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This volume represents the proceedings of the 5th Workshop on Membrane Computing and Biologi-

cally Inspired Process Calculi (MeCBIC 2011), held together with the 12th International Conference

on Membrane Computing on 23rd August 2011 in Fontainebleau, France.

MeCBIC is usually devoted to membrane computing and biologically inspired process calculi (am-

bients, brane calculi). This year we also attracted papers dealing with bio-inspired Petri nets in order to

promote collaboration between the Petri nets and membrane computing communities.

Biological membranes play a fundamental role in the complex reactions which take place in cells of

living organisms. Membrane systems were introduced as a class of distributed parallel computing devices

inspired by the observation that any biological system is a complex hierarchical structure, with a flow of

biochemical substances and information that underlies their functioning. The modelling and analysis of

biological systems has also attracted considerable interest from both the Petri nets and the process calculi

research communities. A deeper investigation of the relationships between these formalisms is interest-

ing, providing valuable cross fertilization of these research areas. Membrane computing deals with the

computational properties, making use of automata, formal languages, and complexity results. Certain

process calculi, such as mobile ambients and brane calculi, work also with notions of compartments and

membranes. Petri nets are used to model and analyze the biological systems.

The submitted papers describe biologically inspired models and calculi, biologically inspired lan-

guages, properties of biologically inspired models and languages, theoretical links and comparison be-

tween different models. All submitted papers were reviewed by three or four referees. We thank the

authors and reviewers for doing an excellent job; without their enthusiastic work this volume would not

have been possible. We are indebted to the members of the Programme Committee:

Bogdan Aman Jean-Louis Giavitto Gethin Norman Jason Steggles

Roberto Barbut S.N. Krishna Andrew Phillips Angelo Troina

Marco Bernardo Jean Krivine G. Michele Pinna Sergey Verlan

Paola Bonizzoni Paolo Milazzo Franck Pommereau Gianluigi Zavattaro.

Gabriel Ciobanu (chair)

We express our gratitude to the invited speakers Jetty Kleijn and Cosimo Laneve for their very interesting

talks. The first talk presents similarities and differences between Petri nets and membrane systems, and

how to enhance the Petri nets in order to faithfully model the dynamics of the biological phenomena

represented by membrane systems and reaction systems. The second talk deals with reversibility in

massive concurrent systems; reversible structures for massive concurrent systems are introduced and

studied, and an equivalence on computations that abstracts away from the order of causally independent

reductions is defined.



The main aim of the workshop is to bring together researchers working on membrane computing,

in biologically inspired process calculi, and in Petri nets in order to present their recent results and to

discuss new ideas concerning these formalisms, their properties and relationships. Many thanks to Sergey

Verlan and Maciej Koutny for their help in organizing the workshop, and to Bogdan Aman for his help

in preparing this volume.
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Reversing a (forward) computation history means undoing the history. In concurrent systems, undo-

ing the history is not performed in a deterministic way but in a causally consistent fashion, where states

that are reached during a backward computation are states that could have been reached during the com-

putation history by just performing independent actions in a different order. In RCCS, Danos and Krivine

achieve this by attaching a memory m to each process P, in the monitored process construct m : P. Mem-

ories in RCCS are stacks of information needed for processes to backtrack. Alternatively, Phillips and

Ulidowski propose a technique for reversing process calculi without using memories. In this technique,

the structure of processes is not destroyed and the progress is noted by underlining the actions that have

been performed. In order to tag the communicating processes, they generate unique identifiers on-the-fly

during the communications.

These foundational studies of reversible and concurrent computations have been largely stimulated

by areas such as chemical and biological systems – called massive concurrent systems in the following –

where operations are reversible, and only an appropriate injection of energy and/or a change of entropy

can move the computational system in a desired direction.

However there is a mismatch between chemical and biological systems and the above concurrent

formalisms. In the latter ones, reversibility means desynchronizing processes that actually interacted in
the past while, in massive concurrent systems, reversibility means reversibility of configurations. In order

to make massive concurrent systems reversible with the process calculus meaning, one has to remember

the position and momentum of each molecule, which is precisely contrary to the well-mixing assumption

of biochemical soups, namely that the probability of collision between two molecules is independent of

their position (cf. Gillespie’s algorithm).

To comply with the well-mixing assumption, notions of causality and independence of events need

to be adapted to reflect the fundamental fact that different processes of the same species are indistin-

guishable. Their interactions can cause effects, but not to the point of being able to identify the precise

molecule that caused an effect. We introduce an algebra for massive concurrent systems, called reversible
structures, and, following Lévy, we define an equivalence on computations that abstracts away from the

order of causally independent reductions – the permutation equivalence. Because of multiplicities this

abstraction does not always exchange independent reductions. For example, two reductions that use a

same signal cannot be exchanged because one cannot grasp whether the two reductions are competing on

a same signal or are using two different occurrences of it. Notwithstanding this inadequacy, permutation

equivalence in reversible structures yields a standardization theorem that allows one to remove converse

reductions from computations.

Reversible structures may implement significant CCS-style interaction patterns (Cardelli already no-

ticed this by studying a class of reversible systems – the DNA chemical systems). Consider for example

a binary operator that takes two input molecules and produces one unrelated output molecule when (and

only when) both inputs are present. It is too difficult to engineer the input machinery in order to any pos-

sible pattern of interaction, and to produce the output molecule out of their own structure. This operator



is therefore implemented by an artifact that binds the two inputs one after the other and then releases the

output out of its own structure. Of course, if the second input never comes it must release the first input,

because the first input may be legitimately used by some other operator. This means that the binding

of the first input must be reversible, and the natural reversibility of reversible structures is exploited to

achieve the correctness.

In order to bridge the gap between reversible process calculi and massive concurrent systems, we

consider reversible structures where multiplicities are dropped (terms have multiplicity one) – the coher-
ence constraint. Coherence in this strong sense is not realizable in well-mixed chemical solutions, but

may become realizable in the future if we learn how to control individual molecules. We demonstrate

that coherent reversible structures implement the asynchronous fragment of RCCS.

The exact distance between coherent and uncoherent reversible structures (that is, between reversible

process calculi and massive systems) is manifested by the computational complexity of the reachability

problem (verifying whether a configuration is reachable from an initial one). We demonstrate that reach-

ability in coherent reversible structures has a computational complexity that is quadratic with respect to

the size of the structures, a problem that is EXPSPACE-complete in generic structures.

Our study prompts a thorough analysis of reversible calculi where processes have multiplicities and

the causal dependencies between copies may be exchanged. Open questions are (i) What synchronization

schemas can be programmed in massive concurrent systems? (ii) Are there other constraints, different

than coherence, such that relevant bio-chemical properties retains better algorithms than in standard

structures? (iii) What is the theory of massive (reversible) systems with irreversible operators and what

is the relationship with standard programming languages?
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Petri nets are a general, well-established model of concurrent and distributed computation featuring

a wealth of tools for the analysis and verification of their behavioural properties. On the other hand,

to understand specific biological processes different formalisations have been proposed. Examples here

are membrane systems and reaction systems which are close abstractions of the functioning of the living

cell. Membrane systems are a computational model inspired by the way chemical reactions take place in

cells that are divided by membranes into compartments. The central idea behind reaction systems is that

the functioning of a living cell is based on interactions between (a large number of) individual reactions,

and moreover these interactions are regulated by two main mechanisms: facilitation and inhibition.

In this talk we are concerned with the intrinsic similarities and differences between Petri nets on the

one hand, and membrane systems and reaction systems on the other hand. In particular, we are interested

in the benefits that can result from establishing strong semantical links between the latter two models

and Petri nets. Our aim is to enhance the Petri net model in order to faithfully model the dynamics of the

biological phenomena/processes represented by membrane systems and reaction systems.

After introducing Petri nets, we will outline how to understand and formalise their causality and

concurrency semantics.

Then we turn to membrane systems. Like membrane systems, Petri nets are in essence multiset

rewriting systems. Using this key commonality we describe a faithful translation from basic membrane

systems to Petri nets. To capture the compartmentalisation of membrane systems, the Petri net model has

to be extended with localities which in turn leads to the idea of locally synchronised executions. In the

thus extended model the standard causality semantics is no longer sound, and we will discuss possible

solution to this problem.

Next we describe reaction systems which are a recently proposed model aimed at investigating pro-

cesses carried by biochemical reactions. Now, the resulting computational model is remarkably different

since in reaction systems, biochemical reactions are modeled using a qualitative rather than a quantitative

approach. As a consequence, counting — and hence the multiset based calculus implemented in Petri

nets — is no longer appropriate. This insight leads to a new class of Petri nets, called set-nets, a novel

and challenging class of nets with intriguing (and yet to be discovered) properties.

We conclude the talk by demonstrating how in turn set-nets with localities correspond to membrane

systems with qualitative evolution rules.

Altogether this talk aims to demonstrate the fruitful two-way interaction between biological models

and Petri nets. Both membrane systems and reaction systems have inspired the introduction of new and



relevant extensions to the basic net model, whereas having a Petri net semantics opens the way for a new

understanding, analysis and synthesis techniques for biologically inspired systems.

The presentation is essentially self-contained; in particular, all the necessary details concerning the

three models will be provided.
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Testing equivalence was originally defined by De Nicola and Hennessy in a process algebraic set-

ting (CCS) with the aim of defining an equivalence relation between processes being less discrim-

inating than bisimulation and with a natural interpretation in the practice of system development.

Finite characterizations of the defined preorders and relations led to the possibility of verification

by comparing an implementation with a specification in a setting where systems were seen as black

boxes with input and output capabilities, thus neglecting internal undetectable behaviours.

In this paper, we start defining a porting of the well-established testing theory into membrane

computing, in order to investigate possible benefits in terms of inherited analysis/verification tech-

niques and interesting biological applications. P Algebra, a process algebra for describing P Systems,

is used as a natural candidate for the porting since it enjoys the desirable property of being composi-

tional and comes with other observational equivalences already defined and studied.

We consider P Systems with multiple membranes, dissolution, promoters and inhibitors. Notions

as observable and test are conveniently rephrased in the membrane scenario, where they lack as

native notions and have a not so obvious mean. At the same time, concepts as promoters, inhibitors,

membrane inclusion and dissolution are emphasized and exploited in the attempt of realizing a testing

machinery able to formalize several features, which are proper of membranes and, as a consequence,

worth being highlighted as basic observables for P Systems. The new testing semantics framework

inherits from the original one the ability to define qualitative system properties. Moreover, it results

to be suitable also to express quantitative aspects, a feature which turns out to be very useful for the

biological domain and, at the same time, puts in evidence an expected high expressive power of the

framework itself.

1 Introduction

Membrane computing, the research field initiated by Gheorghe Păun [22, 20], aims to define compu-

tational models, called P Systems, which are inspired by the behaviour and structure of the living cell.

Since its introduction, the P System model has been intensively studied and developed: many variants of

membrane systems have been proposed and regular collective volumes are annually edited.

The most investigated membrane computing topics are related to the computational power of different

variants, their capabilities to solve hard problems, decidability, complexity aspects and hierarchies of

classes of languages produced by these devices.



In the last years, there have also been significant developments in using the P systems paradigm for

modelling, simulation and formal verification [11]. Although such topics have been exercised to different

classes of P Systems [3], testing has been quite neglected in this context.

1.1 Testing and P Systems

Testing P Systems has been so far considered by using certain coverage principles. More often the

rule coverage is utilised, by taking into account different contexts. Such contexts - typically grammar,

automaton and model checking techniques - are described in depth in [14, 15]:

- (Grammar-based methods) In order to test an implementation developed from a P System spec-

ification in a grammar-based method, a test set is built, in a black box manner, as a finite set

of sequences containing references to rules. Although there are similarities between context-free

grammars utilised in grammar testing and basic P Systems, there are also major differences that

pose new problems in defining testing methods and strategies to obtain test sets. Some of the

difficulties encountered when some grammar-like testing procedures are introduced, are related to

the hierarchical compartmentalisation of the P System model, parallel behaviour, communication

mechanisms, the lack of a non-terminal alphabet and the use of multisets of objects instead of sets

of strings.

- (Finite-state machine methods) Finite state machine-based testing is widely used for software test-

ing. It provides very efficient and exhaustive testing strategies and well investigated methods to

generate test sets. In this case it is assumed that a model of the system under test is provided in the

form of a finite state machine. In the P System model case, such a machine is typically obtained

from a partial computation in a P System.

A different approach uses a special class of state machines, called X-machines. Given that the

relationships between various classes of P Systems and these machines are well studied [1] and

the X-machine-based testing is well developed, standard techniques for generating test sets based

on X-machines can be adapted to the case of P Systems [16].

Specific coverage criteria are defined in the case of finite state machine-based testing. One such

criterion, called transition coverage, aims to produce a test set in such a way that every single

transition of the model is covered.

- (Model checking-based methods) The generation of different test sets, according to certain cov-

erage criteria, can be done by utilising some specific algorithms or by applying some tools that

indirectly will generate test sets. Such tools, like model checkers, can be used to verify some

general properties of a model and when these are not fulfilled then some counter-examples are

produced, which act as test sets in certain circumstances.

In the case of P Systems, an encoding based on a Kripke structure associated with the system is

provided for model checkers like NuSMV [17] or SPIN [18]. This relies on certain operations

defined in [12] and encapsulates the main features of a P System, including maximal parallelism

and communication, but within a finite space of values associated with the objects present in the

system.

The rule coverage principle is expressed by using temporal logics queries available in such con-

texts. By negating specific coverage criteria, counter-examples are generated.
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1.2 Our contribution: a Process Algebra-based testing machinery for P Systems

The community of Process Algebra taught us that the usefulness of formalisms for the description and

the analysis of reactive systems is closely related to the underlying notion of behavioural equivalence.

Such an equivalence should formally identify behaviours that are informally indistinguishable from each

other, and at the same time distinguish between behaviours that are informally different. The authors

of [4] go toward such a direction, proposing some observational equivalences on a suitable algebraic

notation of P Systems.

One way of determining behavioural equivalences is by observing the systems we are interested in,

experimenting on them, and drawing conclusions about the behaviour of such systems based on what we

see, e.g., testing the system. Such an approach has been formalized in the Process Algebra setting by a

suitable testing machinery [13], pivoting on a restricted form of context, called observer.

The way to exercise (evaluate) a process on a given observer is done by letting the considered process

and the given observer to run in parallel and by looking at the computations which the running test can

perform.

It is worth noting that internal actions of the process under test do not affect, but the case in which

they lead to divergence, the satisfaction of the test: they are not observable as input or outputs, thus they

cannot be perceived by an external user that is experimenting on the system. This idea is typical of a

testing framework: systems are considered black boxes and only observables matter in their comparison.

This characteristic is imported in the testing notion introduced in this paper. Internal production and

migration of objects in the P system under test will not be seen by the observer: only the objects injected

into the system by the observer and the objects that are returned from the system to the observer will

matter.

Another typical characteristic of the testing framework, worth underlining, is that the observer must

have the ability to force the system under test to follow certain paths among all the possible ones. This is

in order to investigate, for instance, what the system can do after a quite specific sequence of inputs, or

after a predefined sequence of inputs/outputs. In order to guarantee this possibility, and thus giving the

equivalence a discriminating power similar to the one in the original setting, in the testing framework we

introduce in this paper we exploit promoters and inhibitors. Without them the intrinsic nature of P system

behaviour, in particular maximal parallelism, would have prevented this central feature, thus invalidating

the porting.

The characteristics discussed above are central in the idea of testing equivalence. Bisimulation-

based equivalences, even the weak one, are highly discriminating and do not reflect a practical view

of “testing” a system: usually, and this is always the case for biological systems, the whole internal

structure/dynamics of the system is not known, but it is required to check bisimulation. The only way

to study such systems is to interact with them and analyse what can be observed from experiments,

with the means that are available. Along this idea, we start with this work the definition of a testing

framework with the characteristics above, giving initial theoretical results and some simple examples

of tests, without any particular biological impact. However, we intend as future work to investigate

and exploit the analogy of the defined notion of testing with biological experiments in order to give more

evidence of the biological relevance of the work. We can devise, for instance, techniques for experimental

planning that could be of great interest for experimental biologists, along the same line of the techniques

proposed in [2].

In [13], different equivalence relations (e.g., may and must testing equivalences) between systems

are defined. Two systems are considered equivalent if they pass exactly the same set of observers. Such

equivalences are further broken down into preorder relations on systems, i.e., relations that are reflexive

9



and transitive (though not necessarily symmetric). Formally, given a process P and an observer o,

- P may o means that there exists a successful computation from the test P |o (where | is the parallel

operator, and successful means that there is a state where the special action ω is enabled);

- P must o means that every maximal computation from the test P |o is successful;

- The preorder P ≤sat Q means that for any observer o, P sat o implies Q sat o, where sat denotes

may or must;

- The equivalence P ≈sat Q means P ≤sat Q and Q ≤sat P.

In [23] and in [19] a new testing semantics was proposed to incorporate the fairness notion: the fair-

testing (aka should-testing) semantics. In contrast to the classical must-testing (semantics), fair-testing

abstracts from certain divergences, e.g., infinite loops of τ (invisible) actions. This is achieved by stating

that the observer o is satisfied if success always remains within reach in the system under observer. In

other words, P fair o holds if in every maximal computation from P | o every state can lead to success

after finitely many interactions.

On the basis of P Algebra, the algebraic notation of P Systems introduced in [4] (see Section 2), we

adapt for P Systems the testing machinery defined in [13] (see Section 3).

We introduce the concept of context in case of P Systems expressed as P Algebra terms. Using this

concept, we then define what we consider an observer, which is again a P Algebra term with certain

characteristics. This leads naturally to the definition of computations of a running test, i.e. a tested

system running together with an observer. Then, following the classical definition of [13], we define the

success of a running test in the two well-known versions of may and must1. Finally, the testing preorders

are introduced, together with the induced equivalence relations. More in detail:

- An observer consists of a membrane structure in which the skin membrane contains several mem-

branes (with possibly sub-membranes) one of which is a hole, i.e., a place where another fully

defined P System can be placed and run. The skin membrane of this tested P System instantiates

the hole membrane and becomes a full component of the running test.

- P Systems that are observers are distinguished from P Systems that are normal, testable processes

similarly to the classical testing approach, where a particular action, called ω , is used to denote the

success of a test and, if the running test is able to perform this action, then the computation under

consideration is a successful one. Similarly, in our framework this is easily translated introducing

a fresh, particular object ω that, when sent out of the skin membrane of the running test, denotes

the success of the computation.

- As usual in testing frameworks, we consider only the behaviours of the running test in which no

output is produced (this corresponds to considering only invisible action (e.g., τ) computations in a

CCS-like Process Algebra). This is needed to explore all possible behaviours of the tested system

while running together with the observer.

An important result consists of the fact that, differently from the original testing semantics frame-

work, the one proposed here for P Systems results to be suitable to define both qualitative and (above all)

quantitative system properties. This is mainly because the formalism of P system is expressive enough

to express both qualitative and quantitative aspects. However, these features are crucial for the biological

domain. In Section 4, we put quantitative capabilities in evidence defining examples of quantitative tests,

both concerning time and number of individuals, of a system modelling a population of individuals that

1In this paper we do not consider fair testing.
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can reproduce both sexually and asexually. Note that these examples are to be intended only as explana-

tion of the concepts introduced in the paper and not as examples of verifications in the model-checking

style. The main direction of continuing this work towards verification is to find finite characterizations

of the resulting testing equivalence, possibly with respect to suitable classes of observers, and thus using

them to compare the expected behaviour of a finite state system with its actual behaviour.

2 Background

We first briefly recall the definition of P Systems [22, 20]. Then, we give the definition of the syntax

and the semantics of the P Algebra as it was presented in [4], where a class of P Systems including

rule promoters and inhibitors [10] was considered. The original formulation of the P Algebra, without

promoters and inhibitors, can be found in [7, 6] that we refer as a more detailed presentation of the

semantics.

2.1 P Systems with Promoters and Inhibitors

A P System consists of a hierarchy of membranes, each of them containing a multiset of objects, rep-

resenting molecules, a set of evolution rules, representing chemical reactions, and possibly other mem-

branes. Each evolution rule consists of two multisets of objects, describing the reactants and the products

of the chemical reaction. A rule in a membrane can be applied only to objects in the same membrane.

Some objects produced by the rule remain in the same membrane, others are sent out of the membrane,

others are sent into the inner membranes (assumed to exist) which are identified by their labels.

In the original definition of P Systems, rules are applied with maximal parallelism, namely it cannot

happen that a rule is not applied when the objects needed for its triggering are available. Here, we assume

that at each step at least one evolution rule in the whole system is applied, and also that more than one

rule and several occurrences of the same rule can be applied at the same step (to different objects). In

other words, we assume that at each step a multiset of evolution rule instances is non-deterministically

chosen and applied in each membrane, such that in the whole system at least one rule is applied. This is

a general form of parallelism that is better suited than the maximal one to describe events in biological

systems.

In P Systems with promoters and inhibitors an evolution rule in a membrane may have some promot-
ers and some inhibitors. Promoters are objects that are required to be present and inhibitors are objects

that are required to be absent in the membrane m in order to enable the application of the rule. Promoters

will be denoted simply as objects, namely a,b,c, . . ., while inhibitors will be denoted as objects preceded

by a negation symbol, namely ¬a,¬b,¬c, . . ..
We denote with DV the set of all possible promoters and inhibitors symbols that can be obtained

from an alphabet V , namely DV =V ∪¬V . Given a set of promoter and inhibitor symbols D, we denote

with D+ and D− the sets of objects containing all the objects occurring in D as promoters and all the

objects occurring in D as inhibitors, respectively. We remark that D+ and D− are sets of objects, hence

elements on D− will not be preceded by ¬. Moreover, with ¬D we denote the set obtained by transform-

ing each promoter in D into an inhibitor and vice versa. As an example, if D = {a,¬b,¬c,d} we have

D+ = {a,d}, D− = {b,c} and ¬D = {¬a,b,c,¬d}.

We assume that all evolution rules have the following form, where u,vh,vo,v1, . . . ,vn are multisets of

objects, {l1, . . . , ln} is a set of membrane labels in IN, and D is a set of promoters and inhibitors:

u → (vh,here)(vo,out)(v1, inl1) . . .(vn, inln)|D .
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A rule can be applied only if requirements expressed by D are satisfied. When a rule is applied, the

multiset of objects u is replaced by vh, multiset vo is sent to the parent membrane, and each vi is sent to

inner membrane li. Promoters are not consumed by the application of the corresponding evolution rule

and a single occurrence of a promoter may enable the application of more than one rule in each evolution

step. Similarly, a single occurrence of an inhibitor forbids the application of all the evolution rules in

which it appears. We assume that the set of promoters and inhibitors D of an evolution rule does not

contain the same object both as a promoter and as an inhibitor, namely D+∩D− =∅, and that consumed

objects u are not mentioned among inhibitors, namely u∩D− =∅.

Definition 1. A P System Π is a tuple (V,μ,w1, . . . ,wn,R1, . . . ,Rn) where:

• V is an alphabet whose elements are called objects;

• μ ⊂ IN× IN is a membrane structure, such that (l1, l2) ∈ μ denotes that the membrane labelled by
l2 is contained in the membrane labelled by l1;

• w j with 1 ≤ j ≤ n are multisets of objects in V associated with the membranes 1, . . . ,n of μ;

• R j with 1 ≤ j ≤ n are finite sets of evolution rules associated with the membranes 1, . . . ,n of μ .

2.2 The P Algebra: Syntax and Semantics

In this section we recall the P Algebra, the algebraic notation of P Systems we have introduced in [7],

with slight modifications introduced in [4]. We assume V to be an alphabet of objects and we adopt the

usual string notation to represent multisets of objects in V . For instance, to represent {a,a,b,b,c} we

may write either aabbc, or a2b2c, or (ab)2c. We denote with Set(u) the support of multiset u, namely

the set of all the objects occurring in u. We denote multiset (and set) union as string concatenation,

hence we write u1u2 for u1 ∪ u2. Moreover, we shall write u(a) for the number of occurrences of a
in multiset u. For the sake of legibility, we shall write u → vhvo{vli}|D for the generic evolution rule

u → (vh,here)(vo,out)(v1, inl1) . . .(vn, inln)|D.

The abstract syntax of the P Algebra is defined as follows.

Definition 2 (P Algebra). The abstract syntax of membrane contents c, membranes m, and membrane

systems ms is given by the following grammar, where l ranges over IN and a over V :

c ::= (∅,∅)
∣∣ (u → vhvo{vli}|D,∅)

∣∣ (∅,a)
∣∣ c∪ c

m ::= [l c ]l
ms ::= ms | ms

∣∣ μ(m,ms)
∣∣ F(m)

A membrane content c represents a pair (R,u), where R is a set of evolution rules and u is a multiset

of objects. A membrane content is obtained through the union operation _∪_ from constants representing

single evolution rules and single objects, and can be plugged into a membrane with label l by means of

the operation [l _ ]l of membranes m. Hence, given a membrane content c representing the pair (R,u)
and l ∈ IN, [l c ]l represents the membrane having l as label, R as evolution rules and u as objects.

Membrane systems ms have the following meaning: ms1 | ms2 represents the juxtaposition of ms1

and ms2, μ(m,ms) represents the hierarchical composition of m and ms, namely the containment of ms
in m, and F(m) represents a flat membrane, namely it states that m does not contain any child membrane.

Juxtaposition is used to group sibling membranes, namely membranes all having the same parent in a

membrane structure. This operation allows hierarchical composition μ to be defined as a binary operator

on a single membrane (the parent) and a juxtaposition of membranes (all the children).
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Note that every P System has a corresponding membrane system in the P Algebra, and that there

exist membrane systems which do not correspond to any P System.

In what follows we will often write [[l c ]]l for F([l c ]l). We shall also often write (R,u) where

R = {r1, . . . ,rn} is a set of rules and u = o1 . . .om a multiset of objects rather than (r1,∅)∪ . . .∪(rn,∅)∪
(∅,o1)∪ . . .∪ (∅,om). Moreover, we shall often omit parentheses around membrane contents.

The semantics of the P Algebra is given as a labelled transition system (LTS). The labels of the LTS

can be of the following forms:

• (u,v,v′,D, I,O↑,O↓), describing a computation step performed by a membrane content c, where:

– u is the multiset of objects consumed by the application of evolution rules in c, as it results

from the composition, by means of _∪_, of the constants representing these evolution rules.

– v is the multiset of objects in c offered for the application of the evolution rules, as it results

from the composition, by means of _∪_, of the constants representing these objects. When

operation [l _ ]l is applied to c, it is required that v and u coincide.

– v′ is the multiset of objects in c that are not used to apply any evolution rule and, therefore,

are not consumed, as it results from the composition, by means of _∪ _, of the constants

representing these objects.

– D is a set of promoters and inhibitors required to be present and absent, respectively, by

the application of evolution rules in c. More precisely, D− contains all the inhibitors of the

applied evolution rules in c, whereas D+ is a subset of the promoters of those rules. Such a

subset contains only those objects that are not present in the multiset of objects of c.

– I is the multiset of objects received as input from the parent membrane and from the child

membranes.

– O↑ is the multiset of objects sent as an output to the parent membrane.

– O↓ is a set of pairs (li,vli) describing the multiset of objects sent as an output to each child

membrane li.

• (I ↓, I↑,O↑,O↓,app), describing a computation step performed by a membrane m, where: I ↓ is a

set containing only the pair (l, I) where l is the label of m and I is the multiset of objects received

by m as input from the parent membrane, I↑ is the multisets of objects received from the child

membranes of m, and O↑ and O↓ are as in the previous case. Finally, app ∈ {0,1} is equal to 0 if

no rule has been applied in m in the described computation step, and it is equal to 1 otherwise.

• (I ↓,O↑,app), describing a computation step performed by a membrane system ms, where I ↓,
O↑ and app are as in the previous cases.

For the sake of legibility, in transitions with labels of the first form we shall write the first four

elements of the label under the arrow denoting the transition and the other elements over the arrow. Now,

LTS transitions are defined through SOS rules [21]. We give here a very short explanation of such rules.

Please, refer to [7] for more details.

We start by giving in Fig. 1 the transition rules for membrane contents. Rule (mc1n) describes n
simultaneous applications of an evolution rule for any n ∈ IN. Rule (mc2) describes the case in which

an evolution rule is not applied because a subset D′ of the promoters and inhibitors in D it requires to

be present and absent, respectively, are assumed not to satisfy the requirements. Rules (mc3),(mc4) and

(mc5) describe the transitions performed by membrane contents consisting of a single object and the

transitions performed by an empty membrane content.

Rule (u1) describes the behaviour of a union of membrane contents. In this transition rule we use

some auxiliary notations. Given two sets O↓
1 and O↓

2 representing two outputs to inner membranes,
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I ∈V ∗ n ∈ IN

(u → vhvo{vli}|D,∅)
I,vn

o,{(li,vn
li
)}

−−−−−−−→
un,∅,∅,D

(u → vhvo{vli}|D, Ivn
h)

(mc1n)

I ∈V ∗ D′ ⊆ ¬D D′ �=∅

(u → vhvo{vli}|D,∅)
I,∅,∅−−−−−−−→

∅,∅,∅,D′ (u → vhvo{vli}|D, I)
(mc2)

I ∈V ∗

(∅,a)
I,∅,∅−−−−−−−→

∅,a,∅,∅
(∅, I)

(mc3)
I ∈V ∗

(∅,a)
I,∅,∅−−−−−−−→

∅,∅,a,∅
(∅, Ia)

(mc4)

I ∈V ∗

(∅,∅)
I,∅,∅−−−−−−−→

∅,∅,∅,∅
(∅, I)

(mc5)

x1

I1,O
↑
1,O

↓
1−−−−−→

u1,v1,v′1,D1

y1 x2

I2,O
↑
2,O

↓
2−−−−−→

u2,v2,v′2,D2

y2

(D−
1 ∪D−

2 )∩Set(v1v′1v2v′2) =∅ D1 ∩¬D2 =∅ D = (D1D2)\Set(v1v′1v2v′2)

x1 ∪ x2

I1I2,O
↑
1O↑

2,O
↓
1∪INO↓

2−−−−−−−−−−−→
u1u2,v1v2,v′1v′2,D

y1 ∪ y2

(u1)

Figure 1: Transition rules for membrane contents and unions of membrane contents.

we write O↓
1 ∪IN O↓

2 to denote the set {(l,uv) |(l,u) ∈ O↓
1 ∧ (l,v) ∈ O↓

2}∪{(l,u) |(l,u) ∈ O↓
1 ∧�v.(l,v) ∈

O↓
2}∪{(l,v) |(l,v) ∈ O↓

2 ∧�u.(l,u) ∈ O↓
1}.

In Fig. 2 we give transition rules for individual membranes, juxtaposition and hierarchical compo-

sition. Note that from the transition label of the membrane content we have no information about the

objects that have been produced by the applied evolution rules. Rules (m1) and (m2) describe the tran-

sitions performed by a membrane with label l. In particular, (m1) describes the case in which no objects

are received as an input from the external membrane, while (m2) describes the case in which a multiset

of objects I1 �= ∅ is received. In these rules app is set to zero if no evolution rule is applied (u = ∅),

and it is set to one if at least one rule is applied (u �=∅). Rule ( f m1) allows us to infer the behaviour of

a flat membrane [[l c ]]l = F([l c ]l) from the behaviour of membrane [l c ]l . Rule ( jux1) allows us to infer

the behaviour of a juxtaposition of two membrane structures from the behaviours of the two structures.

Finally, rule (h1) describes the behaviour of a hierarchical composition of membranes. In this rule we

assume � to be an equivalence relation on sets of pairs (l,u) with l ∈ IN and u ∈V ∗, such that, given two

such sets I1 and I2, then I1 �I2 holds if and only if (I1 \{(l,∅) | l ∈ IN}) = (I2 \{(l,∅) | l ∈ IN}).
In the last two rules app is set to one if at least one between app1 and app2 is equal to one, namely

app = max(app1,app2). This means that at least one rule has been applied in the whole composition.

We conclude by defining a system trace as a sequence of internal information given by an execution of

a P Algebra term. We assume that the system can send objects out of the outmost membrane, but cannot

receive objects from outside. This requirement corresponds to the fact that in a P System objects cannot

be received by the outmost membrane from the external environment. Note that executions containing

steps in which no rule is applied, namely those with 0 as last element of the label, are not considered.

Definition 3 (Trace). A trace of a membrane system ms with alphabet V is a (possibly infinite) sequence
w of outputs such that, for any O↑

i and msi with i ∈ IN+
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x
I,O↑,O↓
−−−−→
u,u,v′,D

y app =

{
0 if u =∅

1 otherwise
D+ =∅

[l x ]l
∅,I,O↑,O↓,app−−−−−−−−→ [l y ]l

(m1)

x
I1I2,O↑,O↓
−−−−−−→

u,u,v′,D
y app =

{
0 if u =∅

1 otherwise
D+ =∅ I1 �=∅

[l x ]l
{(l,I1)},I2,O↑,O↓,app−−−−−−−−−−−−→ [l y ]l

(m2)

x
I ↓,∅,O↑,∅,app−−−−−−−−−→ y

F(x)
I ↓,O↑,app−−−−−−→ F(y)

( f m1)
x1

I1,O
↑
1,app1−−−−−−−→ y1 x2

I2,O
↑
2,app2−−−−−−−→ y2

x1|x2

I1I2,O
↑
1O↑

2,max(app1,app2)−−−−−−−−−−−−−−−−→ y1|y2

( jux1)

x1

I ↓
1 ,I

↑
1 ,O

↑
1,O

↓
1,app1−−−−−−−−−−→ y1 x2

I2,O
↑
2,app2−−−−−−−→ y2 O↓

1 � I2 O↑
2 = I↑1

μ(x1,x2)
I ↓

1 ,O
↑
1,max(app1,app2)−−−−−−−−−−−−−→ μ(y1,y2)

(h1)

Figure 2: Rules for individual membranes and hierarchical composition of membranes

• w = O↑
1O↑

2 · · ·O↑
n and ms

∅,O↑
1,1−−−−→ ms1

∅,O↑
2,1−−−−→ . . .

∅,O↑
n,1−−−−→ msn �∅,O↑,1−−−−→

or

• w = O↑
1O↑

2 · · ·O↑
n · · · and ms

∅,O↑
1,1−−−−→ ms1

∅,O↑
2,1−−−−→ ms2

∅,O↑
3,1−−−−→ .... .

We denote with T the set of all traces.

3 Testing framework

We first introduce the concept of context in case of P Systems expressed as P Algebra terms. Using this

concept, we then define what we consider an observer, which is again a P Algebra term with certain

characteristics. This leads naturally to the definition of computations of a running test, i.e. a tested

system running together with an observer. Then, following the classical definition of [13], we define

the success of a test in the two well-known versions of may and must. Finally, the testing preorder is

introduced, together with the induced equivalence relation.

3.1 Contexts and test satisfaction

At a first look, a natural candidate for context of a P System is another P System, which we call observer,

consisting of a membrane structure in which the skin membrane contains several membranes (with pos-

sibly sub-membranes) one of which is a “hole”, i.e., a place where another fully defined P System can

be placed and run. The skin membrane of this tested P System instantiates2 the “hole” membrane and

becomes a full component of the running test.

2This instantiation process may require some trivial modifications of the tested P System, such as α-conversion of the

numbers assigned to the skin and inner membranes.
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However, in [6], a result regarding flattening P Systems in P Algebra is presented. A similar result

can be found in [8]. The flattening process of [6] reduces any P System, specified in P Algebra with

promoters and inhibitors, into a flat one (i.e., with no internal membranes) that is bisimilar to the original

one. The notion of bisimulation is the one, based on computation steps, defined in [7]. These results

suggested us to simplify, without loss of generality, the notion of context we are defining. For this reason,

instead of considering an observer of the form μ(m,ms1 |ms2 | · · · |msn |�), we will always consider the

equivalent observer μ(m′,�) where m′ results from the flattening process of μ(m,ms1 | ms2 | · · · | msn).
Another ingredient of the testing framework is needed to distinguish formally P Systems that are

observers from P Systems that are normal, testable processes. In classical testing a particular action,

usually called ω , is used to denote the “success” of a test, that is to say, if the running test is able to

perform this action then the computation under consideration is a successful one. This easily translates

in our framework: we introduction a fresh, particular object, ω �∈ V that, when sent out of the skin

membrane of the running test, denotes the “success” of the computation.

Definition 4 (Observer). Let V be the alphabet of objects and let ω �∈ V be a particular object. An
observer system, or simply a test, is a P Algebra term of the form μ(m,�) where m is the skin membrane
[1 c ]1, � is an unspecified membrane ms numbered 2 and each rule of m is of the form u → vhωo{vl2}|D.
In other words, m communicates with its only child membrane 2 and can send out only ω objects.

Definition 5 (Running test). Let V be the alphabet of objects and let ω �∈ V be a particular object. Let
μ(m,�) be an observer system and let ms be term in P Algebra denoting a closed membrane (i.e., of
the form F(−) or μ(−,−)). The running test is the P Algebra term μ(m,ms′) where ms′ is the term ms
in which the former skin membrane (numbered 1) is re-labelled in 2 and the other internal membranes
numbers are α-converted in order not to collide with 1 and 2 (the re-labelling of the membrane names of
course implies also applying the substitutions to all the references to the membrane names in the term.)

Definition 6 (Computations). Let μ(m,ms) be a running test. A computation c of μ(m,ms) is any
sequence of the form:

• c is finite: μ(m,ms) = ms0
∅,∅,1−−−→ ms1

∅,∅,1−−−→ . . .
∅,∅,1−−−→ msn �∅,∅,1−−−→

or

• c is infinite: μ(m,ms) = ms0
∅,∅,1−−−→ ms1

∅,∅,1−−−→ ms2
∅,∅,1−−−→ ....

A computation is called successful if there are k ∈ IN and n ∈ IN+ such that msk
∅,{ωn},1−−−−−→ msk+1, i.e., at

least a success symbol can be sent out of the skin membrane along the run. A membrane like msk, from
which a transition can be taken that sends out at least one ω object is called success membrane. We may
also write msk

ω−→ to indicate that msk is a success membrane.

Note that, as usual in testing frameworks, we consider only the behaviours of the running test in

which no output is produced (this corresponds to considering only τ computations in a CCS-like Process

Algebra). This is needed to explore all possible behaviours of the tested system while running together

with the observer. Note that an unsuccessful computation, i.e. one with no success state along it, can be

either finite or infinite. In testing theories divergence must have a delicate treatment because it can lead to

different testing preorders [13, 9]. For simplicity we port here the original formulation of [13]. Thus, we

define a unary predicate ms ↑ meaning that, with respect to success, the “state” ms along a computation

is “underdefined” because it leads to a divergent computation.
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Definition 7 (Divergence). Let c be a computation of a running test μ(m,ms). c is divergent, which we
denote by c ⇑ iff:

• c is unsuccessful, or

• c contains a membrane ms such that ms ↑ and there is not a success membrane ms′ preceding ms
in c.

We now have all the ingredients to define the success of a test. Following the classical approach,

such a definition comes into version: a may satisfaction, weaker, and a must satisfaction, stronger.

Definition 8 (Satisfaction of a test). Let μ(m,�) be a test and ms be a closed membrane. Then we say:

• ms may μ(m,�) iff there exists a computation c of μ(m,ms) and k ∈ IN such that

c : μ(m,ms) = ms0
∅,∅,1−−−→ ms1

∅,∅,1−−−→ ·· · ∅,∅,1−−−→ msk

and msk
ω−→ .

• ms must μ(m,�) iff for each computation c of μ(m,ms),

c : μ(m,ms) = ms0
∅,∅,1−−−→ ms1

∅,∅,1−−−→ ms2
∅,∅,1−−−→ ·· ·

the following conditions hold:

(i) there is n ∈ IN such that msn
ω−→

(ii) if there is k ∈ IN such that msk ↑, then there exists k′ ≤ k such that msk′
ω−→ .

Note that, in case of must satisfaction, computations can be infinite, but it is required that a success

state is present just at the beginning of divergence, or before.

3.2 Testing preorders and testing equivalences

Using the definitions of satisfaction of a test, we naturally derive preorders between membrane systems.

Definition 9. Let ms1 and ms2 two closed membrane systems. We define two relations �m
T and �T

between closed membrane systems as follows:

• ms1 �m
T ms2 iff for each observer μ(m,�), ms1 may μ(m,�)⇒ ms2 may μ(m,�)

• ms1 �T ms2 iff for each observer μ(m,�), ms1 must μ(m,�)⇒ ms2 must μ(m,�)

Proposition 1. The relations �m
T and �T are preorders.

Definition 10 (Testing equivalence). We say that ms1 is may testing equivalent to ms2, and write ms1 ≈m
T

ms2, iff ms1 �m
T ms2 and ms2 �m

T ms1.
Analogously, we say that ms1 is must testing equivalent to ms2, and write ms1 ≈T ms2, iff ms1 �T ms2

and ms2 �T ms1.

Since the defined relations are kernels of preorders, it is easy to conclude that they are equivalence

relations.

In [7] some equivalence relations are defined between the terms of P Algebra. Among them, we con-

sider bisimulation, denoted by ≈, and trace equivalence, denoted by ≈Tr. We show that the relationships

between these two equivalences with the must testing equivalence are the same that hold when classical

process calculi, as CCS, are considered [13].

Proposition 2. Let ≈,≈T and ≈Tr as above. Then, ≈ � ≈T � ≈Tr.

17



���� �����

���� �����

���� �����

�� � �� � �� �����

�� � �� �����

���� ���� �

���� �����

�

�� �

���� ������ �	

�

���� �����

��� 


� 
 ���� �����

�

� �

�� � �� � �� �

	��	 � ��
�
�

	 ���� �����

���� �����

���� �����

	��	 � ��
�
�

�� � �� �����

�� � �� �����

���� ���� �

Figure 3: Two membrane systems, (a) and (c), that are trace equivalent, but not test equivalent, together

with the observer (b) that distinguishes them.

Proof. The two set inclusions can be proved rephrasing the argument used for CCS [13]. Regarding the

strictness of the inclusions, Figure 3 shows two systems that are trace equivalent, but can be distinguished

by the shown observer. Not that both systems perform the set of traces {∅(α)(β ),∅(α)(γ)}. However,

considering the must testing, the observer shown in Figure 3(b) is not satisfied by the system (a) because

in one computation, after α , only γ can be produced, thus that computation is unsuccessful. Conversely,

for the other system (c) all computations are successful. Note that inhibitors and promoters are used in

this settings to select only specific paths in the system. In the classical setting of testing for synchronous

calculi this role is played by the parallel operator together with the restriction on observing only τ-

computations.

Figure 4 shows two systems that are test equivalent, but not bisimilar. Below each system the graph

of possible transitions3 is depicted, in order to show that bisimulation does not hold.

4 Example of testing scenario

In this section we model a population of individuals that can reproduce both sexually and asexually.

We define different observers to show the expressiveness of the defined testing framework. It is worth

noting that quantitative aspects of systems can be easily expressed. Note that the defined observers

are very specific and are intended to only show the capabilities of the framework introduced above. In

particular, they should not be intended as examples of verification, because this analysis is to be done by

checking the testing equivalence between the system and its expected behaviour, modelled as a simpler

“specification” P system.

Most animal species use sexual reproduction to produce offspring, while a minority of species re-

produce asexually by producing clones of the mother. Both strategies have advantages and weaknesses.

3For the sake of legibility, we omit the third field in the transition labels.
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Figure 4: Two membrane systems that are test equivalent, but not bisimilar, together with their graph of

transitions.

During sexual reproduction genes from two individuals are combined in the offspring that receives ge-

netic material from both parents involving, in diploid populations, recombination among genes. Recom-

bination can break up favourable sets of genes accumulated by selection. Moreover, asexual populations

composed by only females can reproduce twice as fast in each generation than sexual populations, be-

cause there is no need to produce males for ongoing reproduction.

Despite its considerable cost, sexual reproduction it is still by far the most frequent mode of repro-

duction in vertebrates. Asexual reproduction has only been described in less than 0.1% of vertebrate

species. In general, it is assumed that sexually reproducing populations harbour more genetic variation

than asexually reproducing populations, and a high level of genetic variation allows perpetual adaptation

to changing environments.

Particularly, populations in heterogeneous habitats, threatened by various parasites or under strong

competition, have been shown to have greater genetic variation. For the above reasons a variety of species

(essentially among invertebrates) adopted a mixed strategy which tries to combine the advantages of both

methods [24].

In this example we model a simple organism able to reproduce either sexually or asexually. We

consider the individual of the species as diploid with only a locus (gene), thus each genotype is composed

by a pair (a1,a2) of alleles which the two chromosomes have for the gene. Moreover, we consider the

sex of individuals, thus each of them is represented by a pair of alleles together with the symbol, f or

m, of the sex. The rules controlling the evolution of the population are reproduction rules, either sexual

reproduction rules or asexual, and death rules. Each rule has an inhibitor; when the inhibitor is present

the rule cannot be applied.

Consider a set of alleles (values for the single gene) of k elements {v1,v2, . . . ,vk}. In the following

a1,a2,a3,a4 belong to {v1,v2, . . . ,vk}. The reproduction rules are the following:

1. a1a2m a3a4 f → a1a2m a3a4 f aia js |¬no_sex_repr (i ∈ {1,2}, j ∈ {3,4},s ∈ {m, f})
2. a1a2 f → a1a2 f a1a2 f |¬no_asex_repr
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Note that each rule has its inhibitor no_sex_repr or no_asex_repr. The death rules are the following:

3. a1a2m → λ |¬no_male_death
4. a1a2 f → λ |¬no_ f emale_death

We add also rules for females and males which simply survive, without reproducing or dying:

5. a1a2m → a1a2m |¬no_male_li f e
6. a1a2 f → a1a2 f |¬no_ f emale_li f e

Finally we use a rule for sending out individuals from the membrane in which the population evolved.

This rule is promoted by the promoter send_out:

7. a1a2m → (a1a2m, out) |send_out
8. a1a2 f → (a1a2 f , out) |send_out

In the following examples, we consider the membrane system defined above as the system under

test. In each example we define a specific observer that is meant to test the evolution forcing certain

situations. The observer controls the system by sending into it both the initial individuals and the pro-

moters/inhibitors for constraining the population dynamics.

Example 1. Let us consider a population in which the possible alleles for the single locus are {0,1} and
an initial population composed by four males of genotype (00) and four females of genotype (01). Let
us control the population dynamics by inhibiting both the sexual reproduction and the death of females.
The observer we define, using the must version, is able to analyse the following property of the system:
“After two time units, no female in the population can differ from the initial ones, and the number of such
females is greater than or equal to the initial female number.”

Note that naturally the tests express quantitative aspects, both on time and on numbers of individuals.
Assume that membrane 1, i.e. the observer, initially contains the element a and that Inh is the set of all
inhibitors, the rules in membrane 1 are the following:

10. a → 1 ((00m)4,(01 f )4,no_sex_repr,no_ f emale_death, in2)
20. 1 → 2

30. 2 → 3 (Inh∪{send_out}, in2)
40. 3 → 4

50. a1a2 f → f ail (a1 �= 0∨a1 �= 1)
60. 4 → 5

70. 5 (01 f )4 → (ω, out) |¬ f ail

Rule 10 sends into the membrane under test the initial population (four males and four females) and
the inhibitors for sexual reproduction and death of females. Rule 20 waits for a time unit, and, after
that, Rule 30 sends, during the second step of the populations evolution, all the inhibitors together with
the promoter send_out. Rule 40 waits for a time unit to allow the inner membrane to send out all the
individuals. Afterwards, Rule 50 produces a f ail if a female different from the initial ones is present.
At the same time Rule 60 increases the counter. Finally, Rule 70 sends out the ω symbol only if f ail is
absent.

Example 2. Consider the initial population of Example 1, under the same conditions. Again using a
must test, we consider the following property: “Given any k ∈ N, we can check that it is not possible,
in n time units, for all n ∈ [1,k], to produce a female different from the initial ones.” Note that this
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property is not a for-all statement: we count until the given k for checking it. This is of course weaker
than checking the for-all statement.

The rules in membrane 1 are the following:

10. a → 1 block ((00m)4,(01 f )4,no_sex_repr,no_ f emale_death, in2)
20. 1 → 2

30. 2 → 3

· · ·
k0. k−1 → k
(k+1)0. block → block |¬k
(k+2)0. block → 1′ (Inh∪{send_out}, in2)
1′0. 1′ → 2′

2′0. a1a2 f → f ail (a1 �= 0∨a1 �= 1)
3′0. 2′ → 3′

4′0. 3′ → (ω, out) |¬ f ail

Rules from 20 to k0 increase the counter until k. At each time unit either Rule (k+2)0 can be executed,
stopping the evolution of the population, or Rule (k+1)0 can be fired, allowing the population to evolve
for one more step. Rule (k+ 1)0 is inhibited by k, thus when the counter reaches k the evolution must
terminate. Rules from 1′0 to 4′0 produce a ω if and only if, in the final populations there are only females
equal to the initial ones.

Example 3. Consider the initial population of Example 1. This time let us consider a may test ex-
pressing the following: “Without initial conditions it is possible to have recombination (offspring with
different genotypes with respect to the initial population) after k steps.”

The rules are the following:

10. a → 1 block ((00m)4,(01 f )4, in2)
20. 1 → 2

30. 2 → 3

· · ·
k0. k−1 → k
(k+1)0. k → 1′ (Inh∪{send_out}, in2)
1′0. 1′ → 2′

2′0. a1a2 f → (ω, out) (a1 �= 0∨a1 �= 1)
2′0. a1a2m → (ω, out) (a1 �= 0∨a1 �= 1)

Example 4. Consider again the initial population of Example 1. Let us define a may test expressing:
“By allowing only the asexual reproduction for k steps, and then allowing only the sexual reproduction
for the following k steps, it is possible to have recombination in the final population.”

For this example we need the concept of antidote. An antidote is a symbol able to remove the effect
of an inhibitor, usually for an inhibitor x, the antidote is denoted by anti_x. The effect of an antidote is
described by particular rules, the antidote rules, which have the form anti_x x → λ . In this example we
assume that, in the membrane under test, there are the antidote rules for the inhibitors no_sex_repr and
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no_sex_repr. The rules are the following:

10. a → 1 block ((00m)4,(01 f )4,no_sex_repr, in2)
20. 1 → 2

· · ·
k0. k−1 → k (anti_no_sex_repr,no_asex_repr, in2)
(k+1)0. k → k+1

(2k)0. 2k−1 → 1′ (Inh∪{send_out}, in2)
1′0. 1′ → 2′

2′0. a1a2 f → (ω, out) (a1 �= 0∨a1 �= 1)
2′0. a1a2m → (ω, out) (a1 �= 0∨a1 �= 1)

5 Conclusions

The testing machinery defined in [13] and the P Algebra proposed in [4] inspired us a suitable Process

Algebra-based testing environment for P Systems. On the one hand, the new testing environment shares

with the original one the concepts of observer, running test, successful and unsuccessful computation,

testing preorders/equivalences, allowing us to define qualitative system properties. On the other hand,

differently from the original one, it results to be suitable also to express quantitative aspects. Such a

feature puts in evidence an expected high expressive power of the framework itself, which needs to be

formally studied.

The natural continuation of this work is to find finite decidable characterizations of testing equiv-

alence of finite state P Algebra terms in order to perform verification by comparing a system with its

expected behaviour. Moreover, we plan to extend the testing environment also studying a suitable ver-

sion of fair testing semantics for P Systems, as well as rephrasing the testing environment for Spatial

P Systems [5], with the aim of expressing quantitative properties involving spatial information, being

crucial in the biological (and not only) domain.

On the biological side, we intend to show as future work the potentials of the testing framework of

having a practical impact, for instance on planning both in-silico and wet-lab experiments.
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The Calculus of Wrapped Compartments (CWC) is a recently proposed modelling language for the

representation and simulation of biological systems behaviour. Although CWC has no explicit struc-

ture modelling a spatial geometry, its compartment labelling feature can be exploited to model various

examples of spatial interactions in a natural way. However, specifying large networks of compart-

ments may require a long modelling phase. In this work we present a surface language for CWC that

provides basic constructs for modelling spatial interactions. These constructs can be compiled away

to obtain a standard CWC model, thus exploiting the existing CWC simulation tool. A case study

concerning the modelling of Arbuscular Mychorrizal fungi growth is discussed.

1 Introduction

Several complex biological phenomena include aspects in which space plays an essential role, key ex-

amples are the growth of tissues and organisms, embryogenesis and morphogenesis processes or cell

proliferation. This has encouraged, in recent years, the development of formal models for the description

of biological systems in which spatial properties can be taken into account [9, 4, 19], as required by

the emerging field of spatial systems biology [26] which aims at integrating the analysis of biological

systems with spatial properties

The Calculus of Wrapped Compartments (CWC) [12, 11, 10] is a calculus for the description of

biochemical systems which is based on the notion of a compartment which represents, in some sense,

the abstraction of a region with specific properties (characterized by a label, a wrap and a content).
Biochemical transformations are described via a set of stochastic reduction rules which characterize the

behaviour of the represented system.

In a recent work [7] we have have shown how CWC can be used to model spatial properties of bi-

ological systems. The idea is to exploit the notion of compartment to represent spatial regions (with a

fixed, two-dimensional topology) in which the labels plays a key role in defining the spatial properties.

In this framework, the movement and growth of system elements are described, via specific rules (involv-

ing adjacent compartments) and the functionalities of biological components are affected by the spatial

constraints given by the sector in which they interact with other elements. CWC allows to model several

spatial interactions in a very natural way. However, when the complexity of simulation scenarios in-

creases, the specification of large networks of compartments each one having its own peculiar behaviour

and initial state may require a long and error prone modelling phase.

In this paper we introduce a surface language for CWC that defines a framework in which the notion

of space is included as an essential component of the system. The space is structured as a square grid,

whose dimension must be declared as part of the system specification. The surface language provides

∗This research is funded by the BioBITs Project (Converging Technologies 2007, area: Biotechnology-ICT), Regione

Piemonte.



basic constructs for modelling spatial interactions on the grid. These constructs can be compiled away

to obtain a standard CWC model, thus exploiting the existing CWC simulation tool.

A similar approach can be found in [19] where the topological structure of the components is ex-

pressed via explicit links which require ad-hoc rules to represent movements of biological entities and a

logic-oriented language to flexibly specify complex simulation scenarios is provided. In order to deal

with larger biological systems, we are planning to extend the CWC to the spatial domain incrementally.

At this early stage we neglected to consider problems related to the increase of the spatial rules with the

increasing dimension of the grid1. A partial solution to this problem is the use of appropriate data struc-

tures to represent entities scattered on a grid. A further step in this direction should be that of allowing

the definition of different topological representations for spatial distributions of the biological entities,

like in [7]. This requires, obviously, that also the surface language be enriched with primitives suitable

to express different spatial topology and related concepts (like the notion of proximity of locations and

that of movement in space). The right spatial topology could also help to minimize the number of spatial

rules needed for modeling phenomena. A more ambitious goal will be that of providing a basis for com-

putational geometry to our simulator, in order to identify spatially significant events for the simulation.

This will requires however a much bigger implementation effort.

Organisation of the Paper Section 2 recalls the CWC framework. Section 3 presents the surface

language needed to describe spatial terms and rules. Section 4 presents a case study concerning some

spatial aspects in the modelling of Arbuscular Mychorrizal fungi. Section 5 concludes the paper by

briefly discussing related work and possible directions for further work. The Appendix presents the

software module implementing the surface language.

2 The Calculus of Wrapped Compartments

The Calculus of Wrapped Compartments (CWC) (see [12, 10, 11]) is based on a nested structure of

ambients delimited by membranes with specific proprieties. Biological entities like cells, bacteria and

their interactions can be easily described in CWC.

2.1 Term Syntax

Let A be a set of atomic elements (atoms for short), ranged over by a, b, ..., and L a set of compartment
types represented as labels ranged over by �,�′, �1, . . . A term of CWC is a multiset t of simple terms
where a simple term is either an atom a or a compartment (a� t ′)� consisting of a wrap (represented by

the multiset of atoms a), a content (represented by the term t ′) and a type (represented by the label �).

As usual, the notation n ∗ t denotes n occurrences of the simple term t. We denote an empty term

with •. An example of CWC term is 2∗a b (c d �e f )� representing a multiset (multisets are denoted by

listing the elements separated by a space) consisting of two occurrences of a, one occurrence of b (e.g.

three molecules) and an �-type compartment (c d �e f )� which, in turn, consists of a wrap (a membrane)

with two atoms c and d (e.g. two proteins) on its surface, and containing the atoms e (e.g. a molecule)

and f (e.g. a DNA strand). See Figure 1 for some other examples with a simple graphical representation.

1note that in a 2D model the space-related rules grow according to the square of the grid dimension
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(a) (b) (c)

Figure 1: (a) represents (a b c�•)�; (b) represents (a b c�(d e�•)�′)�; (c) represents

(a b c�(d e�•)�′ f g)�

2.2 Rewriting Rules

System transformations are defined by rewriting rules, defined by resorting to CWC terms that may

contain variables. We call pattern the l.h.s. component p of a rewrite rule and open term the r.h.s.

component o of a rewrite rule, defined as multiset of simple patterns p and simple open terms o given by

the following syntax:

p ::= a
∣∣ (a x� p X)�

o ::= a
∣∣ (q�o)�

∣∣ X
q ::= a

∣∣ x

where a is a multiset of atoms, p is a pattern (a, possibly empty, multiset of simple patterns), x is a

wrap variable (can be instantiated by a multiset of atoms), X is a content variable (can be instantiated

by a CWC term), q is a multiset of atoms and wrap variables and o is an open term (a, possibly empty,

multiset of simple open terms). Patterns are intended to match, via substitution of variables with ground

terms (containing no variables), with compartments occurring as subterms of the term representing the

whole system. Note that we force exactly one variable to occur in each compartment content and wrap of

our patterns and simple patterns. This prevents ambiguities in the instantiations needed to match a given

compartment.2

A rewrite rule is a triple (�, p,o), denoted by � : p �−→ o, where p and o are such that the variables

occurring in o are a subset of the variables occurring in p. The application of a rule � : p �−→ o to a term t
is performed in the following way: 1) Find in t (if it exists) a compartment of type � with content u and a

substitution σ of variables by ground terms such that u = σ(p X)3 and 2) Replace in t the subterm u with

σ(o X). We write t �−→ t ′ if t ′ is obtained by applying a rewrite rule to t. The rewrite rule � : p �−→ o can

be applied to any compartment of type � with p in its content (that will be rewritten with o).

For instance, the rewrite rule � : a b �−→ c means that in all compartments of type � an occurrence of

a b can be replaced by c
While the rule does not change the label � of the compartment where the rule is applied, it may

change all the labels of the compartments occurring in its content. For instance, the rewrite rule � :

(a x�X)�1 �−→ (a x�X)�2 means that, if contained in a compartment of type �, all compartments of

type �1 and containing an a in their wrap can change their type to �2.

For uniformity reasons we assume that the whole system is always represented by a term consisting

of a single compartment with distinguished label � and empty wrap, i.e., any system is represented by a

2 The linearity condition, in biological terms, corresponds to excluding that a transformation can depend on the presence of

two (or more) identical (and generic) components in different compartments (see also [20]).
3The implicit (distinguished) variable X matches with all the remaining part of the compartment content.
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term of the shape (•� t)�, which will be also written as t, for simplicity.

2.3 Stochastic Simulation

A stochastic simulation model for biological systems can be defined along the lines of the one presented

by Gillespie in [14], which is, de facto, the standard way to model quantitative aspects of biological

systems. The basic idea of Gillespie’s algorithm is that a rate function is associated with each considered

chemical reaction which is used as the parameter of an exponential distribution modelling the probability

that he reaction takes place. In the standard approach this reaction rate is obtained by multiplying the

kinetic constant of the reaction by the number of possible combinations of reactants that may occur in the

region in which the reaction takes place, thus modelling the law of mass action. For rules defining spatial

movement the kinetic constant can be interpreted as the speed of the movement. In [12], the reaction rate

is defined in a more general way by associating to each reduction rule a function which can also define

rates based on different principles as, for instance, the Michaelis-Menten nonlinear kinetics.

For simplicity, in this paper, we will follow the standard approach in defining reaction rates. Each

reduction rule is then enriched by the kinetic constant k of the reaction that it represents (notation � :

p k�−→ o). For instance in evaluating the application rate of the stochastic rewrite rule R = � : a b k�−→ c
(written in the simplified form) to the term t = a a b b in a compartment of type � we must consider the

number of the possible combinations of reactants of the form a b in t. Since each occurrence of a can

react with each occurrence of b, this number is 4. So the application rate of R is k ·4.

2.4 The CWC simulator

The CWC simulator [1] is a tool under development at the Computer Science Department of the Turin

University, based on Gillespie’s direct method algorithm [14]. It treats CWC models with different rating

semantics (law of mass action, Michaelis-Menten kinetics, Hill equation) and it can run independent

stochastic simulations over CWC models, featuring deep parallel optimizations for multi-core platforms

on the top of FastFlow [2]. It also performs online analysis by a modular statistical framework.

3 A Surface Language

In this section we embed CWC into a surface language able to express, in a synthetic form, both spatial

(in a two-dimensional grid) and biochemical CWC transformations. The semantics of a surface language

model is defined by translation into a standard CWC model.

We distinguish between two kind of compartments:

1. Standard compartments (corresponding to the usual CWC compartments), used to represent enti-

ties (like bacteria or cells) that can move through space.

2. Spatial compartments, used to represent portions of space. Each spatial compartment defines a

location in a two dimensional grid through a special atom, called coordinate, that occurs on its

wrap. A coordinate is denoted by row.column, where row and column are intergers. Spatial

compartments have distinguished labels, called spatial labels, that can be used to provide a specific

characterisation of a portion of space.
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For simplicity we assume that the wraps of each spatial compartment contains only the coordinate. There-

fore, spatial compartment differentiations can be expressed only in terms of labels.4

For example, the spatial compartment (1.2�2 ∗ b)soil represents the cell of the grid located in the

first row and the second column, and has type soil, the spatial compartment (2.3�3 ∗ b c)water repre-

sents a water-type spatial compartment in position 2.3. In our grid we assume that molecules can float

only through neighbor cells: all the rules of interaction between spatial compartments must obviously

contain the indexes of their location. For example, the rule � : (1.2 x�a X)water(2.2 y�Y )soil k�−→
(1.2 x�X)water(2.2 y�a Y )soil moves the molecule a from the water compartment in position 1.2 to

the soil compartment in position 2.2 with a rate k representing in this case, the speed of the movement

of a in downwards direction from a cell of water-type to a cell of soil-type.

Let R and C denote the dimensions of our R × C grid defined by R rows and C columns. To increase

the expressivity of the language we define a few structures to denote portions (i.e. sets of cells) of

the grid. With Θ we denote a set of coordinates of the grid and we use the notion r.c ∈ Θ when the

coordinate r.c is contained in the set Θ. We define rectangles by rect[r.c,r’.c’] where r.c,r’.c’

represent the edges of the rectangle. We project rows and columns of our grid with the constructions

row[i] and col[ j] respectively.

Example 3.1 The set Θ = {6.6}∪rect[1.1,3.2]∪col[5] represents the set of coordinates

Θ = {6.6}∪{1.1,2.1,3.1,1.2,2.2,3.2}∪{i.5 | ∀i ∈ [1,R]}.

Note that row[i] is just a shorthand for rect[i.1,i.C]. Similarly for columns.

We use [*] as shorthand to indicate the whole grid (i.e. rect[1.1,R.C]).

We also define four direction operators, N, W, S, E that applied to a range of cells shift them,

respectively, up, left, down and right. For instance E(1.1) = 1.2. In the intuitive way, we also define

the four diagonal movements (namely, NW, SW, NE, SE). With Δ we denote a set of directions and we use

the special symbol � to denote the set containing all eight possible directions.

We convene that when a coordinate, for effect of a shit, goes out of the range of the grid the corre-

sponding point is eliminated from the set.

3.1 Surface Terms

We define the initial state of the system under analysis as a set of compartments modelling the two-

dimensional grid containing the biological entities of interest.

Let Θ denote a set of coordinates and �s a spatial label. We use the notation:

Θ, �s � t

to define a set of cells of the grid. Namely Θ, �s � t denotes the top level CWC term:

(•�(r1.c1 � t)�s . . . (rn.cn � t)�s)�

where ri.cj range over all elements of Θ.

A spatial CWC term is thus defined by the set of grid cells covering the entire grid.

4Allowing the wrap of spatial compartments to contain other atoms, thus providing an additional mean to express spatial

compartment differentiations, should not pose particular technical problems (extend the rules of the surface language to deal

with a general wrap content also for spatial compartments should be straightforward).
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(a) Initial state (b) Spatial events

Figure 2: Graphical representations of the grid described in the Example 3.2.

Example 3.2 The CWC term obtained by the three grid cell constructions:

rect[1.1,10.3],soil � nitr (receptors�cytoplasm nucleus)PlantCell

rect[1.4,10.7],water� •
rect[1.8,10.10],soil � 10∗nitr 2∗ (receptors�cytoplasm nucleus)PlantCell

builds a 10×10 grid composed by two portions of soil (the right-most one reacher of nitrates and plant
cells) divided by a river of water (see Figure 2(a)).

3.2 Surface Rewrite Rules

We consider rules for modelling three kind of events.

Non-Spatial Events: are described by standard CWC rules, i.e. by rules of the shape:

� : p k�−→ o

Non-spatial rules can be applied to any compartment of type � occurring in any portion of the grid and

do not depend on a particular location.

Example 3.3 A plant cell might perform its activity in any location of the grid. The following rules,
describing some usual activities within a cell, might happen in any spatial compartment containing the
plant cells under considerations:

PlantCell : nucleus k1�−→ nucleus mRNA
PlantCell : mRNA cytoplasm k2�−→ mRNA cytoplasm protein.

Spatial Events: are described by rules that can be applied to specific spatial compartments. These rules

allow to change the spatial label of the considered compartment. Spatial events are described by rules of
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the following shape:

Θ� �s : p k�−→ �′s : o

Spatial rules can be applied only within the spatial compartments with coordinates contained in the

set Θ and with the spatial label �s. The application of the rule may also change the label of the spatial

compartments �s to �′s. This rule is translated into the CWC set of rules:

� : (ri.ci x� p X)�s k�−→ (ri.ci x�o X)�
′
s ∀ri.ci ∈ Θ.

Note that spatial rules are analogous to non spatial ones. The only difference is the explicit indication

of the set Θ which allows to write a single rule instead of a set of rule (one for each element of Θ).

Example 3.4 If we suppose that the river of water in the middle of the grid defined in Example 3.2
has a downward streaming, we might consider the initial part of the river (framed by the first row
rect[1.4,1.7]) to be a source of nitrates (as they are coming from a region which is not modelled
in the actual considered grid). The spatial rule:

rect[1.4,1.7]�water : • k3�−→ water : nitr
models the arrival of nitrates at the first modeled portion of the river (in this case it does not change the
label of the spatial compartment involved by the rule).

Spatial Movement Events: are described by rules considering the content of two adjacent spatial com-

partments and are described by rules of the following shape:

Θ�Δ� �s1
, �s2

: p1, p2
k�−→ �′s1

, �′s2
: o1,o2

This rule changes the content of two adjacent (according to the possible directions contained in Δ) spatial

compartments and thus allows to define the movement of objects. The pattern matching is performed by

checking the content of a spatial compartment of type �s1
located in a portion of the grid defined by Θ

and the content of the adjacent spatial compartment of type �s2
. Such a rule could also change the labels

of the spatial compartments. This rule is translated into the CWC set of rules:

� : (ri.ci x� p1 X)�s1 (dir(ri.ci) y� p2 Y )�s2
k�−→ (ri.ci x�o1 X)�

′
s1 (dir(ri.ci) y�o2 Y )�

′
s2

for all ri.ci ∈ Θ and for all dir ∈ Δ.

Example 3.5 We assume that the flux of the river moves the nitrates in the water according to a down-
ward direction in our grid and with a constant speed in any portion of the river with the following rule:

rect[1.4,9.7]�{S}�water,water : nitr,• k4�−→ water,water : •,nitr
when nitrates reach the down-most row in our grid they just disappear (non moving event):

rect[10.4,10.7]�water : nitr k4�−→ water : •.
Moreover, nitrates streaming in the river may be absorbed by the soil on the riverside with the rule:

rect[1.4,10.7]�{W,E}�water,soil : nitr,• k5�−→ water,soil : •,nitr.
A graphical representation of these events is shown in Figure 2(b). Other rules can be defined to move
the nitrates within the soil etc.

4 Case Study: A Growth Model for AM Fungi

In this section we illustrate a case study concerning the modelling of Arbuscular Mychorrizal fungi

growth.
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Figure 3: Extraradical mycelia of an arbuscular mycorrhizal fungus.

4.1 Biological Model

The arbuscular mycorrhizal (AM) symbiosis is an example of association with high compatibility formed

between fungi belonging to the Glomeromycota phylum and the roots of most land plants[15]. AM fungi

are obligate symbionts, in the absence of a host plant, spores of AM fungi germinate and produce a

limited amount of mycelium. The recognition between the two symbionts is driven by the perception

of diffusible signals and once reached the root surface the AM fungus enters in the root, overcomes

the epidermal layer and it grows inter-and intracellularly all along the root in order to spread fungal

structures. Once inside the inner layers of the cortical cells the differentiation of specialized, highly

branched intracellular hyphae called arbuscules occur. Arbuscules are considered the major site for

nutrients exchange between the two organisms. The fungus supply the host with essential nutrients such

as phosphate, nitrate and other minerals from the soil. In return, AM fungi receive carbohydrates derived

from photosynthesis in the host.

Simultaneously to intraradical colonization, the fungus develops an extensive network of hyphae

which explores and exploits soil microhabitats for nutrient acquisition. AM fungi have different hyphal

growth patterns, anastomosis and branching frequencies which result in the occupation of different niche

in the soil and probably reflect a functional diversity [18] (see Figure 3). The mycelial network that

develops outside the roots is considered as the most functionally diverse component of this symbiosis.

Extraradical mycelia (ERM) not only provide extensive pathways for nutrient fluxes through the soil,

but also have strong influences upon biogeochemical cycling and agro-ecosystem functioning [22]. The

mechanisms by which fungal networks extend and function remain poorly characterized. The functioning

of ERM presumably relies on the existence of a complex regulation of fungal gene expression with regard
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to nutrient sensing and acquisition. The fungal life cycle is then completed by the formation, from the

external mycelium, of a new generation of spores able to survive under unfavourable conditions.

Investigations on carbon (C) metabolism in AM fungi have proved useful to offer some explanation

for their obligate biotrophism. As mentioned above, an AM fungus relies almost entirely on the host

plant for its carbon supply. Intraradical fungal structures (presumably the arbuscules) are known to take

up photosynthetically fixed plant C as hexoses. Unfortunately, no fungal hexose transporter-coding gene

has been characterized yet in AM fungi.

In order to quantify the contribution of arbuscular mycorrhizal (AM) fungi to plant nutrition, the

development and extent of the external fungal mycelium and its nutrient uptake capacity are of particular

importance. Shnepf and collegues [25] developed and analysed a model of the extraradical growth of

AM fungi associated with plant roots considering the growth of fungal hyphae from a cylindrical root in

radial polar coordinates.

Measurements of fungal growth can only be made in the presence of plant. Due to this practical

difficulty experimental data for calibrating the spatial and temporal explicit models are scarce. Jakobsen

and collegues [16] presented measurements of hyphal length densities of three AM fungi: Scutellospora
calospora (Nicol.& Gerd.) Walker & Sanders; Glomus sp. associated with clover (Trifolium subterra-
neum L.);these data appeared suitable for comparison with modelled hyphal length densities.

The model in [25] describes, by means of a system of Partial Differential Equations (PDE), the de-

velopment and distribution of the fungal mycelium in soil in terms of the creation and death of hyphae,

tip-tip and tip-hypha anastomosis, and the nature of the root-fungus interface. It is calibrated and cor-

roborated using published experimental data for hyphal length densities at different distances away from

root surfaces. A good agreement between measured and simulated values was found for the three fungal

species with different morphologies associated with Trifolium subterraneum L. The model and findings

are expected to contribute to the quantification of the role of AM fungi in plant mineral nutrition and the

interpretation of different foraging strategies among fungal species.

4.2 Surface CWC Model

In this Section we describe how to model the growth of arbuscular mycorrhyzal fungi using the surface

spatial CWC. We model the growth of AM fungal hyphae in a soil environment partitioned into 13 dif-

ferent layers (spatial compartments with label soil) to account for the distance in centimetres between

the plant root and the fungal hyphae where the soil layer at the interface with the plant root is at posi-

tion 1.1. We describe the mycelium by two atoms: the hyphae (atom Hyp) related to the length densities

(number of hyphae in a given compartment) and the hyphal tips (atom Tip). The plant root (atom Root)
is contained in the soil compartment at position 1.1.

The tips and hyphae at the root-fungus interface proliferate according to the following spatial events:

{1.1}� soil : Root ã�−→ soil : Root Hyp

{1.1}� soil : Root a�−→ soil : Root Tip

where ã and a is the root proliferation factor for the hyphae and tips respectively.

Hyphal tips are important, because growth occurs due to the elongation of the region just behind the

tips. Therefore, the spatial movement event describing the hyphal segment created during a tip shift to a

nearby compartment is:
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[∗]�{E,W}� soil,soil : Tip,• v�−→ soil,soil : Hyp,Tip

where v is the rate of tip movement. The hyphal length is related to tips movement, i.e. an hyphal trail is

left behind as tips move through the compartments. We consider hyphal death to be linearly proportional

to the hyphal density, so that the rule describing this spatial event is:

[∗]� soil : Hyp dH�−→ soil : •
where dH is the rate of hyphal death.

Mycorrhizal fungi are known to branch mainly apically where one tip splits into two. In the simplest

case, branching and tip death are linearly proportional to the existing tips in that location modelled with

the following spatial events:

[∗]� soil : Tip bT�−→ soil : 2∗Tip

[∗]� soil : Tip dT�−→ soil : •
where bT is the tip branching rate and dT is the tip death rate.

Alternatively, if we assume that branching decreases with increasing tip density and ceases at a given

maximal tip density, we employ the spatial event:

[∗]� soil : 2∗Tip cT�−→ soil : •
where cT = bT

Tmax
. From a biological point of view, this behaviour take into account the volume saturation

when the tip density achieves the maximal number of tips Tmax.

The fusion of two hyphal tips or a tip with a hypha can create interconnected networks by means of

anastomosis:

[∗]� soil : 2∗Tip a1�−→ soil : Tip

[∗]� soil : Tip Hyp a2�−→ soil : Tip

where a1 and a2 are the tip-tip and tip-hypha anastomosis rate constants, respectively.

The initial state of the system is given by the following grid cell definition:

{1.1}, soil �Root T0 ∗Tip H0 ∗Hyp

rect[1.2,1.13], soil �•
where T0 and H0 are the initial number of tips and hyphae respectively at the interface with the plant root.

4.3 Results

We run 60 simulations on the model for the fungal species Scutellospora calospora and Glomus sp.

Figure 4 show the mean values of hyphae (atoms Hyp) of the resulting stochastic simulations in function

of the elapsed time in days and of the distance from the root surface. The rate parameters of the model

are taken from [25].

The results for S. calospora are in accordance with the linear PDE model of [25] which is charac-

terized by linear branching with a relatively small net branching rate and both kinds of anastomosis are
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Figure 4: Mean values of 60 stochastic simulations of hyphal growth (atoms Hyp) results for S. calospora

and Glomus sp. fungi.

negligible when compared with the other species. This model imply that the fungus is mainly growing

and allocating resources for getting a wider catchment area rather than local expoloitation of mineral

resources via hyphal branching.

The model for Glomus sp. considers the effect of nonlinear branching due to the competition be-

tween tips for space. The results obtained for Glomus sp. are in accordance with the non–linear PDE

model of [25] which imply that local exploitation for resources via hyphal branching is important for

this fungus as long as the hyphal tip density is small. Reaching near the maximum tip density, branching

decreases. Symbioses between a given host plant and different AM fungi have been shown to differ

functionally [23].

5 Conclusions and Related Works

For the well-mixed chemical systems (even divided into nested compartments) often found in cellular

biology, interaction and distribution analysis are sufficient to study the system’s behaviour. However,

there are many other situations, like in cell growth and developmental biology where dynamic spatial

arrangements of cells determines fundamental functionalities, where a spatial analysis becomes essential.

Thus, a realistic modelling of biological processes requires space to be taken into account [17].

This has brought to the extension of many formalisms developed for the analysis of biological sys-

tems with (even continuous) spatial features.

In [9], Cardelli and Gardner develop a calculus of processes located in a three-dimensional geometric

space. The calculus, introduces a single new geometric construct, called frame shift, which applies a

three-dimensional space transformation to an evolving process. In such a work, standard notions of

process equivalence give rise to geometric invariants.

In [5], a variant of P-systems embodying concepts of space and position inside a membrane is pre-

sented. The objects inside a membrane are associated with a specific position. Rules can alter the position

of the objects. The authors also define exclusive objects (only one exclusive object can be contained in-

side a membrane). In [3], an spatial extension of CLS is given in a 2D/3D space. The spatial terms of

the calculus may move autonomously during the passage of time, and may interact when the constraints

on their positions are satisfied. The authors consider a hard-sphere based notion of space: two objects,

represented as spheres, cannot occupy the same space, thus conflicts may arise by moving objects. Such
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conflicts are resolved by specific algorithms considering the forces involved and appropriate pushing

among the objects.

BioShape [6] is a spatial, particle-based and multi-scale 3D simulator. It treats biological entities of

different size as geometric 3D shapes. A shape is either basic (polyhedron, sphere, cone or cylinder) or

composed (aggregation of shapes glued on common surfaces of contact). Every element involved in the

simulation is a 3D process and has associated its physical motion law.

Adding too many features to the model (e.g., coordinates, position, extension, motion direction and

speed, rotation, collision and overlap detection, communication range, etc.) could heavily rise the com-

plexity of the analysis. To overcome this risk, a detailed study of the possible subsets of these features,

chosen to meet the requirements of particular classes of biological phenomena, might be considered.

In this paper we pursued this direction by extending CWC with a surface language providing a

framework for incorporating basic spatial features (namely, coordinates, position and movement). In fu-

ture work we plan to extend the surface language to deal with three dimensional spaces and to investigate

the possibility to incorporate other spatial features to the CWC simulation framework.

Notably, the framework presented in this paper could also be applied to other calculi which are able to

express compartmentalisation (see, e.g., BioAmbients [24], Brane Calculi [8], Beta-Binders [13], etc.).
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Appendix: Implementation of the Surface Language

This Section presents a software module implementing the translation of a surface language model into

the corresponding standard CWC model that can be executed by the CWC simulator (cf. Sec. 2.4). The

module is written in Java by means of the ANTLR parser generator [21]. The input syntax of the software

is defined as following.

Patterns, Terms and Open Terms: pattern, terms and open terms follow the syntax of CWC. In the

definition of a compartment, its label is written in braces, as the first element in the round brackets. The

symbol � is translated into |, and the empty sequence • into \e. If a pattern, term or open term is repeated

several times, we write the number of repetitions before it.

Grid Coordinates: the row and the column of a grid coordinate are divided by a comma. All the con-

structions of the surface language are implemented. The components of a set of coordinates are divided

by a blank space.
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Directions: for the directions we use the same keywords of the surface language, plus the special iden-

tifiers +, x, * to identify all the orthogonal directions (N,S,W,E), all the diagonal directions (NW,SW,NE,SE)

and all the directions, respectively.

Model Name: the name of the model is defined following the syntax

model string ;

where string is the name of the model.

Grid Dimensions: the dimensions of the grid are expressed with the syntax

grid r , c ;
where r and c are the number of rows and columns of the grid, respectively.

Grid Cell Construction: the notation of a grid cell Θ, �s � t is translated into the code line

cell < Θ > { �s } t ;
the module writes as many CWC compartments as the number of coordinates in Θ: each of these copies

has the same label �s and the same content t, but a different coordinate in the wrap.

Non Spatial Events: the notation of a non spatial event � : p k�−→ o is translated into the code line

nse { � } p [ k ] o ;

the module translates this line in a unique CWC rule.

Spatial Events: the notation of a spatial event Θ� �s : p k�−→ �′s : o is translated into the code line

se < Θ > { �s } p [ k ] { �′s } o ;

As shortcuts, the absence of < Θ > indicates the whole grid, and the absence of { �′s } indicates that the

label of the spatial compartment does not change. The module writes a CWC rule for each coordinate

in Θ: a rule differs from the others only in the coordinate written in its wrap.

Spatial Movement Events: the notation of a spatial movement event Θ �Δ � �s1
, �s2

: p1, p2
k�−→ �′s1

, �′s2
:

o1,o2 is translated into the code line

sme < Θ > [ Δ ] { �s1
} p1 { �s2

} p2 [ k ] { �′s1
} o1 { �′s2

} o2 ;

As shortcuts, the absence of < Θ > indicates the whole grid, and the absence of { �′s1
} or { �′s2

} indicates

that the label of the spatial compartment does not change. In case of absence of { �′s2
}, an underscore

is used to separate o1 and o2. For each coordinate in Θ, the module writes as many CWC rules as the

number of directions in Δ; in case of a coordinate on the edge of the grid, the module writes a CWC rule

for a direction only if this one identifies an adjacent spatial compartment on the grid. The number of

CWC rules is therefore less or equal to |Θ|× |Δ|.
Monitors: a monitor permits to expose what pattern we need to monitor: at the end of simulation, all the

states of this pattern are written in a log file. The syntax to design a monitor is the following:

monitor string < Θ > { �s } p ;

where string is a string describing the monitor and p is the pattern, contained into a spatial compartment

labelled by �s and the coordinates Θ, to monitor. As shortcut, the absence of < Θ > indicates the average

of the monitors in the whole grid, and the absence of { �s } indicates to write a monitor for each label

defined in the model. The module writes a monitor for each coordinate in Θ; in case of the absence

of {�s}, the module writes a monitor for each combination of coordinates in Θ and spatial labels defined

in the model.

The construction of a model follows the order used to describe the translator syntax: first the model

name and the grid dimensions, then the rules of the model. After the rules, we define the grid cell, and

finally the monitors.

Listings 1 and 2 show the input file for the CWC Surface Language software to model the S.
calospora and Glomus sp. fungi growth.
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Listing 1: Input file for the Surface Language parser to model the S. calospora fungus growth

model "AM Fungi Growth Model S. Calospora ";

grid 1,13;

// Tips and hyphae proliferation at the root -fungus interface

se <0,0> {grid} Root [2.52] Root Tip;

se <0,0> {grid} Root [3.5] Root Hyp;

// Tips branching and death

se {grid} Tip [0.02] 2 Tip;

se {grid} Tip [0.0052] \e;

// Hyphae death

se {grid} Hyp [0.18] \e;

// Hyphal creation during a tip shift to a nearby compartment

sme [E W] {grid} Tip {grid} \e [0.125] Hyp _ Tip;

// Initial state

cell <0,0> {grid} Root 97 Tip 115 Hyp;

cell <rect[0,1 0,12] > {grid} \e;

monitor "Hyp" <rect[0,0 0,12] > {grid} Hyp;

Listing 2: Input file for the Surface Language parser to model the Glomus sp. fungus growth

model "AM Fungi Growth Model Glomus sp.";

grid 1,13;

// Tips and hyphae proliferation at the root -fungus interface

se <0,0> {grid} Root [2.24] Root Tip;

se <0,0> {grid} Root [1.04] Root Hyp;

// Tips branching and death

se {grid} Tip [1.91] 2 Tip;

se {grid} Tip [0.15] \e;

// Tips saturation

se {grid} 2 Tip [0.15] \e;

// Hyphae death

se {grid} Hyp [0.28] \e;

// Hyphal creation during a tip shift to a nearby compartment

sme [E W] {grid} Tip {grid} \e [0.065] Hyp _ Tip;

// Initial state

cell <0,0> {grid} Root 84 Tip 35 Hyp;

cell <rect[0,1 0,12] > {grid} \e;

monitor "Hyp" <rect[0,0 0,12] > {grid} Hyp;
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We improve the precision of a previous Control Flow Analysis for Brane Calculi [4], by adding

information on the context and introducing causality information on the membranes. This allows us

to prove some biological properties on the behaviour of systems specified in Brane Calculi.

1 Introduction

In [6] Cardelli introduced a family of process calculi, called Brane Calculi, endowed with dynamically

nested membranes, focussing on the interactions that happen on membranes rather than inside them.

Brane calculi offer a suitable and formal setting for investigating the behaviour of the specified systems,

in order to establish the biological properties of interest. Nevertheless, since the behaviour of a system

is usually given in terms of its transition system, whose size can be huge, especially when modelling

complex biological systems, its exploration can be computationally hard. One possible solution con-

sists in resorting to static techniques to extract information on the dynamic behaviour and to check the

related dynamic properties, without actually running the corresponding program. The price is a loss in

precision, because these techniques can only provide approximations of the behaviour. However, we can

exploit static results to perform a sort of preliminary and not too much expensive screening of in silico
experiments. In the tradition [13] of applying static techniques to process calculi used in modelling bi-

ological phenomena, we present here a contextual and less approximate extension of the Control Flow

Analysis for Brane Calculi introduced in [4]. Control Flow Analysis (CFA) is a static technique, based

on Flow Logic [12], that provides a variety of automatic and decidable methods and tools for analysing

properties of computing systems. One of the advantages of the CFA is that the obtained information on

the behaviour are quite general. As a consequence, a single analysis can suffice for verifying a variety of

properties: different inspections of the CFA results permit to check different properties, with no need of

re-analysing it several times. Only the values of interest tracked for testing change accordingly and the

definitions of the static counterparts of the dynamic properties must be provided. Control Flow Analysis

provides indeed a safe over-approximation of the exact behaviour of a system, in terms of the possible

reachable configurations. That is, at least all the valid behaviours are captured. More precisely, all those

events that the analysis does not consider as possible will never occur. On the other hand, the set of

events deemed as possible may, or may not, occur in the actual dynamic evolution of the system. To

this end we have improved the precision of the CFA in [4], by adding information on the context (along

the lines of [15]) and introducing causality information on the membranes. Also, this extra-information

allows us to refine the static checking of properties related to the spatial structure of membranes. Further-

more, we focus on causality, since we believe it plays a key role in the understanding of the behaviour of

biological systems, in our case specified in a process algebra like the Brane one. In order to investigate

the possibilities of our CFA to capture some kinds of causal dependencies arising in the MBD version of

Brane Calculi, we follow [5] and its classification, by applying the analysis to the same key examples.



We observe that the analysis is able to capture some of these dependencies. This is a small improvement

in the direction of giving some causal structure to the usually flat CFA results. The gain in precision is

paid in terms of complexity: the presented analysis is rather expensive from a computational point of

view.

The paper gets in the research stream dedicated to the application of static techniques and, in partic-

ular, Control Flow Analysis to bio-inspired process calculi e.g., [13, 3]. Similar to ours are the works

devoted to the analysis of BioAmbients [18]. In particular, [15], where the authors introduce a contextual

CFA and [16] where a pathway analysis is exploited for investigating causal properties. BioAmbients are

analysed using instead Abstract Interpretation in [7, 8, 9]. The analysis presented in [7] records infor-

mation on the number of occurrences of objects and therefore is able to capture quantitative and causal

aspects, necessary to reason on the temporal and spatial structure of processes. In [8], in a different

context, the behaviour of processes is safely approximated and the properties of a fragment of Compu-

tation Tree Logic is preserved. This makes it possible to address temporal properties and therefore some

kinds of causality. Finally, [9] presents a static analysis that computes an abstract transition systems for

BioAmbients processes, able to validate temporal properties. Our choice of the Brane calculi depends

on the fact they have resulted to be particularly useful for modelling and reasoning about a large class

of biological systems, such as the one of the eukaryotic cells that, differently from the prokaryotes, pos-

sess a set of internal membranes. Among the first formalisms used to investigate biological membranes

there are the P Systems [14], introduced by Păun, which formalise distributed parallel computations

biologically-inspired: a biological system is seen as a complex hierarchical structure of nested mem-

branes inspired by the structure of living cells. Finally, besides Brane, there are other calculi of interest

for our approach, that have been specifically defined for modelling biological structures such as com-

partments and membranes, e.g., an extension [11] of κ-calculus [10], Beta Binders [17] and the Calculus

of Looping Sequences [2].

The rest of the paper is organised as follows. In Section 2, we present the MBD version of Brane

Calculi. We introduce the Control Flow Analysis in Section 3. In Section 4, we exploit our analysis to

check some properties related to the hierarchical structure of Brane processes. In Section 5, we discuss

on which kind of causal information our CFA can capture. In Section 6, the static treatment of Brane PEP

action is added and the whole analysis is applied to a model of infective cycle of the Semliki Forest Virus.

Section 7 presents some concluding remarks. Proofs of theorems and lemmata presented throughout the

paper are collected in Appendix A.

2 An overview on Brane Calculi

The Brane Calculi [6] are a family of calculi defined to describe the interaction amongst membraned com-

ponent. Specifically, the membrane interactions are explicitly described by means of a set of membrane-

based interaction capabilities. A system consists of nested membranes, as described by the following

syntax, where n is taken from a countable set Λ of names.

P,Q ::= � | P◦Q | !P | σ〈P〉μ systems Π
σ ,τ ::= 0 | σ |τ | !σ | a.σ membrane processes Σ
a,b ::= maten | mate⊥n | budn | bud⊥n (ρ) | drip(ρ) MBD actions ΞMBD

The basic structure of a system consists of (sub-)system composition, represented by the monoidal op-

erator ◦ (associative, commutative and with � as neutral element). Replication ! is used to represent the

composition of an unbounded number of systems or membrane processes. σ〈P〉μ is a membrane with
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(S /≡,◦,�) is a commutative monoid (B/≡, |,0) is a commutative monoid

!� ≡ � !0 ≡ 0

!(P◦Q)≡!P◦!Q !(σ |τ)≡!σ |!τ
!!P ≡!P !!σ ≡!σ
!P ≡ P◦ !P !σ ≡ σ |!σ

0〈�〉μ ≡ �
σ ≡ τ ⇒ σ |ρ ≡ τ|ρ P ≡ Q ⇒ P◦R ≡ Q◦R
σ ≡ τ ⇒!σ ≡!τ P ≡ Q ⇒!P ≡!Q
σ ≡ τ ⇒ a.σ ≡ a.τ P ≡ Q∧σ ≡ τ ⇒ σ〈P〉μ ≡ τ〈Q〉μ

Table 1: Structural Congruence for Brane Calculi.

content P and interaction capabilities represented by the process σ . Note that, following [4], we annotate

membranes with a unique label μ so as to distinguish the different syntactic occurrences of a membrane.

Note that these labels have no semantic meaning, but they are useful for our CFA. We refer to μ ∈ M
as the identity of the membrane σ〈P〉μ , where M is the finite set of membrane identities. We assume

that each considered system is contained in an ideal outermost membrane, identified by a distinguished

element ∗ ∈ M.

Membranes exhibit interaction capabilities, like the MBD set of actions that model membrane fusion

and splitting. The former is modelled by the mating operation, the latter can be rendered both by budding,

that consists in splitting off exactly one internal membrane, and dripping, that consists in splitting off

one empty membrane. For the sake of simplicity, we focus here on the fragment of the calculus without

communication primitives and molecular complexes, and with only the MBD actions. The treatment

of the alternative set of PEP actions is analogous and it is postponed to Section 5, where it is briefly

introduced.

Membrane processes σ consist of the empty process 0, the parallel composition of two processes,

represented by the monoidal | operator with 0 as neutral element, the replication of a process and of the

process that executes an interaction action a and then behaves as another process σ . Actions for mating

(maten) and budding (budn) have the corresponding co-actions (mate⊥n , bud⊥n resp.) to synchronise with.

Here n, which identifies a pair of complementary action and co-action that can interact, is taken from a

countable set Λ of names. The actions bud⊥n (ρ) and drip(ρ) are equipped with a process ρ associated

to the membrane that will be created when performing budding and dripping actions.

The semantics of the calculi is given in terms of a transition system defined up to a structural con-

gruence and reduction rules. The standard structural congruence ≡ on systems Π and membranes Ξ is

the least congruence satisfying the clauses in Table 1. Reduction rules complete the definition of the

interleaving semantics. They consist of the basic reaction rules, valid for all brane calculi (upper part of

Table 2) and by the reaction axioms for the MBD version (lower part of Table 2). We use the symbol →∗

for the reflexive and transitive closure of the transition relation →.

They are quite self-explanatory and we make only a few observations about the labels treatment.

Given a system, the set of its membrane identities is finite. Indeed, the structural congruence rule im-

poses that !σ〈P〉μ ≡ σ〈P〉μ ◦ !σ〈P〉μ , i.e. no new identity label μ is introduced by recursive calls. A

distinguished membrane identity is needed each time a new membrane is generated as a consequence

of a performed action, e.g. the new membrane obtained by the fusion of two membranes after a mate

synchronisation. To determine such labels we exploit the functions MImate, MIbud, and MIdrip that re-

turn fresh and distinct membrane identities, depending on the actions and on their syntactic contexts [4].

Recall that the number of needed membrane identities is finite, as finite are the possible combinations

of actions and contexts. Therefore, we choose these functions in such a way that, given an action and
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(Par) (Brane) (Struct)
P → Q

P◦R → Q◦R
P → Q

σ〈P〉μ → σ〈Q〉μ
P ≡ P′ ∧ P′ → Q′ ∧ Q′ ≡ Q

P → Q

(Mate) maten.σ |σ0〈P〉μP ◦mate⊥n .τ|τ0〈Q〉μQ → σ |σ0|τ|τ0〈P◦Q〉μPQ

where μPQ = MImate(maten,μP,mate⊥n ,μQ,μgp,μp,μ),
μ identifies the closest membrane surrounding μP and μQ in the context μgpμp

(Bud) bud⊥n (ρ).τ|τ0〈budn.σ |σ0〈P〉μP ◦Q〉μQ → ρ〈σ |σ0〈P〉μP〉μR ◦ τ|τ0〈Q〉μQ

where μR = MIbud(budn,μP,bud⊥n ,μQ,μgp,μp,μ),
μ identifies the closest membrane surrounding μQ in the context μgpμp

(Drip) drip(ρ).σ |σ0〈P〉μP → ρ〈〉μR ◦σ |σ0〈P〉μP

where μR = MIdrip(drip(ρ),μP,μgp,μp,μ),
μ identifies the closest membrane surrounding μP in the context μgpμp

Table 2: Reduction Semantics for Brane Calculi.

the identities of the membranes on which the action (and the corresponding co-action, if any) reside, the

function includes the membrane identity needed to identify the membrane obtained by firing that action.

3 A Contextual CFA for Brane Calculi

We present an extension of the Control Flow Analysis (CFA), introduced in [4] for analysing system

specified in Brane Calculi. The analysis over-approximates all the possible behaviour of a top-level sys-

tem P∗. In particular, the analysis keeps track of the possible contents of each membrane, thus taking

care of the possible modifications of the containment hierarchy due to the dynamics. The new analysis,

following [15], incorporates context in the style of 2CFA, thus increasing the precision of the approx-

imations w.r.t. [4]. Furthermore, the analysis exploits some causality information to further reduce the

degree of approximation. A localised approximation of the contents of a membrane or estimate I is

defined as follows:

I ⊆ M×M×M× (M∪ΞMBD)

Here, μs ∈ I (μgp,μp,μ) (that is (μgp,μp,μ,μs) ∈ I ) means that the membrane identified by μ may

surround the membrane identified by μs, whenever μ is surrounded by μp and μp is surrounded by μgp.

The outermost membranes μgpμp represent what is called the context and that amounts to ∗∗ when the

analysed membrane is at top-level. Moreover, a ∈ I (μgp,μp,μ) means that the action a may reside on

and affect the membrane identified by μ , in the context μgpμp. Furthermore, the analysis collects two

types of some causality information:

• An approximation of the possible causal circumstances in which a membrane can arise:

C ⊆ (ΞMBD ×M×ΞMBD ×M×M×M×M)� (ΞMBD ×M×M×M×M)

Here (an,μP,a⊥n ,μQ,μgp,μp,μ) ∈ C (μc) means that the membrane μc can be causally derived by

the firing of the action an in μP and the coaction a⊥n in μQ, in the context μgpμp,μ . Similarly,

(an,μP,μgp,μp,μ) ∈ C (μc) for an action an like drip, without a co-action.
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• An approximation of the possible membrane incompatibilities:

R ⊆ (M×M×M)× (M×M×M)

Here, ((μgp,μp,μ),(μ ′
gp,μ ′

p,μ)) ∈ R means that the membrane μ in the context μgpμp cannot

interact with the membrane μ in the context μ ′
gpμ ′

p, because the second membrane is obtained

from the first and the first one is dissolved.

Note that C and R are two strict order relations, thus only transitivity property holds. To validate

the correctness of a proposed estimate I , we state a set of clauses operating upon judgements like

I ,C ,R |=μgpμpμ P. This judgement expresses that when the subprocess P of P∗ is enclosed within a

membrane identified by μ ∈ M, in the context μgpμp ∈ M×M, then I correctly captures the behaviour

of P, i.e. the estimate is valid also for all the states Q passed through a computation of P.

The analysis is specified in two phases. First, it checks that I describes the initial process. This

is done in the upper part of Table 3, where the clauses amount to a syntax-driven structural traversal

of process specification. The clauses rely on the auxiliary function A that collects all the actions in a

membrane process σ and that is reported at the beginning of Table 3. Note that the actions collected

by A, e.g., in σ = σ0.σ1 are equal to the ones in σ ′ = σ0|σ1, witnessing the fact that here the analysis

introduces some imprecision and approximation. he clause for membrane system σ〈P〉μs checks that

whenever a membrane μs is introduced inside a membrane μ , in the context μgp,μp the relative hierarchy

position must be reflected in I , i.e. μs ∈ I (μgp,μp,μ). Furthermore, the actions in σ that affect the

membrane μs and that are collected in A(σ), are recorded in I (μp,μ,μs). Finally, when inspecting the

content P, the fact that the enclosing membrane is μs in the context μpμ is recorded, as reflected by

the judgement I ,C ,R |=μpμμs P. The rule for � does not restrict the analysis result, while the rules

for parallel composition ◦, and replication ! ensure that the analysis also holds for the immediate sub-

systems, by ensuring their traversal. In particular, note that the analysis of !P is equal to the one of P.

This is another source of imprecision.

Secondly, the analysis checks that I also takes into account the dynamics of the process under

consideration; in particular, the dynamics of the containment hierarchy of membranes. This is expressed

by the closure conditions in the lower part of Table 3 that mimic the semantics, by modelling, without

exceeding the precision boundaries of the analysis, the semantic preconditions and the consequences of

the possible actions. More precisely, each precondition checks whether a pair of complementary actions

could possibly enable the firing of a transition according to I . The conclusion imposes the additional

requirements on I that are necessary to give a valid prediction of the analysed action.

Consider e.g., the clause for (Mate) (the other clauses are similar). If (i) there exists an occurrence of

a mate action: maten ∈I (μp,μ,μP); (ii) there exists an occurrence of the corresponding co-mate action:

mate⊥n ∈I (μp,μ,μQ); (iii) the corresponding membranes are siblings: μP,μQ ∈I (μgp,μp,μ), (iv) the

redexes are not incompatible, i.e. the corresponding membranes can interact: ((μp,μ,μP),(μp,μ,μQ)) �∈
R then the conclusion of the clause expresses the effects of performing the transition (Mate). In this

case, we have that I must reflect that (i) there may exist a membrane μPQ inside μ , in the context μgpμp,

at the same nesting level of the membranes μP and μQ; and (ii) the contents of μP and of μQ, their children

and their grandchildren, may also be included in μPQ. Note that the contribution changes depending on

whether we consider μP (μQ, resp.), their children or their grandchildren. With the inclusion I (μ,μP)⊆
I (μ,μPQ) we mean that for each μs in the context μ,μP, all the elements in I (μ,μP,μs) are included

in I (μ,μPQ,μs). Similarly, with I (μP)⊆ I (μPQ) we mean that for each μgs in the context μPμs, and

in turn for each μs in the context μ,μP, all the elements in I (μP,μs,μgs) belong to I (μPQ,μs,μgs). We

use a similar notation for the relation R. (iii) The membrane μPQ is the result of the transition (Mate),
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A(0) = /0 A(a.σ) = {a}∪A(σ) A(!σ) = A(σ) A(σ0|σ1) = A(σ0)∪A(σ1)

I ,C ,R |=μgpμpμ � iff true
I ,C ,R |=μgpμpμ P◦Q iff I ,C ,R |=μgpμpμ P ∧ I ,C ,R |=μgpμpμ Q
I ,C ,R |=μgpμpμ !P iff I ,C ,R |=μgpμpμ P
I ,C ,R |=μgpμpμ σ〈P〉μs iff μs ∈ I (μgp,μp,μ) ∧ A(σ)⊆ I (μp,μ,μs) ∧ I ,C ,R |=μp,μ,μs P

(Mate) maten ∈ I (μp,μ,μP)∧mate⊥n ∈ I (μp,μ,μQ)∧μP,μQ ∈ I (μgp,μp,μ) ∧
((μp,μ,μP),(μp,μ,μQ)) �∈ R
⇒ μPQ ∈ I (μgp,μp,μ) where μPQ = MImate(maten,μP,mate⊥n ,μQ,μgp,μp,μ) ∧
I (μp,μ,μP)⊆ I (μp,μ,μPQ)∧I (μ,μP)⊆ I (μ,μPQ)∧I (μP)⊆ I (μPQ)
I (μp,μ,μQ)⊆ I (μp,μ,μPQ)∧I (μ,μQ)⊆ I (μ,μPQ)∧I (μQ)⊆ I (μPQ)
∧ (maten,μP,mate⊥n ,μQ,μgp,μp,μ) ∈ C (μPQ) ∧
((μp,μ,μP),(μp,μ,μPQ)),((μp,μ,μQ),(μp,μ,μPQ)) ∈ R ∧
((μ,μP),(μ,μPQ)),((μ,μQ),(μ,μPQ)) ∈ R

(Bud) budn ∈ I (μ,μQ,μP)∧bud⊥n (ρ) ∈ I (μp,μ,μQ)∧μP ∈ I (μp,μ,μQ)∧μQ ∈ I (μgp,μp,μ)
⇒ μR ∈ I (μgp,μp,μ) where μR = MIbud(budn,μP,bud⊥n (ρ),μQ,μgp,μp,μ) ∧
A(ρ)⊆ I (μp,μ,μR)∧μP ∈ I (μp,μ,μR) ∧
I (μ,μQ,μP)⊆ I (μ,μR,μP) ∧ I (μQ,μP)⊆ I (μR,μP)
∧ (budn,μP,bud⊥n (ρ),μQ,μgp,μp,μ) ∈ C (μR)
∧ ((μ,μQ,μP),(μ,μR,μP)) ∈ R ∧ ((μQ,μP),(μR,μP)) ∈ R

(Drip) drip(ρ) ∈ I (μp,μ,μP)∧μP ∈ I (μgp,μp,μ)
⇒ μR ∈ I (μgp,μp,μ) where μR = MIdrip(drip(ρ),μP,μgp,μp,μ) ∧ A(ρ)⊆ I (μp,μ,μR)
∧ (drip(ρ),μP,μgp,μp,μ) ∈ C (μR)

Table 3: Analysis for Brane Processes

performed by the two membranes μP and μQ, in the context μgpμpμ , as witnessed by the corresponding

entry in the component C ; (iv) the new membrane μPQ is incompatible with the μP and μQ, because μPQ,

derived by the transition (Mate), follows both μP and μQ. Note the similar incompatibility between the

membrane μP in the context μμQ before the (Bud) transition and the derived one μP in the context μμR.

The above requirements correspond to the application of the semantic rule (Mate) that would result in

the fusion of the two membranes.

Note that, since the new membrane μPQ inherits the prefix actions that affected the membranes μP

and μQ, it inherits also maten and mate⊥n (we write in red this kind of imprecise inclusions). This is

due to over-approximation, even though it is harmless: the two prefix actions cannot be further used to

predict a communication because they both occur in I (μp,μ,μPQ). Still, the presence of both maten ∈
I (μp,μ,μP) and mate⊥n ∈ I (μp,μ,μPQ) could lead to predict another interaction that is impossible at

run time. Thanks to R, we can safely exclude it, thus gaining precision. This gain is obtained in general:

R collects indeed pairs of capabilities that could be syntactically compatible with an interaction, but that

cannot really interact, because they dynamically occur in membranes that are not simultaneously present.
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μP0
,μP1

∈ I (∗,∗,μP),μP,μQ ∈ I (∗,∗,∗) μP0
,μP1

∈ I (∗,∗,μPQ),μPQ ∈ I (∗,∗,∗)
μ i

R1 ∈ I (∗,∗,∗),μP0
∈ I (∗,∗,μ i

R1) (i = 0,1) μR2 ∈ I (∗,∗,∗),μP1
∈ I (∗,∗,μR2)

maten ∈ I (∗,∗,μP), I (∗,∗,μPQ),
mate⊥n ∈ I (∗,∗,μQ), I (∗,∗,μPQ),
budm ∈ I (∗,μP,μP0

), I (∗,μPQ,μP0
), I (∗,μ i

R1,μP0
),

bud⊥m (ρ1) ∈ I (∗,∗,μP), I (∗,∗,μPQ),
budo ∈ I (∗,μP,μP1

), I (∗,μPQ,μP1
), I (∗,μR2,μP1

),
bud⊥o (ρ2) ∈ I (∗,∗,μQ), I (∗,∗,μPQ),
((∗,∗,μP),(∗,∗,μPQ)) ∈ R ((∗,∗,μQ),(∗,∗,μPQ)) ∈ R
((∗,μP,μP0

),(∗,μPQ,μP0
)) ∈ R ((∗,μP,μP1

),(∗,μPQ,μP1
)) ∈ R

((∗,μP,μP0
),(∗,μ i

R1,μP0
) ∈ R ((∗,μP,μP1

),(∗,μR2,μP1
)) ∈ R

(maten,μP,mate⊥n ,μQ,∗,∗,∗) ∈ C (μPQ) (bud0,μP1
,bud⊥o ,μPQ,∗,∗,∗) ∈ C (μR2)

(budm,μP0
,bud⊥m ,μPQ,∗,∗,∗) ∈ C (μ i

R1)

Table 4: Some entries of the Example 1 Analysis

The gain in precision is paid in terms of complexity: the presented analysis is rather expensive from

a computational point of view, due to the introduction of contexts and to the possibly high number of

different membrane names. Both these features may lead to an explosion of the possible reachable

configurations.

Example 1. To illustrate how our CFA work we use two simple examples. The emphasis is on the process
algebraic structures and not on their biological expressiveness. We first report an application of it to a
simple process P, illustrated in [4] (and in turn taken from [5]). We consider P and the following possible
computations, where ρ1 and ρ2 are not specified as they are not relevant here.

P = (maten|bud⊥m (ρ1))〈budm〈〉μP0 ◦budo〈〉μP1 〉μP ◦ (mate⊥n |bud⊥o (ρ2))〈〉μQ
maten−→

P1 = (bud⊥m (ρ1)|bud⊥o (ρ2))〈budm〈〉μP0 ◦budo〈〉μP1 ◦�〉μPQ
budm−→

P2 = ρ1〈〈〉μP0〉μ0
R1 ◦bud⊥o (ρ2))〈budo〈〉μP1 ◦�〉μPQ

budo−→
P3 = ρ1〈〈〉μP0〉μ0

R1 ◦ρ2〈〈〉μP1〉μR2 ◦ 〈�〉μPQ

P = (maten|bud⊥m (ρ1))〈budm〈〉μP0 ◦budo〈〉μP1 〉μP ◦ (mate⊥n |bud⊥o (ρ2))〈〉μQ
budm−→

P′
1 = ρ1〈〈〉μP0〉μ1

R1 ◦maten〈〈budo〉μP1 〉μP ◦ (mate⊥n |bud⊥o (ρ2))〈〉μQ
matem−→

P′
2 = ρ1〈〈〉μP0〉μ1

R1 ◦bud⊥o (ρ2)〈〈budo〉μP1 〉μPQ
budo−→

P′
3 = ρ1〈〈〉μP0〉μ1

R1 ◦ρ2〈〈〉μP1〉μR2 ◦ 〈�〉μPQ

The main entries of the analysis are reported in Table 4, where ∗∗ identifies the ideal outermost context
in which the system top-level membranes are. We write in red the entries due to approximations, but
not reflecting the dynamics. Furthermore, we pair the inclusions of actions and of the corresponding
co-actions, in order to emphasise which are the pairs of prefixes that lead to the prediction of a possible
communication. It is easy to check that I is a valid estimate by following the two stage procedure
explained above.

To understand in which way the R component refines the analysis, note that since the analysis entries
include maten ∈ I (∗,∗,μPQ) and mate⊥n ∈I (∗,∗,μQ), without the check on the R component, we can
predict a transition between the two membranes μPQ and μP. This transition is not possible instead,
because μPQ is causally derived by μP.

Note that although the CFA offers in general an over-approximation of the possible dynamic be-
haviour, in this example the result is rather precise. The transition maten is predicted as possible, since its
precondition requirements are satisfied. Indeed, we have that maten ∈I (∗,∗,μP) mate⊥n ∈I (∗,∗,μQ),
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μP,μQ,μPQ ∈ I (∗,∗,∗),
μP0

,μP1
∈ I (∗,∗,μP),I (∗,∗,μPQ),μQ0

∈ I (∗,∗,μQ),I (∗,∗,μPQ)
μP0Q0

∈ I (∗,∗,μPQ),μP0Q0P1
∈ I (∗,∗,μPQ),

μP0P1
∈ I (∗,∗,μPQ),μ ′

P0P1
∈ I (∗,∗,μP),I (∗,∗,μPQ),

μP0P1Q0
∈ I (∗,∗,μPQ),μ ′

P0P1Q0
∈ I (∗,∗,μPQ),

maten ∈ I (∗,∗,μP),
mate⊥n ∈ I (∗,∗,μQ),
matem ∈ I (∗,μP,μP0

), I (∗,μPQ,μP0
), I (∗,μPQ,μP0P1

),
mate⊥m ∈ I (∗,μQ,μQ0

), I (∗,μPQ,μQ0
), I (∗,μPQ,μQ0

),
matem ∈ I (∗,μP,μ ′

P0P1
), I (∗,μPQ,μ ′

P0P1
),

mate⊥m ∈ I (∗,μQ,μQ0
), I (∗,μPQ,μQ0

),
mateo ∈ I (∗,μP,μP0

), I (∗,μPQ,μP0Q0
), I (∗,μPQ,μP0

),
mate⊥o ∈ I (∗,μP,μP1

), I (∗,μPQ,μP1
) I (∗,μPQ,μP1

),
((∗,∗,μP),(∗,∗,μPQ)) ∈ R
((∗,∗,μQ),(∗,∗,μPQ)) ∈ R
((∗,μP,μPi),(∗,μPQ,μPi)) ∈ R i = 0,1
(maten,μP,mate⊥n ,μQ,∗,∗,∗) ∈ C (μPQ)
(matem,μP0

,mate⊥n ,μQ0
,∗,∗,μPQ) ∈ C (μP0Q0

)
(matem,μP0P1

,mate⊥m ,μQ0
,∗,∗,μPQ) ∈ C (μP0P1Q0

)
(mateo,μP0Q0

,mate⊥o ,μP1
,∗,∗,μPQ) ∈ C (μP0Q0P1

)
(mateo,μP0

,mate⊥o ,μP1
,∗,∗,μPQ) ∈ C (μP0P1

)
(mateo,μP0

,mate⊥o ,μP1
,∗,∗,μP) ∈ C (μ ′

P0P1
)

Table 5: Some entries of the Example 2 Analysis

and μP and μQ are sibling and causally compatible membranes. Also the transition on budm is ini-
tially possible and this result is actually predicted by the analysis, since budm ∈ I (∗,μP,μP0

) and
bud⊥m ∈ I (∗,∗,μP), with μP0

∈ I (∗,∗,μP), i.e. P is the father of P0. Instead, we can observe that
the transition on budo cannot be performed in the initial system. Indeed, budo resides on the membrane
μP1

in the context ∗μP, while the coaction bud⊥o resides on μQ that is not the father of μP1
. The transi-

tion on budo can be performed instead in the membrane μP1
in the context ∗μPQ, that is the membrane

introduced by the previous maten transition.

Example 2. We now apply our CFA to another process P, taken from [5]. We consider P and the
following possible computations.

P = maten〈(matem|mateo)〈〉μP0 ◦mate⊥o 〈〉μP1 〉μP ◦mate⊥n .〈mate⊥m〈〉μQ0 〉μQ
maten−→

P1 = 〈(matem|mateo)〈〉μP0 ◦mate⊥o 〈〉μP1 ◦mate⊥m〈〉μQ0 〉μPQ
matem−→

P2 = 〈mateo〈〉μP0Q0 ◦mate⊥o 〈〉μP1 〉μPQ
mate0−→ P3 = 〈〈〉μP0Q0P1 〉μPQ

P1 = 〈(matem|mateo)〈〉μP0 ◦mate⊥o 〈〉μP1 ◦mate⊥m〈〉μQ0 〉μPQ
mateo−→

P′
2 = 〈matem〈〉μP0P1 ◦ 〈mate⊥m〈〉μQ0 〉μPQ

matem−→ P′
3 = 〈〈〉μP0P1Q0 〉μPQ

P = maten〈(matem|mateo)〈〉μP0 ◦mate⊥o 〈〉μP1 〉μP ◦mate⊥n .〈mate⊥m〈〉μQ0 〉μQ
mateo−→

P′′
1 = maten〈matem〈〉μ ′

P0P1 〉μP ◦mate⊥n .〈mate⊥m〈〉μQ0 〉μQ
maten−→

P′′
2 = 〈matem〈〉μ ′

P0P1 ◦mate⊥m〈〉μQ0 〉μPQ
matem−→ P′′

3 = 〈〈〉μ ′
P0P1Q0 〉μPQ

The main entries of the analysis are reported in Table 5, where we do not include the entries due to
approximations, but not reflecting the dynamics. As before, we pair the inclusions of actions and of the
corresponding co-actions, in order to emphasise which are the pairs of prefixes that lead to the prediction
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of a possible communication. This motivates some redundancies in the entries. Also in this example, the
CFA result is rather precise.

Semantic Correctness Our analysis is semantically correct with respect to the given semantics, i.e. a

valid estimate enjoys the following subject reduction property with respect to the semantics.

Theorem 1. (Subject Reduction)
If P → Q and I ,C ,R |=μgpμpμ P then also I ,C ,R |=μgpμpμ Q.

This result depends on the fact that analysis is invariant under the structural congruence, as stated

below.

Lemma 1. (Invariance of Structural Congruence) If P ≡ Q and we have that I ,C ,R |=μgpμpμ P then
also I ,C ,R |=μgpμpμ Q.

Moreover, it is possible to prove that there always exists a least estimate (see [4] for a similar state-

ment and proof).

4 CFA for Spatial Structure Properties

Control Flow Analysis provides indeed a safe over-approximation of the exact behaviour of a system,

that is, at least all the valid behaviours are captured. More precisely, all those events that the analysis

does not consider as possible will never occur. On the other hand, the set of events deemed as possible

may, or may not, occur in the actual dynamic evolution of the system. The 2CFA gains precision w.r.t the

0CFA presented in [4] and the incompatibility relation R increases this gain. In the next section, we will

discuss on the contribution of the component C .

We can exploit our analysis to check spatial structure properties, of the membranes included in the

system under consideration. In particular, because of over-approximation, we can ask negative questions

like whether: (i) a certain interaction capability c never affects the membrane labelled μ , i.e. it never

occurs in the membrane process of the membrane labelled μ; (ii) the membrane labelled μ never ends
up in the membrane labelled μ ′.

Suppose we have all the possible labels μ of the possible membranes arising at run time. Then we can

precisely define the above informally introduced properties. We first give the definition of the dynamic

property, then the corresponding static property and, finally, we show that the static property implies the

dynamic one. For each static property, we check for a particular content in the component I .

Definition 1 (Dynamic: c never on μ). Given a process P including a membrane labelled μ , we say
that the capability c never affects the membrane labelled μ if there not exists a derivative Q such that
P →∗ Q, in which the capability c can affect the membrane labelled μ .

Definition 2 (Static: c never on μ). Given a process P including a membrane labelled μ , we say that the
capability c never appears on the membrane labelled μ if and only if there exists an estimate (I ,R,C )
such that: c �∈ I (μgp,μp,μ) for each possible context μgpμp.

Theorem 2. Given a process P including a membrane labelled μ , then if c never appears on the mem-
brane labelled μ , then the capability c never affects the membrane labelled μ .

Definition 3 (Dynamic: μ ′ never inside μ). Given a process P including a membrane labelled μ and a
membrane labelled μ ′, we say that the membrane μ ′ never ends up inside the membrane labelled μ if
there not exists a derivative Q such that P →∗ Q, in which μ ′ occurs inside the membrane μ .
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Definition 4 (Static: μ ′ never inside μ). Given a process P including a membrane labelled μ , we say
that μ ′ never appears inside the membrane labelled μ if and only if there exists an estimate (I ,R,C )
such that: μ ′ �∈ I (μgp,μp,μ) for each possible context μgpμp.

Theorem 3. Given a process P including a membrane labelled μ and a membrane labelled μ ′, then
if μ ′ never appears inside the membrane labelled μ , then the membrane μ ′ never ends up inside the
membrane labelled μ .

Back to our first running example, we can prove, for instance, that the capability bud⊥o never af-

fects the membrane labelled μP. This can be checked by looking in the CFA entries, for the content of

I (∗,∗,μP), that indeed does not include bud⊥o . Intuitively, this explains the fact that the budo synchro-

nisation is not syntactically possible in the context μP, whose sub-membrane μP0
is affected by budo.

In our second running example, we can prove instead, for instance, that the membrane μP0Q0
never

ends up inside the membrane labelled μP, where μP0Q0
= MImate(matem,μP0

,mate⊥n ,μQ0
,∗,∗,μPQ). In-

deed, by inspecting the CFA results, we have that μP0Q0
�∈ I (∗,∗,μP). Intuitively, this corresponds to

the fact that the matem synchronisation is not syntactically possible in the context μP, because μP0
and

μQ0
are not siblings, while it is in the context μPQ.

Similarly, we can mix ingredients and introduce new properties, e.g. one can ask whether two mem-

branes labelled μ ′ and μ ′′, never end up (occur) together in the same membrane μ . On the static side,

this amounts to checking whether there exists an estimate (I ,R,C ) such that: for all possible context

μgpμp, μ ′ ∈I (μgp,μp,μ)∧μ ′′ �∈I (μgp,μp,μ) or μ ′ �∈I (μgp,μp,μ)∧μ ′′ ∈I (μgp,μp,μ). Note that

a single analysis can suffice for verifying all the above properties: only the values of interest tracked for

testing change.

5 Discussion on Causal Information

Understanding the causal relationships between the actions performed by a process is a relevant issue for

all process algebras used in Systems Biology. Although our CFA approximates the possible reachable

configurations, we are able to extract some information on the causal relations among these configu-

rations. To investigate these possibilities of our CFA, we follow [5] where different kinds of causal

dependencies are described and classified, by applying our analysis to the same key examples.

The first kinds are called structural causality and synchronisation causality and are typical of all

process algebras. Structural causality arises from the prefix structure of terms, as in

P = drip(σ).drip(ρ)〈〉μP
drip−→ σ〈〉μR ◦drip(ρ)〈〉μP

drip−→ σ〈〉μR ◦ρ〈〉μ ′
R ◦ 〈〉μP

where the action on drip(ρ) depends on the one on drip(σ), since the second action is not reachable until

the first has fired. Synchronisation causality arises when an action depends on a previous synchronisation

as in:

P = drip(σ1).maten.drip(τ1)〈〉μP′
0 ◦drip(σ2).maten.drip(τ2)〈〉μP′

1
drip−→

2

P′ = σ1〈〉μR1 ◦σ2〈〉μR2 ◦maten.drip(τ1)〈〉μP′
0 ◦maten.drip(τ2)〈〉μP′

1
maten−→

P′′ = σ1〈〉μR1 ◦σ2〈〉μR2 ◦ 〈〉μP′
0

P′
1

where, the mate action is possible only when both drip(σ1) and drip(σ2) have been performed, and

the following drip(τ1) and drip(τ2) depend on the previous mate synchronisation. Our CFA is not

able to capture these kinds of dependencies, because of the A() function definition, according to which

A(σ .τ) = A(σ)∪A(τ). In other words, the CFA disperses the order between prefixes.

According to [5], when an action is performed on a membrane it impacts only on its continuation

and not on the whole process on the membrane, e.g., in:
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P = (maten|drip(σ))〈〉μP ◦mate⊥n 〈〉μQ
maten−→ drip(σ)〈〉μPQ

drip−→ σ〈〉μR ◦ 〈〉μPQ

P = (maten|drip(σ))〈〉μP ◦mate⊥n 〈〉μQ
drip−→ σ〈〉μ ′

R ◦ (maten)〈〉μP ◦mate⊥n 〈〉μQ

maten−→ σ〈〉μ ′
R ◦ 〈〉μPQ

the drip operation can be considered causally independent form the mate operation, because it can be

executed regardless of the fact that the mate interaction has been performed.

Our analysis reflects this, because we have C (μR) � (drip(σ),μP,∗,∗,∗) and also that C (μ ′
R) �

(drip(σ),μPQ,∗,∗,∗).
When considering MBD actions and, in particular, the mate action, we have to do with another kind

of causality called environmental in [5], due to the fact that the interaction possibilities of the child

membranes are increased by the mate synchronisation.

Examples of this kind of causality can be observed in our running examples. In the first, for instance,

the budo depends on the maten, as reflected by the CFA entries: C (μR2)� (budo,μP,bud⊥o ,μQ,∗,∗,μPQ),
where C (μPQ) � (maten,μP,mate⊥n ,μQ,∗,∗,∗).

In the second, we can observe that the synchronisation on matem cannot be performed before a syn-

chronisation on maten, as captured by the following CFA entries: C (μP0Q0
)� (matem,μP0

,mate⊥m ,μQ0
,∗,∗,μPQ),

and C (μP0P1Q0
) � (matem,μP0P1

,mate⊥m ,μQ0
,∗,∗,μPQ), where (maten,μP,mate⊥n ,μQ,∗,∗,∗) belongs to

C (μPQ).
Finally, in [5], a casual dependency generated by Bud (and Drip) is discussed on the following

example:

P = bud⊥n (drip(σ))〈budn〈〉μP0〉μP →bud drip(σ)〈〈〉μP0〉μR ◦ 〈〉μP →drip
σ〈〉μRσ ◦ 〈〈〉μP0〉μR ◦ 〈〉μP

The bud action generates a new membrane and the corresponding actions are caused by the new mem-

brane, as captured by the CFA entries: drip(σ) ∈ I (∗,∗,μR) and C (μRσ ) � (drip(σ),μR,∗,∗,∗).
These considerations encourage us to further investigate and to formalise the static contribution of

the CFA in establishing causal relationships.

6 The Analysis at Work: Viral Infection

We illustrate our approach by applying it to the abstract description of the infection cycle of the Semliki

Forest Virus, shown in Figure 1, as specified in [6]. The Semliki Forest Virus is one of the so-called “en-

veloped viruses”. We focus just on the first stage of the cycle and we report the analysis as given in [4].

The virus, specified in Table 8, consists of a capsid containing the viral RNA (the nucleocapsid). The

nucleocapsid is surrounded by a membrane, similar to the cellular one, but enriched with a special pro-

tein. The virus is brought into the cell by phagocytosis, thus wrapped by an additional membrane layer.

An endosome compartment is merged with the wrapped-up virus. At this point, the virus uses its special

membrane protein to trigger the exocytosis process that leads the naked nucleocapsid into the cytosol,

ready to damage it. By summarising, if the cell gets close to a virus, then it evolves into an infected cell.

The complete evolution of the viral infection is reported in Table 8, while the main analysis entries are

in Table 9. The specification includes the PEP version of Brane calculus, whose syntax and reduction

semantics is reported in Table 6. This further set of PEP actions (ΞPEP) are inspired by endocytosis and

exocytosis processes. The first indicates the process of incorporating external material into a cell, by

engulfing it with the cell membrane, while the second one indicates the reverse process. Endocytosis

is rendered by two more basic operations: phagocytosis (denoted by phago), that consists in engulfing

just one external membrane, and pinocytosis (denoted by pino), consists in engulfing zero external mem-

branes; exocytosis is instead denoted by exo. The CFA for the calculus can be straightforwardly extended
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Figure 1: Viral Infection (highlighted part) and Reproduction. [Adapted from [6] and [1]]

to deal with the Phago/Exo/Pino (PEP) actions, as shown in Table 7.

a ::= phagon | phago⊥n (ρ) | exon | exo⊥n | pino(ρ) ΞPEP

(Phago) phagon.σ |σ0〈P〉μP ◦ phago⊥n (ρ).τ|τ0〈Q〉μQ → τ|τ0〈ρ〈σ |σ0.〈P〉μP〉μR ◦Q〉μQ

where μR = MIphago(phagon,μP, phago⊥n (ρ),μQ,μgp,μp,μ)
and μ identifies the closest membrane surrounding μP in the context μgpμp

(Exo) exo⊥n .τ|τ0〈exon.σ |σ0〈P〉μP ◦Q〉μQ → P◦σ |σ0|τ|τ0〈Q〉μQ

(Pino) pino(ρ).σ |σ0〈P〉μP → σ |σ0〈ρ〈〉μR ◦P〉μP

where μR = MIpino(pino(ρ),μP,μgp,μp,μ)
and μ identifies the closest membrane surrounding μP in the context μgpμp

Table 6: Syntax and Reduction Rules for PEP Actions.

Roughly, the analysis results allow us to predict the effects of the infection. Indeed, the inclusion

μnucap ∈ I (∗,∗,μmemb) reflects the fact that, at the end of the shown computation, nucap is inside

membrane together with cytosol′ that is equivalent to cytosol, apart from the label μph-endo that decorates

the enclosed membrane endosome. Furthermore, we can check our properties in this systems. As far as

the spatial structure properties, we can prove here, e.g., that (i) the capability exo⊥ never affects the

membrane labelled μph (as exo⊥ �∈ I (∗,μmemb,μph)); and that (ii) the membrane μvirus never ends up

inside the membrane labelled μendo (as μvirus �∈ I (∗,μmemb,μendo)). Furthermore, we can observe that

the CFA captures the dependency of the synchronisation on mate on the synchronisation on phago,

since we have that (mate,μph,mate⊥,μendo,∗,∗,μmemb) ∈ C (μph-endo), and μph is such that we have that

(phago,μvirus, phago⊥,μmemb,∗,∗,∗) ∈ C (μph).
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(Phago) phagon ∈ I (μp,μ,μP)∧ phago⊥n (ρ) ∈ I (μp,μ,μQ)∧μP,μQ ∈ I (μgp,μp,μ) ∧
((μp,μ,μP),(μp,μ,μQ)) �∈ R
⇒ A(ρ)⊆ I (μ,μQ,μR)∧μR ∈ I (μp,μ,μQ)∧μP ∈ I (μ,μQ,μR)
where μR = MIphago(phagon,μP, phago⊥n (ρ),μQ,μgp,μp,μ)

(Exo) exon ∈ I (μ,μQ,μP)∧ exo⊥n ∈ I (μp,μ,μQ)∧μP ∈ I (μp,μ,μQ)∧μQ ∈ I (μgp,μp,μ)
⇒ A(σ),A(σ0)⊆ I (μp,μ,μQ)∧I (μ,μQ,μP)⊆ I (μgp,μp,μ)

(Pino) pino(ρ) ∈ I (μp,μ,μP)∧μP ∈ I (μgp,μp,μ)
⇒ A(ρ)⊆ I (μ,μP,μR)∧μR ∈ I (μp,μ,μP)
where μR = MIpino(pino(ρ),μP,μgp,μp,μ)

Table 7: Closure Rules for PEP Actions

virus
de f
= phago.exo〈nucap〉μvirus

nucap
de f
= !bud|X〈vRNA〉μnucap

cell
de f
= membrane〈cytosol〉μmemb

membrane
de f
= !phago⊥(mate)|!exo⊥

cytosol
de f
= endosome◦Z

endosome
de f
= !mate⊥|!exo⊥〈〉μendo

virus◦ cell

≡ (phago.exo)〈nucap〉μvirus ◦ (!phago⊥(mate)|!exo⊥)〈cytosol〉μmemb
phago−→

(!phago⊥(mate)|!exo⊥)〈mate〈exo〈nucap〉μvirus〉μph ◦ (!mate⊥|!exo⊥)〈〉μendo ◦Z〉μmemb

mate−→ (!phago⊥(mate)|!exo⊥)〈(!mate⊥|!exo⊥)〈exo〈nucap〉μvirus〉μph-endo ◦Z〉μmemb
exo−→

(!phago⊥(mate)|!exo⊥)〈(!mate⊥|!exo⊥)〈〉μph-endo ◦nucap◦Z〉μmemb ≡
membrane〈nucap◦ cytosol′〉μmemb

Table 8: Viral Infection System and its Evolution

μnucap ∈ I (∗,∗,μvirus),μendo ∈ I (∗,∗,μmemb),μvirus,μmemb ∈ I (∗,∗,∗)
phago,exo ∈ I (∗,∗,μvirus), phago⊥(mate),exo⊥ ∈ I (∗,∗,μmemb)

mate ∈ I (∗,μmemb,μph),μph ∈ I (∗,∗,μmemb),μvirus ∈ I (∗,μmemb,μph),
mate⊥,exo⊥ ∈ I (∗,μmemb,μendo)
μnucap ∈ I (μmemb,μph,μvirus),
μph-endo ∈ I (∗,∗,μmemb),μvirus ∈ I (∗,μmemb,μph-endo),
mate⊥,exo⊥ ∈ I (∗,μmemb,μph-endo)
μnucap ∈ I (μmemb,μph-endo,μvirus),
μnucap ∈ I (∗,∗,μmemb),
μph−endo ∈ I (∗,∗,μmemb)
(phago,μvirus, phago⊥,μmemb,∗,∗,∗) ∈ C (μph)
(mate,μph,mate⊥,μendo,∗,∗,μmemb) ∈ C (μph-endo)

Table 9: Viral Infection Analysis Results
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7 Conclusions

We have presented a refinement of the CFA for the Brane calculi [4], based on contextual and causal

information. The CFA provides us with a verification framework for properties of biological systems

modelled in Brane, such as properties on the spatial structure of processes, in terms of membrane hierar-

chy. We plan to formalise new properties like the ones introduced here.

We have found that the CFA is able to capture some kinds of causal dependencies [5] arising in the

MBD version of Brane Calculi. As future work, we would like to investigate thoroughly and formally

the static contribution of the CFA in establishing causal relationships between the Brane interactions.
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A Proofs

This appendix restates the lemmata and theorems presented earlier in the paper and gives the proofs of

their correctness. To establish the semantic correctness, the following auxiliary results are needed.

Proposition 1. If I ,C ,R |=μpμμ1 P and I (μp,μ,μ1)⊆ I (μp,μ,μ2), then I ,C ,R |=μpμμ2 P.

Proof. By structural induction on P. We show just one case.

Case P = σ〈P′〉μs . We have that I ,C ,R |=μpμμ1 P is equivalent to μs ∈ I (μp,μ,μ1) ∧ A(σ) ⊆
I (μ,μ1,μs) ∧ I ,C ,R |=μμ1μs P′. Now, μs ∈ I (μp,μ,μ1) and I (μp,μ,μ1) ⊆ I (μp,μ,μ2) and

A(σ) ⊆ I (μ,μ1,μs) imply μs ∈ I (μp,μ,μ2) and A(σ) ⊆ I (μ,μ2,μs). Therefore, by induction hy-

pothesis, we have that I ,C ,R |=μpμμ2 P.

Proposition 2. If σ ≡ τ then A(σ) = A(τ).

Proof. The proof amounts to a straightforward inspection of each of the clauses defining the structural

congruence clauses relative to membranes. We only show two cases, the others are similar.

Case σ0|σ1 ≡ σ1|σ0. We have that A(σ0|σ1) = A(σ0)∪A(σ1) = A(σ1|σ0).
Case σ ≡ τ ⇒ σ |ρ ≡ τ|ρ . We have that A(σ |ρ) = A(σ)∪ A(ρ). Now, since σ ≡ τ , we have that

A(σ) = A(τ) and therefore A(σ |ρ) = A(τ)∪A(ρ), from which the required A(τ|ρ).
Lemma 4.1 (Invariance of Structural Congruence) If P ≡ Q and we have that I ,C ,R |=μgpμpμ P
then also I ,C ,R |=μgpμpμ Q.

Proof. The proof amounts to a straightforward inspection of each of the clauses defining the structural

congruence clauses. We only show two cases, the others are similar.

Case P0 ◦P1 ≡ P1 ◦P0. We have that I ,C ,R |=μgpμpμ P0 ◦P1 is equivalent to I ,C ,R |=μgpμpμ P0 ∧
I ,C ,R |=μgpμpμ P1, that is equivalent to I ,C ,R |=μgpμpμ P1 ∧I ,C ,R |=μgpμpμ P0 and therefore to

I ,C ,R |=μgpμpμ P1 ◦P0.

Case P ≡ Q ∧ σ ≡ τ ⇒ σ〈P〉μs ≡ τ〈Q〉μs . We have that I ,C ,R |=μgpμpμ σ〈P〉μs is equivalent to μs ∈
I (μgp,μp,μ) ∧ A(σ)⊆I (μp,μ,μs) ∧ I ,C ,R |=μp,μ,μs P. By Proposition 2, A(τ)⊆I (μp,μ,μs),
and by induction hypothesis, we have that I ,C ,R |=μp,μ,μs Q. As a consequence, we can conclude that

I ,C ,R |=μgpμpμ τ〈Q〉μs .

Theorem 4.2 (Subject Reduction)
If P → Q and I ,C ,R |=μgpμpμ P then also I ,C ,R |=μgpμpμ Q.

Proof. The proof is by induction on P → Q. The proofs for the rules (Par) and (Brane) are straightfor-

ward, using the induction hypothesis and the clauses in Table 3. The proof for the (Struct) uses instead

the induction hypothesis and Lemma 4.1. The proofs for the basic actions in the lower part of Table 2

are straightforward, using the clauses in Table 3.

Case (Par). Let P be P0 ◦P1 and Q be P′
0 ◦P1, with P0 → P′

0. We have to prove that I ,C ,R |=μgpμpμ Q.

Now I ,C ,R |=μgpμpμ P is equivalent to I ,C ,R |=μgpμpμ P0 ∧ I ,C ,R |=μgpμpμ P1. By induction

hypothesis, we have that I ,C ,R |=μgpμpμ P′
0, and from I ,C ,R |=μgpμpμ P′

0 ∧ I ,C ,R |=μgpμpμ P1

we obtain the required I ,C ,R |=μgpμpμ Q.

Case (Brane). Let P be σ〈P0〉μs and Q be σ〈P′
0〉μs . We have to prove that I ,C ,R |=μgpμpμ σ〈P′

0〉μs .

Now I ,C ,R |=μgpμpμ P is equivalent to have that μs ∈ I (μgp,μp,μ) ∧ A(σ) ⊆ I (μp,μ,μs) ∧
I ,C ,R |=μp,μ,μs P0. By induction hypothesis, we have that I ,C ,R |=μp,μ,μs P′

0. We can therefore

conclude that I ,C ,R |=μgpμpμ Q.
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Case (Struct). Let P≡P0, with P0 →P1 such that P1 ≡Q. By Lemma A, we have that I ,C ,R |=μgpμpμ P0,

by induction hypothesis I ,C ,R |=μgpμpμ P1 and, again by Lemma A, I ,C ,R |=μgpμpμ Q.

Case (Mate). Let P be maten.σ |σ0〈P0〉μ0 ◦mate⊥n .τ|τ0〈P1〉μ1 and Q be σ |σ0|τ|τ0〈P0 ◦ P1〉μ01 . Then,

I ,C ,R |=μgpμpμ P amounts to I ,C ,R |=μgpμpμ maten.σ |σ0〈P0〉μ0 and I ,C ,R |=μgpμpμ mate⊥n .τ|τ0〈P1〉μ1

and, in turn, to μ0,μ1 ∈ I (μgp,μp,μ), {maten} ∪ A(σ)∪ A(σ0) ⊆ I (μp,μ,μ0), {mate⊥n } ∪ A(τ)∪
A(τ0)⊆I (μp,μ,μ1), and I ,C ,R |=μpμμ0 P0 and I ,C ,R |=μpμμ1 P1. Note that, ((μp,μ,μ0),(μp,μ,μ1))
does not belong to R. Because of the closure conditions, from the above, we have, amongst the several

implied conditions, that ∃μ01 =MImate(maten,μ0,mate⊥n ,μ1,μgp,μp,μ) such that μ01 ∈I (μgp,μp,μ) ∧
I (μp,μ,μ0)∪I (μp,μ,μ1)⊆I (μp,μ,μ01). From I (μp,μ,μi)⊆I (μp,μ,μ01) for i = 0,1, we have

that A(σ)∪A(σ0)⊆ I (μp,μ,μ01) and A(τ)∪A(τ0)⊆ (μp,μ,μ01) and, by Proposition 1, we have that

I ,C ,R |=μpμμ01 P0 and I ,C ,R |=μpμμ01 P1, and hence the required I ,C ,R |=μpμμ01 Q.

Case (Bud). Let P be bud⊥n (ρ).τ|τ0〈budn.σ |σ0〈P0〉μ0 ◦P1〉μ1 and Q be the process ρ〈σ |σ0〈P0〉μ0〉μR ◦
τ|τ0〈P1〉μ1 . Now, I ,C ,R |=μgpμpμ P is equivalent to μ1 ∈I (μgp,μp,μ), {bud⊥n (ρ)}∪A(τ)∪A(τ0)⊆
I (μp,μ,μ1), and, moreover, I ,C ,R |=μpμμ1 budn.σ |σ0〈P0〉μ0 and I ,C ,R |=μpμμ1 P1, from which

we have that μ0 ∈ I (μp,μ,μ1), {budn}∪A(σ)∪A(σ0) ⊆ I (μ,μ1,μ0), and I ,C ,R |=μμ1μ0 P0. Be-

cause of the closure conditions, from above, we have that ∃μR = MIbud(budn,μ0,bud⊥n ,μ1,μgp,μp,μ)
such that μR ∈I (μgp,μp,μ), A(ρ)⊆I (μp,μ,μR), μ0 ∈I (μp,μ,μR), and (I (μ,μ1,μ0)⊆I (μ,μR,μ0)
and I (μ1,μ0) ⊆ I (μR,μ0) (cond 2)). We have that I ,C ,R |=μgpμpμ Q is equivalent to have that

I ,C ,R |=μgpμpμ ρ〈σ |σ0〈P0〉μ0〉μR (1) and that I ,C ,R |=μgpμpμ τ|τ0〈P1〉μ1 (2). For (1), we have to

prove that μR ∈ I (μgp,μp,μ), A(ρ) ⊆ I (μp,μ,μR) and I ,C ,R |=μpμμR σ |σ0〈P0〉μ0 , that is equiv-

alent to μ0 ∈ I (μp,μ,μR), A(σ) ∪ A(σ0) ⊆ I (μ,μR,μ0) and I ,C ,R |=μμRμ0 P0. From the hy-

potheses, we have that μ0 ∈ I (μp,μ,μR). Since A(σ)∪A(σ0) ⊆ I (μ,μ1,μ0) and (cond 2) we have

A(σ) ∪ A(σ0) ⊆ I (μ,μR). From I ,C ,R |=μμ1μ0 P0, because of (cond 2) and Proposition 1, we

have that I ,C ,R |=μμRμ0 P0. For (2), we have to prove that μ1 ∈ I (μgp,μp,μ), A(τ)∪ A(τ0) ⊆
I (μp,μ,μ1) and I ,C ,R |=μpμμ1 P1. All these conditions are satisfied (see above). Therefore, we

obtain the required I ,C ,R |=μgpμpμ Q.

Case (Drip). Let P be drip(ρ).σ |σ0〈P0〉μ0 and Q be ρ〈〉μR ◦σ |σ0〈P0〉μ0 . We have that I ,C ,R |=μgpμpμ P
is equivalent to μ0 ∈I (μgp,μp,μ), {drip(ρ)}∪A(σ)∪A(σ0)⊆I (μp,μ,μ0), and I ,C ,R |=μpμμ0 P0.

Because of the closure conditions, from the above, ∃μR = MIdrip(drip(ρ),μ0,μgp,μp,μ) such that

μR ∈ I (μgp,μp,μ), A(ρ) ⊆ I (μp,μ,μR). We have that I ,C ,R |=μgpμpμ Q is equivalent to both

I ,C ,R |=μgpμpμ ρ〈〉μR and I ,C ,R |=μgpμpμ σ |σ0〈P0〉μ0 . The first condition is verified, because μR ∈
I (μgp,μp,μ) and A(ρ) ⊆ I (μp,μ,μR). The second amounts to μ0 ∈ I (μgp,μp,μ) and A(σ) ∪
A(σ0) ⊆ I (μp,μ,μ0) and it is satisfied as well. We therefore obtain the required I ,C ,R |=μgpμpμ Q.

Theorem 5.2 Given a process P including a membrane labelled μ , then if c never appears on the mem-
brane labelled μ , then the capability c never affects the membrane labelled μ .

Proof. First of all, we observe that if c affects μ in P, then we have a contradiction, since it implies that

c �∈I (μgp,μp,μ) for some context μgpμp. We now show that there exist no Q, Q′ such that P→∗ Q→Q′

such that c does not affect μ in Q, while it does in Q′. The only case in which this can happen is when

a (Bud) or a (Drip) is performed with parameter ρ including c. Indeed, the firing of such an action lets

arise a new membrane affected by the corresponding parameter. We focus on the second one. Suppose

we have in Q a sub-process drip(ρ).σ |σ0〈Q0〉μ and that c occurs in ρ . This amounts to have that c can

affect μ in Q′. By theorem 1, we have that (I ,R,C ) is an estimate also for Q. Nevertheless this implies

that c ∈ I (μgp,μp,μ), thus leading to a contradiction.
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Târgul din Vale 1, Piteşti, Romania
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We solve the Firing Squad Synchronization Problem (FSSP), for P systems based on digraphs with

simplex channels, where communication is restricted by the direction of structural arcs. Previous

work on FSSP for P systems focused exclusively on P systems with duplex channels, where commu-

nication between parents and children is bidirectional. Our P solution, the first for simplex channels,

requires cell IDs, strongly connected digraphs and some awareness of the local topology (such as

each cell’s outdegree)—we argue that these requirements are necessary. Compared to the known

solutions for cellular automata, our solution is substantially simpler and faster.

Keywords: P systems, digraphs, strongly connected, simplex channels, firing squad synchronization,

cellular automata.

1 Introduction

The Firing Squad Synchronization Problem (FSSP), originally proposed by Myhill in 1957 [14], is one

of the best studied problems for cellular automata. Essentially, the problem involves programming a

network of cellular automata, so that, after the firing order is given by the general, after some finite time,

all the cells in the system enter a designated firing state, simultaneously and for the first time.

Versions of FSSP have been proposed and studied for variety of network structures, from simple lin-

ear graphs to rings, trees, or general connected graphs; see, for example, [2, 4, 10, 11, 12, 15, 17, 23, 25,

26]. However, most of these versions, require bidirectional communication (i.e. duplex channels): only

a few notable exceptions consider the more restricted unidirectional communication (i.e. simplex chan-

nels), starting with Kobayashi [12]. Later, Even, Litman and Winkler [9] proposed improved solutions

for arbitrary undirectional strongly-connected digraph, working in O(N2) steps, where N is the digraph

size (number of cells). Ostrovsky and Wilkerson [18] improved this further, to a solution which runs in

O(ND) steps, where D is the digraph diameter (typically smaller than N)— this still seems to be the best

solution available.

Several FSSP solutions have recently been studied in the framework of P systems, although with

somehow different formulations, stemming from their different computing capabilities. P solutions were

proposed: for trees, by Bernardini et al. [3] and Alhazov et al. [1]; and for arbitrary connected graphs,

by Dinneen at al. [6, 7, 8]. All these P solutions require duplex channels and follow the typical pattern

of a wave algorithm [24], using three phases:



1. a first broadcast—which follows all shortest paths from the general and builds a virtual BFS tree
(or dag);

2. a convergecast—which helps determine the general’s eccentricity;

3. a second broadcast—which carries the actual firing command (with a countdown counter).

The best P solutions need eg+k steps for each of the three phases, for a total of 3eg+k steps, where eg

is the general’s eccentricity (height for trees, if the general is at the root).

Obviously, while the two broadcasts, of phases (1) and (3), would also work with simplex channels,

duplex channels are essential for the convergecast of phase (2), where children need to talk back to their

parents. At first sight, the convergecast seems impossible for simplex channels. However, children can

still talk back to their parents, if the digraph is strongly-connected, albeit on a typically longer path.

Moreover, if messages cannot be confused, all children can send messages to their parents, in parallel

(overlapping in time without problems), achieving this way a virtual convergecast.
Based on ideas from Ostrovsky and Wilkerson [18], we propose a first FSSP solution for P systems

with simplex channels, based on arbitrary strongly-connected digraphs. Our solution runs in O(egD)
steps, specifically: (1) eg steps for the first broadcast; (2) O(egD) steps for the virtual convergecast

(maximally parallelized); (3) eg steps for the second broadcast. Thus, in terms of execution time, our

P solution compares favourably with the best known solution for cellular automata. Taking into account

the different problem constraints and different computing capabilities of P systems vs. cellular automata,

we were expecting a simpler and faster solution, but not necessarily such a substantial speed improve-

ment. However, for the reasons mentioned, any performance comparison must be viewed with a grain of

salt.

The actual design seems challenging and requires careful selection of the most adequate ingredients,

some of which are available in cellular automata, but not typically available in P systems. Specifically,

we argue that the P solution requires: (1) reified cell IDs; (2) reified local network information, such

as the number of outgoing arcs (this information is available in cellular automata); and (3) high-level

generic rules, if we want to have a fixed rule set, independent of the actual network size.

2 Preliminaries

We assume that the reader is familiar with the basic terminology and notations, such as relations, graphs,

nodes (vertices), edges, directed graphs (digraphs), directed acyclic graphs (dags), arcs, alphabets, strings

and multisets.

A P system is a parallel and distributed computational model, inspired by the structure and interac-

tions of cell membranes. This model was introduced by Păun in 1998–2000 [19]. An in-depth overview

of this model can be found in Păun et al. [22].

In this paper, we consider an ad-hoc definition of P systems, based on our definition of simple P mod-
ule [5], which extends earlier versions of tissue and neural P systems [13, 20]. However, here we inten-

tionally restrict rule transfer mode to broadcast to all children, ↓∀.

Definition 1 A P system of order n with simplex channels is a system Π = (O,K,δ ), where:

1. O is a finite alphabet of elementary symbols; strings over O are interpreted as multisets;

2. K = {σ1,σ2, . . . ,σn} is a finite set of cells; where each cell is a system σi = (Qi,Ri), with Qi a
finite set of states and Ri a finite set of rewriting rules over O, further detailed below.
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3. δ is an irreflexive binary relation on K, which represents a set of structural arcs between cells,
with unidirectional communication capabilities, strictly from parents to children.

4. Each Ri is a finite linearly ordered set of multiset rewriting rules with promoters, of the form:
S x →α S′ x′ (y)↓∀ · · · |z, where S,S′ ∈ Qi, x,x′,y ∈ O∗, z ∈ O∗ is the promoter, α ∈ {min,max} is a
rewriting operator and ↓∀ is a transfer operator, here restricted to send y messages from a parent
to all its children.

As usually, each cell, σi ∈K, starts from an initial configuration (Si0,wi0), where Si0 ∈Qi is its initial
state and wi0 ∈ O∗ is its initial content. A cell evolves by applying one or more rules, which can change

its current configuration, i.e. its current state and current content, and send symbols to its children.

The application of a rule transforms the current state S to the target state S′, rewrites multiset x as x′

and sends multiset y by replication to all its children. Note that, multisets x′ and y will not be visible to

further rules in this same step, but they will become visible after no more rules are applicable, i.e. they

will be available since next step only. Promoters are symbols which enable rules, but are not consumed

by the rules’ application.

When an applicable rule is applied, its rewriting operator α indicates how many times it is actually

applied: once, if α = min; or as many times as possible, if α = max.

As used here, rules have priorities and are applied in weak priority order [21], with special attention

to target state compatibility: (1) higher priority applicable rules are applied before lower priority appli-

cable rules, and (2) a lower priority applicable rule is applied only if it indicates the same target state as

the previously assigned rules (if any).

All cells evolve synchronously in one global step. An evolution of a P system is a sequence of steps,

where each cell starts from its initial configuration. An execution halts if no cell can evolve.

2.1 Further P systems extensions

We let each cell, σi, start with its own unique cell ID symbol, ιi. We thus reify the conceptual cell index, i,
into an internal symbol, which is accessible to the rules, exclusively as an immutable promoter [16].

We enhance our vocabulary by recursive composition of elementary symbols from O into a simple

form of complex symbols [16]. Such complex symbols can be viewed as complex molecules, consisting

of elementary atoms or other molecules.

Further, complex symbols let us process our multisets with high-level generic rules, using free vari-
able matching. To explain these additional ingredients, consider this hypothetical rule (which uses an

additional transfer mode, targeted to a specific child, not considered in the definition used here):

S a n j →min.min S′ b (ci)↓ j |ιi.

This is a generic rule, which uses an extended rewriting mode, with complex symbols, ci and n j,

where i and j are free variables. In fact, ci and n j are just shorthands for tuples (c, i) and (n, j), or,

equivalently, for compound terms c(i) and n( j). If needed, we can build more complex symbols by

recursive composition; e.g., we could have complex symbols such as d(e, i, f ( j)). Generally, a free

variable could match anything, including another complex symbol. However, in this rule, i and j are

constrained to match cell ID indices only:

1. i—because it also appears as the cell ID of the current cell, ιi;

2. j—because it also indicates the target of the transfer mode, ↓ j.
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A generic rule is identified by using an extended version of the “classical” rewriting mode, in fact, by

a combined instantiation and rewriting mode. Our sample rule uses the extended mode min.min, where

the two min operators have distinct semantics: the first min operator is new and describes the generic

instantiation; the second min is the classical operator, which describes the rule application. Briefly:

1. according to the first min, this rule is instantiated once, for one of the existing n j symbols (if any),

while promoter, ιi, constrains i to the cell ID index of the current cell, σi;

2. according to the second min, the instantiated rule is applicable once, i.e. if applied, it consumes

one a and one n j, produces one b and sends one ci to child σ j (if this exists).

As a further example, consider the scenario in which the current cell, σ1, contains the multiset n2n3n3.

Here, our sample generic rule instantiates (randomly) one of the following two lower-level rules, which

is then applied in the classical way (in the min rewriting mode):

S a n2 →min S′ b (c1)↓2
.

S a n3 →min S′ b (c1)↓3
.

We consider four basic combinations of the instantiation and rewriting modes, min.min, min.max,

max.min, max.max; their semantics is:

• min.min indicates that the generic rule is (randomly) instantiated once, if possible, and the instan-

tiated rule is applied once, if possible.

• min.max indicates that the generic rule is (randomly) instantiated once, if possible, and the instan-

tiated rule is applied as many times as possible.

• max.min indicates that the generic rule is instantiated as many times as possible, without superflu-

ous instances (i.e. without duplicates or instances which are not applicable), and each one of the

instantiated rules is applied once, if possible.

• max.max indicates that the generic rule is instantiated as many times as possible, without superflu-

ous instances (i.e. without duplicates or instances which are not applicable), and each one of the

instantiated rules is applied as many times as possible.

All instantiations are ephemeral, created when rules are tested for applicability and disappearing at

the end of the step.

3 FSSP problem for P systems with simplex channels

We are required to find:

1. an alphabet O;

2. a cell prototype σ = (Q,R), where

(a) R is a set of rules over O;

(b) Q contains two distinguished states:

• S0: a quiescent state, i.e. if σ is in state S0 and empty, then there are no applicable rules;

• S f : a final state, i.e. if σ is in state S f , then there are no applicable rules.

such that, given:

1. any finite set of σ copies, K = {σ1,σ2, . . . ,σn}, σi = σ ;
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2. connected via any strongly-connected digraph δ ;

the P system Π = (O,K,δ ) with simplex channels will evolve according to the following specification:

1. all cells start from quiescent state S0: Si0 = S0;

2. except a distinguished cell σg, called the general, all cells start with a restricted initial content, con-

taining, the reified cell ID and a reified count of the cell’s outdegree: wi0 ⊆ {ιi,coutdegree(σi)},∀i �=
g;

3. the evolution terminates and, during its last step: all cells enter state s f simultaneously and for the
first time.

Remark 1 Our formulation has different constraints than the original problem for cellular automata.
In the cellular automata formulation, there is a given fixed bound on the number of input and output
connections of each cell (bounded indegree and outdegree). In our formulation, there is no bound on the
number of input and output connections that a cell may have. However, this is compensated by the fact
that in our formulation there are no size bounds on messages or cells’ internal memory. These trade-offs,
as well as different computing capabilities, suggests that performance comparisons must be viewed with
a grain of salt.

Remark 2 We argue that both the reified cell ID and the reified children count, or equivalent informa-
tion, are necessary, definitely for our approach, and, likely, for any other approach. Note that children
counts are implicit in the cellular automata version, where unconnected channels (out of the fixed sized
pool) can be detected.

Remark 3 There is no constraint on the cells’ final contents. However, if needed, any left-over garbage
could be collected in one extra step.

Remark 4 Practically, we are only required to design the rule set, R, because this implies the alpha-
bet, O, and the state set, Q.

Remark 5 Note the rule set, R, must be fixed and applicable to any structural digraph. This is a strong
requirement: we require a rule set which is independent of the size and structure of the actual system.

4 FSSP solution for P systems with simplex channels

Our solution runs in three phases (conceptually similar to the duplex case):

1. First phase: a first broadcast from the general. This phase builds the virtual-dag (the virtual BFS

dag) and, for each cell: (a) records its virtual-dag-parent(s); and (b) successively computes its

depth attribute, which represents this cell’s depth level in the virtual-dag (the same as this cell’s

digraph distance from the general). A first phase broadcast message is a complex symbol, xk,i,

where i is the sender’s ID and k is the next depth level (σi’s own depth plus one).

2. Second phase: a virtual convergecast from the virtual-dag leaves. For each cell, this phase succes-

sively computes the max-depth attribute, which represents the maximum depth over all descendant

cells in the virtual-dag. In the end, the general’s max-depth is its eccentricity.

This virtual convergecast simulates impossible direct virtual-dag-child to virtual-dag-parent mes-

sages, by broadcasting them over the digraph (using ad-hoc BFS dags). A convergecast message

is a complex symbol, a j,i,k, where i is the sender’s ID, j is its virtual-dag-parent ID and k is σi’s
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own max-depth. In addition to virtual-dag leaves, a pseudo-convergecast message is also sent by

a digraph cell to its digraph parents with larger depth attributes (if any). Because each message is

uniquely identified by both it sender and its destination, any number of such convergecasts can run

in parallel, without creating confusions.

Note that a cell needs to know its digraph outdegree—to detect when it receives its last outstand-

ing convergecast message and to start its own convergecast. However, a cell does not know the

identities of its digraph children, or how long a message from any one of them will take to reach

it.

3. Third and last phase: a second broadcast from the general, with a countdown to firing. A last

phase broadcast message is a complex symbol, fk, where k is the next countdown counter (σi’s

own countdown minus one).

As possible extensions, not discussed here, we can extract from our solution a more general subpro-

gram, to send any message from any cell to any other cell, which can run in parallel, without creating

confusions. Also, we can consolidate the routing information, to speedup future messages with the same

destination; however, this feature is not required here (each convergecast is performed exactly once).

Figures 1–8 show bird’s eye views of the evolution of Π: a sample P system, with simplex channels,

based on a strongly connected digraph.

σ1|−|−

σ2|− |− σ3|− |− σ4|− |−

σ5|− |− σ6|− |− σ7|− |−

σ8|− |− σ9|− |−

σ10|−|−

Figure 1: Π: Initial configuration of a sample P system with simplex channels, based on a strongly

connected digraph. Normal arrows are arcs in the virtual dag, created by a BFS broadcast, started from the

general, σ1. The remaining digraph arcs are dotted arrows. Each cell knows its digraph outdegree, indicated by

small circles at outgoing arrows’ tails. Each cell blob shows three attributes, in order: (1) its cell ID; (2) its depth
attribute (computed by the first broadcast); and (3) its max-depth attribute (computed by the virtual convergecast).

At this stage, the depth and max-depth attributes are still indeterminate and all small circles are white, indicating

still outstanding convergast messages.
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4.1 Rule set R

0. Rules in state S0:

1. S0 a →min.min

S1 g n0 m0 (x1,i)↓∀ |ιi

2. S0 xk, j →max.min

S1 lk p j (xk+1,i)↓∀ |ιi

3. S0 xk, j →max.max S1 p j |ιi

1. Rules in state S1:

1. S0 lk →max.min S1 nk mk

2. S0 lk →max.max S1

3. S1 xk, j →max.min S1 y j,0

4. S1 xk, j →max.max S1

5. S1 sk →max.min Max w mk

6. S1 y j,k →max.min

S1 v j,i (a j,i,k)↓∀ |ιi

7. S1 a j,k,l →max.max S1 |v j,k

8. S1 ai, j,k →max.min S1 vi, j sk |ιi

9. S1 a j,k,l →max.min

S1 v j,k (a j,k,l)↓∀

2. Rules in state S2:

1. S2 t →min S5 (t)↓∀
2. S2 sk →max.min Max w mk

3. S2 y j,k →max.min

S2 v j,i (a j,i,k)↓∀ |ιi

4. S2 a j,k,l →max.max S2 |v j,k

5. S2 ai, j,k →max.min S2 vi, j sk |ιi

6. S2 a j,k,l →max.min

S2 v j,k (a j,k,l)↓∀

3. Rules in state S3:

1. S3 cc →min S1 ce
2. S3 c →min S4 eb

3. Rules in state S4:

1. S4 →max.min

S2 t fk (t)↓∀ |g b mk

2. S4 →max.min S2 y j,k |p j mk

4. Rules in state Max (needs re-

finement):

1. Max mk →max S3 |mk+l

5. Rules in state S5:

1. S5 vk,l →max.max S f | f0

2. S5 pk →max.max S f | f0

3. S5 nk →max.max S f | f0

4. S5 mk →max.max S f | f0

5. S5 e →min.max S f | f0

6. S5 b →min.max S f | f0

7. S5 →min.min S f | f0

8. S5 vk,l →max.max S5 | fk

9. S5 pk →max.max S5 | fk

10. S5 nk →max.max S5 | fk

11. S5 mk →max.max S5 | fk

12. S5 e →min.max S5 | fk

13. S5 b →min.max S5 | fk

14. S5 fk →max.min

S5 fk−1 ( fk−1)↓∀
15. S5 fk →max.max S5

16. S5 t →max S5

4.2 Alphabet O, elementary and complex symbols

• ιi: reified cell ID;

• a: starts the process from the cell which next assume the general role;

• g: marks the general;

• x j,k: complex symbol broadcasted in the first phase;
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• nk: indicates the depth attribute, k;

• mk: indicates the max-depth attribute, k;

• lk: auxiliary symbol used to compute depth attribute, nk;

• pk: pointer to a parent cell;

• yi,k: initiates the sending of message k to σi;

• ai, j,k: complex symbol broadcasted in the convergecast phase, sent from σ j to σi and carrying

payload k, representing σ j’s max-depth (if known, otherwise it is a pseudo-convergcast sent by a

cell with lower depth);

• vi, j: records the passage of a message from σ j to σi;

• sk: auxiliary symbol used to compute max-depth attribute, mk, via maximum;

• c: used to count the children which have not yet sent their convergecast messages (initially cell’s

outdegree);

• e: used to count the children which have already sent their convergecast messages (initially zero);

• b : marks a cell which has performed its convergecast;

• t: auxiliary symbol used in the countdown to firing;

• fk: complex symbol broadcasted in the last phase, carrying the countdown to firing;

4.3 Brief description

1. State S0: initiates the first broadcast and computes depth attributes.

2. State S1: continues the first broadcast and builds the virtual-dag.

3. State S2: performs the actual convergecast.

4. State S3: decides if a non-general cell is ready to start its convergecast, i.e. if it has received its all

outstanding convergecast messages, from all its digraph children.

5. State S4: decides if the general is ready to start the second broadcast (countdown to firing), i.e. if

it has received convergecast messages from all its children.

6. State Max: prepares the convergecast, by determining the max-depth attribute.

7. State S5: last broadcast, counts down to firing and erases unnecessary symbols.

5 Assessment

Theorem 1 The synchronization time of the FSSP solution for digraph-based P systems with simplex
channels is eg + egD+ eg, i.e. bounded by O(egD).

Theorem 2 The digraph must be strongly connected, otherwise, there is no solution.

Theorem 3 Cells must know the number of their outgoing arcs, otherwise, there is no solution.

Theorem 4 Cell IDs must be reified, otherwise, there is no solution.
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6 Experimental results

Besides our earlier example, we have empirically validated our solution in several test scenarios, with

digraphs of different shapes and sizes, for example:

• A simple ring (Figure 9).

• A main ring linking a series of smaller rings of size two (Figure 10).

• A main ring linking a series of smaller rings of size three (Figure 11).

• A main ring linking a series of smaller rings of increasing size (Figure 12).

• A set of 11 random directed graphs, with up to 70 nodes each, generated by the standard networkx

package.

The results support our claim for correctness and performance.

7 Conclusions

In this paper, we explicitly presented a first solution to the FSSP for synchronous digraph-based P sys-

tems with simplex channels. Our design suggests, but does not need, ways to consolidate routing infor-

mation in such systems—this can be a topic for further study.

Our solution runs in O(eD) steps and compares favourably, i.e. it is simpler and faster, than the

best known solution for cellular automata [18], which runs in O(ND) steps. Taking into account the

different problem constraints and different computing capabilities of P systems vs cellular automata, we

were expecting a simpler and a faster solution, but not necessarily such a substantial speed improvement.

However, as noted before, any performance comparison must be viewed with a grain of salt.

Our solution used a fixed size high-level rule set, independent of the number of cells in the actual

system and of its structure. This supports the case for reified cell IDs, complex symbols and generic

rules and suggests that such ingredients could be useful or even essential in any distributed or just large

system.
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[20] G. Păun. Membrane Computing: An Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2002.
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σ1|7|−

σ2|8|− σ3|5|− σ4|3|−

σ5|6|− σ6|4|− σ7|0|−

σ8|5|− σ9|1|−

σ10|2|−

Figure 2: Π: route from σ7 to σ2, indicated via thick arrows.

σ1|0|−

σ2|−|− σ3|−|− σ4|−|−

σ5|−|− σ6|−|− σ7|−|−

σ8|−|− σ9|−|−

σ10|−|−

Figure 3: Π, step 1: The general, σ1, starts the first phase, by broadcasting the complex symbol a1,1.
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σ1|0|−

σ2|1|2 σ3|1|2 σ4|1|−

σ5|2|2 σ6|2|− σ7|2|−

σ8|3|3 σ9|3|−

σ10|4|4

a9,10,4

Figure 4: Π, step 9: Cell σ10 has just learned that it is a virtual-dag leaf, by receiving cell’s σ4’s pseudo-

convergecast message, the complex symbol a10,4,−. Cell σ10 starts now its virtual convergecast, by

broadcasting the complex symbol a9,10,4, towards its virtual-dag-parent, σ9. At this stage, each cell knows

its virtual-dag-parent(s) and its own depth attribute. All other cells have already initiated their virtual convergecasts.

All leaves, including σ10, and some other cells already know their max-depth attribute: exactly, if they have

received all their outstanding convergecast messages, or a lower bound, otherwise. Message a9,10,4 will take three

more steps: via paths σ10.σ4.σ6.σ9 and path σ10.σ4.σ7.σ9. Three other, earlier stared, virtual convergecasts run in

parallel: σ2 to σ1, σ3 to σ1, σ8 to σ6. Smaller arrows near structural arcs indicate virtual convergecasts.

σ1|0|2

σ2|1|2 σ3|1|2 σ4|1|−

σ5|2|2 σ6|2|− σ7|2|−

σ8|3|3 σ9|3|4

σ10|4|4

a7,9,4

Figure 5: Π, step 12: After receiving its single expected convergecast message, cell σ9 starts its own

virtual convergecasts towards its parents, σ6 and σ7, by broadcasting complex symbols, a6,9,4 and a7,9,4,

respectively. Each of these messages will take three more steps, via path σ9.σ10.σ4.σ6 and via path σ9.σ10.σ4.σ7,

respectively. These two convergecasts run in parallel with another virtual convergecast: σ8 to σ6.
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σ1|0|2

σ1|1|2 σ3|1|2 σ4|1|4

σ5|2|2 σ6|2|4 σ7|2|4

σ8|3|3 σ9|3|4

σ10|4|4

a1,4,4

Figure 6: Π, step 18: The convergecast phase is almost completed. Cell σ4 starts its convergecast

towards its parent, σ1, by broadcasting the complex symbol a1,4,4. This convergecast will take four more

steps, via paths σ4.σ6.σ3.σ5.σ1 and path σ4.σ6.σ8.σ5.σ1. This is cell σ1’s last oustanding convergecast.

σ1|0|4

σ2|1|2 σ3|1|2 σ4|1|4

σ5|2|2 σ6|2|4 σ7|2|4

σ8|3|3 σ9|3|4

σ10|4|4

f3
f3

f3

Figure 7: Π, step 22: General σ1 starts the last phase, by broadcasting the complex symbol f3, carrying

the countdown to firing. Small dots above a cell indicate the cell’s countdown counter, which is also broadcasted

to all its digraph children.
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σ1|0|4

σ10|4|4

σ2|1|2 σ3|1|2 σ4|1|4

σ5|2|2 σ6|2|4 σ7|2|4

σ8|3|3 σ9|3|4
f0

f0

Figure 8: Π, step 25: The last phase is almost complete. Cell σ9 forwards the complex symbol f0 to

σ10. This the last step before firing (not illustrated here).
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6 5

4

3

(a) Sample network, N = 6.

N eg D Steps

2 1 1 18

3 2 2 29

4 3 3 42

5 4 4 57

6 5 5 74

7 6 6 93

8 7 7 114

9 8 8 137

10 9 9 162

11 10 10 189

12 11 11 218

13 12 12 249

14 13 13 282

15 14 14 317

(b) Results.

Figure 9: Ring networks.
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(a) Sample network, N = 10.

N eg D Steps

2 1 1 18

4 3 3 40

6 5 5 62

8 7 7 90

10 9 9 122

12 11 11 158

14 13 13 198

16 15 15 242

18 17 17 290

20 19 19 342

(b) Results.

Figure 10: Ring networks of size 2 rings.
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(a) Sample network, N = 18.

N eg D Steps

5 4 4 57

10 5 5 67

15 6 6 78

20 7 7 90

25 8 8 101

(b) Results.

Figure 11: Ring networks of size 3 rings.
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(a) Sample network, N = 14.

N eg D Steps

2 1 1 18

5 3 3 40

9 5 5 63

14 7 7 90

20 9 9 121

27 11 11 156

(b) Results.

Figure 12: Ring networks of increasing size rings.
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In [3], P systems with active membranes were used to generate languages, in the sense of languages

associated with the structure of membrane systems. Here, we analyze the power of P systems with

membrane creation and dissolution restricted to elementary membranes, P systems without mem-

brane dissolution operating according to certain output modes. This leads us to characterizations of

recursively enumerable languages.

1 Introduction

In [3], an alternative approach to generate languages by means of P systems was proposed. An appropri-

ate representation for a string was built by means of a membrane structure and then the string is generated

by visiting the membrane structure according to a well-specified strategy. P systems with active mem-

branes were considered, allowing membrane creation or division or duplication and dissolution, where

the output of a computation may be obtained either by visiting the tree associated with the membrane

structure, or by following the traces of a specific object, called traveller, or sending out the objects. For

each of these approaches, characterizations of recursively enumerable languages were provided based on

P systems that use different sets of operations for modifying the membrane structure.

The output of a computation was considered not as a single entity, which is either sent out of the

system or collected in a specific membrane. Instead the output is given by catenating the content or

the labels of each region of the whole configuration reached by the system at the end of a computation.

They considered a general class of P systems with active membranes equipped with membrane division,

creation, duplication and dissolution operations. Membrane duplication means that, starting from an

existing membrane, we can create a new membrane which encloses the existing one. Then three different

approaches for collecting the output of a computation was given namely visiting the tree associated with

the membrane structure, following the traces of a special object (traveller traces), and sending out the

objects (external mode). The trace mode and external mode were investigated earlier in the literature.

For the external mode, the main difference with respect to this approach is that, before sending out the

objects, we need to prepare an appropriate membrane structure where the output objects are supposed to

be distributed according to a specific strategy.

The approach presented in [3], is related to the problem of finding alternative ways to define the

output of the computation in membrane systems. In fact, this method puts emphasis on the structure of

the membranes whose role is important in successful computations.



In this paper, we investigate the computational power of P systems with active membranes equipped

with membrane creation and membrane dissolution restricted to elementary membranes operating ac-

cording to all four output modes. Also we analyse the power of P systems without membrane dissolution

operating according to the three identified output modes. We need the label changing feature of in type

rules to obtain the universality in the second case.

The paper is organized as follows. Section 3 recalls the definition of P systems with active membranes

together with the definition of three different output modes. In section 3.1 we state the results from [3]

concerning the power of P systems with active membranes generating languages of membrane structures.

In sections 4 and 5, we prove characterizations of recursively enumerable languages by means of P

systems with active membranes equipped with the membrane creation and dissolution operations.

2 Some Prerequisites

In this section we introduce some formal language theory notions which will be used in this paper; for

further details, refer to [8].

For an alphabet V , we denote by V ∗ the set of all strings over V , including the empty one, denoted

by λ . By RE we denote the family of recursively enumerable languages.

In our proofs in the following sections we need the notion of a matrix grammar with appearance
checking. Such a grammar is a construct G = (N,T,S,M,F), where N,T are disjoint alphabets, S ∈ N,

M is a finite set of sequences of the form (A1 → x1, . . . ,An → xn),n ≥ 1, of context free rules over N∪T ,

and F is a set of occurrences of rules in M ( N is the nonterminal alphabet, T is the terminal alphabet, S
is the axiom, while the elements of M are called matrices).

For w,z ∈ (N ∪T )∗ we write w ⇒ z if there is a matrix (A1 → x1, . . . ,An → xn) in M and the strings

wi ∈ (N∪T )∗,1 ≤ i ≤ n+1, are such that w = w1,z = wn+1, and, for all 1 ≤ i ≤ n, either (1) wi = w
′
iAw

′′
i ,

wi+1 = w
′
ixiw

′′
i , for some w

′
i,w

′′
i ∈ (N∪T )∗, or (2) wi = wi+1,Ai does not appear in wi, and the rule Ai → xi

appears in F . (The rules of a matrix are applied in order, possibly skipping the rules in F if they cannot

be applied - one says that these rules are applied in the appearance checking mode).

The language generated by G is defined by L(G) = {w|w ∈ T ∗,S ⇒∗ w}. The family of languages of

this form is denoted by MATac. It is known that MATac = RE.

We say that a matrix grammar with appearance checking G=(N,T,S,M,F) is in the Z-binary normal
form if N = N1 ∪N2 ∪{S,Z,#}, with these sets mutually disjoint, the matrices of type 3 can also be of

the form (X → Z,A → #), and the only matrix of type 4 (terminal matrix) is of the form (Z → λ ).
According to Lemma 1.3.7 in [4], for each matrix grammar there is an equivalent matrix grammar in

the binary normal form.

Next we define a computing device which is equivalent in power with Turing machine. Such a

machine runs a program consisting of numbered instructions of several simple types. Several variants

of register machines with different number of registers and different instruction sets were shown to be

computationally universal (e.g., see [5]).

An n-register machine is a construct M = (n,H, l0, lh, I) , where:

• n is the number of registers,

• H is the set of instruction labels,

• l0 is the initial label,

• lh is the final label, and
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• I is a set of labelled instructions of the form li : (op(r) , l j, lk), where op(r) is an operation on

register r of M, li, l j, lk are labels from the set H (which labels the instructions in a one-to-one

manner),

The machine is capable of the following instructions:

(ADD(r), l j, lk): Add one to the contents of register r and proceed to instruction l j or to instruction

lk; in the deterministic variants usually considered in the literature we demand l j = lk.

(SUB(r), l j, lk): If register r is not empty, then subtract one from its content and go to instruction

l j, otherwise proceed to instruction lk.

halt: Stop the machine. This additional instruction can only be assigned to the final label lh.

When considering the generation of languages, we use the model of a register machine with output
tape (e.g., see [2]) , which also uses a tape operation:

• l : (write(a), l′′): Write symbol a on the the output tape and go to l′′.

We then also specify the output alphabet T in the description of the register machine with output

tape, i.e., we write M = (n,T,H, l0, lh, I). Let L ⊆V ∗ be a recursively enumerable language. Then L can

be generated by a register machine with output tape and with 2 registers.

3 Languages of Membrane Structures

We consider a general class of P systems with active membranes equipped with membrane division, cre-

ation, duplication and dissolution operation. These operations represent abstractions of cellular biology

processes of mitosis and membrane formation through self-assembling lipid bilayers [1]. We recall the

definition of this P system from [3].

Definition 1 A P system with active membranes is a construct

Π = (V,K∪{0},μ,w0,w1, . . . ,wm−1,R)

where

1. V is an alphabet; its elements are called objects;

2. K is an alphabet; its elements are called labels; the symbol 0 /∈K is the label of the skin membrane;

3. μ is a membrane structure containing m ≥ 1 membranes; the skin membrane is labelled by 0 and
all other membranes are labelled with symbols in K;

4. w0 is the multiset associated with the skin membrane;

5. wi ∈V ∗, for 1 ≤ i ≤ m−1, is a multiset of objects associated with the membrane i;

6. R is a finite set of rules of the form:

a) [ia → v]i with a ∈V,v ∈V ∗, and i ∈ K∪{0} (inside a membrane i an object a is replaced by
a multiset v),

b) [ia]i → b[i]i with a,b ∈ V , and i ∈ K ∪{0} (an object is sent out from a membrane, maybe
modified),

c) a[i]i → [ib]i with a,b ∈ V , and i ∈ K ∪{0} (an object is moved into a membrane, the object
may be modified),
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d) [ia → [ jb] j]i with a,b ∈V , i ∈ K∪{0}, and j ∈ K (membrane creation: inside a membrane i,
starting from an object a, a new elementary membrane j is created, which contains an object
b),

e) [ia]i → [kb]k[ jc] j with a,b,c ∈ V , i, j,k ∈ K (membrane division: the membrane i, in the
presence of an object a, is divided into two new membranes labelled by k and j, and the
content (objects and sub-membranes) of the membrane i is copied into each new membrane
where the object a is respectively replaced by b or c),

f) [ia]i → [kb[ jc] j]k with a,b ∈ V , i, j,k ∈ K (membrane duplication the membrane i, in the
presence of an object a, is duplicated, that is, the label i is changed into j, the object a is
replaced by c, and a new upper membrane labelled by k is created, which contains an object
b),

g) [ia]i → a with a ∈ V , and i ∈ K (membrane dissolution: in the presence of an object a,
the membrane i is dissolved and its content (objects and sub-membranes) is released in the
directly upper region).

In the above system we have: an initial membrane structure with m membranes that contain m multi-

sets associated with the regions, and a finite set of evolution rules. Moreover, as usual in P systems with

active membranes, we also consider a distinct alphabet K which is used to label the membranes and is

necessary to precisely identify the rules that can be applied inside every membrane. In general, in a P

system with active membranes, the number of membranes can be increased and decreased arbitrarily and

there can be many different membranes with the same label, which can be distinguished from each other

only by the objects they contain. Thus, the labels from K make possible to keep finite the representation

of a P systems by specifying a set of ”types”, each one with its own set of rules, for the membrane

possibly present in the system at any time. A membrane with no further membrane inside is called an

elementary membrane.

The set R contains rules for modifying both the number and the distribution of objects inside the

system and the number and type of membranes which define the structure of the system. The former

rules are expressed in the form of transformation and communication rules (rules of type (a), (b) and (c))

whereas the latter ones (rules of type (d), (e), (f) and (g)) comprise the operations of: membrane creation,

membrane division, membrane duplication and membrane dissolution, respectively.

Remark 1 Here, we do not consider the feature of membrane polarization for P systems with active
membranes as reported in the literature. However, in the above definition, rules of more general forms
are used that are able to change the labels of the membranes involved.

As usual, P systems with active membranes evolve according to a non-deterministic maximal parallel

strategy. Rules of type (a), (b), (c), and (d) are applied to all the objects which they can be applied to.

Rules of type (e), (f), (g) are applied to all the membranes which they can be applied to. Obviously, in

each step, the same membrane cannot be used by more than one rule of type (e), (f), (g) (i.e., a membrane

cannot simultaneously be divided, duplicated and dissolved). More precisely, we assume that, in each

step, the objects first evolve by means of rules of type (a), (b), (c), (d), and then the membranes evolve

according to rules of type (e), (f), (g).

A computation is obtained by applying rules of R starting from the initial configuration. A computa-

tion is said successful if it reaches a configuration where no more rules can be applied.

We illustrate the application of rules (d) - (g) by examples. In the following examples, P,Q are

possible contents of membranes and a,b,c are objects from V . The effect of the rules on some membrane

structures is below:
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(1) [iP a]i
rule of type (d) : We get [iP [ jb] j]
rule of type (e) : We get [ jP b] j [kP c]k
rule of type (f) : We get [kb [ jP c] j]k

(2) [ j[iP a]i Q] j

rule of type (g) : We get [ jPQ a] j

The result of a computation may be considered in various forms, which are called output modes.

• Visiting the tree. The result of a computation is the set of strings obtained by visiting the tree associ-

ated with the membrane structure in the final configuration. The resulting set of strings is obtained

by concatenating either the labels of the membranes or the objects inside these membranes, in the

order they are visited. If a membrane contains more than one object, then we consider all the

possible permutations of these objects. When we collect the labels, we do not consider the skin

membrane, which is always labelled by 0. This output mode is denoted either by lab, if we collect

the labels, or by obj if we collect the objects.

• Traveller traces. We assume that the initial configuration contains a special object t, called the

traveller, inside some membrane. The traveller t can be moved by using rules of type (b) or (c),

but it cannot be modified by any rule. The resulting string is obtained as follows: initially we start

with the empty string associated with the initial configuration, then whenever the object t crosses

a membrane labelled by i, we add the symbol i at the rightmost side of the current string. This

output mode is denoted by traces.

• External mode. The resulting set of strings is defined as follows: we start initially with an empty

string outside of the membrane system; whenever an object is sent out of the skin membrane, we

add such an object to the rightmost end of each current string. If some objects are sent out from the

skin membrane at the same time, we consider the string formed by all the permutations of these

objects. This output mode is denoted by ext.

We denote by LOPm,n(Op, l), with Op ⊆ {a,b,c,d,e, f ,g}, l ∈ {ob j, lab, traces,ext}, the family

of languages generated by P systems with active membranes with at most m membranes in the initial

configuration that use at most n different labels for the membranes (the cardinality of K ∪ {0} is at

most n), that apply rules of the forms specified in Op, and has the output mode l. As usual, if the value

of m, or the value of n, is not bounded, it is replaced by the symbol ∗. Moreover, when the rules of type

(e),( f ), and (g) are allowed only for elementary membranes, the corresponding operations are denoted

by e′, f ′, and g′. Also, when the rules of type (b) and (c) are allowed to change the label of the membrane,

the corresponding operations are denoted by b′ and c′.

3.1 The power of membrane creation and membrane division

In this section, we present some results from [3]. The universality of P systems with membrane division

and membrane dissolution with respect to the output modes lab, obj was given by the following theorem.

Theorem 1 LOP1,∗({a,b,c,d,g},v) = RE, for v ∈ {lab,ob j}.

A similar result holds for P systems with membrane division and membrane dissolution restricted to

elementary membranes.

Theorem 2 LOP2,∗({a,b,c,e,g′},v) = RE, for v ∈ {lab,ob j}.
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In the proofs of the above theroem, the final configuration has membrane structure of depth 2. So a

“predefined” order among the membranes is necessary to get a suitable representation for the strings of

a language. Such an approach does not work well in the case of traces and external output modes. The

following theorem shows that such a problem can be avoided by considering the operation of membrane
duplication.

Theorem 3 LOP2,∗({a,b,c, f ,g},v) = RE, for v ∈ {lab,ob j,ext} and
LOP3,∗({a,b,c, f ,g}, traces) = RE.

The following cases were left open in [3]:

The computational power of

1. P systems with membrane creation and membrane dissolution (or membrane division and mem-

brane dissolution) operating according to the external mode or the traces mode;

2. P systems without membrane dissolution operating according to any of the three identified output

modes;

3. P systems with membrane creation and membrane dissolution restricted to elementary membranes.

We settle some of the above cases in the coming sections.

4 Universality with Membrane Creation and Dissolution

The following is a characterization of recursively enumerable languages by means of P systems with ac-

tive membranes equipped with the membrane creation and dissolution operation restricted to elementary

membranes operating according to all output modes.

Theorem 4 LOP1,∗({a,b,c,d,g′},v) = RE, for v ∈ {lab,ob j,ext} and
LOP2,∗({a,b,c,d,g′}, traces) = RE.

Proof: The proof is based on the simulation of a register machine M = (2,T,P, l0, lh). We construct a P

system with active membranes that simulates the register machine M such that

Π = (V,K∪{0}, [0]0, l′0,R)

where

V = T ∪{a1,a2,b1,b2}∪{l′, l′′ | l : (ADD(r), l′, l′′) ∈ P}
∪ {l0, l′0, l

′′
0 ,1

′,2′,$′ | l0 is the initial label of M }
∪ {li, l′i , l

′′
i , l

′′′
i , liv

i , l
′, l′′ | l : (SUB(i), l′, l′′, i = 1,2}

∪ {(a, l′),(a, l′) | l : (WRIT E(a), l′) ∈ P,a ∈ T}
∪ {1′,2′,$′}

K = T ∪{1,2,3,4,$}
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R = {[0l′0 → 1′2′$′l′′0 ]0, [0l′′0 → l0] | l0 is the initial label of M}
∪ {[01′ → [1]1]0, [02′ → [2]2]0, [0$′ → [$]$]0}
∪ {[0l → bil′]0, [0l → bil′′]0 | l : (ADD(i), l′, l′′), i = 1,2}
∪ {bi[i]i → [iai]i | i = 1,2}
∪ {l → li, li[i]i → [ili]i | l : (SUB(i), l′, l′′, i = 1,2}
∪ {ai[3]3 → [3ai]3, [3l′i → l′′]3 | l : (SUB(i), l′, l′′, i = 1,2}
∪ {[3ai]3 → λ , [3l′′i → l′′′i ]3, [3l′′′i ]3 → liv

i | l : (SUB(i), l′, l′′, i = 1,2}
∪ {[il′′′i ]i → l′, [iliv

i ]i → l′′ | l : (SUB(i), l′, l′′, i = 1,2}
∪ {[0l → (a, l′)]0 | l : (WRIT E(a), l′)}
∪ {(a, l′)[b]b → [b(a, l′)]b | b ∈ T ∪{$}}
∪ {[$(a, l′)]$ → (a, l′), [b(a, l′)→ [al′$]a]b | b ∈ T}
∪ {[a$ → [$]$]a | a ∈ T}
∪ {lh[1]1 → [1lh]1, [1lh]1 → l′h, l

′
h[2]2 → [2l′h]2, [2l′h]2 → l′′h}

∪ {[0ai → λ ]0 | i = 1,2}
∪ {l′′h [4]4 → [4l′′h ]4, [4l′′h ]4 → λ}

Let us see how the P system Π works. Initially, we have the configuration [0[4t]4l′0]0. We apply the first 5

rules to produce the configuration [0l0[1]1[2]2[$]$]0. The value of the two registers i = 1,2, are represented

by the number of objects ai inside the corresponding membrane i. The membrane labelled $ is used

to prepare an appropriate membrane structure where the output objects are supposed to be distributed

according to a specific strategy.

The add instruction l : (ADD(i), l′, l′′) is simulated as follows. We use the rule l → bil′ or l → bil′′ to

create an object bi corresponding to the register i. Now the object bi changes to ai while entering inside

membrane i.
In order to simulate a subtract instruction l : (SUB(i), l′, l′′), we send the object li into the membrane i

and then proceed in the following way: The object li creates a membrane with label 3 and an object l′i .
If the register i is not empty, then the object ai will enter membrane 3 and dissolve it; otherwise the

object l′′′i dissolves membrane 3 there by changing to liv
i . If the register i is not empty, then we have l′′′i in

membrane i; otherwise liv
i . Now we will send l′ or l′′ to the skin membrane depending upon the presence

of l′′′i or liv
i in membrane i respectively. This will end the simulation of the SUB instruction.

The simulation of the instruction l : (WRIT E(a), l′) is done as follows. First we use the rule l → (a, l′)
in the skin membrane. The object (a, l′) travels deep inside the nested membrane structure until it reaches

the membrane [$]$. In membrane $, the object (a, l′) changes to (a, l′) and dissolves the membrane. Now

the object (a, l′) will create a membrane labelled a which contains the objects l′ and $. The object l′

moves toward the skin membrane whereas the object $ will create a membrane [$]$ inside the membrane

[a]a. The object l′ starts the simulation of the instruction labelled l′ after reaching the skin membrane.

The presence of object lh in the skin membrane will start the clean-up process. It will remove both the

membranes 1, 2 and the objects inside them. Finally the object l′′h dissolves membrane 4 which contains

the object t.
At last, we have a configuration of the form [0t[x1

[x2
. . . [xh [$]$]xh . . .]x2

]x1
]0 with x1x2 . . .xh ∈ L(M), for

some h ≥ 1. Now we move the traveller t by using rules of the form t[a]a → [at]a, with a ∈ T , and in this

way we generates exactly the string x1x2 . . .xh ∈ L(M).
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External mode: For this mode we consider a P systems Π whose initial configuration is [0l′0]0, where l0
is the starting label of the register machine M. We simulate the register machine M in the same way as

described above for the traveller traces, and during the clean-up process the object l′h changes to f and dis-

solves membrane 2 instead of changing to l′′h . Thus, we have a configuration [0 f [x1
[x2
. . . [xh [$]$]xh . . .]x2

]x1
]0,

and we can generate the string x1x2 . . .xh ∈ L(M) by using the following rules:

• f [a]a → [a f ′]a with a ∈ T

• [a f ′ → a f ]a with a ∈ T

• [ba]b → a[b]b with a,b ∈ T

• [0a]0 → a[0]0 with a ∈ T

By applying these rules, we can send the objects out of the skin membrane in the right order

We can easily modify the above system Π to obtain a final configuration of the form

[0[x1
x1[x2

x2 . . . [xhxh[$]$]xh . . .]x2
]x1
]0 for some h ≥ 1, and x1x2 . . .xh ∈ L(M). If we visit the tree associated

with this membrane structure either by collecting the labels or by collecting the objects, then we get

x1x2 . . .xh ∈ L(M) in both cases. �

Remark 2 The universality of P systems with membrane division and membrane dissolution restricted to
elementary membranes with respect to the traces and external output modes can be proved in a similar
fashion provided the rules of type endocytosis were allowed. Because a combination of rules of type
division and endocytosis can simulate rules of type creation.

5 Universality with only Membrane Creation

A similar result holds for P systems that use only the membrane creation operation avoiding the operation

membrane dissolution for all output modes except traveller traces. But we need the label changing

feature for in type rules to obtain universality.

Theorem 5 LOP1,∗({a,b,c′,d},v) = RE, for v ∈ {lab,ob j,ext}.

Proof: Let G = (N,T,S,M,F), with N = N1 ∪N2 ∪ {S,Z,#}, be a matrix grammar with appearance

checking in Z-binary normal form where the matrix of type 1 is (S → XA), the matrices of type 2 are

labelled, in one to one manner, by m1, . . . ,mk, and matrices of type 3 by mk+1, . . . ,mn. We construct a P

system with active membranes that simulates the matrix grammar G as follows:

Π = (V,K∪{0}, [0]0,S,R)

where

V = N1 ∪N2 ∪T ∪{Z,#}∪{Yi,Y ′
i | 1 ≤ i ≤ n,Y ∈ N1}

∪ {Yi,B | Y ∈ N1,B ∈ N2,1 ≤ i ≤ k}∪{Yi,$ | Y ∈ N1,1 ≤ i ≤ k}
K = N2 ∪T ∪{$}
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R = {[0S → [AXA]A]0, [AXA → [$X ′
A]$]A | (S → XA) ∈ M}

∪ {[$X ′
A]$ → X ′

A[$]$, [AX ′
A]A → X [A]A | (S → XA) ∈ M}

∪ {[0X → Yi]0 | X ,Y ∈ N1,1 ≤ i ≤ n}
∪ {Yi[y]y → [yYi]y | y ∈ N2 ∪T,y �= A,mi : (X → Y,A → x) ∈ M,1 ≤ i ≤ k}
∪ {Yi[$]$ → [##]# | Y ∈ N1,1 ≤ i ≤ k}
∪ {Yi[A]A → [aY ′

i ]a | mi : (X → Y,A → a),1 ≤ i ≤ k}
∪ {[yY ′

i ]y → Y ′
i [y]y | y ∈ N2 ∪T ∪{$},1 ≤ i ≤ n}

∪ {[0Y ′
i → Y ]0 | Y ∈ N1,1 ≤ i ≤ n}

∪ {Yi[A]A → [a1
Yi,a2

]a1
| mi : (X → Y,A → a1a2),1 ≤ i ≤ k}

∪ {Yi,B[C]C → [BYi,C]B | B,C ∈ N2 ∪T ∪{$},1 ≤ i ≤ k}
∪ {[BYi,$ → [$Y ′

i ]$]B | Y ∈ N1,B ∈ N2,1 ≤ i ≤ k}
∪ {Yi[A]A → [##]#,Yi[$]$ → [$Y ′

i ]$ | mi : (X → Y,A → #),k+1 ≤ i ≤ n}
∪ {[## → #]#, [0Z → λ ]0}

Initially, we have the configuration [0S]0. We simulate the unique matrix of type 1 in G by applying

the first 4 rules to produce the configuration [0X [A[$]$]A]0. We need the membrane labelled by $ in order

to identify the end of the string.

Assume that we have a configuration of the form [0X [x1
[x2
. . . [xh [$]$]xh . . .]x2

]x1
]0 after some steps,

where h ≥ 1, and Xx1x2 . . .xh is a sentential form of G, with X ∈ N1,xi ∈ N2 ∪T . Now we apply the rule

[0X → Yi]0, for some 1 ≤ i ≤ n. We have two cases according to the values of i.
Case 1: 1 ≤ i ≤ k. In this case, we are simulating a matrix of type 2, i.e., mi : (X → Y,A → x). By

using the rule Yi[y]y → [yYi]y, we move Yi deeper inside the nested membranes. If there is no membrane

labelled by A in the current configuration, then we use the rule Yi[$]$ → [##]#. The symbol # generates

an infinite computation by means of the rule [## → #]#. If some membrane labelled A is present in the

current configuration, then we have two cases.

Case a): |x|= 1, i.e., x = a ∈ N2 ∪T .

In this case, we use the rule Yi[A]A → [aY ′
i ]a. The above rule changes the object Yi into Y ′

i and also

changes the label A into a. Now the object Y ′
i travel towards the skin membrane. Once it reaches the

skin, it becomes Y .

Case b): |x|= 2, i.e., x = a1a2 ∈ N2 ∪T .

In this case, we use the rule Yi[A]A → [a1
Yi,a2

]a1
. Here the object Yi changes to Yi,a2

and the label A changes

to a1. Further we use the rule Yi,B[C]C → [BYi,C]B to move the object Yi,B towards the membrane labelled $.

While moving the objects Yi,B, we change the labels of the membrane remembering the previous label in

their second component. Once we got the object Yi,$ in the innermost membrane, we use it to create a

membrane labelled $ containing the object Y ′
i . After this we move Y ′

i towards the skin membrane. It will

become Y once it reaches the skin membrane.

Case 2: k+1 ≤ i ≤ n. That is we are simulating a matrix of type 3 (mi : (X → Y,A → #)). In this case,

we use the object Yi to check for the presence of a membrane labelled A in the current configuration. If

there exists a membrane labelled A, the object Yi is moved inside by the rule Yi[A]A → [##]#. This will

lead to an infinite computation that yields no result. Otherwise, the object Yi becomes Y ′
i after reaching

the innermost membrane labelled by $. Now we move the object Y ′
i towards the skin membrane where it

changes to Y .
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Finally, we erase the symbol Z in the skin membrane, once it was introduced and the computation

halts. Now by applying rules as in the previous theorem, we send out the objects in the right order. �

6 Conclusion

This paper explores the idea of defining membrane systems that are able to build up a membrane structure

that encodes some meaningful information proposed by [3]. We investigated the computational power of

P systems with membrane creation and dissolution rules operating according to the external and traces

mode. Also we proved the universality of P systems with membrane creation alone, but we allow the

label changing feature for in type rules. At the moment, we are unable to characterize the power of P

systems with active membranes equipped with membrane creation alone.
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In this article we consider a new derivation mode for generalized communicating P systems (GCPS)

corresponding to the functioning of population protocols (PP) and based on the sequential derivation

mode and a fairness condition. We show that PP can be seen as a particular variant of GCPS. We

also consider a particular stochastic evolution satisfying the fairness condition and obtain that it

corresponds to the run of a Gillespie’s SSA. This permits to further describe the dynamics of GCPS

by a system of ODEs when the population size goes to the infinity.

1 Introduction

The notion of a generalized communicating P system was introduced in [22], with the aim of providing

a common generalization of various purely communicating models in the framework of P systems.

A generalized communicating P system, or a GCPS for short, corresponds to a hypergraph where

each node is represented by a cell and each edge is represented by a rule. Every cell contains a multiset

of objects which – by communication rules – may move between the cells. The form of a communi-
cation rule is (a, i)(b, j)→ (a,k)(b, l) where a and b are objects and i, j,k, l are labels identifying the

input and the output cells. Such a rule means that an object a from cell i and an object b from cell j
move synchronously to cell k and cell l, respectively. In this respect, the model resembles the Petri Net

formalism [18] where tokens from various input places come along together to fire a given transition and

then fork out to destination places, see [22, 4] for more details.

Depending on the communication rules form, several restrictions on communication rules (modulo

symmetry) can be introduced. Due to the simplicity of their rules, the generative power of such restricted

systems is of particular interest and it has been studied in detail. In [22, 8, 7, 17] it was proved that

eight of the possible nine restricted variants (with respect to the form of rules) are able to generate any

recursively enumerable set of numbers; in the ninth case only finite sets of singletons can be obtained.

Furthermore, these systems even with relatively small numbers of cells and simple underlying (hyper-

graph) architectures are able to achieve this generative power. In [7] a further restriction is introduced

by considering that the alphabet of objects is a singleton (like in Petri Nets) and it is shown that the

computational completeness can be achieved in four of the restricted variants.

Population protocols (PP) have been introduced in [1] (see [3] for a survey) as a model of sensor net-

works consisting of very limited mobile agents with no control over their own movement. A population

protocol corresponds to a collection of anonymous agents, modelled by finite automata, that interact with

one another to carry out computations, by updating their states, using some rules. Their computational

power has been investigated under several hypotheses in most of the cases restricted to finite size popula-

tions. In particular, predicates stably computable in the original model have been characterized as those



definable in Presburger arithmetic. The article [5] studies the convergence of PP when the population

size goes to the infinity.

The evolution of a PP follows a particular fairness condition: an execution is fair if for all configu-

rations C that appear infinitely often in the execution, if C is predecessor of a configuration C′, then C′

appears infinitely often in the execution. We consider such a condition in the case of GCPS systems

and obtain a new derivation mode which we call fair sequential mode (fs-mode). We further study the

dynamic behaviour of the system in this mode. Among several possible evolution strategies we con-

sider a stochastic strategy that satisfies the fairness condition and we obtain that the evolution of the

system corresponds to a run of the Gillespie stochastic simulation algorithm (SSA). Using the corre-

spondence between SSA and ODEs (assuming mass-action kinetics) we show that the dynamics of the

system can be represented by a system of ODEs when the population size goes to the infinity. We also

consider the converse problem and we give sufficient conditions for a system of ODEs to be represented

by a GCPS system working in concentration-depended stochastic implementation of the fs-mode. We

consider several examples of GCPS simulating Lotka-Volterra (predator-prey) behaviour or computing

approximations of algebraic numbers.

2 Background

In this section we recall some basic notions and notations used in membrane computing, formal language

theory and computability theory. For further details and information the reader is referred to [16, 17, 19].

An alphabet is a finite non-empty set of symbols. For an alphabet V , we denote by V ∗ the set of all

strings over V , including the empty string, λ . The length of the string x ∈ V ∗ is the number of symbols

which appear in x and it is denoted by |x|. The number of occurrences of a symbol a ∈ V in x ∈ V ∗ is

denoted by |x|a. If x ∈ V ∗ and U ⊆ V , then we denote by |x|U the number of occurrences of symbols

from U in x.

A finite multiset over V is a mapping M : V −→ N; M(a) is said to be the multiplicity of a in M (N
denotes the set of non-negative integers.) A finite multiset M over an alphabet V can be represented by

all permutations of a string x = aM(a1)
1 aM(a2)

2 . . .aM(an)
n ∈ V ∗, where a j ∈ V , 1 ≤ j ≤ n; x represents M

in V ∗. If no confusion arises, we also may use the customary set notation for denoting multisets. The

size of a finite multiset M, represented by x ∈V ∗ is defined as Σa∈V |x|a.

2.1 P Systems

Next we recall the basic definitions concerning generalized communicating P systems [22].

Definition 1. A generalized communicating P system (a GCPS) of degree n, where n ≥ 1, is an (n+4)-
tuple Π = (O,E,w1, . . . ,wn,R,h) where

1. O is an alphabet, called the set of objects of Π;

2. E ⊆ O; called the set of environmental objects of Π;

3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated with cell i;

4. R is a finite set of interaction rules (or communication rules) of the form (a, i)(b, j)→ (a,k)(b, l),
where a,b ∈ O, 0 ≤ i, j,k, l ≤ n, and if i = 0 and j = 0, then {a,b}∩ (O\E) �= /0; i.e., a /∈ E and/or

b /∈ E;

5. h ∈ {1, . . . ,n} is the output cell.
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The system consists of n cells, labelled by natural numbers from 1 to n, which contain multisets of

objects over O; initially cell i contains multiset wi (the initial contents of cell i is wi). We distinguish an

additional special cell, labelled by 0, called the environment. The environment contains objects of E in

an infinite number of copies.

The cells interact by means of the rules (a, i)(b, j)→ (a,k)(b, l), with a,b ∈ O and 0 ≤ i, j,k, l ≤ n.

As the result of the application of the rule, object a moves from cell i to cell k and b moves from cell j
to cell l. If two objects from the environment move to some other cell or cells, then at least one of them

must not appear in the environment in an infinite number of copies. Otherwise, an infinite number of

objects can be imported in the system in one step.

A configuration of a GCPS Π, as above, is an (n+1)-tuple (z0,z1, . . . ,zn) with z0 ∈ (O\E)∗ and zi ∈
O∗, for all 1 ≤ i ≤ n; z0 is the multiset of objects present in the environment in a finite number of copies,

whereas, for all 1 ≤ i ≤ n, zi is the multiset of objects present inside cell i. The initial configuration of Π
is the tuple (λ ,w1, . . . ,wn).

Given a multiset of rules R over R and a configuration u = (z0,z1, . . . ,zn) of Π, we say that R is

applicable to u if all its elements can be applied simultaneously to the objects of multisets z0,z1, . . . ,zn

such that every object is used by at most one rule. Then, for a configuration u = (z0,z1, . . . ,zn) of Π,

a new configuration u′ = (z′0,z
′
1, . . . ,z

′
n) is obtained by applying the rules of R in a non-deterministic

maximally parallel manner: taking an applicable multiset of rules R over R such that the application

of R results in configuration u′ = (z′0,z
′
1, . . . ,z

′
n) and there is no other applicable multiset of rules R ′

over R which properly contains R.

It is also possible to replace the maximally parallel strategy of rule application by other strategies,

called derivation modes (in the context of the present paper, the terms mode and strategy are used in-

differently). A derivation mode lies in the heart of the semantics of P systems and it permits to specify

which multiset among different possible applicable multisets of rules can be applied. When P systems

were introduced, only the maximally parallel derivation mode was considered which states that corre-

sponding multisets should be maximal, i.e., non-extensible. With the appearance of the minimal parallel

derivation mode [6] the concept of the derivation mode had to be precisely defined and [10] presents a

framework that permits to easily define different derivation modes.

One application of a multiset of rules satisfying the conditions of a derivation mode represents a

transition in Π from configuration u to configuration u′. A transition sequence is said to be a successful
generation by Π if it starts with the initial configuration of Π and ends with a halting configuration, i.e.,
with a configuration where no further transition step can be performed.

We say that Π generates a non-negative integer n if there is a successful generation by Π such that n
is the size of the multiset of objects present inside the output cell in the halting configuration. The set of
non-negative integers generated by a GCPS Π in this way is denoted by N(Π). It is also possible to use

GCPS as acceptors, in this case an input multiset is accepted if the system halts on it.

In [22] it is shown that GCPS are able to generate all recursively enumerable languages. Moreover

this result can be obtained by using various restrictions on the type of rules (i.e. induced hypergraph

structures), on the number of membranes and on the cardinality of the alphabet. We refer to [22, 8, 7] for

more details.

If the cardinality of the alphabet O is equal to one, then we refer to the corresponding symbol as a

token (denoted by •). Hence, we assume that O = {•}. We observe that such systems are similar to Petri

Nets having a restricted topology. This is especially visible if a graphical notation is used. However, the

maximal parallelism and the concept of the environment are specific to P systems, so we place this study

in the latter framework. A converse study of P systems from the point of view of Petri Nets can be found

in [11]. For more details on Petri Nets and membrane computing we also refer to [17].
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In this article we shall consider the dynamics of the configuration of GCPS, so we are no more

interested in computation (and halting evolutions).

2.2 Population Protocols

We give below the definition as it appears in [5]. A protocol is given by (Q,Σ, ı,ω,δ ) with the following

components. Q is a finite set of states. Σ is a finite set of input symbols. ı : Σ → Q is the initial state

mapping, and ω : Q → {0,1} is the individual output function. δ ⊆ Q4 is a joint transition relation that

describes how pairs of agents can interact. Relation δ is sometimes described by listing all possible

interactions using the notation (q1,q2)→ (q′1,q
′
2), or even the notation q1q2 → q′1q′2, for (q1,q2,q′1,q

′
2) ∈

δ (with the convention that (q1,q2) → (q1,q2) when no rule is specified with (q1,q2) in the left hand

side.)

Computations of a protocol proceed in the following way. The computation takes place among n
agents, where n ≥ 2. A configuration of the system can be described by a vector of all the agent’s states.

The state of each agent is an element of Q. Because agents with the same states are indistinguishable,

each configuration can be summarized as an unordered multiset of states, and hence of elements of Q.

Each agent is given initially some input value from Σ: each agent’s initial state is determined by

applying ı to its input value. This determines the initial configuration of the population.

An execution of a protocol proceeds from the initial configuration by interactions between pairs of

agents. Suppose that two agents in state q1 and q2 meet and have an interaction. They can change into

state q′1 and q′2 if (q1,q2,q′1,q
′
2) is in the transition relation δ . If C and C′ are two configurations, we write

C →C′ if C′ can be obtained from C by a single interaction of two agents: this means that C contains two

states q1 and q2 and C′ is obtained by replacing q1 and q2 by q′1 and q′2 in C, where (q1,q2,q′1,q
′
2)∈ δ . An

execution of the protocol is a (potentially infinite) sequence of configurations C0,C1,C2, . . . , where C0 is

an initial configuration and Ci →Ci+1 for all i ≥ 0. An execution is fair if for all configurations C that

appears infinitely often in the execution, if C →C′ for some configuration C′, then C′ appears infinitely

often in the execution.

At any point during an execution, each agent’s state determines its output at that time. If the agent

is in state q, its output value is ω(q). The configuration output is 0 (respectively 1) if all the individual

outputs are 0 (respectively 1). If the individual outputs are mixed 0s and 1s then the output of the

configuration is undefined.

Let p be a predicate over multisets of elements of Σ. Predicate p can be considered as a function

whose range is {0,1} and whose domain is the collection of these multisets. The predicate is said to

be computed by the protocol if, for every multiset I, and every fair execution that starts from the initial

configuration corresponding to I, the output value of every agent eventually stabilizes to p(I).
The following was proved in [1, 2]:

Theorem 1 ([1, 2]). A predicate is computable in the population protocol model if and only if it is
semilinear.

Recall that semilinear sets are known to correspond to predicates on counts of input agents definable

in first-order Presburger arithmetic [15].

2.3 Gillespie Algorithm

A usual abstraction in the simulation of biochemical systems consists in considering the system (e.g., a

bacterium) as a homogeneous chemical solution where the reactions of the model are taking place. D.T.

Gillespie has proposed in [12] an algorithm for producing the trajectories of such a chemical system
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by computing the next reaction and the elapsed time since last reaction occurred. Let μ be a chemical

reaction. The probability that μ takes place during an infinitesimal time step is proportional to:

• cμ , the stochastic reaction constant1 of reaction μ;

• hS
μ , the number of distinct molecular combinations that can activate reaction μ; it depends on the

current chemical state S;

• dτ , the length of the time interval.

Gillespie proved that the probability P(τ,μ|S)dτ that, being in a chemical state S, the next reaction will

be of type μ and will occur in the time interval (t + τ, t + τ +dτ) is:

P(τ,μ|S)dτ = aS
μ e−aS

0 τdτ

where aS
μ = cμ hS

μ is called the propensity of reaction μ , and aS
0 = ∑ν aS

ν is the combined propensity of

all reactions.

This probability leads to the first straightforward Gillespie’s exact stochastic simulation algorithm
(SSA) called the first reaction method. From a chemical state S, it consists in choosing an elapsed time

τ for each reaction μ according to the probability P(τ,μ|S). The reaction with the lowest elapsed time

is selected and applied on the system making its state evolve. A new probability distribution is then

computed for this new state and the process is iterated.

The Gillespie’s SSA gives a way to simulate a continuous-time Markov chain with the states cor-

responding to the states of the system and with transitions between states corresponding to a single

occurrence of a reaction. The probability for a transition between two states S and S′ corresponding to

the application of rule μ is defined as aS
μ/aS

0. In the following, we drop the mention of the current state

S in these notations.

3 Fair Sequential Derivation Mode

In this section we are interested in the relation between PP and GCPS. We show that in terms of structure

PP and GCPS are quite similar, the main differences concern the environment and the derivation mode.

We define a new fair sequential mode for GCPS and hence we are able to encode any PP in a GCPS w.r.t.

their dynamics. We then remark that GCPS with stochastic and Gillespie-like strategies are part of this

new class of GCPS and we propose their use for simulations of population behaviours.

It can be easily seen that both PP and GCPS are particular instances of multiset rewriting. Indeed,

in both cases the underlying data structure is multiset (obtained in a direct way for PP and by attaching

the indices of membranes to the objects in GCPS) and the evolution rules clearly correspond to multiset

rewriting rules with both left hand and right hand sides of size two. So, the translation of a PP to a

one-symbol GCPS can be easily done as follows. Given a PP with set of states Q (for convenience we

suppose that Q = {1, . . . ,n}) and transition relation δ in an initial configuration C0, the corresponding

GCPS Π = (O,E,w1, . . . ,wn,R,1) can be defined as:

• O = E = {•},

• wq = •k, k = |C0|q for any q ∈ Q,

• R = {(•,q1)(•,q2)→ (•,q′1)(•,q′2) | q1q2 → q′1q′2 ∈ δ}.

1Evaluating the stochastic constants is one of the key issues in stochastic simulations of biochemical reactions.
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The above system encodes each state q of PP by a token • present in membrane labelled by q. Since we

are interested in the dynamics of the system, no output membrane is necessary. The above construction

covers the core of PP and to obtain the complete equivalence encoding and decoding functions ı and ω
shall be used in the same way.

It is not possible to do a similar encoding of GCPS with PP because PP always deal with finite

multisets and GCPS can use the infinite multiset corresponding to the environment. However, any GCPS

having no rule involving the environment can be translated to PP in a similar way.

We remark that the biggest difference between PP and GCPS is given by the evolution step, i.e.,
by the derivation mode. For GCPS, mainly the maximally parallel derivation mode is investigated with

several attempts to investigate asynchronous or minimally parallel derivation mode, see [17] for more

details. The derivation mode of PP is very particular – it corresponds to a sequential strategy where only

one rule is applied at each step, like in Petri Nets, but with an additional fairness condition.

We can consider such a strategy in GCPS case as well. More precisely we consider fair computations:

a GCPS computation is fair, if for any configuration u that appears infinitely often in the computation,

then any configuration u′, such that u ⇒ u′ in sequential application, also appears infinitely often. We

shall call such computational strategy a fair sequential derivation mode (shortly fs-mode).

From these considerations, it is trivial to observe that PP are similar to GCPS in fs-mode with only

one symbol in the alphabet. If we consider an encoding function ı like for PP and the halting condition

corresponding to the stabilization of the ω-image of the configuration, then as an immediate consequence

of [1, 2], we obtain that any GCPS working in fs-mode and that does not have any rule involving the

environment can only accept semilinear sets.

Conversely, we also obtain that any PP working in maximally parallel mode (i.e., a maximally parallel

number of interactions can happen at each step) are computationally complete if the number agents in

some particular state q0 is going to the infinity.

From now on, we only speak of PP in terms of their associated one-symbol GCPS in fs-mode.

3.1 FS-Mode and Stochastic Evolution

Although powerful the definition of the fairness remains obscure. Let try to clarify it. When assuming

that the number of configurations is finite (this is the case for classical PP for example), the definition

can be easily rephrased as follows: a computation u0 ⇒ u1 ⇒ . . . is fair if

• there exists a non-negative integer N such that configuration uN belongs to a terminal strongly

connected component of the state graph2; and

• any state of this terminal strongly connected component appears infinitely often in the execution.

There are many possible evolutions of the system in the fs-mode. One example of such an evolution is

to choose at each step a rule that leads to a configuration that either never was visited previously or was

not visited for some time greater than k, k > 0 (if possible).

Among all possible evolutions, Markovian processes feature prominently since they respect the fair-

ness condition (it is well-known that Markovian processes leave non-terminal strongly connected com-

ponents with probability 1), they do not require any history or global knowledge on the state space, and

they provide a modelling tool useful in many domains (like in the simulation of population behaviours

or in distributed algorithmics). Such a Markovian process corresponds to a labeling of each state graph

arrow u ⇒p u′ by a static probability p that only depends on configuration u. Here are two examples of

such Markovian processes:

2In this directed graph, nodes correspond to the configurations u, and two nodes u and u′ are directly linked if u ⇒ u′.
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1. Equiprobable evolutions: u ⇒1/ku u′ where ku denotes the cardinality of the set {u′ |u ⇒ u′}.

2. Concentration-dependent evolutions: u ⇒pr u′ where r denotes the applied rule and pr is propor-

tional to hr, the number of distinct combinations of tokens that activate r, with a proportionality

coefficient that only depends on r. Assuming that r = (•,q1)(•,q2)→ (•,q′1)(•,q′2), the number

hr is given by

hr =

⎧⎪⎪⎨
⎪⎪⎩

|u|q1
|u|q2

if q1 �= 0,q2 �= 0,q1 �= q2

|u|q1
(|u|q1

−1) if q1 �= 0,q1 = q2

|u|q1
if q2 = 0

|u|q2
if q1 = 0

(1)

The two last cases hold when the environment (containing an infinite number of tokens) is involved

in the rule.

3.2 FS-Mode GCPS modelling Population Dynamics

Assuming that for a given rule proportionality coefficients are the same for all configurations, the con-

centration-dependent strategy directly corresponds to a run of the Gillespie’s SSA. Thus, we advocate

that GCPS in fs-mode provide a good theoretical tool for studying population behaviours.

A paradigmatic example illustrating how GCPS allows a well suited specification of population be-

haviours consists of the description of a process inspired by the Lotka-Volterra model.

The Lotka-Volterra Model. The Lotka-Volterra process was introduced by Lotka as a model of cou-

pled auto-catalytic chemical reactions, and was investigated by Volterra as a model for studying an

ecosystem of predators and preys [9]. This model specifies how two coupled populations (of chemi-

cals or individuals) Y1 (the preys) and Y2 (the predators) behave. In [12], D.T. Gillespie proposes the

study of this system derived from the following ODEs

dY1

dt
= (c1 − c2Y2)Y1

dY2

dt
= (c2Y1 − c3)Y2 (2)

Equivalently, the following chemical reactions

Y1

c1
GGGGGGA 2Y1 Y1 +Y2

c2
GGGGGGA 2Y2 Y2

c3
GGGGGGA . (3)

specify a model whose behaviour is described by ODEs system (2). The dynamics of these reactions

is conveniently characterized using the predator-prey interpretation. The first rule states that a prey Y1

reproduces. The second rule states that a predator Y2 reproduces after feeding on prey Y1. Finally, the last

rule specifies that predators Y2 die of natural causes. Coefficients ci are the rates of the three reactions.

The correspondence between the two models relies in the fact that the trajectories of the Gillespie’s SSA

tend to the solutions of the ODEs system given by the law of mass action on the reactions. This result is

due to the particular application of the Kurtz’s theorem [13] to chemical systems.

Lotka-Volterra GCPS Definition. The model above does not fill GCPS requirements since the first

and last reactions are not pairwise interactions. We propose to extend reactions (3) by considering a

renewable resource X for Y1 as a third species3: the molecular level of X remains constant whatever is

3We use the same notation as in [12] to express that the food resource X is assumed renewable.
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Figure 1: Runs of the Lotka-Volterra model with renewable (left column) and not-renewable (right column)

resources for different initial states (kinetics rates equal 1): Y1 = 500,Y2 = 1500,X = X = 1000 (first row), Y1 =
Y2 = X = X = 1000 (second row), Y1 =Y2 = 1000,X = X = 10000 (third row), Y1 = 1000,Y2 = 0,X = X = 10000

(fourth row). The solid red line represents preys, the dashed green line predators, and the blue dotted line resources.

The two first rows show that both dynamics exhibit the same properties as presented in [12] (particularly, in second

row, oscillations raise from an equilibrium initial state for the ODEs). The third row shows the difference in the

dynamics when the resource size is ten times larger than the population size. The last row shows the difference in

the dynamics when the predator population is empty. The simulations have been done using the general simulation

language MGS (http://mgs.spatial-computing.org) that allows an easy implementation of all models of

the present article [20, 14, 21].
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its production or its consumption. The extended system of reactions is:

X +Y1

c′1
GGGGGGA 2Y1 Y1 +Y2

c′2
GGGGGGA 2Y2 Y2 +X

c′3
GGGGGGA 2X (4)

The use of a pairwise interaction in the last reaction can be interpreted as a competition between the two

predator behaviours: a predator in presence of preys eates and reproduces (second reaction); a predator

in absence of prey (represented by the grass) dies (third reaction). Moreover, with the hypothesis that

the number of X remains constant, the behaviour of this system is exactly described by ODEs (2) with

c1 = Xc′1, c2 = c′2 and c3 = Xc′3. Thus, systems (3) and (4) are equivalent in terms of dynamics.

System (4) is only composed of pairwise interactions that satisfy condition 4 of Definition 1. Thus,

it can be easily translated to a one-symbol GCPS, denoted ΠLV , working in fs-mode (in concentration-

dependent implementation) with rules R:

(•,0)(•,1)→ (•,1)(•,1) (•,1)(•,0)→ (•,1)(•,1)
(•,1)(•,2)→ (•,2)(•,2) (•,2)(•,1)→ (•,2)(•,2)
(•,2)(•,0)→ (•,0)(•,0) (•,0)(•,2)→ (•,0)(•,0)

where membrane indices 0, 1 and 2 represent the environment (an infinite source of X), the preys Y1 and

the predators Y2, respectively.

Let now consider the previously defined concentration-dependent evolution with probabilities pμ =
aμ/a0 for each μ ∈R with the propensity function aμ = cμ hμ : cμ is the rate of the corresponding reaction

in (3) and hμ is given by equation (1) accordingly to ΠLV . The reader is invited to pay attention that even

if the environment is an infinite source of X (instead of a constant one), the dynamics are well taken into

account: rules involving the environment have probabilities that do not depend on the environment size,

see equation (1). For example, the propensity of the first reaction is given by a1 = c1 h1 = c1Y1 = c′1 X Y1

as expected w.r.t. reactions (4). In this respect, any computation of ΠLV represents a run of the Gillespie’s

SSA of reactions (4). As a consequence, ΠLV is an exact model of the original Lotka-Volterra system.

It has to be remarked that ΠLV cannot be described by any PP since the environment objects are

involved in its definition. A possible specification of the Lotka-Volterra equations may be obtained

within a PP by considering X as a not-renewable resource. Such a definition has been realized (taking

reactions (4) and substituting X by X .) However, due to the limitation of resource, this system does not

respect the dynamics of equation (2) anymore. For example, without any predators, a population of preys

stabilizes in this model, while in the original model it grows exponentially. Figure 1 gives some examples

of simulations of the Lotka-Volterra model considering renewable and not-renewable resources.

General Population Dynamics. It is possible to reverse the above method and to give a GCPS system

whose population dynamics will correspond to some dynamics given by a system of ODEs, under the

following conditions. Let us consider the ODEs system defined on set of variables {Y1, . . . ,YN} of the

form
dYi

dt
= ∑

j,k
ai

jkYjYk −∑
j
(bi j +b ji)YiYj (5)

where coefficients ai
jk and bi j satisfy the following conditions:

1. for all i, j,k, ai
jk ≥ 0 and bi j ≥ 0;

2. for all j,k such that b jk �= 0, there exists either one index i0 such that ai0
jk = 2b jk, or two distinct

indices i1 and i2 such that ai1
jk = ai2

jk = b jk; for any other index i, i �= i0 or i �= i1 and i �= i2, ai
jk = 0.
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The above conditions are sufficient to ensure that ∑i
dYi
dt = 0. Then there exists a concentration-dependent

fs-mode GCPS without rules involving the environment (i.e., a PP) whose behaviour is exactly described

by ODEs (5) when the population size goes to the infinity. Indeed, these equations correspond to the

mass-action law of a set of rules such that for any j,k with b jk �= 0

(•, j)(•,k)→b jk (•, i0)(•, i0) or (•, j)(•,k)→b jk (•, i1)(•, i2)

according to the considered possibility of the above condition 2. The reader is invited to pay attention that

these equations correspond to a wider range of dynamics than the dynamics of second-order chemical

reactions with two products since they allow the specification of ordered interactions (e.g., involving a

sender and a receiver as considered in the PP literature). This property also holds in PP and suggests that

equations (5) exactly describe PP dynamics when the size of the populations tends to the infinity.

It is obvious that a more general class of population behaviours is captured by concentration-dependent

fs-mode GCPS since they have not to be conservative thanks to the environment. Following the idea of

equivalence between systems (3) and (4) in terms of dynamics, equations (5) can be extended with the in-

troduction of a renewable variable Y0. This wider class of ODEs is supported by concentration-dependent

fs-mode GCPS model.

4 Computational Properties

In this section, we focus on the original use of PP as a computational model of algebraic numbers

proposed in [5]. This article investigates the case where the computation is independent of the initial

contents of the system.

Using the GCPS terminology, the main idea of [5] is to consider the result of a computation as a

ratio between the number of tokens in certain membrane and the total number of tokens (without taking

care of the environment) when the population size goes to the infinity and when the state of the system
converges. The proposed work relies on the definition of a particular strategy of execution of the PP:

a step of execution consists in sampling uniformly and independently of the past two distinct tokens in

the membrane and let them interact in a sequential mode. This strategy is fair since it corresponds to a

Markov process. The authors of the aforementioned article studied the Markov chain associated with PP

and proved its equivalence to some system of ODEs at the limit.

We remark that the same kind of result directly arises from considerations of Section 3.2 since this

computational model is captured by one-symbol GCPS working in fs-mode with Gillespie concentration-

dependent implementation. Indeed, the above execution strategy exactly corresponds to a Gillespie’s

SSA run where the stochastic constants equal 1 for all rules. Thus, the study of the model corresponds

to the investigation of the sensibility of the associated ODEs system. Let us illustrate this point by

considering the running example of [5]

(•, p)(•, p)→ (•, p)(•,m)

(•, p)(•,m)→ (•, p)(•, p)

(•,m)(•, p)→ (•, p)(•, p)

(•,m)(•,m)→ (•, p)(•,m)

where symbols p and m identify two membranes. It has been shown that the ratio p
p+m , where p (resp. m)

is the size of the membrane p (resp. m), converges to 1√
2

when the population size goes to the infinity.
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Accordingly to equations (5), we associate ODEs with this GCPS as follows

dYp

dt
= Y 2

m +2YpYm −Y 2
p

dYm

dt
=−Y 2

m −2YpYm +Y 2
p

The stable states of this system are obtained when the two equations vanish, that is, when either Ym =
−(

√
2+ 1)Yp or Ym = (

√
2− 1)Yp. The first solution is incoherent since it involves a negative size of

population. The second solution trivially leads to the expected result
Yp

Yp+Ym
= 1√

2
.

5 Conclusions

In this article we investigated connections between population protocols and generalized communicating

P systems. The two models share the same multiset structure and the same type of rules. Traditionally

PP are used to study population dynamics in the context of distributed algorithmics while GCPS are

investigated for the computational properties.

By incorporating the derivation mode from PP into GCPS framework we obtained a strict inclusion of

PP in GCPS working in fs-mode. We then took a particular implementation of the fs-mode corresponding

to a run of the Gillespie’s SSA and we obtained that the dynamics of the systems can be described by

the corresponding system of differential equations. Different questions then could be explored, like the

investigation of the conditions ensuring that the system reaches a stable state regardless of its initial state

or ensuring that a stable state is never reached for any initial configuration. GCPS are in this sense easier

to handle than PP because of the environment that permits to easily simulate the equivalent of creation

or degradation reactions. Section 3.2 also considers the converse problem of the construction of a GCPS

system exhibiting a particular behaviour given by a systems of ODEs. It would be interesting to see if

the given sufficient conditions are also necessary. A mathematical challenge resulting from Section 4

is whether for any algebraic number x ∈ [0..1] there is a GCPS working in concentration-dependent

evolution implementation of the fs-mode that converges to x.

We remark that the presented results hold only in the concentration-dependent implementation of the

fs-mode. By taking an equiprobable implementation the results are completely different.

Since Petri Nets can be seen as multiset rewriting, it is clear that the results of this paper can be

translated to this domain (for Petri Nets with specific type of rules and an additional fairness strategy).

We think that the fs-mode has interesting properties that should be further explored. As showed in the

article, the fairness condition is in some sense similar to a stochastic evolution, so it could be preferable

to consider this condition instead of a stochastic behaviour. Another interesting property of the proposed

stochastic implementation is that Gillespie’s SSA introduces an explicit continuous time and discrete

events in the model, which do not appear in a GCPS description.
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[17] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook Of Membrane Computing. Oxford University

Press, 2009.

[18] W. Reisig. Petri Nets. An Introduction. Springer, 1985.

[19] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, 3 volumes. Springer, 1997.

[20] A. Spicher, O. Michel, M. Cieslak, J.-L. Giavitto, and P. Prusinkiewicz. Stochastic P Systems and the

Simulation of Biochemical Processes with Dynamic Compartments. BioSystems, 91(3):458–472, March

2008.

[21] A. Spicher, O. Michel, and J.-L. Giavitto. Understanding the Dynamics of Biological Systems, chapter

Interaction-Based Simulations for Integrative Spatial Systems Biology, 195–231. Springer, 2011.

[22] S. Verlan, F. Bernardini, M. Gheorghe, and M. Margenstern. Generalized Communicating P Systems. Theor.
Comp. Sci., 404(1-2):170–184, 2008.

94



Proceedings of 5th Workshop on Membrane Computing
and Biologically Inspired Process Calculi (MeCBIC 2011)
Pages 95–111, 2011.

c© L. Jason Steggles
All the rights to the paper remain with the authors.

Abstracting Asynchronous Multi-Valued Networks:
An Initial Investigation

L. Jason Steggles
Newcastle University, UK.

L.J.Steggles@ncl.ac.uk

Multi-valued networks provide a simple yet expressive qualitative state based modelling approach
for biological systems. In this paper we develop an abstraction theory for asynchronous multi-valued
network models that allows the state space of a model to be reduced while preserving key properties
of the model. The abstraction theory therefore provides a mechanism for coping with the state space
explosion problem and supports the analysis and comparison of multi-valued networks. We take as
our starting point the abstraction theory for synchronous multi-valued networks which is based on
the finite set of traces that represent the behaviour of such a model. The problem with extending
this approach to the asynchronous case is that we can now have an infinite set of traces associated
with a model making a simple trace inclusion test infeasible. To address this we develop a deci-
sion procedure for checking asynchronous abstractions based on using the finite state graph of an
asynchronous multi-valued network to reason about its trace semantics. We illustrate the abstraction
techniques developed by considering a detailed case study based on a multi-valued network model
of the regulation of tryptophan biosynthesis in Escherichia coli.

1 Introduction

Multi-valued networks (MVNs) [25, 34, 35] are an expressive qualitative modelling approach for biolog-
ical systems (for example, see [35, 7, 28, 3]). They extend the well–known Boolean network [17, 18]
approach by allowing the state of each regulatory entity to be within a range of discrete values instead
of just true or false. The state of each regulatory entity is influenced by other regulatory entities in the
MVN and entities update their state using either a synchronous update strategy [18, 39] where all entities
simultaneously update their state, or an asynchronous update strategy [33, 15, 36] where entities update
their state independently using a non-deterministic approach.

While MVNs have shown their usefulness for modelling and understanding biological systems fur-
ther work is still needed to strengthen the techniques and tools available for MVNs. One interesting
area that needs developing is a theory for abstracting MVNs. Abstraction techniques allow a simpler
model to be identified which can then be used to provide insight into the more complex original model.
Such techniques are well–known in the formal verification community as a means of coping with the
complexity of formal models (see for example [9, 6, 10, 13]). The main motivation behind developing
such a theory for MVNs can be summarised as follows:

(1) The analysis of MVNs is limited by the well–known problem of state space explosion. Using ab-
straction is one useful approach which allows analysis results from a simpler approximate model to infer
results about the original model.
(2) Often several MVNs are defined at different levels of abstraction when modelling a system. It is
therefore clearly important to be able to formally relate these models using an appropriate theory.
(3) An abstraction theory would provide a basis for the step–wise refinement of MVNs.



(4) Identifying an abstraction for a complex MVN provides a means of better visualising and understand-
ing the behaviour an MVN, giving greater insight into the system being modelled.

The abstraction theory we present for asynchronous MVNs is based on extending the synchronous
abstraction theory presented in [5]. We formulate a notion of what it means for an MVN to be correctly
abstracted by a simpler MVN with the same network structure but smaller state space. The idea is to
use an abstraction mapping to relate the reduced state space of an abstraction to the original MVN. An
abstraction is then said to be correct if its set of traces is within the abstracted traces of the original MVN.
This definition of abstraction represents an under–approximation [9, 24] since not all of the behaviour
of the original MVN is guaranteed to have been captured within the abstraction. We show that this
approach allows sound analysis inferences about positive reachability properties in the sense that any
reachability result shown on an abstraction must hold on the original model. An important result of this
is that it therefore follows that all attractors of an asynchronous abstraction correspond to attractors in
the original MVN. Note that an alternative approach commonly used in abstraction is to use an over–
approximation [9, 24, 10] in which false positives may occur. However, such an approach appears to be
problematic for MVNs and we discuss this further in Section 3.

The non-deterministic nature of asynchronous MVNs mean that we encounter additional complica-
tions compared to the synchronous case; an asynchronous MVN can have an infinite set of traces which
means that directly checking trace inclusion to check a proposed abstraction is infeasible. We overcome
these difficulties by constructing a decision procedure for checking asynchronous abstractions that is
based on the underlying finite state graph of an MVN. We introduce the idea of step terms which are
used to denote possible ways to use sets of concrete states to represent abstract states. The decision
procedure starts with the set of all possible step terms and then iteratively prunes the set until either a
consistent abstract representation has been found or the set of remaining step terms is too small to make
it feasible to continue. We provide a detailed proof that shows the decision procedure correctly identifies
asynchronous abstractions and discuss the complexity of the decision procedure.

We illustrate the abstraction theory we develop by considering a case study based on modelling the
regulatory network that controls the biosynthesis of tryptophan by the bacteria E. coli [29, 27]. Trypto-
phan is essential for the development of E. coli and its resource intensive synthesis is carefully controlled
to ensure its production only occurs when an external source is not available. We investigate identi-
fying asynchronous abstractions for an existing MVN model of this regulatory mechanism which was
developed in [30].

The paper is organized as follows. In Section 2 we provide a brief overview of the MVN modelling
framework and present a simple illustrative example. In Section 3 we formulate a notion of abstraction
for asynchronous MVNs and consider the analysis properties that can be inferred from an abstraction. In
Section 4 we present a decision procedure for checking asynchronous abstractions and provide a detailed
proof of correctness for this procedure. In Section 5 we illustrate the theory and techniques developed
by a case study based on modelling the regulatory network that controls the biosynthesis of tryptophan
by E. coli. Finally, in Section 6 we present some concluding remarks and discuss related work.

2 Multi-valued Network Models

In this section, we introduce multi-valued networks (MVNs) [25, 34, 35], a qualitative modelling ap-
proach which extends the well-known Boolean network [17, 18] approach by allowing the state of each
regulatory entity to be within a range of discrete values. MVNs can therefore discriminate between
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the strengths of different activated interactions, something which Boolean networks are unable to cap-
ture. MVNs have been extensively studied in circuit design (for example, see [25, 20]) and successfully
applied to modelling biological systems (for example, see [35, 7, 28, 3]).

An MVN consists of a set of logically linked entities G = {g1, . . . ,gk} which regulate each other in
a positive or negative way. Each entity gi in an MVN has an associated set of discrete states Y (gi) =
{0, . . . ,mi}, for some mi ≥ 1, from which its current state is taken. Note that a Boolean network is
therefore simply an MVN in which each entity gi has a Boolean set of states Y (gi) = {0,1}. Each entity
gi also has a neighbourhood N(gi) = {gi1 , . . . ,gil(i)} which is the set of all entities that can directly affect
its state. A given entity gi may or may not be a member of N(gi) and any entity in which N(gi) = {} is
taken to be an input entity whose regulation is outside the current model. The behaviour of each entity gi

based on these neighbourhood interactions is formally defined by a logical next-state function fgi which
calculates the next-state of gi given the current states of the entities in its neighbourhood.

We can define an MVN more formally as follows.

Definition 1. An MVN MV is a four-tuple MV = (G,Y,N,F) where:
i) G = {g1, . . . ,gk} is a non-empty, finite set of entities;
ii) Y = (Y (g1), . . . ,Y (gk)) is a tuple of state sets, where each Y (gi) = {0, . . . ,mi}, for some mi ≥ 1, is the
state space for entity gi;
iii) N = (N(g1), . . . ,N(gk)) is a tuple of neighbourhoods, such that N(gi) ⊆ G is the neighbourhood of
gi; and
iv) F = ( fg1 , . . . , fgk) is a tuple of next-state multi-valued functions, such that if N(gi) = {gi1 , . . . ,gin}
then the function fgi : Y (gi1)×·· ·×Y (gin)→ Y (gi) defines the next state of gi. �

Consider the following simple example PL2 of an MVN defined in Figure 1 which models the core
regulatory mechanism for the lysis–lysogeny switch [34, 23] in the bacteriophage λ (this model is taken
from [32]). It consists of two entities CI and Cro, defined such that Y (CI) = {0,1} and Y (Cro) =
{0,1,2}. The next-state functions for each entity are defined using the state transition tables presented in
Figure 1.(b) (where [gi] is used to denote the next state of entity gi). We can summarise the interactions
as follows: entity Cro inhibits the expression of CI and at higher levels of expression, also inhibits itself;
entity CI inhibits the expression of Cro while promoting its own expression.

In the sequel, let MV = (G,Y,N,F) be an arbitrary MVN. In a slight abuse of notation we let gi ∈MV
represent that gi ∈ G is an entity in MV.

2CroCI

Interactions

Inhibition
Activation

CI Cro [CI] [Cro]
0 0 1 1
0 1 0 2
0 2 0 1
1 0 1 0
1 1 0 0
1 2 0 1

(a) Network structure (b) State transition tables

Figure 1: The MVN model PL2 of the core regulatory mechanism for the lysis-lysogeny switch in
bacteriophage λ (taken from [32]).
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A global state of an MVN MV with k entities is represented by a tuple of states (s1, . . . ,sk), where
si ∈ Y (gi) represents the state of entity gi ∈ MV. As a notational convenience we often use s1 . . . sk to
represent a global state (s1, . . . ,sk). When the current state of an MVN is clear from the context we let gi

denote both the name of an entity and its corresponding current state. The global state space of an MVN
MV , denoted SMV , is the set of all possible global states SMV = Y (g1)×·· ·×Y (gk).

The state of an MVN can be updated either synchronously (see [18, 39]), where the state of all enti-
ties is updated simultaneously in a single update step, or asynchronously1 (see [33, 15]), where entities
update their state independently. We define these update strategies more formally as follows:

Definition 2.
1) Synchronous Update: Given two states S1,S2 ∈ SMV , we let S1

Syn
−−→ S2 represent a synchronous update

step such that S2 is the state that results from simultaneously updating the state of each entity gi using its
next-state function fgi and the appropriate states from S1 as indicated by the neighbourhood N(gi).

2) Asynchronous Update: For any gi ∈ MV and any state S ∈ SMV we let [S]gi denote the global state that
results by updating the state of gi in S using fgi . Define the global state function nextMV : SMV →P(SMV)
on any state S ∈ SMV by

nextMV (S) = {[S]gi | gi ∈ MV and [S]gi �= S}

Given a state S1 ∈ SMV and S2 ∈ nextMV (S1), we let S1
Asy
−−→ S2 represent an asynchronous update step. �

Note that given the above definition, only asynchronous update steps that result in a change in the
current state are considered (see [15]).

Continuing with our example, consider the global state 12 for PL2 (see Figure 1) in which CI has

state 1 and Cro has state 2. Then 12
Syn
−−→ 01 is a single synchronous update step on this state resulting in

the new state 11. Considering an asynchronous update, we have nextMV (12) = {02, 11} and 12
Asy
−−→ 02

and 12
Asy
−−→ 11 are valid asynchronous update steps.

The sequence of update steps from an initial global state through SMV is called a trace. In the case of
the synchronous update semantics such traces are deterministic and infinite. Given that the global state
space is finite, this implies that a synchronous trace must eventually enter a cycle, known formally as an
attractor cycle [18, 35].

Definition 3. A synchronous trace σ is a list of global states σ = 〈S0,S1,S2, . . . 〉, where Si
Syn
−−→ Si+1, for

i ≥ 0. �

The set of all synchronous traces, denoted TrS(MV), therefore completely characterizes the be-
haviour of an MVN model under the synchronous semantics and is referred to as the synchronous trace
semantics of MV. Note that we have one synchronous trace for each possible initial state and so the set
of synchronous traces is always finite (see [18, 39]).

In the asynchronous case, traces are non-deterministic and can be finite or infinite. A single initial
state can have an infinite number of possible asynchronous traces starting from it and thus in the asyn-
chronous case there can be infinite number of traces.

1Note that different variations of the asynchronous semantics have been considered in the literature (see for example [26])
but that we focus on the one most commonly used for MVNs.
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Figure 2: The (a) synchronous and (b) asynchronous state graphs for PL2.

Definition 4. An asynchronous trace σ is either:

i) a finite sequence of global states σ = 〈S0,S1, . . . ,Sn〉, where Si
Asy
−−→ Si+1, for i = 0, . . . ,n− 1, and

nextMV (Sn) = {}.

ii) an infinite sequence of global states σ = 〈S0,S1,S2, . . . 〉, where Si
Asy
−−→ Si+1, for i ≥ 0. �

The set of all asynchronous traces, denoted TrA(MV), therefore completely characterizes the be-
haviour of an MVN model under the asynchronous semantics and is referred to as the asynchronous trace
semantics of MV. Any state S ∈ SMV which cannot be asynchronously updated, i.e. nextMV (S) = {}, is
referred to as a point attractor [34].

In our running example, PL2 has a state space of size |SPL2|= 6 and has the following (finite in this
case) set of asynchronous traces:

〈00,01,02,01,02, . . .〉 〈10〉
〈00,10〉 〈11,01,02,01,02, . . .〉
〈01,02,01,02, . . .〉 〈11,10〉
〈02,01,02,01, . . .〉 〈12,02,01,02,01, . . .〉

From the above traces it is clear that state 10 is a point attractor for PL2.
The behaviour of an MVN under the synchronous or asynchronous trace semantics can be represented

by a state graph (for example, see [36]) in which the nodes are the global states and the edges are

precisely the update steps allowed. We let SGS(MV) = (SMV ,
Syn
−−→) and SGA(MV) = (SMV ,

Asy
−−→) denote

the corresponding state graphs under the synchronous and asynchronous trace semantics.
The synchronous and asynchronous state graphs for PL2 are presented in Figure 2.
When analysing the behaviour of an MVN it is important to consider its attractors which can rep-

resent important biological phenomena, such as different cellular types like proliferation, apoptosis and
differentiation [16]. In the synchronous case all traces are infinite and so must lead to a cyclic sequence
of states which are taken as an attractor [18, 35, 39]. As an example, consider PL2 (see Figure 2.(a))

which has the point attractor 10 → 10; and attractors 00
Syn
−−→ 11

Syn
−−→ 00 and 01

Syn
−−→ 02

Syn
−−→ 01 of pe-

riod 2. In the asynchronous case we have point attractors which are states that cannot be updated and
also the strongly connected components in an MVN’s asynchronous state graph are considered to be
attractors [36]. Again, considering PL2 (see Figure 2.(b)) we can see that in the asynchronous case it

has two point attractors, 01 and 10, and one attractor 01
Asy
−−→ 02

Asy
−−→ 01.
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3 Asynchronous Abstractions

In this section we consider developing a notion of abstraction for asynchronous MVNs. The idea is to
formulate what it means for an MVN to be correctly abstracted by a simpler MVN with the same network
structure but smaller state space. We take as our starting point the abstraction techniques developed for
synchronous MVNs [5] and investigate extending these to the asynchronous case. We show that our
approach allows sound analysis inferences about positive reachability properties and that all attractors of
an asynchronous abstraction correspond to attractors in the original MVN.

We begin by recalling the notion of a state mapping and abstraction mapping [5] used to reduce an
entity’s state space.

Definition 5. Let MV be an MVN and let gi ∈ MV be an entity such that Y (gi) = {0, . . . ,m} for some
m > 1. Then a state mapping φ(gi) for entity gi is a surjective mapping φ(gi) : {0, . . . ,m}→ {0, . . . ,n},
where 0 < n < m. �

The state mapping must be surjective to ensure that all states in the new reduced state space are used.
From a biological viewpoint it may also be reasonable to further restrict the state mappings considered,
for example, only considering those mappings which are order-preserving. Note we only consider state
mappings with a codomain larger than one, since a singular state entity does not appear to be of biological
interest.

As an example, consider entity Cro∈PL2 (see Figure 1) which has the state space Y (Cro) = {0,1,2}.
It is only meaningful to simplify Cro to a Boolean entity and so one possible state mapping to achieve
this would be:

φ(Cro) = {0 	→ 0,1 	→ 1,2 	→ 1},

which maps state 0 to 0 and merges states 1 and 2 into a single state 1.
In order to be able to simplify several entities at the same time during the abstraction process we

introduce the notion of a family of state mappings.

Definition 6. Let MV = (G,Y,N,F) be an MVN with entities G = {g1, . . . ,gk}. Then an abstrac-
tion mapping φ = 〈φ(g1), . . . ,φ(gk)〉 for MV is a family of mappings such that for each 1 ≤ i ≤ k we
have φ(gi) is either a state mapping for entity gi or is the identity mapping Igi : Y (gi) → Y (gi) where
Igi(s) = s, for all s ∈ Y (gi). Furthermore, for φ to be useful we normally insist that at least one of the
mappings φ(gi) is a state mapping. �

Note in the sequel given a state mapping φ(gi) we let it denote both itself and the corresponding
abstraction mapping containing only the single state mapping φ(gi).

An abstraction mapping φ can be used to abstract an asynchronous trace (see Definition 4) using a
similar approach to that detailed for synchronous traces [5]. We begin by defining how an abstraction
mapping can be lifted to a global state.

Definition 7. Let φ = 〈φ(g1) . . .φ(gk)〉 be an abstraction mapping for MV . Then φ can be used to
abstract a global state s1 . . . sk ∈ SMV by applying it pointwise, i.e. φ(s1 . . . sk) = φ(g1)(s1) . . .φ(gk)(sk).

�

We can apply an abstraction mapping φ to an asynchronous trace σ ∈ TrA(MV) by applying φ to

100



each global state in the trace in the obvious way and and then merging consecutive identical states. Note
that removing consecutive identical states is needed since by the definition of an asynchronous trace (see
Definition 4) each asynchronous update rule must result in a new global state, i.e. the state of an entity
has to change in order for a state transition to occur.

Definition 8. Let φ = 〈φ(g1) . . .φ(gk)〉 be an abstraction mapping for MV and let σ ∈ TrA(MV) be
either a finite σ = 〈S0,S1, . . . ,Sn〉 or infinite σ = 〈S0,S1,S2, . . . 〉 asynchronous trace. Then φ(σ) is the
abstracted trace that results by

i) First apply the abstraction mapping to each state in σ , i.e. in the finite case 〈φ(S0),φ(S1), . . . ,φ(Sn)〉
or in the infinite case 〈φ(S0),φ(S1),φ(S2), . . . 〉.
ii) Next merge consecutive identical global states in the trace into a single global state to ensure that no
two consecutive states are identical in the resulting abstracted trace, i.e. suppose the result is an infinite
trace 〈φ(S0),φ(S1),φ(S2), . . . 〉 then we know that for i ∈ N we have φ(Si) �= φ(Si+1). �

We let φ(TrA(MV)) = {φ(σ) | σ ∈ TrA(MV)} denote the set of abstracted traces.
As an example, consider applying the abstraction mapping φ(Cro) = {0 	→ 0,1 	→ 1,2 	→ 1} to

the PL2 asynchronous trace 〈00,01,02,01,02, . . .〉. Part i) of Definition 8 above results in the trace
〈00,01,01,01,01, . . .〉; we now merge identical consecutive states to derive the abstracted trace 〈00,01〉.
It is interesting to note that abstracting an infinite trace can result in a finite abstracted trace, as above.
The intuition here is that a cyclic set of states have been abstracted to a single point. The complete set of
abstracted asynchronous traces of PL2 using φ(Cro) are given below:

φ(Cro)(〈00,01,02,01,02, . . .〉) = 〈00,01,〉
φ(Cro)(〈00,10〉) = 〈00,10〉
φ(Cro)(〈01,02,01,02, . . .〉) = 〈01〉
φ(Cro)(〈02,01,02,01, . . .〉) = 〈01〉
φ(Cro)(〈10〉) = 〈10〉
φ(Cro)(〈11,01,02,01,02, . . .〉) = 〈11,01〉
φ(Cro)(〈11,10〉) = 〈11,10〉
φ(Cro)(〈12,02,01,02,01, . . .〉) = 〈11,01〉

The definition of an asynchronous abstraction is based on its trace semantics and follows along sim-
ilar lines to that for the synchronous case [5]. We say an asynchronous abstraction is correct if its set
of traces is within the abstracted traces of the original MVN. This definition of abstraction represents an
under–approximation [] since not all of the behaviour of the original MVN is guaranteed to have been
captured within the abstraction (we discuss the implications of this below).

Definition 9. Let MV1 = (G1,Y1,N1,F1) and MV2 = (G2,Y2,N2,F2) be two MVNs with the same
structure, i.e. G1 = G2 and N1(gi) = N2(gi), for all gi ∈ MV1. Let φ be an abstraction mapping from
MV2 to MV1. Then we say that MV1 asynchronously abstracts MV2 under φ , denoted MV1 �

φ
A MV2, if,

and only if, TrA(MV1)⊆ φ(TrA(MV2)). �

As an abstraction example, consider the MVN APL2 defined in Figure 3 which has the same structure
as PL2 (see Figure 1) but is a Boolean model. Then given the abstraction mapping φ(Cro) = {0 	→ 0,1 	→
1,2 	→ 1} we can see that TrA(APL2)⊆ φ(Cro)(TrA(PL2)) holds and so APL2 is an abstraction of PL2,

i.e. APL2�φ(Cro)
A PL2 holds. Note that APL2 has two point attractors: 01 and 10 which correspond
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CI Cro [CI] [Cro]
0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

〈00,01〉 〈10〉
〈00,10〉 〈11,01〉
〈01〉 〈11,10〉

Figure 3: State transition tables defining APL2 and associated asynchronous trace semantics TrA(APL2).

to the two attractors associated with PL2 (see Figure 2.(b)) and thus, APL2 can bee seen to be a good
approximation of the behaviour of PL2.

Recall that one of the original motivations for developing an abstraction theory was to aid the anal-
ysis of complex MVNs. It is therefore important to consider what properties of an asynchronous MVN
can be inferred from an abstraction MVN. We consider reachability and the existence of attractors since
these are the main properties that are considered when analysing an MVN.

Theorem 10. Let MV1 �
φ
A MV2 and let S1,S2 ∈ SMV1 . If S2 is reachable from S1 in MV1 then there

must exist states S′1,S
′
2 ∈ SMV2 such that φ(S′1) = S1, φ(S′2) = S2, and S′2 is reachable from S′1 in MV2.

Proof. Since S2 is reachable from S1 there must exist a trace σ ∈ TrA(MV1) which begins with state S1

and which contains state S2. From Definition 9, we know that TrA(MV1) ⊆ φ(TrA(MV2)) must hold.
Therefore there must exist a trace σ ′ ∈ TrA(MV2) such that φ(σ ′) = σ . From this it is straightforward
to see that there must exist the required states S′1 and S′2 in σ ′ such that φ(S′1) = S1, φ(S′2) = S2, and S′2 is
reachable from S′1. �

The above theorem indicates that inferring reachability properties from an abstraction is sound but not
complete [13]. The implications of this can be summarised as follows: (i) If one state is reachable from
another in an abstraction then a corresponding reachability property must hold in the original model; (ii)
However, if one state is not reachable from another in an abstraction then a corresponding reachability
property in the original MVN may or may not hold and more analysis will be required. This relates to the
fact that our notion of abstraction represents an under–approximation [9, 24] of the original model. The
alternative approach would be to use an over–approximation abstraction model [9, 24, 10] in which false
positives can arise and need to be dealt with. It turns out that an over–approximation approach is not
well suited to MVNs given that our goal is to find an abstraction model that is a well–defined MVN. To
illustrate the potential problems, consider what happens if a point attractor is identified to a non–attractor
state by an abstraction mapping. In this case no over–approximation abstraction can exist since such an
MVN would need to contain a state that was both a point attractor and also had a successor state. Thus
the approach taken here of using an under–approximation appears to be the appropriate approach to use.

Note that a consequence of the above is that all attractors in an abstraction must have corresponding
attractors in the original MVN.

Corollary 11. If MV1 �
φ
A MV2 then all attractors of MV1 must represent attractors in MV2.

Proof. Follows directly from the definition of an attractor and Theorem 10. �
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4 A Decision Procedure for Asynchronous Abstractions

Given we have now formulated a definition of an asynchronous abstraction we are now interested in
defining a procedure for checking whether a proposed abstraction MV1 is an asynchronous abstraction
of an MVN MV2. In the synchronous case the approach taken was to simply check that each trace
σ ∈ TrS(MV1) was contained within the set of abstracted traces φ(TrS(MV2)). However, in the asyn-
chronous case both sets of traces TrA(MV1) and φ(TrA(MV2)) may be infinite and so such a simple set
inclusion check is not feasible. Instead we propose a decision procedure based on using the state graphs
that summarise the behaviour of an asynchronous MVN. The idea is to consider all sets of states and
associated edges that can be used to model an abstract state. We then iterate through these removing
those state sets which can not be represented given the current allowable state sets. If at any point we no
longer have any state sets remaining for a particular abstract state then we have shown the abstraction is
not valid and we terminate the decision procedure. If, on the other hand, we reach a point at which no
more state sets can be removed then we know the abstraction must be valid and we can again terminate
the procedure.

In the sequel let MV1 and MV2 be MVNs with the same structure and let φ be an abstraction mapping
from MV2 to MV1.

In order to define a decision procedure checkAsynAbs(MV1,MV2,φ) for checking if MV1 is an
asynchronous abstraction under φ of MV2 we begin by formulating some preliminary concepts.

i) Representing abstract states: Let S ∈ Y (MV1) then we define

φ−1(S) = {S′ | S′ ∈ Y (MV2), φ(S′) = S}

to be the set of all states in MV2 that can represent the abstract state S.

ii) Set of identical consecutive states: For any state S′ ∈ Y (MV2) we define the set [S′]φ of all con-
secutive reachable states from S′ that have the same abstract state φ(S′). Define [S′]φ =

⋃
i∈N[S

′]
φ
i , where

[S′]φi is defined recursively: [S′]φ0 = {S′} and

[S′]φi+1 = {S′2 | S′1 ∈ [S′]φi , S′2 ∈ nextMV 2(S′1), φ(S′) = φ(S′2)}.

We now define the notion of a step term, an expression which is used to represent one possible way to
model an abstract state using a set of original states. Such step terms will form the basis of our decision
procedure.

Definition 12. Let S ∈ Y (MV1) and suppose nextMV 1(S) = {S1, . . . ,Sm}. Then for each non-empty
set of states Γ ⊆ φ−1(S) we define the step term st(S,Γ) by

st(S,Γ) = [S : Γ : D(S1), . . . ,D(Sm)],

where D(Si) = {S′2 | S′1 ∈ Γ, S′2 ∈ nextMV 2({S′1} ∪ [S′1]
φ ), φ(S′2) = Si}, and nextMV 2 has been lifted from

taking a single state as input to taking a set of states in the obvious way. Note that the use of [S′i]
φ is

needed in the above definition to take account of the merging of consecutive identical states that occurs
in abstracted traces (see part ii) in Definition 8).

We say a step term [S : Γ : D(S1), . . . ,D(Sm)] is valid iff:
i) the states Γ used in a step term have the appropriate connections, i.e. D(Si) �= {}, for i = 1, . . . ,m; and
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ii) if S is a point attractor in SGA(MV1) then it must be modelled by point attractors in SGA(MV2)
(discounting steps to identical abstracted states), i.e. if nextMV 1(S) = {} then for each S′ ∈ Γ we have
nextMV 2([S′]φ )− [S′]φ = {}. �

We let Step(S) denote the set of all valid step terms

Step(S) = {st(S,Γ) | Γ ⊆ φ−1(S), st(S,Γ) is valid}.

Observe that each valid step term st(S,Γ) ∈ Step(S) must correctly model in MV2 the connections
between S ∈ Y (MV1) and its corresponding next states nextMV1(S) in MV1.

The proposed decision procedure is presented in Figure 4. It works by creating a family C = 〈C(S)⊆
Step(S) | S ∈ Y (MV1)〉 of sets of all valid step terms. It then repeatedly looks at each set of step terms
C(S), for each abstract state S ∈ Y (MV1), removing those that have next states that are not currently in
the remaining stored step terms of C.

Algorithm checkAsynAbs(MV1,MV2,φ):

/** Initialise valid state terms **/

for each S ∈ Y (MV1) do C(S) = Step(S)
/** Iteratively check sets of step terms **/

repeat

done:=true

for each S ∈ Y (MV1) do

for each [S : Γ : D(S1), . . . ,D(Sm)] ∈C(S) do

for i:= 1 to m do

if st(Si,D(Si)) �∈C(Si) then

C(S) =C(S)−{[S : Γ : D(S1), . . . ,D(Sm)]}
done:=false

if C(S) = {} then return false

until (done = true)

return true

Figure 4: Decision procedure for checking asynchronous abstractions MV1 �
φ
A MV2.

It is straightforward to show that the decision procedure must always terminate.

Theorem 13. The decision procedure checkAsynAbs(MV1,MV2,φ) always terminates.

Proof. This follows from that fact we can only ever begin with a finite family of finite sets of step
terms, that no step terms can ever be added, and that we must remove at least on step term in order to
continue to the next iteration. Therefore the algorithm either terminates when no step terms are removed
or continues to iterate until we reach a point where one set C(S) of step terms is empty, again resulting
in termination of the algorithm. �

The complexity of the decision procedure in the worst case, when MV1 is not an asynchronous
abstraction of MV2, can be derived as follows. Assume MV1 is a Boolean model which has n entities
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and k is an upper bound on the number of states in MV2 that can be abstracted to a single state in MV1,
i.e. k ≥ |φ−1(S)|, for all S ∈ Y (MV1). Note that k can be calculated from the abstraction mapping used
and is not dependent on n. The three nested for loops in the decision procedure have an upper bound of
O(2n×2k ×n) where: 2n is the number of states in MV1; 2k is an upper bound on the number of different
sets of states that can be mapped to a given abstract state; and n represents the maximum number of states
that can be connected to a given state. The outer repeat until loop will iterate round removing a single
step term until one of the step term sets is empty. This gives a final upperbound of O(22(n+k)× n2). In
practice the decision procedure should perform much better than this. Note that for a given abstraction
mapping, k can be seen as a fixed constant which does not increase as entities are added (providing the
state of those entities is not abstracted).

Let [S : Γ : D(S1), . . . ,D(Sm)] be a valid step term, let α1 ∈Γ and α2 ∈D(Si), for some 1≤ i≤m. Then

note that due to the way consecutive identical states are treated it may not directly hold that α1
Asy
−−→ α2

since α2 ∈ nextMV 2({α1} ∪ [α1]
φ ). We let α1 = α1

Asy
−−→ α1

1
Asy
−−→ ·· ·

Asy
−−→ αr

1, for α j
1 ∈ [α1]

φ , for 1 ≤ j ≤ r

represent the sequence of identical abstracted states needed such that α1
Asy
−−→ α2 does hold in MV2.

The following lemma considers how step terms can be chained together and is is needed to prove the
main correctness result below.

Lemma 14. Let C = 〈C(S) ⊆ Step(S) | S ∈ Y (MV1)〉 be a family of sets of valid step terms such
that:
i) For each S ∈ Y (MV1) we have C(S) �= {};
ii) The family C is closed under step terms, i.e. for each S∈Y (MV1) and [S : Γ : D(S1), . . . ,D(Sm)]∈C(S)
we have st(Si,D(Si)) ∈C(Si), for 1 ≤ i ≤ m.

Then every path2 γ = γ1
Asy
−−→ . . .

Asy
−−→ γp in the abstraction state graph SGA(MV1) must have a corre-

sponding path α = α1
Asy
−−→ . . .

Asy
−−→ αr, r ≥ p, in the original state graph SGA(MV2) such that φ(α) = γ .

Proof.
Let γ = γ1

Asy
−−→ ·· ·

Asy
−−→ γp be a path in the state graph SGA(MV1). Then by assumptions i) and ii) it is

straightforward to see there must exist a (not necessarily unique) chain of step terms

[γi : Γi : . . . ,D(γi+1), . . .] ∈C(γi), st(γp,Γp) ∈C(γp)

for 1 ≤ i < p, such that for j = 2, . . . , p we have Γ j = D(γ j).

We now prove that for any αp ∈ Γp there must exist αi ∈ Γi, for 1 ≤ i < p, such that α = α1
Asy
−−→

·· ·
Asy
−−→ αp−1

Asy
−−→ αp is a path in SGA(MV2) with φ(α) = γ . We prove this using induction on p ∈ N,

p ≥ 2 as follows.

1) Induction Base. Let p = 2 and suppose we have a path γ1
Asy
−−→ γ2. Then we know there must ex-

ist step terms [γ1 : Γ1 : . . . ,D(γ2), . . .] ∈C(γ1) and st(γ2,D(γ2)) ∈C(γ2) (as explained above). Clearly by

the definition of step terms we know that for any α2 ∈ D(γ2) there must exist α1 ∈ Γ1 such that α1
Asy
−−→ α2

and
φ(α1

Asy
−−→ α2) = γ1

Asy
−−→ γ2.

2We note that a path differs from a trace in that a trace represents a complete run of an MVN whereas a path is simply a
walk through an MVN’s state graph.
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2) Induction Step. Let p = q+ 1, for some q ∈ N, q ≥ 2. Suppose we have a path γ = γ1
Asy
−−→ ·· ·

Asy
−−→

γq
Asy
−−→ γq+1. Then we know there must exist step terms

[γ1 : Γ1 : . . . ,D(γ2), . . .] ∈C(γ1), [γi : D(γi) : . . . ,D(γi+1), . . .] ∈C(γi), st(γq+1,D(γq+1)) ∈C(γq+1),

for 2 ≤ i ≤ q (as explained above). Then by the induction hypothesis we know for each αq ∈ D(γq) there

must exist αi ∈ Γi, for 1 ≤ i < q, such that α1
Asy
−−→ ·· ·

Asy
−−→ αq−1

Asy
−−→ αq is a path in SGA(MV2) with

φ(α1
Asy
−−→ ·· ·

Asy
−−→ αq−1

Asy
−−→ αq) = γ1

Asy
−−→ ·· ·

Asy
−−→ γq. By the definition of step terms it follows that for

any αq+1 ∈ D(γq+1) there must exist αq ∈ Γq such that αq
Asy
−−→ αq+1. Combining this with the induction

hypothesis given above shows the existence of the required path in SGA(MV2). �

It now remains to show that the decision procedure checkAsynAbs(MV1,MV2,φ) correctly checks
for asynchronous abstractions.

Theorem 15. checkAsynAbs(MV1,MV2,φ) returns true if, and only if, MV1 �
φ
A MV2.

Proof.
Part 1) ⇒ Suppose checkAsynAbs(MV1,MV2,φ) returns true. By inspecting the decision procedure
we can see this means that a family {C(S)⊆ Step(S) | S ∈Y (MV1)} of non–empty sets of valid step terms
must have been found which is closed under step terms. Consider any abstract trace σ ∈ TrA(MV1);
then by Lemma 14 and since any trace can be interpreted as a path in SGA(MV1) we have that there
must exist a path α in SGA(MV2) such that φ(α) = σ . It is straightforward to see that α must be a
well–defined trace for MV2, i.e. α ∈ TrA(MV2), by the definition of valid step term. This shows that
TrA(MV1)⊆ φ(TrA(MV2)) and so by Definition 9 we have MV1 �

φ
A MV2.

Part 2) ⇐ Suppose MV1 �
φ
A MV2 then by Definition 9 we know

TrA(MV1)⊆ φ(TrA(MV2)) (1)

Then we show that there must exist a family of sets of valid step terms which are closed under step term
inclusion and thus that checkAsynAbs(MV1,MV2,φ) must terminate returning true.

Let X ⊆ TrA(MV2) be the set of traces that abstractly correspond to TrA(MV1):

X = {σ | σ ′ ∈ TrA(MV2), ∃σ ∈ TrA(MV1).φ(σ ′) = σ}

For each S ∈ Y (MV1), let X〈S〉 denote the set of all states that abstract to S which occur at the start of a
trace in X :

X〈S〉= {σ ′(1) | σ ′ ∈ X , φ(σ ′(1)) = S}

where σ ′(1) represents the first state of trace σ ′. Let nextMV 1(S) = {S1, . . . ,Sm}, then using Definition
12 we can define the step term

st(S,X〈S〉) = [S : X〈S〉 : D(S1), . . . ,D(Sm)]

Clearly, st(S,X〈S〉) must be valid by (1) above. We can now recursively define a set of step terms closed
under step term inclusion from st(S,X〈S〉) as follows.

106



Define H(X〈S〉)=
⋃

i∈N H(X〈S〉)i, where H(X〈S〉)i is defined recursively: H(X〈S〉)0 = {st(S,X〈S〉)}
and

H(X〈S〉)i+1 = {st(Vj,D(Vj)) | [V : Γ : D(V1), . . . ,D(Vr)] ∈ H(X〈S〉)i, Vj ∈ {V1, . . . ,Vr}}.

Clearly, the set H(X〈S〉) is closed under step term inclusion by construction. Also note that it can only
contain valid step terms; this follows from (1) above and the fact that if st(S,Γ) is a valid step term then
any new step term st(S,Γ∪{S′}) formed by adding an additional state S′ ∈ φ−1(S) must also be valid. It
therefore follows that for each S ∈Y (MV1) we know that each step term st(Si,Γ) ∈ H(X〈S〉) must occur
in the initial family C of sets of step terms used in the decision procedure, i.e. st(S,Γ) ∈C(S). Since none
of these step terms can be removed from C by the closure property it follows that the decision procedure
checkAsynAbs(MV1,MV2,φ) must terminate returning true. �

5 Case Study: The Regulation of Tryptophan Biosynthesis

In this section we present a detailed case study which illustrates the abstraction techniques developed in
the previous sections. Our case study is based on identifying abstractions for a published MVN model
of the regulatory system used to control the biosynthesis of tryptophan in E. coli [30]. Tryptophan is
an amino acid which is essential for the development of E. coli. However, the synthesis of tryptophan
is resource intensive and for this reason is carefully controlled to ensure it is only synthesised when no
external source is available. The regulatory network that controls the biosynthesis of tryptophan by E.
coli has been extensively studied (see for example [29, 27]).

Trp

TrpRTrpE

TrpExt

2

TrpE TrpExt Trp [Trp]
0 0 0,1 0
0 0 2 1
0 1 0,1,2 1
0 2 0 1
0 2 1,2 2
1 0,1 0,1,2 1
1 2 0 1
1 2 1,2 2

Trp [TrpR]
0,1 0
2 1

Trp TrpR [TrpE]
0 0 1
0 1 0

1,2 0,1 0

Figure 5: An MVN model MTRP of the regulatory mechanism for the biosynthesis of tryptophan in E.
coli (from [30]). The state transition table for TrpExt has been omitted as this is a simple input entity.
Note that the state transition tables use a shorthand notation where an entity is allowed to be in any of
the states listed for it in a particular row.

Consider the MVN model MTRP for tryptophan biosynthesis presented in Figure 5 which is taken
from [30]. It consists of four regulatory entities: TrpE – a Boolean input entity indicating the presence
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of the activated enzyme required for synthesising tryptophan; TrpR – a Boolean entity indicating if
the repressor gene for tryptophan production is active; TrpExt – a ternary entity indicating the level of
tryptophan in the external medium; and Trp – a ternary entity indicating the level of tryptophan within
the bacteria. Note the above entity order is used when displaying global states for MTRP. We can see
from the model that the presence of tryptophan in the external medium TrpExt directly affects the level
of tryptophan within the bacteria Trp and that the activated enzyme TrpExt is required to synthesise
tryptophan. The presence of tryptophan within the bacteria deactivates the enzyme TrpE and at higher-
levels also activates the repressor TrpR which then acts to inhibit the production of the enzyme TrpE.

The state space for the MTRP consists of 36 global states and for this reason we do not reproduce its
state graph here. Instead we simply note that the asynchronous state graph for MTRP comprises three

disjoint graphs based on the following three attractors: 0000
Asy
−−→ 1000

Asy
−−→ 1001

Asy
−−→ 0001

Asy
−−→ 0000;

0011; and 0122. To identify abstractions for MTRP we begin by defining appropriate state mappings for
the non-Boolean entities TrpExt and Trp as follows:

φ(Trp) = {0 	→ 0,1 	→ 1,2 	→ 1}, φ(TrpExt) = {0 	→ 0,1 	→ 1,2 	→ 1}.

These can then be combined into an abstraction mapping

φ = 〈ITrpE, ITrpR,φ(TrpExt),φ(Trp)〉.

Following the approach presented in [5], we first apply this abstraction mapping to MTRP to pro-
duce a set φ(MTRP) of candidate abstraction models. By analysing φ(MTRP) we are able to estab-
lish that there are 8 possible candidate abstraction models (we have 4 choices for next-state of TrpR
and 2 choices for Trp). After investigating these candidate models we were able to identify one valid
asynchronous abstraction ATRP (which is presented in Figure 6) for MTRP under φ using the decision
procedure checkAsynAbs(ATRP, MTRP, φ). Note that since TrA(ATRP) and φ(TrA(MTRP)) are in
fact finite trace sets in this case we were able to verify the result ATRP�

φ
A MTRP, by checking that

TrA(ATRP)⊆ φ(TrA(MTRP)) holds.

Trp [TrpR]
0,1 0

TrpE TrpExt Trp [Trp]
0 0 0,1 0
0 1 0,1 1
1 0,1 0,1 1

Trp TrpR [TrpE]
0 0 1
0 1 0
1 0,1 0

Figure 6: The asynchronous abstraction ATRP identified for MTRP under the state mappings φ(Trp) =
{0 	→ 0,1 	→ 1,2 	→ 1} and φ(TrpExt) = {0 	→ 0,1 	→ 1,2 	→ 1}.

The state graph for ATRP consists of two disjoint graphs and has two attractors: 0000
Asy
−−→ 1000

Asy
−−→

1001
Asy
−−→ 0001

Asy
−−→ 0000; and 0011. It therefore successfully captures two of the three attractors present

in MTRP.
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6 Conclusions

In this paper we have developed an abstraction theory for asynchronous MVNs based on extending the
ideas developed for synchronous MVNs [5] and defined what it means for an MVN to be correctly
abstracted by a simpler MVN with the same network structure but smaller state space. The abstraction
approach used is based on an under–approximation approach [9, 24] in which an abstraction captures a
subset of the behaviour of the original MVN. We showed that this approach allows positive reachability
properties of an MVN to be inferred from a corresponding asynchronous abstraction and that all attractors
of an asynchronous abstraction correspond to attractors in the original MVN. An alternative approach
would be to use an over–approximation approach [9, 24, 10] in which false positives can arise. However,
the construction of an abstraction model which over–approximates an MVN’s behaviour appears to be
problematic if we wish to remain within the MVN framework (see Section 3 for a discussion of this).

Directly checking asynchronous abstractions turned out to be problematic given that an asynchronous
MVN may have an infinite set of traces which makes it infeasible to directly check trace inclusion. To
address this we developed a decision procedure for checking asynchronous abstractions based on the
finite state graph of an asynchronous MVN. The decision procedure used step terms to denote possible
ways to use sets of concrete states to represent abstract states and worked by iteratively pruning the set
of step terms until either a consistent abstract representation has been found or the set of remaining step
terms is too small to make it feasible to continue. Importantly, we provided a detailed proof that showed
the decision procedure worked correctly. Note that as it stands, the decision procedure is inefficient;
work is on going to refine this procedure and to use it as a basis of a tool for abstraction checking. Such
a tool will provide the support needed to carry out more complex case studies, for example supporting
the work currently underway to investigate abstractions for the relatively complex MVN model of the
carbon starvation response in E. coli presented in [3].

We illustrated the abstraction theory and techniques developed by considering a detailed case study
based on identifying a Boolean abstraction for an asynchronous MVN model of the regulatory system
used to control the biosynthesis of tryptophan in E. coli. The abstraction found proved to faithfully
represent the behaviour of the original MVN and in particular, captured two of the three attractors known
to exist in the original MVN. The case study illustrates the potential for the abstraction theory presented
and in particular, how it allows the balance between the level of abstraction used and the tractability of
analysis to be explored.

An alternative approach for abstracting MVNs is to reducie the number of regulatory entities in
an MVN while ensuring the preservation of key properties (see [21, 37, 22]). This approach seems to
be complimentary to the one developed here and we are currently investigating combining these ideas.
Another possible abstraction approach would be to make use of results on modelling MVNs using Petri
nets [11, 3, 4, 8] and to then apply Petri net abstraction techniques (see for example [31, 19, 38]). Such
an approach appears promising from an analysis point of view but problematic in that the resulting Petri
net abstraction may not be interpretable as an MVN and so force the modeller to explicitly use a different
modelling formalism.

One interesting area for future work is to investigate automatically constructing abstractions for a
given MVN and abstraction mapping. Some initial work on restricting the search space for such abstrac-
tions can be found in [5] but more work is needed here. One idea is to consider developing refinement
techniques similar to those of CEGAR (Counterexample Guided Abstraction Refinement) [10] and other
abstraction refinement techniques [24]. Closely linked to this idea is the notion of a maximal abstraction,
that is an abstraction which captures the largest possible behaviour of the original MVN with respect to
all other possible abstractions for the given abstraction mapping. In future work we intend to investigate
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developing such a notion and in particular, consider how to automate the construction of such maximal
abstractions.
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Nowadays, multiscale modelling is recognized as the most suitable way to study biological processes.

Indeed, almost every phenomenon in nature exhibits a multiscale behaviour, i.e., it is the outcome

of interactions that occur at different spatial and temporal scales. Although several ways to provide

“multilayer” models have been proposed, only Complex Automata naturally embed spatial infor-

mation and realize the multiscale approach with well-established inter-scale integration schemas.

Recently, such approach has been restated in terms of Spatial P systems - a variant of P systems with

a more geometric concept of space.

In this work we discuss how mobile membranes, a variant of membrane systems inspired by the bio-

logical movements of endocytosis and exocytosis, can be efficaciously exploited to define a uniform

multiscale coupling scheme relying only on the features of the formalism itself.

1 Introduction

Many biological phenomena are characterized by interactions involving different spatial and temporal

scales simultaneously. At each scale, different structures come into play. Consequently, several compu-

tational methodologies have been developed for modelling biological processes with different degrees

of resolution. Among them, multiscale modelling rose up as the most suitable one. In such approach,

several models at different spatial and temporal scales, are coupled together. How these models are

homogenized, i.e, integrated is a key aspect to guarantee that the overall model is faithful to the real

phenomenon.

Recently, complex Automata (CxA) [4] were introduced as a robust multiscale modelling solution

which takes in account coupling issues. In CxA the multiscaling is realised on uniform components,

the Cellular Automata, (CA) by different and well-established integration schemas. Any CxA consists

of a finite grid of CA cells, where each cell has an associated state taken from a finite set of different

states. In [2], authors rephrased the CxA approach in term of Spatial P Systems (SPs) [1], a variant of

P Systems enriched with a notion of space. Similarly to CxA, SPs represents space as a geometric 2D

grid-based set of cells that contain objects as in classical P Systems. As a case study, authors provided

a uniform multiscale model of bone remodelling, a common multiscale phenomena, as an aggregation

of single SP models at different scales, coupled through functions external to the paradigm. Following

their approach, we discuss how mobile membranes[3] can be exploited to define a multiscale coupling

scheme which relies only on the operations provided from the mobile membrane paradigm itself.

2 Bone remodelling with mobile membranes

Bone remodelling is a biological phenomenon in which mature bone tissue is removed from the skeleton

(resorption) and new bone tissue is formed (formation); such process is multiscale since macroscopic
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Figure 1: Multiscale model for bone remodelling. Figure (a) represents the whole model containing the

coupling membranes CU (red). Figure (b) shows a detailed BMU (cell scale) membrane.

behaviours, e.g. mechanical stimuli at the tissutal level and microstructure (cell scale actors - e.g. hor-

mones, receptors etc.) strongly influence each other. Figure 1(a) shows the proposed model based on

mobile membranes. As in [2], we consider two resolution levels: the tissutal and the cellular ones. Tis-

sue level is divided into a series of membranes Ti (cyan), each representing a portion of bone. Each

membrane contains, at any moment, a number of objects c proportional to the mineralisation value (ex-

pressed as a density in a certain interval) of the tissue. At the cellular scale we consider a series of

BMUi membranes (green), i.e. “Bone Multicellular unit” membranes representing the cellular sites in

which remodelling occurs1. The integration of the two scales is realised through a coupling membrane

CUi (red) and a simple membrane Vi (violet), that moves between the tissutal and cellular membranes

carrying the coupling information. No external function is needed since the paradigm provide the right

means to handle the coupling.

3 Future work

We sketched a possible application of Mobile Membranes to the definition of a multiscale coupling

scheme which, differently from [2], totally relies on the paradigm itself. In the near future we aim to

fully develop this approach. Moreover, we also aim to study the paradigm expressivity w.r.t. CxA, and

SPs. To this aim, an extension of Mobile Membranes with an explicit spacial notion is mandatory.
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Most available tools propose simulation frameworks to study models of biological systems, but simu-

lation only explores a few of the most probable behaviours of the system. On the contrary, techniques

such as model checking, coming from IT-systems analysis, explore all the possible behaviours of the

modelled systems, thus helping to identify emergent properties. A main drawback from most model

checking tools in the life sciences domain is that they take as input a language designed for computer

scientists, that is not easily understood by non-expert users. We propose in this article an approach

based on DSL. It provides a comprehensible language to describe the system while allowing the use

of complex and powerful underlying model checking techniques.

However, investigation through formal models of biological systems is not as widely spread as in

other natural sciences such as chemistry and physics. This is partly due to the complexity of the living

systems themselves, the strenuosity to formalize biological concepts, the difficulty in performing exper-

iments on living systems in order to test a model, etc. Another reason is that formal models require

the use of formalisms (e.g., Petri Nets (PNs)), which are usually too complex for non-experts. To cir-

cumvent this difficulty, we propose to use the Domain Specific Languages (DSL) approach. A DSL is

a language designed to be understandable by a domain expert and at the same time translatable into a

formal language. This paper presents Gene Regulation Language (GReg), a DSL for the modelling of

genetic regulatory mechanisms through the regulatory network approach [3, 4].

The main idea of regulatory networks is to model inter-biological reactions through a set of interde-

pendent biological rules. This can be seen as a set of discrete modules having strong interconnections.

The occurrence of interesting events in the biological system can be represented as logical properties ex-

pressed on the states of these modules. This is very similar to the kind of properties computer scientists

validate on hardware and software systems (deadlocks, invariants, reachability, . . . ).

Among the tools available in this domain, the main analysis approach for regulatory networks is

simulation. Simulation is generating and analyzing a limited sample of possible system behaviours.

This technique is not convenient when the main purpose of the research is to look for rare or abnormal

behaviours (e.g., cancer). The main approach in this case is to use model checking instead of simulation.

Model checking consists in generating and analysing all the possible states of the system. Naturally, this

technique suffers from the drawback of the enormous number of possible states of biological systems.

It is interesting to note that this problem is well-known to the model checking community in computer

science, where it is called the state space explosion. There is a parallel between cellular interactions and

software systems in that the state space explosion is partly due to their concurrent nature, but mainly due

to the number of molecular species, and their respective populations, that are present in living organisms.

Therefore, we can apply techniques that have been developed for the model checking of hardware and



software systems to biological interactions. Approaches based on a symbolic encoding of the state

space [2] are particularly well-suited for this.

In this paper we show a work in progress in our group. We present GReg, a DSL dedicated to the

modelling of genetic regulatory mechanisms. GReg is given as an example of the DSL-based verification

process. We describe the creation of a language tailored to the understanding of domain experts, and

how this language can be translated into a formal model where model checking can be applied. Model

checking is a very well known verification technique used in computer science. Its main advantage is

the complete exploration of the state space of the model, thus allowing to discover rare but potentially

interesting events. A query language to express the properties of such events is embedded with GReg.

Three axes of development lie ahead: improving the expressivity of the modelling and query lan-

guages, assessing the usability of the approach and exploring the mitigation of the state space explosion.

Extending the expressivity of GReg Concepts such as time and probabilities play an important role

in biology and are therefore good candidates for a language extension. As Algebraic Petri Nets

(APNs), the current underlying formalism, do not support these notions, such extension would

require to change the target platform. Good examples of target formalisms are timed Petri nets

and stochastic Petri nets. The techniques used to create GReg allow changing the target language

without changing the language itself.

Improving the usability of our tool. Although highly efficient, textual languages are usually not as in-

tuitive as graphical languages. On the other hand, graphical domain specific languages are espe-

cially good in the early phase of the modeling as well as for documentation, but they are often

less practical when the model grows. The tools in Eclipse Modelling Project (EMP) that were

used to create GReg allow us to define a graphical version of the same language, thus keeping the

best of both worlds. Another way to ease the modelling phase is to allow import/export of models

from/to other formalisms and standards such as Systems Biology Markup Language (SBML) and

to integrate GReg with Cytoscape framework through its plug-in mechanism.

Mitigating the state space explosion. So far, we have done little experimentation in this area for real

biological processes. This weakness is being worked on as we speak using studies found in the

literature and adapted to GReg. We are also working on a more detailed comparison to other tools

dedicated to biological problems, e.g., GinSim. Nevertheless, we conducted several studies on

usual IT protocols and software models that show that AlPiNA can handle huge state spaces [1].

This suggests promising results in the regulatory mechanisms domain.
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Abstract
In this paper we are interested in situations of biochemical reaction systems

(BioRSs) in which all species have constant concentrations and all reactions have
constant rates. Such a situation is called steady state and usually achieved after
some time has elapsed since the system’s beginning.

We start with a model of a BioRS presented as a stochastic Petri net (SPN).
This is originally obtained from a system of ordinary differential equations
(ODEs) achieved using simulation and interpolation.

The concentrations and rates modeling the steady state in the BioRS can
be established by simulation of the SPN-model. A steady state in the BioRS
signifies also that on the model level only a subset of all possible reachable
states is relevant to this situation. It would be of interest to isolate formally and
constructively this subset of states.

Considering the SPN model we propose an approach to calculate the part of
the state space corresponding to a steady state in the BioRS. To do so, we map
the SPN-model onto a Time Petri Net-model (TPN) with the same behaviour
as that formerly observed one during the simulation of the SPN attaining the
steady state. Finally, the TPN can be analyzed qualitatively and quantitatively.
Notably, the time length of the cycle(s) representing the steady state can now be
computed. To our knowledge there is no way to achieve this using the SPN-model
or the ODE-model.

In addition, this approach helps for validating the correctness of the calcu-
lated (and used) rates in the steady state in the BioRS and of the parameters
used in the original ODEs, fixed by experiments in the wet labs, both being -a
priori- subject to a certain degree of uncertainty.

We thank the PC for inviting us to present our work at this workshop so that
we can help to build a bridge between traditionnal MecBIC themes and Petri
Nets. All details of this work can be found in http://ceur-ws.org/Vol-724.




