 463
Rogozhin, Yurii 135
Romero-Campero, Francisco J. 49, 100,

197, 477
Romero-Jiménez, Alvaro 496
Rozenberg, Grzegorz 18, 215

Sburlan, Dragoş 215, 330
Sempere, José M. 507
Siepmann, Peter 197
Slavkovik, Marija 123

Vaszil, György 352, 367
Verlan, Sergey 521

Woodworth, Sara 424

Zaharie, Daniela 536
Zandron, Claudio 250
Zaragoza, Alba 266

	Frontmatter
	Invited Lectures
	Biological Roots and Applications of P Systems: Further Suggestions
	Formalizing Spherical Membrane Structures and Membrane Proteins Populations
	Quorum Sensing: A Cell-Cell Signalling Mechanism Used to Coordinate Behavioral Changes in Bacterial Populations
	A Modeling Approach Based on P Systems with Bounded Parallelism
	Synchrony and Asynchrony in Membrane Systems
	MP Systems Approaches to Biochemical Dynamics: Biological Rhythms and Oscillations
	Modeling Signal Transduction Using P Systems

	Regular Papers
	Extended Spiking Neural P Systems
	Towards a Characterization of P Systems with Minimal Symport/Antiport and Two Membranes
	Expressing Control Mechanisms of Membranes by Rewriting Strategies
	Tissue P Systems with Communication Modes
	Towards a Hybrid Metabolic Algorithm
	Towards a P Systems Pseudomonas Quorum Sensing Model
	Membrane Systems with External Control
	A Case Study in (Mem)Brane Computation: Generating Squares of Natural Numbers
	Computing with Genetic Gates, Proteins, and Membranes
	Classifying States of a Finite Markov Chain with Membrane Computing
	Partial Knowledge in Membrane Systems: A Logical Approach
	Tau Leaping Stochastic Simulation Method in P Systems
	P Machines: An Automata Approach to Membrane Computing
	Modeling Dynamical Parallelism in Bio-systems
	P Colonies with a Bounded Number of Cells and Programs
	P Finite Automata and Regular Languages over Countably Infinite Alphabets
	Mitotic Oscillators as MP Graphs
	Infinite Hierarchies of Conformon-P Systems
	A Protein Substructure Based P System for Description and Analysis of Cell Signalling Networks
	Characterizations of Some Restricted Spiking Neural P Systems
	A Membrane Algorithm for the Min Storage Problem
	P Systems with Symport/Antiport and Time
	Towards Probabilistic Model Checking on P Systems Using PRISM
	Graphical Modeling of Higher Plants Using P Systems
	Identifying P Rules from Membrane Structures with an Error-Correcting Approach
	Computational Completeness of Tissue P~Systems with Conditional Uniport
	Distributed Evolutionary Algorithms Inspired by Membranes in Solving Continuous Optimization Problems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

